सांख्यकी (रनातक) कार्यक्रम अधिन्यास सत्र 2020–2021

Course Code:	Course Title:	Maximum Marks : 30
PGSTAT-101/MASTAT-101)	Measure and Probability Theory	

Section- A Long Answer Questions

Note: Attempt all questions. Each question should be answered in 800 to 1000 Words.

Maximum Marks: 18

- 1. State and prove central limit theorem.
- 2. Define characteristic function of random variable. State some of its important properties.
- 3. State and prove Fubini's theorem.

Section - B

Short Answer Questions

Maximum Marks: 12

Note: Write any four questions. Answer should be given in 200 to 300 Words.

- 1. State and prove Jensen inequality.
- 2. Discuss about the random variable and its type.
- 3. Write short notes on (a) Field (b) Signed Measure
- 4. State and prove Fatou's lemma.

सांख्यकी (स्नातक) कार्यक्रम अधिन्यास सत्र 2020–2021

Course Code:	Course Title:	Maximum Marks : 30
PGSTAT-102/MASTAT-102)	Statistical Inference	

Section- A

Long Answer Questions

Note: Attempt all questions. Each question should be answered in 800 to 1000 Words.

Maximum Marks: 18

- 1. State and prove Rao- Blackwell theorem.
- 2. On the basis of random sample of size n from the Poisson distribution with parameter θ , obtain UMVUE of e⁻⁵⁰.
- 3. On the basis of a random sample of size n from the family of normal distributions {N $[\theta, \theta]$, $0 < \theta < \infty$ }, obtain a minimal sufficient statistic.

Section - B

Short Answer Questions

Note: Answer all questions. Answer should be given in 200 to 300 Words.

- 1. Write short notes on (a) MP tests (b) UMP tests.
- 2. Let $X_1, X_2 X_n$ be a random sample from U $[0, \theta], \theta \in (0, \infty)$. Let $X_{(n)} = Max (X_1, X_2 X_n)$ Show that $X_{(n)}$ is not BAN for θ .
 - 3. On the basis of a random sample of size n from the Poisson distribution $P(\theta)$, obtain Cramer Rao lower bound for the variance of unbiased estimator of θ^2 .
 - 4. Define the all conditions of a good estimator.

सांख्यकी (स्नातक) कार्यक्रम अधिन्यास सत्र 2020–2021

Course Code:	Course Title:	Maximum Marks : 30
PGSTAT-103/MASTAT-103	Survey Sampling	

Section- A

Long Answer Questions

Note: Attempt all questions. Each question should be answered in 800 to 1000 Words.

Maximum Marks: 18

- 1. Prove that $V(\bar{y}_{sy}) \le V(\bar{y}_{st}) \le V(\bar{y}_{srs})$
- 2. Write a note on Non Sampling and Sampling error.
- 3. Calculate mean and variance of the SRSWOR.

Section - B

Short Answer Questions

Note: Answer all questions. Answer should be given in 200 to 300 Words.

- 1. Define Parameter and Statistic.
- 2. Discuss about the advantages and limitations of simple random sampling.
- 3. Write a note on multistage sampling.
- 4. Discuss about the Midjuno sampling.

सांख्यकी (रनातक) कार्यक्रम अधिन्यास सत्र 2020–2021

Course Code:	Course Title:	Maximum Marks : 30
PGSTAT-105/MASTAT-105	Linear Models and Design of	
	Experiments	

Section- A Long Answer Questions

Note: Attempt all questions. Each question should be answered in 800 to 1000 Words.

Maximum Marks: 18

- 1. State and prove Gauss-Markov theorem.
- 2. Discuss about the analysis of covariance and define ANCOVA table.
- 3. Discuss about the Principles of design of experiment.

Section - B

Short Answer Questions

Note: Answer all questions. Answer should be given in 200 to 300 Words.

- 1. Write a brief note on BLUE
- 2. Write a note on contrast and orthogonal contrast.
- 3. Write a note on resolvable design and affine resolvable design.
- 4. Write a note on Parameters of BIBD. Also prove that vr = bk

सांख्यकी (रनातक) कार्यक्रम अधिन्यास सत्र 2020–2021

Course Code:	Course Title:	Maximum Marks : 30
PGSTAT-106/MASTAT-106	Nonparametric	

Section- A

Long Answer Questions

Note: Attempt all questions. Each question should be answered in 800 to 1000 Words.

Maximum Marks: 18

- 1. Discuss about the order statistics.
- 2. Describe two Sample Kolnogorov Smirnov test.
- 3. Discuss about the Mann-Wliteney U-test.

Section - B

Short Answer Questions

Note: Answer all questions. Answer should be given in 200 to 300 Words.

- 1. Write short notes on two sample location tests.
- 2. Discuss about the Pitman ARE.
- 3. Write a note on merits and demerits of non-parametric tests.
- 4. Write a brief note on location based tests.

सांख्यकी (स्नातक) कार्यक्रम अधिन्यास सत्र 2020–2021

Course Code:	Course Title:	Maximum Marks : 30
PGSTAT-107/MASTAT-107	Stochastic Process	

Section- A

Long Answer Questions

Note: Attempt all questions. Each question should be answered in 800 to 1000 Words.

Maximum Marks: 18

- 1. State and prove the Chapman Kolmogorov equation for a Markov Chain. Giving some counter example, show that the equations are satisfied by non-Markovian processes also.
- 2. Stating the underlying assumptions, give the derivation of a Poisson process.
- 3. A sequence of experiments as performed, in each of which two function are tossed. Let x_n be equal to three numbers of heads in a repeanons of the experiments.

Section - B

Short Answer Questions

Note: Answer all questions. Answer should be given in 200 to 300 Words.

- 1. Define (i) An Ergodic Markov Chain, (ii) Stationary Markov Chain.
- 2. Find the probability distribution of interarrival time for a Poisson process.
- 3. Find out the probability generating function of a Simple Branching Process.
- 4. State in brief random week and gambler's win problem.