Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

Course Code: UGMM-105	Course Title: : Mechanics-I (Statics and Dynamics)	Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. If T be the tension at any point P of a common catenary and $T o$ be the tension at the lowest point A then prove that $T^{2}-T o^{2}=W^{2}$ when W in the weight of the are AP of the cetenery.
2. Five weight less rods of equal length are joined together so as to from a rhombus ABCD with one diagonal $B D$. at a weight W be attached to C and the system be suspended from A then show that there is a thrust in $B D$ equal $w / \sqrt{3}$.
3. The velocities of a pastiche along and perpendicular to the radius vector from a fixed point are $\lambda r \& \mu \theta$. Find the path of the particle.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. A particle is allowed to move from the top of a cycloid whose vertex is upward and plane vertical with negligible velocity. Find the point where the particle leaves the cycloid.
5. A body consisting at a core and a hemisphere on the same base rests on a rough horizontal table the hemisphere being in contact with the table of the height of the cone is $\sqrt{3}$ times the radius of the hemisphere. Find whether the equilibrium will be stable or unstable.
6. A particle moves with a central acceleration which varies inversely as the cube of the distance if it is projected from an apse at a distance a from the origin with velocity which is $\sqrt{2}$ time of the velocity for a circle of radius a then show that its path is $r \cos \frac{\theta}{\sqrt{2}}=a$.
7. A particle whose mass is m is acted upon by a force $m \mu\left(x+\frac{a^{4}}{x^{3}}\right)$ towards the origin if it stats from rest a distance a then show that it will arrive at the origin is time $\frac{\pi}{4 \sqrt{\mu}}$

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

Course Code: UGMM-106	Course Title: Mechanics-II (Dynamics and Hydrodynamics)	Maximum Marks : 30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find the moment of inertia of a rod of length $2 a \&$ mass M about a line through its centre perpendicular to its length.
2. Find the moment of inertia of a circular disc of radian ' a ' about its diametre.
3. At the vertex c of a tangle ABC which is a right angle at c show that the principle axis in the plane are inclined to the sides at an angle $\frac{1}{2} \tan ^{-1} \frac{a b}{a^{2}-b^{2}}$.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note :Answer each question in 200 to 300 Words. All carry equal marks.
4. One end of a light string is fixed to a point of the rim of a uniform circular disc of radian ' a ' \& mass ' m ' and the string is wound several times round the rim. the free end is attached to a fixed point and the disc is held so that the part of the string not in contact with the vertical of the disc be let go find the acceleration \& tension of the string.
5. Find the moment of inertia of a right circular cylinder about a straight line through its centre of gravity perpendicular to its axis.
6. A straight uniform rod can turn freely about one end O, hangs from O vertically. Find the least angular velocity with which it must begin to moves so that it may perform complete revolution in a vertical plane.
7. Show that the moment of inertia of the area bounded by $r^{2}=a^{2} \cos 2 \theta$ about its axis is $\frac{M a^{2}}{16}(\pi-8 / 3)$

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

Course Code: UGMM-107	Course Title: Linear Algebra	Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find all eign values and eign vectors of a linear transformation
$T: I R^{3} I R^{3}$, defined as $T(x, y, z)=(2 x+y, y-z, 2 y+4 z)$. Is T diagonolizatble
2. If w_{1} and w_{2} are any two finite subspaces of a vector space V then show that

$$
\operatorname{dim}\left(w_{1}+w_{2}\right)=\operatorname{dim} w_{1}+\operatorname{dim} w_{2}-\operatorname{dim}\left(w_{1} \cap w_{2}\right)
$$

3. Find the eigen Values and eigen vectors of the matrix $\quad A=\left(\begin{array}{ccc}1 & 1 & 3 \\ 3 & 2 & 4 \\ 3 & 4 & 5\end{array}\right)$

(Section - B)

(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Let V be a vector space over a field F such that it has no proper subspace. Then show that either

$$
V=\{o\} \text { or } \operatorname{dim} V=1
$$

5. Which of the following is a linear transformation where $T: I R^{2} \rightarrow I R^{2}$
(a) $T\left(x_{1}, x_{2}\right)=\left(1+x_{1}, x_{2}\right)$
(b) $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$
6. A function f is defined on $I R^{2}$ as follows:

$$
\begin{gathered}
f(x, y)=\left(x_{1}-y_{1}\right) 2+x_{1} y_{2}, \text { where } x=\left(x_{1}-x_{2}\right) \text { and } y=\left(y_{1}, y_{2}\right) \\
\text { Is } f \text { a bilinear forms? Verify. }
\end{gathered}
$$

Uttar Pradesh Rajarshi Tandon Open University

Course Code: UGMM-108	Course Title: Calculus of function of several variable and Vector Calculus	Maximum Marks : 30

(Section 'A')
 (Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. at $u=e^{x y z}$ then show that $\frac{\partial^{3} u}{\partial x \partial y \partial z}=\left(1+3 x y z+x^{2} y^{2} z^{2}\right)$ is it also equal to $\frac{\partial^{3} u}{\partial y \partial z \partial x}$?
2. Show that $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(u, v)}=1$
3. A particle moves so that its position vector in given by $\bar{r}=\hat{\imath} \cos w t+\hat{\jmath} \sin w t$ Show that the velocity \bar{v} is perpendicular \bar{r} and $\bar{r} \times \bar{v}$ is constant vector.

(Section - B)

(Short Answer Questions)
Maximum Marks: 12
Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Find the deviational derivative of $f(x)=x y^{2}+\mathrm{yz}^{3}$ at the point $(1,-1,1)$ along the vector $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
5. at $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
6. Determine the point where the function $x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$ has a maximum are minimum.
7. Find curl (curl $\overline{\mathrm{F}})$ at the point $(0,1,2)$ where $\overline{\mathrm{F}}=\left(\mathrm{x}^{2} \mathrm{y}\right) \hat{\imath}+(x y z) \hat{\jmath}+\left(z^{2} y\right) \hat{\mathrm{k}}$

Or
Evaluate $\int \bar{F} . d \bar{r}$ whre $\bar{F}=\left(3 x^{2}\right) \hat{\imath}+(2 x z-y) \hat{\jmath}+z \hat{k}$ along the straight line joinery $(0,0,0) \&(2,1,3)$

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

| Course Code: DCEMM-109 | Course Title: Abstract Algebra | Maximum Marks : 30 |
| :--- | :--- | :--- | :--- |

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in $\mathbf{5 0 0}$ to $\mathbf{8 0 0}$ words. All carry equal marks.
Maximum Marks: 18

1. State and Prove fundamental theorem of group homomorphism.
2. Let N be a normal subgroups of a group G and H be a subgroup of G then show that:
(i) $\mathrm{H} \cap \mathrm{N}$ is normal subgroup of H (ii) HN is a subgroup of G (iii) N is normal subgroup ofHN.
3. Prove that if G is abelian then $\mathrm{G} \mid \mathrm{Z}(\mathrm{G})$ is cyclic where $\mathrm{Z}(\mathrm{G})$ is centre of G .
$\quad($ Section $-\mathbf{B})$
(Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.
4. Give all sub groups of $\left(\mathrm{Z}_{12},+\right)$
5. Let $f: G_{1} 1 \rightarrow G_{2}$ be a group homomorphism then show that kernel f is a normal subgroup of G_{1}.
6. Give an example non-cycle group whose all subgroups are cyclic.
7. Find all zero divisor elements of $Z / 20$.

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

Course Code: DCEMM-110	Course Title: Number Theory	Maximum Marks : 30

(Section 'A')
(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Find the remainders obtained on division of the following:
(a) 3^{50} by 101
(b) 159^{7654} by 23
2. Find the g.c.d. of 163 and 34 and express it in the form $163 m+$ $34 n$ in two ways.
3. Prove that (a) $18!+1 \equiv 0(\bmod 437)(b) 28!+233 \equiv 0(\bmod 899)$.

$$
\text { (Section - B) }
$$

(Short Answer Questions)

Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
4. Show that every square is congruent to 0 or $1(\bmod 8)$.
5. Find the value of $\emptyset(m)$ if $m=500$.
6. Find the following Legendre symbols: (a) $\left(\frac{19}{41}\right)$ (b) $\left(\frac{3}{7}\right)$ (c) ($\left.\frac{5}{11}\right)$ (d) $\left(\frac{6}{11}\right)$
7. Find the value of Mobius function $\mu(n)$ for n
(a) 15 (b) 30 (c) 47 (d) 100

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

\author{

Course Code: DCEMM-112	Course Title: Advance Analysis	Maximum Marks : 30

}
(Section ' \mathbf{A} ')
(Long Answer Questions)
NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Every Cauchy sequence $\left(S_{n}\right)$ of real Numbers converges.
2. Let $\left(\mathrm{X}_{1}, \mathrm{~d}_{1}\right)$ and $\left(\mathrm{X}_{2}, \mathrm{~d}_{2}\right)$ be two discrete metric spaces. Then verify that the product metric on $\mathrm{X}_{1} \times \mathrm{X}_{2}$ is discrete.
3. Show that a Cauchy sequence is convergent \Leftrightarrow it has a convergent subsequence.
4. Let (X, d) be a metric space and $A \subseteq X$. Show that $\bar{A}=\{x \in X: d(x, A)=0\}$.
$\quad($ Section $-\mathbf{B})$
(Short Answer Questions)

Maximum Marks: 12
Note : Answer each question in 200 to 300 Words. All carry equal marks.
5.Define Complete Metric Space. Given an example of a metric space which is not Complete.
6. Any compact metric space is totally bounded.
7. Statement and Prove Mean value theorem.

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

Course Code: DCEMM-113	Course Title: Function of Complex Variable	Maximum Marks : 30

(Section 'A')

(Long Answer Questions)
NOTE: Answer each question in 500 to 800 words. All carry equal marks.

1. If $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$, find v such that $f(z)=u+i v$ is analytic. Determine $f(z)$ in terms of z.
2. Find the radius of convergence R of the following power series:
(i) $\sum_{n=0}^{\infty} Z^{n}$
(ii) $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$
(iii) $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$
3. Using Cauchy integral formula, calculate the following integrals.
$\int_{c} \frac{\cos (\pi z)}{z\left(z^{2}+1\right)} d z$, where C is the circle $|z|=2$
4. Evaluate $\int_{0}^{3+i} z^{2} d z$ along the line joining the points $(0,0)$ and $(3,1)$.
(Section-B)
(Short Answer Questions)
Maximum Marks: 12

Note : Answer each question in 200 to 300 Words. All carry equal marks.
5. Evaluate $\int_{c} \frac{d z}{z-2}$ for $n=2,3,4 \ldots$ where $z=a$ is a point inside the simple closed curve c.
6. Find Taylor Series of $f(z)=\frac{1}{z}$ about $z=-1, z=1$ and $z=2$. Determine the circle of convergence in each case.
7. For the conformal transformation $w=z^{2}$. Show that the circle $|z-1|=1$ transforms into the cardioid $R=2(1+\cos \emptyset)$ where $w=R e^{i \theta}$ in the w-plane.

Uttar Pradesh Rajarshi Tandon Open University

School of Science,Assignment Session 2023-24

Course Code: SBSMM-03	Course Title: Elementary Analysis	Maximum Marks : 30

(Section ' A ')
(Long Answer Questions)
NOTE: Answer each question in 500 to 800 words. All carry equal marks.
Maximum Marks: 18

1. Write truth tables fo the sentence $P \Rightarrow P$ and

$$
P \Rightarrow-P \text {. Is the First sentence a tautology. }
$$

2. The diagonal or the equality relation \& in a set S is an equivalence

$$
\text { relation in } S \text {. For it } x, y \in S \text { the } x y \text { iff } x=y \text {. }
$$

3. Let x be a set. Consider the relation R in (e(x)), given by : for A, B

$$
\in(\mathrm{e}(\mathrm{n})) \mathrm{ARB} \text { if } \mathrm{A} \subseteq \mathrm{~B}
$$

4. Let $f: X \rightarrow Y$ be a map and let A and B subsets of X, then $A \subseteq B \Rightarrow f(A)$

$$
\subseteq f(B)
$$

(Section - B)
(Short Answer Questions)

Note : Answer each question in 200 to 300 Words. All carry equal marks.

$$
\text { 5. Let } X=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], y=[-1,1]
$$

Let $f: X \rightarrow Y$ given by $f(x)=\sin x, x \in X$.
6. Evaluate $\iint x y d x d y$ over the region in the positive quadrant for which $x+y \leq 1$.
7. Find the volume inside the paraboloid $\mathrm{x}^{2}+4 \mathrm{z}^{2}+8 \mathrm{y}=16$ and on the positive side of $x z$-plane.

