Se	ssion: 2023 -24	Max. Marks: 30	
Pr	ogram Name:	Master of Computer Science (M.Sc. CS)	
Co	ourse Code: MCS 101N	Course Name: Discrete Mathematical Struc	ture
	SEC	TION -A	2*6=12 marks
Q. No.	Short answer type question (a	pprox. 200 -300 words)	Marks
1.	Find using Karnaugh maps a minimal form for the boolean function. a. $f(x, y, z) = xyz + xyz' + x'yz' + x'y'z'$.		2
2.	Define tautologies and contradictions with examples.		2
3.	Construct the truth table for p v	Construct the truth table for p v ($q \wedge r$) \Leftrightarrow q^{\wedge} (p v r).	
4.	What is planar graph? Also exp	What is planar graph? Also explain Euler's formula.	
5.	Let R and S be two relations on a set A. Then if R and S are reflexive then prove that $R \cap S$ is reflexive.		2
6.	Find using Karnaugh maps a minimal form for the boolean function. f $(x, y, z) = xyz + xyz' + x'yz' + x'y'z'$.		2
	SEC	TION -B	6*3=18 marks
Q. No.	Long answer type question (approx. 500 -800 words)		Marks
7.	Rewrite the following argument symbols: a. All birds can fly b. Some men are geniu c. Some numbers are n d. There is a student wi	ts using qualifiers, variables and predicate s. ot rational ho likes mathematics but not geography.	6
8.	 a) Explain what it means for tw b) Describe as many of the way c) Show in at least two different ∪ (A - C) are equal. 	To sets to be equal. We say you can to show that two sets are equal. It ways that the sets $A - (B \cap C)$ and $(A - B)$	6
9.	 Determine whether the relation symmetric, antisymmetric, and/ a) everyone who has visited b) There are no common line b. c) There is at least one common d) There is a Web page that page b. 	R on the set of all Web pages is reflexive, or transitive, where $(a, b) \in R$ if and only if Web page a has also visited Web page b. ks found on both Web page a and Web page mon link on Web page a and Web page b. includes links to both Web page a and Web	6

Session: 2023 -24	Max. Marks: 30		
Program Name: Master of Computer Science (M.Sc. CS)			
Course Code: MCS 102N	Course Name: C++ and Object-oriented programming		

SECTION -A		2*6=12 marks
Q. No.	Short answer type question (approx. 200 -300 words)	Marks
1.	What do you mean by "this" function? What are the applications of "this" pointer?	2
2.	List the features of Object oriented programming.	2
3.	What is reusability? Which things can be reused?	2
4.	What is friend function? How it is implemented in C++ ?	2
5.	A library function, is lower(), takes a single character (a letter) as an argument and returns a nonzero integer if the letter is lowercase, or zero if it is uppercase. This function requires the header file CTYPE.H. Write a program that allows the user to enter a letter, and then displays either zero or nonzero, depending on whether a lowercase or uppercase letter was entered.	2
6.	Write a function called reversit() that reverses a C-string (an array of char). Use a for loop that swaps the first and last characters, then the second and next-to-last characters, and so on. The string should be passed to reversit() as an argument.	2
	6*3=18 marks	
Q. N	b. Long answer type question (approx. 500 -800 words)	Marks
7.	 Write a temperature-conversion program that gives the user the option of converting Fahrenheit to Celsius or Celsius to Fahrenheit. Then carry out the conversion. Use floating-point numbers. Interaction with the program might look like this: Type 1 to convert Fahrenheit to Celsius, 2 to convert Celsius to Fahrenheit: 1 Enter temperature in Fahrenheit: 70 In Celsius that's 21.11111 	6
8	Explain why do we need to use constructors? Explain a copy constructor with an example.	6
9	Write a C++ Program to implement a class Account. An account has member data balance,functions deposit() to deposit money, withdraw() to withdraw money, and inquiry() to view the current balance.	6

	Session: 2023 -24	Max. Marks: 30	
	Program Name:	Master of Computer Science (M.Sc. CS)	
	Course Code: MCS 103N	Course Name: Data Structures	
SECTION -A			2*6=12 marks
Q. No.	Short answer type question (appr	ox. 200 -300 words)	Marks
1.	Explain different ways of analyzing algorithm.		2
2.	Formulate the recursive function for evaluating the least common multiplier (LCM).		2
3.	Write a 'C' function to find out the maximum and second maximum number from an array of integers.		2
4.	Write a 'C' function to compute the product of two sparse matrices, represented with two-dimensional arrays.		2
5.	Define algorithm and design an algorithm to find out the total number of even and odd numbers in a list of 100 numbers.		2
6.	What is time and space complexity for the algorithm?		2
SECTION -B		6*3=18 marks	
Q. No.	o. Long answer type question (approx. 500 -800 words)		Marks
7.	There are two linked lists A and B of A: 2, 5, 9, 14, 15, 7, 20, 17, 30 B:14, 2, 9, 13, 37, 8, 7, 28	containing the following data:	6
	 Write programs to create : (i) A linked list C that contains on A and B. ii) A linked list D which contains a is no repetition of elements. 	ly those elements those are common in linked list all elements of A as well as B ensuring that there	
8.	i) What is a circular queue? Write a queue. Write another C function f o	C program to insert an element in the circular r printing elements of the queue in reverse order.	6
	ii) Given the circular queue of with each operation in the sequence: inse	F = 6 and $R = 2$, give the values of R and F after ert, delete, delete, insert and delete.	
9.	i)Write an algorithm which upon from the stack implemented as an a or pop).	user's choice, either pushes or Pops an element rray (the element should not shifted after the push	6
	ii)Convert the expression $(A + B) / it$ for A = 10 B = 20 C = 15 D = 5 D	(C - D) into postfix expression and then evaluate Display the stack status after each operation.	

Session: 2023 -24	Max. Marks: 30	
Program Name: Master of Computer Science (M.Sc. CS)		
Course Code: MCS 106N	Course Name: Computer Organization	

SECTION -A		2*6=12 marks
Q. No.	Short answer type question (approx. 200 -300 words)	Marks
1.	Explain the working of JK flip flop with its truth table.	2
2.	Convert the following binary numbers to octal and hexadecimal numbers. a. 10111011 b. 010110.10101 C. 110010.011 d. 100011.101	2
3.	Implement the following Boolean functions to circuit using logic gates. i) ab + a * b' ii) (a+b).(a + b')	2
4.	What is the difference between a direct and an indirect address instruction? How many references to memory are required for each type of instruction to bring an operand into a processor register?	2
5.	What is instruction cycle? What are the sub-phases of an instruction cycle	2
6.	What is a difference between register mode and auto-increment/auto- decrement mouse? Compare index address mode with base register addressing mode.	2
SECTION -B		6*3=18 marks
Q. No.	Long answer type question (approx. 500 -800 words)	Marks
7.	Implement the following Boolean expression with only NAND gates. i) (AB' + CD')E + BC(A+B) ii) w(x + y + z) + xy	6
8.	Simplify the following Boolean functions with k maps. i) $F(A,B,C) = \sum (1,3,6,7)$ ii) $F(P, Q, R, S) = \sum (0, 2, 5, 7, 8, 10, 13, 15)$	6
9.	Implement the following functions with multiplexer i) $C=\Sigma$ (3,5,6,7) ii) $F(p,q,r)=pq + pq's + q'r's'$	6

Session: 2023 -24	Max. Marks: 30		
Program Name: Master of Computer Science (M.Sc. CS)			
Course Code: MCS 108N	Course Name: Data Communication and Computer Networks		

SECTION -A		2*6=12 marks
Q. No.	Short answer type question (approx. 200 -300 words)	Marks
1.	Explain the term multiplexing. How many types of multiplexing techniques available in computer network?	2
2.	What is token ring? Why do we need token ring? Elaborate your answer.	2
3.	Describe all three types of HDLC frames.	2
4.	Explain Stop and Wait ARQ Retransmission due to timer expiry	2
5.	Explain ARP, RARP and ICMP protocols	2
6.	What do you understand by ATM in computer networks	2
SECTION -B		6*3=18 marks
Q. No.	Long answer type question (approx. 500 -800 words)	Marks
7.	Explain the function of each layer of ISO ref. model for Data Communication. How it is different than TCP/IP model?	6
8.	What is the difference between a frame and a packet? Why framing is required? Explain the significance of padding used in some of frame format?	6
9.	Explain pure ALOHA and its throughput and characteristics. Why is slotted ALOHA needed? Differentiate between pure and slotted aloha.	6

Session: 2023 -24	Max. Marks: 30	
Program Name: Master of Computer Science (M.Sc. CS)		
Course Code: MCS 109N	Course Name: Database Management System	

SECTION -A		2*6=12 marks
Q. No.	Short answer type question (approx. 200 -300 words)	Marks
1.	Differentiate between the following: a. Single valued attribute vs multivalued attribute b. Simple attribute vs composite attribute	2
2.	Briefly explain redundant schema during reduction to relational schema from ER diagram.	2
3.	Write short notes on following relational algebra operations: i. Selection ii. Projection iii. Rename	2
4.	Explain differences between left outer join, right outer join and full join with a suitable example.	2
5.	Explain with example how SQL evaluates nested query and correlated nested query	2
6.	How do you determine whether the decomposed relations satisfy lossless and dependency preserving decomposition or not?	2
SECTION -B		6*3=18 marks
Q. No. Long answer type question (approx. 500 -800 words)		Marks
7.	i)What are various advantages of DBMS over traditional file processing systems?	6
	ii)Explain the Three-Schema Architecture. What are the purposes of physical data independence and logical data independence?	
8.	i) Explain referential integrity constraints with a suitable example.ii)How does DBMS deal when a deletion of a tuple causes violation of referential integrity constraints?	6
9.	i)Find the minimal functional dependency set of {PQ>R, PR>Q, Q ->S,QR>P, PQ>T}.	6
	ii)Consider a relation R(ABCDE) with functional dependencies A>BCDE, BC>ADE and D>E. Check whether it is in third normal form or not. If not, decompose it into third normal form.	