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. 

Blocks & Units Introduction 
 

The present SLM on Advance Statistical Inference consists of fifteen units with four blocks. 

The Block - 1 – Point Estimation, is the first block, which is divided into four units, and 

deals with theory of statistics in advance statistical inference. 

Unit – 1- Introduction to Statistical Inference, is introductory and gives an idea about 

parameters, statistics and likelihood function of a random sample.  

Unit – 2 – Point Estimation and Cramer Rao Inequality, describes point estimation 

along with desirable properties of a point estimator, Carmer Rao inequality and amount of 

information. 

Unit – 3 – Sufficiency and Factorization Theorem, discuss property of sufficiency along 

with factorization theorem. 

Unit – 4 – Complete Sufficient Statistics and Rao-Blackwell Theorem, Present the 

concept of complete sufficient statistics along with Rao Blackwell Theorem and its applications. 

The Block - 2 – MVU Estimation is the second block with two units and deals with the 

problem of estimation particularly the procedures and concepts related to the minimum variance 

unbiased estimation.  

Unit – 5 – MVU Estimators, provides the basic concepts related to minimum variance 

unbiased estimators. 

Unit – 6 – Complete Sufficient Statistics, describes the basic concepts of complete 

sufficient statistics. 

The Block - 3 – Testing of Hypothesis - I, deals with testing of hypothesis and consists of 

two units. 

Unit – 7 – Preliminary Concepts in Testing, describes the concepts of critical regions, 

test function, two kinds of errors, size and power function of the test. 

Unit – 8 – MP and UMP Tests discusses the concepts of most powerful and uniformly 

most powerful test is a class of size α tests with simple illustration. 

The Block - 4 – Testing of Hypothesis - II based on testing of hypothesis and interval 

estimation consists of four units.  

Unit – 9 – Neyman – Pearson Lemma, Likelihood Ratio Test and Their Uses, describes 

Neyman Pearson Lemma and likelihood ratio tests along with their uses in determination of test. 



Unit – 10 – Testing of Means of Normal Population, discuss tests for significance of 

mean from a normal population and testing the equality of means from two independent normal 

populations 

Unit – 11 – Interval Estimation, defines interval estimation for single unknown 

parameter of univariate population. Confidence intervals have been given for parameters of 

univariate normal population and one parameter exponential family. 

Unit – 12 – Shortest and Shortest Unbiased Confidence Intervals, provides the concept 

of shortest and shortest unbiased confidence intervals. 

At the end of every block/unit the summary, self assessment questions and further 

readings are given.  
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Block & Units Introduction 
 

The Block - 1 – Point Estimation, is the first block, which is divided into four units, and 

deals with theory of statistics in advance statistical inference. 

Unit – 1- Introduction to Statistical Inference, is introductory and gives an idea about 

parameters, statistics and likelihood function of a random sample.  

Unit – 2 – Point Estimation and Cramer Rao Inequality, describes point estimation along 

with desirable properties of a point estimator, Carmer Rao inequality and amount of information. 

Unit – 3 – Sufficiency and Factorization Theorem, discuss property of sufficiency along 

with factorization theorem. 

Unit – 4 – Complete Sufficient Statistics and Rao-Blackwell Theorem, Present the concept 

of complete sufficient statistics along with Rao Blackwell Theorem and its applications. 

At the end of each unit the summary, self assessment questions and further readings are 

given.  

  



Unit-1  Introduction to Statistical Inference 

Structure 

1.1   Introduction 

1.2   Objectives 

1.3  Parameter and Statistic   

1.4 Parametric and Non –parametric methods 

1.5  Likelihood function of sample values 

1.6  Some illustrations of likelihood function 

1.7  Sampling distribution 

1.8  Standard error of the statistic  

1.9  Problem of Statistical Inference 

1.10   Key Words 

1.11   Summary 

1.12   Further Readings 

1.1  Introduction 

In carrying out any statistical investigation, one starts by taking a suitable probability model 

for the phenomenon (X) that one seek to describe. According to the probability model, the 

distribution function (denoted by F) is supposed to be (unspecified) member of a more or less 

general class of distribution functions. Here one‟s goal may be the task of specifying F more 

completely than that is done by the model. The task is achieved by taking a random sample X1, 

X2,…..Xn from the parent population. These observations are the raw materials of the investigation 

and are used to make a guess about the distribution function F which is partly unknown. Thus 

statistical inference is the science of drawing the conclusions about the population on the basis of a 

random sample drawn from the parent population. So, we can term it as the calibration zone of 

statistics. Now onwards we will learn more about statistical inference.   

1.2  Objectives 

After reading this unit you should be able to : 

 Define statistical inference 

 Explain the parameters and statistics 

 Understand parametric and non-parametric methods 

 Know likelihood function of sample values 

 Understand sampling distributions 

 Discuss the problems of Statistical Inference 



1.3  Parameter and Statistic 

When we use sample observations to get an overview about population values it is called 

estimation e.g. We want to study average income of an industry workers in a metro city. For this 

first we will chalk out population of industry workers in that metro city. Then since the number of 

industry workers is large, we will find an appropriate sample of workers. Then a possible justified 

method of estimating average income of the workers is to obtain average income of the workers 

from the sample. This sample average income of the worker from the  sample. This sample average 

may be an estimate of the population average. Let us define two more terms i.e. the parameter and 

the statistic. 

Parameter:  A parameter is defined as a constant of the population. In other words it is a measure 

which describe a population value i.e. a parameter provides information about population e.g. 

population mean, population variance etc. 

Statistic:  A statistic is defined as a function of sample observations. It is independent of unknown 

parameters. Sample mean, Sample median, i
th

 observation of a sample etc. are some examples of 

statistics. The purpose of estimation is to find that statistic which is a good representative of a 

parameter. This statistic is called an estimate of population parameter.  

The Estimation, thus, is that branch of statistics where we learn about finding an estimate of 

population parameter through statistic. 

Suppose the population under investigation is having the density function f(x; 

𝜃1 , 𝜃2 , 𝜃3 , …… . 𝜃𝑛 ), where X is the variate and 𝜃1, 𝜃2 , …… . 𝜃𝑚  are m parameters of the distribution. 

For example, in the case of normal distribution, the density function can be written as N (x; 𝜇, 𝜎2). 

Suppose Xi (i = 1, 2,…., n) are n observations of a random sample. In estimation problems, we 

define estimators, for one or more of the parameters in terms of the sample values and these 

estimators, naturally will be function of the sample values. 

1.4  Parametric and Non-Parametric Methods 

 In the development of Statistical methods the techniques of inference that were first to 

appear were those which involved may assumptions about the distribution of sample  values X1, 

X2,…..Xn. In most of the cases, it is assumed that these are i.i.d. normal variables. In any case, it 

would be assumed that the join distribution has a particular parametric form like normal or 

exponential, only some or all of the parameters may be unknown. Statistical inference in these cases 

would relate solely to the value or values of some or all of the unknown parameters. This is called 

Parametric Inference.  



Comparatively, a large number of methods of inference have been developed in Statistics 

which do not make too many assumptions about the distribution of X1, X2,…..Xn. It may simply be 

assumed that these are i.i.d. random variables having a common continuous distribution but no 

parametric form of the common distribution may be assumed. Statistical inference under such a set 

up is called Non Parametric Inference.  

1.5  Likelihood Function of Sample Values 

  Let X1, X2,…..Xn be a random sample of size n taken from the population whose p.d.f. or 

p.m.f. is f(x, 𝜃) 𝜃 is the parameter. 𝜃 may be  single or vector valued. Then likelihood function of 

sample values denoted by L or L(X1, X2,…..Xn, 𝜃) is defined as  

L= L(X1, X2,…..Xn, 𝜃) 

= 𝑓  𝑥1, 𝜃 . 𝑓  𝑥2, 𝜃 …… . 𝑓  𝑥𝑛 , 𝜃  

=  𝑓  𝑥𝑖 ;  𝜃 

𝑛

𝑖=1

 

Actually, likelihood function of sample values gives the probability of getting a specific 

sample of size n from the population. 

1.6  Some Illustrations of Likelihood Function 

1.  Let X1, X2,…..Xn be a random sample from N ( 𝜇, 𝜎2). Then 

𝑓  𝑥 =  
1

𝜎 2𝜋
𝑒𝑥𝑝 −

1

2
 
𝑥 − 𝜇

𝜎
 ;−∞ < 𝑥 < ∞ 

−∞ < 𝜇 < ∞ 

−∞ < 𝜎 < ∞ 

and then the likelihood function of sample values is  

𝐿 =   
1

𝜎 2𝜋
 
𝑛

𝑒𝑥𝑝 −
1

2
  

𝑥𝑖 − 𝜇

𝜎
 

𝑛

𝑖=1

 

2.  If a random sample of size n has been taken from a Poisson population with p.m.f.  

𝑓  𝑥 =
𝑒−𝜆

∗

𝑥!
, 𝑤𝑕𝑒𝑟𝑒 0 < 𝜆 < ∞, 𝑥 = 0,1,2, … . . , ∞ 



then likelihood function of the sample values is 

𝐿 =  𝑒−𝑛𝜆𝜆 𝑥 /  𝑥1! 𝑥2!. . 𝑥𝑛! 

3.  For a random sample of size one is drawn from a binomial population with parameters n and 

p, having p.m.f. 

f (x) = 
n
Cx. p

x
 (1-p) 

n-x
 

the likelihood function is 

L = 
n
Cx. p

x
 (1-p) 

n-x
 

It is important to note that the likelihood function in the case of binomial distribution for 

sample size one is same as its p.m.f. 

4.  For a random sample of size n from uniform population with p.d.f.  

𝑓  𝑥𝑖 , 𝜃 =  1/𝜃; 𝜃 < 𝑥 < 𝜃 

= 0 𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒 

The likelihood function is 

𝐿 =  𝑓  𝑥𝑖 ;  𝜃 

𝑛

𝑖=1

 

=   
1

𝜃
 
𝑛

; 0 ≤ 𝑥1, 𝑥2, … . . 𝑥𝑛  ≤  𝜃.

0                   𝑜𝑡𝑕𝑒𝑟 𝑤𝑖𝑠𝑒

  

1.7  Sampling Distribution 

  Statistical inference helps us to estimate the unknown parameter using statistics. We first 

obtain the statistic and on that basis we estimate the parameter. As we are aware a number of 

different samples can be obtained from the population. The values of the statistic computed from 

these different samples may not be equal. In statistical terms we can say that a statistic is a variable 

quantity whose values changes with each sample. Since each sample is obtained through some 

specified procedure and a probability of drawing each sample already exists, certain probability is 

also associated with each value of statistic. So we may say that a statistic is a random variable which 

takes on certain values with some probability law. 

The probability distribution of a statistic is called its sampling distribution. 



Thus the probability distribution of sample mean is called the sampling distribution of 

sample mean, and probability distribution of sample variances is called the sampling distribution of 

sample variance. In the same way we can have sampling distribution of sample proportion, sample 

median or of any other statistic we want to use. 

Further it is also very important to note that the sampling distribution of a statistic is 

dependent on the population, the size of the sample and on the method by which the units are 

selected in the sample. 

Some Examples: 

1. If a sample of size n is taken form a normal distribution N (𝜇, 𝜎2 ) with known 

variance of the population then the sample mean 𝜇 is found to be normal distributed with mean  and 

variance 𝜎2/𝑛 i.e.   

𝑥 ~𝑁(𝜇, 𝜎2/𝑛) 

2. If the sample is taken from a normal distribution with unknown variance then 

 𝑥 − 𝜇  𝑛

𝑠
~𝑡𝑛−1  

𝑤𝑕𝑒𝑟𝑒 𝑠2 =
1

𝑛 − 1
  𝑥𝑖 − 𝑥  2

𝑛

𝑖=1

 

1.8  Standard Error of Statistic 

The standard deviation of a statistic is called its standard error and the variance of this 

statistic is called its sampling variance. e.g. standard error of sample mean form a normal population 

with known variance is 
𝜎

 𝑛
 

1.9  Problem of Statistical Inference 

The problem of Statistical Inference can be divided into two parts 

1. Estimation of parameters 

2. Testing of hypothesis 

 

1. Estimation of Parameters 

On some occasions our interest will be in such feature as the central tendency or dispersion of 

the distribution of X1, X2,……Xn. In order to make conjecture about this feature we may use some 

statistic T, i.e. some measurable function of X1, X2, Xn. To be precise X1, X2, Xn if be the available 

set of observations then we put forward the corresponding value of T, say 



T = T(X1, X2, Xn) 

as the likely value of the parameter of the distribution. This t is then our estimate of the 

parameter an is also called the point estimate. The problem of inference is this case takes the form 

of point estimation i.e. estimation of the parameter by a single value. 

In some cases one may give, instead of a single value as the likely estimate of the parameter 

as set of values this set being determined in terms of the observation, such that the actual value of 

the parameter may be considered likely to belong to that set. Estimation of the parameter is now 

achieved by means of a confidence set. Usually the set is taken to be an interval and then the 

statistical procedure is called interval estimation of the parameter of the distribution. 

To summarize we can say that when a single number is used to estimate an unknown 

parameter, this is called point estimate and this method is termed as Point Estimation. 

But sometimes we find that a point estimate is not sufficient as it may be either correct or 

incorrect. Thus we are not sure about its reliability. Also a point estimate is of no use if it is not 

accompanied by an estimate of the error that might be involved. Then we estimate the parameter by 

method of interval estimation where instead of a point value an interval is provided i.e. parameter is 

generally estimated to be within a range of the values rather than as a single number. So when an 

interval of values is used to estimate a population parameter it is called interval estimation and this 

estimate is called the interval estimate.   

Thus if we say that the average height of men whose ages are between 25 to 30 years is 168 

cm. on the basis of sample then it is a point estimate and when we say that this height is expected to 

lie between 165 cm. to 171. It is called an interval estimate.  

2. Testing of Hypothesis 

In some situations we start with tentative notion about the feature of the distribution that we 

are interested in. This idea may be suggested to us by some authority (e.g. a manufacture placing a 

new product in the market or a leading scientist propounding some new scientific theory) or by the 

results of the previous investigations conducted in the same field or in a similar field. We may then 

like to know tenable or valid the idea is in the light of the observations (X1, X2,……Xn). The 

inference problem is now one of testing a hypothesis about the unknown feature of the distribution. 

Note that the model used and the hypothesis being tested are both assumptions regarding the 

probability distribution of X1, X2,……Xn. However, the hypothesis is an assumption the validity of 

which is questioned, but is taken for granted.  

In much simpler words any assumption that we make about a population parameter is called 

a hypothesis and the statistical procedures that are used to test the hypothesis of the basis of sampled 

observation are covered under the topic testing of hypothesis.  



For example a doctor may set up a hypothesis that smoking increase the risk of throat cancer 

in human beings. To ascertain this he will collect some primary or secondary data and then after 

some statistical analysis he might approve or disapprove it. This is the problem of testing of 

hypothesis. Additionally the assumptions that we wish to test is called a null hypothesis and the 

assumptions that we accept in case the null hypothesis is rejected is called alternative hypothesis. 

 1.10  Key Words 

 

1. Parametric Inference. 

2. Non Parametric Inference. 

3. Likelihood Function 

4. Sampling Distribution 

5. Standard Error 

6. Estimation Of Parameters 

7. Testing Of Hypothesis 

8. Point Estimation 

9. Interval Estimation 

10. Hypothesis Testing 

1.11  Exercises 

1.  What is statistical inference? Explain 

2.  Write an essay on the theory of estimation. 

3.  What are two types of problem of inference 

4.  Write a short note on likelihood function. Obtain the likelihood function of the 

sample if it belongs to a Bernoulli density function. 

1.12  Summary 

To summarize we can say that statistical inference is the process of arriving at conclusion 

about the population under study on the basis of data obtained from a sample. Probability theory 

forms the basis of statistical inference as it uses various probability methods for decision making. 

The quantity or measure which describe a population value is called a parameter.  



The quantity or measure which describe a sample value is called a statistic. 

If X1, X2,……Xn are independently and identically distributed random variables we say that 

they constitute a random sample from the infinite population given by their common distribution.  

The probability distribution of a statistic is called its sampling distribution. 

The standard deviation of the distribution of a statistic is known as standard error of the 

statistic. 

The likelihood function of sample values gives the probability of getting a specific sample 

of size n from the population. 

The problem of statistical inference can be divided into two parts 

1. Estimation of parameters 

2. Testing of hypothesis. 

When a single number is used to estimate an unknown parameter, this estimate is called 

point estimate and this method is termed as point estimation.  

When an interval of values is used to estimate a population parameter it is called interval 

estimation and this estimate is called the interval estimate.    

Any assumption that we make about a population parameter is called a hypothesis and the 

statistical procedure that is used to test the hypothesis on the basis of sampled observation is called 

testing of hypothesis. 

1.13 Further Readings 

 Cramer, H. Mathematical Methods of Statistics, Princeton Univ. Press 1946. 

 Kendall, M.G. A Course in Multivariate Analysis, Charles Griffin, 1957. 

 Lehmann, E.L. (1986). Testing statistical hypothesis. John Wiley, 1959 

 Goon, A.M., Gupta, M.K., and Dasgupta, B. (2000). An outline of statistical Theory, world 

Press  

  



Unit-2 Point Estimation and Cramer Rao Inequality 

Structure 

2.1   Introduction 

2.2   Objectives 

2.3  Point Estimation 

2.4 Properties of Estimators 

2.5 Unbiasedness 

2.6 Consistency 

2.7 Efficiency  

2.8 MVUE 

2.9 C-R Inequality 

2.10  Remarks  

2.11  Worked Examples 

2.12   Exercises 

2.13   Summary 

2.14   Further Readings 

2.1  Introduction 

Every one of us make estimates in our lives. For example while going away for vacation we 

estimate the possible expenditure. Similarly a student estimates the time he requires for doing 

revisions before examination. A sportsperson judges himself on the basis of practice sessions and so 

on. Business organizations, shopkeepers, institutions, governing bodies all estimate one  thing or 

another with the hope that the estimates bear a reasonable resemblance to the outcome. The question 

here is what estimation is in statistical term? A one line answer to this query is that the estimation is 

that statistical method of obtaining the value of the parameter from a possible set of alternatives. In 

the ongoing text we will take a deeper look in topic.   

2.2  Objectives 

After reading this unit you will be able to understand - 

 The concept of Point Estimation 

 Learn about the properties of a good estimator which are unbiasedness, consistency and 

efficiency 

 Understand Minimum Variance Unbiased Estimate, 

 Understand Cramer-Rao inequality 



 Learn about amount of information 

2.3  Point Estimation 

If we use the value of a statistic to estimate a population parameter, this value is a point 

estimate of the parameter. For example, in the case of binomial (n,p) population, if we use simple 

proportion to estimate the parameter 𝜃, this estimate is called point estimate because it is single 

number, or point on the real axis. The statistic, whose value is used as the point estimate of a 

parameter, is called an estimator. Therefore, the statistic 𝑋  is an estimator of 𝜇 and its value x is the 

point estimate of 𝜇.   

Since estimator are random variables we need to study their sampling distributions. For 

instance, when we estimate the variance of a population on the basis of a random sample, we can 

hardly expected the value of S
2
 which one gets form the sample, to be  actually equal to 𝜎2but it 

will be certainly reassuring if the value is close to 𝜎2. Also, when there are more than one statistics 

available to estimate the parameter of a population, (for example the mean and the median of the 

sample to estimate the population mean in N (𝜇, 𝜎2), it is important to know, among other things 

whether the sample mean or sample median is more likely to yield a value which is actually close to 

parameter.  

Theory of Point Estimation 

Let x1, x2,……xn be a random of size n drawn from the population whose p.d.f. is f(x,𝜃), 𝜃 is 

the parameter of the population. We denote the sample observations x1, x2,……xn by x, i.e. 

x- (x1, x2,……xn) 

Suppose we are interested to determine (or estimate) the true value of 𝜃. It may be assued 

known that it lies in a certain set Ω, known as the parametric space (or parameter space).  

For the purpose of estimation, we make use of some statistic T, a measurable function of 

sample values. The value of T at x is assumed to be t= T(x). One may purpose to estimate 𝜃 by this 

value t, knonw as estimate of 𝜃 corresponding to the given random sample x.  

Since random sample x will differ one case to another, thus leading to different estimates in 

different one can‟t expect that the estimate in each case will be good in the sense of having only 

small deviation from true value of 𝜃.  Hence to judge the desirability (or otherwise) of any 

estimation procedure, one should really judge the properties of the estimation T. Obviously T may 

be regarded as a good estimator if it gives in general values of T that deviate from 𝜃 from 𝜃 only by 

a small amount, that is if the probability distribution to T has a high degree of concentration around 

true value of 𝜃 in Ω. The value of T for a specific x is also known as point estimate of 𝜃. The 



problem of inference is in this case is known is „Point Estimation‟ i.e. estimation by a point or a 

single value (on the basis of x drawn from the parent population). 

Now the question is how to know about the estimator for the estimation of 𝜃? The answer is 

provided in the form of describing different methods of estimation. Some of the various available 

are 

(1) Method of Moments 

(2) Methods of Maximum Likelihood  

(3) Method of Minimum Variance 

(4) Method of Least Squares 

(5) Method of Minimum Chi-Square 

These methods give different estimators for the block estimation of the same parameter. 

(These methods have been discussed in other units in detail). Now the question arises which 

estimator one should choose from and why? 

The answer has been given by describing various desirable properties of a good estimator. 

2.4 Properties of a Good Estimator 

A very important decision, which an experimenter has to take is to decide which estimator 

one should choose among a number of possible estimators. Various statistical properties of the 

estimators like unbiasedness, minimum variance, consistency, efficiency and sufficiency, can be 

used to decide which estimator is most appropriate to a given situation. Following are termed as the 

desirable properties of a good estimator- 

(i) Unbiasedness 

(ii) Consistency 

(iii) Efficiency 

(iv) Sufficiency 

2.5        Unbiasedness 

Let x1, x2,……xn be a random sample of size n taken from the population where p.d.f. or p.m.f. 

is f(x, 𝜃), 𝜃 is the unknown parameter and T= T (x1, x2,……xn) be an estimator of 𝜃. 

Then T is said to be an unbiased estimator of 𝜃 if 

E (T) = 𝜃 



If E(T) ≠ 𝜃, T is known as a biased estimator of 𝜃 and bias in T is define as bias (T) = bias 

in T = E (T) – 𝜃 

If E (T) > 𝜃 , T is called positively biased estimator of 𝜃  and if E(T) < 𝜃,  t is called 

negatively biased estimator of 𝜃 

Some times it is noted that 

E(T) →  𝜃 as →  ∞ 

In this case, T is known as asymptotically unbiased estimator of 𝜃. A very important are not 

unique. That is there may exist more than one unbiased estimator for a parameter. it is also to be 

noted that biased estimator does not always exists. 

Some worked example 

Example 1:  If X has a binomial distribution then x/n, the observed proportion of success, in an 

unbiased estimator of the parameter 𝜃. 

Proof:   Since E(x) = n 𝜃, it follows that 

𝐸  
𝑥

𝑛
 =

1

𝑛
, 𝐸 𝑥 =

1

𝑛
, 𝑛𝜃 =  𝜃. 

Hence, x/n is an unbiased estimate of 𝜃 

Example 2: If 𝑠2 =
1

𝑛−1
  𝑥𝑖 − 𝑥  2𝑛

𝑛−1  is the variance of a random sample from, N (𝜇, 𝜎2), 𝜇, 𝜎2 

both unknown then the s
2
 in an unbiased estimator of 𝜎2.  

Proof: 

𝐸𝛿 𝑠 2 =
1

𝑛 − 1
𝐸    𝑥𝑖 − 𝑥  2

𝑛

𝑛−1

  

=
𝜎2

𝑛 − 1
𝐸    

𝑥 − 𝑥 

𝜎
 

2𝑛

𝑖=1

  

=
𝜎2

𝑛 − 1
. 𝐸 (𝑌) 

Where 

𝑌 =   
𝑥 − 𝑥 

𝜎
 

2𝑛

𝑖=1

 



Then Y follows a 𝜒2 distribution with (n-1) degrees of freedom as sample observations have 

been drawn N (𝜇, 𝜎2). Then obviously E(Y) = (n - 1). 

Hence 

𝐸 𝑠 2 =  
𝜎2

𝑛 − 1
  𝑛 − 1   

= 𝜎2 

2.6  Consistency 

The statistics (T) is said to be a consistent estimator 𝜃, if T converges to 𝜃, in probability 

i.e.,  

Pr  𝑇 − 𝜃 ≤∈ → 1  

𝑜𝑟 𝑃𝑟  𝑇 − 𝜃 ≤∈ → 0 

Consistency is an asymptotic property, namely a limiting property of an estimator i.e. when 

n is sufficiently large we can be certain that the error made with a consistent estimator will be less 

than any small preassigned constant.  

A Sufficient Condition for Consistency: 

T is a consistent estimator of 𝜃 if  

(i)  E(T) → 𝜃 

(ii)  Var (T) → 0. 

Proof: 

 For a r.v. X having finite mean and variance, we have from Chebychev‟s Inequality. 

Pr  𝑥 − 𝐸(𝑥) ≤∈ ≥  1 −
𝑣𝑎𝑟 (𝑥)

∈2
  

Applying it to „T‟ we get 

Pr  𝑇 − 𝐸(𝑇) ≤∈ ≥  1 −
𝑣𝑎𝑟 (𝑇)

∈2
  

Making 𝑛 → ∞ and applying (i) & (ii), we may write 



Pr  𝑇 − 𝜃 ≤∈ ≥ 1 𝑓𝑜𝑟 𝑛 → ∞  

But probability can never exceed unity, therefore we write 

Pr  𝑇 − 𝜃 ≤∈ → 1 𝑓𝑜𝑟 𝑛 → ∞  

Showing T to be a consistent estimator of  𝜃 under (i) & (ii). 

Proved. 

Mean Square Error (or M.S.E.) 

Before defining the concept of efficiency let us define the concept of mean square error of an 

estimator (or statistic). 

The mean square error of an estimator T is defined as 

M.S.E. (T)  = E(T- 𝜃)
2
 

= E [T-E (T)+ E(T)- 𝜃]
2
 

= E[T-E (T)]2 + [E(T)- 𝜃]
2
 

(Cross term vanishes) 

=Var (T) + (bias in T)
2
 

If T is an unbiased estimator of 𝜃 then bias in T is zero and in this case,  

M.S.E. (T) = Var (T) or i.e. if E(T) = Q 

Thus for an unbiased estimator T of 𝜃 its mean square error coincides with its variance. 

2.7  Efficiency 

Among the class of all possible estimators for estimating 𝜃, one which has the minimum 

m.s.e. is called most efficient estimator of 𝜃. 

If T1 and T2 are two estimator for estimating 𝜃, the T1 is said to be more efficient then T2 for 

estimation of 𝜃 if 

M.S.E. (T1) < M.S.E. (T2) 

The efficiency of T1 w.r.t., T2, denoted by E (or e), is defined as 



𝐸  𝑜𝑟 𝑒 =  
𝑚. 𝑠. 𝑒.  𝑇2 

𝑚. 𝑠. 𝑒.  𝑇1 
 

=  
𝑚. 𝑠. 𝑒.  𝑇2 

𝑚. 𝑠. 𝑒.  𝑇1 
× 100% 

However, if we are given the class of unbiased estimators for estimating 𝜃, we may replace 

m.s.e. by variance for the concept of efficiency. It has already been stated that in case of 

unbiasedness m.s.e. coincides with the variance.  

We have already indicated that when there are two unbiased estimators for a parameter, the 

estimator with less variance is more reliable. If T1 and T2 are two unbiased estimators of parameter 

𝜃 and the variance of T1 is less than the variance T2 then T1 is said to be relatively more efficient. 

The most efficient estimator, among a class of consistent estimator, is one whose sampling variance 

is less than that of any other estimator. Whenever such an estimator exists, it provides a criterion for 

measurement of efficiency of the other estimators. 

If T1 is the most efficient estimator with variance 𝜎1
2  and T2 is any others estimate with 

variance 𝜎2
2, then the efficiency E of T2 is defined as  

𝐸 =  
𝜎12

𝜎22 (This is always < 1) 

 For example, the efficiency of the sample median of normal population can be determined in 

relation to the most efficient estimator, ˜x (,mean of the sample). The efficiency of the median of the 

sample is (for large n) 

𝐸 =  
𝑉𝑎𝑟 𝑋

𝑉𝑎𝑟  𝑚𝑒𝑑𝑖𝑎𝑛 
=  

𝜎2

𝑛
𝜋𝜎2

2𝑛

 

=
2

𝜋
= 0.637 

The minimize of M.S.E. for all 𝜃𝜀𝛺 it self is found to be a difficult task. One may resolve 

this problem if insistence is given to unbiased that is if confines to the class of unbiased estimators 

Minimization of M.S.E. will amount to the minimization of the variance. 

Criterion of unbiasedness has no great merit. It only enables to find the processor of 

choosing estimators within a mathematically tractable framework. 

The criterion of unbiasedness may be deemed defective in cases where biased estimators 

have smaller M.S.E. than unbiased ones. The question, then, arises why to learn them out of 

consideration? In some investigation it becomes necessary to pool the evidence collected from 



several sources. The evidence may be in nature of an  estimate, perhaps  with a standard error 

attached to it. if the estimates are unbiased then a combined estimate may be formed with reduced 

standard error and with  the accumulation of more evidence the true value may be approached. On 

the hand, if biased estimates are combined without any indication regarding the magnitude of the 

bias, then nothing definite can be said about such combined estimates. The bias may actually exceed 

the standard error at some stage and combined estimate may never approach the true value. 

2.8  Minimum Variance Unbiased Estimator (MVUE) 

T is known as best estimator of 𝜃 if it is unbiased for 𝜃 and has the minimum variance among 

the class of all possible unbiased estimators for estimating 𝜃. In this case, T is also known as 

(uniformly). Minimum Variance Unbiased Estimator of 𝜃 In other words the statistic T is known as 

UMVUE of 𝜃 if it is unbiased and has smallest variance (for each 𝜃) among all possible unbiased 

estimator of 𝜃i.e. if 

(i) E(T)  = 𝜃             for every 𝜃𝜀𝛺 

(ii) Var (T) < Var (T`)  for every 𝜃𝜀𝛺 

Where T` is any other estimator of 𝜃 satisfying (i). 

We know that 

M.S.E. (T) = (Bias in T)
2
 + Var (T) 

One can observe that MVU estimator makes the first contrast (i.e. bias in T) of MSE a 

minimum (i.e. zero) and then also make the second contrast i.e. Var (T), a minimum for all 𝜃.This, 

of course does not mean that T will have the minimum mean square for all 𝜃. However it is evident 

that by minimizing the two contrasts separately, T will on the whole (i.e. through out the parametric 

space) keep the MSE at a low level.  

MVUE and CR Inequality 

  While an estimator may be directly examined for unbiasedness it is  not immediately 

apparent how to satisfy one self that an estimator has the smallest variance among the class of all 

possible unbiased estimators. 

Some methods in literature are available to solve this problem. One method is based on the 

use of Cramer-Rao (or Rao-Camer or CR) inequality.  

2.9  CR Inequality 



Let 𝜃 be a single parameter varying over the parametric space Ω and that x1, x2,…..xn be a 

random sample of size n taken from a continuous population having p.d.f. (x, 𝜃). The likelihood 

function of sample values is given by 

𝐿 = 𝐿 𝑥1, 𝑥2 , … 𝑥𝑛 ; 𝜃 = 𝑓  𝑥1, 𝑥2, … 𝑥𝑛 ; 𝜃  

=  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

 

For sake of notational simplicity the multiple integral 

  ……  𝑓

∞

−∞

∞

−∞

∞

−∞

 𝑥1, 𝑥2, … 𝑥𝑛 ; 𝜃 𝑑𝑥1, 𝑑𝑥2, … 𝑑𝑥𝑛  

Will be denoted by  𝐿𝑑𝑥
𝑥

 

Let us make the following assumptions known as regularity conditions of CR inequality: 

(i) Ω is a non-degenerate open interval on the real line, 

(ii) For almost all 𝑥 =  𝑥1, 𝑥2, … 𝑥𝑛  and all 𝜃𝜀𝛺,  
𝜕𝐿

𝜕𝜃
  exists, the exceptional set if any 

being independent of 𝜃 

(iii) The differentiation is possible at least one under the sign of integral that is 
𝜕

𝜕𝜃
 𝐿𝑑𝑥
𝑥

=

 
𝜕𝐿

𝜕𝜃
𝑑𝑥

𝑥
 

(iv) T be an unbiased estimator of 𝜓 𝜃   

(v) 
𝜕

𝜕𝜃
 𝑇. 𝐿𝑑𝑥
𝑥

=  𝑇.
𝜕𝐿

𝜕𝜃
𝑑𝑥

𝑥
 

(vi) 𝐸  𝜕 𝑙𝑜𝑔
𝐿

𝜕𝜃
 

2

 exists and is positive for each 𝜃𝜀𝛺 

Under these assumptions 

𝑉𝑎𝑟  𝑇 = 𝜎2 ≥  
 ᴪ′ 𝜃  

2

𝐸 𝜕 log 𝐿/𝜕𝜃 2
  

Where ᴪ′ 𝜃 =
𝜕ᴪ

𝜕𝜃
   which is finite and exists. 

We may denote 



𝐸  
 𝜕 𝑙𝑜𝑔𝐿 

𝜕𝜃
 

2

𝑏𝑦 𝐼(𝜃) 

Which is called by Fisher the amount of information about 𝜃 supplied by the sample and is 

reciprocal of the information limit to the Variance of T.  

Proof: 

We have  𝐿𝑑𝑥
𝑥 

= 1 

Differentiating it w.r.t. „𝜃‟ and using assumption (iii), we have 

 
𝜕𝐿

𝜕𝜃
𝑑𝑥 = 0

𝑥

 

𝑜𝑟  
1

𝐿

𝜕𝐿

𝜕𝜃
𝑑𝑥 = 0 𝑜𝑟  

𝜕 log 𝐿

𝜕𝜃
𝐿𝑑𝑥 = 0  

𝑜𝑟  𝐸  
 𝜕 𝑙𝑜𝑔𝐿 

𝜕𝜃
 = 0 𝑜𝑟 𝐸 𝑄 = 0                              (2.1) 

Where 𝑄 =   
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
  

Again E(T) = ᴪ 𝜃    

𝑜𝑟  𝑇𝐿𝐷𝑥 = ᴪ 𝜃                                                  

𝑥

 

Differentiating both side partially w.r.t. 𝜃 and a[pplying (v) 

 𝑇
𝜕𝐿

𝜕𝜃
𝑑𝑥 = ᴪ′ 𝜃 =   

𝜕ᴪ 𝜃 

𝜕𝜃
                                              

𝑥

 

Or  

 𝑇  
1

𝐿

𝜕𝐿

𝜕𝜃
 𝐿𝑑𝑥 = ᴪ′ 𝜃                                               

𝑥

 

Or     E(TQ) = ᴪ′ 𝜃    ------------------------- (2.2) 



𝑉𝑎𝑟  𝑄2 = 𝐸 𝑄2 −  𝐸 𝑄  2 

      = 𝐸 𝑄2 𝑎𝑠 𝐸 𝑄 = 0 

                                                   = 𝐸  
𝜕 𝑙𝑜𝑔𝐿

𝜕𝜃
 

2

                                    (2.3) 

Also,  Cov (TQ) = E(TQ) – E(T). E(Q) 

= E(TQ) as E(Q) = 0 

= ᴪ′ 𝜃   [using 2.8.1]                                 (2.4) 

We may write   Cov (TQ) = pTQ.   𝑉𝑎𝑟 𝑇 𝑉𝑎𝑟(𝑄)  

[Where QTQ is the correlation coefficient between T & Q]. 

So {Cov (TQ)}2 < Var (Q). Var (Q) 

Or    𝑉𝑎𝑟 (𝑇) ≥
 𝐶𝑜𝑣 (𝑇𝑄) 2

𝑉𝑎𝑟  (𝑄)
  

       ≥
 ᴪ′  𝜃  

2

𝐸 
𝜕  𝑙𝑜𝑔𝐿

𝜕𝜃
 

2                               [𝑢𝑠𝑖𝑛𝑔  2.3 𝑎𝑛𝑑  2.4 ] 

Proved. 

  The CR inequality remains valid even when r.v. x1, x2, ,….xn (a random sample of size n 

drawn from the parent population) are all discrete. The proof remains the same. Only multiple 

integrals are replaced by appropriate multiple signs. 

An unbiased estimator T of 𝜃, which attains the lower bound of Cramer Rao inequality, is 

known as Minimum Variance Bound estimator (MVB estimator). One should keep in mind that 

MVBE and UMVUE may be different at times. The unbiased estimator which attains the lower 

bound of CR inequality is necessarily UMVUE.   

Sometimes there may exists a class of unbiased estimators whose minimum variance may be 

more than the lower bound of CR inequality. Thus, though the variance of this estimator may not 

attain the lower bound of CR inequality it may not attain the lower bound of CR inequality, it may 

or may not be UMVUE.  

It may also be noted that in case the regularity conditions underlying CR inequality do not 

hold, the least variance may be less than CR lower bound. 



2.10  Remarks 

Generally, two sets of criteria of a good point estimator viz (1) unbiased ness and minimum 

variance and (2) consistency and efficiency are considered. The criteria of having minimum 

variance and (asymptotic) efficiency are similar and in a way are necessary accompaniments of the 

basic criteria of unbiased ness and consistency respectively. 

The criterion of unbiased is better in the sense that it is application irrespective of the 

number of random variable under consideration. The criterion of consistency and efficiency 

(particularly in case of asymptotic efficiency) relates to the asymptotic behavior of the statistic. In 

other words, a consistent estimator may be expect dot give a close estimate in case sample size is 

sufficient large but may leave completely in dark regarding its performance when sample size is 

small. 

However, consistency may be a better criterion than unbiased ness in the sense that the 

central tendency of the distribution of the estimator may be towards 𝜃 or its parametric function as 

the case may be, for large n, without confirming to any particular measure of central tendency. 

Unbiased ness on the other hand only ensures that the mean of the estimator will be 𝜃. Without 

bothering about the appropriateness of the mean as a measure of central tendency in the particular 

situation some times in a given situation, the mean of an estimator may not even exits. Even if it 

does, the criterion of unbiased ness may lead to undersirable estimators. Neither unbiased ness nor 

consistency leads to unique estimators but the scope of arbitrariness is much greater in the case of 

consistency than unbiased ness. Thus suppose Tn is a consistent estimator of 𝜃. Then we may think 

of infinitely may others eg. Tn +1/ 𝜃 𝑛 or Tn (1+A/𝜃 𝑛 ) where A is a constant independent of n and 

𝜃 𝑛 is an increasing function of n, are also consistent estimators of 𝜃. This sort of arbitrariness does 

not arise in case of unbiased ness.  

There is one point that consistency in its favour. Common sense requires that if T is 

considered a good estimator of, than and ψ(𝜃) be a function of  𝜃 then ψ(T) should be deemed an 

equally good estimator of ψ(𝜃). From this point of view, unbiased ness may not be considered as a 

good criteria because ψ (T) will not be unbiased for ψ (𝜃) unless it is a linear function, even if T is 

unbiased for 𝜃. The criterion of consistency may be supposed to meet this requirement because in a 

large class of problems consistent estimators have this desirable property of invariance. 

2.11  Worked Examples                               

Example 1: Show that in sampling from a normal population with mean 𝜇 and variance 𝜎2 the 

sample mean is consistent estimator of 𝜇.  

Solution:   In sampling from a normal population the sample mean x is also normally distributed 

with mean 𝜇 and variance 
𝜎2

𝑛
. 



 𝐸 𝑥  =  𝜇 𝑎𝑛𝑑 𝑉 𝑥  =
𝜎2

𝑛
   

𝐴𝑠                       𝑛 → ∞, 𝐸 𝑥  =  𝜇 𝑎𝑛𝑑 𝑉 𝑥  =
𝜎2

𝑛
   

x, thus, confirms to the conditions for consistency of the estimator i.e. sample mean 𝑥  is a consistent 

estimator for population mean 𝜇. 

Example 2:  If x1, x2 and x3 form a random sample a normal population with mean 𝜇 and the 

variance 𝜎2, what is the efficiency of the estimator 

𝑡 =
𝑥1 + 2𝑥2 + 𝑥3

3
 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑥  ? 

Solution:  Here we have 

𝑥 =
𝑥1 + 2𝑥2 + 𝑥3

3
 

𝑆𝑖𝑛𝑐𝑒 𝑉𝑎𝑟  𝑥𝑖 = 𝜎2 , 𝑖 = 1,2,3 𝑣𝑎𝑟  𝑥  =
1

9
[𝑣𝑎𝑟  𝑥1 + 𝑣𝑎𝑟  𝑥2 + 𝑣𝑎𝑟  𝑥3 ] 

𝑣𝑎𝑟 𝑥 =
𝜎2

3
 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑒𝑎𝑛𝑠 . 

𝑉𝑎𝑟  𝑡 = 𝑉𝑎𝑟
𝑥1 + 2𝑥2 + 𝑥3

3
=

1

16
[𝑣𝑎𝑟  𝑥1 + 𝑣𝑎𝑟  𝑥2 + 𝑣𝑎𝑟  𝑥3 ] 

=  
𝜎2

16
+

4

16
𝜎2 +

𝜎2

16
=

6𝜎2

16
 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑥 =
𝑉𝑎𝑟 (𝑡)

𝑉𝑎𝑟 (𝑥 )
=

𝜎2

3
6𝜎2

16

=
8

9
 

Example 3:  If x1 is the mean of random sample of size n form a normal population with the 

mean 𝜇 and the variance 𝜎1
2  and x2 is the mean of a random sample of size n from a normal 

population with the mean 𝜇 and the variance 𝜎2
2 show that.  

(a) wx1 + (1-𝑤 ) x2 value 0 ≤  w ≤ 1 is an unbiased estimator of 𝜇. 

(b) The variance of this estimator is minimum when  w = 
𝜎2

2

𝜎1
2+𝜎2

2  



Solution 

(a) Let T = wx1 + (1-w) x2 

E(T) = E (x1) + 1-w) E (x2) 

=w 𝜇 +(1-w) 𝜇 = 𝜇.  

Hence T is an unbiased estimator of 𝜇. 

(b) 𝑉𝑎𝑟  𝑇 =  𝑤2𝑣𝑎𝑟  𝑥1 +  1 − 𝑤 2 𝑉𝑎𝑟  𝑥2  

=  𝑤2
𝜎1

2

𝑛
+ (1 − 𝑤)2

𝜎2
2

𝑛
 

𝑖𝑓 𝑣𝑎𝑟  𝑇 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝑡𝑕𝑒𝑛
𝑑

𝑑𝑤
  𝑉𝑎𝑟 𝑇  =  0  

𝑎𝑛𝑑 
𝑑2

𝑑𝑤2
 𝑉𝑎𝑟 𝑇  𝑚𝑢𝑠𝑡 𝑏𝑒 + 𝑣𝑒. 

𝑑

𝑑𝑤
 𝑉𝑎𝑟 𝑇  =  0 𝑔𝑖𝑣𝑒𝑠 

2𝑤
𝜎1

2

𝑛
− 2 1 − 𝑤 

𝜎2
2

𝑛
= 0  𝑖. 𝑒. 𝑤 (𝜎1

2+𝜎2
2) + 𝜎2

2 

𝑖. 𝑒. 𝑤 =  
𝜎2

2

𝜎1
2 + 𝜎2

2 

For this value of w = 
𝑑2 𝑉𝑎𝑟  (𝑇) 

𝑑𝑤 2  is positive . Hence Var(T) is minimum when 

𝑤 =  
𝜎2

2

𝜎1
2 + 𝜎2

2 

Example 4: x1, x2 and x3 is a random sample of size 3 from a population with mean 𝜇  and 

variance 𝜎2. T1, T2, and T3 are the estimators used to estimate mean value 𝜇 where  

𝑇1 = 𝑥1 + 𝑥2 − 𝑥3, 𝑇2 = 2𝑥1 + 3𝑥3 − 4𝑥2   

𝑎𝑛𝑑 𝑇3 =
𝜆𝑥1 + 𝑥2 + 𝑥3

3
  

I. Are T1 and T2 unbiased estimation? 

II. Find value of λ such that T3 is unbiased estimator of 𝜇. 

III. Which is the best estimator? 



Solution Since x1, x2, x3 is a random sample from a population with mean 𝜇 and variance 𝜎2 

E (x1) = 𝜇, Var (x1) = 𝜎2and Cov (x1, x2) = 0 i≠j= 1,2,….n. 

I. E (T1) = E (T1)+ E (T2)- E (T3) 

= 𝜇 + 𝜇 − 𝜇 =  𝜇 

i.e. T1 is an unbiased estimator of 𝜇. 

E (T2) = E (2x1)+ E (3X3)- E(X4) 

= 2𝜇 + 3𝜇 − 4𝜇 =  𝜇 

i.e. T2 is an unbiased estimator of 𝜇. 

 

II. i.e. T3 is an unbiased estimator ⇒ E(T3) = 𝜇 

1/3  { λE(X1)+ E(X2)+ E(X3}= 𝜇 

i.e. 1/3 (λ+2) 𝜇 = 𝜇 

i.e. λ = 1 

III. We have 

Var (T1) = Var (X1)+ Var (X2)+ Var (X3) = 3𝜎2 

Var (T2) = 4Var (X1)+ 9Var (X3)+ 16Var (X2) = 29𝜎2 

𝑉𝑎𝑟  𝑇3 =
1

9
 𝑉𝑎𝑟  𝑋1 + 𝑉𝑎𝑟  𝑋2 +  𝑉𝑎𝑟 𝑋3   

=  
𝜎3

3
 

Since Var (T3) is minimum, T3 is the best estimator.  

Example 5: If  𝑥 =
1

2
 𝑥1 + 𝑥2  where x1 and x2 are most efficient estimators with variance S

2
 

then show that Var (x) = 
1+𝑝

2
=  𝑆2 where Q is the correlation coefficient between X1 and X2. 

Solution: Since both x1 and x2  are most efficient estimators 

𝑉 𝑥 =  𝑉  
1

2
 𝑥1 + 𝑥2  =

1

4
𝑉  𝑥1 + 𝑥2  

=
𝑉 𝑥1 + 𝑉 𝑥2 +  2𝐶𝑜𝑣  𝑥1, 𝑥2 

4
 



=
𝑆2 + 𝑆2 + 2𝑝𝑆2

4
=

2𝑆2 + 2𝑆2 + 𝑝

4
 

= (1 + 𝑝)
𝑆2

2
 

2.12  Exercises 

1.  Show that if T is an unbiased estimator of 𝜃 the T
2
 is not necessarily an unbiased estimator 

of 𝜃2. But if T is a consistent estimator of 𝜃 then T
2
 is consistent estimator of 𝜃2 .  

2.  Find an unbiased estimator of (i)  𝜃and (ii) 𝜃2  in case of a binominal distribution with 

parameters n and 𝜃 having p.m.f.   

F(x, 𝜃) = 
n
Cx 𝜃𝑥  (1- 𝜃)

n-x
; x= 0,1,2,….,n,  0< 𝜃 <1. 

based on a random sample of size n. 

3. Prove that the sample median is a consistent estimator for the mean of a normal population. 

Also, show that for a normal population, sample mean is efficient than the sample median. 

4. A random sample (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ) of size 5 is drawn from a normal population with 

unknown mean 𝜇. Considering the following estimators to estimate 𝜇.   

     𝑖                            𝑇1 =  
 𝑥1 + 𝑥2 + 𝑥3+𝑥4 + 𝑥5 

5
 

     𝑖𝑖                            𝑇2 =  
 𝑥1 + 𝑥2 

5
+𝑥3 

     𝑖𝑖𝑖                            𝑇3 =  
 2𝑥1 + 𝑥2 + 𝜆𝑥3 

3
 

Where 𝜆 is such that T3 is an unbiased estimator of 𝜇. Find 𝜆 .Are T1 and T2 unbiased for 𝜇. 

? State giving reasons the estimator,which is best among T1, T2, and T3.  

2.13  Key Words 

(a) Unbiased:  An estimator “T” is unbiased for a parameter if E(T) = 𝜃.  

(b) Consistent:  “Tn” is consistent estimator of 𝜃 if it converges to 𝜃 with probability 1 i.e. 𝑛 →

∞ 𝑃 𝑇𝑛 → 𝜃 = 1. 



(c) Efficient:  In a class of consistent and unbiased estimators, one with the smallest variance is 

known as most efficient estimator. 

2.14   Summary 

In this unit we study about the theory of point estimation. An estimation is a statistic that is 

used to estimate a population parameter, while an estimate is a specific observed value of the 

estimator. A single  number that is used to estimate an unknown parameter is called a point 

estimate. A good estimator is one that is (a) unbiased (b) consistent (c) efficient and (d) sufficient. 

The C-R inequality provides the lower bound for the variance of an unbiased estimator of 

ψ(𝜃) and states that 

𝑉 𝑡 =
 𝜓(𝜃) 2

𝐸  
𝜕𝑙𝑜𝑔𝐿
𝜕𝜃

 
2 

The denominator of this inequality is called the information on 𝜃, supplied by the sample. 

This nomenclature is due to R.A. Fisher. 

2.15  Further Readings 

 Modd, A.M. Graybill, F.A.m Boes, D.C. (1974). Introduction to the Theory of Statistics, 

McGraw Hill international edition. 

 Rao,C.R., Linear statistical inference and its applications, John Wiley and Sons, Inc. 

 Wilks, mathematical statics, Jon Wiley and Sons. 

 Kendall, Vol. 1,2,3. Hafner Publishing Company, New York.  
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3.1  Introduction 

In the previous unit, we read about the properties of a good estimator. Sufficiency is another 

desirable property of an estimator. An estimator is sufficient if it makes so much use of the 

information in the sample that no other estimator could extract additional information from the 

sample about the population parameter being estimated.  

According to R.A. Fisher, “ A sufficient statistic summarizes the whole of the relevant 

information supplied by the sample”.  

Now we will study the concept of sufficiency in detail. 

3.2  Objectives 

After going through this unit you will be able to - 

 Know what is sufficiency 

 Understand the Neyman-Fisher factorization criterion of sufficiency 

 Understand and Koopman‟s form of the distribution 

 Have a concept of invariance property of sufficient statistics. 

3.3  Sufficiency  

The  only information that guides the investigator in making a decision is supplied in the 

form of a random sample of size n drawn from the parent population. In most of the cases, it would 



be too numerous and too complicated set of observation to be directly dealt with. Therefore, a 

simplification or reduction to be desirable. Naturally one should use for such reduction of data, 

some statistics that loose as little of the information contained in the sample that is relevant to 

parameter 𝜃.  

It is this objective that leads to the concept of sufficient statistics. The principle of 

sufficiency is a principle for reducing or condensing the original random sample to a few statistics 

which may than be used for the purpose of drawing inference about the parent population 

characterized by 𝜃. Loosely speaking, sufficiency amounts to replacing the sample observations x1, 

x2, …..xn by few statistics T1, T2,……..Tk and thus discarding information, which is not relevant to 

and retaining every thing that is essential.   

T is said to be a sufficient statistic of 𝜃 if conditional distribution of sample values given 

(T=t) is independent of 𝜃. This definition is not very satisfactory because conditional distribution 

may not always be defined. 

However where the random variables have purely discrete or purely continuous distribution, 

this definition is alright. Since these two are the cases, which we are concerned with at this level the 

above definition may be taken as adequate for our purpose. 

A sufficient statistics T is said to be minimal sufficient if it is a function of every other 

sufficient statistic.  

Note:  The term „function‟ is used here in a wide sense to include vector valued functions.  

Example: Let (x1, x2, …..xn) be a random sample from Bernoulli population with parameter „p‟, 

0 < p < 1. i.e. 

𝑥𝑖 =  
1 𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑡𝑖𝑦 𝑝

0 𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖 − 𝑝)
  

Let 𝑇 =   𝑋𝑖 

Hence                          P (T=K) = (
n
Ck) p

k
 (i-p)

n-k
 

The conditional distribution of (x1, x2, …..xn) given T, is  

𝑃 𝑥1 ∩ 𝑥2 ∩ 𝑥3 ∩ … .∩ 𝑥𝑛 ∩ 𝑇 = 𝐾 =
𝑃 𝑥1 ∩ 𝑥2 ∩ 𝑥3 ∩ … .∩ 𝑥𝑛 ∩ 𝑇 = 𝐾 

𝑃(𝑇 = 𝐾)
 

=  
𝑝𝑘 1 − 𝑝 𝑛−𝑘

(𝐶𝑘
𝑛)𝑝𝑘 1 − 𝑝 𝑛−𝑘

=
1

𝐶𝑘
𝑛  



Since the conditional distribution is independent of the parameter p, T= 𝑥𝑖
𝑛
𝑖−1  is sufficient 

estimator for p.   

It is tedious to check whether a statistic is sufficient for a given parameter using the concept 

of conditional distribution, one uses factorization theorem, to ascertain whether a statistic is a 

sufficient statistic or not. 

3.4  Neyman – Fisher Factorization Theorem   

The statistic T is a sufficient estimator of the parameter 𝜃  if and only if the likelihood 

function of sample values can be written as a product  of two functions, one being the function of T 

and 𝜃 only, while other is the function of sample values independent of 𝜃. 

Mathematically, T is a sufficient statics for 𝜃 iff 

𝐿 = 𝐺 𝑇, 𝜃 , 𝐻 (𝑥1, 𝑥2 , ……𝑥𝑛) 

Where L stands for the Likelihood function of sample values, i.e.  

𝐿 =  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

 

(Here 𝑥1, 𝑥2, ……𝑥𝑛 is the random sample of size n drawn form the population whose p.d.f. 

or p.m.f. is f(x, 𝜃)). 

G(T, 𝜃) stands for the function of T and 𝜃 only and H (𝑥1, 𝑥2, ……𝑥𝑛 ) denotes the function 

of sample values independent of 𝜃. 

Example: The statistic is a sufficient estimator of the mean of a normal population with t mean 

𝜇 and variance 𝜎2(𝜇 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝜎2 𝑘𝑛𝑜𝑤𝑛). Here the likelihood function of sample values is 

𝐿 =   
1

𝜎 2𝜋
 
𝑛

 𝑒𝑥𝑝 −  
1

2
  

𝑥𝑖 − 𝜇

𝜎
 

2

  

We may write- 

  𝑥𝑖 − 𝜇 2 =    𝑥𝑖 − 𝑥   𝜇 − 𝑥   2

𝑛

𝑖=1

𝑛

𝑖=1

 

=   𝑥𝑖 − 𝑥  2 +   𝑥 − 𝜇 2

𝑛

𝑖=1

𝑛

𝑖=1

 



 𝐵𝑒𝑐𝑎𝑢𝑠𝑒   𝑥𝑖 − 𝑥  

𝑛

𝑖=1

 𝑥 − 𝜇 = 0  

=   𝑥𝑖 − 𝑥  2

𝑛

𝑖=1

 𝑥 − 𝜇 2 

𝐻𝑒𝑛𝑐𝑒 𝐿 =
1

𝜎 2𝜋
𝑒 −

1

2
 𝑥 − 𝜇 2𝑛 ×   

1

𝜎 2𝜋
 
𝑛−1

𝑒 −
1

2
  

𝑥𝑖 − 𝑥 

𝜎
 

2𝑛

𝑖=1

   

Here the first factor on the right hand side only on the estimate x and the population mean 𝜇 

and the second factor does not involve 𝜇. Therefore according to the factorization theorem, x is a 

sufficient estimator of the mean 𝜇 of a normal population with the known variance 𝜎2.  

3.5  Some Important Remarks About Sufficiency 

1.  The original sample 𝑋1, 𝑋2, ……𝑋𝑛 is always a sufficient statistic. 

2.  A sufficient estimator is always a consistent estimator. 

3.  A sufficient estimator may or may not be an unbiased one. 

4.  A sufficient estimator is the most efficient one if a sufficient estimator exists. 

3.6  The Koopman’s From of the Distribution 

  The most general form of the distributions admitting sufficient statistic is Koopman‟s form 

given by 

L= g(x).h(𝜃). Exp{a(𝜃)ψ(x)} 

Where h(𝜃) and a(𝜃) are the functions of the parameter only and g(x) and {ψ(x)} are 

function of the sample observations only. 

Binomial, Poisson, Normal, etc. are some distribution of this kind.  

3.7  The Invariance Property of A Sufficient Estimator 

If T is a sufficient statistic of parameter 𝜃 and ψ(T) is one to one function of T than ψ(T) is 

sufficient for ψ(𝜃). 

3.8  Key Words 



Sufficient Estimator:  A statistic „T‟ is said to be sufficient for estimating a parameter 𝜃 if it 

contains all the relevant information available in the sample about 𝜃. 

3.9  Exercises 

1. Let X be a binomial variate with parameters 1 and p. if x1, x2, ……xn constitutes a 

random sample from the distribution than show that Tn = x1+ x2+ ……+xn is a sufficient statistic 

for p.  

2. Show that in estimating the parameter m in the Poisson distribution sample mean is a 

sufficient estimator of m. 

3.10  Summary 

In this unit we read about the sufficiency of an estimator. A statistic „T‟ is said to be 

sufficient for estimating a parameter 𝜃 if it contains all the relevant information available in the 

sample about 𝜃.  

Neyman Fisher Factorization Theorem states that the static T is a sufficient statistic of 

parameter 𝜃 if and only if the likelihood function of sample values can be written as a product of 

two functions, one being the function of T and 𝜃  while other is the function of sample values 

independent of unknown parameter t. 

3.11  Further Readings 

 Modd, A.M. Graybill, F.A. Boes, D.C. (1974). Introduction to the Theory of Statistics, 

McGraw Hill International Edition. 

 Rao,C.R., Linear statistical inference and its Applications, John Wiley and Sons, Inc. 

 Wilks, Mathematical Statistics, Jon Wiley and Sons. 

 Kendall, Vol. 1,2,3. Hafner Publishing Company, New York.  
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4.1  Introduction 

The concept of sufficient has already been discussed in unit 3. The principle of sufficient 

plays a very important role in various model of statistical inference. Here in this unit another 

important concept that of complete family of distribution has been discussed. 

4.2  Objectives 

After going through this unit you should be able to - 

 Develop a perspective of the idea of complete family of distributions. 

 Understand what is complete sufficient statistics. 

 Know what is Rao-Blackwell theorem. 

4.3  Complete Family of Distributions 

Consider the  statistic T based on a random sample of size n say x1, x2, ………xn with joint 

distribution depending upon 𝜃𝜀.. The distribution of T itself will in general depend upon 𝜃. Let = 

{𝑓𝜃(𝑡)} be the family of distribution related to T. 

The statistics T or more precisely the family of distributions {𝑓𝜃(𝑡}; 𝜃𝜀𝛩 is called complete, 

if for any measurable function ∅(T).  

 𝐸 ∅ 𝑇 = 0 ⇒  ∅ 𝑇 =  0  almost every where (for all 𝜃𝜀𝛩) 

Here 𝐸 ∅ 𝑇   denotes the expected value of ∅ 𝑇 . 



If in addition to  above property ∅(𝑇) is such that ∅ 𝑇 < 𝑀, for some finite M then T is 

said to be boundedly complete.  

Some Illustrations: 

1. We have seen that if X1, X2,……..Xn are a random sample from the binomial distribution 

with parameter 𝜃(0 < 𝜃 < 1) whose p.m.f.  

 
𝜃𝑥 1 − 𝜃 1−𝑥   𝑖𝑓 𝑥 = 0,1

0,          𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

Then the statistic 𝑇 =   𝑋𝑖𝑖  is sufficient for 𝜃. 

Now T has a binomial p.m.f. 

𝑔𝜃 𝑡 =   𝐶𝑡
𝑛𝜃𝑡 1 − 𝜃 𝑛−𝑡  𝑖𝑓 𝑡 = 0,1,2, ……… . 𝑛 

= 0  otherwise 

Hence for any other function ψ(T), 

𝐸𝜃𝜓 𝑇      𝑡 . 𝜃𝑡 . (1 − 𝜃)𝑛−𝑡
𝑛

𝑡=0

 

Where (t)  = 
n
Ct. ψ(T) 

Hence  

𝐸𝜃𝜓 𝑇 = 𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 0 < 𝜃 < 1 

⇒𝑎 0 (1 − 𝜃)𝑛 + 𝑎 1 𝜃 1 − 𝜃 𝑛−1+…………….+a n 𝜃𝑛 = 0 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 0 <  𝜆 = 𝜃 1 − 𝜃 . 

The left hand side in this identity is a polynomial in λ, all the coefficient of which must be 

zero hence 

Ψ(t) = 0 for t= 0,1,2,…..,n i.e. for all the values of T with non zero probabilities (for all 0< 𝜃 <1). 

Hence T is a complete statistic. In other words, the binomial family of distribution of T is 

complete. 

2. Let X1, X2,……..Xn are a random sample from the Poisson distribution, whose p.m.f. may 

be written as 

𝑓𝜃 𝑥 =  
exp −𝜃 𝜃𝑥

𝑥!
  𝑖𝑓 𝑡 = 0,1,2, …… ,∞  

= 0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 



𝑤𝑕𝑒𝑟𝑒 𝑡𝑕𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜃 ∈  0,∞ . 

We have already seen that T=  𝑋𝑖𝑖 is a sufficient statistic for. 

 Again T is also distributed in the Poisson from with parameter n 𝜃 i.e. with p.m.f.  

𝑓𝜃 𝑡 =  
exp −𝜃 𝜃𝑡

𝑡!
  𝑖𝑓 𝑡 = 0,1,2, …… ,∞  

= 0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 

𝐸𝜃𝜓 𝑇 =  𝜓 𝑇 .
exp −𝜃 𝜃𝑡

𝑡!

∞

𝑡=0

 

= exp(−𝑛𝜃) 𝑎 𝑡 . 𝜃𝑡 , 𝑠𝑎𝑦,

∞

𝑡=0

 

Where a(t) = 
𝜓 𝑡 .𝑛𝑡

𝑡!
 

Consequently, 𝐸𝜃𝜓 𝑇 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 0 < 𝜃 < ∞ 

However, it is known form algebra that a convergent power series which is identically zero 

must have all the coefficient equal to zero. As such,  a(t) = 0 for t = 0,1,2….. 

i.e. ᴪ(t) = 0 for t= 0,1,2,…… 

But for every 𝜃 ∈ (0,∞) theses are the values of T with positive probabilities. Hence T is a 

complete statistic, or in other words, the Poisson family of distributions is complete. 

3. Let X1, X2,……..Xn be a random sample from  some normal distribution with unknown 

mean but known variance, say, from N (𝜃, 𝜎2), where −∞ < 𝜃 < ∞. 

We known that T= 𝑋  is sufficient for 𝜃 and that it has the p.d.f. 

𝑔𝜃 𝑡 =
 𝑛

𝜎 2𝜋
. exp  −

𝑛 𝑡 − 𝜃 2

2𝜃2
  

𝑖𝑓𝐸𝜃𝜓 𝑇 = 0∀𝜃 ∈ 𝛩, 𝑡𝑕𝑒𝑛  

 𝜓 𝑡 exp 
−𝑛𝑡2

2𝜎2
+
𝑛𝜃𝑡

𝜎2
 𝑑𝑡 = 0

∞

−∞

 



For −∞ < 𝜃 < ∞.  However the left hand side it the bilateral Laplace transform of the 

function 𝐸𝜃𝜓 𝑇  
−𝑛𝑡 2

2𝜎2
 . From the unicity theorem of this type of transform it follows that. 

𝜓 𝑇 𝑒𝑥𝑝 
−𝑛𝑡2

2𝜎2
 = 0 𝑎𝑙𝑙𝜃 ∈ 𝛩  

𝜓 𝑇 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙𝜃 ∈ 𝛩 

Hence the family of distribution𝑓𝜃 𝑡 , −∞ < 𝜃 < ∞ is complete.  

4.4  Complete Sufficient Statistic 

 A statistic which is complete as well as sufficient is known as complete sufficient statistic. 

Example 1:  In case of a Poisson distribution with parameter λ i.e. when  

𝑓 𝑥 =
𝑒−𝜆𝑑𝑥

𝑥!
, 0 < 𝜆 < ∞, 𝑥 = 0,1,2, … .. 

𝑥  = sample mean is a complete sufficient statistic. 

Example 2:  For a binomial distribution B (n, p) i.e. 

𝑓 𝑥 = 𝐶𝑥
𝑛 . 𝑝𝑥 . (1 − 𝑝)𝑥 , 𝑥   i.e. sample mean is complete sufficient statistic for np.  

4.5  Rao -Blackwell Theorem 

The Cramer-Rao inequality gives us a tool of judging whether or not a given unbiased 

estimator is also an M.V.U.F., Moreover the application of Cramer-Rao theorem is too restrictive 

because of regularity conditions under which it is valid.  

Rao- Blackwell theorem enable us to obtain an M.V.U.E. form any unbiased estimator by 

using a sufficient, say T of parameter 𝜃. The only condition that must be fulfilled is that T must also 

be complete.  

Statement of the Theorem: 

Let U be any unbiased estimator of r(𝜃). where r(𝜃) is an unknown function of . Let T be a 

sufficient of 𝜃. Define  

∅ 𝑇 = 𝐸  
𝑈

𝑇
  which is independent of 𝜃. 



(It is guaranteed because of sufficiency of T for 𝜃) 

Then ∅(T) is itself and unbiased estimator of r(𝜃) and ∅Var (T) < Var (U) 

Proof:  We have, 

E(U) = r(𝜃) (as U is an unbiased estimator of r(𝜃)) 

E(U) may be written as 

E(U) = E [E(U/T)} (By the theory of conditional expectation) 

=E(∅(T))  (As ∅(T)= E(U/T)) 

Hence, we have 

E(U) = E (∅ (T)) = r(𝜃) 

Which shows that ∅(T) is an unbiased estimator of r(𝜃) 

Further, we may write Var(U) as 

Var (U) = Var {E(U/T)}+ {V(U/T)} (By the theory of conditional Expectation) 

Variance is a non-negative quantity and expectation of a non-negative quality is always 

nonnegative.  

Hence      E{V(U/T)}≥ 0 

So that we have   Var(U) ≥ Var E{V(U/T)} 

     ≥ Var (∅(T)) as ∅(T) = E[V(U/T)} 

Hence proved. 

The implication of this result is that if one is given an unbiased estimator U of r(𝜃), then one 

may improve upon U by forming the new estimator ∅(𝑇) for r(𝜃), based on U and sufficient 

statistics T. This estimator ∅(𝑇) is unbiased for r(𝜃) and has smaller variance (or mean squared 

error) than U. This process of finding a new improved estimator is called “Black wellisation” after 

D. Blackwell.  

The estimator ∅(T) will not be better estimator than U in sense of smaller variance but best 

in the sense of smallest variance provided T is also complete.  



It T is a complete sufficient statistic of 𝜃 and one may find a function ∅(𝑇) of T such that 

E[∅(𝑇)]= r(𝜃) Then, ∅(𝑇) is necessarily an UMVUE of r(𝜃). 

Example 1: Let X1, X2,……..Xn be a random sample from N(𝜇, 𝜎2), 𝜇  known and 𝜎2 unknown. 

We wish to find out MVUE of 𝜎2 . We know that T=   𝑥 − 𝜇 2𝑛
𝑖=1  sufficient statistic of 𝜎2 . 

Moreover   
𝑥−𝜇

𝜎
 

2
𝑛
𝑖=1 following a chi square distribution with n degree of freedom.  

𝐻𝑒𝑛𝑐𝑒                        
𝑥 − 𝜇

𝜎
 

𝑛

𝑖=1

  𝑛   

𝑜𝑟                              𝐸  
1

𝑛
  𝑥 − 𝜇 

𝑛

𝑖=1

 = 𝜎2   

𝑜𝑟                                       𝐸  
𝑇

𝑛
 = 𝜎2   

𝑜𝑟                                   𝐸 𝑆𝑜 =  𝜎2                            𝑤𝑕𝑒𝑟𝑒 𝑆0 =
𝑇

𝑛
 

This shows that S0 = is MVUE of 𝜎2. 

Example 2:  Let X1, X2,……..Xn be a random sample of size n taken from a Poisson distribution 

with parameter 𝜃 i.e. its p.m.f. is 

𝑝 𝑥, 𝜃 =
𝑒−𝜃 . 𝜃𝑥

𝑥!
; 𝑥 = 0,1,2, …… .∞, 𝜃 > 0. 

Let 𝜃 is unknown. We wish to find out MVUE of  

𝑟 𝜃 =  𝑃𝑟 𝑋 = 𝑚   (𝑤𝑕𝑒𝑛 𝑚 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛) 

=
𝑒−𝜃 . 𝜃𝑥𝑚

𝑚!
 

Let us define a r.v. U such that 

U= 1    if Xi = m 

   = 0    otherwise 

Then, 



𝐸 𝑈 =
𝑒−𝜃 . 𝜃𝑥

𝑥!
= 1 × 𝑃𝑟 𝑋 = 𝑚 + 0 × 𝑃𝑟 𝑋 ≠ 𝑚  

= 𝑟(0) 

Implying U is an unbiased estimator of r(𝜃). 

We know that T =  𝑥𝑖
𝑛
𝑖=1  sample total is a complete sufficient statistics of 𝜃  and its 

distributions is P(n 𝜃) i.e.  

   𝑝 𝑡 =  𝑃𝑟 𝑇 = 𝑡 =
𝑒−𝑛𝜃 . 𝑛𝜃  1

𝑡!
   ,   𝑡 = 0,1,2,… .. 

Let us consider 

 𝑡 =  𝐸  
𝑈

𝑇
= 𝑡  

=
Pr 𝑋𝑖 = 𝑚, 𝑋𝑖 = 𝑡 −𝑚𝑛

𝑖=2  

𝑃𝑟 𝑇 =  𝑋𝑖 = 𝑡𝑛
𝑖=1  

  

=  

𝑒−𝜃𝜃𝑚

𝑚 .
𝑒−(𝑛−1)𝜃   𝑛 − 1 𝜃 𝑡−𝑚

 𝑡 − 𝑚 !

𝑒−𝑛𝜃 .  𝑛𝜃 1

𝑡!

 

=  𝐶𝑚
𝑡 .
 𝑛 − 1 𝑡−𝑚

𝑛!
 

𝑇𝑕𝑢𝑠 = ∅ 𝑡 = 𝐶𝑚
𝑡 .
 𝑛 − 1 𝑡−𝑚

𝑛𝑇
 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑜𝑓 𝑟 𝜃 =

𝑒−𝜃 . 𝜃𝑚

𝑚!
 

But T is also complete sufficient statistic of 𝜃. Hence ∅(T) is a MVUE of 𝑟 𝜃 =
𝑒−𝜃 .𝜃𝑚

𝑚!
  

Remark:  here ∅(T) has been defined as per norms of Rao-Blackwell theorem. It is unbiased 

estimator estimator of r(𝜃) with a variance that is at least as small as the variance of U. In this way 

one may start from any unbiased estimator for r(𝜃 ) and get a new one from it by using the 

conditional expectation of this estimator for given T. However all these estimators are equal because 

T is complete and therefore ∅(T) is MVUE of r(𝜃).  

Example 3:   Let X1, X2,……..Xn be a random sample of size n taken from U(0,𝜃) i.e. 



𝑓  𝑥, 𝜃 =  
1

𝜃
, 0 < 𝑥 <;  𝜃 > 0

0                𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Our problem is to find out MVUE of 𝜃. 

Let T = 𝑋(𝑛) be the nth order statistics of 𝜃. 

Then T is a sufficient and compete statistics of 𝜃 and its p.d.f is given by  

𝑓 𝑡 =  
𝑛𝑡𝑛

𝜃𝑛
, 0 ≤ 𝑡 ≤ 𝜃, 𝜃 > 0 

𝐻𝑒𝑛𝑐𝑒                                𝐸 𝑇 =   𝑡.
𝑛𝑡𝑛

𝜃𝑛
𝑑𝑡

𝜃

0

 

=
𝑛

𝜃𝑛
 𝑡𝑛 . 𝑑𝑡 =

𝑛

𝜃𝑛
 
𝜃𝑛+1

𝑛 + 1
 

𝜃

0

=
𝑛

𝑛 + 1
𝜃 

=
𝑛

𝑛 + 1
𝜃 

𝑜𝑟                                                      
𝑛 + 1

𝑛
𝐸  𝑇 = 𝜃    

𝑜𝑟                                                      𝐸  
𝑛 + 1

𝑛
𝑇 = 𝜃 

𝑤𝑕𝑒𝑟𝑒                                       ∅ 𝑇 =
𝑛 + 1

𝑛
𝑇 

As T is complete and sufficient statistic of 𝜃 and E [∅ 𝑇 ] = 𝜃 therefore ∅ 𝑇 =
𝑛+1

𝑛
𝑇 of 𝜃 

4.7  Summary 

A statistics which is complete as well as sufficient is known as compete sufficient statistic. 

If U is an unbiased estimator of r (𝜃) then one may improve upon U by forming the new 

estimator ∅(T) for r(𝜃), based on U and sufficient statistics T. This estimator ∅(T) is unbiased for 

r(𝜃) and has smaller variance (or mean squared error) than U. This process of finding a new 

improved estimator in the sense of smaller variance, starting from an unbiased estimator is called 

„Blackwellsation.‟ 



If T is a complete sufficient statistic of and one may find a function ∅(𝑇) of T such that 

E[∅(𝑇)] = r(𝜃) then, r(𝜃) is necessarily an UMVUE or r(𝜃). 

4.8  Key Words 

Complete Statistic:  The statistic T or more precisely the family of distributions 𝑓𝜃 𝑡 ; 𝜃 ∈ 𝛩  is 

called complete, if for any measurable function ∅(T) 

E(∅(𝑇)) = 0⇒ ∅ 𝑇 = 0 almost every where (for all 𝜃 ∈ 𝛩). 

Complete Sufficient Statistic:  A statistic which is complete as well as sufficient is known as 

complete sufficient statistic.  

4.9  Exercises 

1.  Find out UMVUE of in case of 𝜃2 Poisson distribution unit parameter 𝜃. 

2.  In case of binomial distribution with parameters n and find out UMVUE of 𝜃 (1- 𝜃). 

4.10  Further Readings 

 Outlines of Statistics by Goon Gupta and Dasgupta, Volumes II 

 Kendall, Vol. 1,2,3. Hafzer Publishing Company, New York.  
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Block & Units Introduction 
 

The Block - 2 – MVU Estimation is the second block with two units and deals with the 

problem of estimation particularly the procedures and concepts related to the minimum variance 

unbiased estimation.  

Unit – 5 – MVU Estimators, provides the basic concepts related to minimum variance 

unbiased estimators. 

Unit – 6 – Complete Sufficient Statistics, describes the basic concepts of complete 

sufficient statistics. 

At the end of each unit the summary, self assessment questions and further readings are 

given.  

  



Unit-5 MVU Estimators UMVUE 

Structure 

5.1   Introduction 

5.2   Objectives 

5.3   Minimum variance unbiased estimation 

5.4   Some Theorems of MVUE 

5.5   Summary 

5.6   Further Readings 

5.1  Introduction 

In this unit, we will introduce you to the concept of minimum variance unbiased 

estimation procedure. In Block-I you have studied the general point estimators problem along 

with the various properties of the estimators.  

5.2  Objectives 

After reading this unit you should be able to : 

 Obtain the MVUE 

 Result related to MVU Estimation. 

5.3  Minimum Variance Unbiased Estimation 

You have already studied the general point estimation problem. You may recall that in 

point estimation problem we have a sample of specified size, say n (≥1), and assume that the 

sample has been drawn from a population having a distribution function F (X|𝜃) where the 

functional form of F is assumed to be known however the arbitrary constant (s) 𝜃 involve therein 

is (are) not known except that its values lies in a given set of values called parameter space 

denoted as  . On the basis of the information supplied by the sample we wish estimate the value 

of the constant(s) 𝜃 or a function of 𝜃, say g(𝜃). For generally we will consider the estimation of 

g (𝜃).  

Let us denote by X1, X2,………,Xn a random sample of, size n. The given sample is 

therefore a random observation on it and may be denoted as x1, x2, ……….xn. since the 

estimation of g (𝜃) is to be done on the basis of the observed value of X1, X2,………,Xn. We 



should search  a function of sample observation T = T (x1, x2, ……….xn) such that its value t = T 

(X1, X2,………,Xn) for given sample may be taken as the estimate of g(𝜃). T is called estimator 

of g(𝜃) and t is called the estimate of g (𝜃). It is worthwhile to mention here that a number of 

functions of X1, X2,………,Xn (estimators) may be define for the estimation of g(𝜃). You may 

further note here that from the given population if we draw samples of specified size n again and 

again then the estimates may differ form sample to sample even for the given function T. No 

doubt, the variation in the estimates can be studied from the distribution of T. However, one 

would expect in this case that the estimator T should be chosen such that it always gives the 

estimate to be equal to g(𝜃) for every 𝜃 ∈ 𝛩 or in other words T should be chosen such that P[T 

= g(𝜃)] = 1. This can only be achieved if T is a constant (degenerate random variable) equal to 

g(𝜃). But g(𝜃) is unknown, thus it can never be met.  

In such a situation one would like to choose an estimator T which gives the estimate close 

to the true value of g(𝜃). In other words the estimator should be such the estimates are densely 

clustered around g (𝜃) i.e. the central tendency of the distribution of T should be g(𝜃) and the 

dispersion should be as small as possible. 

If the central tendency of the distribution of the estimator is equal to g(𝜃), the estimator is 

called unbiased. Depending on the various measures of the central tendency various types of 

unbiasedness can be defined which are below:  

Mean Unbiased:  An estimator T is said to be mean unbiased (often called unbiased only) for 

g(𝜃), if mean of T is g (𝜃), if mean of T  is g (𝜃) for every 𝜃 ∈ 𝛩. 

Median Unbiased:  An estimator T is said to be median unbiased for g(𝜃), if median of T is g(𝜃) 

for every 𝜃 ∈ 𝛩. 

Modal Unbiased: An estimator T is said to be modal for g(𝜃), if mode of T is g(𝜃) for every 

𝜃 ∈ 𝛩. 

Remark:  The mean unbisedness is the most popular unbiased criterion which was proposed by 

Prof. R. A. Fisher. We will see in the following paragraph the reason for its popularity.  

Consider the dispersion of T. How the values of T are dispersed around g(𝜃) can be 

measured by noting average of the differences between T and g (𝜃). The differences should be 

measured regardless of there sign. Boscovitch and Laplace suggested the use of |T-g(𝜃)| and 

Gauss and Legendre suggested the use of [T-g(𝜃)]. For sake of simplicity and mathematical 

tractability consider Gauss and Legendre suggestion. Since [T-g(𝜃 )] is random variable we 

consider the average of [T-g(𝜃)]
2
 overall possible values of t as measure of the dispersion. In 

other words E [T-g(𝜃)]
2
 = (Mean Square Error) MSE (T) can be taken as the measure of 

dispersion. Thus if T1 and T2 are the two estimators of g(𝜃) we should prefer T1 over t2 if MSE 

(T1) ≤ MSE (T1) for all possible values of  𝜃 ∈ 𝛩. 



You may recall that by Tchebychev’s inequality for any estimator T 

P [| T-g(𝜃) | < 𝜀 ] 1- MSE (T)/ 𝜀2 

Thus, we may conclude that we prefer an estimator with greater concentration around 

g(𝜃) which corresponds to the smaller MSE. Now the question arises that does MSE criterion 

lead to unique choice of estimator. The answer is no. Consider the following example:  

Example 1:  Let X1, X2,………,Xn be a random sample form a normal population with 

unknown mean 𝜃 and variance 1. We wish to estimate 𝜃. Consider the estimator T1 = 𝑋 , the 

sample mean T2 = 𝜃0 . You know that the distribution of sample mean 𝑋  is normal with mean 𝜃 

and variance 1/n. thus MSE (T1) = 1/n. Similarly it is easy to check that MSE (T2) = (𝜃 − 𝜃0)2. 

Now for the values of 𝜃 ∈  𝜃0 −
1

𝑛
, 𝜃0 +

1

𝑛
 , MSE (T2) < MSE (T1) and for other values of 𝜃 

MSE (T2) > MSE (T1) and hence we cannot choose T1 over T2 or T2 over T1 for all the values of 

the parameter 𝜃i.e. whole parameter space. It may also be noted here that T1 is minimal sufficient 

statistics where as T2 does not depend on the observation at all. 

From the above example it is clear that minimization of the mean square error itself will 

be a difficult task. In fact it can be readily seen that there exist no estimator for which the mean 

square error is minimum for all values of  ∈ 𝛩  . On the other hand minimization of MSE 

provides a greater concentration of estimated values around g(𝜃). Note that mean square error of 

the estimator T is defined as  

 𝑀𝑆𝐸  𝑇 =  𝐸  𝑇 − 𝑔 𝜃  2 = 𝐸  𝑇 − 𝐸  𝑇 +  𝐸 𝑇 − 𝑔 𝜃  2 

= 𝐸  𝑇 − 𝐸 𝑇  2 +  𝐸 𝑇 − 𝑔 𝜃  2 

= 𝑉  𝑇 +  𝐵(𝑇) 2 

Where B(T) = E (T)- g(𝜃) defines the bias of the estimator T. One way of minimization 

of the MSE would be to restrict our self to those estimators only for which the B(T) is zero i.e. 

the estimators are mean unbiased (Now on wards we will call mean unbiased estimators as 

unbiased estimators only). Thus for searching the best estimator we should confine our self to 

unbiased estimators only and choose among them that estimator for which the variance is least. 

Now we can define the minimum variance unbiased estimators.  

Definition:  A statistic T is said to be minimum variance unbiased estimators of g (𝜃) if. 

1. E(T) g (𝜃) for all 𝜃 ∈ 𝛩 

2. V(T) ≤ V(T) for all and for all 𝜃 ∈ 𝛩 the estimators T satisfying the condition 1.  

5.4  Some Theorems of MVUE 



Theorem 1: 

A MVUE estimator is unique in the sense that if T1 and T2 both are MVUE of g(𝜃) the T1 

= T2 almost every where.  

Proof: 

It is given that T1 and T2 both are unbiased for g(𝜃), therefore, 

E(T1) = E (T2) g (𝜃) for all 𝜃 ∈ 𝛩                                      (3.1) 

And both are minimum variance estimators, 

V(T1) ≤ V(T2) = V (say) for all 𝜃 ∈ 𝛩                              (3.2) 

Consider now the new estimator 

T = (T1 + T2)/2                                                                  (3.3) 

= g (𝜃)    form (3.1) 

Hence T is also unbiased estimator of g(𝜃). 

Further, 

𝑉 𝑇 =  𝑉  
  𝑇1 +  𝑇2  

2
  

=
1

4
 𝑉 𝑇1 + 𝑉 𝑇2  2𝐶𝑜𝑣  𝑇1𝑇2   

=
1

4
𝑉 𝑇1 + 𝑉 𝑇2 + 2𝜌 𝑉 𝑇1 𝑉 𝑇2  

                     =
𝑉 1+𝜌 

2
  (From 3.2)                                        (3.4) 

Where 𝜌 is the Pearson’s correlation coefficient between T1 and T2 Since T1 is MVUE 

𝑉 𝑇 ≥ 𝑉 𝑇1   

⇒
𝑉 1 + 𝜌 

2
≥ 𝑉  

⇒
1 + 𝜌

2
≥ 1 𝑖. 𝑒. ≥ 1 



Since Pearson’s correlation coefficient can not be greater than 1, we must have 𝜌 =1. 

Therefore T1 and T2 must have a linear relationship of the form 

T1 = a+ bT                                                   (3.5) 

Where a and b are constants independent of sample observation but does not depend on 𝜃.  

Taking expecting of both the sides of (3.5) and using (3.1) we have 

g(𝜃) = a+b g(𝜃)                                                   (3.6) 

Further 

V (T1) = V (a+ bT2) 

= b
2
 V (T2) 

1= b
2 

⇒ b = ±1     (from 3.4) 

But since 𝜌 (T1, T2) = +1, The coefficient of regression of T1 and T2 must be positive. 

b =1⇒ a= 0 substitution in (3.5), we get T1 = T2 as desired. 

Theorem 2 : 

If T1 is MVU for 𝜃  and T2 be any other unbiased estimator of 𝜃 then no linear 

combination of T1 and T2 is a MVU estimator. 

Proof: 

Let us consider a linear combination 

T = k1T1 + k2T2                                             (3.7) 

 It will be unbiased estimator of 𝜃 if 

E (T) = k1E(T1) + k2E(T2) = 𝜃 

                                          ⇒ k1 + k2 = 1                                                       (3.8) 

We have 



𝑒 =
𝑉𝑎𝑟 (𝑇1)

𝑉𝑎𝑟 (𝑇2)
⇒ 𝑉𝑎𝑟 𝑇2 =

𝑉𝑎𝑟 𝑇1

𝑒
                                   (3.9) 

Now  Var(T) = Va (k1T1 + k2T2) 

= 𝑘1
2𝑉𝑎𝑟  𝑇1 + 𝑘2

2𝑉𝑎𝑟  𝑇2 + 2𝑘1𝑘2  𝑐𝑜𝑣 (𝑇1, 𝑇2) 

= 𝑘1
2𝑉𝑎𝑟  𝑇1 + 𝑘2

2𝑉𝑎𝑟  𝑇2 + 2𝑘1𝑘2  𝜌 (𝑣𝑎𝑟  𝑇1 𝑣𝑎𝑟  𝑇2 )1/2  

=  𝑉𝑎𝑟  𝑇1  𝑘1
2 +

𝑘2
2

𝑒
+ 2𝑘1𝑘2

𝜌

 𝑒
  

=  𝑉𝑎𝑟  𝑇1  𝑘1
2 + 2𝑘1𝑘2 +

𝑘2
2

𝑒
                           𝜌 =  𝑒  

=  𝑉𝑎𝑟  𝑇1  𝑘1
2 + 2𝑘1𝑘2 + 𝑘2

2  

=  𝑉𝑎𝑟  𝑇1  𝑘1+𝑘2 
2 

=  𝑉𝑎𝑟  𝑇1  

⇒ T can not be MVU estimator. 

Example 1:  If T1 and T2 be two unbiased estimate of parameters 𝜃 with variance 𝜎1
2 , 𝜎2

2 and 

correlation 𝜌 what is the best unbiased linear combination of T1 and T2 and what is the variance 

of such combination?  

Let T1 and T2 be two unbiased estimate of parameters 𝜃.  

∴   𝐸 𝑇1 = 𝐸 𝑇2 = 𝜃                                           (3.10) 

Let T be a linear combination of T1 and T2 given by  

T = l1T1 +l2T2 

Where l1, l2 are arbitrary constants. 

𝐸 𝑇 =  𝑙1𝐸 𝑇1 + 𝑙2𝐸 𝑇2 =  𝑙1 + 𝑙2 𝜃 

∴ T is also an unbiased estimate of 𝜃 if and only if  

𝑙1 + 𝑙2 = 1                                                                                   (3.11) 

𝑉 𝑇 =  (𝑙1𝑇1 + 𝑙2𝑇2) 



= 𝑙1
2𝑉  𝑇1 + 𝑙2

2𝑉  𝑇2 + 2𝑙1𝑙2 𝑐𝑜𝑣 (𝑇1, 𝑇2) 

= 𝑙1
2𝜎1

2 + 𝑙2
2𝜎2

2 + 2𝑙1𝑙2𝜌𝜎1𝜎2                                                (3.12) 

We want the minimum value of (3.12) for variations in 𝑙1𝑎𝑛𝑑 𝑙2 subject to the condition (3.11). 

∂

∂l1
𝑉 𝑇 = 0 = 𝑙1𝜎1

2 + 𝑙2𝜌𝜎1𝜎2 

∂

∂l1
𝑉 𝑇 = 0 = 𝑙2𝜎2

2 + 𝑙2𝜌𝜎1𝜎2 

Subtracting, we get 

𝑙1(𝜎1
2 − 𝑙2𝜌𝜎1𝜎2) = 𝑙2(𝜎2

2 − 𝑙2𝜌𝜎1𝜎2) 

⇒
𝑙1

𝜎1
2 − 𝑙2𝜌𝜎1𝜎2

=
𝑙2

𝜎2
2 − 𝑙2𝜌𝜎1𝜎2

=
𝑙1 + 𝑙2

𝜎1
2 + 𝜎2

2 + 2𝜌𝜎1𝜎2

=
1

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2

 

∴  𝑙1 =
𝜎2

2 − 𝜌𝜎1𝜎2

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2

 𝑎𝑛𝑑  𝑙2 =
𝜎1

2 − 𝜌𝜎1𝜎2

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2

 

With these values of given (*) is an unbiased combination of T1 and T2 and its variance is 

given by (3.12). 

Example  2:  Suppose T1 in the above example is an unbiased minimum variance estimate and 

T2 is any other estimate with variance 
𝜎2

𝑒
 .Then prove that the correlation between T1 and T2 is 

 𝑒.  

Sol.  The coefficients of the best linear combination of T1 and T2, given by  

𝑙1 =
𝜎2

2 − 𝜌𝜎1𝜎2

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2

 𝑎𝑛𝑑  𝑙2 =
𝜎1

2 − 𝜌𝜎1𝜎2

𝜎1
2 + 𝜎2

2 − 2𝜌𝜎1𝜎2

                 (3.13) 

We are given that 𝜎1
2 = 𝑉 𝑇1 = 𝜎2 𝑎𝑛𝑑 

𝑒 =
𝑉(𝑇1)

𝑉(𝑇2)
=

𝜎2

𝑉(𝑇2)
⇒ 𝑉 𝑇2 = 𝜎2

2 = 𝜎2/𝑒 

Substituting in (3.13) we get, 

𝑙1 =
1 − 𝜌 𝑒

𝐷
 



𝑙2 =
𝑒 − 𝜌 𝑒

𝐷
 

Here D= 1+e-2 𝜌 𝑒                                                                      (3.14) 

Hence from T= l1T1 + l2T2 the unbiased statistic is  

𝑇 =
 1 − 𝜌 𝑒 𝑇1 +  𝑒 − 𝜌 𝑒 𝑇2

𝐷
 

And From    V(T)= V (l1T1 + l2T2) 

= 𝑙1
2𝑉  𝑇1 + 𝑙2

2𝑉  𝑇2 + 2𝑙1𝑙2 𝑐𝑜𝑣  𝑇1, 𝑇2  

= 𝑙1
2𝜎1

2 + 𝑙2
2𝜎2

2 + 2𝑙1𝑙2𝜌𝜎1𝜎2                                                 

𝑉 𝑇 =
1

𝐷2
  1 − 𝜌 𝑒 

2
𝜎2 +  𝑒 − 𝜌 𝑒 

2 𝜎2

𝑒
+ 2 1 − 𝜌 𝑒  𝑒 − 𝜌 𝑒 𝜌. 𝜎. 𝜎/ 𝑒  

=
𝜎2

𝐷2
  1 + 𝜌2𝑒 − 2𝜌 𝑒  

1

𝑒
+  𝑒2 + 𝜌2𝑒 − 2𝜌𝑒 𝑒 + 2 1 − 𝜌 𝑒   𝑒 − 𝜌 𝜌  

=
𝜎2

𝐷2
  1 − 𝜌2𝑒 − 𝜌2 − 2𝜌 𝑒 + 2𝜌3 𝑒    

=  
𝜎2 1 − 𝜌2  1 + 𝑒 − 2𝜌 𝑒 

 1 + 𝑒 − 2𝜌 𝑒 
2 =

𝜎2 1 − 𝜌2 

 1 + 𝑒 − 2𝜌 𝑒 
2 

=
𝜎2 1 − 𝜌2 

 1 − 𝜌2 +   𝑒 − 𝜌 
2 

∴
𝑉(𝑇)

𝜎2
=

1 − 𝜌2

 1 − 𝜌2 +   𝑒 − 𝜌 
2 ≤ 1                                                    (3.15) 

Since T1 is the most efficient statistics, 

𝑉 𝑇1 𝜎
2 ⇒

𝑉(𝑇)

𝜎2
≥ 1                                                                                     (3.16) 

From (3.15) and (3.16) we get 



𝑉(𝑇)

𝜎2
= 1, 𝑖. 𝑒.

1 − 𝜌2

 1 − 𝜌2 +   𝑒 − 𝜌 
2 = 1 

  𝑒 − 𝜌 
2

= 0 ⇒ 𝜌 =  𝑒 

5.5  Summary 

  Unbiasedness is an important concept of an estimator and unbiased estimator with 

minimum variance among all unbiased estimator is called minimum variance unbiased estimator. 

A minimum unbiased estimator is unique in the sense that T1 and T2 both are MVUE of g (𝜃) the 

T1 = T2 almost every where. The correlation coefficient between MVUE and other estimator is 

ratio of the variance of MVU and variance of other estimator.  

5.6 Further Readings 

 Rohatgi V.K. (1984): Statistical Inference John Wiley & Sons, New York. 

 Lehman E. L. (1986) Testing Statistical Hypothesis John Wiley & sons, New York. 

 Goon A.M., Gupta M.K. & Das Gupta B. (1977) An Outline of Statistical Theory. Vol. I 

The World Press Pvt. Ltd., Calcutta. 

 Goon A.M., Gupta M.K. & Das Gupta B (1983) Fundamentals of Statistics Vol. I The 

World Press Pvt. Ltd., Calcutta. 

 Hogg R.V. Craig A. (2003). Introduction to Mathematical Statistics  
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6.5   Further Readings 

6.1  Introduction 

In statistics, we often represent our observations as X= (X1,….Xn), a random sample of 

size n form some population. The model can be written in the from   𝑓𝜃 𝑥 : 𝜃 ∈ 𝛺  where 𝛺 is 

the parameter space of or set of permissible values of the parameter and 𝑓𝜃 𝑥  is the probability 

density (mass) function. A statistic T(X) is a function of the observation, which does not depend 

on the unknown parameter. Although a statistic T(X) is not a function of 𝜃, its distribution can 

depend on 𝜃 . An estimator is a statistic considered for the purpose of estimating a given 

parameter. One of our objectives is to find a ‘good’ estimator of the parameter 𝜃, in some sense 

of the wood ‘good’. How do we ensure that a statistic T(X) is estimating the correct parameter 

and not consistently too large or too small and that as much variability as possible has been 

removed? The problem of estimating the correct parameter is often dealt with by requiring that 

the estimator be unbiased.   

We will denote an expected value under the assumed parameter value 𝜃 by 𝐸𝜃  (.). Thus in 

the continuous case 

𝐸𝜃  𝑕(𝑋) =   𝑕 𝑥 𝑓𝜃 𝑥 𝑑𝑥,
∞

−∞

 

and in the discrete case 

𝐸𝜃  𝑕(𝑋) =   𝑕 𝑥 𝑓𝜃 𝑥 

𝑎𝑙𝑙  𝑥

 

Provided in integral/sum exists and is finite. 



Definition: A statistic T(X) is an unbiased estimator of 𝜃 if 𝐸𝜃 (T(X)) for all ∈ 𝛺 . Also if 

there exists an unbiased estimator of  , 𝜃 is called an estimable parameter.  

For example suppose that xi; i=1,….,n; is an independent Poisson variate with 

parameter 𝜃, so 𝐸𝜃 𝑋𝑖  . We may then have 

𝐸𝜃 𝑋  =
1

𝑛
 𝐸𝜃 𝑋𝑖 =

1

𝑛
 𝜃 = 𝜃.

𝑛

𝑖

𝑛

𝑖

 

Thus is, 𝑋  is an unbiased estimator of 𝜃. 

In general, in fact there can be so many unbiased estimators of the parameter and attempt 

is always made to find one which outperforms all others at all values of the parameter. In order 

to achieve an optimal estimator, it is necessary to restrict ourselves to the class of unbiased 

estimators and select the best within that class. 

Definition: An estimator T(X) is said to be a uniformly minimum variance unbiased estimator 

(UMVUE) of the parameter 𝜃 if 

(i) It is an unbiased estimator of 𝜃 and 

(ii) Among all unbiased estimators of 𝜃 it has the smallest variance. 

6.2  Sufficient Statistic and Completeness 

The derivation of UMVUE is relatively easy if we have notion of sufficiency and the 

completeness for the unknown parameter 𝜃 or for the family of distribution under consideration.  

A sufficient statistic is one that, from a certain perspective, contains all the necessary 

information for making inference about the unknown parameter(s) in a given model. It is 

important to remember that a statistic is sufficient for inference on a specific parameter in 

specific model. 

Suppose the data is in vector X and T = T(X) is a sufficient statistic for 𝜃. The intuitive 

basis for sufficiency is that the conditional distribution of X given T(X) does not depend on 𝜃. 

Thus X provides no additional value in addition to T for estimating 𝜃. The assumptions is that 

random variables carry information on a statistical parameter 𝜃  only in so far as their 

distributions (or conditional distributions) change with the value of the parameter and that since 

given T(X) we can randomly generate at random values for the X without knowledge of the 

parameter and with the correct distribution, these randomly generated values cannot carry 

additional information. All of this, of course, assumes that the model is correct and is the only 

unknown. The distribution of X, given a sufficient statistic T, will often have value for other 

purpose such as measuring the variability of the estimator or testing the validity of the model.  



Definition: A statistic T(X) is sufficient for the parameter if the conditional distribution of 

data (X1,….Xn), given T(X) = t is independent of the unknown parameter 𝜃. 

Sufficient statistics are not unique. For example if the sample mean 𝑋  is a sufficient 

statistic, then any other statistic, that allows us to obtain 𝑋  is also sufficient. This will include all 

one-to-one functions of 𝑋  (these are essentially equivalent) like 𝑋 3 and all statistics T(X) for 

which we can write 𝑋  = g(T) for some, possibly many –to-one function g(.).  

One result which is normally used to verify whether a given statistic is sufficient is the 

Factorization Criterion for Sufficiency. The criterion is both necessary and sufficient condition 

which states that the likelihood function can be factorized in to non-negative functions g(T, 𝜃) 

and h(X) where h(.) is independent of 𝜃.  

Definition: A sufficient statistic T (.) or, more precisely, a family of distribution of T(.) is said 

to be complete if there exists no non-trivial unbiased estimate of zero. That is T(X) is complete if 

for any function h(.) of T(.), 𝐸𝜃  𝑕(𝑇 𝑋 ) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ∈ 𝛺  implies h (T(X)) = 0 almost 

everywhere.  

6.2.1  Lehmann-Scheffe’ Theorem 

This theorem is an immediate consequence of Rao-Blackwell theorem in the sense that it 

adds uniqueness feather for the existence of UMVUE. The statement of the theorem is as under. 

Let T be a sufficient statistic for 𝜃 and suppose further that T is complete. Then every 

estimable function g(𝜃) possesses an unbiased estimate with uniformly minimum variance and 

this estimate is unique unbiased estimate of g(𝜃) and is function of T.  

Proof:  It follows from Rao-Blackwell theorem that there is at most one unbiased estimator of 

g(𝜃), which is a function of sufficient statistic. If possible, let there be two functions of T, i.e. 

𝜑1(T) and 𝜑2 (T), both unbiased estimators for g(𝜃). 

Then 𝜑(T) = 𝜑1(T) - 𝜑2 (T) is an unbiased estimator of zero. So 𝐸𝜃  𝜑(T)  =0. Since T is 

complete, this implies that 𝜑(T) =0 almost every where. It in turn implies that for almost all T. 

So, there cannot be two unbiased estimators of g(𝜃).  

6.2.2  Simple Examples on the Construction of UMVUE 

The construction of UMVUE can be easily done if we have a complete sufficient statistic. 

At first we need to obtain the complete sufficient statistic T and its distribution. We then try to 

assess a function 𝜑(T) such that 𝐸𝜃  𝜑(T)   is related to the parameter of interest, say g(𝜃). if 

need arises we may require to manipulate the function to some other function say 𝜑′(T) such that  

𝐸𝜃  𝜑′(T)  = g(𝜃) .  



Example 1:  Let X1,….Xn be independent and identically distributed according to the Poission 

distribution with parameter 𝜃 (> 0). Find the UMVE of 𝜃, 𝜃2 and 𝑒𝜃 . 

Solution:  It can be shown that T =  𝑋𝑖
𝑛
𝑖  is sufficient for 𝜃 and the Poisson family is complete. 

It can be further shown that T is a Poisson variate with parameter n 𝜃. Thus, 𝐸𝜃  (T) = n 𝜃 which 

ultimately suggests that T/n is UMVE of 𝜃. 

For getting the UMVUE of 𝜃2 let us write.  

V(T) = n 𝜃 which implies that 𝐸𝜃  𝑇
2 −  𝐸𝜃  𝑇  2 = 𝑛𝜃. This last relationship can be simplified 

to get 𝐸𝜃   𝑇
2 − 𝑇 /𝑛2 = 𝜃2 . Thus,   𝑇2 − 𝑇 /𝑛2  is UMVUE of 𝜃2. 

Finally, let f(t) be UMVUE of 𝑒𝜃  . We then have  

𝐸𝜃  𝑓 𝑡  =  𝑓 𝑡 
𝑒𝑛𝜃  𝑛𝜃 𝑡

𝑡!
= 𝑒𝑥𝑝 −𝜃  

⇒  𝑓 𝑡 
 𝑛𝜃 𝑡

𝑡!
= exp (𝑛 − 1)𝜃 . 

Since this series is absolutely convergent, we may equate the coefficients of 𝜃𝑡  from both the 

sides. Thus 

𝑓 𝑡 
𝑛𝑡

𝑡!
=

 𝑛 − 1 𝑡

𝑡!
 

⇒ 𝑓 𝑡 =  
𝑛 − 1

𝑛
 
𝑡

 

Which the required UMVUE of exp (-𝜃). 

Example 2:  Let x1,…..xn be i.i.d. from the uniform distribution on (o, 𝜃), 𝜃  > 0. Find the 

UMVUE of 𝜃. 

Solution:  It can be shown that T= Xn, the largest order observation is sufficient and the family 

of distribution is complete. It can be further shown that T has the distribution 
𝑛𝑡 (𝑛−1)

𝜃𝑛  Thus 

𝐸𝜃 𝑇 =  
𝑛𝑡𝑛

𝜃𝑛
𝑑𝑡

𝜃

0

 

Which on simplification gives 



𝐸𝜃 𝑇 =
𝑛

𝑛 + 1
𝜃. 

and, therefore, [(n+1)/n] T is UMVUE of 𝜃. 

6.2.3  Some Important Distribution and Corresponding Complete 

Sufficient Statistics 

The table below gives standard forms of some important distributions and corresponding 

complete sufficient statics. Verify the result in each case.  

Distributions   Complete Sufficient Statistic  

𝑃𝑜𝑠𝑠𝑖𝑜𝑛  𝜃                                                                         𝑋𝑖
𝑛
𝑖=1   

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑛, 𝜃                                                                     𝑋𝑖

𝑛

𝑖=1

 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣 𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙  𝑘, 𝜃                                                    𝑋𝑖

𝑛

𝑖=1

 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐   𝜃                                                                        𝑋𝑖

𝑛

𝑖=1

 

𝑁𝑜𝑟𝑚𝑎𝑙  𝜇, 𝜎2                                                 𝑖𝑓 𝜎2  𝑘𝑛𝑜𝑤𝑛   𝑋𝑖

𝑛

𝑖=1

 

𝑁𝑜𝑟𝑚𝑎𝑙  𝜇, 𝜎2                                                 𝜇 𝑘𝑛𝑜𝑤𝑛    𝑋𝑖 − 𝜇 2

𝑛

𝑖=1

 

𝑁𝑜𝑟𝑚𝑎𝑙  𝜇, 𝜎2                                                     𝑋𝑖 ,  𝑋𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

  

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙  𝜃                                                   𝑋𝑖

𝑛

𝑖=1

 

6.3  Unsolved Exercises 

E- 1. Obtain UMVUE of (i) p and (ii) pq in f(x|p) = pxq1 when x = 0, and 1 and 0 <p = (1-q) <1.  



E-2. Show that the sample mean 𝑋  is UMVUM for 𝜇 in Normal (𝜇, 𝜎2) when is known.  

E-3. Obtain the UMVUE of  𝜎2in Normal (𝜇, 𝜎2)  where 𝜇 is known.  

E-4. Consider the distribution  𝑥 𝜃 = 𝜃 exp −𝜃𝑥 , 𝑥 > 0. . obtain the UMVUE of 𝜃 𝑎𝑛𝑑1/𝜃. 

E-5. Let X1, ….Xn be a random sample from N(𝜃, 𝜃2). Show that T =  𝑥𝑖 ,  𝑥𝑖
2  is sufficient for 

𝜃 although it is not complete.  

6.4  Summary 

Unbiasedeness is an important concept of an estimator but the problem that we may 

several unbiased estimators of a parameter and we may require one which is optimal in some 

sense. We, therefore come across yet another concept of sufficiency. A simple definition of 

sufficiency suggests that a statistics is said to be sufficient if it contains all the information about 

the parameter contained in the sample. But this is not a working definition that helps us to obtain 

the sufficient statistics unless one goes for factorization criterion. Rao-Blackwell theorem 

consider sufficiency and obtains the minimum variance unbiased estimator of a parameter as a 

function of sufficient statistics. Thus minimum variance unbiased estimator is in some sense 

optimal that restricts to the class of unbiased estimators and recommends the one that has 

minimum variance. 

Completeness says that there is no unbiased estimate of zero. Other than zero itself. So if 

there is a family which offers both complete and sufficient statics, Lehmann-Scheffe theorem 

further adds into the Rao-Blackwell theorem and suggests that the function of sufficient statistic, 

which is unbiased as well is unique. Thus we finally obtain the notion of uniformly minimum 

variance unbiased estimators that is easily obtainable for the families where we are in a position 

to asses both complete sufficient statistic. UMVUE is the optimal estimator in the class of 

unbiased estimators.  

For obtaining UMVUE, we need to ascertain that the family does provide compete-

sufficient statistics, say T, and then assess a function of T which is unbiased for the parameter 

under consideration. This unbiased estimator if UMVUE.    

6.5  Further Readings 

 Rohatgi V.K. (1984): Statistical Inference John Wiley & Sons, New York. 

 Lehman E. L. (1986) Testing Statistical Hypothesis John Wiley & sons, New York. 

 Goon A.M., Gupta M.K. & Das Gupta B. (1977) An Outline of Statistical Theory. Vol. I 

The World Press Pvt. Ltd., Calcutta. 



 Goon A.M., Gupta M.K. & Das Gupta B (1983) Fundamentals of Statistics Vol. I The 

World Press Pvt. Ltd., Calcutta. 

 Hogg R.V. Craig A. (2003). Introduction to Mathematical Statistics  
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Block & Units Introduction 

 

The Block - 3 – Testing of Hypothesis - I, deals with testing of hypothesis and consists of 

two units. 

Unit – 7 – Preliminary Concepts in Testing, describes the concepts of critical regions, 

test function, two kinds of errors, size and power function of the test. 

Unit – 8 – MP and UMP Tests discusses the concepts of most powerful and uniformly 

most powerful test is a class of size α tests with simple illustration. 

At the end of every unit the summary, self assessment questions and further readings are 

given.  

  



Unit-7  Preliminary Concepts in Testing 

Structure 

7.1   Introduction 

7.2   Objectives 

7.3   Basic Concepts 

7.4   Some examples 

7.5   Problem and exercises 

7.6   Summary 

7.7   Further Readings 

7.1  Introduction 

Let X be a random variable (rv) whose form of the distribution f (x,𝜃) may be known 

except perhaps for parameter(s). 

For example: 

(i) Let a random variable X follow Poisson distribution with probability mass function 

(pmf) 

𝑓 𝑥, 𝜃 =
𝑒𝜃𝜃𝑥

𝑥!
,    𝑥 = 0,1,2, …… 

 

Here 𝑓 𝑥, 𝜃  is the pmf of Poisson distribution with 𝜃 unknown.  

(ii) Let a random variable X follow normal n (𝜃1 , 𝜃2) distribution with 𝜃1, 𝜃2 unknown.  

In statistical inference we are concerned with the estimation/ testing of unknown 

parameter(s). 

Therefore statistical inference may be broadly divided into two groups. 

 

 

 

 

In this unit, we will be concerned with the testing of hypothesis only.  

Statistical Inference 

Estimation of 

Parameters 

Testing of 

Hypothesis 



We may have information about some thing but we want to insure that the available 

information is correct. This is testing problem. For example, if an Electric Company is producing 

light bulbs and claim made by the Company we will randomly choose n bulbs from their produce 

and their life length. On the basis of this random sample, we may reach to a conclusion that the 

claim is tenable or not. 

To develop the theory of testing, we first introduce the concepts needed.  

7.2  Objectives 

After reading this unit you should be able to understand : 

 Testing of Statistical Hypothesis 

 Null and Alternative Hypothesis 

 Two Types of Errors 

 Critical Region 

 Size and Power of the Test 

7.3  Basic Concepts 

Statistical Hypothesis:  It is an assertion/assumption about probability density 

function/ probability mass function or its parameters. We have two types of hypothesis. 

(i) Null Hypothesis    (ii) Composite Hypothesis 

Null Hypothesis:  A hypothesis under test is called a Null Hypothesis and is denoted 

by Ho. It is also called hypothesis of no difference in some context (if Ho: 𝜃1 = 𝜃2  then it means 

there is no difference between 𝜃1𝑎𝑛𝑑 𝜃2)  

Alternative Hypothesis:  A hypothesis under consideration is called an Alternative 

Hypothesis and is denoted by H1. 

This (H1) is needed to specify our problem. For example, if  

Let a random variable X follow Poisson distribution P(𝜃), then we may have 

(i) Ho: 𝜃 = 𝜃0 
(ii) Ho: 𝜃 = 𝜃0 (iii) Ho: 𝜃 = 𝜃0 

H1: 𝜃 > 𝜃0 H1: 𝜃 < 𝜃0 H1: 𝜃 ≠ 𝜃0 

Here H0 is to be tested against H1. 



(i) and (ii) are one tailed test where as (iii) is a two tailed test. 

Simple and Composite Hypothesis:  If all the parameters of a distribution are 

completely specified then it is simple otherwise composite hypothesis. 

Examples: Let X follow normal distribution N (H1: 𝜃,1) 𝛿. 

then H0: 𝜃 = 1; is known as simple hypothesis, whereas, H0: 𝜃 > 10 is composite hypothesis.  

(i) Let X follow normal distribution N (𝜃1 , 𝜃2) 𝛿.  

Then 𝐻0: 𝜃1 = 10, 𝜃2 = 1; is a simple hypothesis whereas 

𝐻0: 𝜃1 = 10; 𝐻0: 𝜃1 = 10, 𝜃2 > 1 

𝐻0: 𝜃1 = 10; , 𝜃2 > 1 𝑎𝑛𝑑 𝐻0: 𝜃2 = 1 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 

Two Kinds of Errors:  While taking decisions we may commit two types of errors:  

Type I Error: We may reject H0 When Ho is true.  

Type II Error: We may accept Ho when H1 is true. 

Types of Error 

Truth 

Decision 

Ho H1 

Accept   Ho 
True decision Type II error 

Reject   H1 
Type I error True decision 

𝛼 = 𝑃  𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝑃  𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑤𝑕𝑒𝑛 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒 = 𝑃 (𝑅𝑒𝑗𝐻0 | 𝐻0 ) 

 𝛽 = 𝑃  𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝑃 (𝐴𝑐𝑐 𝐻0 | 𝐻1 )  

Type I Error is consider to be more serious error. It is like “Hang a person who is 

innocent” This is more serious error than „Let a criminal be set free‟ 

In Statistical inference, our concern is to minimize both 𝛼 𝑎𝑛𝑑 𝛽. But minimization of 

𝛼  results in maximization of  𝛽 and vice versa. That is it is not possible to minimize both 

𝛼 𝑎𝑛𝑑 𝛽 simultaneously. Therefore, we fix 𝛼 𝑎𝑛𝑑 minimize 𝛽.    

The maximum value of 𝛼 which we fix is called Level of Significance of size of the test.  

Critical Region (CR):  Critical region is that part of the sample space which 

corresponds to the rejection of null hypothesis. 

Let w be critical region or rejection region, then 𝑤  is acceptance region. 



That is if we take a random sample 𝑋 =  𝑋1, 𝑋2, … . . 𝑋𝑛 
′𝑓𝑟𝑜𝑚 𝑓 𝑥, 𝜃 , 𝑡𝑕𝑒𝑛 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓 𝑥 ∈   𝑤 

𝐴𝑐𝑐𝑒𝑝𝑡 𝐻0 𝑖𝑓 𝑥 ∈   𝑤 

Power Function (𝑷𝜽(𝒘)): 

𝑃𝜃 𝑤 =  𝑃  𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓 𝜃 𝑖𝑠 𝑡𝑕𝑒 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒  

= 𝑃 (𝑅𝑒𝑗 𝐻0|𝜃) 

= 𝑃 𝑋  ∈ 𝑤 | 𝜃  

=  𝛼 𝑖𝑓 𝜃 ∈  𝐻0 

= 1 −  𝛽 𝑖𝑓 𝜃 ∈  𝐻1 

𝛼 is the size of the test or size of the critical region and (1 −  𝛽) is power of the test. A curve 

between 𝜃 𝑎𝑛𝑑 𝑃0 𝑤  is called power curve. 

 

7.4  Some Examples 

  

Example 1:  Let the 𝑝𝑑𝑓 𝑜𝑓 𝑎 𝑟𝑣 𝑋 𝑏𝑒 

𝑓 𝑥, 𝜃 =  

1

𝜃
,     𝑜 < 𝑥 < 𝜃

0,      𝑒𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒

  

[This is called Uniform or Rectangular Distribution and is dented by U(0, 𝜃) or R (0, 𝜃)]. 

Let the hypothesis to be tested be 

𝐻0 ∶ 𝜃 = 2      𝑣𝑠  𝐻1: 𝜃 = 3 

On the basis of a single observation obtain 

(i) Power function 𝑃𝜃 𝑤  of the test. 

(ii) 𝛼, the size of the test and 

(iii) 1 −  𝛽 𝑡𝑕𝑒 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑒𝑠𝑡 

If critical region be w = {x : x >1} 

Solution:  We have  

Power of the test  

𝑃𝜃 𝑤 =  𝑃 (𝑅𝑒𝑗 𝐻0|𝜃) 

= 𝑃 𝑥 ∈ 𝑤 | 𝜃  



=   𝑓  𝑥, 𝜃 𝑑𝑥
𝜃

𝑤

  

=  
1

𝜃
𝑑𝑥 =

𝜃 − 1

𝜃

𝜃

1

 

𝛼 = 𝑃 𝑋 ∈ 𝑤 | 𝜃 ∈  𝐻0 =  
2 − 1

2
=

1

2
= 0.5     𝑖𝑠 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑒𝑠𝑡  

1 − 𝛽 =  𝑃 𝑋 ∈ 𝑤 | 𝜃 ∈  𝐻1 =  
3 − 1

3
=

2

3
    𝑖𝑠 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡𝑕𝑒 𝑡𝑒𝑠𝑡 

 𝛽 =
1

3
 

Example 2:  Let for the Example 1 considered above, we have to test. 

𝐻0 ∶ 𝜃 = 2      𝑣𝑠  𝐻1: 𝜃 = 3 

If the size of the test be 𝛼 = 0.25 find k is the critical region be w ={x : x >k}. 

Solution:  We have, 

𝑃 𝑋 ∈ 𝑤 | 𝜃 =  
1

𝜃
𝑑𝑥 =

𝜃 − 𝑘

𝜃

𝜃

𝑘

 

𝛼 = 𝑃 𝑋 ∈ 𝑤 |  𝐻0 =  
2 − 𝑘

2
  

0.25 =  
2 − 𝑘

2
 

𝑘 =
3

2
 

Thus critical region is w =  𝑥 >
3

2
 . 

Example 3:  Let for an exponential distribution 

𝑓 𝑥, 𝜃 =  
1

𝜃
,     𝑜 < 𝑥 < 𝜃

0,      𝑒𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒

  

The hypothesis to be tested by 

 𝑎   𝐻0 ∶ 𝜃 = 1      𝑣𝑠  𝐻1: 𝜃 = 2 𝑤𝑖𝑡𝑕 𝐶𝑅 𝑤 =  𝑥: 𝑥 > 1 . 

 𝑏   𝐻0 ∶ 𝜃 = 2      𝑣𝑠  𝐻1: 𝜃 = 1 𝑤𝑖𝑡𝑕 𝐶𝑅 𝑤 =  𝑥: 𝑥 < 5 . 

Obtain 𝛼, 𝛽 and power function of the test on the basis of a single observation.  



Solution: 

(a)                   Power function   𝑃𝜃 𝑤 =  𝑃 (𝑅𝑒𝑗 𝐻0|𝜃) 

= 𝑃 𝑥 ∈ 𝑤 | 𝜃  

=  
1

𝜃
𝑒− 

𝑥
𝜃
 𝑑𝑥 = 𝑒−

1
𝜃

∞

1

 

𝛼 = 𝑃 𝑋 ∈ 𝑤 |  𝐻0 = 𝑒−1 

1 − 𝛽 = 𝑃 𝑋 ∈ 𝑤 |  𝐻1 = 𝑒−1/2 

𝛽 = 1 − 𝑒−1/2 

(𝒃)           𝑃𝜃 𝑤 =  𝑃 𝑥 ∈ 𝑤 | 𝜃  

=  
1

𝜃
𝑒−𝑥/𝜃  𝑑𝑥 = 1 − 𝑒−5/𝜃

5

0

 

𝛼 = 𝑃 𝑋 ∈ 𝑤 |  𝐻0 = 1 − 𝑒−5/2 

1 − 𝛽 = 𝑃 𝑋 ∈ 𝑤 |  𝐻1 = 1 − 𝑒−5 

     𝛽 = 𝑒−5 

Example 4: For an exponential distribution 

𝑓 𝑥, 𝜃 =   𝜃 𝑒−𝜃𝑥 ,   𝑥, 𝜃 ≥ 0
0, 𝑒𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒

  

Let the hypothesis to be tested be 

 𝑎   𝐻0 ∶ 𝜃 = 1      𝑣𝑠  𝐻1: 𝜃 = 2 𝑤𝑖𝑡𝑕 𝐶𝑅 𝑤 =  𝑥: 𝑥 < 10 . 

 𝑏   𝐻0 ∶ 𝜃 = 2      𝑣𝑠  𝐻1: 𝜃 = 1 𝑤𝑖𝑡𝑕 𝐶𝑅 𝑤 =  𝑥: 𝑥 > 1 . 

Obtain 𝛼, 𝛽 and power function of the test on the basis of a single observation.  

Solution: 

(a) Power function   𝑃𝜃 𝑤 =  𝑃 (𝑅𝑒𝑗 𝐻0|𝜃) = 𝑃 𝑥 ∈ 𝑤 | 𝜃 =  𝜃𝑒−𝜃𝑥𝑑𝑥 = 1 − 𝑒−10𝜃10

0
 

𝛼 = 𝑃 𝑋 ∈ 𝑤 |  𝐻0 = 1 − 𝑒−10  



1 − 𝛽 = 𝑃 𝑋 ∈ 𝑤 |  𝐻1 = 𝑒−20  

𝛽 = 1 − 𝑒−20 

 𝒃                       𝑃𝜃 𝑤 =  𝑃 𝑥 ∈ 𝑤 | 𝜃  =  𝜃𝑒−𝑥𝜃  𝑑𝑥 = 𝑒−𝜃∞

0
 

𝛼 = 𝑃 𝑋 ∈ 𝑤 |  𝐻0 = 𝑒−2 

1 − 𝛽 = 𝑃 𝑋 ∈ 𝑤 |  𝐻1 = 𝑒−1 

𝛽 = 1 − 𝑒−1 

Example 5:  Let p be the probability of getting head in a coin tossing experiment. Suppose that 

the hypothesis 

  𝐻0 ∶ 𝑝 = 0.3      𝑣𝑠  𝐻1: 𝑝 = 0.5 

Is rejected if 10 trials result in 6 or more heads. Calculate the probability of Type I error and 

Type II error. 

Solution:  Let X be the number of heads obtained in ten trials. 

𝛼 = 𝑃  𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟  

= 𝑃 𝑋 ≥ 6 𝑝 = 0.3] 

=   
10
𝑥

  0.3 𝑥 0.7 10−𝑥 =   
10
𝑥

  0.3 𝑥 0.7 10−𝑥

5

𝑥=0

10

𝑥=6

 

= 1 − 0.9527 = 0.0473. 

𝛽 = 𝑃[𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟] 

= 𝑃 𝑋 < 6 𝑝 = 0.5] 

=   
10
𝑥

  0.5 10 = 0.6230

5

𝑥=0

 

Example 6:  An urn contains 𝜃 whine and (6- 𝜃) black marbles. In order to test the hypothesis 

  𝐻0 ∶ 𝜃 = 3      𝑣𝑠    𝐻1: 𝜃 = 4 



Two marbles are drawn (without replacement) and H0 is rejected if both the marbles are white. 

Calculate  𝑎𝑛𝑑 𝛽 .  

Solution:  Let X be the number of white marbles drawn 

𝑃 𝑋 = 𝑥 =
 
𝜃
𝑥
  

6 − 𝜃
2 − 𝑥

 

 
6
2
 

 

Therefore, 

𝛼 = 𝑃  𝑅𝑒𝑗 𝐻0  𝐻0] 

𝑃 𝑋 = 2|𝜃 = 3 =
 

3
2
  

3
0
 

 
6
2
 

=
1

5
= 0.2. 

1 − 𝛽 = 𝑃  𝑅𝑒𝑗 𝐻0  𝐻0] =
 

4
2
  

2
0
 

 
6
2
 

=
2

5
 

𝛽 =
3

5
 

Example 7:  Let p the probability that a given die shows even number. To test 

  𝐻0 ∶ 𝑝 =
1

2
      𝑣𝑠    𝐻1: 𝑝 =

1

3
 

a die is thrown twice and H0 is accepted if even number is obtained on both the throws. 

Calculate probability of Type I error and Type II error.  

Solution: 

 𝛼 = 𝑃  𝑅𝑒𝑗 𝐻0  𝐻0] = 1 − 𝑃  𝐴𝑐𝑐 𝐻0  𝐻0] = 1 −  
1

2
  

1

2
 =

3

4
 

𝛽 = 𝑃  𝐴𝑐𝑐 𝐻0  𝐻1] =
1

3
×

1

3
=

1

9
. 

Example 8: The hypothesis 𝐻0: 𝜇 = 50 is rejected if mean of the sample of size 25 is either 

greater than 70 or less than 30. Assuming the distribution to be normal with standard deviation 

(𝜎) = 50, obtain level of significance. 



Solution:  Level of significance is 𝛼 = 𝑃  𝑅𝑒𝑗 𝐻0  𝐻0] 

Here under𝐻0,  X is distributed as N (50, 2500) and 𝑋  is distributed as N (50, 100) 

That is, 𝑍 =
𝑋 −50

10
 is distributed as N (0,1) 

Therefore,  𝛼 = 𝑃  𝑋 ≥ 70 𝑜𝑟 𝑋 ≤ 30  𝐻0] 

= 1 − 𝑃  30 < 𝑋 < 70  𝐻0] 

= 1 − 𝑃  
30 − 50

10
< 𝑍 <

70 − 50

10
  

= 1 − 𝑃 −2 < 𝑍 < 2  

= 1 − 2 × 0.4772 = 0.0456. 

Example 9:  Let X1, ……X9 be a random sample from normal N (𝜃,25) distribution. If for 

testing. 

  𝐻0 ∶ 𝜃 = 20      𝑣𝑠    𝐻1: 𝜃 = 26 

The critical region be w = {x | 𝑥  >24}, find the size and power of the test.  

Solution: 

𝑃𝜃(𝑤) =   𝑅𝑒𝑗 𝐻0  𝐻0] = 𝑃  𝑋 > |𝜃   

𝛼 = 𝑃  𝑋 > 24|𝜃 = 20 = 𝑃  𝑍 >
(24 − 20)3

5
 = 𝑃 𝑍 > 2.4 = 0.0082 

1 − 𝛽 = 𝑃  𝑋 > 24|𝜃 = 26 = 𝑃  𝑍 >
(24 − 26)3

5
 = 𝑃 𝑍 > −1.2 = 0.8849 

𝛽 = 0.1151. 

7.5  Problems and Exercises 

1.  Explain the terms: null hypothesis, alternative hypothesis, simple and composite 

hypothesis by giving examples. 

2.  Define the terms: type I error, type II error, power function, size of the test, level of 

significance and power of the test. 

3.  Let p be the probability of coming up head in a coin tossing experiment. To test the 

hypothesis 



  𝐻0 ∶
3

4
      𝑣𝑠    𝐻1:

1

2
 

a coin is tossed 5 times and H0 is rejected if more than 3 tails are obtained. Calculate size 

and power of the test.  

Hint:  H0 is rejected if X 3, where X is number of „Heads‟.  

𝛼 = 𝑃 𝑋 ≤ 3|𝐻0 =   
5
𝑥
  

3

4
 
𝑥

 
1

4
 

5−𝑥3

𝑥=0

 

1 − 𝛽 = 𝑃 𝑋 ≤ 3|𝐻1 =   
5
𝑥
  

1

2
 

53

𝑥=0

 

4.  Let for a rv X with pdf 

𝑓  𝑥; 𝜃 =  𝜃 𝑥0 , 0 < 𝑥 < 1. 

The hypothesis to be tested be 

𝐻0 ∶ 𝜃 = 2 

𝐻1 ∶ 𝜃 > 2. 

If the CR based on a single sample be x > 9/19. Obtain size of the test and also power of the test 

if under 𝐻1 ∶ 𝜃 = 2 (Ans. 𝛼 = 0.19, 𝛽 = 0.729). 

5.  It is given that scores in a test follow normal N (𝜇,144) distribution. To test 

𝐻0 ∶ 𝜇 = 500,   𝐻1 ∶ 𝜇 ≠ 500 

a random sample of size 36 is taken and H0 is rejected if  𝑥 − 500  > 4. Evaluate 𝛼.  

Hint: 

𝛼 = 𝑃  𝑋 − 500 > 4/ 𝜇 = 500 = 𝑃  
 𝑋 − 500 

2
>

5

2
/𝜇 = 500 = 𝑃  𝑍 > 2 = 0.0456. 

6.   To test  𝐻0 ∶ 𝜇 = 200, 𝐻1 ∶ 𝜇 > 200 a random sample of size 20 is drawn from a normal 

population N (𝜇, 𝜎2) with 𝜎2 = 80. Ho is accepted if x ≤ 204. 

i) Evaluate 𝛼   and      ii) if 𝜇 = 207 under H1. 

(Ans: 𝛼 = 0.0228,    𝛽 = 0.0668). 



7.  A random sample of size 80 is drawn from a normal N (𝜇, 𝜎2) distribution with 𝜎2  = 720. 

In testing 

  𝐻0 ∶ 𝜇 = 1000      𝑣𝑠    𝐻1: 𝜇 < 1000, 

Ho is accepted if  𝑥   > 994. Obtain 𝛼 𝑎𝑛𝑑 𝛽 if 𝜇 = 991 under H1.  

(Ans. 𝛼 = 0.0228, 𝛽 = 0.1587). 

8.  To test the mean   𝐻0 ∶ 𝜇 = 100      𝑣𝑠    𝐻1: 𝜇 ≠ 100 of a normal N (𝜇, 200) distribution 

a random sample of size 50 is drawn. If the null hypothesis is rejected when |𝑥   -100| > k at = 

0.05, obtain k.          (Ans. k = 3.92). 

9. A random sample is taken from binomial B (5,p) distribution, to 

test  𝐻0 ∶ 𝑝 = 0.5  𝑎𝑔𝑎𝑖𝑛𝑠𝑡    𝐻1: 𝑝 = 0.7   if H0 is rejected if X ≥ 3, find 𝛼 𝑎𝑛𝑑 𝛽. 

(Ans. 𝛼 = 0.5, 𝛽 = 0.1631). 

10.  A random sample of size 5 is taken from a Poisson distribution P(λ), to test H0 : λ =1 

against H1 : λ = 2. If it is decided to reject H0 if  find   𝑋𝑖 ≥ 8,5
𝑖=1 𝛼 𝑎𝑛𝑑 𝛽. 

 (Ans. 𝛼 = 1334, 𝛽 = 0.2202). 

7.6  Summary 

Statistical Hypothesis is an assertion about probability density function/ probability mass 

function or its parameters. We have two types of hypothesis. 

(i) Null Hypothesis    (ii) Composite Hypothesis 

A hypothesis under test is called a Null Hypothesis and is denoted by HO. A hypothesis 

under consideration is called an Alternative Hypothesis and is denoted by H1. 

If all the parameters of a distribution are completely specified then it is simple otherwise 

composite hypothesis. 

Another interesting concept is two types of error. These arise while taking decisions. 

Type I error is probability of rejecting H0 when H0 is true, whereas, Type II error is probability 

of accepting H0 when H1 is true. Type I error is denoted by 𝛼 and Type II error is denoted by 𝛽. 

The quantity 1- 𝛽 is called the power of the test.  

Another important concept is Critical region. It is that part of the sample space which 

corresponds to the rejection of null hypothesis. 

7.7  Further Readings 



 Goon, A.M., Gupta, M.K., and Dasgupta, B. (2000). An outline of statistical Theory, Vol. 

2, The world Press Private Limited.  

 Hogg, R.V. and Craig, A. (2005). Introduction to Mathematical Statitics, 6
th

 edition, 

Prentice Hall. 

 Modd, A.M. Graybill, F.A.m Boes, D.C. (1974). Introduction to the Theory of Statistics, 

McGraw Hill  

 Mohr, L.B. (1994). Understanding Significance Testing, Sage Publications, USA. 

  



Unit-8 MP and UMP Tests 

Structure 

8.1   Introduction 

8.2   Most powerful test 

8.3   Uniformly most powerful test 

8.4   Summary 

8.5   Further Readings 

8.1  Introduction 

The discussion in the previous unit was aimed to provided some preliminary concepts in 

testing of statistical hypothesis. In the same very spirit, we have discussed the notion of two 

kinds of hypothesis, level of significance, size power, two kinds of errors, etc. We shall now 

provide two very important concepts, i.e., most powerful and uniformly most powerful tests. 

Let X1, X2,……..Xn be random sample from the probability density (mass) function f(x,) 

or f(x,). We can say that X1, X2,……,Xn is a random sample from one or other member of the 

parametric family   𝑓  𝑥, 𝜃 : 𝜃 = 𝜃0 𝑜𝑟 𝜃 = 𝜃1 . Thus , 𝛺 =   𝜃0, 𝜃1  is a parameter  space that 

consists of only two points 𝜃0  𝑎𝑛𝑑 𝜃1. Suppose the values 𝜃0 𝑎𝑛𝑑 𝜃1 are known. We want to test 

𝐻0: 𝜃 = 𝜃0versus 𝐻1: 𝜃 = 𝜃1 . We know that corresponding to any test say ɼ of H0 versus H1, 

there exists a power function, say 𝑃𝜃(𝜔)where 𝜔 is the critical region. A good test is a test for 

which 𝑃𝜃0
(𝜔) = Type I error = P (reject H0 when H0 is true) is small (ideally zero) and 𝑃𝜃1

(𝜔) = 

Power = P (reject H0 when H1 is true) is large (ideally unity). One might reasonably use the two 

values 𝑃𝜃0
(𝜔) and 𝑃𝜃1

(𝜔) to set up criteria for defining a best test. It is to be noted that 𝑃𝜃0
(𝜔) 

is size of Type I error whereas 1- 𝑃𝜃1
(𝜔) is the size of  Type II error; and, therefore, our 

goodness criterion might desire making power of the two errors as small as possible and 

consequently making the power of the test as large as possible. For example, one might define as 

best test the one which makes sum of two errors sizes as small as possible. There may be several 

ways of defining best test. We shall provide some such criteria in the following sections. For 

simplicity, we shall assume that the indexing parameter 𝜃is single valued. Say for instance, 

Poisson P(λ) distribution has a single parameter λ. Normal N(𝜇, 𝜎2 ) distribution has two 

parameters 𝜇 and 𝜎2. However if one of the parameters is known, it reduces to single parameter 

case. 

The justification for fixing the size of the Type I error (usually small and often taken as 

0.05 or 0.01) seems to arise from those testing situations where the two hypotheses are 

formulated in such a way that one type of error is more serious than the other. The hypotheses 



are stated so that the Type I error is more serious and hence one wants to make sure that it is kept 

small.  

8.2  Most Powerful Test 

 Let the hypothesis to be tested be 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1 

Where both 𝐻0 𝑎𝑛𝑑 𝐻1 are simple hypothesis. Since defining a test is same as defining a 

critical region, we start with the following simple statement.  

Suppose given a sample X1, X2, X3 a test for Ho is define as Reject H0 if 𝑥1
2 + 𝑥2

2 + 𝑥3
2 ≤

5. This statement is equivalent to say that given a sample X1, X2, X3, the test is reject Ho if X* = 

(X1, X2, X3)  ∈ 𝜔  where 𝜔 =   𝑥1, 𝑥2, 𝑥3 : 𝑥1
2 + 𝑥2

2 + 𝑥3
2 ≤ 5   where small font is as  usual 

denotes the observed value.  

For further illustration, suppose that Kamal an Uni both have tests of size 𝛼. This means 

by definition, that they each have a set 𝜔k and 𝜔u (K= Kamal, U= Uni) such that 

𝑃  𝑋1, 𝑋2, … . 𝑋𝑛 ∈  𝜔𝑘|𝐻0 = 𝛼 

𝑃  𝑋1, 𝑋2, … . 𝑋𝑛 ∈  𝜔𝑢|𝐻0 = 𝛼 

To find out the better test between these two if we look at the probabilities that the 

sample 𝑋1, 𝑋2, … . 𝑋𝑛  is not in the respective sets we won‟t get an answer since this will be (1- 𝛼) 

in either case. The only way to differentiate between the tests will be in the case that the 

alternative hypothesis is true. So we will consider the probabilities. 

𝑃  𝑋1, 𝑋2, … . 𝑋𝑛 ∈  𝜔𝑘|𝐻1  

𝑎𝑛𝑑 

𝑃  𝑋1, 𝑋2, … . 𝑋𝑛 ∈  𝜔𝑢|𝐻1  

Further suppose that 

𝑃  𝑋1, 𝑋2, … . 𝑋𝑛 ∈  𝜔𝑘|𝐻1 >  𝑃  𝑋1, 𝑋2, … . 𝑋𝑛 ∈  𝜔𝑢|𝐻1  

Thus the question is to find out a better test we need to know what exactly we are doing. 

In fact, we are looking at probabilities that the sample falls in a critical region when the 

alternative hypothesis H1 is true. These probabilities are nothing but the power of the tests 



associated with the two critical regions. Since from the above relation we find that Kamal has a 

higher probability of rejecting H0 and H1 is true than the same of Uni. That is the power of the 

test considered by Kamal is better than that of Uni and therefore we can say that Kamal‟s test is 

better. If it found that the above inequality holds with Kamal‟s 𝜔𝑘 in the left hand side and any 

other critical region of size 𝛼 in the right hand side then Kamal‟s test will be the best and it will 

be referred to as the MP test. Following the above discussion, one can formulate the MP test in 

the following manner. 

Take a random sample 𝑋1, 𝑋2, … . 𝑋𝑛of size n from 𝑓 (𝑥, 𝜃). Let w be a critical region of 

size 𝛼, 𝑤 is called most powerful critical region (MPCR) of size 𝛼  if the power corresponding to 

CR w is greater than the power corresponding to w*, where w* is any other CR of size 𝛼. 

That is, 

 𝑖                  𝑃 𝑋 ∈ 𝑤|𝐻0 = 𝛼 = 𝑃 𝑋 ∈  𝑤∗|𝐻𝑜  

 𝑖𝑖              𝑃 𝑋 ∈ 𝑤|𝐻1 ≥ 𝑃 𝑋 ∈  𝑤∗|𝐻1  

Or 

 𝑖                       𝑃𝜃0
 𝑤 = 𝛼 = 𝑃𝜃0

 𝑤∗  

 𝑖𝑖                       𝑃𝜃1
 𝑤 ≥ 𝑃𝜃1

 𝑤∗  

A test based on MPCR is called MP test. From the above discussion you may have learnt 

that for testing a simple hypothesis against a simple alternative hypothesis, it is easy to choose 

the MP test among the given tests. You may be wondering at this stage that how  to be get a 

particular test (namely the MP test) such that exists no other test which has greater power than 

this. There are procedures to get the MP tests which will be discussed in other unit.  

8.3  Uniformly Most Powerful Test 

Let us now consider a situation where a simple hypothesis  

𝐻0: 𝜃 = 𝜃0  is to be tested against a composite alternative 𝐻1: 𝜃 > 𝜃0  Before commenting on 

such a testing scenario, we instead consider two points𝜃1 𝑎𝑛𝑑 𝜃2  where both these points fall in 

the region specified by H1 and decide to begin with 𝐻0: 𝜃 = 𝜃0versus 𝐻1
′ : 𝜃 = 𝜃1 and 𝐻0: 𝜃 =

𝜃1versus 𝐻1: 𝜃 = 𝜃2 . Thus we have two testing problems, each concerned with testing of simple 

null versus simple alternative. We can therefore, proceed to obtain MP test in the way described 

in section 1.2 for each of the two pairs of hypotheses.   

Consider now 𝐻0: 𝜃 = 𝜃0versus 𝐻1
′ : 𝜃 = 𝜃1 and suppose 𝜔 is a critical region of size 𝛼 

such that 𝜔 is MPCR and the test based on 𝜔 is MP test. Further suppose that same happens to 



offer MPCR for 𝐻0: 𝜃 = 𝜃0versus 𝐻1
′ : 𝜃 = 𝜃1. If this is true we may use the same 𝜔 and obtain a 

single MP test for testing 𝐻0: 𝜃 = 𝜃0  against either of two alternatives. Now extend this 

discussion for a series of points in the region specified by H1 and suppose every time our null 

hypotheses is 𝐻0: 𝜃 = 𝜃0  . If the same 𝜔  offer MPCR for a series of alternative hypothesis 

against the same null hypothesis, we may call  the MPCR as uniformly most powerful critical 

region (UMPCR) and the test based on it will be uniformly most powerful (UMP) test. The 

above discussion can be extended similarly if the two hypotheses are 𝐻0: 𝜃 = 𝜃0  𝑣𝑒𝑟𝑠𝑢𝑠 𝐻1: 𝜕 <

𝜃0  𝑜𝑟 𝐻0: 𝜃 = 𝜃0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻1: 𝜃 ≠ 𝜃0  although the two sided case requires some additional 

arguments.   

We shall formalize our definition of UMPCR and UMP test. Let the hypotheses be 

𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 > 𝜃0 . Then a critical region w is UMPCR of size 𝛼 if  

 𝑖                𝑃 𝑋 ∈ 𝑤|𝐻0 = 𝛼 = 𝑃 𝑋 ∈  𝑤∗|𝐻𝑜  

 𝑖𝑖                      𝑃 𝑋 ∈ 𝑤|𝐻1 ≥ 𝑃 𝑋 ∈  𝑤∗|𝐻1  

Or 

 𝑖                    𝑃𝜃0
 𝑤 = 𝛼 = 𝑃𝜃0

 𝑤∗  

 𝑖𝑖                        𝑃𝜃1
 𝑤 ≥ 𝑃𝜃1

 𝑤∗  

Here under H1, 𝜃 may have many values and conditions (ii) for all 𝜃 ∈ 𝐻1  should be 

satisfied with strict inequality for at least one 𝜃.  

A test on UMPCR is called UMP test. The major difference between MP and UMP test is 

in MP test H0 and H1 both are simple whereas, in UMP test H0 is simple but H1 is composite.  

Remark:        For every MP or UMPCR the power of the test is always greater than its size. The 

test for which the power is greater than size is known as an unbiased test. This way every MP or 

UMP critical region is necessarily unbiased.  

8.4  Summary 

A critical region for testing a simple hypothesis against a simple alternative is said to be 

most powerful if it is of size and the power corresponding to this critical region is greater than 

the power corresponding to any other critical region of the same size. The test based on most 

powerful critical region is called most powerful test.  

`The simple vs. simple case is not of much practical relevance from statistical point of 

view. Thus we define another important concept. 



A critical region which is most powerful for a series of alternative hypothesis when tested 

against the same null hypothesis is called uniformly most powerful critical region. A test based 

on uniformly most powerful critical region is called uniformly most powerful test. Such tests are 

usually meant for composite alternative hypothesis when tested against the simple null 

hypotheses.  

Uniformly most powerful tests do not exist, in general except for a few restrictive 

scenarios. These restrictive families are called monotone likelihood ratio families for one-sided 

problems. For two sided problems, the situation becomes even worse and a particular family can 

be one parameter exponential where existence of uniformly most powerful tests can be 

ascertained.  

8.5  Further Readings 

 Goon, A.M., Gupta, M.K., and Dasgupta, B. (2000). An Outline of Statistical Theory, 

Vol. 2, The world Press Private Limited.  

 Hogg, R.V. and Craig, A. (2005). Introduction to Mathematical Statistics, 6
th

 edition, 

Prentice Hall. 

 Mood, A.M. Graybill, F.A. Boes, D.C. (1974). Introduction to the Theory of Statistics, 

McGraw Hill  

 Mohr, L.B. (1994). Understanding Significance Testing, Sage Publications, USA. 

 Lehmann, E.L. (1986). Testing Statistical Hypothesis. Springer-Verlag, New York, Inc. 

2
nd

 edition.  
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Blocks & Units Introduction 
 

The Block - 4 – Testing of Hypothesis - II based on testing of hypothesis and interval 

estimation consists of four units.  

Unit – 9 – Neyman – Pearson Lemma, Likelihood Ratio Test and Their Uses, describes 

Neyman Pearson Lemma and likelihood ratio tests along with their uses in determination of test. 

Unit – 10 – Testing of Means of Normal Population, discuss tests for significance of 

mean from a normal population and testing the equality of means from two independent normal 

populations 

Unit – 11 – Interval Estimation, defines interval estimation for single unknown 

parameter of univariate population. Confidence intervals have been given for parameters of 

univariate normal population and one parameter exponential family. 

Unit – 12 – Shortest and Shortest Unbiased Confidence Intervals, provides the concept 

of shortest and shortest unbiased confidence intervals. 

At the end of every unit the summary, self assessment questions and further readings are 

given.  

  



Unit-9 Neyman- Pearson Lemma, Likelihood Ratio Test 

and Their Uses 

Structure 

9.1   Introduction 

9.2   Objectives 

9.3   Neyman- Pearson lemma 

9.4   Examples on Neyman-Pearson lemma 

9.5   Likelihood ratio test 

9.6   Examples based on likelihood ratio test   

9.7   Problem and exercises 

9.8   Summary 

9.9   Suggested Further Readings 

9.1  Introduction 

In previous Block 3, we introduced the concept of most powerful and uniformly most 

powerful tests. In this section, we shall develop methods to obtain these tests. It is important to 

note that Neyman-Pearson lemma provides a procedure for getting a Most Powerful tests and 

thus, in its turn, it can be used for developing UMP test provided it exists. In addition to this, the 

use of likelihood ratio test will also be discussed for obtaining UMP tests. 

9.2  Objectives 

After reading this unit you should be able to: 

 Understand Neyman-Pearson fundamental lemma. 

 Derive most-powerful test for simple Vs. simple hypothesis 

 Understand likelihood Ratio test and its uses in testing of hypothesis. 

9.3  Neyman- Pearson Lemma 

Neyman and Pearson gave a simple rule, known as their Lemma to obtain MP test: 

 Let X has pdf/pmf f (x, 𝜃) where 𝜃 is a single parameter. Take a random sample X1, X2, 

…..Xn of size n from f(x,𝜃). Define likelihood function as  

𝐿 𝜃 =  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

 



Lemma: Let for f(x, 𝜃) the simple hypothesis to be tested be 

𝐻0: 𝜃 =  𝜃0 

𝐻1: 𝜃 =  𝜃1 

Then w, a CR of size 𝛼 is MPCR of size 𝛼 if  

𝐼𝑛𝑠𝑖𝑑𝑒 𝑤 ∶  𝐿1 ≥ 𝑘 𝐿0 

 𝑎𝑛𝑑 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑤 ∶  𝐿1 < 𝑘 𝐿0 

Where L0 and L1 are likelihood functions of the sample observations under H0 and H1 

respectively and k is such that size of the CR w is 𝛼. 

Proof:  Since w is CR of size 𝛼,  

𝛼 = 𝑃  𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟  

= 𝑃  𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝐻0  

= 𝑃  𝑋 ∈ 𝑤 𝐻0  

=  𝐿0𝑑𝑥
𝑤

                          (1) 

And 

1 − 𝛽 = 𝑃  𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝐻1  

= 𝑃  𝑋 ∈ 𝑤 𝐻1  

=  𝐿1𝑑𝑥
𝑤

                                  (2) 

Let w* be another CR of size 𝛼, then  

𝛼 =  𝐿0𝑑𝑥                              (3)
𝑤 ∗

 

If we can show that power corresponding to w is greater than that of w* then w is MPCR. That 

is, we have to prove that 

 



 

 

 

 

 

 

 𝐿1𝑑𝑥
𝑤

≥  𝐿0𝑑𝑥                                     (4)   
𝑤 ∗

 

To prove (4), we note that 

𝑤 = 𝑤 𝑤 ∗ ∪ 𝑤𝑤∗  

𝑎𝑛𝑑 𝑤∗ = 𝑤 𝑤∗ ∪ 𝑤𝑤∗  

𝑤𝑕𝑒𝑟𝑒 𝑤 𝑤 ∗ ⊂ 𝑤 𝑎𝑛𝑑 𝑤 𝑤∗ ⊄ 𝑤  

𝑤𝑕𝑒𝑟𝑒 𝑤 𝑤 ∗𝑎𝑛𝑑 𝑤𝑤∗  𝑤 𝑤∗ 

Therefore, from (1) and (3) 

 𝐿0𝑑𝑥 =  𝐿0𝑑𝑥

𝑤 ∗𝑤

 

Or 

 𝐿0𝑑𝑥 =  𝐿0𝑑𝑥

𝑤 𝑤 ∗∪𝑤𝑤 ∗𝑤𝑤 ∗∪𝑤𝑤 ∗

 

Or, 

 𝐿0𝑑𝑥 +  𝐿0𝑑𝑥

𝑤𝑤 ∗𝑤𝑤 ∗

=  𝐿0𝑑𝑥 +  𝐿0𝑑𝑥

𝑤𝑤 ∗𝑤 𝑤 ∗

 

Or, 

 

𝑤                                                       w* 



∫ 𝐿0𝑑𝑥 = ∫ 𝐿0𝑑𝑥
𝑤 𝑤 ∗𝑤𝑤 ∗   …. (5) 

Similarly, 

∫ 𝐿1𝑑𝑥 − ∫ 𝐿1𝑑𝑥
𝑤 ∗𝑤

= ∫ 𝐿1𝑑𝑥 − ∫ 𝐿1𝑑𝑥
𝑤 𝑤 ∗𝑤𝑤 ∗         ……. (6) 

But inside 𝑤: 𝐿1 ≥ 𝑘𝐿0 

and outside 𝑤: 𝐿1 < 𝑘𝐿0 

Therefore in 𝑤𝑤∗ ⊂ 𝑤,  we have 

∫ 𝐿1𝑑𝑥 ≥ 𝑘 ∫ 𝐿0𝑑𝑥
𝑤 𝑤∗𝑤𝑤 ∗        …… (7) 

and in 𝑤𝑤∗ ⊄ 𝑤,  we have 

∫ 𝐿1𝑑𝑥 < 𝑘 ∫ 𝐿0𝑑𝑥
𝑤 𝑤∗𝑤𝑤 ∗          ……..(8) 

Hence in view of (7) and (8) 

 𝐿1𝑑𝑥 −  𝐿1𝑑𝑥

𝑤 ∗

≥ 𝑘

𝑤

 𝐿0𝑑𝑥 − 𝑘  𝐿0𝑑𝑥

𝑤 𝑤 ∗𝑤𝑤 ∗

 

≥ 𝑘   𝐿0𝑑𝑥 − 𝑘  𝐿0𝑑𝑥

𝑤 𝑤 ∗𝑤𝑤 ∗

 ≥ 0 𝑓𝑟𝑜𝑚 (5) 

That is 

 𝐿1𝑑𝑥 ≥  𝐿1𝑑𝑥

𝑤 ∗𝑤

 

This completes proof of the Lemma. 

This Lemma gives a very simple and powerful method to obtain MP test. It also helps in 

finding UMP test in some cases.  

For example, if   𝑋~𝑓(𝑥, 𝜃) 

 𝐼:       𝐻0: 𝜃 =  𝜃0             𝑆𝑖𝑚𝑝𝑙𝑒 

𝐻1: 𝜃 >  𝜃0                 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 



Then we convert 𝛿 both to the simple hypothesis.  

 𝐼𝐼:       𝐻0: 𝜃 =  𝜃0              

𝐻1: 𝜃 =  𝜃1 𝜃1 > 𝜃0                  

Now we use Neyman Pearson Lemma for II to find MPCR. If this CR does not depend on 

𝜃1the MPCR of II will be UMPCR for I. This statement will be elaborated by examples in 

sequel. 

9.4  Examples on Neyman-Pearson Lemma 

Example 1:  Let X1,X2,…….Xn be Bernoulli variates with pmf  

𝑓 𝑥, 𝜃 = 𝜃𝑥(1 − 𝜃)1−𝑥 , 𝑥 = 0,1 

Find MP test of size 𝛼 for 

 𝑎                       𝐻0: 𝜃 =  𝜃0  

                              𝐻1: 𝜃 = 𝜃1 > 𝜃0  

 𝑏                          𝐻1: 𝜃 =  𝜃1 

                               𝐻1: 𝜃 = 𝜃1 < 𝜃0  

Solution: 

(a) We are given 

𝑃  𝑋 = 𝑥 = 𝑓 𝑥, 𝜃 = 𝜃𝑥(1 − 𝜃)1−𝑥  

Therefore, 

𝐿 =   𝑓 𝑥𝑖 , 𝜃 = 𝜃 𝑥𝑖
𝑛
𝑖=1 (1 − 𝜃)𝑛− 𝑥𝑖

𝑛
𝑖=1

𝑛

𝑖=1

 

From Neyman-Pearson (NP) Lemma, 

Inside   w: L1 ≥ kL0 

𝜃1  𝑥𝑖
𝑛
𝑖=1 (1 − 𝜃1)𝑛− 𝑥𝑖

𝑛
𝑖=1

𝜃0  𝑥𝑖
𝑛
𝑖=1 (1 − 𝜃0)𝑛− 𝑥𝑖

𝑛
𝑖=1

≥ 𝑘  



 
1 − 𝜃1

1 − 𝜃0
 
𝑛

 
𝜃1 1 − 𝜃0 

𝜃0 1 − 𝜃1 
 

 𝑥𝑖
𝑛
𝑖=1

≥ 𝑘                                 (∗) 

𝑜𝑟,  
𝜃1 1 − 𝜃0 

𝜃0 1 − 𝜃1 
 

 𝑥𝑖
𝑛
𝑖=1

≥ 𝑘1                                  

Here in (a),  𝜃1 > 𝜃0 

Therefore,  
𝜃1 1−𝜃0 

𝜃0 1−𝜃1 
> 1 

And   𝑙𝑜𝑔 
𝜃1 1−𝜃0 

𝜃0 1−𝜃1 
> 0 

Taking log of both sides in (*), we have 

 𝑥𝑖

𝑛

𝑖=1

𝑙𝑜𝑔  
𝜃1 1 − 𝜃0 

𝜃0 1 − 𝜃1 
 ≥ 𝑘2 

𝑜𝑟,  𝑥𝑖 ≥ 𝑘3

𝑛

𝑖=1

𝑎𝑠 𝑙𝑜𝑔  
𝜃1 1 − 𝜃0 

𝜃0 1 − 𝜃1 
 ≥ 0. 

𝐻𝑒𝑟𝑒 𝑘1 =
𝑘

 
1 − 𝜃1

1 − 𝜃0
 
𝑛 , 𝑘2 = log 𝑘1 𝑎𝑛𝑑  𝑘3 =

𝑘2

𝑙𝑜𝑔
 1 − 𝜃0 𝜃1

 1 − 𝜃1 𝜃0

 

But it is not needed to keep these records. It is enough to note that 𝑦 =  𝑥𝑖
𝑛
𝑖=1 ≥ 𝑘3 and 

thus MPCR of size 𝛼 is  

𝑤 = [𝑦 ≥ 𝑘3], 

Where 𝑘3 is so chosen that 

𝛼 = 𝑃[𝑦 ≥ 𝑘3 𝐻0 . 

It may be noted that if xi are independent Bernoulli variates B(1, 𝜃) then  

𝑌 =   𝑥𝑖
𝑛
𝑖=1  is distributed as Binomial B(n, 𝜃) and therefore, 

𝛼 =   
𝑛
𝑦 𝜃0

𝑦 1 − 𝜃0 
𝑛−𝑦                                          (∗∗)

𝑛

𝑘3

 



𝑜𝑟, 1 − 𝛼 =   
𝑛
𝑦 𝜃0

𝑦 1 − 𝜃0 
𝑛−𝑦 .

𝑘3−1

0

 

Since this is a discrete distribution, we may or may not get k3 corresponding to which 

sum is 𝛼 in (**). In that case we choose nearest k3 for which  

  
𝑛
𝑦 𝜃0

𝑦 1 − 𝜃0 
𝑛−𝑦 ≥ 1 − 𝛼.

𝑘3−1

0

 

Numerical Example:  From the table n= 10, 𝜃0 = 0.30 and 𝛼 = 0.05, we have k3 = 6 

CR is {y ≥ 6} i.e. Reject H0 if  𝑋𝑖 ≥ 6 otherwise accept H0.  

(b)  Here  𝐻0: 𝜃 = 𝜃0 

             𝐻1: 𝜃 = 𝜃1(< 𝜃0) 

𝑆𝑖𝑛𝑐𝑒 𝜃1 < 𝜃1 , 𝑡𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 

𝑙𝑜𝑔 
𝜃1 1 − 𝜃0 

𝜃0 1 − 𝜃1 
< 0 

Proceeding as above in (a), we get MPCR from (*), 

w =  y ≤ k3 , y =  xi

n

i=1

 

where k3 is obtained as  

𝛼 = 𝑃 y ≤ k3|H0  

=   
𝑛
𝑦 𝜃0

𝑦 1 − 𝜃0 
𝑛−𝑦

𝑘3−1

0

 

Here also, as explained earlier we may choose k3 such that 

  
𝑛
𝑦 𝜃0

𝑦 1 − 𝜃0 
𝑛−𝑦 ≤ 𝛼.

𝑘3−1

0

 

Numerical Example:  From the table n= 10, 𝜃0 = 0.30 and 𝛼 = 0.05, we have k3 = 3 



CR is {y ≤ 3}. 

Remark:  In the example, we have obtained MPCR w =   xi ≥ 3n
i=1    of size 𝛼 for testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1(> 𝜃0) 

Since this CR does not depend on 𝜃1 , hence w =   xi ≥ 3n
i=1    is also UMPCR for testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 > 𝜃0  

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 

w =   xi ≥ 3

n

i=1

  is UMPCR is size αfor testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 < 𝜃0  

 

Since the UMPCR obtained for testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 > 𝜃0  

 

and for 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 < 𝜃0  

 

𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡, 𝑕𝑒𝑛𝑐𝑒 𝑡𝑕𝑒𝑟𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑈𝑀𝑃𝐶𝑅 𝑓𝑜𝑟 𝑡𝑒𝑠𝑖𝑛𝑔 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 ≠ 𝜃0  

 

Example 2:  Let X has Poisson distribution P(𝜃) with pmf 

𝑓 𝑥, 𝜃 =
𝑒−𝜃𝜃𝑥

𝑥!
, 𝑥 = 0,1,2, …… 



𝐹𝑖𝑛𝑑 𝑀𝑃𝐶𝑅 𝑜𝑓 𝑠𝑖𝑧𝑒 𝛼 𝑓𝑜𝑟 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

 𝒂   𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1(> 𝜃0) 

 

𝑎𝑛𝑑 

 𝒃 𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1(< 𝜃0) 

 

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋1, … . . 𝑋𝑛  𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛 𝑓𝑟𝑜𝑚 𝑃(𝜃) 

 

Solution: 

 

(a)  We are given 

𝑓 𝑥, 𝜃 =
𝑒−𝜃𝜃𝑥

𝑥!
 

𝐿 =  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

=
𝑒−𝑛𝜃 𝜃 𝑥𝑖

𝑛
1

 𝑥!𝑛
𝑖=1

 

Therefore MPCR w by NP Lemma is:  

𝐼𝑛𝑠𝑖𝑑𝑒 𝑤: 
𝐿1

𝐿0
≥ 𝑘 

That is, 

𝑒−𝑛𝜃1 𝜃1 
 𝑥𝑖

𝑛
1

 𝑥!𝑛
𝑖=1

  
 𝑥!𝑛

𝑖=1

𝑒−𝑛𝜃0 𝜃1 
 𝑥𝑖

𝑛
1

≥ 𝑘 

𝑜𝑟  𝑒−𝑛 𝜃1−𝜃0  
𝜃1

𝜃0
 

 𝑥𝑖

≥ 𝑘                      (1) 

𝑇𝑕𝑢𝑠                   
𝜃1

𝜃0
 

 𝑥𝑖

≥ 𝑘1  

𝑜𝑟,       𝑥𝑖𝑙𝑜𝑔  
𝜃1

𝜃0
 ≥ 𝑘2

𝑛

1

 



𝑆𝑖𝑛𝑐𝑒              𝜃1 > 𝜃2 ,                 log
𝜃1

𝜃0
≥ 0, 

and 

 𝑥1 ≥ 𝑘3

𝑛

1

 

Hence MPCR of size 𝛼 is  

w =   xi ≥ k3

n

i=1

  

where α = P   xi ≥ k3|H0

n

i=1

 . 

It may be noted that if Xi, i= 1,…….,n are independently distributed as Poisson P(𝜃), then  y = 

 xi   
n
i=1 is distributed as Poisson P(n 𝜃). 

Therefore, 

α =  
e−nθ0 nθ0 

y

y!

∞

y=k3

 

and thus for given θ0 and α we can obtain k3 from the table. If we do not get k3 for which the 

sum is α then we take that value for which the sum is close to α but ≤ α.  

i. e.             
e−nθ0 nθ0 

y

y!

∞

y=k3

≤ α  or  
e−nθ0 nθ0 

y

y!

k3−1

y=0

≥ 1 − α. 

Numerical Example:  For n=10, θ0=1, α =0.5, it can be obtained by N-P Lemma that CR is 

  𝑥𝑖 ≥ 1610
1  , i.e. Reject H0 if  𝑥𝑖 ≥ 1610

1   and accept otherwise.  

(b) For  𝜃1 < 𝜃0, 

log
𝜃1

𝜃0
< 0, 

 



and consequently, 

 xi ≤ k3

n

i=1

  𝑎𝑠  xi  log
𝜃1

𝜃0
≥ k2

n

i=1

 

Where k3 is obtained from 

 α = P   xi ≤ k3|H0

n

i=1

 . 

=  
e−nθ0 nθ0 

y

y!

k3

y=0

 

Numerical Example:  For n=6, θ0=2, α =0.05, CR is   𝑥𝑖 ≤ 66
1  , i.e. Reject H0 if  𝑥𝑖 ≤6

1

6  and accept otherwise.  

Remark:  In this example (Poisson distribution), we have seen that in both the cases, i.e. 

  𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1(> 𝜃0) 

 

𝑎𝑛𝑑 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1(< 𝜃0) 

MPCR of size 𝛼 does not depend on 𝜃1 , hence MPCR of size 𝛼 for testing  

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 = 𝜃1(> 𝜃0) 

is also UMPCR of size 𝛼 for testing  

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 > 𝜃0 

and MPCR of size 𝛼 for testing  

𝐻0: 𝜃 = 𝜃0 



𝐻1: 𝜃 = 𝜃1(< 𝜃0) 

is also UMPCR of size 𝛼 for testing  

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 < 𝜃0 

Since these two UMPCR are different hence we conclude that UMPCR for testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 ≠ 𝜃0 

does not exist. 

Example 3:  Let X be distribution as normal N(𝜃,1). Find MPCR of size 𝛼 for testing 

 𝒂             𝐻0: 𝜃 = 𝜃0 

                          𝐻1: 𝜃 = 𝜃1(> 𝜃0) 

𝑎𝑛𝑑 

 𝒃                𝐻0: 𝜃 = 𝜃0 

                          𝐻1: 𝜃 = 𝜃1(< 𝜃0) 

 

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑋1, … . . 𝑋𝑛  𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛 𝑓𝑟𝑜𝑚 𝑁(𝜃, 1) 

Solution:  The pdf of normal 𝑁(𝜃, 1)distribution is  

𝑓 𝑥, 𝜃 =
1

 2𝜋
𝑒−

1
2
 𝑥−𝜃 2

 

The likelihood function based on a random sample is 

𝐿 =  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

=
1

 2𝜋 
𝑛
2

𝑒−
1
2

  𝑥−𝜃 2𝑛
1  

The MPCR w by NP Lemma is  

𝐼𝑛𝑠𝑖𝑑𝑒 𝑤:                               
𝐿1

𝐿0
=

𝑒−
1
2

  𝑥−𝜃1 2𝑛
1

𝑒−
1
2

  𝑥−𝜃0 2𝑛
1

≥ 𝑘 



Or, 

𝑒−
𝑛
2
 𝜃1

2−𝜃0
2    𝑒 𝜃1−𝜃0  𝑥𝑖  ≥𝑘  

Or, 

𝑒 𝜃1−𝜃0  𝑥𝑖  ≥𝑘1  

Or, 

 𝜃1 − 𝜃0  𝑥𝑖 ≥ log 𝑘1 

 𝒂                   𝐹𝑜𝑟 𝜃1 > 𝜃0 ,  

 𝑥𝑖 ≥ 𝑘2    𝑜𝑟   𝑥 ≥ 𝑘3, 

Where k3 is obtained by  

𝛼 = 𝑃 𝑥 ≥ 𝑘3|𝐻0 . 

𝑁𝑜𝑡𝑒 𝑡𝑕𝑎𝑡              𝑖𝑓 𝑋~𝑁  𝜃,
1

𝑛
 , 𝑡𝑕𝑒𝑛 𝑋 ~𝑁  𝜃,

1

𝑛
 , 𝑎𝑛𝑑 𝑍 =   𝑛 𝑋 − 𝜃  ~𝑁 0,1 . 

Hence  

𝛼 = 𝑃 𝑍 ≥  𝑛 𝑘3 − 𝜃0  = 𝑃 𝑍 ≥ 𝑧𝛼  

and thus for given 𝛼 we can find 𝑧𝛼  from normal table  and MPC R is  𝑥 ≥ 𝜃0 +
𝑧𝛼

 𝑛
  

 

This is also UMPCR for testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 > 𝜃0  



Numerical Example:  If n = 100, 𝜃0  = 50 and 𝛼 = .05 then 𝑧𝛼  = 1.65 and          𝑘3  = 50+ 
1.65

10
 = 

50.165 

i.e. Reject H0 if 𝑥 ≥ 50.165  and accept otherwise.  

(b)  For 𝐻0: 𝜃 = 𝜃0 

               𝐻1: 𝜃 = 𝜃1 < 𝜃0  

𝑊𝑒 𝑐𝑎𝑛 𝑠𝑕𝑜𝑤 𝑡𝑕𝑎𝑡 𝑀𝑃𝐶𝑅 𝑜𝑓 𝑠𝑖𝑧𝑒 𝛼 𝑖𝑠 

𝑤 =  𝑥 ≤ 𝑘4 , 

𝑤𝑕𝑒𝑟𝑒 𝑘4 = 𝜃0 −
𝑧𝛼

 𝑛
 

We conclude that       𝑤 =  𝑥 ≤ 𝑘4  is UMPCR for testing 

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 < 𝜃0  

Numerical Example: Let n = 100, 𝜃0 = 50 and 𝛼 = .05 then 𝑧𝛼  = 1.65 and   𝑘4 = 49.835  

i.e. Reject H0 if 𝑥 ≤ 49.835  and accept otherwise.  

As noted above UMPCR of size 𝛼 for testing  

 𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 > 𝜃0  

𝑖𝑠  𝑥 ≤ 𝜃0 −
𝑧𝛼

 𝑛
 . 

And for  

𝐻0: 𝜃 = 𝜃0 

𝐻1: 𝜃 < 𝜃0  

UMPCR of size 𝛼 is 𝑥 ≤ 𝜃0 −
𝑧𝛼

 𝑛
   

and since these CR are different, we conclude that UMPCR does not exist for 

𝐻0: 𝜃 = 𝜃0 



𝐻1: 𝜃 ≠ 𝜃0 . 

Example 4:  Let X be distributed as normal N (𝜇, 𝜎2) with 𝜇 known. Find MPCR of size 𝛼 for 

testing.  

 𝒂           𝐻0: 𝜎 = 𝜎0 

              𝐻1: 𝜎 = 𝜎1 > 𝜎0 . 

𝑎𝑛𝑑 

 𝒃          𝐻0: 𝜎 = 𝜎0 

             𝐻1: 𝜎 = 𝜎1 < 𝜎0 . 

based on a random X1, …..,Xn of size n from N (𝜇, 𝜎2) .  

Solution:  The pdf of Normal N(𝜇, 𝜎2) is 

𝑓 𝑥, 𝜃 =
1

𝜎 2𝜋
𝑒

−
1

2𝜎2 𝑥−𝜇 2

 

𝐿 =  𝑓 𝑥𝑖 , 𝜃 

𝑛

𝑖=1

=
1

𝜎𝑛 2𝜋 
𝑛
2

𝑒
−

1
2𝜎2   𝑥−𝜇 2𝑛

1  

Therefore, MPCR w by NP Lemma is  

𝐼𝑛𝑠𝑖𝑑𝑒 𝑤:                    
𝐿1

𝐿0
=

𝑒
−

1

2𝜎1
2   𝑥𝑖−𝜇 2𝑛

1

𝑒
−

1

2𝜎0
2   𝑥𝑖−𝜇 2𝑛

1

 
𝜎0

𝜎1
 

𝑛

≥ 𝑘 

Or, 

𝑒
−

1
2
 

1

𝜎1
2−

1

𝜎0
2   𝑥𝑖−𝜇 2𝑛

1
≥ 𝑘1 

Or, 

−
1

2
 

1

𝜎1
2 −

1

𝜎0
2   𝑥𝑖 − 𝜇 2

𝑛

1

≥ log 𝑘1 

(a)      Since  𝜎1 > 𝜎0 therefore −
1

2
 

1

𝜎1
2 −

1

𝜎0
2 ≥ 0 

Thus MPCR of size 𝛼 is 



w =    𝑥𝑖 − 𝜇 2

𝑛

1

≥ 𝑘2  

To obtain 𝑘2 note that 𝑈 =    
𝑥𝑖−𝜇

𝜎
 

2
𝑛
1 has 𝜒2 distribution with n degree of freedom (df).  

Thus, 

𝛼 = 𝑃 𝑈 ≥ 𝜒𝑛
2, 𝛼  

Where 𝜒𝑛
2 , 𝛼 is obtained from 𝜒2 table.  

 

 
(b) Similarly for 

 𝐻0: 𝜎 = 𝜎0 

𝐻1: 𝜎 = 𝜎1 < 𝜎0 . 

𝑀𝑃𝐶𝑅 𝑜𝑓 𝑠𝑖𝑧𝑒 𝛼 𝑖𝑠 

𝑤 =  𝜇 ≤ 𝜒𝑛,1−𝛼
2    𝑤𝑕𝑒𝑟𝑒, 𝑢 =    

𝑥𝑖 − 𝜇

𝜎0
 

2
𝑛

1

 

 
                                                𝜒𝑛,1−𝛼

2  

 

 



Since both these MPCR does not depend on 𝜎1  hence UMPCR for testing  

 𝐻0: 𝜎 = 𝜎0 

     𝐻1: 𝜎 > 𝜎0  

𝑖𝑠               𝜇 ≤ 𝜒𝑛
2 , 𝛼.  

and for 

 𝐻0: 𝜎 = 𝜎0 

     𝐻1: 𝜎 < 𝜎0  

      𝑖𝑠           𝜇 ≤ 𝜒𝑛
2 , 1 − 𝛼.  

As obtained above. Further as explained earlier UMPCR for testing 

 𝐻0: 𝜎 = 𝜎0 

     𝐻1: 𝜎 ≠ 𝜎0 

Does not exist. 

Numerical Example:  Let X has normal distribution N (50,𝜎2).  Based on a random sample of 

size n = 15, obtain MPCR of size 𝛼 = .05 for  

  𝑎            𝐻0: 𝜎 = 10 

     𝐻1: 𝜎 = 15  

      𝐻𝑒𝑟𝑒           𝜒𝑛,   𝛼 
2 = 24.996 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓   
𝑥𝑖 − 50

15
 

2

≥ 24.996

𝑛

1

  

and 

  𝑏         𝐻0: 𝜎 = 15 

     𝐻1: 𝜎 = 10  

      𝐻𝑒𝑟𝑒           𝜒𝑛,   𝛼 
2 = 7.261 



𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓           
𝑥𝑖 − 50

15
 

2

≤ 7.261.

𝑛

1

  

9.5  Likelihood Ratio Test 

In the Neman-Pearson (NP) Lemma, we used likelihood ratio to obtain MPCR if both the 

hypotheses are simple. But NP Lemma fails if one or both the hypotheses are composite. To 

overcome this problem another method, known as likelihood Ratio Test (LRT) is used, which is 

also ratio of two likelihood‟s. For this define a concept parameter space. 

Parameter space Θ is set of all possible values of the parameters in a distribution.  

Example:  𝑋~𝑃 𝜃 , 𝛩 =  𝜃: 𝜃 > 0  

𝑋~𝐵 𝑛, 𝑝 , 𝛩 =   𝑛, 𝑝 : 0 ≤ 𝑝 ≤ 1,   𝑛 = 1,2, … . .   

𝑋 − 𝑁 𝜇, 𝜎2 , 𝛩 =   𝜇, 𝜎2 : −∞ < 𝜇 < ∞, 𝜎 > 0 . 

We will denote parameter space under H0 as 𝛩0 and under H1 as 𝛩1. The Hypothesis under H0 

and H1 may or not be simple.  

Definition:  Let ~𝑓 𝑥, 𝜃 , 𝜃 ∈ 𝛩 . Suppose on the basis of a random sample X1, ….Xn of size n, 

we have to test.  

𝐻0: 𝜃 ∈ 𝛩0 

𝐻1: 𝜃 ∈ 𝛩1 

 

𝑤𝑕𝑒𝑟𝑒 𝛩0 ∪ 𝛩1 = 𝛩 𝑎𝑛𝑑 𝛩0 ∩ 𝛩1 = ∅ 

Define likelihood ratio as 

𝜆 =

𝑆𝑢𝑝 𝐿 𝜃 
𝛩0

𝑆𝑢𝑝 𝐿 𝜃 

𝛩

=
𝑁

𝐷
, 

Where  𝐿 =  𝑓 𝑥𝑖 , 𝜃 𝑛
𝑖=1  is the likelihood function and 

𝑆𝑢𝑝 𝐿 𝜃 
𝛩0

 is the maximum of the 

likelihood function 𝐿 𝜃  under H0. If some of the parameters are unspecified then are replace 

with their maximum  likelihood estimates (MLE). Similarly 
𝑆𝑢𝑝 𝐿 𝜃 

𝛩
will denote the maximum 

of the likelihood function 𝐿 𝜃 when 𝜃 ∈ 𝛩.  



The LRT says, 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0   𝑖𝑓      𝜆 ≤ 𝜆0,         𝑤𝑕𝑒𝑟𝑒        𝛼 = 𝑃 𝜆 ≤ 𝜆0|𝐻0 . 

Here it may be seen that 0 ≤ 𝜆 ≤ 1 𝑎𝑠 𝛩0 ⊂ 𝛩, 𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑁 ≤ 𝐷. . 

For finding CR of size 𝛼 the distribution of λ should be known. However, if the distribution of λ 

is not known, we may use asymptotic result: 

−2𝑙𝑜𝑔𝜆 − 𝜒(𝑟)
2 . 

9.6  Examples based on Likelihood Ratio Test 

Example 5: Let 𝑋~𝑁 𝜃, 𝜎2 . Using LRT, obtain CR of size 𝛼 on the basis of a random sample 

X1,…..Xn of size n for testing the hypothesis.  

(a)       𝐻0: 𝜃 = 𝜃0 

       𝐻1: 𝜃 > 𝜃0 

(b)       𝐻0: 𝜃 = 𝜃0 

     𝐻1: 𝜃 < 𝜃0. 

 𝐼      𝐻0: 𝜃 = 𝜃0 

          𝐻1: 𝜃 ≠ 𝜃0. 

(i)     If 𝜎 is known 

(ii)      if 𝜎 is unknown  

Solution; 

 a (i)  if 𝜎 is known let 𝜎 = 𝜎0 and then  

𝛩0 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 ,   𝜎 = 𝜎0  

𝛩 =   𝜃, 𝜎2 : 𝜃 ≥ 𝜃0,   𝜎 = 𝜎0  

Now 

𝑓 𝑥, 𝜃 =
1

𝜎 2𝜋
𝑒

−
1
2
 
𝑥−𝜃
𝜎

 
2

 



𝐿 =  𝑓 𝑥𝑖 , 𝜎
2 =

1

𝜎𝑛 2𝜋 
𝑛
2

𝑒
−

1
2

  
𝑥𝑖−𝜃

𝜎
 

2
𝑛
1

𝑛

𝑖=1

 

𝑁 =
𝑆𝑢𝑝 𝐿 𝜃 

𝛩0
=

1

𝜎0
𝑛 2𝜋 

𝑛
2

𝑒
−

1
2

  
𝑥𝑖−𝜃0

𝜎0
 

2
𝑛
1

 

Note that maximum likelihood (MLE) for  𝜃  in Θ is  

𝜃 =  
𝑥 ,                𝑖𝑓               𝑥 > 𝜃0

𝜃0 ,               𝑖𝑓                𝑥 ≤ 𝜃0

  

Therefore, 

𝐷 =  

𝑆𝑢𝑝 𝐿 𝜃 
𝛩0

=
1

𝜎0
𝑛 2𝜋 

𝑛
2

𝑒
−

1
2

  
𝑥𝑖−𝜃0

𝜎0
 

2
𝑛
1 ,    𝑖𝑓         𝑥 > 𝜃0

𝑁,                                                          𝑖𝑓               𝑥 ≤ 𝜃0

  

And 

𝜆 =

 
  
 

  
 
𝑆𝑢𝑝 𝐿 𝜃 

𝛩0

𝑆𝑢𝑝 𝐿 𝜃 
𝛩

=
𝑒

−
1
2

  
𝑥𝑖−𝜃0

𝜎0
 

2
𝑛
1

𝑒
−

1
2

  
𝑥𝑖−𝑥 
𝜎0

 
2

𝑛
1

,           𝑖𝑓                𝑥 > 𝜃0

1,                                                  𝑖𝑓                    𝑥 ≤ 𝜃0

  

 

=  
𝑒

−
1

2𝜎0
2    𝑥𝑖−𝜃0 2− 𝑥𝑖−𝑥  2 𝑛

1
,             𝑖𝑓         𝑥 > 𝜃0

1,                                                 𝑖𝑓                     𝑥 ≤ 𝜃0

  

=  
𝑒

−
1

2𝜎0
2    𝑥 −𝜃0 2 𝑛

1
                𝑥 > 𝜃0

1,                                            𝑥 ≤ 𝜃0

  

 



=  
𝑒

−
𝑛

2𝜎0
2 𝑥 −𝜃0 2

               𝑥 > 𝜃0

1,                                     𝑥 ≤ 𝜃0

  

𝐹𝑜𝑟 𝑥 > 𝜃0 ,        𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0               𝑖𝑓        𝑒
−

𝑛

2𝜎0
2 𝑥 −𝜃0 2

≤ 𝜆0 

𝑜𝑟,                        
𝑛

2
 
𝑥 − 𝜃0

𝜎0
 

2

≤ log 𝜆0 

𝑜𝑟,                        
𝑛

2
 
𝑥 − 𝜃0

𝜎0
 

2

≥ 𝜆0 

𝑜𝑟,                         𝑛  
𝑥 − 𝜃0

𝜎0
 

2

≥ 𝜆0 𝑎𝑠 𝑥 > 𝜃0 . 

Note that if 𝑋~𝑁  𝜃0 , 𝜎0
2 , 𝑡𝑕𝑒𝑛  

𝑍 =  𝑛  
𝑋 − 𝜃0

𝜎0
 ~𝑁 0,1  

Therefore reject 𝐻0  if 𝑧 ≥ 𝜆2, where 𝜆2 is such that 𝛼 = 𝑃 𝑍 ≥ 𝜆2|𝐻0 .  Hence 𝜆2 = 𝑍𝛼  and CR 

is  𝑥 ≥ 𝜃0 + 𝜎0
𝑍𝛼

 𝑛
  

 

as obtained by NP Lemma because it was simple vs simple hypothesis. This is UMPCR  

a (ii)    𝜎 is unknown. 

𝐻𝑒𝑟𝑒 𝛩0 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 , 𝜎 > 0  

𝛩 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 , 𝜎 > 0  

and maximum likelihood estimate of 𝜎2 in 𝛩0 is  
1

𝑛
  𝑥𝑖 − 𝜃0 

𝑛
1  and mle of 𝜃, 𝜎2𝑖𝑛 𝛩 𝑖𝑠 



𝜃 =  
𝑥 ,    𝑖𝑓   𝑥 > 𝜃0

𝜃0 ,   𝑖𝑓 𝑥 ≤ 𝜃0

  

𝜎 2 =

 
 
 
 

 
 
 1

𝑛
  𝑥𝑖 − 𝑥  2,           𝑥 > 𝜃0

𝑛

1

1

𝑛
  𝑥𝑖 − 𝑥  2,           𝑥 ≤ 𝜃0

𝑛

1

  

Hence, 

𝜆 =

 
 
 
 

 
 
 

𝑆𝑢𝑝 𝐿 𝜃 
𝛩0

𝑆𝑢𝑝 𝐿 𝜃 
𝛩

=
 

𝑛
  𝑥𝑖 − 𝜃0 2 

𝑛/2

𝑒−
𝑛
2

 
𝑛

  𝑥𝑖 − 𝜃0 2 
𝑛/2

𝑒−
𝑛
2

,           𝑥 > 𝜃0

1,                                                                        𝑥 ≤ 𝜃0

  

Now 

  𝑥𝑖 − 𝜃0 
2 =    𝑥𝑖 − 𝑥  +  𝑥𝑖 − 𝜃0  

2 

=   𝑥𝑖 − 𝑥  2 + 𝑛 𝑥𝑖 − 𝜃0 
2 

Therefore for 𝑥 > 𝜃0  reject H0 if  

𝜆 =  
  𝑥𝑖 − 𝑥  2

  𝑥𝑖 − 𝜃0 2
 

𝑛/2

=  
1

  𝑥𝑖 − 𝑥  2

  𝑥𝑖 − 𝜃0 2

 

𝑛/2

 

=  
1

1 +
  𝑥𝑖 − 𝑥  2

  𝑥𝑖 − 𝜃0 2

 

𝑛/2

≤ 𝜆0 

Or 



1 +
  𝑥𝑖 − 𝑥  2

  𝑥𝑖 − 𝜃0 2
≥ 𝜆1 

Or, 

𝑛 𝑥 − 𝜃0 
2

  𝑥𝑖 − 𝑥  2
≥ 𝜆2 

Or, 

 𝑛 𝑥 − 𝜃0 
2

𝑠
≥ 𝜆3,     𝑎𝑠      𝑥 > 𝜃0 ,      𝑤𝑕𝑒𝑟𝑒       𝑛 − 1 𝑠2 =   𝑥𝑖 − 𝑥  2. 

But t  = 
 𝑛  𝑥 −𝜃0 

𝑠
  has t distribution with (n-1) df.  

Hence reject 𝐻0 𝑖𝑓 𝑡 ≥ 𝑡𝑛−1,𝛼  

 

𝑇𝑕𝑢𝑠 𝐶𝑅 𝑖𝑠        𝑥: 𝑥 ≥ 𝜃0 + 𝑡𝑛−1,𝛼
𝑠

 𝑛
 . 

b  (i)       𝐻0: 𝜃 = 𝜃0 

              𝐻1: 𝜃 < 𝜃0, 

Where 𝜎 = 𝜎0 is known  

𝛩0 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 , 𝜎 > 0  

𝛩 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 , 𝜎 > 0  

Here in denominator 𝜃 will be replace by its MLE  

 

𝜃 =  
𝑥 ,    𝑖𝑓   𝑥 > 𝜃0

𝜃0 ,   𝑖𝑓 𝑥 ≤ 𝜃0

  



Thus, 

𝜆 =

 
  
 

  
 
𝑆𝑢𝑝 𝐿 𝜃 

𝛩0

𝑆𝑢𝑝 𝐿 𝜃 
𝛩

=
𝑒

−
1
2

  
𝑥𝑖−𝜃0

𝜎0
 

2
𝑛
1

𝑒
−

1
2

  
𝑥𝑖−𝑥 
𝜎0

 
2

𝑛
1

,                 𝑖𝑓   𝑥 > 𝜃0

1,                                                           𝑖𝑓   𝑥 ≤ 𝜃0

  

For 𝑥 ≤ 𝜃0 reject H0 if  

𝜆 = 𝑒
−

𝑛
2
 
𝑥 −𝜃0
𝜎0

 
≤ 𝜆0,         𝑎𝑠 𝑠𝑕𝑜𝑤𝑛 𝑖𝑛  𝑎 . 

Or, 

𝑛

2
 
𝑥 − 𝜃0

𝜎0
 ≥ 𝜆1 

Or, 

𝑧 =  𝑛  
𝑥 − 𝜃0

𝜎0
 ≥ 𝜆2        𝑎𝑠 𝑥 < 𝜃0 , 

Where 𝜆2 is such that        𝛼 = 𝑃 𝑍 ≥ 𝜆2|𝐻0 . 

Therefore, reject H0 if            
 𝑛 𝑥 −𝜃0 

𝜎0
≤ −𝑧𝛼  

Or, 

𝑥 < 𝜃0 − 𝑧𝛼

𝜎0

 𝑛
 

Thus CR is       𝑥: 𝑥 ≤ 𝜃0 − 𝑧𝛼
𝜎0

 𝑛
 . 

This is UMPCR of size 𝛼 as obtained through NP Lemma.  

 

 



 

b  (ii)       if 𝜎 is known then  

𝛩0 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 , 𝜎 > 0  

𝛩 =   𝜃, 𝜎2 : 𝜃 ≤ 𝜃0 , 𝜎 > 0 . 

And MLE for 𝜎2 in 𝛩0 is         
1

𝑛
  𝑥𝑖 − 𝜃0 

2𝑛
1   

and for 𝜃, 𝜎2 for in Θ are 

𝜃 =  

𝑥 ,                   𝑖𝑓   𝑥 > 𝜃0

𝜃 0
,               𝑖𝑓 𝑥 ≥ 𝜃0

  

and, 

𝜎 2 =

 
 
 
 

 
 
 1

𝑛
  𝑥𝑖 − 𝑥  2,             𝑖𝑓        𝑥 > 𝜃0

𝑛

1

1

𝑛
  𝑥𝑖 − 𝑥  2,         𝑖𝑓         𝑥 ≥ 𝜃0

𝑛

1

  

thus, 

𝜆 =

 
 
 
 

 
 
  

𝑛
  𝑥𝑖 − 𝜃0 2 

𝑛/2

𝑒−
𝑛
2

 
𝑛

  𝑥𝑖 − 𝜃0 2 
𝑛/2

𝑒−
𝑛
2

,                  𝑖𝑓       𝑥 > 𝜃0

1,                                                         𝑖𝑓       𝑥 ≤ 𝜃0

  

Or,  

𝜆 =

 
 
 

 
 

   𝑥𝑖 − 𝜃0 
2 𝑛/2

   𝑥𝑖 − 𝜃0 2 𝑛/2
              𝑖𝑓       𝑥 > 𝜃0

1,                                             𝑖𝑓       𝑥 ≥ 𝜃0

  



Proceeding as in (a) we get 

𝑛 𝑥 − 𝜃0 
2

 𝑛 − 1 𝑠2
≥ 𝜆2           𝑖𝑓     𝑥 ≤ 𝜃0   

Implying that, 

𝑡 =
 𝑛 𝑥 − 𝜃0 

𝑠
≤  𝜆3, 

𝑤𝑕𝑒𝑟𝑒 𝛼 = 𝑃  
 𝑛 𝑥 − 𝜃0 

𝑠
≤ 𝜆3|𝐻0  

 

i.e.      
 𝑛 𝑥 −𝜃0 

𝑠
≤ −𝑡𝑛−1,𝛼. 

Hence CR is      𝑥: 𝑥 ≤ 𝜃0 − 𝑡𝑛−1,𝛼
𝑠

 𝑛
 . 

c  (i)        if 𝜎 = 𝜎0 is known then  

𝐻0: 𝜃 = 𝜃0  

     𝐻1: 𝜃 ≠ 𝜃0  

𝛩0 =   𝜃, 𝜎2 : 𝜃 = 𝜃0, 𝜎 = 𝜎0  

𝛩 =   𝜃, 𝜎2 : 𝜃 ≤ 𝜃 < ∞, 𝜎 = 𝜎0 . 

 

𝑁 =
1

𝜎0
𝑛 2𝜋 𝑛/2

𝑒
−

1
2

  
𝑥𝑖−𝜃0

𝜎0
 

2
𝑛
1

 

 



𝐷 =
1

𝜎0
𝑛 2𝜋 𝑛/2

𝑒
−

1
2

  
𝑥𝑖−𝑥 
𝜎0

 
2

𝑛
1

 

Therefore 

𝜆 =
𝑁

𝐷
= 𝑒

−
1

2𝜎0
2    𝑥𝑖−𝜃0 2 𝑥𝑖−𝑥  2 𝑛

1
= 𝑒

−
𝑛

2𝜎0
2 𝑥 −𝜃0 2

 

 

Reject H0 if          𝑒
−

𝑛

2
 
𝑥 −𝜃0
𝜎0

 
2

≤ 𝜆0 

Or, 

−
𝑛

2
 
𝑥 − 𝜃0

𝜎0
 

2

≤ 𝑙𝑜𝑔𝜆0 

Or, 

𝑛

2
 
𝑥 − 𝜃0

𝜎0
 

2

≤ 𝜆1 

Or, 

  𝑛  
𝑥 − 𝜃0

𝜎0
  ≥ 𝜆2, 

Where 𝛼 = 𝑃 |𝑍| ≥ 𝜆2|𝐻0  

𝑧 =  𝑛  
𝑥 − 𝜃0

𝜎0
 ~𝑁 0,1 , 𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝜆2 = 𝑧𝛼/2 

 

c  (ii)   If 𝜎 unknwon 

𝛩0 =   𝜃, 𝜎2 : 𝜃 = 𝜃0 , 𝜎 > 0  



𝛩 =   𝜃, 𝜎2 : −∞ < 𝜃 < ∞, 𝜎 > 0 . 

MLE for  𝜎2 in 𝛩0 is 

 𝜎 2 =
1

𝑛
  𝑥𝑖 − 𝜃0 

2𝑛
1   

and MLE for 𝜃 𝑎𝑛𝑑  𝜎2 in 𝛩0 is 

𝜃 = 𝑥.  

𝜎 2 =
1

𝑛
  𝑥𝑖 − 𝑥  2

𝑛

1

 

Therefore, 

𝜆 =
𝑁

𝐷
=

 
𝑛

  𝑥𝑖 − 𝜃0 2 
𝑛/2

 
𝑛

  𝑥𝑖 − 𝑥  2 
𝑛/2

 

 

=  
  𝑥𝑖 − 𝑥  2

  𝑥𝑖 − 𝜃0 2
 

𝑛/2

 

Hence proceeding as in (a) (ii) for unknown  

we reject H0 if, 

𝑛 𝑥 − 𝜃0 
2

 𝑛 − 1 𝑠2
≥ 𝜆2 

Or, 

 
 𝑛 𝑥 − 𝜃0 

𝑠
 ≤  𝜆3 

Now  t = 
 𝑛 𝑥 −𝜃0 

𝑠
    has t- distribution with (n-1) df and therefore,  

𝛼 = 𝑃 |𝑡| ≥ 𝑡𝑛−1,𝛼/2 . 

Thus CR is  



 𝑥 ∶    
 𝑛 𝑥 − 𝜃0 

𝑠
 ≥ 𝑡𝑛−1,𝛼/2  

 

 
 

Example 6:  Let X be Bernoulli variate B(1, 𝜃), Using LRT, obtain CR of size 𝛼 for testing the 

hypothesis.  

 𝑎               𝐻0: 𝜃 = 𝜃0 

                      𝐻1: 𝜃 > 𝜃0 

 𝑏                  𝐻0: 𝜃 = 𝜃0 

                        𝐻1: 𝜃 < 𝜃0. 

 𝐶                        𝐻0: 𝜃 = 𝜃0 

                                 𝐻1: 𝜃 ≠ 𝜃0. 

On the basis of a random sample of size n. 

Solution: 

(a)  Here 

𝛩0 =   𝑛, 𝜃 : 𝜃 = 𝜃0 , 𝑛 = 1,2, … . .   

𝛩 =   𝑛, 𝜃 : 𝜃 < 𝜃0 , 𝑛 = 1,2, … . .  . 

and MLE of 𝜃  in Θ are 

𝜃 =  

𝑥 ,                      𝑖𝑓                   𝑥 > 𝜃0

𝜃 0
,                        𝑖𝑓                  𝑥 ≤ 𝜃0

  



Therefore, 

𝜆 𝑥 =

𝑆𝑢𝑝 𝐿 𝜃 
𝛩0

𝑆𝑢𝑝 𝐿 𝜃 
𝛩

=

 
 
 

 
 𝜃0

 𝑥𝑖 1 − 𝜃0 
𝑛− 𝑥𝑖

𝑥  𝑥𝑖 1 − 𝜃0 𝑛− 𝑥𝑖
,          𝑖𝑓   𝑥 > 𝜃0

1,                                              𝑖𝑓   𝑥 ≤ 𝜃0

  

 

Now for 𝑥 > 𝜃0 

𝜆 𝑥 =
𝜃0

 𝑥𝑖 1 − 𝜃0 
𝑛−𝑛𝑥 

𝑥  𝑥𝑖 1 − 𝜃0 𝑛−𝑛𝑥 
 

=   
𝜃0

𝑥 
 

𝑥 

 
1 − 𝜃0

1 − 𝑥 
 

1−𝑥 

 

𝑛

 

𝑙𝑜𝑔𝜆 𝑥 = 𝑛 𝑥 𝑙𝑜𝑔𝜃0 − 𝑥 𝑙𝑜𝑔𝑥 +  1 − 𝑥  log 1 − 𝜃0 −  1 − 𝑥  log(1 − 𝑥 )  

𝜕

𝜕𝑥 
𝑙𝑜𝑔𝜆 𝑥 = 𝑛 𝑙𝑜𝑔𝜃0 − 1 − 𝑙𝑜𝑔𝑥 − log 1 − 𝜃0 + 1 + log 1 − 𝑥    

= 𝑛  𝑙𝑜𝑔
𝜃0 1 − 𝑥  

𝑥  1 − 𝜃0 
 < 0 

As 𝑥 > 𝜃0 therefore 1 − 𝑥 < 1 − 𝜃0   

and      
𝜃0 1−𝑥  

𝑥  1−𝜃0 
< 1 

Therefore, the function 𝜆 𝑥  is decreasing for 𝑥 > 𝜃0 

And as shown in curve 𝜆 𝑥 < 𝜆 ⇒  𝑥 > 𝑘, 



That is reject H0 if             𝑥𝑖
𝑛
𝑖=1 ≥ 𝑘1 

Where  𝑋𝑖
𝑛
𝑖=1  has Binomial B(n,𝜃) distribution and k1 is such that 

𝛼 = 𝑃   𝑋𝑖 ≤ 𝑘1 |𝐻0

𝑖

  

This is UMPCR as obtained by NP lemma. 

(b)                Here 

𝛩0 =   𝑛, 𝜃 : 𝜃 = 𝜃0 , 𝑛 = 1,2, … . .   

𝛩 =   𝑛, 𝜃 : 𝜃 < 𝜃 ≤ 𝜃0 , 𝑛 = 1,2, … . .  . 

and MLE of 𝜃  in Θ is 

𝜃 =  

𝑥 ,                      𝑖𝑓                  𝑥 > 𝜃0

𝜃0 ,                    𝑖𝑓                  𝑥 ≤ 𝜃0

  

Therefore, 

𝜆 𝑥 =

 
 
 

 
 =

𝜃0
 𝑥𝑖 1 − 𝜃0 

𝑛− 𝑥𝑖

𝑥  𝑥𝑖 1 − 𝜃0 𝑛− 𝑥𝑖
,                           𝑖𝑓               𝑥 < 𝜃0

1,                                                           𝑖𝑓                      𝑥 ≥ 𝜃0

  

 

 

 



Thus for 𝑥 > 𝜃0 ,    𝜆 𝑥  is an increasing function and therefore  

𝜆 𝑥  ≤  𝜆 ⇒    𝑥 ≤ 𝑘  

⇒   𝑥𝑖 ≤ 𝑘1 

and hence 

reject H0 if             𝑥𝑖 ≤ 𝑘1
𝑛
𝑖=1  

𝑤𝑕𝑒𝑟𝑒          𝑥𝑖  ~𝑁 𝑛, 𝜃              𝑎𝑛𝑑    𝑘1 𝑖𝑠 𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡

𝑛

𝑖=1

 

𝛼 = 𝑃   𝑥𝑖 ≤ 𝑘1

𝑛

𝑖=1

|𝐻0 . 

This CR is also UMPCR as obtained by NP lemma 

(c) Here 

𝛩0 =   𝑛, 𝜃 : 𝜃 = 𝜃0 , 𝑛 = 1,2, … . .   

𝛩 =   𝑛, 𝜃 : 𝜃 < 𝜃 ≤ 1, 𝑛 = 1,2, … . .  . 

and MLE of 𝜃  in Θ is 𝑥  therefore, 

𝜆 𝑥 =
𝜃0

 𝑥𝑖 1 − 𝜃0 
𝑛− 𝑥𝑖

𝑥  𝑥𝑖 1 − 𝜃0 𝑛− 𝑥𝑖
 

 

 

 



 

Here it may be seen that 𝜆 𝑥  increase for 𝑥 < 𝜃0 and decrease for 𝑥 > 𝜃0 .  

Thus 𝜆 𝑥 ≤  𝜆   

⇒ 𝑥 ≤  𝑘1      𝑜𝑟      𝑥 ≥ 𝑘2 

⇒  𝑥𝑖 ≤ 𝑘3      𝑜𝑟       𝑥𝑖 ≥ 𝑘4   

𝑤𝑕𝑒𝑟𝑒       𝛼 = 𝑃   𝑥𝑖 ≤ 𝑘3 |𝐻0 + 𝑃   𝑥𝑖 ≥ 𝑘4  |𝐻0  

Because of symmetry, we have 

𝛼

2
= 𝑃   𝑋𝑖 ≤ 𝑘3 |𝐻0

𝑖

 = 𝑃   𝑋𝑖 ≤ 𝑘4 |𝐻0

𝑖

  

Example 7: Based on a random sample X1, X2,……Xn from Poisson P(𝜃) distribution test the 

hypothesis.  

 𝑎        𝐻0: 𝜃 = 𝜃0 

                  𝐻1: 𝜃 > 𝜃0 

 𝑏            𝐻0: 𝜃 = 𝜃0 

                𝐻1: 𝜃 < 𝜃0. 

 𝐶               𝐻0: 𝜃 = 𝜃0 

                      𝐻1: 𝜃 ≠ 𝜃0. 

Solution:      We have 

(a)       Here        𝛩0 =  𝜃: 𝜃 = 𝜃0  

                𝛩 =  𝜃: 𝜃 ≥ 𝜃0  

            𝑎𝑛𝑑 𝑀𝐿𝐸 𝑜𝑓 𝜃 𝑖𝑛  𝛩 𝑖𝑠 



𝜃 =  

𝑥 ,                    𝑖𝑓                   𝑥 > 𝜃0

𝜃0 ,                         𝑖𝑓                      𝑥 > 𝜃0

  

𝑇𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

𝜆 𝑥 =

 
 
 

 
 

𝑒−𝑛𝜃0  𝜃0  𝑥𝑖

𝑒−𝑛𝑥 𝑥  𝑥𝑖
,                     𝑖𝑓             𝑥 > 𝜃0

1,                                            𝑖𝑓               𝑥 ≤ 𝜃0

  

Now for 𝑥 > 𝜃0 

𝜆 𝑥 = 𝑒−𝑛 𝜃0−𝑥   
𝜃0

𝑥 
 

𝑛𝑥 

 

𝑙𝑜𝑔𝜆 𝑥 = 𝑛 − 𝜃0 − 𝑥  + 𝑥  log 𝜃0 − 𝑥  𝑙𝑜𝑔𝑥   

Ə

Ə𝑥 
𝑙𝑜𝑔𝜆 𝑥 = 𝑛 1 + log 𝜃0 − 1 𝑙𝑜𝑔𝑥  = 𝑛𝑙𝑜𝑔

𝜃0

𝑥
< 0 

That is 𝜆 𝑥  is decreasing function 𝑥  of for 𝑥 > 𝜃0 .  

Therefore, 

𝜆 𝑥 ≤ 𝜆 ⇒ 𝑥 ≥ 𝑘 

⇒ 𝑋𝑖 ≥ 𝑘1, 

Where  𝑋𝑖
𝑛
𝑖=1 ~𝑃 𝑛𝜃  

and k1 is such that 

𝛼 = 𝑃   𝑋𝑖 ≤ 𝑘1|𝐻0

𝑖

  

This is the UMPCR as obtained by NP lemma. 

Proceeding as above, we can show that for (b) 

Reject H0 if          𝑋𝑖
𝑛
𝑖=1 ≤ 𝑘1, 

Where      𝛼 = 𝑃  𝑋𝑖 ≤ 𝑘1|𝐻0𝑖   



And for (c) Reject H0 if 

 𝑋𝑖 ≤ 𝑘3                𝑜𝑟  𝑋𝑖 ≥ 𝑘4, 

Where          𝛼/2 = 𝑃  𝑋𝑖 ≤ 𝑘3|𝐻0𝑖   

and Where           𝛼/2 = 𝑃  𝑋𝑖 ≤ 𝑘4|𝐻0𝑖   

 

9.7  Problems and Exercises 

1.  Find UMP test of size 𝛼 =0.05 for testing 𝐻0: 𝜇 = 0 against 𝐻0: 𝜇 > 0  on the basis of a 

random sample of size 25 from normal 𝑁  𝜇, 16   distribution.  

Hint: Let 𝐻1: 𝜇 = 𝜇1 > 0 , 𝑡𝑕𝑒𝑛 

𝛼 = 𝑃 𝑋 > 𝑘|𝐻0 = 𝑃  𝑍 >
5

4
𝑘 = 0.05 

⇒ 𝑘 =
4

5
× 1.645 = 1.316. 

∴ MPCR for testing 𝐻0: 𝜇 > 0  against 𝐻0: 𝜇 = 𝜇1 >  0 𝑖𝑠  𝑥 > 1.316 . Since this CR does not 

depend on the choice of 𝜇1 hence this is also UMP for 𝐻0: 𝜇 = 0     against 𝐻1: 𝜇 > 0. 

2(a)  Based on a random sample of size n from an exponential distribution with  

pdf 𝑓 𝑥, 𝜃 =
1

𝜃
𝑒−𝑥/𝜃 , 𝑥, 𝜃 > 0,  obtain UMPCR of size for testing 𝐻0: 𝜃 = 𝜃0  against 

              𝐻0: 𝜃 > 𝜃0  

Hint :  Let  
𝑦

2
=

𝑥

𝜃
   then pdf of y is 

1

2
𝑒−𝑦/2, 𝑥, 𝑦 > 0 

Which is the pdf of 𝜒2
2 i.e. the distribution of  

𝑌 =
2𝑋

𝜃
~𝜒2

2 

𝑎𝑛𝑑 𝑈 =  𝑌𝑖 =
2

𝜃
 𝑋𝑖~𝜒2𝑛

2

𝑛

𝑖=1

𝑛

𝑖=1

 

UMPCR for 𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 = 𝜃1  (> 𝜃0)by NP lemma is  



  𝑋𝑖 > 𝑘

𝑛

𝑖=1

  𝑜𝑟  𝑈 >
2𝑘

𝜃
 , 𝑤𝑕𝑒𝑟𝑒 𝛼 =  𝑈 >

2𝑘

𝜃
| 𝐻0 . 

From table. 

2𝑘

𝜃0
= 𝜒2𝑛,𝛼

2   𝑜𝑟 𝑘 =
𝜃0

2
𝜒2𝑛,𝛼

2  

This is also UMP for 𝐻1: 𝜃 = 𝜃0 

(b)  Also obtain UMP test for 𝐻0: 𝜃 = 𝜃0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝜃 < 𝜃0 and show that UMP test does 

not exit for 𝐻0: 𝜃 = 𝜃0  𝑣𝑠 𝐻1: 𝜃 ≠ 𝜃0. 

3.(a)  Based on a random sample of size n from an exponential distribution. 

𝑓 𝑥, 𝜃 = 𝜃𝑒−𝑥𝜃 , 𝑥, 𝜃 > 0, 

Obtain UMP test for testing𝐻0: 𝜃 = 𝜃0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝜃 < 𝜃0  

Hint:  It can be seen that 𝑌 = 2𝑋𝜃 has. Therefore 𝜒2
2   

𝑈 =  𝑋𝑖~𝜒2𝑛
2

𝑛

𝑖=1

 

Here for, 𝐻1: 𝜃 = 𝜃1 (> 𝜃0) MP test is   𝑋𝑖 > 𝑘𝑛
𝑖=1  , where 

𝛼 =   𝑋𝑖 < 𝑘|𝐻0

𝑛

𝑖=1

 = 𝑃 𝑈 ≤ 2𝑘𝜃0 . 

(b)  Also obtain UMP test for 𝐻0: 𝜃 = 𝜃0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝜃 < 𝜃0 and show that UMP test does 

not exit for 𝐻0: 𝜃 = 𝜃0  𝑣𝑠 𝐻1: 𝜃 ≠ 𝜃0. 

4.  Based on a random sample of size n from 𝑁  𝜇, 𝜎2  obtain CR for testing the hypotheses 

 a                H0: 𝜎 =  𝜎0 

                       H1: 𝜎 >  𝜎0 

 b                H0: 𝜎 =  𝜎0 

                     H1: 𝜎 <  𝜎0 

 c                 H0: 𝜎 =  𝜎0 



                     H1: 𝜎 ≠  𝜎0 

Using LRT method when (i) 𝜇 is known and (ii) 𝜇 is unknown.  

9.8  Summary 

Neyman-Pearson lemma provides a fundamental rule for obtaining MPCR and hence MP 

test for testing simple verse simple hypotheses. According to the lemma, a CR of size 𝛼 is said to 

be MPCR if L1 ≥  kL0 inside w and L1< kL0 outside w where Lo and L1 are likelihood functions 

of the sample observations under H0 and H1, respectively, and k is to be obtained such that of the 

CR w is 𝛼.  

The likelihood ratio test plays the same important role in testing of statistical hypothesis 

as does the maximum likelihood method or estimation in point estimation of a parameter. It is 

important to mention that in Neman-Pearson (NP) lemma, we actually use likelihood ration to 

obtain MPCR if both the hypotheses are simple. NP Lemma however fails if one or both the 

hypotheses are composite. To override this problem the method known as likelihood Ratio Test 

(LRT) is used which is also the ratio of the two likelihood‟s.  

9.9  Further Readings  

 Goon A.N., Gupta M.K. & Das Gupta B (2000) An Outline of  Statistical Theory Vol. 2 

The World Press Private Limited. 

 Hogg, R.V. and Craig, A. (2005). Introduction to Mathematical Statistics 6
th

 edition, 

Prentice Hall.  

 Mood, A.M. Graybill, F.A., Boes, D.C. (1974). Introduction to the Theory of Statistics, 

McGraw Hill.  

 Mohr, L.B. (1994), Understnading Significance Testing, Sage Publications, USA. 

 Lehmann, E.L. (1986). Testing statistical hypothesis. Springer-Verlag, New York, Inc. 

2
nd

 edition. 

  



Unit-10  Testing of Means of Normal Population 

Structure 

10.1 Introduction 

10.2 Objective 

10.3 One sample Problem 

10.4 Two sample Problem 

10.5 Problems and exercises 

10.6 Summary 

10.7 Further Readings 

10.1  Introduction 

In Unit 9 we have develop methods- Neyman-Pearsn lemma and likelihood ration test to 

obtain most powerful critical regions for simple and composite hypotheses. These methods will 

now be employed here to test the equality of means in a one sample and two sample problems 

from distributions. 

10.2  Objectives  

After readings this unit you should be able to: 

 Understand the testing procedure for testing the significance of mean of a normal 

population when variance is known or unknown. 

 Understand the testing of equality of means of two normal populations based on two 

independent random samples. 

10.3  One Sample Problem 

Let a random sample X1, ……Xn of size n be a drawn from normal N(𝜃, 𝜎2) distribution.  

If  𝑋~𝑁 𝜃, 𝜎2  then  

𝑋 ~𝑁  𝜃,
𝜎2

𝑛
       𝑎𝑛𝑑         𝑍 =

 𝑛 𝑋 − 𝜃 

𝜎
~𝑁 0,1 , 

Where 𝑋 =
𝑋1+𝑋2+⋯…+𝑋𝑛

𝑛
 is sample mean Z is standard normal variate 



A. For  𝜎 known  

Suppose we have to test 

1. H0: θ = θ0 

      H1: θ > θ0 

𝐻𝑒𝑟𝑒 𝑤𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒           𝑍 =
 𝑛 𝑋 − 𝜃 

𝜎
  

𝑎𝑛𝑑 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0          𝑖𝑓
 𝑛 𝑋 − 𝜃 

𝜎
> 𝑧𝛼   

𝑖. 𝑒. 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓         𝑥 > 𝜃0 + 𝑧𝛼

𝜎

 𝑛
, 

𝑤𝑕𝑒𝑟𝑒        𝑃 𝑍 > 𝑍𝛼  = 𝛼 

 
 

2. For H0: θ = θ0 

      H1: θ > θ0 

Reject 𝐻0 𝑖𝑓         
 𝑛 𝑥 − 𝜃0 

𝜎
< −𝑍𝛼   

𝑖. 𝑒. 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓         𝑥 < 𝜃0 − 𝑧𝛼

𝜎

 𝑛
, 

Where P[Z<-𝑧𝛼 ] = 𝛼. 

This is because of symmetry that 

𝑃 𝑍 < −𝑧𝛼 = 𝛼 = 𝑃 𝑧 > 𝑧𝛼 . 

3. For the hypothesis 

H0: θ = θ0 



      H1: θ ≠ θ0 

Reject 𝐻0 𝑖𝑓        
 𝑛 𝑥 − 𝜃0 

𝜎
< 𝑍𝛼/2  

Or 

Reject 𝐻0 𝑖𝑓        
 𝑛 𝑥 − 𝜃0 

𝜎
< −𝑍𝛼

2
        𝑜𝑟           

 𝑛 𝑥 − 𝜃0 

𝜎
> 𝑍𝛼/2.  

𝑜𝑟 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓         𝑥 < 𝜃0 − 𝑍𝛼
2

𝜎

 𝑛
          𝑜𝑟,                     𝑥 > 𝜃0 + 𝑍𝛼

2

𝜎

 𝑛
,  

𝑤𝑕𝑒𝑟𝑒                𝑃 |𝑍| < −𝑧𝛼/2 = 𝑃 𝑧 < −𝑧𝛼/2 + 𝑃 𝑍 > 𝑧𝛼/2 = 𝛼.  

 

This CR was obtained earlier in the previous unit.  

Example 1:  Let a sample of size 25 is drawn from N (𝜃,4) distribution and let the sample be 𝑥  = 

18.9 

Then to test 

H0: θ = 19.5 

      H1: θ < 19.5  

at α = 0.05,   we have   Zα = 1.645 

𝑍 =
 𝑛 𝑥 − 𝜃0 

𝜎
=

5 18.9 − 19.5 

2
=

5 × 0.6

2
=  −1.5. 

𝑆𝑖𝑛𝑐𝑒                        
 𝑛 𝑥 − 𝜃0 

𝜎
> −Zα  

We accept H0 and conclude that 

 𝜃 = 19.5 



If further we have to test 

H0: θ = 19.5 

      H1: θ ≠ 19.5  

at         α = 0.05,        we have                Zα/2 = 1.96 

𝐻𝑒𝑟𝑒                    
 𝑛 𝑥 − 𝜃0 

𝜎
 =  −1.5 = 1.5 < 1.96,  

𝑎𝑛𝑑 𝑡𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐻0 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

B.  For 𝜎 unknown  

𝑈 =
 𝑛 𝑋 − 𝜃0 

𝜎
~𝑁 0,1  

𝑉 =
  𝑋𝑖 − 𝑋  2𝑛

1

𝜎2
=

(𝑛 − 1)𝑆2

𝜎2
~𝜒𝑛−1

2  

U and V are independently distributed, therefore,  

t =
U

 V
n − 1

=

 n X − μ 
σ

 
 n − 1 S2

 n − 1 σ2

=
 n X − μ 

S
~tn−1. 

Thus if 𝜎 is not known then we have to calculate sample variance and have to use t-table instead 

of normal table.  

1. H0: θ = θ0 

      H1: θ > θ0 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒           
 𝑛 𝑥 − 𝜃0 

𝑆
 

𝑊𝑕𝑒𝑟𝑒                      𝑥 =
𝑥1 + 𝑥2 + ⋯ . +𝑥𝑛

𝑛
,      𝑆2 =

1

𝑛 − 1
  𝑥𝑖 − 𝑥  2

𝑛

𝑖=1

 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓                    
 𝑛 𝑥 − 𝜃0 

𝑆
> 𝑡𝑛−1,𝛼   



𝑜𝑟 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓                    𝑥 > 𝜃0 + 𝑡𝑛−1, 𝛼 
𝑠

 𝑛′
 

Where 𝑡𝑛−1 is the value of t- distribution with (n-1) df at 𝛼 level of significance 

 

This CR was obtained earlier in the previous unit. 

2.               H0: θ = θ0 

      H1: θ < θ0 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓                     
 𝑛 𝑥 − 𝜃0 

𝑆
> −𝑡𝑛−1,𝛼   

𝑜𝑟           𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓                            𝑥 < 𝜃0 − 𝑡𝑛−1, 𝛼 
𝑠

 𝑛′
 

as obtain in the previous unit. 

3.                H0: θ = θ0 

      H1: θ ≠ θ0 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0  𝑖𝑓                    
 𝑛 𝑥 − 𝜃0 

𝑆
 > 𝑡𝑛−1,𝛼/2   

𝑜𝑟    𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0  𝑖𝑓           𝑥 < 𝜃0 − 𝑡𝑛−1,
𝛼

2

𝑠

 𝑛
,        𝑜𝑟        𝑥 > 𝜃0 − 𝑡𝑛−1,

𝛼

2

𝑠

 𝑛
  

as discussed in the previous unit.  

Example 2:  Consider a sample of 6 cylinder blocks whose cope hardness values are 70, 75, 

60, 75, 65 and 80. Is there any evidence that the average cope hardness has changed from its 

specified value of 75? 

Solution:  Here n= 6 



𝑥 =
70 + 75 + 60 + 75 + 65 + 80

6
= 70.8 

𝑠 =  
1

𝑛 − 1
  𝑥𝑖 − 𝑥  2

𝑛

1

= 7.4 

Hypothesis to be tested at 𝛼 = 0.05 is  

 H0: θ = 75 

H1: θ ≠ 75 

𝑡 =
 𝑛 𝑥 − 𝜃0 

𝑠
=

 6 70.8 − 75 

7.4
= −1.39. 

𝑎𝑡    𝛼 = 0.05,  𝑡5,0.025 = 2.57 

Since calculate value is less than the tabulated value, 

i.e        |t| < 𝑡𝑛−1𝛼/2 

we accept H0 and conclude that there is no evidence that average cope hardness has changed 

from its value 75.  

10.4  Two Samples Problem 

Let ~𝑁 𝜇1, 𝜎1
2  . Take a random sample of size n1, X1, X2, ……, Xn1 from this 

population.  

Let ~𝑁 𝜇2, 𝜎1
2  . Take a random sample of size n1, Y1, Y2, ……, Yn2 from this 

population. 

Define 

𝑋 =
𝑋1 + 𝑋2 + ⋯ . +𝑋𝑛1

𝑛1
 

𝑆1
2 =

1

 𝑛1 − 1 
  𝑋𝑖 − 𝑋  2

𝑛1

𝑖=1

 



𝑌 =
𝑌1 + 𝑌2 + ⋯ . +𝑌𝑛2

𝑛2
 

𝑆2
2 =

1

 𝑛2 − 1 
  𝑌𝑖 − 𝑌  2

𝑛1

𝑖=1

 

𝑡𝑕𝑒𝑛 

𝑋 ~𝑁  𝜇1,
𝜎1

2

𝑛1
  

𝑌 ~𝑁  𝜇2,
𝜎2

2

𝑛2
  

𝑎𝑛𝑑 𝑖𝑓 𝑡𝑤𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑖𝑡𝑜𝑛 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑡𝑕𝑒𝑛 

𝑋 ~𝑌 ~𝑁  𝜇1 − 𝜇2,
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
  

𝑎𝑛𝑑 𝑡𝑕𝑢𝑠  

𝑍 =
 𝑋 − 𝑌   𝜇1 − 𝜇2 

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

~𝑁 0,1  

Here the problem reduces to one sample problem and tests are carried out as explained in NP 

and LRT sections.  

A.             𝜎1, 𝜎2 known  

1.                  To test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 >  𝜇2 

Calculate                 𝑍 =
 𝑋 − 𝑌  

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

,     as under           H0: 𝜇1 =  𝜇2 



and reject  H0 if              z =  zα . 

2.            To test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 <  𝜇2 

reject  H0 if             𝑍 =
 𝑋 − 𝑌  

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

, < −zα  

3. To test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 ≠  𝜇2 

reject  H0 if                       𝑍 =
 

  𝑋 − 𝑌  

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

 

 
, > zα/2 

or reject H0 if                   z < -
zα

2
               or                 z <  zα/2.  

However if population variances 𝜎1
2 𝑎𝑛𝑑 𝜎2

2  are not known but 𝑛1 𝑎𝑛𝑑 𝑛2  are large 

(>30), then we calculate sample variances.  

𝑆1
2 =

1

 𝑛1 − 1 
  𝑋𝑖 − 𝑋  2

𝑛1

𝑖=1

 

𝑆2
2 =

1

 𝑛2 − 1 
  𝑌𝑖 − 𝑌  2

𝑛1

𝑖=1

 

𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑠1 𝑎𝑛𝑑 𝜎1 𝑎𝑛𝑑 𝑠2 𝑎𝑠 𝜎2. 

Example 3: A simple random sample of heights of 6400 Englishmen has mean 67.85 inches and 

standard deviation (s.d.) inches, while a simple random sample of heights of 1600 Australian has 



mean 68.55 inches and s.d. 2.52. Do the data suggest that Australian are on the average, taller 

than Englishmen? 

Solution:  Let Englishmen have 𝑁 𝜇1, 𝜎1
2  distribution.  

            Australian have 𝑁 𝜇2, 𝜎2
2  distribution. 

Then we have to test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 <  𝜇2 

It is given that     n1 = 6400,  𝑥  = 67.85,   𝑠1 ≅ 𝜎1 = 2.56 

                         n2 = 1600,   𝑦  = 68.55,   𝑠2 ≅ 𝜎2 = 2.52 

𝑍 =
 𝑋 − 𝑌  

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

=
67.85 − 68.55

  2.56 2

6400 +
 2.52 2

1600

=
−0.70

0.07066
= −9.50 

𝑎𝑡 𝛼 = .05,            𝑧𝛼 = 1.645, 

Reject Ho as z< - 𝑧𝛼and conclude the data do suggest that Australians are taller than Englishmen. 

B. If 𝜎1, 𝜎2are unknown but equal.  

That is  𝜎1, = 𝜎2 = 𝜎 (unknown)  

𝑡𝑕𝑒𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑠    𝑆2 =
 𝑛1−1 𝑆1

2+ 𝑛2−1 𝑆2
2

 𝑛1+𝑛2−2 
  

It can be seen that 

𝑉 =
 𝑛1 + 𝑛2 − 2 𝑆2

𝜎2
=

 𝑛1 − 1 𝑆1
2

𝜎2
=

 𝑛2 − 1 𝑆2
2

𝜎2
 

=
  𝑋𝑖 − 𝑋  2𝑛1

𝑖=1

𝜎2
+

  𝑌𝑖 − 𝑌  2𝑛1
𝑖=1

𝜎2
 

is distributed as 𝜒2with  𝑛1 + 𝑛2 − 2  df and is independent of Z.  

Therefore, 



𝑡 =
𝑍

 
𝑉

𝑛1 + 𝑛2 − 2

=

 𝑋 − 𝑌  −  𝜇1 − 𝜇2 

𝜎 
1
𝑛1

+
1
𝑛2

 
 𝑛1 + 𝑛2 − 2 𝑆2

 𝑛1 + 𝑛2 − 2 𝜎2

 

=
 𝑋 − 𝑌  −  𝜇1 − 𝜇2 

𝑆 
1
𝑛1

+
1
𝑛2

~𝑡𝑛1+𝑛2−2 

Thus, when 𝜎1, = 𝜎2 = 𝜎 (unknown), we use t statistic rather than Z statistic to test hypothesis. 

1. To test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 >  𝜇2 

we Calculate t =
 𝑋 − 𝑌  

 
1
𝑛1

+
1
𝑛2

,  

and reject  H0 if t

> 𝑡𝑛1+𝑛2−2, 𝛼 𝑤𝑕𝑒𝑟𝑒 𝑡𝑛1+𝑛2−2, 𝛼 𝑖𝑠 𝑡𝑕𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚   𝑡

− 𝑡𝑎𝑏𝑙𝑒 𝑎𝑡 𝑛1 + 𝑛2 − 2 𝑑𝑓 𝑎𝑛𝑑 𝛼 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒  

 
2. To test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 <  𝜇2 



reject  H0 if 𝑡𝑛1+𝑛2−2, 𝛼  𝑎𝑛𝑑 

3. To test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 ≠  𝜇2 

reject  H0 if 𝑡𝑛1+𝑛2−2,
𝛼

2
   𝑖. 𝑒. 𝑡 < −𝑡𝑛1+𝑛2−2,

𝛼

2
   𝑜𝑟  𝑡 > 𝑡𝑛1+𝑛2−2,

𝛼

2
  

where           t =
 𝑋 − 𝑌  

𝑠 
1
𝑛1

+
1
𝑛2

               𝑖𝑠 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑏𝑜𝑣𝑒. 

Example 4:  Samples of two of electric light bulbs were tested for length of life (in hours) and 

following data were obtained  

 Type-I Type-II 

Sample size n1=8 n2=7 

Sample means 𝑥 = 1234 𝑕𝑟𝑠 𝑥 = 1036 𝑕𝑟𝑠 

Sample s.d. s1=36 s2=40 

Where    𝑆1
2 =

1

𝑛1
   𝑥𝑖 − 𝑥  2𝑛1

𝑖=1           and             𝑆2
2 =

1

𝑛1
   𝑦𝑖 − 𝑦  2𝑛1

𝑖=1 . 

Test whether the difference in the means suggest that Type I is superior to Type II with 

regard to the length of life, assuming that population variance of two samples are same. 

Solution:  Here it is assumed the Type I sample of size n1 is coming  𝑁 𝜇1, 𝜎1
2  from and Type II 

of size n2 is coming from 𝑁 𝜇2, 𝜎2
2  and 𝜎1, = 𝜎2 = 𝜎 (unknown).  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑠2 =
1

𝑛1 + 𝑛2 − 2
   𝑥𝑖 − 𝑥  2

𝑛1

𝑖=1

+   𝑦𝑖 − 𝑦  2

𝑛1

𝑖=1

  

=
1

𝑛1 + 𝑛2 − 2
 𝑛1𝑠1

2 + 𝑛2𝑠2
2  

=
1

8 + 7 − 2
 8 × 362 + 7 × 402 =

1

13
 10368 + 11200 = 1659.08 



Then 

t =
 𝑋 − 𝑌  

𝑠 
1
𝑛1

+
1
𝑛2

=
1234 − 1036

 1659.08  
1
8 +

1
7 

= 9.39. 

Now to test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 ≠  𝜇2 

reject  H0 if                t >  𝑡𝑛1+𝑛2−2,𝛼  

where 𝑡𝑛1+𝑛2−2,𝛼 = 1.77 at 13 df and 𝛼 = .05 from the t- table. 

Since calculated t > tabulated t, we reject H0 and conclude that the data suggest that the Type I 

bulbs are superior to Type II bulbs.  

Example 5:  Two horses A and B were tested according to time (in seconds) to run in a 

particular track with the following results: 

Horse A:   28 30 32 33 33 29 34 

Horse B:   29 30 30 24 27 29 

Test whether the two horses have the same running capacity. 

Solution:  It is assumed that the time taken by 

Horse A has 𝑁 𝜇1, 𝜎1
2   distribution 

Horse B has 𝑁 𝜇2, 𝜎2
2  distribution 

with 𝜎1, = 𝜎2 = 𝜎 (unknown)  

Under this assumption, we have to test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 ≠  𝜇2 

Here n1 = 7 , n2 = 6 



𝑥 =
28 + 30 + 32 + 33 + 29 + 34

7
=

219

7
= 31.2857 

𝑦 =
29 + 30 + 30 + 24 + 27 + 29

6
=

169

6
= 28.1667 

  𝑥𝑖 − 𝑥  2

𝑛1

𝑖=1

=  𝑥𝑖
2 − 𝑛1𝑥 

2 = 6883 − 6851.5714 = 31.4285

𝑛1

𝑖=1

 

  𝑦𝑖 − 𝑦  2

𝑛1

𝑖=1

=  𝑦𝑖
2 − 𝑛1𝑦 

2 = 4787 − 4760.1667 = 26.8333

𝑛1

𝑖=1

 

𝑠2 =
1

𝑛1 + 𝑛2 − 2
   𝑥𝑖 − 𝑥  2

𝑛1

𝑖=1

+   𝑦𝑖 − 𝑦  2

𝑛1

𝑖=1

  

=
1

11
 31.4285 + 26.8333 =

58.2618

11
= 5.2965 

t =
 𝑋 − 𝑌  

𝑠 
1
𝑛1

+
1
𝑛2

=
31.2857 − 28.1667

 5.2965  
1
7 +

1
6 

 

=
3.119

 1.6392
=

3.119

1.2803
= 2.4361. 

Tabulated value of t at (7+6-2) =11 df and 
𝛼

2
 = 0.025 is 2.20 

Since calculated t > tabulated t, we reject H0 and calculated that two horses have not the same 

running capacity. 

C. If 𝜎1 ≠ 𝜎2 (unknown) then to test sample mean is said to be Fisher Behren’s problem. This 

has been resolved as:  

As explained earlier 

𝑋 ~𝑌 ~𝑁  𝜇1 − 𝜇2,
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
  



𝑈 =
 𝑋 − 𝑌   𝜇1 − 𝜇2 

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

~𝑁 0,1                        (𝑖) 

Let V be a random variable having 𝜒𝑘
2  distribution, then  

E(v) = k 

Var (v) = 2k 

Suppose 

𝐶𝑉 =   
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
                              ……….        (𝑖𝑖) 

𝑁𝑜𝑤 𝑡𝑕𝑎𝑡 

 𝑛1 − 1 𝑆1
2

𝜎1
2 =

  𝑋𝑖 − 𝑋  2𝑛1
𝑖=1

𝜎1
2 ~𝜒𝑛1−1

2  

Therefore, 

𝐸  
 𝑛1 − 1 𝑆1

2

𝜎1
2  𝑛1 − 1             𝑜𝑟                    𝐸 𝑆1

2 = 𝜎1
2  

𝑎𝑛𝑑 

𝑉  
 𝑛1 − 1 𝑆1

2

𝜎1
2  =

 𝑛1 − 1 

𝜎1
4 𝑉 𝑆1

2 = 2 𝑛1 − 1  

Or 

𝑉𝑎𝑟 𝑆1
2 =

2𝜎1
4

 𝑛1 − 1 
                𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,      𝐸 𝑆2

2 = 𝜎2
2   

𝑎𝑛𝑑                    𝑉𝑎𝑟  𝑆2
2 =

2𝜎2
4

 𝑛2 − 1 
 

Thus 

𝐸 𝐶𝑉 = 𝐶𝑘 =  
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
  



𝑉𝑎𝑟  𝐶𝑉 =  2𝐶2𝑘 =
2𝜎1

4

𝑛1
2 𝑛1 − 1 

+
2𝜎2

4

𝑛2
2 𝑛2 − 1 

 

2𝐶𝐶𝐾 = 2  
𝜎1

4

𝑛1
2 𝑛1 − 1 

+
𝜎2

4

𝑛2
2 𝑛2 − 1 

  

𝐶 =

𝜎1
4

𝑛1
2 𝑛1 − 1 

+
𝜎2

4

𝑛2
2 𝑛2 − 1 

𝜎1
2

𝑛1
+

𝜎2
2

𝑛2

 

𝑘 =
 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
 

2

𝜎1
4

𝑛1
2 𝑛1 − 1 

+
𝜎2

4

𝑛2
2 𝑛2 − 1 

 

=

𝜎1
4

𝑛2
2  

𝜎1
2

𝑛1

𝑛2

𝜎2
2 + 1 

2

𝜎2
4

𝑛1
2  

𝜎1
4

𝑛1
2

𝑛2
2

𝜎2
4

1
𝑛1 − 1 +

1
𝑛2 − 1 

 

=  
 1 + 𝑅 2

𝑅2

𝑛1 − 1 +
1

𝑛2 − 1

           𝑤𝑕𝑒𝑟𝑒              𝑅 =  
𝜎1

2/𝑛1

𝜎2
2/𝑛2

 

𝑜𝑟                
1

𝑘
=  

𝑅

1 + 𝑅
 

2 1

𝑛1 − 1
+  

1

1 + 𝑅
 

2 1

𝑛2 − 1
 

Therefore, 

𝑈

 𝑉
𝑘

=

 𝑋 − 𝑌   𝜇1 − 𝜇2 

 
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2

  
𝑆1

2

𝑛1
+

𝑆2
2

𝑛2
 

𝑐𝑘

~𝑡𝑘  



𝑜𝑟               𝑇 =
 𝑋 − 𝑌  −  𝜇1 − 𝜇2 

 
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

~𝑡𝑘′  

Where k is given in (iii) with 𝜎1𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑏𝑦 𝑠1 𝑎𝑛𝑑 𝜎2 𝑏𝑦 𝑠2. Now to test 

1.                   H0: 𝜇1 =  𝜇2 

                           H1: 𝜇1 >  𝜇2 

 Calculate t =
 𝑋 − 𝑌  

 
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

,  

and reject  H0 if t > 𝑡𝑘′ 𝛼 

2.                   H0: 𝜇1 =  𝜇2 

                         H1: 𝜇1 <  𝜇2 

reject  H0         if              𝑡 <  𝑡𝑘 , 𝛼   

3.                 H0: 𝜇1 =  𝜇2 

                   H1: 𝜇1 ≠ 𝜇2 

                   reject  H0 if              𝑡𝑘 ,
𝛼

2
 

as explained in 2.2 B. 

Example 6:  For the data given in Example 4 test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 ≠  𝜇2 

If it is given that 𝜎1 = 𝜎2 (unknown). 

Solution:  It is given that 

𝑛1 = 8, 𝑛2 = 7, 𝑥 = 1234, 𝑦 = 1036, 𝑠1 = 362 𝑎𝑛𝑑 𝑠2 = 40, 



Where 𝑆1
2 =

1

𝑛1
   𝑥𝑖 − 𝑥  2𝑛1

𝑖=1   and  𝑆2
2 =

1

𝑛1
   𝑦𝑖 − 𝑦  2𝑛1

𝑖=1 . 

𝑛1𝑠1
2 =

1

𝑛1
   𝑥𝑖 − 𝑥  2

𝑛1

𝑖=1

   

∴ 𝑠1
∗2 =

𝑛1

𝑛1 − 1
𝑠1

2 =
8

7
×  36 2 = 1481.143 

𝑜𝑟 
𝑠1

∗2

𝑛1
=

𝑠1
2

𝑛1 − 1
= 185.1429 

𝑠2
∗2

𝑛1
=

𝑠2
2

𝑛1 − 1
= 266.6667 

t =
 𝑋 − 𝑌  

 
𝑠1

∗2

𝑛1
+

𝑠2
∗2

𝑛2

=
1234 − 1036

 185.1429 + 266.6667
=

198

21.2558
= 9.3150 

𝑅 =  
𝑠1

2/𝑛1

𝑠2
2/𝑛2

= 0.693 

𝑜𝑟
1

𝑘
=  

𝑅

1 + 𝑅
 

2 1

𝑛1 − 1
+  

1

1 + 𝑅
 

2 1

𝑛2 − 1
 

𝑘 = 12.18 ≅ 12 

𝑡12,   0.025  = 2.179                        𝑎𝑡    𝛼 = 0.05. 

Since calculated t > tabulated t, we therefore reject H0 and conclude that life lengths of two types 

of electric bulbs are not same.  

D.       When the two normal samples are not independent, rather they are paired with n1 = n2 = n. 

In this case we consider difference of two variates as 

𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖   

𝑑 = 𝑥 − 𝑦  



𝑠2 =
1

𝑛 − 1
=   𝑑𝑖 − 𝑑  

2
𝑛

𝑖=1

 

Then under 𝐻0: 𝜇1 = 𝑢2 it can be seen that 

 𝑛𝑑

𝑆
~𝑡𝑛−1 

Example 7:  In a certain experiment to compare two types of animal food A and B, the 

following results of increase in weights were observed in animals:  

Animal Number 1 2 3 4 5 6 7 8 Total 

Increase 

of wt. 

in lb 

Food 

A 

49 53 51 52 47 50 52 53 407 

Food 

B 

52 55 52 53 50 54 54 53 423 

i) Assuming that the two samples are independent can we conclude that food B is better 

than food A (Here you may assume that 𝜎1 = 𝜎2 = 𝜎 (unknown))  

ii) Also examine the case when same set of animals were used in both the cases. 

Solution: 

(i) Suppose food A has 𝑁  𝜇1, 𝜎1
2  distribution 

 B has 𝑁  𝜇2, 𝜎2
2 distribution 

We have to test 

 H0: 𝜇1 =  𝜇2 

H1: 𝜇1 <  𝜇2 

if 𝜎1 = 𝜎2 = 𝜎 (unknown) 

Now 

𝑥 =
407

8
= 50.875,   𝑦 =

423

8
= 52.875 



  𝑥𝑖 − 𝑥  2

𝑛1

𝑖=1

=  𝑥1
2 − 𝑛1𝑥 

2 = 20737 − 20706.125 = 30.875

𝑛1

𝑖=1

 

  𝑦𝑗 − 𝑦  
2

𝑛2

𝑖=1

= 22383 − 22366.125 = 16.875 

𝑠2 =
  𝑥𝑖 − 𝑥  2𝑛1

𝑖=1 +   𝑦𝑗 − 𝑦  
2𝑛2

𝑖=1

𝑛1 + 𝑛2 − 2
=

𝑛1𝑠1
2 + 𝑛2𝑠2

2

𝑛1 + 𝑛2 − 2
= 3.41 

𝑡 =
𝑥 − 𝑦 

 𝑠2  
1
𝑛1

+
1
𝑛2

 

= −
2

0.9223
= −2.17 

𝑡14,0.05 = 1.761. 

Since calculated t < tabulated (𝑡14,0.05) we reject H0 and conclude that food B is superior to A.  

(i) Here di=-3,-2, -1, -1, -3, -4, -2, 0,  𝑑𝑖 = −16, 𝑑 = −2  

  𝑑𝑖 − 𝑑  
2

=  𝑑𝑖
2 − 8𝑑 = 44 − 32 = 12 

𝑠2 =
1

𝑛1 − 1
  𝑑𝑖 − 𝑑  

2
=

12

7
= 1.7142 

 
𝑠2

𝑛
=  

1.7142

8
= 0.4629 

𝑡 =
𝑑 

𝑠/ 𝑛
= −

2

0.4629
= −4.32 

𝑡7,0.05 = 1.895 

Since -4.32< -1.895, we reject H0 and conclude that food B is better than food A.  

10.5  Problems and Exercises 

1.  Ten individuals are chosen at random from a normal population and their heights are 

found to be 63, 63, 66, 68, 69, 70, 70, 71, 71 inches. Test if the sample belongs to the population 

whose mean height is 66 inches. (Given t0.05 = 2.62 for 9 df). 



2.  A random sample of 8 envelopes is taken from letter box of a post office and weights in 

grams are found to be 12.1, 11.9, 12.4, 12.3, 11.9, 12.1, 12.4, and 12.1. 

Does this sample indicate at 1% level that the average weight of envelopes received at the 

post office is 12.35 gms? 

3.  Two independent groups of 10 children were tested to find how many digits they could 

repeat from memory after hearing them. The results are as follows: 

Group A 8 6 5 7 6 8 7 4 5 6 

Group B 10 6 7 8 6 9 7 6 7 7 

 Is the different between the mean scores of the two groups significant? 

4.  Eleven school boys were given a test in Statistics. They were given in month‟s tuition and 

second test was held at the end of it. Do the marks give evidence that the students have benefited 

by the extra coaching?  

Boys 1 2 3 4 5 6 7 8 9 10 11 

Marks in 

1
st
 test 

23 20 19 21 18 20 18 17 23 16 19 

Marks in 

2
nd

  test 

24 19 22 18 20 22 20 20 23 20 18 

5.  Let Xi, i= 1,2,……,m be a random sample from normal 𝑁 𝜇1, 𝜎1
2 distribution and 

𝑌𝑗 , 𝑗 = 1,2, … . . , 𝑛 be another random sample from normal 𝑁 𝜇1, 𝜎2
2  distribution. Using LRT 

method, obtain best critical region for testing.  

𝐻0: 𝜇1 = 𝜇2 

𝐻0: 𝜇1 ≠ 𝜇2 

When (i) 𝜎1, 𝜎2  known and (ii) 𝜎1 = 𝜎2 = 𝜎  (unknown).  

Hint:  The likelihood function 

𝐿 𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2 =   
1

2𝜋
 

𝑚
2 1

𝜎1
𝑚 𝑒 

−
1

2𝜎1
2   𝑥𝑖−𝜇1 2𝑚

𝑖=1
  



×   
1

2𝜋
 
𝑛/2 1

𝜎1
𝑛 𝑒 

−
1

2𝜎2
2   𝑦𝑗−𝜇2 

2𝑛
𝑖=1

  

=  
1

2𝜋
 

𝑚+2
2 1

𝜎1
𝑚𝜎1

𝑛 𝑒 
−

1

2𝜎1
2   𝑥𝑖−𝜇1 2−

1

2𝜎2
2   𝑦𝑗−𝜇2 

2𝑛
𝑖=1

𝑚
𝑖=1

 

Here  

𝛩 =  𝜇1 = 𝜇2 = 𝜇, 𝜎1 > 0, 𝜎2 > 0  

𝛩 =   𝜇1, 𝜇2 : −∞ < 𝜇1, 𝜇2 < ∞, 𝜎1 > 0, 𝜎2 > 0  

Under 𝛩0, 

𝜇 =
𝑚𝑥 + 𝑛𝑦 

𝑚 + 𝑛
 

and under 𝛩 

𝜇 1 = 𝑥 ,     𝜇 2 = 𝑦  

𝜆 𝑥 =

𝑆𝑢𝑝 𝐿
𝛩0

𝑆𝑢𝑝 𝐿
𝛩

=
𝑒

−
1

2𝜎1
2   𝑥𝑖−𝜇  2−

1

2𝜎2
2   𝑦𝑗−𝜇  

2𝑛
𝑗=1

𝑚
𝑖=1

𝑒
−

1

2𝜎1
2   𝑥𝑖−𝑥  2−

1

2𝜎2
2   𝑦𝑗−𝑦  

2𝑛
𝑗=1

𝑚
𝑖=1

 

Now 

  𝑥𝑖 − 𝜇  2 =   𝑥𝑖 − 𝑥  2 + 𝑚 𝑥 − 𝜇  2

𝑚

𝑗 =1

𝑚

𝑖=1

 

=   𝑥𝑖 − 𝑥  2 + 𝑚  
𝑚

𝑚 + 𝑛
 

2

 𝑥 − 𝑦  2 

𝑚

𝑖=1

 

and  

  𝑦𝑖 − 𝜇  2

𝑛

𝑗 =1

=   𝑦𝑖 − 𝑦  2 + 𝑛  
𝑚

𝑚 + 𝑛
 

2

 𝑥 − 𝑦  2 

𝑛

𝑗 =1

 

∴ 𝜆 𝑥 = 𝑒
−

1

2𝜎1
2𝑚 

𝑚
𝑚+𝑛

 
2
 𝑥 −𝑦  2−

1

2𝜎2
2  𝑛  

𝑚
𝑚+𝑛

 
2
 𝑥 −𝑦  2

 



Reject H0 if  

𝜆(𝑥) ≤ 𝝀 

𝑜𝑟  𝑥 − 𝑦  2 ≥ 𝜆1  

 
𝑥 − 𝑦 

𝜎1
2

𝑚 +
𝜎2

2

𝑛

 

2

≥ 𝜆2,   
𝑥 − 𝑦 

 𝜎1
2

𝑚 +
𝜎2

2

𝑛

  ≥ 𝜆3 

𝑆𝑖𝑛𝑐𝑒 𝑋 − 𝑌 ~𝑁  𝜇1 − 𝜇2,
𝜎1

2

𝑚
+

𝜎2
2

𝑛
   

𝑎𝑛𝑑 𝑍 =
𝑋 − 𝑌 

 𝜎1
2

𝑚 +
𝜎2

2

𝑛

~𝑁 0,1 , 𝑢𝑛𝑑𝑒𝑟 𝐻0, 

Therefore reject H0 if       |z| >𝑧𝛼/2  

For case (ii) when 𝜎1 = 𝜎2 = 𝜎 (unknown) we have 

𝛩0 =   𝜇1, 𝜇2, 𝜎1, 𝜎2 : 𝜇1 = 𝜇2 = 𝜇, 𝜎1 = 𝜎2 = 𝜎 > 0  

𝛩 =   𝜇1, 𝜇2, 𝜎1, 𝜎2 : −∞ < 𝜇1, 𝜇2 < ∞, 𝜎1 = 𝜎2 = 𝜎 > 0  

Under 𝛩0, 

𝜇 =
𝑚𝑥 + 𝑛𝑦 

𝑚 + 𝑛
 

𝜎 2 =
1

 𝑚 + 𝑛 
   𝑥𝑖 − 𝜇  2 +   𝑦𝑖 − 𝜇  2

𝑚

𝑖=1

𝑚

𝑖=1

  

and under 𝛩0 

𝜇 1 = 𝑥 ,     𝜇 2 = 𝑦  

𝜎 ∗2
=

1

 𝑚 + 𝑛 
   𝑥𝑖 − 𝑥  2 +   𝑦𝑖 − 𝑦  2

𝑚

𝑗 =1

𝑚

𝑖=1

 =
 𝑚 + 𝑛 − 2 𝑆2

𝑚 + 𝑛
 



𝑤𝑕𝑒𝑟𝑒  𝑚 + 𝑛 − 2 𝑆2 =   𝑥𝑖 − 𝑥  2 +   𝑦𝑖 − 𝑦  2

𝑚

𝑗 =1

𝑚

𝑖=1

 

∴ 𝝀 𝒙 =  
𝜎 ∗2

𝜎 2
 

𝒎+𝒏
𝟐

 

𝜎 2 =
1

𝑚 + 𝑛
   𝑥𝑖 − 𝑥  2 +   𝑦𝑖 − 𝑦  2

𝑚

𝑗 =1

𝑚

𝑖=1

+ 𝑚  
𝑛

𝑚 + 𝑛
 

2

 𝑥 − 𝑦  2 + 𝑛  
𝑚

𝑚 + 𝑛
 

2

 𝑥 − 𝑦  2  

= 𝜎 ∗2
+  𝑥 − 𝑦  2

𝑚𝑛

 𝑚 + 𝑛 2
(𝑛 + 𝑚) 

= 𝜎 ∗2
+  𝑥 − 𝑦  2  

1

1
𝑚 +

1
𝑛

 
1

 𝑚 + 𝑛 
 

and 

𝜎 2

𝜎 ∗2 = 1 +

 

 
𝑥 − 𝑦 

𝜎 ∗  
1
𝑚

+
1
𝑛
  

 

2

1

(𝑚 + 𝑛)
 

Reject H0 if 

𝜆(𝑥) ≤ 𝝀 

𝑜𝑟  
1

1 +
𝜎 2

𝜎 ∗2

 

𝑚+𝑛
2

≤ 𝝀 

 
𝜎 2

𝜎 ∗2 ≥ 𝜆1 

 
𝑥 − 𝑦 

𝑠  
1
𝑚 +

1
𝑛 

 

2

≥ 𝜆2 



  
𝑥 − 𝑦 

𝑠  
1
𝑚 +

1
𝑛 

  ≥ 𝜆3 

Where 𝜆3 = 𝑡𝑚+𝑛−2,
𝛼

2
    the table value of t at df (m+n-2) for 𝛼/2   

That is reject H0 if  

  
𝑥 − 𝑦 

𝑠  
1
𝑚

+
1
𝑛
 

  ≥ 𝑡𝑚+𝑛−2,
𝛼

2
. 

6.  For Problem 5 above, use LRT method to obtain best critical region for testing  

 𝑎  𝐻0: 𝜇1 = 𝜇2 

            𝐻1: 𝜇1 > 𝜇2 

 𝑏  𝐻0: 𝜇1 = 𝜇2 

            𝐻1: 𝜇1 < 𝜇2 

When (i) 𝜎1, 𝜎2 known and (ii) 𝜎1 = 𝜎2 = 𝜎 (unknown). 

10.6  Summary 

This  unit is exclusively the application on Neyman-Pearson lemma and likelihood ration 

criterion for the construction of tests in one-sample and two-sample problems. In on-sample 

problem, we have a single normal population from which the sample has come out and we wish 

to test for the mean of the population against one or two sided alternatives. The discussion has 

been done separately for the situations when the population variance is known or unknown. In 

two-sample problems, we have two normal populations from which the samples have come out. 

Here again we consider the problem of testing the equality of means against both one and two 

sided alternatives under various assumptions on population variance. 
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 Goon A.N., Gupta M.K. & Das Gupta B (2000) Fundamentals of Statistics Vol. I The 

World Press Pvt. Ltd., Kolkata. 

 Hogg, R.V. and Craig, A. (2005). Introduction to Mathematical Statistics 6
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 edition, 

Prentice Hall.  

 Mood, A.M. Graybill, F.A., Boes, D.C. (1974). Introduction to the Theory of Statistics, 

McGraw Hill.  

 Mohr, L.B. (1994), Understnading Significance Testing, Sage Publications, USA. 

 Lehmann, E.L. (1986). Testing statistical hypothesis. Springer-Verlag, New York, Inc. 
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11.2   Objectives 
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11.4   C.I. for sample mean fro a normal population 
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11.7   Summary 

11.8   Further Readings 

11.1  Introduction 

Estimation of an unknown parameter or unknown parametric function by a single value 

calculated on the basis of a random sample of size n drawn from the parent population is referred 

to as point estimation. A single estimator, however good it may be is not expected to coincide 

with the true value of parameter and the distribution of errors is determined by the sampling 

distribution of the estimator. It is, therefore, desirable to give for any population parameter an 

interval in which the population parameter may be expected to lie, with a specific degree of 

confidence. The procedure of providing an interval within which the true value of parameter may 

be expected to lie with some degree of confidence in terms of probability, is called the interval 

estimation and the intervals for the parameters are called confidence intervals. The degree of 

confidence in terms of probability is known as confidence coefficient. For example, an electronic 

charge may be estimated to be (4.770 ± 0.005) 10
-10

 electronic unit with the idea that the first 

factor is very unlikely to be outside the range (4.765 to 4.775). A cost accountant for a 

publishing company in trying to allow for all factors which enter into cost of production of a 

certain book may estimate the cost to be Rs. 83±40 paise per book with the implication that the 

correct cost very probably lies between (82.60, 83.40) per book. The Central Statistics 

Organization may estimate the number of unemployed in a certain area to be (12.4±0.5) millions 

at a given time, feeling sure that the actual number is between (11.9±12.9) million. This 

indicates in the form intervals.   

Let 𝜃 be the parameter and T be a statistic based on a random sample of size n from the 

corresponding population. Let T be sufficient for 𝜃. In many cases it may be possible to find a 

function say ψ(T, 𝜃) whose distribution is independent of 𝜃.  

The statement 

𝜓
1−

𝛼
2

≤ 𝜓 𝑇, 𝜃 ≤ 𝜓𝛼
2

 



can often be written in an equivalent form as, say  

𝜃1 𝑇 ≤ 𝜃 ≤ 𝜃2  (𝑇) 

⇒ 𝑃 𝜃1 𝑇 ≤ 𝜃 ≤ 𝜃2  (𝑇) = 𝑃  𝜓
1−

𝛼
2

≤ 𝜓 𝑇, 𝜃 ≤ 𝜓𝛼
2
 = 1 − 𝛼 

Whatever the true value of 𝜃 may be 𝜃1 𝑇 𝑎𝑛𝑑 𝜃2  (𝑇) will then be called confidence 

limits to 𝜃 with confidence coefficient 1- 𝛼.  

11.2  Objectives 

This unit will enable you to understand the: 

 Problem of interval estimation 

 Some applications of interval estimation 

 Concept of shortest confidence interval 

11.3  Confidence Interval and Confidence Coefficient 

Let T1 and T2 be two  statistics based on the random sample of size n and let T1 < T2 such 

that  

𝑃 𝑇1 > 𝜓 𝜃  = 𝛼1 

𝑃 𝑇2 > 𝜓 𝜃  = 𝛼2 

Where  

0 < 𝛼𝑖 < 1𝛼1 + 𝛼1 𝑎𝑛𝑑 0 < 𝛼 < 1 

Where 𝛼1 and 𝛼2 are independent of 𝜃. We may have the result that  

𝑃 𝑇1 ≤ 𝜓 𝜃 ≤ 𝑇2 = 1 − 𝛼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃𝜀𝛺. 

This probability statement does not mean 𝜓 𝜃  is a random variable and, in fact, it is 

constant. This statement implies that the probability is (1 − 𝛼) that the random interval [T1,T2] 

will cover, whatever the true value of 𝜃 may be. Let us take 𝛼 to be. 05 so that 1 − 𝛼 = 0.95. Let 

T1 and T2 takes the value T1(x) = t1 and T2(x) = t2 for a specific sample 𝑥. Then in about 95% of 

the cases the interval [t1, t2] will include 𝜓 𝜃 and it will fail to do so in about 5% of the cases 

only. Hence higher the probability (1 − 𝛼), the more confidence one has, for a given set of 

observation that the interval [t1, t2] will actually cover the true value of 𝜓 𝜃 .  



Corresponding to the given set of observation x, the interval (t1,t2) is called a confidence 

interval for 𝜓 𝜃 , t1 is called the lower and t2, the upper confidence limit to 𝜓 𝜃 . The number 

( 1 − 𝛼 ) which may be attached to the confidence limit to 𝜓 𝜃  is not to be regarded as 

probability. It serves as a measure of the confidence with which one may asserts that 𝜓 𝜃  lies 

between t1 and t2. Hence ( 1 − 𝛼 ) is called the confidence coefficient associated with the 

confidence interval [t1,t2]. 

Example: Suppose that a random sample (2.2, 4.4, 1.6, 5.6) of four observations is drawn 

form a normal population with an unknown mean 𝜇 and a known standard deviation 3. The 

maximum-likelihood estimate of 𝜇 is the mean of the sample observations: x = 3.7. 

In general for samples of size 4 from the given distribution the quantity. 

𝑧 =
𝑥 − 𝜇

3/2
 

will be normally distributed with mean zero and unit variance, 𝑥 is the sample mean and 3/2 is 
𝜎

 𝑛
 . Thus quantity z has a density  

𝑓𝑧 𝑧 = ∅ 𝑧 =
1

 2𝜋
𝑒−

1
2
𝑧2

 

which is independent of the true value of unknown parameter. We can compute the probability 

that z will be between any two arbitrarily chosen  numbers. 

𝑃 −1.96 < 𝑧 < 1.96 =  ∅ 𝑧 𝑑𝑧 = 0.95

1.96

1.96

 

In this relation the inequality 

−1.96 < 𝑧  𝑜𝑟 − 1.96 <
𝑥 − 𝜇

3/2
  

is equivalent to the inequality 

𝜇 < 𝑥 +
3

2
 1.96 = 𝑥 + 2.94 

and the inequality z < 1.96 is equivalent to 𝜇 >  𝑥 − 2.94 and this is equivalent to  

𝑃 𝑥 − 2.94 < 𝜇 < 𝑥 + 2.94 = 0.95 



and subtracting 3.7 for 𝑥   we obtain the interval (0.76, 6.64). It is observed that the random 

interval (𝑥 − 2.94, 𝑥 + 2.94) and the interval (+0.76, 6.64) are each called a confidence interval 

or more precisely a 95 percent confidence interval. The interval (+0.76, 6.64) is the value of the 

random interval (𝑥 − 2.94, 𝑥 + 2.94) when 𝑥 =3.7 

Remark:   The interpretation runs as follows. The probability that the random interval 

(𝑥 − 2.94, 𝑥 + 2.94) covers the unknown true mean 𝜇 is 0.95. That is, if samples of size 4 were 

repeatedly drawn from the normal population and if the random interval (𝑥 − 2.94, 𝑥 + 2.94) 

were computed for each sample, then the relative frequency of those intervals that contain the 

true unknown mean 𝜇 would approach 95 percent. We therefore have considerable confidence 

that the observed interval, here (+0.76, 6.64) covers the true mean. The measure of out 

confidence is 0.95 because before the sample was drawn 0.95 was the probability that the 

interval that we construct would cover the true mean 0.95 is called the confidence coefficient.  

Intervals with any desired degree of confidence between 0 and 1 can be obtained. 

P[-2.58 < z < 2.58] = 0.99 

a 99 percent confidence interval for the true mean is obtained by converting the inequalities as 

before to get 

𝑝 𝑥 − 3.87 < 𝜇 < 𝑥 + 3.87 = 0.99 

and substituting 3.7 for  𝑥  to get the interval (-0.17, 7.50). It is to be observed that there in fact, 

many possible intervals with the same probability (with the same confidence coefficient)   

P[-1.68 < z < 2.7] = 0.95 

another 95 percent confidence interval for 𝜇 is given by the interval (-.35, 6.22). This interval is 

inferior to the one obtained before, because its length 6.57 is greater than the length 5.88 of the 

interval (+0.76, 6.64) it gives less precise information about the location of 𝜇. Any two numbers 

a and b such that 95 percent of the area under ∅(z) lies between a and b will determine a 95 

percent confidence interval.  

Definition of Confidence Interval 

Let us suppose that we have a random sample x1, x2,…..xn from a density f(x;𝜃) 

characterized by 𝜃. Let T1 = t1 (x1,x2,…xn) and T2 = t2 (x1, x2,…….,xn) be two statistic satisfying 

T1 < T2 for which  

𝑃 𝑇1 < 𝜓 𝜃 < 𝑇2 = 1 − 𝛼 



Where (1 − 𝛼) does not depend on ; thus the random interval (T1, T2) is called a (1 −

𝛼)% confidence interval for 𝜓 𝜃 , (1 − 𝛼) is called confidence coefficient and T1 and T2 are 

called lower and upper confidence limits respectively for 𝜓 𝜃 . A value (t1,t2) of the random 

interval (t1,t2) is also  called (1 − 𝛼)% confidence interval for 𝜓 𝜃 . We can observed that one or 

the other but not of the two statistics t1 (x1,……xn) and t2 (x1,…..xn) may be constant; that is one 

of two end points of the random interval (t1,t2) may be constant.  

Let T1 = t1 (x1, x2,…..xn) be a statistic for which p[T1< 𝜓 𝜃 ] = 1 − 𝛼, then t1 is called a 

one sided lower confidence limit for 𝜓 𝜃 . Similarly, let T2 =t2 (x1,….,xn) be a statistic for which 

p[𝜓 𝜃 <T2] = 1 − 𝛼, then T2 is called one sided upper confidence limits for 𝜓 𝜃 .  

If a confidence interval for 𝜃 has been determined, then, in fact, a family of confidence intervals 

has been determined. Precisely, for a given (1 − 𝛼 )% confidence interval estimator of 𝜃 , a 

( 1 − 𝛼 )% confidence interval estimator of 𝜓 𝜃  can be obtained. Then  𝜓 𝑇1 < 𝜓(𝑇2) is 

(1 − 𝛼)% confidence interval for 𝜓 𝜃  since  

𝑃 𝜓 𝑇1 < 𝜓(𝑇2) = 𝑝 𝑇1 < 𝜃 < 𝑇2 = 1 − 𝛼 

11.4  Confidence Interval for the Sample Mean from a Normal Population 

Let the random variables x1, x2,…..xn denote respectively the outcomes to be obtained on 

these n repetitions of the experiment. Let the random sample be from N(𝜇, 𝜎2) 𝜎2known . Then 

it is known that x is distributed as N(𝜇, 𝜎2/𝑛) and 
 𝑥 −𝜇 

 
𝜎

 𝑛
 

 is N (0,1) 

Thus 

𝑃  −1.96 <
 𝑥 − 𝜇 

 
𝜎

 𝑛
 

< 1.96 = 0.95 

The events: 

−1.96 <
 𝑥 − 𝜇 

 
𝜎

 𝑛
 

< 1.96 

−1.96
𝜎

 𝑛
< 𝑥 − 𝜇 < 1.96

𝜎

 𝑛
 

and  

𝑥 − 1.96
𝜎

 𝑛
< 𝜇 < 𝑥 + 1.96

𝜎

 𝑛
 

are equivalent and these events have the same probability. 



𝑃  𝑥 − 1.96
𝜎

 𝑛
< 𝜇 < 𝑥 + 1.96

𝜎

 𝑛
 = 0.95 

𝜎 is known and each of the random variables 

(𝑥 − 1.96
𝜎

 𝑛
) and (𝑥 + 1.96

𝜎

 𝑛
) is a statistics. The interval  𝑥 − 1.96

𝜎

 𝑛
< 𝜇 < 𝑥 + 1.96

𝜎

 𝑛
  is a 

random interval. This implies in repeated independent performances of the experiment, The 

probability is 0.95 that the random intervals  𝑥 − 1.96
𝜎

 𝑛
< 𝜇 < 𝑥 + 1.96

𝜎

 𝑛
  includes the 

unknown fixed point 𝜇. 

Let us look into the situation when 𝜎2 is not known.  

It is known that 
𝑁𝑠2

𝜎2 , where 𝑠2is the variacen of a random sample of size n from a distribution 

N(𝜇, 𝜎2) is 𝜒(𝑛−1)
2 . 

Implying 
 𝑛 𝑥 −𝜇 

𝜎
to be N(0,1) 

𝑁𝑠2

𝜎2  to be 𝜒(𝑛−1)
2  and the two are stochastically independent. We 

have  

𝑡 =

 
 𝑛 𝑥 − 𝜇 

𝜎  

 
 𝑁𝑠2

𝜎2 𝑥 − 𝜇 
 

=
𝑥 − 𝜇

𝑆

 𝑛 − 1

 

has a t- distribution with (n-1) degree of freedom. We can find two numbers t1 and t2 such as  

𝑃  𝑡1 <
𝑥 − 𝜇

𝑆

 𝑛 − 1

< 𝑡2 = 0.95 

Since t is a symmetrical distribution, we would take t1 = t2, t2 > 0, with t1 = t2  

𝑃  𝑥 −
𝑡1𝑆

 𝑛 − 1
< 𝜇 < 𝑥 +

𝑡1𝑆

 𝑛 − 1
 = 0.95 

Then the interval  𝑥 −
𝑡1𝑆

 𝑛−1
, 𝑥 +

𝑡1𝑆

 𝑛−1
 is a random internal having probability 0.95 of including 

the unknown fixed point 𝜇. if the experimental values of x1, x2,…..xn are x1, x2,…..xn with S
2
 = 

 
 𝑥𝑖−𝑥 2

 𝑛
, 𝑤𝑕𝑒𝑟𝑒 𝑥 =  

𝑋𝑖

𝑛
,  then the interval  𝑥 −

𝑡1𝑆

 𝑛−1
, 𝑥 +

𝑡1𝑆

 𝑛−1
 is a 95 percent confidence 



interval for 𝜇 every𝜎2 > 0. This interval of 𝜇 is found by adding and subtracting a quantity, here 

𝑡1𝑆

 𝑛−1
 to the point estimate 𝑥 .  

11.5  Confidence Intervals for Differences of Means from two Normal Population 

Let x11, x12,…..x1n1 and x21, x22,…..x2n2 denotes independent samples from the two 

independent distributions N(𝜇1, 𝜎2) and N(𝜇2, 𝜎2). Let us denote the means of the samples by 

𝑥 1and 𝑥 2and the variances by 𝑠1
2and  𝑠2

2respectively. 𝑥 1and 𝑥 2are normally and stochastically 

independently distributed with means 𝜇1  and 𝜇2  and variances 
𝜎2

𝑛1
 and 

𝜎2

𝑛2
 respectively and their 

differences (𝑥 1- 𝑥 2) is normally distributed with mean (𝜇1 − 𝜇2) and variance 
𝜎2

𝑛1
 + 

𝜎2

𝑛2
.  

Then the random variable 

 𝑥 1 − 𝑥 2  𝜇1 − 𝜇2 

 
𝜎2

𝑛1
 +  

𝜎2

𝑛2

 

is normally distributed with zero mean and unit variance 𝑛1
𝑆1

2

𝜎2  𝑎𝑛𝑑 𝑛2
𝑆2

2

𝜎2  have stochastically 

independent chi-square distribution with (n1-1) and (n2-1) degrees on freedom so that their sum 

 𝑛1
𝑆1

2

𝜎2+ 𝑛2
𝑆2

2

𝜎2 

𝜎2  has a chi-square distribution with (n1+n2-2) degrees of freedom. Then the random 

variable.  

𝑇 =
 𝑥 1 − 𝑥 2  𝜇1 − 𝜇2 

 
𝑛1𝑆1

2 +  𝑛2𝑆2
2

𝑛1 + 𝑛2 − 2  
1
𝑛1

+
1
𝑛2

  

 

Has a t- distribution with 𝑛1 + 𝑛2 − 2degrees of freedom. We can find a positive number t1 from 

t- table such that  

[P-t1< T <t1)=0.95] 

𝑅 =  
𝑛1𝑆1

2 +  𝑛2𝑆2
2

𝑛1 + 𝑛2 − 2
 

1

𝑛1
+

1

𝑛2
  



and the probability may be written in the form 

𝑃  𝑥 1 − 𝑥 2 − 𝑡1𝑅 < 𝜇1 − 𝜇2 <  𝑥1 − 𝑥2 + 𝑡1𝑅 = 0.95 

i.e. the random interval 

  𝑥 1 − 𝑥 2 − 𝑡1 
𝑛1𝑆1

2 +  𝑛2𝑆2
2

𝑛1 + 𝑛2 − 2
 

1

𝑛1
+

1

𝑛2
   

  𝑥 1 − 𝑥 2 − 𝑡2 
𝑛1𝑆1

2 + 𝑛2𝑆2
2

𝑛1 + 𝑛2 − 2
 

1

𝑛1
+

1

𝑛2
   

has probability 0.95 of including the unknown fixed point (𝜇1 − 𝜇2). In practical situations, the 

experimental values of 𝑥1, 𝑥2, 𝑠 ♠, 𝑠 ↔ 𝑛𝑎𝑚𝑒𝑙𝑦 𝑥1, 𝑥2 , 𝑠♠, 𝑠 ↔will provide 95 percent confidence 

interval for (𝜇1 − 𝜇2 ) when the variance of the two independent normal distributions are 

unknown but equal.  

11.6  Problems and Exercises 

 1.  Explain interval estimation. In what respect, it is better than point estimate? 

2.  What is confidence interval? Explain the terms : confidence limits, confidence 

coefficient. 

3.  Obtain 95% confidence interval for the mean of a normal population when (i) variance is 

known (ii) variance is unknown. 

4.  Obtain confidence interval for difference of means of two normal populations when the 

variance are known. 

5.  A random sample of size 25 is drawn from a normal population N(𝜇,16). The mean of 

sample is calculated as 12.5, obtain 95% C.I. for 𝜇.  

11.7  Summary 

An interval estimate describe range of values within which a population parameter is 

likely to lie. A point estimate does not give an idea that how far the estimates deviates from the 

true value of parameter being estimated. Confidence intervals provide the interval estimates in 



which the true value of parameter is expected to lie with pre-assigned confidence coefficient 

(probability). In practice, most commonly used confidence intervals are 95 percent and 99 

percent.  

11.8  Further Readings 

 Goon, A.M.; Gupta, M.K., and Dasgupta, B.: An outline of Statistical Theory, Vol. 2. 

The World Press Private Limited, 2000.  

 Goon, A.M.; Gupta, M.K., and Dasgupta, B.: Fundamental of Statistics, Vol. I. The 

World Press Private Limited, 2000.  

 Mood, A.M., Graybill, F.A.; Boes, D.C.: Introduction to the theory of Statistics, McGraw 

Hill, 1974. 
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12.1  Introduction 

We have identified the statistic T1 and T2 such that 𝛼1 = 𝛼2 = 𝛼/2  in constructing 

various confidence intervals. It is clear that 𝛼1𝑎𝑛𝑑 𝛼2may be chosen in infinitely many ways, 

each satisfying the conditions 𝛼1 ≥ 0 and 𝛼1 + 𝛼2 = 𝛼. Infinitely many confidence intervals are 

available with the same confidence coefficient (1-𝛼). Some criterion is clearly called for in order 

that we may make a choice  among this infinite set of confidence intervals. An obvious choice 

may be to give weight to the width of the interval. Let us suppose  𝑇1
`  and T‟ are such that.  

𝑝 𝑇1
` < 𝜓 𝜃 < 𝑇′ = 1 − 𝛼. 

Then the confidence interval given by 𝑇1
`   and  𝑇2

`  will be said to be better than the 

interval given by, say T1 and T2 which also satisfies the above stated condition, if  

(𝑇1
` − 𝑇2

`) ≤  𝑇2 − 𝑇1      for all 𝜃 ∈ 𝛺 ,        the parametric space 

If this holds for every other pair of statistics T1 and T2 then the confidence interval given 

by 𝑇1
`   and  𝑇2

`  will be known as shortest confidence interval for 𝜓 𝜃  based on the statistic T.  

Remark:   The confidence intervals constructed for sample mean, 𝜎 is known, 𝜎  is not 

known, confidence interval for difference between mean, confidence interval for the proportion 

and difference between proportions all belongs to this category of shortest confidence interval.  

4.2  Neyman’s Principle of Shortest Confidence Interval 

Neyman has introduced a slightly different aim (different from the aim of minimizing the 

length of a confidence interval for a given confidence coefficient) in seeking a „best‟ confidence 

interval. Neyman adopted the following criterion of goodness of confidence interval.  



For a fixed confidence coefficient the confidence interval which minimizes (under the 

assumptions that 𝜃 is true) the probability of covering any other 𝜃′𝑠(≠ 𝜃). 

Neyman‟s criterion of goodness of a confidence interval as enunciated above aborts to 

minimizing the probability of a confidence interval covering false values and thus is equivalent 

to minimizing the second kind of error in testing problems.  

As a against this Wilks defines the following criterion of goodness of a confidence 

interval. 

“For a fixed confidence coefficient minimize the length of confidence interval”. (This has 

already been discussed above). 

In what follows now, we shall adopt only Neyman‟s criterion of  shortest confidence 

interval. 

Let X be a r.v. with d.f. f(x, 𝜃), 𝜃 is a single values parameter and the form of F is known. 

We denote the sample point x1, x2,….xn (a random sample of size an drawn from the given 

distribution) by E, i.e., E= (x1, x2,….xn).  

Definition:   𝛿0 𝐸 = (𝜃 𝐸 ,  𝜃 , (𝐸) is the shortest confidence interval of confidence 

coefficient (1-𝛼) for 𝜃 if 

(i) 𝛿0 𝐸  is confidence interval of confidence coefficient (1-𝛼) 

(ii) 𝑃𝑟𝛿0 𝐸 ⊂ 𝜃/𝜃′ ≤ 𝑃𝑟 𝛿(𝐸) ⊂ 𝜃/𝜃′  

For all 𝜃 𝑎𝑛𝑑 𝜃′ for any other 𝛿(𝐸)satisfying (i)  

Notation:  ⊂ means „covers‟  

If a shortest confidence interval exists it is surely the one to be used always. 

Unfortunately, such shortest confidence intervals exits in very rare cases (just as UMP tests 

exists in very are cases) and so further principle must be adopted by which one confidence 

interval may be preferred to another even when a shortest confidence interval does not exists. 

Neyman has advanced such principles and it is to be noted that development of such principle 

follows very closely to the development of tests of hypothesis. These principles are precisely 

those which when used for seeking for a good test when no UMP test exists such as unbiasedness 

etc.  

12.3  Unbiased Confidence Interval 



𝛿 𝐸 = (𝜃 𝐸 ,  𝜃 , (𝐸)  is an unbiased confidence interval of confidence coefficient (1- 𝛼) for 𝜃 

if  

(i) 𝑃𝑟 𝛿(𝐸) ⊂ 𝜃/𝜃′ = 1 − 𝛼 

(ii) For each fixed 𝜃 , the function 𝜓𝜃   𝜃′ = 𝑃𝑟 𝛿(𝐸) ⊂ 𝜃/𝜃′  has a maximum at 

𝜃 = 𝜃′  

Remark:   It can be easily verified that if {w(𝜃)} is one parameter fairly of unbiased critical 

region which give rise to a confidence interval then confidence interval is unbiased.  

12.4   Shortest Unbiased Confidence Interval 

𝛿0 𝐸  is a shortest unbiased coefficient (1-𝛼) for 𝜃 if  

(i) 𝛿0 𝐸  is an unbiased confidence interval of confidence coefficient (1-𝛼) for 𝜃 

(ii) 𝑃𝑟 𝛿0 𝐸 ⊂ 𝜃/𝜃′ ≤ 𝑃𝑟 𝛿(𝐸) ⊂ 𝜃/𝜃′  

For all 𝜃 𝑢𝑠𝑒𝑑 𝜃′& for any 𝛿(𝐸)satisfying (i). 

Example:  In case of N(𝜃, 𝜎2 ); 𝜎2  known the confidence interval ( 𝜃, 𝜃 )=  𝑥 −
1.96𝜎

 𝑛
, 𝑥 +

1.96𝜎/ 𝑛  is a shortest unbiased confidence interval with confidence coefficient 0.95 for 𝜃. 

𝑥  is the sample mean. 

12.5  Case of Discrete Random Variables 

The case of discrete random variables requires to be separately dealt with. In this case 

one cannot hope to get for each 𝛼 (0< 𝛼 <1) a confidence interval that will have confidence 

coefficient exactly equal to (1-𝛼). 

One way to avoid this problem is to consider the confidence coefficient to be at least (1-

𝛼). Then the statistics T1 and T2 will provide confidence limits to parametric function 𝜓 (𝜃) if  

𝑃𝑟 𝑇1 ≤ 𝜓 𝜃 ≤ 𝑇2 ≥  1 − 𝛼  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ∈ 𝛺 𝑎𝑛𝑑 0 < 𝛼 < 1 



The actual determination of the confidence intervals may be carried out by drawing 

confidence belts. 

Remark:  it may be noted that it is generally not possible to get confidence limit in discrete 

cases with confidence coefficient exactly equal to (1-𝛼). 

The procedure described above may be used will make the interval unnecessarily wide. 

The difficulty is comparable to the difficulty in obtaining a test for a hypothesis is the 

discreet case with the level of significance exactly equal to 𝛼, if one confines one self to tests 

based on critical regions. One overcomes this difficulty in testing of hypothesis by considering 

randomized tests.  Here to a similar procedure may be applied on order to get confidence 

intervals with confidence coefficient exactly equal to (1- 𝛼), which would naturally be shorter. 

The method is due to Stevens. And for detailed study is referred to 

Stevens, W.L. “Fiducial limits of the parameter of discontinuous distributions”, 

Biometrika 37 (1950) pp 117-129. 

12.6  Problems and Exercises 

 1.  What is length of a confidence interval? Explain confidence interval with shortest length. 

2.  Describe Neyman‟s principle of shortest confidence interval. 

3.  Obtain confidence interval with shortest length for mean of normal population with 

known variance.   

12.7  Summary 

We can construct a number of confidence interval for any parameter with same 

confidence coefficient. In fact, there are infinite many confidence interval for a parameter with 

same probability of inclusion. Then, it is desirable to choose interval with expected shortest 

length and it should also unbiased.  

12.8  Further Readings 

 Mood, A.M., Graybill, F.A.; Boes, D.C.: Introduction to the theory of Statistics, McGraw 

Hill, international edition, 1974. 

 Rao,C.R., Linear statistical inference and its applications, John Wiley and Sons, Inc. 

 Wilks, mathematical statics, Jon Wiley and Sons. 



 Kendall, Vol. 1,2,3. Hafner Publishing Company, New York. 


