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Introduction

Unit-1 In this unit, we introduce binary operations, Definition and examples of Groups, Abelian
Groups, some special groups such as groups of Residue classes Z/nZ ,Z,, U,, the group of nth
roots of unity, Quaternion group (Hamiltonian group), Klein’s four group, Permutation group
along with integral powers of an element and order of an element.

Unit-2 In this unit, we introduce the notion of homomorphism and isomorphism. We discuss
subgroups with examples, subgroup generated by a subset of a group and cyclic groups with
examples.

Unit-3 In the unit, we deal with coset decomposition, left cosets and right cosets of a subgroup,
Lagrange’s theorem, index of a subgroup, Euler’s theorem and Fermat’s theorem.



Unit-1: Elementary Group Theory

Structure

1.1 Introduction
1.2 Objectives
1.3 Groups
1.4 Elementary properties of groups
1.5 Some special groups
1.5.1 Residue classes and the groups Z/nZ , Z,, Uy,
1.5.2 Group of nth roots of unity
1.5.3 Permutation group
1.5.4 Klein’s four group
1.5.5 Quaternion group (Hamiltonian group)
1.6 The integral powers and order of an element
1.7 Summary
1.8 Self assessment questions
1.9 Further readings

1.1 Introduction

Pure Mathematics studies abstract structures, forms and their properties. Abstract algebra is one
of the subfields of pure Mathematics which deals with algebraic structures like groups, rings,
fields, vector spaces, and so on. In this unit, we provide an exposition of some basic ideas of group
theory.

The evolution of the idea of the group can be found in classical algebra (Lagrange, 1770),
Number theory (Gauss, 1801), Geometry (Klein, 1874) and Analysis (Lie, 1874 Poincare and
Klein, 1876). E. Galois was the first to introduce the word ‘Group’ in his work on the solutions of
equations in around 1830. The modern axiomatic definition of an abstract group was given by
walther Von Dyck in 1882 and independently by Heinrich weber in the same year.

The significance of group theory can be understood by the fact that it arises in a number of
apparently unrelated disciplines such as physics, chemistry, biology, economics, computer science
etc and within Mathematics groups appear in algebra, analysis, humber theory, geometry and
topology.

Let us begin with the definition of binary operation:

Definition: Let G be a non-empty set. A binary operation = on G is a function *: G X G —
G i.e., to each ordered pair (a,b) € G there exists an element ¢ € G such that = (a,b) = c. We
write a * b for * (a, b).

Hence a binary operation is a rule by which we combine any two elements a, b of G so as to get
another element ¢ = a = b of G. A binary operation on a set G is also called a composition in G.
For example, the result of addition of two natural numbers is also a natural number, e.g. 3,4 € N
and 3+4=7€eN ie. a+beN for all a,b €N, hence the usual addition ‘4’ is a binary
operation on the set N of all natural numbers. Addition ‘4’ is also a binary operation on the setS Z
(Set of all integers), Q (the set of all rational numbers) and R (the set of all real numbers) etc. Thus
a particular binary operation can be defined on different sets. Similarly several different binary



operations can be defined on a specific set. For example, addition, subtraction and multiplication
are binary operations on R.

If “*’ is a binary operation on a set G, we say that G is closed with respect to “*’. So we can say
that R is closed under addition, multiplication and subtraction.
Now you may ask a question: Is there an example of a binary operation under which one set is
closed while some other is not? The answer is yes! There are many examples. For instance, the
subtraction ‘—’ is a binary operation on Z, however it fails to be a binary operation on N as
35eNbut3—5¢N.
Definition: A binary operation ‘*’ on a non-empty set G is associative if

ax(bxc)=(axb)xcforalla,b,ceG

and is commutative ifaxb = b xaforall a,b € G.

For example, the usual addition ‘4’ is associative as well as commutative on Z, i.e. a +
(b+c)=(@a+b)+c and a+b=>b+a for all a,b,c € Z, However subtraction is neither
associative nor commutative on Z.
ie. a—(b—c)#(a—b)—canda—b#b—afora,b,ce€L.

A set with one or more operations (unary, binary or other) obeying a particular collection of
axioms is termed as ‘algebraic structure’. The examples include groupoids, semigroups,
monoids, groups, rings, fields and so on. In this unit, we shall study the algebraic structure
‘Group’ in details. Let us have a look at our objectives.

1.2 Objectives

After reading this unit, you should be able to:

e Understand the definition of a group and an abelian group

e Observe how sets form groups under different binary operations and how to
construct composition tables for finite groups

e Discuss the elementary properties of a group

e Describe residue classes and related groups such as Z/nZ ,Z,, U,

e Recognize different groups such as group of nth roots of unity, Quaternion
group (Hamiltonian group), Klein’s four group and permutation group

e Know about the integral powers of an element and order of an element

1.3 Groups

We have already seen that the usual addition ‘4’ is a binary operation on the set Z of all integers,
i.e.a+ b € Zforall a b € Z. Also this operation is associative in Z, i.e.a+ (b +c¢) = (a+ b) +
c forall a, b, c € Z. We also notice that the set Z has a special element ‘0’ such that
a+0=a=0+4+a Va€eZ
and to each a € Z there is an element —a € Z such that
a+(—a)=0=(—-a)+a
These properties are not unique to the set of integers with addition.
For example, if we take the set Q., = Q—{0} of all nonzero rational numbers with
multiplication, we observe that the set Q.. is closed under multiplication, i.e. a- b € Q. for all
a,b € Q. and satisfies the following properties:
l.a-(b-c)=(a-b)-cforalla,b,c € Q,



2. Thereexists 1 € Q.o suchthat1-a=a =a-1foralla € Q.

3. For each a € Q. there exists 1/, € Q.o suchthat1/,-a=1=a-1/,
You will observe a structure and pattern in the properties satisfied by the elements of the sets Z
and Q..o with respect to addition and multiplication respectively.
Now we take a very different example from the world of matrices. Suppose we have a set M of
2 % 2 matrices having their elements as integers. We observe that if we add any two such matrices,

again we get same kind of matrix. For example if we take A, B € M such that A = [é _32] and

B=[_34 é],then
thatA+B=[é _32]+ _34 é]=[‘1} _31
Thisis true forall A,B € M.

NowifwetakeC=[§ ﬂ,then
(A+B)+C=[‘1L _31]+[§ ﬂz[i }L
AIsoA+(B+C)=[5é 1_32]+(_34 é]+[§ i)z[é _32]+[_41 i
~ g 4]

Hence (A+B)+C=A+ (B+ (). You can check for yourself that associativity of addition
holds good for all A,B € M

Since 0 € Z, hence 0 = [0 8

0
For example [i ﬂ+[8 3]:[451 éll

| em

]EM. It is easy to see that A+ O =A =0 + A forevery A € M.

Also if 4 = [é _32] € M, then —A = [:é _23] € M and

A+ (—A) = [g g] — 0, Also (—A) + 4 = 0.

Thus we see that the set M of 2 x 2 matrices having their elements as integers together with the
addition (of matices) satisfies the same properties that are satisfied by Z with addition(of integers)
and Q # 0 with multiplication. So we can say that certain systems consisting of a set and a
binary operation follow certain specific set of axioms. So if we take an arbitrary nonempty set G
and a binary operation ‘*’satisfying above properties, we get an algebraic structure called ‘group’.
Definition: A group is an ordered pair (G,*) where G is a nonempty set and ‘*’ is a binary
operation on G satisfying the following axioms:
1. axbecGforallabeG (Closure Property)
2. ax(bxc)=(axb)xcforall a,b,c € G (Associative Law)
3. There exists an element e € G called an identity element such that
axe=a=exaforallae G  (Existence of Identity)
4. Foreach a € G there exists an element b € Gcalled an inverse of ‘a’ such that
axb =e = bx*aandwewrite b = a1 (Existence of Inverse)

The group whose only element is the identity e will be denoted by {e}. It is called the trivial
group.



If the set G is finite then the group (G,*) is called a finite group, otherwise we call it an infinite
group. The number of elements in a finite group is called the order of the group. An infinite group
is said to be of infinite order.

Definition: A group (G,*) is said to be abelian (or commutative) if the binary operation ‘*’ is
commutative, i.e. a*xb =b+aforalla,b € G.

Examples: From above discussion it is clear that (Z, +), (Q, +),(R,+) and (C, +) are all infinite
abelian groups with e = 0 and a™! = —a. Also the set M of 2 x 2 matrices having their elements
as integers is an abelian group withe = 0 = [8 8] and the inverse of A € M is - A.

Similarly (Q.o,"), (R.o,") and (C,,") are all infinite abelian groups with e = 1and a™! = 1/a-

Do you know why (N, +) is not a group? The answer is simple. Since there exists no natural
number e qualifying as the identity element, i.e.

Ae e Nsuchthate+a=a=a+e.Heree=0but0 ¢ N
Also forany a € N, there isno ‘b’ in Nsuchthata + b =01i.e. b = —a.

Does this mean that the sets of numbers create group structures only with usual addition or
multiplication? No. That is not the case. For instance, you can check for yourself that the set Q* of
all positive rational numbers forms an abelian group with respect the composition = given by

axb= ab/z forall a,b € Q*. Interestingly, 2 € Q* is the identity element as
2+a=2%,=1=qax2foralla€Q".

The inverse of a € Q* is%/, , since a* 4/, =2 = %/, *a. You can easily verify the other
group axioms.
Now you are mature enough to understand the following example.

Consider a set GL,(R) of all 2 x 2 square matrices whose entries are real numbers and whose
determinant is nonzero, i.e.

GL,(R) = {A: Ais an 2 X 2 matrix with entries from R and det(A) # 0 }

Hence if = [Ccl Z] € GL,(R) , thena,b,c,d € R and ad — bc # 0. We can show that GL,(R) is
a group under usual multiplication of matrices.

If A,B € GL,(R), then AB is also a 2 x 2 matrix such that det(AB) = det(A4) - det(B) # 0 since
det(A) # 0 and det(B) # 0, hence AB € GL,(R).

The product of matrices is associative, i.e. A(BC) = (AB)C

1 0
0 1

. . _ d -b . -
] is the matrix A~1 =ﬁ[_c . ] Obviously A~! € GL,(R) and

The identity matrix [ =

inverse of A = [Z Z

AATl =1=A71A.

] is the identity element as Al = A = A for all A € GL,(R) and the



This is an example of a non-abelian group, since the matrix multiplication is not commutative in
: o [0 1 _J0 0
general, i.e. AB # BA. For example — Let A = [1 O] #0,B= [0 1] #0butA.B = [0 ol

This group is called the general linear group of degree 2. Similarly we can define general linear
group of degree n, i.e. GL, (R) under matrix multiplication, where

GL,(R) = {A: A is an n X n matrix with entries from R and det(4) # 0}

So far we have seen examples of infinite groups. You may ask if there are finite sets forming
groups under certain binary operations. Yes, we have many interesting examples. The simplest are
the trivial groups such as ({0},+) and ({1},-). The set of square roots of unity, i.e. {1, —1} forms
an abelian group with respect usual multiplication. There are other interesting examples of finite
groups like the multiplicative group of nth roots of unity, Klein four group, quaternion group,
Symmetric group on n symbols, groups of residue classes Z,, Z,and U,, etc which we shall discuss
later in details.

For a finite group we may construct a table called a group table or composition table to tabulate
the effect of a binary operation on its elements. If a group (G,x) contains n elements,

namely, g1, gz, - - , gn, then its composition table is a square n X n matrix with (i, j)th entry
9ij = gi * ;-

* 91 92 In

91 91*91 | 91*92 | -+ 91 * n

9> 92*91 | 92*92 | -+ 92 * gn

In In * 91 In * 92 In * In

Usually the element g,is taken as the identity element e. The composition table contains each
element exactly once in each of its rows and columns. Since in a finite abelian group (G,*) we
have g;  g; = g; = g; for all g;, g; € G, the entries in the table are symmetric with respect to the
diagonal that starts at the upper left corner and ends at the lower right corner.

Example: Let us construct a group table for the multiplicative group of cube roots of unity, i.e.

({1, w, w?},").

1 ) w? 1 ) w?
1 1-1 1w 1-w? 1 1 w w2
w w'l | wow | 0w w ) w? 1
w? w1 | ww| w-w? w? w? 1 )




The group axioms can be verified directly from the table. The entries of the composition table are
the elements of G = {1, w, w?} thereby indicating that the closure property is satisfied. The top row
coincides with the first row corresponding to the element 1, i.e. 1 is the identity element. Also the
identity 1 appears in the cells (1,1), (2,3) and (3,2) corresponding to the products 1-1, w - w?
and w? - w respectively. Hence (1)™! =1, (w) ! = w? and (w?)~! = w. The commutativity is
confirmed from the fact that the entries in the table are symmetric with respect to the diagonal
from the cell (1,1) to (3,3).

Note: Instead of referring (G,*) as group, we simply say that G is a group with the understanding
that there is no confusion regarding the binary composition. Sometimes, it is convenient to denote
the binary operation ‘*’ by ‘-’. Henceforth (except when necessary) we shall use the notation ‘a -
b’ (or simply ‘ab’) for ‘a * b’.

H4-Elementarypropertiesofgroups——————————

Proposition 1.1 If G is a group, then

(1) The identity element of G is unique

(2) Each element of G has unique inverse in G
@ (@Ht=a Vaeae

4) (ab)™*=b"1a™! Va,beG

Proof: (1) Let e and f be two identities of G, then ef = f as e is an identity. Also ef = e as f is
an identity. Therefore f = e, and the identity is unique.

(2) Let a € G. Assume that b and c¢ are both inverses of a in G, then we have ab = e = ba and
ac = e = ca. Now b = be = b(ac) = (ba)c = ec = c. Hence inverse of a is unique.

(3) b is the inverse of a if ba = e = ab and we write b = a™1. Also a is the inverse of b, i.e.
a=bt hencea=b"1=(aH)?!

(4) we have (ab)(b™*a™1) = [a(bb™1)]a™! , by associative law

= (ae)a™?!, sincebb ! =e

=aa~1,sinceae =a

=e

Also (b~'a Y (ab) = b~ [(a *a)b] =b Y (eb) =b" b =¢

Hence (ab)(b~ta 1) =e = (b ta"1)(ab), consequently (ab)™! = b~1a™1.
Proposition 1.2 The left and right cancellation laws hold in a group G.

Proof: suppose a, b, ¢ € G then a™! exists. Now ab = ac

= a Yab) =a'(ac) = (a'a)b=(a'a)c=eb=ec=>b=c

Similarly, from ba = ca we can deduce b = ¢ upon multiplication on the right by a™*.



Using the associative law and other axioms we can deduce the following result:

Proposition 1.3 If G is a group and a, b € G, then each of the equations ax = b and ya = b has
unique solution in G. (Prove it)

1.5 Some special groups

1.5.1 Residue classes and the groups z/nZ ,Z,,U,

Let n be a fixed positive integer, we define a relation ‘=" on Z as follows-
a = b (mod n) if and only if n divides (a — b)

The expression a = b (mod n) is read as ““ a is congruent to b modulo n”.

Thusa = b (modn) < n|(a—b) & a—b =nq forsomeq € Z

or a=b(modn) & a=>b+nqforsomeq €Z. This relation is called the relation of
congruence modulo n in the set of integers.

For example, 3 divides 15 = 17 — 2. Hence we can write 17 = 2 (mod 3). Similarly 15 =
3 (mod 12). Does this remind you of any real life situation? Yes, your wall clock tells you that 10
o’clock (A.M.) plus 5 hours is 3 o’clock (P.M.), i.e. 10 +5 = 3 (mod 12).

Proposition 1.4 The relation of congruence modulo n is an equivalence relation in the set Z of
integers.

Proof: We have Z = {...,—2,-1,0,1,2, ... }

(1) Reflexivity: Since n|0 i.e. n|(a — a) Va € Z,
hence a = a (mod n) Va € Z

(2) Symmetry: a = b (modn) = a = b + nq forsome q € Z
= b —a = —-nqforsomeq €Z
= n|(b—a)
= b = a (modn)

(3) Transitivity: a = b (mod n) and b = ¢ (mod n)
= a=b+nq,, b=c+nq,forsomeq,,q;, EZ
= a = (¢ + nq,) + nq, forsome q,,q, € Z
= a—c =n(q, + q,) forsome q,,q, € Z
= a = ¢ (mod n)

Hence the relation of congruence modulo n is an equivalence relation in Z. This equivalence
relation decomposes Z into disjoint equivalence classes called the congruence classes modulo n
or residue classes modulo n.

For any a € Z, we shall denote the congruence class of a by [a]. Thus
[a] ={x € Z: x = a (mod n) }

={x€Z x=a+nq,q€L}



={a+nq:q€Z}
For example, if we take n = 5, the residue class modulo 5 of ‘0’ will be
[0] ={nq:qeZ}={..—10,-5,0,5,10,...}
These residue classes have the following properties:
(1) a € [a] forany a € Z (2) If b € [a], then [a] = [b]
(3) [a] = [b] ifand only if a = b (mod n)
(4) Either [a] = [b]or [a]n[b] =0
Thus we have [a] = [a + n] = [a + 2n] and so on.
Similarly [0] = [n] = [2n] = ...... = [-n] =[-2n] =[-3n] = ...

We can show that there are precisely n distinct residue classes, namely

Leta,b € {0,1, ...... ,n — 1} such that a > b then
[a] = [b] = a = b (mod n) = n divides (a — b) ,

Which is not possible since a —b < n. Therefore [a] # [b] and thus the residue classes
[0],[1], ... ... ,[n — 1] are all distinct. Also if a € Z, then by division algorithm

a=nq+r,whereq,reZand0<r <n
= a =r (modn) = [a] = [r]

Hence if a€Z then J[a] is equal to one of the residue classes
[0],[1], ... ... ,[n — 1]. The set of these n distinct residue classes is denoted by Z/nZ, i.e. Z/nZ =
{[of, [1], ... ... ,[n— 1]}
We can define the addition operation on Z/nZ as follows-
[a] + [b] = [a + D]

This addition is well defined i.e. if a;, a, € Z and b,, b, € Z such that
[a,] = [b,] and [a,] = [b,] then [a; + a,] = [b; + b,]. Since
[a;] = [b,] and [a,] = [b,] = a; = b; (mod n) and a, = b, (mod n)

= a; = nq; + b, and a, = nq, + b, forsome q,,q, € Z

= a, +a, =n(q, +q;) + by+b,

= a, + a, = by+b,(mod n)

= [a; + a,] = [by + by]
It can be immediately verified that Z/nZ is an abelian group under the addition of residue classes.

Proposition 1.5 Z/nZ is an abelian group under the addition of residue classes.

Proof: we have Z/nZ = {[0], [1], ... ... ,[n—1]}



(1) Closure Property: If [a], [b] € Z/nZ, then

[a] + [b] = [a + D]
sincea+ b =r (modn), 0 <r <n,hence [a+ b] € Z/nZ

(2) Associative Law: Let [a], [b], [c] € Z/nZ. Then

[a] + ([b] +[c]) =[al +[b+c]=[a+ (b + )] =[(a+b)+c]
=[a+b] + [c] = ([a] + [b]) + [c]

(3) Existence of identity: We have [0] + [a] = [a] = [a] + [0]

Hence [0] € Z/nZ is the identity element.

(4) Existence of inverse: Let [a] € Z/nZ . Then a is an integer such that 0 < a < n . Therefore
0O<n—a<n,ie [n—a]€{[1],[2],..,[n]}. Since [n] =[0], hence [n — a] € Z/nZ . Now
[a] + [n — a] = [0] = [n — a] + [a], therefore the inverse of [a] € Z/nZ is [n — a] € Z/nZ.

(5) The commutative law: Let [a], [b] € Z/nZ. Then
[a] + [b] = [a+ b] = [b + a] = [b] + [a]

Hence Z/nZ is an abelian group under the addition of residue classes called the additive group of
residue classes modulo n.
We can also define the multiplication of residue classes as follows-
[a][b] = [ab]
This multiplication is well defined in the set Z/nZ. Now the question arises: Do the nonzero
residue classes [1], ... ... , [n — 1] form a group under this multiplication?
Not necessarily. For example, inZ/6Z,[4][3] = [12] = [0], hence nonzero elements can
sometimes have a zero product. Also not all the nonzero residue classes are invertible (units)
generally. They are all invertible only when n = p, a prime number. The set of all invertible
elements (units) of Z/nZ forms an abelian group with respect to multiplication of residue classes.
This set of units is denoted by (Z/nZ)*, i.e.
(Z/nZ)* = {[a] € Z/nZ: [a] is invertible }
Now you will observe that an element [a] € Z/nZ is invertible with respect to residue
multiplication if and only if gcd(a,n) = 1.
If [a] is invertible, then there exists [b] € Z/nZ such that [a][b] = [1], i.e.
ab =1 (mod n). Which implies that ab =qn + 1 for some q € Z, i.e. gcd(a,n) =1, by
Bezout’s Lemma. The lemma is - [Bezout's Lemmastates that if xand ¥ are
nonzero integers and 9 = ged(z, y)1 then there exist integers o and 5 such that za + yf8 = g.
In other words, there exists a linear combination of x and ¥ equal to 9. ]. Conversely, if
gcd(a,n) = 1, then by Bezout’s Lemma, there exist integers x and y such thatax + ny =1, i.e.
ax =1 (modn) and so [a][x] = [1] and it follows that [a] is invertible. Hence we can define
(Z/nZ)* as
(Z/nZ)* = {[a] € Z/nZ: gcd(a,n) = 1}
= {[a] € Z/nZ: a and n are co-prime}
Now we shall show that (Z/nZ)*is indeed a group under multiplication of residue classes.



Proposition 1.6 (Z/nZ)*is an abelian group under multiplication of residue classes.
Proof: We have (Z/nZ)* = {[a] € Z/nZ: a and n are co-prime}.
(1) Closure Property: Let [a], [b] € (Z/nZ)*Then [a][b] = [ab]. Now [ab] # [0] otherwise n|ab
which is not possible, since gcd(a,n) =1 and gcd(b,n) = 1. Therefore [ab] = [r] where
1 < r < n. Further if gcd(r,n) # 1 then there exists some prime number p dividing both r and n.
This gives plab i.e. p|a or p|b. Thus either p divides the HCF of a and n or HCF of b and
n .which is not possible as gcd(a,n) = 1 and gcd(b,n) = 1. Therefore gcd(r,n) = 1 and hence
[r] € (Z/nZ)*.
(2) Associativity: Let [a], [b], [c] € (Z/nZ)*. Then we have
[a]([b][c]) = [al[bc] = [a(bc)] = [(ab)c] = [ab][c] = ([al[bDIc]
(3) Existence of identity: since 1 is co-prime to n, hence [1] € (Z/nZ)* and we have
[a][1] = [a1] = [a] = [1][a]
Therefore [1] is the identity element.
(4) Existence of inverse: If [a] € (Z/nZ)*, then gcd(a,n) = 1 and we have already seen that in
this case [a] is invertible.
(5) Commutativity: Let [a], [b] € (Z/nZ)*. Then we have
[a][b] = [ab] = [ba] = [b][a]
Thus (Z/nZ)*is a finite abelian group with respect to multiplication of residue classes. Now what
is the order of this group? It is equal to the number of positive integers less than n and co-prime to
n, i.e. the Euler’s totient function ¢ (n).
It is interesting to note that if n = p, a prime number, then the positive integers less than p and co-
primetopare 1,2, ...... ,p — 1. Hence we have
Z/pzy* =A{[1], ..., [p — 1]}

Now we shall discuss some other groups abstractly similar to Z/nZ and (Z/nZ)*, i.e. Z,, and U,,.

Group of integers modulon
Let a and b be any two integers and n be a fixed integer, we define a composition on the set of
integers Z called addition modulo n ( +.) as follows-

a+,b =r, 0<r<n
Where r is the least non-negative remainder when a + b is divided by n.
For example, 34+54 = 2, since 2 is the remainder (non-negative) when 3 + 4 i.e. 7 is divided by 5.
Also (—25)+36 = 2since =25+ 6 = =19 = (-7)3 + 2.
If a+,b = r, then by division algorithm we can write

a+b=ng+r,0<r<n
For some integer q.
Hence (a + b) — r is divisible by n, i.e. r = a + b (mod n) or
a+,b =a+ b (modn)
It can be easily seen that if a = b(mod n), then a+,,c = b+,c.
Let Z, = {01, ...... ,n—1},n>1. Then we can show that Z, forms an abelian group with
respect to addition modulo n.
(1) Closure property: Leta,b € Z, then a+,,b = a + b (mod n) € Z,. Hence Z, is closed under
addition modulo n.
(2) Associativity: Let a, b, c € Z,.Then
a+,(b+,c) = a+,(b+c)asb+,c =b+ c(modn)
= [a + (b + ¢)](mod n)



= [(a + b) + c](mod n)
= (a+ b)+,¢c
= (a+,b)+,cC
(3) Existence of identity: 0 € Z, such that a+,0 = a = 0+,a Va € Z,, i.e. 0 is the identity
element.
(4)Existence of inverse: Let a € Z,,. If a = 0, then it is the inverse of itself. Let a # 0. Then
n —a € Zy, is the inverse of a € Z,, as
n—a)+p,a=0=a+,(n—a)
(5) Commutativity: Leta, b € Z,. Then
a+,b =a+ b (modn) = b+,a
Therefore (Z,, +,) is a finite abelian group of order n. This group is usually referred to as the
group of integers modulo n.

Note: Sometimes by the abuse of notation we write Z/nZ = 7Z,, and consider Z,, as the additive
group of residue classes modulo n.

Definition: Let a and b be any two integers and n be a fixed integer. The composition on the set
of integers Z called multiplication modulo n ( %,,) is defined as follows-
For any two integers a and b and a fixed integer n,

aX,b=r,0<r<n
Where r is the least non-negative remainder when ab is divided by n.
For example, 7 X3 4 = 1, since 1 is the remainder (non-negative) when 7 x 4 i.e. 28 is divided by
3. Obviously we have a X, b = ab (mod n). Also if a = b(mod n), thena X, c = b X, c.
The set of all invertible elements (units) of Z, forms an abelian group with respect to
multiplication modulo n. This set of units is denoted by U,,, i.e.

U, = {a € Z,: aisinvertible }
Following the same arguments as that given earlier in case of U(n), using Bezout’s Lemma you
can check for yourself that an element a € Z,, is invertible with respect to multiplication modulo n
if and only if gcd(a,n) = 1.
Hence
U, ={a € Z,:gcd(a,n) =1}
= {a € Z,: a and n are co-prime}
Proposition 1.7 (U,,,X,,) is a finite abelian group.
The proof is similar to that of proposition 1.6.
If p is a prime number, then the elements of Z,, co-prime to p arel,2, ... ... ,p— 1.
Hence U, = {1,2,...... ,p— 1}
Proposition 1.8 (U,,X,,), p being prime, is a finite abelian group.
Proof: We have U, = {1,2,...... ,p — 1}, where p is a prime number.
(1) Closure property: Let a,b € U,. Then p is neither a divisor of a nor a divisor of b. Therefore
p t ab. Hence the remainder cannot be zero when ab is divided by p i.e. if a X, b = r,then
1<r<p-1Thusax,beU,.
(2) Associativity: For all a, b, c € U,,,we have,
ax, (b x,c)=ax, (bc) since b x, ¢ = bc (mod p)
= a(bc) (mod p)
= (ab)c (mod p)



= (ab) X, c
= (a X, b) X, c
(3) Existence of identity: 1 € U, such that 1 X, a = a =a X, 1 for all a € U,. Hence 1 is the
identity element.
(4) Existence of inverse: Ifa € U,, then by closure property a x, i € U, for all i € U,. Also
[#j=axX,i#aX,jforijeU, forifax,i=ax,j, then ai — aj is divisible by p, i.e.
pla(i — j). Which is not possible, since p cannot divide (i — j) as either i —j <p fori>j, or
j—i<p forj>i. Also pta.Hence all the products a X, i € U,, i € U, are distinct elements
of U,. Therefore there exists i = k € U, such that a x,, k = 1, i.e. k is the inverse of a.
(5) Commutativity: For all a, b € U,we have,
a X, b = ab (mod p)
= ba (mod p)
=bX,a
i.e. (U,,%,) is a finite abelian group of order p — 1.
1.5.2 Group of nth roots of unity
Let us start with the square roots of unity. We have (1)1/2 = +1, hence the set of square roots of

unity is {—1,1}. You can check for yourself that this is an abelian group under multiplication. For
the cube roots of unity, we have

(1)1/3 = (cos 2rm + isin 2rn)1/3 = cos (23ﬂ) + i sin (?),r =0,1,2
i.e. (1)1/3 = cos(0) + i sin(0), cos (2?”) + isin (2?”), cos (4?”) + isin (4?”)
—1+iV3 —1—-iV3
) 2 ) 2
W3 . .
, then simple calculation shows that

-1+
2

If welet w =

w- =

2 2
Thus the set of cube roots of unity is {1, w, w?}. We have already seen that this set forms an
abelian group under multiplication. Let us illustrate one more thing that will be useful in
discussing the nth roots of unity.

2_(—1+i\/§>2=—1—i\/§

wtws = wtts
But since w® =1, hence if t+s=3q+k, where 0 <k <3, then 0" = wk, ie. 0" =
wt+s Mod3) Forinstance wlw? = w* = w3W* = 3! = 1w = w
Now we can generalize this concept to nth roots of unity. The set of nth roots of unity is given by
G={zeC:z"=1}
It is easy to see that the solutions of the equation z™ = 1 are the numbers e’ "/n ,r=01,...,n—
1.

(1)1/71 = (cos 2rm + isin 27‘71')1/" ,r=01,...,n—1
2nr .. 2nr
= CoS (T) + LSIH(T) ,vr=01,....n—1
=™ r=01,...,n—1

Ifwelet = e?™/n , then the set of nth roots of unity can be written as



G={1=¢%¢0C%...,"1}
Proposition 1.9 The set of nth roots of unity forms a finite abelian group with respect to
multiplication of complex numbers.

Proof: We have G = {1 = ¢°,¢, {2, ....., ("1}, where ¢ = "'/,

(1) For {¢,¢° € G, we have ¢t¢% = ¢S, But {™ = 1, hence {t* = ¥ where k = t + s (modn),
therefore 0 < k <nand {*¥ € G, i.e. t¢° € G. Hence G is closed with respect to multiplication.
(2) The multiplication of complex numbers is associative.

(3) 1 € G is the identity element.

(4) The inverse of 1 is 1 itself and ¢~ is the inverse element of {* € G (1 < s <n—1), since
" ="=1=""and1<n—-s<n-1.

(5) The multiplication of complex numbers is commutative.

i.e. The set of nth roots of unity forms a finite abelian group of order n under multiplication.

1.5.3 Permutation group

Let S be a nonempty set. Then a one-one mapping of S onto itself (i.e. bijections from S to itself) is
called a permutation. The set A(S) of all permutations of S forms a group with respect to function
compositiono. Let us see how the group axioms are satisfied.

(1) Let f:S — S and g: S — S be any two permutations (bijections) of S, then fog: S — S given
by (fog)(x) = f{g(x)} Vx € S is also a permutation (bijection) of S, i.e. fog € A(S).

(2) (fog)oh = fo(goh) forall f,g,h € A(S)

(3) The identity map i:S — S given by i(x) = x Vx € S is the identity element as (foi)(x) =
flit)}=f(x) vxeS,and (iof)(x) =i{f(x)}=f(x) VxeS, ie iof =f = foi

(4) For every permutation f:S — S there is an inverse function f~1:§ — S such that f~1(y) = x
whenever y = f(x). Obviously f~1 is also a bijection on S, i.e. f~1 € A(S). Also (fof D) (y) =
M=) =y =i(y) ,e fof~'=i. Similarly f~lof =i. Hence f~1 € A(S) is the
inverse element of f € A(S).

Thus (A(S), 0) is a group of permutations and is called the symmetric group on S. Subgroups of
symmetric groups are called Transformation groups or Permutation groups.

Now there is an interesting case when the set S is finite. For instance suppose S =
{1,2,3,...,n}, then the group A(S) of all permutations of S is denoted by S,, and is called
symmetric group of degree n.

You may ask a question. How many elements does S,, have? Or equivalently, How many
bijections can be defined from S to S? It is equivalent to counting the number of ways, in which
we can permute the elements of the set S. For n elements this number is n!. Hence §,, is a group of
order n!. For example, S; has 3! = 6 elements. Suppose f € S; such that f(1) =3,f(2) =
2, f(3) = 1, then we use the following standard notation to denote this permutation:
_ ( 1 2 3 ) _ (1 2 3)
=ro r@ r@)=s 2 1
Let g = (; g i) € S3. Then we usually denote the composition of f and g by fg, i.e. fg =

fog.Now (fg)(1) = (fog)(1) = flg(1)} = f(2) = 2
(f9)(2) = (fog)(2) = flg(2)}=f(B) =1
(f9)(3) = (fog)(3) = flg(3)} = f(1) =3

(1 2 3\¢1 2 3\ _(1 2 3
/_[?__(3 2 1)(2_3 1)_(2 1 3)
Remember that the composition is applied from right to left order.

Hence we can write



g fg
1 3 2 3 2 3
3 1 3 1 1 3

Example: Now we construct a composition table for S; and show that it is a finite nonabelian
group of order 6 with respect to multiplication of permutations.

LetS31={]2f1,f§;f3,ﬁpfs»1;6}SSCh?fhat 1 2 3 1 2 3
f1=(1 2 3)' fz=(2 1)’f3:(3 1 2)’f42(1 3 2)’

=G 5 =G %3

Here we have f, f, = (i ; g) (% g i) - (% g i) _f,
fofs = (1 2 3) (1 2 3) = (1 2 3) = f; and so on. So the composition table is

_ NW

2 3 1/\3 1 2 1 2 3

Product  of fi f2 f3 fa fs fe

permutatlons
fi fi f2 f3 fa fs fe
f2 f2 f3 f fe fa fs
f3 f3 fi f2 fs fe fa
fa fa fs fe fi f2 f3
fs fs fe fa f3 fi f2
fe fe fa fs f2 f3 fi

From the composition table, we observe that
(1) All the entries of the table are the elements of S5. Hence S5 is closed under the multiplication of
permutations.
(2) The composition of mappings is associative in general, hence this multiplication of
permutations is an associative composition.
(3) Weobserve that f1 f1 = f1, fifo = fo = fof1. fifs = 3 = f3/1,
fifs = fo = fufi, fifs = fs = fsfi and fife = fo = fof1. Therefore f; is the identity element.
(4) Alsowe have f1f; = fi = (fi) ™' = fi,
Lh=fi=fi=)"'=fad (HB)'=f ffi=i=@) " '=f ==
F)t=feand fofs = fi= (fe) ' = fo
Thus each element has its inverse in S;.
This multiplication of permutations is not commutative as we see that f5f; = f, and f3fs = f;.

Thusfsfs # f3fs.

Therefore S5 is a finite nonabelian group of order 6 with respect to permutation multiplication.



1 2 3)‘1 _ (1 2 3
2 3 1 31 2
columns does not change the permutation, hence we can write (1 2 3) as (2 3 1).

1 3 1 2 1 2 3
1 2 3\ _(2 31 : _ _
2 3 1) (1 ) 3). So when we inverse the permutation, we simply

interchange the rows in the standard notation. We shall study some other properties of these
permutations in block-11.

1.5.4 Klein’s four group
Consider a finite group V = {e, a, b, c} of order 4 with the following composition table-

Here you will notice that (f;)™! = f;, i.e. ( ) Since interchanging the

Therefore we have (

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

It is interesting to note that each element is the inverse of itself. From the composition table we
also observe that this is an abelian group. This group is called the Klein’s four group. You can

. 1 0 1 0 -1 0 -1 0

check for yourself that the matrices e = [0 1], a= [0 _1], b= [ 0 1], and ¢ = [ 0 _1]
form a Klein’s four group under multiplication.
1.5.5 Quaternion group (Hamiltonian group)
Consider a setQg = {1,—1,i,—1i,j,—j, k,—k}. Define a multiplication ‘> called quaternion
multiplication on Qg as follows-

ici=jj=k-k=—1,i-j=kj k=ik-i=]j

jri=—kk-j=—i,,i-k=—j,(-1D)-(-1)=1
andl-a=a-1=a ,(—1)ra=a-(—1) = —aforall a € Qg.
Then Qg forms a non-abelian group under quaternion multiplication. This is an example of a more
general group called Hamiltonian group. Every Hamiltonian group contains a copy of Qg. You
can check for yourself that the following matrices form a quaternion group.

R S = Y 1 s | e
L= 0

1.6 The integral powers and order of an element

Let (G,*) be a group and a € G. Then we define the positive powers of a as
a™ = a*a*..*aupton factors,n = 1,2,3, ...

and a® = e (the identity of G)



If n is a negative integer, then n = —m, m = 1,2, ..... and we have

a ™ =(a™)"!=(a*ax*..*auptom factors)™!

Q
Il

* ...* a~! upto m factors = (a"1)™
Also for any two integers m, n, you can prove that
a™™m = g" x a™ and (@)™ = a™™

These two are the laws of indices in a group.

Hence for a group in which the composition is denoted multiplicatively, we have
a™ = aa ...a upto n factors, n = 1,2,3,...and a™™ = (a~ )™

And for a group (G, +) in which the composition is denoted additively, we have
na=a+a+ -+ auptontermsand (—m)a = m(—a)

Now we are in position to define the order of an element of a group.

Definition: Let G be a group and let a € G. Then the order of a is the least positive integer n
such that a™ = e(the identity of G). If there exists no positive integer n such that a™ = e, then a is
said to be of infinite order or zero order. The symbol o(a) is used to denote the order of a.

Example: consider the multiplicative group G = {1, —1, i, —i}. We have
Do) =1
(-1 =-1,(-1)% =1hence o(—1) = 2

(3) 0(i) = 4 since i* = 1 and for no positive integer m less than 4, i"™ = 1 and similarly o(—i) =
4

Example: InZs i.e. ({0,1,2,3,4}, +5), we have
21=2,22 =242 =14,23 = 2452452 = 1, 2* = 24+ 2+52+52 = 3,
25 = 2+52+52+52+52 = O, hence 0(2) = 5.

Example: In the additive group of integers (Z, +), we have 0(0) = 1 and for any nonzero integer
a, there does not exists a positive integer n such that a + a + --- 4+ a (upto n terms) = 0, hence
o(a) is infinite.

Naturally if a™ = e, then the order of a, say n, must divide m. Let us see how it goes.
Proposition 1.10 Let G be a group and a € G such that o(a) = n. If a™ = e, then n divides m.
Proof : By division algorithm, there exist integers g and r such that

m=nq+rwhere)<r<n



Now a™ = a™*" = (a™)9a"” = e9a” = ea” = a".

Therefore a™ = e = a” = e. Hence r = 0 because otherwise r < n = o(a) such that a" =e
which is not possible. Thus m = nq, i.e. n divides m.

Now an interesting question: Is there any relationship between the order of an element a € G and
the order of a=1? We have the following answer.

Proposition 1.11 The order of a™? is the same as that of a.

Proof: Let us suppose that o(a) = nand o(a™t) = m.

Nowo(a) =n=a"=e= (@") '=e = (@ H'=e¢

But (a™!) = m, hence n cannot be less than m, i.e.n > m

Alsoo(a N =m=@ )" =e=@") ' '=e=am"=e=m=>n

Now n > m and m > n = m = n. Thus the order of a~? is the same as that of a. If the order of a
is infinite, then the order of a1 is also infinite.

1.7 Summary

We conclude with summarizing what we have covered in this unit. We:

(1) Introduced a binary operation on a nonempty set as a function. Also discussed associative law
and commutative law.

(2) Defined Group as an algebraic structure following axioms (i) Closure property (ii) Associative
law (iii) existence of identity and (iv) existence of inverse. We defined abelian group as a group
satisfying commutative law.

(3) Discussed various examples of groups and abelian groups.
(3) Discussed elementary properties of groups.

(4) Introduced the relation of congruence modulo n and the residue classes. We then discussed
groups of residue classes Z/nZ and (Z/nZ )*. We also introduced operations addition modulo n
(+,) and multiplication modulo n ( x,) and discussed the groups Z, and U,,. Discussed some
other special groups such as Group of nth roots of unity, Permutation group, Klein’s four group
and Quaternion group (Hamiltonian group).

(5) Defined integral powers of an element a € G of a group (G,*) as

a®=ax*ax*..xa upto n factors, n =1,2,3,... and a® = e (the identity of G) . Then we
introduced the notion of order of an element a € G as the least positive integer n such that a™ = e.
We illustrated the concept with some examples.

1.8 Self assessment questions

(1) Define a binary operation * on Z by a * b = a + b — 2. Show that (Z,*) is an abelian group.



(2) Show that the set of all m x n matrices having their elements as real numbers is an infinite
abelian group with respect to addition of matrices?

cosa

(3) Show that the set of matrices A, = [sin o

multiplication.

_Czlsnaa] where ¢ € R forms a group under matrix

(4) Construct the composition table and show that the set of fourth roots of unity {1, —1,i, —i}
forms a group with respect to multiplication.

(5) Show that in a group G the left identity is also the right identity.
ea=a=ae=aforallaeG

Also the left inverse of an element is also its right inverse.

ala=e=aal=e

(6) Let G = {f1, fo. f5, far f5, f6} Where f; (i = 1,2,...,6) are transformations on the set of complex
numbers such that fy(z) = z, f,(2) == , f3(2) = 1 -z, fu(2) ==, fs(z) = — and fy(2) =
Z;—l. Show that G forms a finite non-abelian group with respect to composite (product) of two
functions.

(7) Construct a composition table for Z, = {0,1,2,3,4,5} under +, and show that (Z¢, +¢) is a
finite abelian group.

(8) Show that ({1,3,4,5,9}, %x4,) is an abelian group.

(9) Show that the set V of all vectors in 3-dimensional space is an infinite abelian group under
vector addition.

(10) Prove that a set G with a binary operation denoted multiplicatively is a group if and only if (i)
the associative law holds (ii) for every pair of elements a, b € G, the equations ax = b and ya = b
have solutions in G.

(11) Let f, g € S5 such that f = (% g i) and g = (1 g g)

Compute (i) fg~1f, (i) f3 and (iii) the orders of the elements f and g.
N (1 23 o123y B -

s () (; 5 ;) @) (5 3) @) o(D=30(@)=2]
(12) Show that the order of every element of a finite group is finite and is less than or equal to the
order of the group.
(13) Let G be a group and a, x € G. Then show that the orders of the elements a and x~*ax are the
same.
(14) If a is an element of order n and p is prime to n, then show that o(a?P) = n.
(15) Prove that if G is an abelian group then (ab)™ = a™b™ for all a, b € G and for all integers n.
(16) Let G be agroup and a,b € G. Then (ab)? = a?b?if and only if the group G is abelian.

P FIZWPN
T.9-Furtherreadings




(1) Herstein, 1.N. (1993): Topics in Algebra, Wiley Eastern Limited, New Delhi.

(2) Fraleigh, J.B. (2003): A first course in abstract Algebra, New Delhi, Pearson Education, Inc.
(3) Dummit, D.S. and Foote, R.M. (2009): Abstract Algebra, New Delhi, Wiley India (P) Ltd.
(4) Artin, M.(1996): Algebra, New Delhi, Prentice Hall of India.



Unit-2: Homomorphism, Subgroups and Cyclic Groups

Structure

2.1 Introduction

2.2 Objectives

2.3 Homomorphism and isomorphism

2.4 Examples of homomorphism and isomorphism
2.5 Some properties of homomorphism

2.6  Subgroups of a group

2.7 Properties of subgroups

2.8 Cyclic groups

2.9 Properties of cyclic groups

2.10 Subgroups generated by a subset of a group
2.11 Summary

2.12 Self assessment questions

2.13 Further readings

2.1 Introduction

In Unit 1, we defined and studied algebraic structure called group. We studied its properties and
discussed many examples. To put it simply, a group is a non-empty set equipped with a binary
operation satisfying certain axioms. Suppose we are given two different groups (G,*) and (G',*").
Are there tools to check if they are structurally the same? Yes, we have some special mappings
between the groups which can do this job, i.e. relate the group structure of G to the group structure
of G' . For instance, consider the multiplicative group of fourth roots of unity, i.e. G =
{1,—1,i,—i} and additive group of integers modulo 4, i.e. (Z,, +,). These groups appear to be
different in the sense they have different elements and they are groups under different binary
operation. But if you look into the following composition tables of these groups, you find a
common structure hidden in both the groups.

1 =1 i | = +,/0 |2 |1 |3
1|1 =1 @ | =i 0 |0 |2 |1 |3
1 -1 1 [ =i | 2 [2 [0 [3 |1
i | i | =i -1] 1 1 [1 [3 [2 |0
= 3 [3 |1 |0 |2

Here you see that the composition tables for both the groups are identical. If we replace 1,—1,i, —i
by 0,2,1,3 respectively in the composition table for G, we obtain the composition table for Z,. We
can say that both the groups are abstractly identical.

Here we see that the element i € G corresponds to 1 € Z, and —i € G corresponds to 3 € Z,.
Interestingly, i.(—i) = 1 occupies the cell (3,4) in the composition table for ¢ and 1+,3 =0
occupies the same cell position in the composition table for Z,. Thus i.(—i) also corresponds to



1+,3. Thus if we define a function f:G — Z, such that f(1) =0, f(—1) =2, f(i) =1 and
f(=0) =3, then f{i. (=0} = f(1) = 0= 14,3 = fF(D+,f(-D)

ie. fli.(=0)} = f@)+4f(=0). Similarly f{i.(=1)} = f(i)+4f(—1) and so on. Thus there exists
a function f: G — Z, such that f(xy) = f(x)+,f(y) for all x,y € G. The mapping between the
groups satisfying this composition preserving property is called a homomorphism. In our example,
the homomorphism f:G — Z, is one-to-one and onto. Such homomorphisms are called
isomorphisms. In this unit, we shall define these mappings formally and discuss their properties.

One way to unravel the structure of a group is to study the subsets of that group which are
groups themselves. Such subsets are called subgroups of that group. We shall study these
subgroups in details and establish some criteria to decide when a given subset of a group is a
subgroup. Finally, we discuss special groups which are generated by an element of that group. We
call such groups ‘cyclic’ and they have some very interesting properties. So here we have the
objectives of this unit-

2.2 Objectives

After reading this unit, you should be able to
e Define the concept of homomorphism and isomorphism
Describe the isomorphic groups
Define a subgroup of a given group
Identify different subgroups
Define a cyclic group
Calculate number of generators of a cyclic group
Find subgroups of a cyclic group
Define the subgroups generated by a subset of a group.

2.3 Homomorphism and isomorphism

We are interested in mappings f: G — G', such that we could get information (for example “of
being abelian”) about G’ via f when information about G is given. One such mapping is
homomorphism or group homomorphism. It is a mapping which respects binary operations defined
on two groups. Let us define it more formally:

Definition: Let (G,x) and (G',*') be any two groups. A mapping f:G — G'is called
homomorphism if it preserves the compositions in G and G, i.e.

f(a*b) = f(a)« f(b)foralla,b € G

Here you see that the element a * b belongs to G and the element f(a) +' f(b) belongs to G'. Thus
above equation gives a relation between these two binary operations * and «'. In other words, this
mapping f relates the two group structures.

When there is no confusion regarding the binary compositions, we denote both the group
operations multiplicatively. So the above condition becomes



f(ab) = f(a)f(b) forall a,b € G

Definition: A homomorphism f: G — G' is called an epimorphism iff f is surjective (i.e. onto)
and then the group G’ is said to be a homomorphic image of the group G.

Definition: A homomorphism f: G — G' is called an monomorphism iff f is injective (i.e. one
to one).

Definition: A homomorphism f: G — G of a group G into itself is called an endomorphism.

Now we define a very important mapping between groups which makes two groups abstractly
identical.

Definition: A mapping f: G — G'is called an isomorphism if

(1) f isahomomorphism, i.e. f(ab) = f(a)f(b) forall a,b € G

(2) f is abijection, i.e. one to one and onto

Then the group G is said to be isomorphic to the group G and we write G = G'.
An isomorphism of a group G onto itself is called an automorphism of G.

In other words, the groups G and G'are isomorphic if there is a bijection between them which
preserves compositions. Abstractly isomorphic groups are regarded as same, i.e. if the group G has
some property derivable from group axioms, then G’ also has the same property. Let us illustrate
these concepts with some examples.

2.4 Examples of homomorphism and isomorphism

Example 2.4.1 The mapping f: C — R given by f(z) = Re(z) for all z € C is a homomorphism
of the additive group of complex numbers onto the additive group of real numbers.

Let z;,z, € C such that z; = x; + iy, and z, = x, + iy,. Then f(z;) = x; and f(z;) = x,. Now
Zl + Zz = (x1 + 13’1) + (XZ + lyz) = (x1 + xZ) + l(}’l + yz) Hence Re(21 + Zz) = x1 + xZ.
Therefore

f(z1+ 22) = x + x5 = f(z1) + f(22)
Hence f is a homomorphism.
Example 2.4.2 Let us discuss an endomorphism of the additive group Z of integers.

Consider a mapping f:Z — Z given by f(x) = 2x forall x € Z.
For x,y € Z We have

fx+y) =2(x+y)=2x+2y =f(0) +f(¥)
Hence f is a homomorphism of Z into itself, i.e. f is an endomorphism.

Example 2.4.3Consider the multiplicative group G ={...,372,37%,3°,3%,32,...}. The mapping
f:Z — G defined by f(x) = 3* for all x € Z is an isomorphism from the additive group (Z, +)
onto the multiplicative group (G,-). Let us see how.



(1) f is a homomorphism, i.e. f preserves compositions: Let x,y € Z.

Then f(x +y) =3*Y =3%-3Y = f(x) - f(y)

(2) f is abijection: Let a,b € Z. Then
fla)=f(b)=3*=3"=a=b

Hence f is one to one.

Alsoy € G, theny = f(x) = y = 3* = x = logz y. Obviously log;y € Z forevery y € G, i.e.
y € G = 3Jlog; ¥ € Z such that f(log; y) = 3'°83Y = y. Hence f is onto.

Therefore f is an isomorphism of Z onto G. Hence the additive group of integers is isomorphic to
the multiplicative group G, i.e. Z = G.

Example 2.4.4 The additive group of all real numbers (R, +) is isomorphic to the multiplicative
group of all positive real numbers (R*,-). The exponential map f: R — R*defined by f(x) = e*
for all x € R is an isomorphism.

(1) f is ahomomorphism: Let x,y € R.
Then f(x +y) =e*Y =e* -e¥ =f(x) f(y)
(2) f is abijection: Let a,b € R. Then

f@)=f(b) =e* =e? = Ine*=Ine’ =a=5»b
Hence f is one to one.
Also y € Rt = JIny € Rsuch that f(Iny) = e'™¥ = y. Hence f is onto.
Therefore R = R*.

Example 2.4.5 Now we show that the multiplicative group of nth roots of unity is isomorphic to
the additive group of integers modulo n, i.e. (Z,, +,).

Let G = {1=2¢°¢, 2 .....,{" 1} be the group of nth roots of unity, where { = e°"/n. We have
Z, =1{0,1,...,n — 1}. Let us define a mapping ¢: G — Z, by ¢({") =r,where r =0,1,...,n —
1.
(1) ¢ is a homomorphism: Let {",{° € G, hence
©((7C%) = p("*%) = (¢%) = k where k = r + s (modn), i.e. k = r+,s
Thus ({"¢%) =T+, = @({M)+,0(°)
(2) p isabijection: Let {",{° € G, then p({") = p({’) = r =s

— eZn'ir/n eZn'is/n

) CT — (S
Hence ¢ is one-one. Since the number of elements in G is equal to the number of elements in Z,,
therefore ¢ must be onto. Thus ¢ is a bijection.

Therefore ¢: G — Z,, is an isomorphism of G onto Z,, i.e. G = Z,.




2.5 Some properties of homomorphism

Proposition 2.1 Let f be a homomorphism of a group G into a group G', then
(i) The identity e of G is mapped onto the identity e’ of G', i.e. e’ = f(e)
(i) f@™) = [f(@]™
Proof (i) Let a € G, then f(a) € G'. Since e’ is the identity of G’, hence
e'f(a) = f(a) = f(ea) = f(e)f (a)
The right cancellation law in G’ gives e’ = f(e).
(i) We have e’ = f(e) = f(aa™) = f(a)f(a™) ,
= fa™) = [f(@]™

Proposition 2.2 Let f: G — G’ be an isomorphism of a group G onto a group G'. Let a € G, then

o(a) = o[f(a)].
Proof: Suppose o(a) = nand [f(a)] = m . Then
a"=e= f(a") = f(e)
= f(aa..ntimes) = e’, sincee’ = f(e)
= f(a)f(a) ...ntimes = e’, since f is a homomorphism
= [f(@]"=¢
= msn
Example: Let f: G — G' be defined as f(x) = e', Vx € G, then f is a homomorphism.
Againo[f(@)] =m = [f(a)]" =€’
= f(a)f(a)...mtimes =¢e’
= f(aa..mtimes) = e’
= f(a™) =f(e)as e’ = f(e)
= a™ = e, since f is an isomorphism and hence one-one
= ns<m
Thus m<nandn<m=m=n.
Example: Let f: G — G' be defined as f(x) = x, Vx € G, then f is a isomorphism

We shall make a detailed study of homomorphism theorems in Block-11




2.6 Subgroups of a group

Sometimes you see a group inside the group table of a given group. For example, if you observe
the group table of the multiplicative group {1, —1, i, —i}, the shaded section indicates the presence
of another multiplicative group {—1,1}. This group is called a subgroup of the original group.

: 1 -1 i =i
1 1 -1 i -1

-1 | -1 1 —i i

i l —-i | -1 1

=i | - i 1 -1

Now we shall make a detailed study of these subgroups.

Definition: Let (G,*) be a group and H be a non-empty set subset of G then a binary operation
xy: H X H — H is said to be the restriction of ‘*’ or binary operation on H induced by “*’ if
a*xyb=axbforalla,b € H.

Definition: Let (G,*) be a group and H be a non-empty set subset of G then H is said to be a
subgroup of G, if

(1) H is closed with respectto *,i.e.a* b € H forall a,b € H.
(2) H is itself a group with respect to binary operation “*” induced by .

If H is a subgroup of G, we denote itas H < G. If H is a subgroup of G and H # G, we shall write
H < G. Since the binary operation is restricted to a subset of G, we may denote both the
operations “** and ‘*y’ multiplicatively.

Example 2.6.1 The additive group of integers (Z,+) is a subgroup of additive group of rational
numbers (Q, +), i.e. Z < Q. Similarly Q < R under operation of addition.

Example 2.6.2 Consider the set E = {..., —4,—2,0,2,4, ... } of all even integers. You can verify that
it is a group under addition. Hence E < Z.

What about the set O of odd integers? Certainly Not. Even the closure property is not satisfied, i.e.
3+5=8¢0.

Example 2.6.3 The multiplicative group {—1,1} is a subgroup of the multiplicative
group {1,—1,i, —i}.

Example 2.6.4 The subset A3={(} g 3)(% g i)(é i ;)} is a subgroup of

symmetric group S;.

Example 2.6.5 In unit 1, we have shown that the set G = {1 = ¢°,¢, 3, ....., (" 1} of nth roots of
unity forms a group under multiplication. It is a subgroup of the group(C.,,") of nonzero complex
numbers under multiplication.



For any group G we have G < G, Hence G itself is a subgroup of G. Also if e is the identity
element of G, the set {e} is also a subgroup of G. These two subgroups G and {e} are called trivial
or improper subgroups. The subgroups other than these two are called proper subgroups.

Proposition 2.3 Let H be a subgroup of a group G. Then
(i) The identity of H is the same as that of G.
(ii) The inverse of a € H is the same as the inverse of a in G.

Proof: (i) Let e and ey be the identities of G and H respectively. Leta € H. Thena € G as H €
G.

Now ea = a, since e is the identity of G.
Also a € H = aey = a, since ey is the identity of H.
Therefore ey = ae = ey = e, by left cancellation law in G.

(ii) Let a € H. Let b be the inverse of a in H and c be its inverse in G. Then we have ab = e and
ac = e (since e is the identity for both G and H).

Hence = ac = b = ¢, by left cancellation law in G.

The subsets of a group are also quite interesting. A non-empty subset K of a group G is called a
complex of G.

Definition: If H and Kare two complexes of a group, then we define
HK ={x € G:x = hk,h € H, k € K}

Sincehe€e Hk€e K= h,k € G= hk € G,hence HK € G.

and H™ ' ={h™1:h € H}

We can show that the multiplication of complexes is associative.

If H,,H, and Hsare any three complexes of G and h, € H;, h, € H, and h; € H5, then
hi(hohs) € Hy(HzH3). Since hy(hyhs) = (hihy)hs € (HiH;)Hs, hence Hy (HyH3) S (HiH,)Hs.
Similarly we can show that (H,H,)H; < H,(H,H3). Thus H,(H,H3) = (H H,)H;.

Let us have some examples to illustrate these concepts. Consider the multiplicative group of fourth
roots of unity,i.e. G = {1,—1,i,—1}. Let H,K < G, suchthat H = {1,i}, K = {i,—i,—1}. Then

HK = {1i,1(=1),1(=1),ii,i(—=0),i(-1)} = {i, —i,—1,1}
H'={1"1i1}={,-i}
Proposition 2.4 H,and H, are any two complexes of G, then (H;H,)™* = H, *H, "

Proof: Let x € (H,H,)~ ! then there exist h; € H,, h, € H, such that



x = (hyhy)™' = hz_1h1_1 €H, 'H,™!

Hence (H,H,)~' < H,”'H,~*. Similarly we can show that H, *H,~' < (H,H,)~'. Therefore
(HiHp)™ = H,"'Hy "

Proposition 2.5 If H is any subgroup of a group G, then H™! = H.

Proof: Let h™1 € H™1. Then h € H. Since H is a subgroup, henceh € H = h~! € H. Thus
h™'e H' = h~1 € H. Therefore H~! € H.

AlsoheH=hleH=(hY) e '=heH ' iee HSH
Hence H™! = H.

Now we shall prove an important criterion which may serve to test whether a given non-empty
subset H of a group G is a subgroup of G.

Proposition 2.6 A non-empty subset H of a group G is a subgroup of G if and only if
a,b€H=ab teHforalla,b €eH
Proof: Let us first suppose that H is a subgroup of G. Then
a€EHbeEH=a€eHDbeH
= ab '€eH
Conversely, suppose that H is a non-empty subset of a group G such that
a,beEH=ableH
Hence a € H.a € H = aa ! € H = e € H, i.e. the identity element e € H.
Nowe € Hya € H = ea ! € H= a~! € H, each element of H has its inverse in H.
Alsoa € Hbe H=a€H,b~t € H= a(b~')"! € H, by the given condition
= ab€H
Hence H is closed under composition in G.

The elements of H are none but the elements of G and the associative law holds in G, therefore it
must also hold in H.

Thus we see that the given condition implies that H is a subgroup of G.

Note: In case of additive groups, we have b1 = —b, hence above criterion becomes: A non-empty
subset H of a group G is a subgroup of G if and only if

a,beH—=a—-b€eEH



Proposition 2.7 A non-empty finite subset H of a group G is a subgroup of G if and only if H is
closed under given composition, i.e.a,b € H = ab € H.

Proof: Suppose H is a subgroup of G, then obviously H is closed under given composition, i.e.
a,b € H= ab € H.

Conversely, suppose that H is a non-empty finite subset of a group G such that obviously H is
closed under given composition, i.e. a,b € H = ab € H. We show that H is a subgroup of G.

The associative law holds in H as it holds in G. Now it remains to show thate € H and a € H =
a~leH.

Let a € H. Then by closure property (which is assumed here) all the elements a, a2, a® ... belong to
H. Since H is finite, hence all these elements are not distinct. Hence for some positive integers r
and s (r > s), we have

a'=aS=>a" " =e
Now r —s > 0 hence a"~° € H (as all positive powers of a belong to H). Therefore e € H.
Sincer—-s>0=>r—-s=>21=r—-s—-1=0.
Now aa” 571 = "5 = e = a" 51 is the inverse of a.
Thus H is a group in itself under the composition in G, i.e. H is a subgroup of G.
Example 2.6.6 For any m € N, mZ = {mk: k € Z} is a subgroup of Z.
We shall use the above criterion to show that mZ is a subgroup.

Since 0 € mZ, hence mZ is non-empty. Let a, b € mZ then there exist r, s € Z such that a = mr
and b =ms.Nowa—b=mr—ms =m(r—s) E mZasr —s € Z. Hence mZ is a subgroup of
Z.

Example 2.6.7 We have seen in unit 1 that the general linear group of degree n, i.e. GL,(R) is a
group under matrix multiplication, where

GL,(R) = {A: Ais an n X n matrix with entries from R and det(4) # 0}

Let us define a subset of GL,(R) as SL,(R)={A€GL,(R): det(Ad) =1}
We shall show that SL,,(R) is a subgroup of GL,,(R). Let A, B € SL,(R), then det(4A) = 1 and
det(B) = 1.

1 —
det(B) o

Now det(AB~1) = det(4)det(B~1) = det(4)

Moreover A4,B € SL,(R) = A,B € GL,(R) = AB~! € GL,(R), since GL,(R) is a group. Thus
AB™! € GL,(R) such that det(AB~!) = 1. Hence AB~! € SL,(R), i.e. SL,(R) is a subgroup of
GL,(R). This subgroup is called special linear group of degree n.

2.7 Properties of subgroups




Proposition 2.8 A non-empty subset H of a group G is a subgroup of G ifand only if HH™1 = H

Proof: First suppose that H is a subgroup of G. Let c € HH™1 then ¢ = ab~? for some a,b € H.
Now H is a subgroup, hence a,b € H = ab ' € H, i.e.c€ H. Thus HH ' € H. Also if h € H,
thenh = he =he ' € HH ,ie. H € HH . Therefore HH ! = H.

Conversely, suppose that HH™! = H, hence HH™* € H. Now ab~! € HH~! for some a,b € H.
Since HH™* € H, hence ab-' €e HH™* = ab ' € H. Thus a,b € H = ab ' € H, i.e. H is a
subgroup of G.

Proposition 2.9 If H,and H, are two subgroups of a group G, then H, H, is a subgroup of G, if and
Only if H1H2 = H2H1.

Proof: Let us first suppose that H;H, = H,H,;. We know that H is a subgroup of G if HH™ = H.
Hence to show that H, H, is a subgroup of G, we have to show that (H,H,)(H,H,)™! = H,H,.

Now (H,H,)(H,H,)™" = (H,H;)(H,Hp)™*
= (H{H,)(H, "H,™") since (HyH,)™* = Hy, "H, "
= [H,(H,H,™")]H, ™" by associativity
= (H,H,)H, ™", since H, is a subgroup, H,H, * = H,
= (H,H,)H,*, since HH, = H,H,
= H, (H1H1_1)
= H,H, , since H, is a subgroup, H;H, ' = H,
= H,H,
Conversely, suppose that H; H, is a subgroup of G. Then
(H,H,)"' = HH, = H,”*H,”' = H;H, = H,H, = H,H,
This completes the proof.
We can infer the following result from above proposition-
If H,and H, are two subgroups of an abelian group G, then H; H, is a subgroup of G.
Proposition 2.10 If H,and H, are subgroups of a group G, then H; N H, is also a subgroup of G.

Proof: Since e € Hyand e € H,, hence e € H N H,. Hence Hy N H, + @. Let a,b € H; N H,,
then a,b € H, and a,b € H,. Now H,and H, are subgroups, hence a,b € H; = ab™! € H, and
a,b € H, = ab ! €H,.

Finallyab ' € H; and ab™ ' € H, = ab™! € H, N H,.

Thus a,b € H, N H, = ab™' € H, N H,, i.e. H; N H, is a subgroup of G.



Now you may ask whether the union of two subgroups is also a subgroup. Not necessarily. For
example, 27Z and 3Z are subgroups of Z under addition. Now

2ZU3Z ={...,—4,-3,-2,0,2,3,4, ...}

You can observe that 2Z U 3Z is not closed under addition as 3,4 € 2ZZU3Z but 3+4=7 ¢
27U 3Z. Therefore 2Z U 3Z is not a subgroup of Z. Hence If H,and H, are subgroups of a
group G, then H; U H, is not necessarily a subgroup of G. The next proposition tells you the
situation in which H; U H, is a subgroup.

Proposition 2.11 The union of two subgroups is a subgroup if and only if one is contained in the
other.

Proof Let H;and H, be two subgroups of a group G. First suppose that either H; € H, or H, € H;.
Then either H; U H, = H, or H; U H, = H,. But H;and H, be two subgroups and hence H; U H,
is also a subgroup.

Conversely, suppose that H; U H, is also a subgroup. Now to prove that either H; € H, or
H, € H,, assume on the contrary that H; € H, and H, & H;.

H, € H, = there is an element a € H, such thata ¢ H,
and H, € H, = there isan element b € H, such that b & H,
Nowa € Hyandb € H, = a,b € H; UH, = ab € H; U H, since H, U H, is a subgroup.
ab€e HHUH, = ab € Hyorab € H,
Since a € H; = a~! € Hy, hence if ab € H,, then we have
al€H,,ab€ H = a '(ab) EH;, = (a'a)bE H, =>ebEH, = b E H,
Which is not possible as b ¢ H;.
Again if ab € H, then
beH,abeH,=b'€eH,ab€H, = (ab)b"' € H, = a(bb™!) € H,
= ae€H,=a€H,

Which is also not possible as a € H,. Hence our assumption that H; € H, and H, € H is wrong
and we must have either H; € H, or H, € H;.

Proposition 2.12 Arbitrary intersection of subgroups of a group is a subgroup.

Proof: Let G be a group and let {H,:t € T} be a family of subgroups of G. Where T is an index
set. We have to show that the intersection of this family, N.er H; , IS a subgroup of G. Since
e € H, forall t € T, hence e € N¢er Hy, 1.€. Neer Hy 1S NON-empty. Let a, b € N;er H; thena, b €
H,forallt € T.

Now H, is a subgroup for all t € T, hence



a,b€H, =ab teH forallteT
= ab~! € Nier He

Thus a,b € N¢er He = ab™! € Ner Hy. Consequently N ey H, is a subgroup of G.
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Sometimes, you observe that every element of a group G can be written in the form of a™ for some
a € G, where n is any integer. For example, the multiplicative group G = {1, —1,i, —i} of fourth
roots of unity can be written as ¢ = {i*, i?,i',i3}. In this section, we shall study such groups.

Definition: A group G is called cyclic if every element of G is of the form a™ for some a € G,
where n is any integer. The element a is then called a generator of G. i.e.

G={a"“nezr}

In additive notation, a group G is cyclic if G = {na:n € Z}. Thus a group G is cyclic if it can be
generated by a single element. If G is cyclic group with a generator a, then we write G = (a) and
say that G is generated by a.

A cyclic group may have more than one generator. For example, the group of cube roots of unity
has w and w? as its generators, i.e.

G ={1,w,w?} = {0 w, w?} =(w)
and G = {1, w, w?} = {(0?)3, (0?)?, w?} = (w?)
Let us have some more examples.
Example 2.8.1

(1) The additive group of integers Z is a cyclic group as Z = (1). Also since every integer x can be
written as (—x)(—1), hence Z = (—1).

(2) The additive group of integers modulo 6, i.e. (Zg, +¢) is generated by 1 as 1 =11, 2 =
1+41=12,3=134=1%5=1% and 0 = 1°. Here 5 is another generator as 1 = 5°, 2 = 5%,
3=53%4=5%5=5!0=5°

(3) The group U,, = {1,3,7,9} under multiplication modulo10 is a cyclic group with generators 3
and 7 as U;, = {1,3,7,9} = {3% 31,3332} = (3). Also Uy, = {1,3,7,9} = {74, 73,71, 7%} = (7).

(4)The multiplicative group G = {1 =¢°¢,¢?,.....,{"~'} of nth roots of unity is cyclic with a
generator ¢ = e~ "'/,

(5) You can verify that the set of matrices

1 A et iy M e



forms a cyclic group under matrix multiplication with generators H _01] and [_01 ﬂ

2.9 Properties of cyclic groups

Proposition 2.13 Let G = (a) be a cyclic group with a generator ‘a’. Then a™? is also a generator
of G,ie. G ={a™?1).

Proof Let x € G, then x = a” for some r € Z. Now we can write x = a” = (a™1)™". Hence a™! is
also a generator of G, i.e. G = (a™1).

Proposition 2.14 Every cyclic group is abelian.

Proof Let G be a cyclic group with a generator a, i.e. G = {(a) . Let x,y € G, then x = a” and
y = a® forsomer,s € Z.

Now xy = a"a® = a"™s = a’*" = a’a” = yx forall x,y € G.
Hence G = (a) is abelian.

Note: An abelien group need not be cyclic. For example the Kliens four group Vs ={e, a, b, c}
is abelian but not cyclic.

Proposition 2.15 Let G = (a) be a cyclic group generated by a. Then o(G) = o(a), including the
case when o(G) is infinite.

Proof: Let o(a) =n. First suppose that n is finite, i.e. n < oo. Then the elements e =
a® at,a?, ... .. ,a™ 1 are all distinct, since if a” =a’, 0<r <s<n, then a" 5 =e where
r —s < n. Which is not possible as n is the smallest positive integer satisfying this property. So G
must have at least these n elements.

Now if a' be any element of G, then by division algorithm, t = nq + k, where 0 < k <mn.
Therefore

nq+k

at =a = (@M)9a* = ela* = a* € {e = a% al,a? ... ,a

Thus each element of G is one of the elements e = a% at,a?, ...... ,a™ 1, i.e. G has exactly n
elements. Hence o(G) = n.

Next suppose that o(a) is infinite, then there exists no integer n such that a™ = e. Hence all the
powers of a are distinct elements of G, since if a” = a®, then a"~° = e ,which is not possible.
Thus the order of G is infinite.

Proposition 2.16 A finite group G of order n is cyclic if and only if it contains an element of order
n.

Proof First suppose that G is a cyclic group of order n generated by a € G. Then by above
proposition, o(a) = n.

Conversely, suppose that G is a finite group of order n containing an element b of order n. Then
H = {b":r € Z} is a subgroup of G having n distinct elements, i.e.



H={e=5b%b1b7.... , b1}
Since H € G and o(H) = n, H = G. Therefore G is a cyclic group generated by b.
Proposition 2.17 Let G be agroupand a € G. Then H = {a":r € Z} is a cyclic subgroup of G.
Proof Let x,y € H. Then there existr,s € Z such that x = a” and y = a°.
Nowxy l=a"(a) 1=a"aS=a""S€eH

Hence H is a subgroup of G. Since H is cyclic, this subgroup is a cyclic subgroup of G generated
by a.

Definition: A subgroup H of a group G is called a cyclic subgroup generated by a iff there exists
an element a € G suchthat H = {a":r € Z} and we write H = (a).

Proposition 2.18 Every subgroup of a cyclic group is cyclic.

Proof Let G be a cyclic group generated by an element a € G. Let H be a subgroup of G. If H = G
or H = {e}, then obviously H is cyclic. Suppose that H = G and H (# {e}).

Since G = (a), hence each element of H is of the form of a” where r € Z. Now a" € H =
(@)t e H ,ie. a" € H.So H always contains positive powers of a. Let P = {n € Z*:a" € H}.
Then P is a non-empty set of positive integers. By well ordering principle, 2 has a minimum
element m (say). Now we show that H = (a™).

Since H is a subgroup and a™ € H, hence (a™) < H. Let a' € H, then by division algorithm
t=mq+k,0<k<m.

Nowa™ e H = (a™)?=a"™ € H= (a™)~ 9= (a™)"! € H, hence
a¥=at™™ =qt(@™) %€ H, k<m

But m is the least positive integer such that a™ € H, hence k <« m, i.e. k = 0. Therefore t = mgq
and so at = (a™)? € (a™). Hence H < (a™), which gives H = (a™), i.e. H is a cyclic subgroup
of G with generator a™.

However the converse is not true, i.e. there exist groups which are not cyclic but whose proper
subgroups are all cyclic. For instance, the symmetric group S; is not cyclic but it has cyclic
subgroups, namely,
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Proposition 2.19 Let G be a cyclic group generated by a and o(a) = n then

(i) G has exactly two generators namely a and a™?! if o(a) is infinite (or equivalently G is an
infinite cyclic group).

(ii) G is generated by a™ if and only if (m,n) = 1, i.e. m and n are relatively prime.



Proof (i) Suppose that o(a) is infinite, i.e. G = (a) is an infinite cyclic group generated by a.
Hence there does not exist any integer k such a®* = e. Now by closure property all the integral
powers of a are elements of G, i.e. ....,a %,a 1,a%al,a? .. € G. No two distinct integral
powers of a are equal, for if a” = a®, then a"~° = e ,which is not possible as o(a) cannot be
finite. Therefore we can write G = {.....,a"%,a1,a% a?, a? ...}. Also a” € G can be written as
a” = (a1)™". Hence a1 is also a generator of G.

Moreover , if a™ is a generator of G where m # +1. Then a € G = 3k € Z such that a =
(a™)* = a™*. Since m # +1, hence mk # 1. Therefore two distinct powers of a are equal. Thus
we get a contradiction. Hence a™ cannot be a generator of G if m # +1. Hence G has only two
generators, namely a and a™?.

(ii) First suppose that (m,n) = 1, then by Euclidean algorithm there exist integers x and y such
that mx + ny = 1. Hence

Qmxtny — gl — gMX g = g
= (a™)*(@")” =a
= (@)*=aas(@a™)Y =e¥ =e¢
Thus each power of a can be expressed as some integral power of a™, i.e. a™ is a generator of G.

Conversely, suppose that a™ is a generator of G. Hence we have o(a™) = n. Let (m,n) = d.
Then there exist integers b and ¢ such that m = bd and n = c¢d and (b,c) = 1. Now (a™)¢ =
a™ = gP¥c = (q4)? = (@™)? = e? = e. Hence (a™) < c . Since c =g , hence if d # 1, then
¢ < n. But then o(a™) < n. Therefore we must have d = 1.

The implications of this proposition are interesting. This tells us that the number of generators of a
finite cyclic group of order n is equal to number of integers less than n and relatively prime to n.
The Euler’s totient function ¢ (n), by definition, represents this number.

For example, consider the group U,g under multiplication modulo18. It is a cyclic group of order
6 and we have

Uy = {1,5,7,11,13,17}

Since 5% = 1 (mod18), hence o(5) = 6. Therefore 5 is a generator of U;g. Now 5™ will be a
generator of U, g, if m is relatively prime to 6. Since ¢(6) = 2, hence there are two numbers
relatively prime to 6,i.e. 1 and 5. Therefore the generators of U,g are 5 and 5°, i.e. 5 and 11 as
55 = 11 (mod18).

2.10 Subgroups generated by a subset of a group

In the formation of cyclic subgroups of a given group, we have a single element called
generator to generate the entire subgroup. You will also notice that the cyclic subgroup (a)
generated by any element a of a group G is the smallest subgroup of G which contains the set {a},
i.e. if H is any subgroup which contains {a}, then H also contain {a). We can generalize this



technique to generate a subgroup by an arbitrary subset of a group. So we give the following
definition:

Definition: Let A be any subset of a group G. The smallest subgroup of G containing A is called
the subgroup generated by A and is denoted by (A).

We have already seen that the arbitrary intersection of subgroups of a group is a subgroup. Now
we show that if we have a family of all subgroups of G containing A, the intersection of this family
is the smallest subgroup of G containing A.

Proposition 2.20 If A is any subset of a group G and F is the family of all subgroups of G
containing 4, i.e.F ={H:H < G,A < H}, then the intersection of this family is the smallest
subgroup of G generated by A.

Proof: This family F is non-empty as G € F. Let K = Nyer H = Nacu H be the intersection of
H=<G

the family of subgroups of a group G containing A. Now

AEHforallHET:AEﬂH

HEF

We know that such an intersection is a subgroup of G. If M is any subgroup of G containing A,
then M € F. Since K is the intersection of all such subgroups, hence each element of F must
contain K, i.e. K € M. Hence K is the smallest subgroup of G generated by A.

In light of above proposition, we can write
@ =[ et
H<G

When A = {a4, ay, ..., a,}, we write (A) = (a4, a,, ..., a,). If A and B are two subsets of G, then
we write (4, B) for (A U B).

If A= 0, then (4) = {e}. If (A) = G, then we say that the group G is generated by the set A and
the set A is called the set of generators of G. If A is finite and (4) = G then we say that G is
finitely generated.

The following proposition gives an easier way to describe (A) than the previous definition.
Proposition 2.21 If A is a non-empty subset of a group G, then
(A) = {a;™a,™ ...a,"*:k € Z*,a; € Aand n; = +1 for each i}

Proof Let K = {a;™a,™ ...a;™:k € Z*,a; € Aand n; = +1 for each i}. Then K is the set of all
finite products of elements of A and inverses of elements of A. Then K # @. Let x,y € K such
that x = a,™a,™ ... aq, " and y =b,"h,™* ... b, then
xy~l =a;™Ma,™ ...a,™bs "She_; 57t . by . Hence xy~! is a product of elements of A
raised to powers +1, therefore xy~! € K. Thus K is a subgroup of G.



Let a € A, then we can write a = a' € K. Hence A € K. Since (A) is the smallest subgroup
containing A, therefore (4) € K. Now (A) is a group containing A4, hence it contains elements of
the form a;™ta,™ ...a; ™, i.e. K € (A). Thus we have K = (A).

We observe that the products such as ‘aaabbaba™’ can be written as a3b?aba™1. Hence we can
also write

(A) = {ay™a,™ ...aq,"*: k € Z*,a; € A, a; #+ a;,, and n;EZ for each i}
Example 2.10.1

(1) Consider the symmetric group Ss = {f1, f2, f3, fa, f5, fo} Where

AeG g ) rC s gam( i DA 3
f5=(3 2 1)‘f6=(2 1 3)

Then we observe that fsf; = f1, fofs = fs fo> = far f>° = fi. Hence every member of S; is
expressible as a product of members of A = {f,, f}, i.e. S35 = {f2, fe)-

(2) The quaternion group Qg = {1,—1,i,—i,j,—j, k, —k} is generated by the subset A = {i,j} as
ij=k 3=—i, j3=—j, k3=—k, i?=—-1,i*=1.Thus Qg = (i,j) .

(3) The set of integers Z is generated by {1}, i.e. Z = (1).

2.11 Summary

In this unit, we have

(1) Defined homomorphism between groups (G,*) and (G',x") as a composition preserving
mapping f: G — G',i.e. f(axb) = f(a)+" f(b)foralla,b € G.

(2) Defined isomorphism as a bijective homomorphism. The concept of isomorphic groups is
discussed with examples. We have more to say on this topic in Block-II

(3) Defined subgroup of a group as a non-empty subset of the group which is a group in itself.

(4) Discussed the properties of subsets (complexes) and subgroups of a group

(5) Defined cyclic group with examples.

(6) Discussed the properties of cyclic group.

(7) Defined the subgroup generated by a subset as the smallest subgroup containing that subset.
2.12 Self assessment questions

(1) Show that the mapping f: (R*,”) — (R, +) defined by f(x) = In(x) for all x € R* is an
isomorphism.

(2) Show that the additive group of integers Z is isomorphic to additive group G = {...—
2m,—m,0,m,2m, ...} where m is a non-zero integer.



(3) Show that the multiplicative group G = {—1,1} is isomorphic to the group (G',0) where
G ={f.fo}, itR—> R, f:R — Rsuchthat f;(x) = x, fL(x) =1 —x.

(4) Show that the multiplicative group of cube roots of unity is isomorphic to the additive group of
residue classes modulo 3.

(5) Show that all those elements of an abelian group G which satisfy the relation a? = e constitute
a subgroup of G.

(6) Show that every finite group of composite order possesses proper subgroups.
(7) Show that an infinite cyclic group is isomorphic to the additive group of integers.
(8) Show that any cyclic group of order 10 has four generators.
(9) Show that any two cyclic groups of the same order are isomorphic.
(10) Prove that

(i) In the group Z,,, (8,14) = {0,2,4, ...,18}

(ii) In the additive group of integers Z, (4,19) = Z

(ii1) In the additive group of real numbers R,

(2,n,\/§) = {Za + b1 + ¢cV3: a,b,c € Z}

(11) Does there exists a homomorphism between the Kliens four group V4 and the additive group
of integers?
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3.1 Introduction

In unit 1, we introduced the notion of congruence modulo n. Let a, b € Z, then a=
b (mod n) if and only if n divides a — b or equivalently a — b is an integral multiple of n. Thus
a = b (mod n) if and only if a — b € nZ, the subgroup consisting of multiples of n. Hence we see
that the congruence between two integers is closely related to the subgroup nZ. Now we shall
generalize this congruence relation to any group G and you will observe how a group can be
partitioned using this congruence relation.

Definition: Let H be a subgroup of a group G. Leta, b € G. Then a is said to be left congruent to
b modulo H if and only if a=1b € H. Symbolically

a=,b(modH) ifandonlyif a'beH
and a is said to be right congruent to b modulo H if and only if ab~! € H. Symbolically
a =g b(modH) ifandonlyif ab '€ H
Now we shall see that these relations are equivalence relations in the group G.
Proposition 3.1 The relations subgroup =g and =; are equivalence relations in the group G.
Proof: We shall prove the result for =5. A similar proof can be given for =; .
(1) Reflexivity: Since H is a subgroup, hence
e€H=aa'€H = a=ia(modH)

(2) Symmetry: a =g b (mod H) = ab ' € H



= (ab™1)"1 € H, since Hisasubgroupandc e H = c 1 € H
— (b)) laleH

= bateH

= b =z a (mod H)

Transitivity: a =g b (mod H) and b =; ¢ (mod H)

= ab 'eHandbc™l€H

= (ab™Y)(bc™) €EH

= a(b™'h)c"l €H by associativity
= (ae)c"eH

= (ae)c"leH

=acleH

= a =i ¢ (mod H)

Hence the relation = is an equivalence relation on the group G. Similarly, we can show that =, is
an equivalence relation on G.

We know that an equivalence relation on a non-empty set always determines a partition. Hence =,
defines a partition of G. Similarly =, partitions G into cells or classes. In this unit, we shall define
and study these classes in details. These equivalence classes are called cosets and this partitioning
of group is called coset decomposition of group.

3.2 Objectives

After reading this unit, you should be able to

® Describe the left and right decomposition of a group
Define left and right cosets of any subgroup.
Illustrate properties of these cosets

Prove the Lagrange’s theorem
Discuss applications of Lagrange’s theorem
Define the index of a subgroup in a group

Prove the Euler’s theorem and Fermat’s theorem

illustrate the application of Fermat’s theorem to RSA cryptosystem

3.3 Coset decomposition of a group

We have seen that the relation =5 is an equivalence relation on the group G. Therefore it will
partition the group G into disjoint equivalence classes. Let a € G, then the equivalence class of a
can be given as

[a] ={x € G:x = a (mod H)}
or ={x€G:xa ' e H}
Let us take an example to illustrate the decomposition of a group induced by this equivalence
relation. Consider the symmetric groupS; = {f1, f2, fs, f4. fs, fe} Of degree 3 where



4= Y ael
f5:(3 2 1)’f6:(2

You can see that H = {f;, f,} is a subgroup of S5. Now

[l ={f €Ss:ffi" € H}
Remember fg = fog for f,g € Ss.
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Similarly, f3f1 " = f3, fafs " =fa fsfi ~ =fs. fefir = Jfe
Here f,f, ' = f, € Hand f,f,"* = f, € H . Therefore
. [fl] = {f1'f4} =H
Now [f;] ={f €Ss:ff,”" € H}
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Using the composition table of the symmetric group S5 given in unit 1, we can calculate these
elements easily, i.e.

fzfz_1 =ffs=hH ,f3f2_1 =fafs = f2!f4f2_1 =fafz = fe’fsfz_1 = fsfs = fu,
and fof, " = fefs = fs -
Here since f,f, ' = f, € H and fif, ' = f, € H , therefore
[f2] = {2 fs}

Similarly [f3] = {f3, fe}, Ufal = U, i}, [fs] = {fs, 23 and [fs] = {fe, f33-
Hence the disjoint equivalence classes are

[f1] = [fa] = {f1, fu}

[f2] = [fs] = {2 f5}

and [f3] = [fel = {fs, f6}
Therefore S; = [f1]U[f2]U[fs] or you can say S;=[fi]UI[fs]U|[fs] etc. This is the

decomposition of the group Ssinduced by =g. These equivalence classes are called the right
cosets of the subgroup H in S;.
You will observe that [f;] = {f1, fa} = {fifi, fafi} or {f f1: f € H}
Similarly [£5] = {fo, fs} = {fife, fuf2} OF {f f>: f € H} etc. Therefore we can write

[9] ={fg:f € H}forany g € S;
We can use this representation for any arbitrary group G. So if H is any subgroup of G, then its
right coset in G generated by a € G is given by

la] = {ha:h € H}
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We use the notation Ha for [a] .Hence

Ha = {ha:h € H}
Similarly we can also obtain left coset decomposition of a group G. This decomposition is induced
by the relation =;. In that case, the equivalence classes are called the left cosets of the subgroup H
in the group G and the left coset generated by a € G is denoted by aH. Therefore

aH = {ah:h € H}
Now we are in position to define left and right cosets of a subgroup H abstractly.




3.4 Left and right cosets of a subgroup

Definition: Let (G,*) be a group and H be any subgroup of G. Leta € G. Then
Hxa={h~a:h € H} is called a right coset of H in G generated by a. Similarly the set
a*H ={axh:h € H} is called a left coset of H in G generated by a.
If e is the identity element of G, thene* H = H = H *e.
Example 3.1 Let H ={...,—4,—2,0,2,4, ... }. Obviously H is a subgroup of additive group of
integers Z. Let us construct right cosets of H in Z
H+0=H
H+1={h+1:h € H}
={..,-3,-1,13,..}
H+2={.—-4-2024.}=H
H+3={.,-3-113,.}=H+1
Also H + (-1) ={...—5,-3,—1,1,3,...} = H + 1, and so on. Therefore the distinct right cosets
of HinZ are H and H + 1. Obviously
Z=HU(H+1)
Also we observe that
(a€H+a (ilbeH+a<=H+a=H+b
(iH+a=H+b&<a—-beH
(iv) EitherH+a=H+bor(H+a)n(H+b) =0
Later on, we shall prove these properties in general setting.
Similarly, we can obtain different left cosets of H in Z.

Example 3.2 we know that H = {—1,1} is a subgroup of multiplicative group G = {1,—1,i, —i} of
fourth roots of unity.

The left cosets of H in G can be formed as follows-

1H =H,={-i,i},(-1)H ={1,-1} = H,and (=)H = {i,—i} = iH

Obviously G = H U (iH).

Note: Since it is convenient to use multiplication for the composition *, from now on (except when
necessary) we shall denote H * a by Ha and a * H by aH.

Proposition 3.2 If [a] = {x € G:x = a (mod H)}, then [a] = Ha.
Proof: Let h € H. Then
atha) *=a(a*h™) =(@aaHht=ert*=hleH

Nowax' € H & xa ' € H & x =g a (mod H), therefore ha =z a (mod H) and hence
ha € [a] forevery h € H,and so Ha < [a].

Let x € [a]. Then xa™! € H, i.e. there exists h € H such that xa™* = h or (xa™})a = ha =
x(a 'a) = ha = xe = ha = x = ha. Thus x € Ha. Hence [a] € Ha. The two inclusions
[a] € Ha and [a] € Ha imply that [a] = Ha.

Now we shall discuss some properties of cosets of a given subgroup H of a group G.




3.5 Properties of cosets

Let H be any subgroup of a groupG.
(1) h € H= hH = H = Hh.
Proof: Let h € H. Then hh' € hH for any h' € H. By closure property, hh' € H. Thus hH € H.
Also every element h' € H can be written as
K =eh' = (hh"Y)R' = h(h~1h")
Since h™*h' € H, hence h(h™th’) € hH, i.e. h' € hH
Thus H € hH.Now hH C Hand H € hH = hH = H.
Similarly we can prove that Hh = H.
(2)a€e Haforanya €G.
Proof: Since e € H, hence a = ea € Ha
(3) Leta,b € G.Thena € Hb < Ha = Hb
Proof: Let a € Hb. Then there exists h € H such that a = hb.
Now x € Ha < x = hya forsome h; € H

& x =hy(hb), hh, €H

< x = (h,h)b
S x € Hb
Hence Ha = Hb.

Conversely, suppose that Ha = Hb. Since a € Ha, hence a € Hb.
(4) Leta,b € G. Then Ha = Hb < ab ' € H.

Proof: Let Ha = Hb. Then a € Hb, i.e. a = hb forsome h € H.
Nowa=hb=ab '=heH,ie ab ! €H.

Conversely, suppose that ab™! € H. Then there exists h € H such that ab™' = h or a = hb.
Since hb € Hb, hence a € Hb and therefore Ha = Hb.

(5) Any two right cosets of H are either disjoint or identical.

Let Ha and Hb be any two right cosets of the subgroup H in G. If these are not disjoint then there
exists c € Han Hb, i.e. c € Ha and ¢ € Hb. Thus there exists h,, h, € H such that ¢ = h;a and
¢ = h,b. Therefore



hia = hyb
= a = h; " (hyb)
= a=(h, 'hy)b € Hb ash, *h, €H
= Ha=Hb sincea € Hb < Ha = Hb
I.e. if the right cosets are not disjoint, they are identical.
(6) The group G is the union of all right cosets of H in G.

Proof: Since x € Ha = x € G, forany a € G, hence Ha < G for any a € G. Therefore

UHaQG

Let x € G. Then Hx is aright coset of H in G and x € Hx. Therefore

xEG=>xEHx§UHa

aeG

i.e. G € UgegHa. Thus G = Uyeg Ha.
(7) There is a one-to-one correspondence between any two right cosets of H in G.

Proof: Let a,b € G. Then Ha and Hb are two right cosets of H in G. Define a mapping f: Ha —
Hb such that f(ha) = hb for all h € H. We show that f is a bijection.

(i) f is one-to-one: Let hy, h, € H. Then hya, h,a € Ha.
NOW f(hla) = f(hza) = hlb = hzb = hl = hz - hla = hza

(if) f is onto: Let hb € Hb. Then h € H and therefore ha € Ha. Thus to each hb € Hb ,there
exists ha € Ha such that f(ha) = hb.

Hence f is a bijection, i.e. there is a one-to-one correspondence between any two right cosets of H
inG.

Similarly, we can prove results for left cosets. Thus we have
(1) a € aH forany a € G.

(2) Leta,b € G. Thena € bH < aH = bH

(3) Leta,b € G. Then aH = bH < a™'b € H.

(4) Any two left cosets of H are either disjoint or identical.

(5) The group G is the union of all left cosets of H in G.



(6) There is a one-to-one correspondence between any two left cosets of H in G.

Proposition 3.3 There is a one-to-one correspondence between the set of left cosets of H in G and
the set of right cosets of H in G.

Proof: Let L ={aH:a € G} and R = {Ha: a € G} be the families of left cosets of H and right
cosets of H in G respectively. Define f: L — R, such that

f(aH) = Ha 'foralla € G.
First we show that f is well defined.
Let aH € L. Then a € G and therefore a™! € G. Hence Ha™! € R. Further let aH, bH € L, then
aH =bH = a'beH
= Ha 'b=H ashe H= Hh=H
= Ha '=Hb?!
= f(aH) = f(bH)
Thus f is a well defined map. Now we prove that f is a bijection from £ onto R.
(i) f is one-to-one: We have
f(aH) = f(bH) = Ha ' = Hb™!
=albHleH asHc=Hd cd'eH
=albeH
= aH = bH

(i) f isonto: Let Hb € R. Then b € G and hence b~! € G. Therefore b™*H € L. Now f(b™1H) =
H(b~Y)~1 = Hb.i.e. f is onto.

Thus f is a well defined bijective mapping from £ onto R. Hence the result.

Definition: Let H and K be two (not necessarily distinct) subgroups of a group G and let x €
G.The set HxK = {hxk:h € H,k € K} is called a double coset.

Proposition 3.4 Two double cosets are either disjoint or identical.

Proof: Let HaK and HbK be any two double cosets of a group G. If these are not disjoint, then
there exists c € HaK N HbK. Then ¢ = hak = h,bk, where h,h, € Hand k,k; € K.

Now HcK = HhakK = HaK, since Hh = H and kK = K.
Also cK = Hh bk,K = HbK ,as Hh, = H and kK = K.

Therefore we have HaK = HcK = HbK, i.e. HaK = HbK.



Now we shall prove an important theorem due to Lagrange.

3.6 Lagrange’s Theorem

Theorem 3.1 The order of each subgroup of a finite group is a divisor of the order of the group.

Proof: Let G be a finite group of order n and H a subgroup of G. Let o(H) =m and H =
{hi, hy, .. by} Hence 1 <m < n. Let a € G. Then Ha is a right coset of H in G. Define a
function f: H — Ha by f(h) = ha for all h € H. This mapping is a onto as if ha € Ha then
h € H and f(h) = ha. Also f is one-one since (h;) = f(hj) = h;a = hja = h; = h; , where

h;,h; € H. Hence H and Ha have the same number of elements, i.e. o(Ha) = o(H) = m.

Let Ha,, Ha,, ..., Haybe the distinct right cosets of H in G. Then these k distinct right cosets are
the distinct equivalence classes in G detemined by the relation of right congruence modulo H.
Hence we have

G=HayUHa,VU..UHaq,
= 0(G) = o(Ha,) + o(Ha,) + -+ o(Hay)
= 0o(G) =m+m+ -+ m upto k terms
= 0(G) = mk
= n=km
Hence m divides n, i.e. o(H) divides o(G).

Let us illustrate the result with some examples. Consider the multiplicative group of fourth
roots of unity, i.e. G = {1,—1,i,—i}. The group has a subgroup H = {1, —1}. Here o(G) = 4 and
o(H) = 2. Obviously o(H) divides o(G). So that means if H is a subset of a group G such that
o(H) does not divide o(G), then H cannot be a subgroup of G. Hence in above example, G cannot
have a subgroup of order 3. Here you will observe one more thing that For instance, the subset
H, = {i,—i} of G is of order 2, i.e. divisor of o(G), But H; is not a subgroup of G. So if o(H)
divides o(G), it does not mean that H is definitely a subgroup of G.

Also the full converse of above theorem is not true. That is, if m divides o(G), then it is not
necessary that G has a subgroup of order m. However, for finite abelian groups the full converse of
Lagrange’s theorem is true, i.e. an abelian group has a subgroup of order m if m divides o(G).

Another consequence of the theorem is that a group of prime order can have no proper subgroup as
the only divisors of a prime number p are +1 and +p.

Now we derive some consequences of Lagrange’s theorem.
Corollary 1 The order of every element of a finite group is a divisor of the order of the group.

Proof: Let G be a finite group of order n. Let a be an element of G of order m, i.e. o(a) = m.
Consider a cyclic subgroup (a) of G generated by a. We show that (a) contains exactly m
elements, namely, e = a°, al,a?, ... ... ,am L,



The elements e = a°,a?, a?, ... ... ,a™ 1 are all distinct, since if a” =a®, 0 <r < s <m, then
a"~® = e where r — s < m. Which is not possible as m is the smallest positive integer satisfying
this property. So (a) must have at least these m elements.

Now if at be any element of (a), then by division algorithm, ¢ = mq + k, where 0 < k < m.
Therefore

Thus each element of (a) is one of the elements e = a°, al, a?, ... ... ,a™ 1 ie. (a) has exactly {(a)
elements. Hence o({a)) = m.

By Lagrange’s theorem o({a))|0(G), i.e. m|o(G) or o(a)|o(G).
Corollary 2 Let G be a finite group and a € G. Then a°©@ = e,

Proof: Let 0(G) =n and o(a) = m. Then o({a)) = m and by Lagrange’s theorem m|n. Hence
we have n = mk for some positive integer k.

Since o(a) = m, hence a™ = e.
Now a™ = a™ = (a™k = ek = ¢, i.e. a°@ =e.
Proposition 3.5 Every group of prime order is cyclic.

Proof: Let G be a finite group of prime order p. Then G must contain at least two elements.
Leta € G such that a # e. Let o(a) = m. Then m > 2. Hence o({a)) = m, where (a) is a cyclic
subgroup of G generated by a.

By Lagrange’s theorem m must divide p. Since m > 2 and p is a prime number, hence we have
m = p. Therefore (a) = G, i.e. G is a cyclic group with a generator a.

Proposition 36 If H and K are finite subgroups of a group G, then
HK _o(H)o(K)
oHK) = S k)

Proof: Let D = H N K. Then D is a subgroup of G. Also D € K, hence D is a subgroup of K. Let
us decompose K into disjoint right cosets Dky, Dk, ..., Dk, of D. Where kq, k,, ..., k; are distinct

elements of K. By Lagrange’s theorem the number of such cosets is given by t = 2®) and we have

o(D)
t
K = U Dk,
m=1



Therefore

asD € H= HD =H.
Now we claim that the right cosets Hk,, Hk,, ..., Hk; are pairwise distinct. For if
Hk; = Hk; = ki, ' € H

But since k;k;~" € K, hence k;k;"' € HNK = D = Dk; = Dk; = k; = k;, a contradiction as
all k;’s are assumed to be distinct. Therefore the right cosets Hkq, Hk,, ..., Hk; are pairwise
distinct. Each of these cosets has o(H) number of elements. Hence we have

K H)o(K

3.7 Index of a subgroup

While proving the Lagrange’s theorem you noticed that k = % i.e. the number of right cosets
of Hin G = Zg This number is called the index of H in G. For example, the index of the

subgroup H = {1,—-1}inG = {1,—1,i,—i}is 2.

But for an infinite group G the quotient
definition.

ZEZ; does not make sense. So we have the following

Definition : If G is a group and H a subgroup of G, the number of distinct left (right) cosets of H
in G is called the index of H in G and is denoted by [G: H] or i;(H). If the group G is finite then

o(G)

[G:H] = o ()

Infinite groups may have subgroups of finite or infinite index. For example, the subgroup {0} is
of infinite index in the additive group Z and the subgroup (2), i.e. {....,—4,-2,0,2,4,...} is of
index 2 in Z.

Proposition 3.7 If H and K are two subgroups of a finite group G such that H € K, then
[G:H] = [G:K][K:H]

Proof: Since H and K are subgroups of G and H < K, therefore H is also a subgroup of K. Then
) K] = °© 0]
we have [G: H] = S and [G: K] = 5 and [K:H] = D’

. _ oG _ 0B o(K) _ . .
Now [G: H] = 22 = 238 x 2088 = [G: K][K: H].



Definition: Let G be a group and let p be a prime number. A group of order p* for some a > 1 is
called a p-group and the subgroups of G which are p-groups are called p-subgroups.

If G is a group of order p*m, where p + m, then a subgroup of order p“ is called a Sylow p-
subgroup of G.

Now we state some important theorems without proof.

Cauchy’s theorem: Let G be a finite group and p be a prime number dividing o(G), then G has an
element of order p.

Sylow’s theorem: If G is a group of order p®m, where p is a prime number not dividing m, i.e.
p t m, then G has a Sylow p-subgroup and the number of Sylow p-subgroups of G, n,, is of the

formn, =1+ kp ,i.e. n, =1 (mod p).

Consider the symmetric group S; on three symbols. We have o(S;) = 6 =2 X 3. Since 2 ¢ 3,
hence S; must have a Sylow 2-subgroup.

Weha\{eSE =3{f1;fz»fslﬁ‘i’f5’2f6}3’Where 1 2 3 1 2 3
f1=(1 2 3)’ fz:(z 3 1)’f3=(3 1 2)’f4=(1 3 2)’

(1 2 3 /1 2 3
f5_(3_ 2 1)’f6___(2 1 3)_' ] ) )
Then using the composition table given in unit-1, we can show that the cyclic subgroup generated

by £, is {fy) = {f1, fo} which is a Sylow 2-subgroup of S;.

Similarly, the other two Sylow 2-subgroup of S5 are (fs) = {f1, fs} and (f;) = {f1, fs}. Hence
there are three Sylow 2-subgroups of S5. This is justified as

3=1(mod?2).

Now we prove two very interesting and useful results.

3.8 Euler’s theorem

Theorem 3.2 If n is a positive integer coprime (i.e. relatively prime) to a, then
a®™ =1 (mod n)

Proof: We know that U,, = {[a] € Z,: aandn are co-prime} is a multiplicative group of residue
classes modulo n. The order of U,, is ¢ (n), the Euler’s totient function. The identity of this group
is [1]. If [a] € Uy, then by the corollary to Lagrange’s theorem

[a]*™ = [1] = [a][a] ... upto ¢(n)times = [1]
= [aa ... upto ¢ (n)times] = [1]
= [a?™] =[1],

= a?™ =1 (modn) { [a] = [b] = a = b (mod n)}



Hence the result.

3.9 Fermat’s theorem

This theorem is a direct consequence of the Euler’s theorem, i.e. if p is a prime number then the
number of positive integers less than and prime to p is ¢(p) = p — 1 and by Euler’s theorem we
have a?~! =1 (mod p). This theorem is also called the Fermat’s little theorem. We give a
somewhat direct proof below.

Theorem 3.3 Let p be a prime number and let a be any integer not divisible by p. Then
aP~! =1 (mod p)
Proof: Since a is not divisible by p, hence
ged(a,p) =1
= [a] € Z,
Now (Zp) = p — 1, Hence by the corollary to Lagrange’s theorem , we have
[a]P~t =[1]
= [aP7!] = [1]
= a?7! =1 (mod p)
Corollary: Let p be a prime and let a be any integer. Then a? = a(mod p)
Proof: If p|a, then p|a?, i.e. p|aP — a. Therefore aP? = a(mod p).

(The other way to illustrate this case is that p|a, then p|a? = [a] = [0] = [aP], and hence
a? = a(mod p))

If p t ai.e. p is not a divisor of a. Then by Fermat’s little theorem aP~! = 1 (mod p). Multiplying
both sides by a we get a? = a(mod p).

Now We shall discuss some applications of theses theorems.
Example 3.3 Compute the remainder of 37*°when divided by 7.
We have 37%° = (37%)8(37). Now by Fermat’s theorem,
37% = 1(mod 7)
=~ 37% = (1)8(37)(mod 7)
= 37(mod 7)
= 2(mod 7)

Hence the remainder is 2.



Example 3.4 Show that 2913 — 1 is not divisible by 13
We have 2°13 — 1 = (212)76(12) — 1
By Fermat’s theorem, 212 = 1(mod 13), so
2913 — 1 = (1)76(12) — 1(mod 13)
=12 — 1(mod 13)
= 11(mod 13)

Thus the remainder of 213 — 1 when divided by 13 is 11 and not zero, i.e. 2913 — 1 is not
divisible by 13.

Example 3.5 Show that for every integer n, the number n33 — n is divisible by 15.
Since 15 = 5 x 3, we shall show that n33 — n is divisible by both 3 and 5.
We have either 3|nor3 tn
If 3|n, then obviously 3 divides n(n32 — 1) = n33 —n.
If 3 does not divide n, then by Fermat’s theorem
n? = 1 (mod 3)

Now n32 — 1 = (n?)'® — 1, therefore we have

n%? —1 = (1) — 1 (mod 3) = 0(mod 3)

Hence the remainder of n32 — 1 is zero when divided by 3, i.e. 3 divides n32 — 1 and hence
nn3?—-1)=n3 -n.

If 5|n, then 5 divides n(n3? — 1) = n33 —n.
If 5 is not a divisor of n, then by Fermat’s theorem
n* =1 (mod 5)
Now n32 — 1 = (n*)® — 1, therefore we have
n%? —1= (1) -1 (mod5) = 0(mod 5)
Hence 5 divides n3? — 1, i.e. 5 divides n(n3? — 1) = n33% —n.
Thus n33 — n is divisible by both 3 and 5, i.e. n33 — n is divisible by 15.

Test for compositeness: The contrapositive of Fermat’s little theorem can be used to test for
compositeness of a number.



Let n > 2 be an odd positive integer. If There exists an integer a relatively prime to n for which
a™ 1 # 1(mod n), then n is necessarily a composite number.

Example 3.6 We have 680°54%° = 1162 % 1(mod 5461). Hence the number 5461 is composite.
In fact, 5461 = 43 x 127.

3.10 Application of Fermat’s theorem to RSA cryptosystem

Cryptography is the study of tools and techniques required for secure communication in the
presence of third parties. Its aim is to protect the sensitive information against the unauthorized
access. First the ordinary information (plaintext) is encrypted to the form known as ciphertext.
This ciphertext is sent to the receiver through a medium (channel) and then decrypted to get the
original plaintext message. The encryption and decryption constitute a cryptosystem. The
encryption and decryption processes require a word, number or phrase as a key.

In public key cryptosystems two different but mathematically related keys are used. The key that is
made public is called public key while the key that is kept secret is called private key. The public
key is used for encryption while the private key is used for decryption procedure. One such
cryptosystem is RSA which was introduced by R.Rivest, A.Shamir and L.Adleman in 1978. It is
based on the factoring of large numbers and the use of Fermat’s little theorem.

Suppose Bob wants to send a message M to Alice using this cryptosystem. The steps involved in
RSA algorithm can be listed as follows-

(1) Choose two distinct prime numbers p and q.

(2) Compute n = pq

(3) Compute p(n) = p(Plp(@) =(p—-D(@-1D=n—-(p+q +1
Where ¢ (n) is Euler’s totient function.

(4) Choose an integer e such that 1 < e < ¢(n) and gcd(e, <p(n)) =1

(5) Find the multiplicative inverse d of e in Z, ), i.€.
de=1 (mod (p(n))

(6) The Public key consists of n and e while the private key consists of n and d. The value e is
announced as the public key exponent and the number d is kept as the private key exponent. The
primes numbers p and g, and ¢ (n) are also kept secret.

(7) Bob knows the public key (n, e) and turns the message M into an integer m such that 0 < m <
n

(8) The message is encrypted by raising m to eth power modulo n to obtain the ciphertext C, i.e.
C = m°f (modn)

(9) Bob sends C to Alice. Now Alice recovers the original message as



m = VY€ (mod n)

Now the little Fermat’s theorem comes into play. We shall show that decryption of C can be
obtained as m = C%(mod n), where d is the private key available to Alice.

Now m = C%(mod n) is equivalent to C¢ = m(mod n) or (m®)% = m (mod n)
So we have to prove that m®® = m (mod pq) as n = pq

We know that a = m (mod p),a = m (mod q) = a = m (mod pq). So to prove that mé¢ =
m (mod pq), we have to show that m®® = m (mod p) and m®* = m (mod q).

First we shall show that m®? = m (mod p). We consider the following two cases:

Case | When m = 0 (mod p). Then |m , i.e. m = ps for some integer s.

Now mé4 = (ps)¢? = pp®d=1s¢4 i.e.p|m®®. Hence m®® = 0 (mod p).

Therefore m®? = m (mod p).

Case Il When m # 0 (mod p). Then gcd(m, p) = 1 and by Fermat’s little theorem we have

mP~! =1 (mod p)

Now
de =1 (mod ¢(n))
or de — 1 = ke(n) for some integer k
or de—1=k(p-1(q—-1)
or de=1+k(p—1)(q—1)
Thus we have med = mltk@-1(@-1)

= mmk®-D(@-1)
= m(mP~1)k@-D
= m° = m (1)¥@=Y(mod p) , since mP~! = 1 (mod p)
or m®® =m (mod p)

Same reasoning implies m®® = m (mod q). Therefore m®® = m (mod pq) or m®® = m (mod n).
Hence the decryption of C = m® (mod n) is obtained as m = C%(mod n).

Let us illustrate the procedure with an example. Take p = 61 and g = 53. Then n = pg = 61 X
53 = 3233. Therefore

o(n) = (3233) = (61— 1)(53 — 1) = 60 x 52 = 3120



Choose 1 < e < 3120 such that e is relatively prime to 3120. Take e = 17. The multiplicative
inverse modulo 3120 of e is 2753, i.e.

17 x 2753 = 1(mod 3120)
Hence d = 2753. Therefore the encryption of the message m is
C = m® (modn),i.e. C =m!” (mod3233)
The decryption of € ism = C%(mod n), i.e. m = C?7°3(mod 3233).
For example, the encryption of m = 65 is C = 657 (mod 3233) or € = 2790.
The decryption of C = 2790 is m = 279027°3(mod 3233) or m = 65.

Note: while doing computation, sometimes we need to calculate congruences of very large
numbers. There are tricks to carry out such calculations. Let us take an example. Suppose we have
to compute 320°8*(mod 7) .

We have 320 = 5(mod 7) as 7 divides 315. Hence we can write
320984 = 5984 (mod 7)
Now 984 = 2% + 28 + 27 + 26 + 2* + 23, therefore
5984 = 52” x 52° x 52 x 52° x 52" x 52’

Now 52 = 25 = 4(mod 7)

5% =52 x 52 =4 x 4(mod 7) = 16(mod 7) = 2(mod 7)

58 = 5% x 5% = 2 x 2(mod 7) = 4(mod 7)

516 = 58 x 58 = 4 x 4(mod 7) = 16(mod 7) = 2(mod 7)
Similarly, 53?2 = 4(mod 7), 5°* = 2(mod 7), 5?8 = 4(mod 7),

5256 = 2(mod 7) and 5°'? = 4(mod 7).

Therefore 5%8* = 4 x 2 x 4 x 2 X 2 X 4(mod 7)

=8x8x8(mod7)=1x1x1(mod7) = 1(mod 7).

3.11 Summary

In this unit, we have

(1) Introduced the congruence relations =; and = in a group G and proved that these are
equivalence relations in G.

(2) discussed the coset decomposition of a group and defined left and right cosets of a subgroup in
agroup G.



(3) described the properties of cosets of a subgroup.

(4) proved the Lagrange’s theorem.

(5) discussed various applications of Lagrange’s theorem.

(6) defined the index of a subgroup in a group.

(7) stated Cauchy’s theorem and Sylow’s theorem without proof.

(8) proved Euler’s theorem and Fermat’s theorem and discussed various examples illustrating
these theorems.

(9) described in details the application of Fermat’s theorem in RSA cryptosytem.

3.12 Self assessment questions

(1) If afinite group G contains an element of even order, show that G must also be of even order.
(2) Let H be a subgroup of agroup G and a € G. Then (Ha) ™! = a™'H

(3) If a finite group possesses an element of order 2, prove that it possesses an odd number of such
elements.

(4) Prove that the only right (left) coset of a subgroup H in a group G which is also a subgroup of
G is H itself.

(5) Prove that the intersection of two subgroups, each of finite index, is again of finite index.
(6) Show that every finite group of order less than six must be abelian.

(7)Use Lagrange’s theorem to prove that a finite group cannot be expressed as the union of two of
its proper subgroups.

(8) Show that all proper subgroups of a group of order 8 must be abelian.

(9) Let H and K are subgroups of a finite group G such that o(H) = 3, o(K) = 5. Find the order of
HK. [Ans. 15]

(10) Show that 1763 is composite. [Hint: 21762 = 742 (mod 1763)]
(112) If p is a prime, prove that (p — 1)! = —1 (mod p).
(12) Let G be a group of order 12. If Sylow 2-subgroup of G is cyclic, prove that G is cyclic.

(13) Let H be a subgroup of a groupG. Let x € G. Then x *Hx = { x *hx: h € H} is a subgroup
of G.

(14) Prove that a group of prime order is cyclic.

3.13 Further readings
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(2) Fraleigh, J.B. (2003): A first course in abstract Algebra, New Delhi, Pearson Education, Inc.



(3) Dummit, D.S. and Foote, R.M. (2009): Abstract Algebra, New Delhi, Wiley India (P) Ltd.
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Unit-4 In this unit, we introduce Normal subgroups and discuss various properties of normal
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4.1 Introduction

If a group G is abelian and H is a subgroup of G, then for any x € G, we have xH = Hx. For
example, the group of fourth roots of unity, G = {1,—1,i,—i}, is an abelian group and H =
{1, —1} is a subgroup of G. We observe that

iH = {i1,i(-1)} = {i,—i} = Hi
Similarly (=i)H = H(—i), 1H = Hland (—1)H = H(—1)
Hence xH = Hx forall x € G.

If a group G is not abelian, then the condition xH = Hx for all x € G is not always true for any
subgroup H. However a group G may contain a subgroup H satisfying this condition.

For example, the quaternion group Qg = {1,—1,i,—i,j,—j, k, —k} is a non-abelian group under

quaternion multiplication. Let

1:[1 0],,4:["_1 0 ],B: 0 1],andC:[ 0 V_l]
0 1 0 —V-1 -1 0 V=1 0

We know that G = {£1,+A, +B, +C} forms a quaternion group under matrix multiplication. You
can verify that H = {+I, +A} is a subgroup of G.
Now you will observe that xH = Hx for all x € G. For example, B € G and
BH = {BI,—BI,BA,—BA} = {B,—B,—C, C}
and HB = {IB,—IB,AB,—AB} = {B,—B,C,—C}
Thus BH = HB. Similarly IH = HI, AH = HA, (—A)H = H(—A) and so on.



So it may happen that the group G is not abelian but it has a subgroup H such that xH = Hx for all
X € G. Such subgroups are called normal subgroups. In this unit, we shall study normal
subgroups in details. The cosets of a normal subgroup are special in a way that the set of all such
cosets is a group with respect to multiplication of complexes. This group is called the quotient
group or factor group.

We shall define an interesting equivalence relation called relation of conjugacy on a group. We
shall also study some special subgroups such as normalizer of an element of a group and center
of a group.

A homomorphism f: G — G'maps a subset of the group G onto the identity element of group G'.
This subset is a normal subgroup of the group G and is called the kernel of homomorphism £. In
this unit, we shall make a detailed study these concepts and then prove an important result called
the fundamental theorem of homomorphism.

4.2 Objectives

After reading this unit, you should be able to

® Describe the normal subgroups of a group

Discuss the Properties of Normal subgroups

Define quotient group

Define an equivalence relation called the relation of conjugacy on a group.
Define the conjugate elements and self-conjugate elements of a group

Illustrate the concepts such as the normalizer of an element of a group and the center of a
group

Define the kernel of a homomorphism

Prove the fundamental theorem of Homomorphism

® Discuss the direct and inverse images of a subgroups and normal subgroups under a
homomorphism

4.3 Normal subgroups of a group

Definition: A subgroup H of a group G is said to be a normal subgroup of G if
xhx~! € H forevery x € G and for every h € H.
Since xhx~! € xHx~1, hence we can say that H is a normal subgroup of G if
xHx™ ' € H foreveryx € G
If H is a normal subgroup of a group G, we denote thishy H < G
Every group G has at least two normal subgroups namely G and {e}. These subgroups are called
trivial normal subgroups. A group G # {e} which does not have any non-trivial normal subgroup
is called a simple group.
In example (given above), H = {+I,+A} is a non-trivial normal subgroup of the group G =
{+1,+A,+B, +C}.
Example Let S; = {fi, 2, f5, f4 f5, fe} be the symmetric group of order 6. where



=G 2D a=G 2 DA=0G20a-(G 2%

/1 2 3 (1 3
f5_(3 2 1)’ f6_(2 3)
Then you can verify that H = {f}, f>, fs} is a normal subgroup of S;.

_ NW N

Example Every subgroup of an abelian group is normal.
Let H be a subgroup of an abelian groupG. Let h € H and x € G. Then

xhx '=hxx"'=he=heH
i.e. H isnormal in G.
We have already seen this result in case of subgroup H = {1,—1} of the abelian group G =
{1, -1, i, —i} of fourth roots of unity.
Now we shall discuss some important properties of normal subgroups.

4.4 Properties of Normal subgroups

Proposition: A Subgroup H of a group G is normal if and only if
xHx '=Hforallx € G
Proof: First suppose that H is a subgroup of a group G such that
xHx '=Hforallx €G
Then obviously xHx~! € H forall x € G, i.e. H is a normal subgroup of G.
Conversely, suppose that H is a normal subgroup of a group G. Then
xHx ' c Hforallx €G
Since x € G = x~1 € G, hence we have x"*H(x " 1)"1 € H, i.e.
x 'Hx c Hforallx €G
= x(x"1Hx)x ' c xHx 1 forallx € G
= (xx DH((xx™ 1) € xHx 1 forall x € G
= HcxHx 1forallx € G
Now the inclusions xHx™! € Hand H € xHx ™! Vx € G imply that
xHx '=Hforallx €G

Proposition: A subgroup H of a group G is a normal subgroup of G if and only if each left coset of
H in G is aright coset of H in G.

Proof: First suppose that H is a normal subgroup of a group G. Then by above proposition, we
have xHx~! = H for all x € G = (xHx™1)x = Hx for all x € G, equivalently xH = Hx for all
X € G i.e. each left coset xH is the right coset Hx.

Conversely, suppose that H is a subgroup of a group G such that each left coset of H in G is also a
right coset of H in G. Let x € G. Then the left coset xH must be a right coset of H in G. Suppose
xH = Hy for some y € G.

Now x = xe € xH, hence x € Hy. Also x = ex € Hx. Thus the right cosets Hx and Hy both
contain x. Since any two right cosets are either disjoint or identical, hence we have Hx = Hy.
Therefore xH = Hy = Hx, i.e. xH = Hx and so H is a normal subgroup of G.

Proposition: The intersection of any two normal subgroups of a group is a normal subgroup.



Proof: Let H and K be any two normal subgroups of a group G. Obviously, H N K is a subgroup
of G.Leta € HN K and x € G. Now
a€EHNK=a€eHanda €K
Since H is normal in G, hence a € H,x € G = xax~! € H. Also K is normal in G, therfore
a€K x€G=xax teK.
Now xax~! € Hand xax ™' € K = xax™' € HnK.
Therforea e HNK,x € G = xax "' € HNK.
Hence H N K is a normal subgroup of G.
Proposition: Let G be a group and H be a subgroup of G of index 2. Then H is a normal subgroup
of G.
Proof: We shall prove that xH = Hx for all x € G.
If x € H,thenxH = H = Hx.
Suppose that x ¢ H.Then xH # H. Since the index of H in G is two, hence there are only two
distinct left cosets of H in G. So we have G = xH U H, where xH and H are disjoint.
Similarly, Hx # H and G = Hx U H , where Hx and H are disjoint. Hence we have G = xH U
H=G=HxVUHsuchthatxH N H =@ and Hx N H = @. Therfore xH = Hx.
In unit-2, we have defined the product of any two complexes H and K of a group G as follows-
HK ={x € G:x = hk,h € H, k € K}

If we take K = H, we have
HH = {hh' € G: h,h’ € H}

If H is a subgroup of G, then hh' € H and hence HH € H.
Alsoh € H= h = he € HH, hence we have H € HH. Therefore HH = H.
Note: In general, for a group(G,*), we define
HxK={x€G:x=hxk,h€H,kE€K}
Where H,K € G. Hence in case of additive groups we write H + K for H x K. We call H + K, the
sum of H and K.
Now we prove an important result.
Proposition: A subgroup N of a group G is a normal subgroup of G if and only if the product of
two right cosets of N in G is again a right coset of N in G.
Proof: Let N be a normal subgroup of a group G. Let x,y € G. Then Nx and Ny are two right
cosets of N in G. Now
(Nx)(Ny) = N(xN)y

= N(Nx)y ,as N is a normal subgroup

= NNxy

= Nxy,as NN = N
Now x,y € G = xy € G, therefore Nxy is a right coset of N in G, i.e. the product of two right
cosets of N is again a right coset of N in G.

Conversely, suppose that N is any subgroup of G such that the product of any two right cosets of
N in G is also a right coset of N in G. Let x € G and a,b € N. Then bx € Nx and ax™ 1 €
Nx~1and therefore bxax™! € NxNx~1. If we take a = b = e (identity), then exex™! € NxNx ™1,
i.e.e € NxNx~ 1.



By assumption, the product of two right cosets NxNx~1 is also a right coset and N is itself a right
coset of N in G such that e € N, hence we have NxNx~1=Nforall x € G
as two right cosets are either disjoint or identical.

Therefore bxax™! € N forall x € G.

= b Y(bxax~1) € N forall x € G, as N is a subgroup of G

= xax~! € N for all x € G,by associativity and the inverse property b~1b = e

Thus N is a normal subgroup of G.

Note: If the composition in G is addition, each right coset of N in G is denoted as N + a and we
define the addition of two right cosets as follows-

(N+a)+(N+b)=N+(a+b)

4.5 Quotient Group

If N is a normal subgroup of G, then for any x € G, the left coset xN of N, and the right coset Nx
of N are equal. So there is no need to specify these cosets separately. We shall say that Nx (or xN)
is a coset of the normal subgroup N.
We have seen that we can define the product of two cosets Nx and Ny as follows-

(Nx)(Ny) = Nxy
The product Nxy is itself a coset of N. So if we collect all cosets of a normal subgrouph, this
collection appears to be closed under coset multiplication provided this multiplication is well
defined. We shall show that this multiplication is well defined.
Let x,y,a,b € G and Nx = Na, Ny = Nb. Hence x € Nx = x € Na and y € Ny = y € Nb.
Therefore there exist n,,n, € N such that x = n,a and y = n,b.
Now (xy)(ab)~! = (n;anyb)(b~*a™1) = njan,bb~ta ! = njanya™?
Since N is normal, hence an,a™! € N. Therefore (xy)(ab)™! = n;an,a ! € N.
From unit-3, we know that "hk~! € N = Nh = Nk", hence

(xy)(ab)™* € N = N(xy) = N(ab)

= (Nx)(Ny) = (Na)(Nb)
Hence the multiplication of cosets is well defined.
Now we shall prove that this set of all cosets is indeed a group under coset multiplication. This
group is called the quotient group of G by N, and is denoted by G/N.

Proposition: Let G be a group and N be a normal subgroup of G. The set G/N of all cosets of N in
G, is a group under coset multiplication defined as follows-

Forany Na,Nb € G/N, (Na)(Nb) = Nab
Proof: (1) Closure Law: We have already shown that this composition is well defined and G/N is
closed under this composition.
(2) Associativity: Let Na, Nb,Nc € G/N. Then

[(Na)(NDb)](Nc) = (Nab)(Nc) = N(ab)c
Also (Na)[(Nb)(Nc)] = (Na)(Nbc) = Na(bc)
Since a,b,c € G = (ab)c = a(bc), hence
[(Na)(Nb)](Nc) = (Na)[(Nb)(Nc)]



(3) Existence of identity: Let e be the identity element of G. Then N = Ne € G/N and (Na)N =
(Na)(Ne) = Nae = Na. SimilarlyN(Na) = Na.
Thus N is the identity element of G/N.
(4) Existence of inverse: Leta € G. Then a™! € G and hence Na™! € G/N.
Now (Na)(Na™!) = Naa™* = Ne = N and (Na™')(Na) = Na—'a = Ne = N.
Therefore (Na)™! = Na™! € G/N.
Hence G /N is a group.
Definition: Let G be a group and N be a normal subgroup of G. Then the set G/N of all cosets of
N in G is a group under the composition defined by
(Na)(Nb) = Nab for all Na, Nb € G/N
This group is called the factor group or quotient group of G by N.
G/N is read as G modulo N or simply G mod N
If the composition in G is addition, then we have
G/N ={N +a:a € G}
and the composition in G /N is denoted additively, i.e.
(N+a)+(N+b)=N+(a+b)forall N+a,N+b€eG/N
Example: Let (Z, +) be the additive group of integers. Then H = (2), i.e.
H=1{.,—4,-2,02/4,..}isasubgroup of Z. Since Z is abelian, hence H is a normal subgroup of
Z.
The cosets of H in Z can be formed as follows-
H+0=H
H+1={h+1:h € H}
={.,-3,-1,13,..}
H+2={.—-4-2024.}=H
H+3={.,-3-113,..}=H+1
AlsoH + (-1)={...—5,-3,-1,1,3,...} = H + 1, and so on. Therefore the distinct cosets of H
in Z are H and H + 1. So the quotient group of Z by H is
Z/H = {H,H + 1}
The subgroup H = (2) is also denoted as 2Z and then we write
Z/27 = {27,27 + 1}
The quotient group of Z by nZ is denoted by Z/nZ. Now we show that nZ,nZ + 1, ..., nZ + (n —
1) are the only n cosets of nZ.
Let m € Z. Then by division algorithm
m=nq+r,where0 <r<n
= m-—r =nq € nZ
SnZ+m=nZ+r
Since 0<r<mn, hence for any m € Z, we have nZ+m € {nZ,nZ +1,..,nZ + (n— 1)}.
Further these cosets are distinct as for no two distinct non-negative integers r and s both less than
n, r —s is a multiple of n, i.e. if 0 <r <s <n, then r —s # nq for some q € Z and hence
nZ + r + nZ + s. Therefore we have
Z/nZL = {nZ,nZ+1,..,nZ+ (n — 1)}
Since nZ + r and nZ + s are cosets, hence we have
nZ+r=nZ+s<r—s€enZ<r=s(modn)
LetnZ +r, nZ +s € Z/nZ. Then
MZ+7r)+(MZ+s)=nZ+ (r+s)
Now if nZ + k € Z/nZ such that nZ + (r + s) = nZ + k, then



(r+s)—keZ/nZ,ie k =r+s(modn). Hence k = r+,s.
sMZ+1r)+ (Z+s)=nZ+ (r+s)(modn) =nZ+ (r+,S)
Here you note that the coset nZ + r is the same as the residue class [r] (modulo n), i.e. nZ +r =
[r] = {x € Z: x = r (mod n) }. This justifies the use of same notation Z/nZ for both the additive
group of residue classes modulo n and the quotient group Z modulo n.
Now we prove an interesting result.
Proposition: The quotient group Z/nZ is isomorphic to the group Z,,of integers modulo n.
Proof: Define a mapping f:Z, — Z/nZ such that f(r) = nZ + r for all r € Z,.
Obviously the mapping f is a bijection and for all r, s € Z,, ,we have
fr+,s) =nZ + (r+,s)
=nZ+ (r + s)(mod n)
=MZ+r)+ (nZ+s)
=f(r)+f(s)

Thus f is an isomorphism of Z,, onto Z/nZ and therefore Z,, = Z/nZ.

Interestingly, if the group G is finite, then the order of a quotient group G /N can be obtained using
Lagrange’s theorem. Hence we have the following result.
Proposition: Let G be a finite group and N be a normal subgroup of G. Then
6/ = 2
0G/N) =55
Proof: By Lagrange’s theorem the number of distinct cosets of N in G is equal to o(G)/o(N).
Therefore, we have

o(G/N) = number of distinct cosets of N in G
0(G)
~ o(N)
We shall come back with more tools and techniques after studying center of group, kernel of
homomorphism and the fundamental theorem of homomorphism. You will appreciate many
interesting properties of quotient groups after studying the following sections.

4.6 Relation of conjugacy and conjugate elements

Definition: Let G be a group and a, b € G. Then the element a is said to be a conjugate of b in G
if there exists x € G such that a = x 1bhx.

If a is conjugate to b then symbolically we write a~b. This relation in G is called the relation of
conjugacy.

Proposition: The relation of conjugacy is an equivalence relation on a group G.
Proof: (1) Reflexivity: Since a = a~'aa, hence a~a.
(2) Symmetry: we have a~b = a = x~*bx for some x € G,
= xax~ ! = x(x"thx)x7?
= b=xax'=(x"Htax?

= b=yay twherey=x"1€¢G



= b~a
(3) Transitivity: We have
a~b,b~c = a = x"1bx,b =y lcy forsomex,y € G
=a=x""(y tey)x = (x" 'y Delxy) = (xy) " telxy)
= a~c

Hence the relation of conjugacy is an equivalence relation on G. Therefore the group G is
decomposed into equivalence classes under this equivalence relation. These equivalence classes
are called the conjugate classes. For any a € G, the conjugate class of a is denoted by C(a) and

C(a) ={b € G:a~b}
Therefore C(a) consists of all elements of the form x~1ax
i.e. C(a) = {x"lax:x € G}
For example, C(e) = {x tex:x € G} = {x 1x:x € G} = {e}

Suppose G is a finite group and C(a,),C(a,), ..., C(ay) are the distinct conjugate classes of G.
Then these classes are pairwise disjoint and their union is G.

G=C(a)UC(ay)V..UC(ay)
If c,, denotes the number of elements inC(a;), then

k

o(G) = Z Ca,

i=1

In order to determine c,, we first introduce the notion of the normalizer of an element of G.

4.7 Normalizer of an element of a group

Definition: Let G be a group and a € G. Then the normalizer of a in G is defined as the set
N(a) = {x € G:ax = xa}.
For instance, N(e) = {x € G:ex = xe} = G.
Also if G is abelian, then ax = xa for all x € G. Therefore N(a) = G forall a € G.
Proposition: The normalizer of an element in a group G is a subgroup of G.
Proof: Let a € G. Then the normalizer of a in G,
N(a) = {x € G: ax = xa}
If e is the identity of G then ea = ae, i.e. e € N(a). Hence N(a) is non-empty. Let x,y € N(a).
Then we have ax = xa and ay = ya. Now
ay =ya=y ay)y "t =y ' (ya)y™

=y la=ay?

= y 1 € N(a)
Therefore we have



(xyDa=x(ya) =x(ay™) = xa)y™ = (ax)y~! = a(xy™)
= xy 1 € N(a)
Hence x,y € N(a) = xy~! € N(a)
Therefore N(a) is a subgroup of G.
We are now in a position to count ¢, , i.e. the number of elements in the conjugate class € (a;).
Proposition: If G is a finite group and a € G, then
0(G)
T oIN(@)]

Proof: First we show that there is a one-to-one correspondence between the conjugates of a and
right cosets of N(a).
Let x,y € G belong to the same right coset of N(a) in G, i.e. there is some right coset N(a)h of
N(a) in G such that x,y € N(a)h. Then N(a)x = N(a)h and N(a)y = N(a)h. Therefore
N(a)x = N(a)y, i.e.xy™! € N(a).
Now xy~! € N(a) = xy la = axy™?

= x '(xyta)y = x"H(axy ™)y

=y lay = x lax
Thus if x,y belong to the same right coset of N(a) in G, then x,y yield same conjugate of a.
Similarly it can be shown that if x, y belong to different right cosets of N(a) in G, then x, y give
rise to different conjugates of a. Hence there is a one-to-one correspondence between the
conjugates of a and right cosets of N (a)
Since N(a) is a subgroup of G, hence by Lagrange’s theorem the number of distinct right cosets of
N(a)inG is

0(G)
o[N(a)]
Now c, = the number of distinct elements in C(a)
= the number of elements conjugate to a

= the number of distinct right cosets of N(a) in G
0(G)

~ oIN(@)]
Corollary: If G is a finite group, then

0(G)
““=dem

where the sum runs over element a, taken one each from each conjugate class.
Proof: Let C(a,),C(a,), ..., C(a;) be the distinct conjugate classes of G and o[C(a;)] = c4,. Then

“Q‘Z“lEI%Q)

o(G)
““=qum

We can write it simply as

4.8 Center of a group

Let G be a group.The conjugate class of a € G in G is given as



C(a) = {x"lax:x € G}

If a is the only element conjugate to itself, then C(a) = {a}. Such elements are called self-
conjugate elements. Hence a € G is self-conjugate iff

a=xlaxforallx e G
or xa =ax forallx € G

The set of all self-conjugate elements of G is called the center of G. So we have the following
definition-

Definition: Let G be a group. Then the center Z(G) of G is defined by
Z(G) ={z € G:zx = xzVx € G}

Thus the center of a group G is the set of all those elements of G which commute with each
element of G.

Proposition The center Z(G) of a group G is a normal subgroup of G.
Proof: We have
Z(G) ={z € G:zx = xzVx € G}

First we show that Z(G) is a subgroup of G.
Leta,b € Z(G). Then ax = xa and bx = xb forall x € G.
Now bx = xb = b~ (bx)b~! = b=1(xb)b~?!

= (b~'b)xb~! = b~1x(bb™ 1)

= exb™ 1 =b"1xe

= xb 1=b"1x
Hence bx = xb forall x € G = xb™! = b~ 1x forall x € G.
Therefore b1 € Z(G). Hence we have

(ab™Vx=ab™x)=alxb™) = (ax)b ' = (xa)b ' =x(ab ) Vx €G
~a,b€Z(G)=abteZ(G)

Thus Z(G) is a subgroup of G.

Now we prove that Z(G) is a normal subgroup of G. Let z € Z(G) and € G . Then xzx™! =
zxx 1 =ze=z€ Z(G).

Therefore z € Z(G) and x € G = xzx~! € Z(G), i.e. Z(G) is a normal subgroup of G.



Proposition Let G be a finite group and Z(G) be the center of G. Then a € Z(G) if and only if
N(a) = G.If G isfinite, a € Z(G) ifand only if o[N(a)] = o(G).

Proof: If a € Z(G), then xa = ax for all x € G. By definition of N(a), we have N(a) = G
Conversely, suppose N(a) = G. Then xa = ax forall x € G, i.e. a € Z(G).
If the group G is finite, then N(a) = G is equivalent to o[N(a)] = o(G). Hence the result.
Proposition (The Class Equation) Let G be a finite group and Z(G) be the center of G. Then
o(G
o(G) =o0[Z(G)] + L
o[N(a)]
a¢Z(G)

Where the summation runs over elements taken one from each of those distinct conjugate classes
which contain more than one element.

Proof: We have

0(G)
o(6) = Z oIN(@)]

From above proposition, we know that a € Z(G) < o[N(a)] = o(G). Therefore the number of
distinct elements in C(a),
0(G)
C = —-——=
* o[N(a)]

Hence the number of conjugate classes each having only one element is o[Z(G)].

Therefore
0(G) o(G)
O(G)_Z IN@] olz(6)] + Z o[N(@)]

a¢z(G)

This equation is called the class equation of the group G. This equation plays an important role

in the structure theory of non-abelian finite groups. In case of abelian groups, we have Z(G) = G
and hence c, = 1 for all a € G. Let us now discuss some applications of class equation.

Proposition If o(G) = p™, where p is a prime number, then Z(G) # {e}.
Proof: Let o[Z(G)] = z. The class equation of the group G is

o(G)
o(G) =olZ(G)] +
a¢Z(G) zg;] (a)]
0
=pt=z+
2, Sl

Where the summation runs over elements taken one from each of those distinct conjugate classes
which contain more than one element.



Now a & Z(G) = o[N(a)] # o(G). Therefore o[N(a)] < o(G) =p™. Since o[N(a)] is a
subgroup of G, hence by Lagrange’s theorem o[N(a)] must divide o(G), i.e. o[N(a)] = p™a for
some integer n, such that 1 < n, < n. Therefore we have

or

Since p|p™ and p| ;Tna as n, < n, therefore p|z. Since e € Z(G), hence z # 0. Thus z is a positive

integer divisible by the prime number p. Therefore z > 1. Hence there must exist an element in
Z(G) besides e, i.e. Z(G) # {e}.

Corollary: If o(G) = p? where p is a prime number, then G is abelian.
Proof: In order to show that G is abelian, We shall show that Z(G) = G.

By above proposition, we have Z(G) # {e}. Hence we must have either o[Z(G)]=p or
olZ(®)] = p*.

Ifo[Z(G)] = p, then there exists a€EG such that a¢ Z(G). Now
z€Z(G) = zx=xzVx€E€G

In particular,za = az as a € G. Therefore z € N(a). Also a € N(a), hence we have Z(G) c
N(a). Thus N(a) is a subgroup of G such that Z(G) c N(a). Hence we must have o[N(a)] >
0o[Z(G)] such that o[N(a)]lo(G) (by Lagrange’s theorem), ie. o[N(a)]>p such
that o[N (a)]|p?. The only possibility is o[N(a)] = p?, ie. N(a) =G. Hence a € Z(G), a
contradiction. Thus o[Z(G)] # p. Therefore the only possibility is that o[Z(G)] = p? = 0(G), i.e.
Z(G) = G. Hence G is abelian.

So you have seen how the concept of center of a group is instrumental in discovering some
important counting techniques. Now let us discuss some other applications of this concept.

The center Z(G) of a group G is a normal subgroup of G. Hence G/Z(G) is a quotient group. The
quotient groups are important as we can deduce properties of the group by examining its quotient
groups. Now we shall see how the quotient group G /Z(G) helps us in revealing some information
regarding G.

Proposition: Let Z(G) be the center of a group G. If G/Z(G) is cyclic, then G is abelian.

Proof: If G/Z(G) is cyclic, then G/Z(G) =(gZ(G)) for some g € G. Let a,b € G. Then
aZ(G),bZ(G) € G/Z(G). Therefore there exist integers m and n such that aZ(G) = [gZ(G)]™
and bZ(G) = [gZ(G)]™. Now

aZ(G) = [gZ(&)]™ = aZ(G) = g"Z(G)



Since a € aZ(G), hence there exists z; € Z(G) such that a = g"z;.
Similarly there exists z, € Z(G) such that b = g"z,. Now
ab = (9™21)(9"2,)
= g™(z,9™)z,, by associativity
= g™ (g"z1)z,, since z; € Z(G) = z,9™ = g"z,
=9"(9"z1)z,
= (g"g")(z12)
= g™ 212,
Similarly ba = g"t™Mz,z, == g™ "z,2, 88 21,2, € Z(G) = 212, = 2,74
Therefore ab = ba, i.e. the group G is abelian.

Remark: In this case, we have G = Z(G) and so G /Z(G) is the trivial group.

4.9 Kernel of a homomorphism

In unit 2, we discussed the notion of group homomorphism.. Recall that a homomorphism of a
group G into a group G'is a mapping f: G — G' which preserves the compositions in G and G', i.e.

f(ab) = f(a)f(b) forall a,b € G

In this section, we shall introduce the notion of the kernel of a homomorphism and use this notion
to obtain some important theorems on homomorphisms.

Definition: Let f be a homomorphism of a group G into a group G', then the kernel of f is the set
of all those elements of G which are mapped onto the identity e'of G'. We shall denote the kernel
of f by Kerf. Hence

Kerf ={x € G: f(x) = e’}

Example 1 The mapping f: R — R* defined by f(x) = e* for all x € R is a homomorphism of
the additive group of all real numbers (RR,+) onto the multiplicative group of all positive real
numbers (R*,) and

Kerf ={x € R: f(x) = 1} = {0}

Example 2 Let (R*,-) be the multiplicative group of all non-zero real numbers. The mapping
f:R* — R* defined by f(x) =|x| for all x € R* is a homomorphism with Kerf = {x €
R*: f(x) =1} = {-1,1}.

We shall now prove that the kernel of a homomorphism f: G — G’ is a normal subgroup of G.

Proposition Let f be a homomorphism of a group G into a group G', then the kernel of f is a
normal subgroup of G.



Proof: We have
Kerf ={x € G: f(x) = e’}

First we shall show that Kerf is a subgroup of G. Since f(e) = e’, hence e € Kerf. Therefore
Kerf is non-empty. Let a, b € Kerf. Then f(a) = e’ and f(b) = e'. Now

flab™) = f(a)f(b~1) as f is a homomorphism
= f@If )], since f(b™) = [f(D)]™
=e'(e)t=e'e =¢
= ab~! € Kerf
Hence Kerf is a subgroup of G.

Now if x € G and a € Kerf, then

flxax™) = fOf(@f (x™D) = fe'[f ()] = fIIf )] =€

= xax~! € Kerf
Thus x € G and a € Kerf = xax~! € Kerf, i.e. Kerf is a normal subgroup of G.

Now you will notice an interesting point. The homomorphism f is projecting the normal subgroup
Kerf of G onto the identity e’ and hence we have

Kerf = f~'({e'}
you may ask if we have some expression for f~1({a’}) in terms of Kerf for any a’ € G'. The
following proposition answers this positively.

Proposition Let f be a homomorphism of a group G into a group G'. Let K = Kerf and a’ =
f(a) € G' forsomea € G. Then

f'{a'’}) =Ka=aK
Proof: We have f*({a'}) = {x € G: f(x) = @'} = {x € G: f(x) = f(a)}
Let y € Ka. Then there exists k € K such that y = ka.
Now f(y) = f(ka) = f(k)f(a) = e'f(a) = f(a) = a
=yef({ad
Hence we have Ka € f~1({a’}).
Now let x € f~1({a'}). Then f(x) = a’ = f(a). We have
fxa™) =f)f(@™) = f@If(@] ' =¢
= xa ! eKerf =K

= x € Ka



Hence we have f~1({a'}) € Ka.
The two inclusions Ka € f~1({a'}) and f~1({a'}) S Ka implies that
f({@') = Ka
Since Kerf = K is a normal subgroup of G, hence Ka = aK. Therefore we have
f'{a'}) = Ka=aK

From this proposition it is clear that for a € G, the cosets (Kerf)a and a(Kerf) are equal, and are
projected onto the single element f(a) by the homomorphism f. Hence if o(Kerf) = n, then f
maps n elements of (Kerf)a onto the single element f (a) of f(G) < G’, i.e. the homomorphism f
is an n-to-1 mapping from G onto f(G). Hence the size of Kerf determines the nature of
homomorphism f. Obviously if o(Kerf) = 1, then f will be a one-to-one mapping of G into G'.
So we have the following proposition-

Proposition A homomorphism f of a group G into a group G’ is a monomorphism if and only if

Kerf = {e}.
Proof: Let us first suppose that f is a monomorphism, i.e. f is one-one. Let x € Kerf, then
flx)=¢
= fx) =f(e)as f(e) = ¢’
= x = e as f isone-one
Therefore Kerf = {e}.
Conversely, suppose that Kerf = {e}. Let a, b € Kerf. Then
fl@=f®)= f@IfBI " =f@If B
= f@IfB)] ™ =¢
= f(@f(b™") =¢’, since [f(B)]™ = f(b™H)
= f(ab™1) = €', as f is a homomorphism
= ab~! € Kerf
= ab™! = e, as Kerf = {e}
=a=5»>b
Hence f is one-one, i.e.f is a monomorphism.

Proposition Let G be a group and N a normal subgroup of G. Define a mapping f: G — G/N by
f(x) = Nx for all x € G.Then f is a homomorphism of G onto G/N and Kerf = N.
Proof: Let x,y € G. Then

f(xy) = Nxy = (Nx)(Ny) = f(x)f (¥)



Hence f is a homomorphism.
Now let Nx € G/N. Then x € G and we have f(x) = Nx. Therefore f is onto.
Thus f is a homomorphism of G onto G/N.
We have Kerf = {x € G: f(x) = N}. We shall prove that Kerf = N.
Let x € Kerf, then f(x) = N.
Now f(x) =N = Nx=N=x€N
Hence Kerf S N.
Now suppose that x € N. Then Nx = N. Therefore
f(x) =Nx=N

= x € Kerf
Thus N < Kerf.
Consequently, Kerf = N.
The homomorphism f:G — G/N defined by f(x) = Nx for all x € G is called the natural
projection (homomorphism) of G onto G/N.

4.10 Fundamental theorem of Homomorphism

This is an important result which tells us that every homomorphic image of a group G is
isomorphic to some quotient group of G.
Theorem Let f be a homomorphism of a group G onto a group G'with kernel K. Then G/K = G'.
Proof: Since the kernel K of the homomorphism f: G — G’ is a normal subgroup of G, hence
G /K is a quotient group. Define ¢: G/K — G' by
p(Kx) = f(x)forallx € G
First we show that ¢ is well defined. Let x,y € G. Then
Kx=Ky=xy ek
= flxy ) =e¢
= f)fy ) =¢
= fIfOMI* =¢
= f(x) = f()
= ¢(Kx) = ¢(Ky)
Consequently ¢ is well defined.
Now let Kx, Ky € G/K. Then
o[(Kx)(Ky)] = p(Kxy) = f(xy) = f(x)f (¥) = p(Kx)p(Ky)
Hence ¢ preserves compositions in G/K and G'.
Also ¢ (Kx) = p(Ky) = f(x) = f(¥)
= IO =¢
= ffy™) =¢
= flxy ™) =e¢
= Kx = Ky
Thus ¢ is one-one.
Since f: G — G'is onto, hence y € G' = 3Jx € Gsuch that y = f(x). Therefore p(Kx) = f(x) =
y, 1.e. @ is onto.
Thus ¢ is an isomorphism of G /K onto G'and hence G/K = G'.
We can represent the result pictorially as follows-



G/K

We say that the above diagram commutes if oy = f.

Here (poy)(x) = {(x)} = p(Kx) = f(x) forall x € G, i.e. the diagram is commutative. The
isomorphism ¢ is referred to as natural or canonical isomorphism. For a given
homomorphism f, the mappings ¥ and ¢ are uniquely determined by the fundamental theorem of
homomorphism.

This theorem tells us that different homomorphic images G'of a group G can be expressed as
different quotient groups G /K, where K is the kernel of the homomorphism. We know that for any
normal subgroup N of G, the mapping ¥: G — G/N defined by y¥(x) = Nx for all x € G is a
homomorphism of G onto G/N, i.e. G/N is a homomorphic image of G. Therefore there is a one-
to-one correspondence between the normal subgroups of G and homomorphic images of G. Hence
we can obtain all homomaorphic images of a group G as follows-

(1) First find all normal subgroups of G
(2) For each normal subgroup N, construct the corresponding quotient group G/N.
(3)This set of quotient groups gives us all homomorphic images of G (upto isomorphisms).

Example Find all the homomorphisms from Zg onto Zs.

Let ¢: Z¢ — Zs be one such homomorphism with Kerg = K. Then K is a normal subgroup of Z.
By Lagrange’s theorem, order of K must divide the order of Z¢. Since o(Z¢) = 6, hence the order
of K =1,2,30r6.

From the fundamental theorem of homomorphism, we have

Zs/K = s
= 0(Zs/K) =0(Zs) =5

If o(K) =1, then

o(Zy) 6

o(K) _I:6

0(Ze/K) =
Hence we cannot have Z, /K = Zs.
Similarly, If o(K) = 2, then 0(Z¢/K) = 228 = & = 3. Hence Z¢ /K % Zs

o(K) 2
If o(K) = 3, then o(Z/K) = fff;)) =S 2 ie Zy/K % Ls

6

3
If o(K) = 6, then 0(Zg/K) = % =2=1,ie Ze/K 2 s
Therefore in all these cases we cannot have Z¢/K = Zs. Hence there exists no homomorphism of
Zg onto Zs.




4.11 Direct and inverse images of a subgroup and normal
subgroups

Let f be a homomorphism from a group G to a group G'. Let H be a subgroup of G and H' be a
subgroup of G'. Then we define the direct image of H under f as follows-
fH) ={f(h) €eG":h € H}

and the inverse image of H'as follows-

f'H)={heG:f(h)EH'}
Now we shall study the properties f(H) and f~1(H").
Property-1 f(H) is a subgroup of G'.
Proof: Sincee € H, hencee’ = f(e) € f(H). Hence f(H) is non-empty. Let a,b € f(H). Then
there exists h, k € H such that a = f(h) and b = f (k).
Now ab~! = f(WIf (K] = fF(Mf (k™) = f(hk™)

Since H is a subgroup of G, hence

hk€ H= hk™'€eH
= f(hk™) € f(H)

Hence ab™! € f(H). Thus f(H) is a subgroup of G.

Property-2 If H is abelian, then f(H) is abelian.
Proof: Suppose H is abelian. Let a,b € f(H). Then there exists h, k € H such that a = f(h) and
b = f(k).
Since H is abelian, hence hk = kh. Therefore
ab = f(h)f (k) = f(hk) = f(kh) = f(k)f(h) = ba
Hence f(H) is abelian.

Property-3 If H isnormal in G, then f(H) is normal in f(G).
Proof: Let a € f(H) and y € f(G). Then there exist h € H and x € G such that a = f(h) and
y=f).
Since H is normal in G, hence
heHandx € G = xhx ' €H
Now yay~' = fC)f(WIf ()] = fFOOf(Wf(x™) = f(xhx™") € f(H)
Thus f(H) is normal in f(G).

Property-4 If H' be a subgroup of G’, then f~1(H") is a subgroup of G.
Proof: We have
fYH)={heG:f(h) e H'}

Since e’ = f(e) € H',hence e € f~1(H'). Thus f~1(H") is non-empty. Let h,k € f~1(H"). Then
f(h), f(k) € H' and therefore [f (k)] ™! € H'. Now



f(hk ™) = fF(Mfk™Y) = fF(W[f(k)]"* € H' . Hence by definition of f~1(H'), we have
hk=t € f~Y(H"),i.e. f~1(H") is a subgroup of G.

Similarly we can prove the following properties:

Property-5 If H is cyclic, then f(H) is cyclic.

Property-6 If H' be a normal subgroup of G', then f~1(H") is a normal subgroup of G.

4.12 Summary

In this unit, we have

(1) Defined the normal subgroup of a group G as a subgroup H of G such that
xHx™1 c Hforeveryx € G
(2) Discussed various examples and properties of normal subgroups.
(3) Defined quotient group G/N of a group G and discussed examples and properties of quotient
groups.

(4) Defined the relation of conjugacy ~ in the group G as a~b < a = x~1bx for some x € G and
proved that it is an equivalence relation in G.

(5) Defined the nomalizer a € G in the group G as the set

N(a) = {x € G: ax = xa}
(6) Proved that the normalizer of an element is a subgroup of the group and obtained some other
results related to N(a).
(7) Defined the center of a group G as Z(G) = {z € G: zx = xz Vx € G}. We then proved that the
center of a group G is a normal subgroup of G. We discussed properties of Z(G) and proved the

class equation
G
0(6) = o[Z(6)] + Z 015(3)
a¢z(G)

(8) Defined the kernel of a homomorphism f as Kerf = {x € G: f(x) = e’} and proved that Kerf
is a normal subgroup of G. We proved results concerning Kerf.

(9) Proved the fundamental theorem of homomorphism, that is, every homomorphic image of a
group G is isomorphic to some quotient group of G.

(10) Discuss the properties of direct image f(H) of subgroup H and the inverse image f~*(H") of
subgroup H' under the homomorphism f.

4.13 Self assessment questions

(1) Prove that the intercestion of any collection of normal subgroups is itself a normal subgroup.

(2) H is a normal subgroup of G and K is a subgroup of G such that H € K € G. Show that H is a
normal subgroup of K.

(3) If H and K are normal subgroups of G, prove that HK is also a normal subgroup of G.

(4) Let H and K be normal subgroups of G such that H n K = {e}. Show that every element of H
commutes with every element of K.



(5) Let H be the only subgroup of finite order n in a group G. Show that H is normal in G

(6) Let H be a subgroup of a group G such that x2 € H Vx € G. Show that H is a normal subgroup
of G.

(7) Show that the set of all n X n matrices with determinant 1 forms a normal subgroup of
GL,(R).

(8) Show that every quotient group of an abelian group is abelian and the converse is not true.
(9) Show that every quotient group of a cyclic group is cyclic and the converse is not true.

(10) Let G be a non-abelian group of order p3, where p is a prime number. Show that the center of
G has exactly p elements.

(11) Let f be a homomorphism of a group G into a group G'. Show that f(G) is a subgroup of G'.

(12) Show that every homomorphic image of an abelian group is abelian and the converse is not
true.

(13) Show that the mapping f: C — R given by f(z) = Re(z) is a homomorphism. Where C and
R are the additive groups of complex numbers and real numbers respectively. Find Kerf .

[HINT: Kerf consists of z € C such that Re(z) = 0]

(14) Let f be a homomorphism of a group G onto a group G’ and H = Kerf. Let K'be any normal
subgroup of G’'and K = {x € G: f(x) € K'} = f~(K"). Show that K is a normal subgroup of G
containing Hand G/K = G'/K'.

(15) Let H and K be two normal subgroups of G such that H € K. Show that K/H is a normal
subgroup of G/H and

G/K = (G/H)/(K/H)

(16) Let H be a normal subgroup of a group G, and K be any subgroup of G. Show that
K/HNK = HK/H.

(17) Show that it is impossible to find a homomorphism of Z onto S,,(n > 2).
(18) Show that Qg/{1, —1} is isomorphic to Klein’s four group V.
(19) Show that Z,, is isomorphic to (Z/mZ)/(nZ/mZ).

(20) Show that every abelian group of order pg where p and q are distinct primes is cyclic.
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5.1 Introduction

You have already studied permutations and symmetric groups in unit-1. In this unit, we shall
study symmetric groups on finite sets in details We shall also study some basic concepts related to
permutations such as cycles, transpositions, orbits, decomposition of a permutation into disjoint
transpositions, cyclic permutations, even and odd permutations and alternating group. Permutation
groups are of great importance as we shall see that every finite group is isomorphic to some
permutation group. This famous result is known as Cayley’s theorem after the English
mathematician Arthur Cayley. We shall prove the Cayley’s theorem. You will be surprised to
know that some specific permutation groups were the only groups studied by the mathematicians
in the beginning of group theory.

In unit-2, we introduced the notion of an automorphism. Recall that an isomorphism of a
group G onto itself is called an automorphism of G. We shall make a detailed study of
automorphisms and inner automorphisms of groups.

5.2 Objectives

After reading this unit, you should be able to

e Define and discuss the Symmetric group of degree n
Illustrate the concept of cycles, transpositions and orbits
Describe the decomposition of a permutation into transpositions
Define even and odd permutation
Describe the Alternating group
Prove the Cayley’s theorem




e Define the automorphism and inner automorphism of groups

5.3 Symmetric group

In unit-1, we have introduced the notion of a permutation of a nonempty set. Recall that a one-
one mapping of a non-empty set S onto itself (i.e. bijections from S to itself) is called a
permutation.

LetS = {a,,a,, ...,a,} and f be a permutation of S such that

f(ay) = by, f(az) = b, ..., f(an) = by
where by, by, ..., b, IS some arrangement of the elements a4, a,, ..., a,. Then f is represented as
follows-
aq a, v Qp a; a; .. ap
F=(ay fla) - r@)=(o, b, = b
This notation is known as 2-rowed notation for f. The elements of S can be put in any order in the
first row. For example, If S = {1,2,3,4}, we have

= a 130G 3 12=0Q 2 53)e

We have already explained the method of multiplication of two permutations in unit-1.
Let f = ( “ 2 o ) and g = ( “ "2 v On ) Then the product
= @) fa) - f@)) ™ I= @) ga) . glan) P
fg of permutations f and g is defined as follows-
a, . Ay )

ay
9= ((fog)(al) (fog)(az) ... (fog)(ay)

aq a, e Ap
h (f{g(al)} flg(a} .. f{g(al)})
Here you should remember that the composition is applied from right to left order.

The set A(S) of all permutations of S forms a group with respect to composition of functions
and is called the symmetric group. Subgroups of symmetric groups are called Transformation
groups or Permutation groups. A symmetric group on a finite set with n elements is called
symmetric group of degree n and is denoted by S,,. Since the number of bijections from S onto
itself is n!, hence S,, is a group of order n!.

The symmetric groups S; and S, are abelian groups, since the groups of order 1 and 2 are always
abelian and here we have o(S;) = 1 and o(S,) = 2. However for n > 2, the commutative law is
not satisfied in general, hence S,,(n > 2) is non-abelian.
Corollary For a finite group G, we have a°(@ = e. Hence for the symmetric group S,, of degree n,
we have

fO(Sn) — fn! =]
Note: There is no loss of generality if we take the set S as {1,2, ...,n} in place of {a,, a,, ..., a,}.

This can be justified as follows.

aq a, e Ay
Suppose S = {a,,a,, ...,a,} and f € S, such that f = (b1 b, b )
o by

Since b; is one of the elements of S, there exists some integer m; such that b; = a,,, (1 <m; <
n). Therefore



f:(a1 a, an)

Am, Qm, - Qm,
Corresponding to this permutation we can define a permutation on {1,2, ..., n} as follows-

1 2 e n

(m1 m, .. mn>

This is a permutation of {1,2, ..., n} is determined by f.
Also if we are given a permutation of {1,2, ..., n}, then we can define corresponding permutation
on S={ay,a,..,a,}. So for the sake of convenience we can take permutation
( 1 2 . n ) in place of ( a; a; - Ay )
m; m, .. m, Am, Qm, = Am,J)’
From now on, we shall take S = {1,2, ...,n} in place of S = {ay, a,, ..., a,}.

The following example will give you an idea how concrete situations could be represented
using permutations.

Example (Symmetry group of an equilateral triangle)

In unit-1 we have discussed the symmetric group S; on three symbols. Let us see how this
symmetric group is related to the symmetries of an equilateral triangle. Let us discuss the group Ds
of symmetries of an equilateral triangle, i.e. the third dihedral group. Consider an equilateral
triangle with vertices labeled as 1, 2 and 3 counterclockwise around the triangle starting with 1 on
the top vertex. The operations that leave a geometrical figure invariant are called the symmetry
operations of the figure. The symmetry operations of an equilateral triangle are-

(1) The identity p, corresponding to rotation of the triangle about the axis normal to the plane of
the triangle passing through its geometric centre O by an angle of 2. In terms of permutation, it is
given by the identity permutation, i.e.

2 3

(2) The operations p; and p, corresponding to rotations of the triangle about the axis normal to the
plane of the triangle passing through its geometric centre O by angles of 2?” and 4?" respectively. In
terms of permutations, these are expressed as follows-




1 2

(3) The operations u4, u, and 5 corresponding to reflections about the perpendicular lines 1P, 2Q
and 3R respectively. These symmetry operations are described by the following permutations-

1
w19
3 P 2
3
w639 Q
2 1
2
w19
1 3

In this example, the elements of S5 act on the set of vertices of the equilateral triangle. The concept
of group action is an important one, and you will learn more about it in advanced courses.
Moreover, here you see that the dihedral group D5 is isomorphic to the symmetric group S;.

5.4 Cycles and Transpositions

LetS = {1,2,3,4} and f € S, such that
(1 2 34
/= (2 4 3 1)
Hence we have f(1) = 2,f(2) =4,f(3) =3 and f(4) =1, i.e. f takes 1t0 2, 2to 4 and 4 to 1.
The remaining symbol 3 is taken to itself, i.e.
1—-2—4—>1and3 — 3

This can be visualized as follows



3

Since 3 is left fixed by the permutation f, we can use the following one-row notation to represent
this permutation

f=Q024)

Such permutations are called cyclic permutations. Thus we have the following definition:

Definition Let S ={1,2,...,n} be a finite set. A permutation f of S is said to be a cyclic
permutation or a cycle of length m or m-cycle if there exist elements x, x5, ..., x,, € S such that
f(x1) = x5, f(x2) = X3, 000, f(tp—1) = X, f (X)) = x4 @and forany y € S, y # x; (1 < j < m),
f(y) = y.This cyclic permutation f is represented by one-row notation as (x; x5 ... x,,). The
number m is called the length of the cycle f.

Example: LetS = {1,2,3,4,5}. Then the permutation denoted by 4-cycle f = (2154) can be
expressed as
(1 2 345
I= (5 1 32 4)
We also note that the cycles (154 2), (5421) and (42 15) represent the same permutation.
Therefore

f=(2154)=(1542)=(5421)=(4215)

By definition, cycle of length 1 is the identity permutation. In above example, we have

®=(; 3 343

You will observe that (1) = (2) = (3) = (4) = (5).
Definition A cycle of length 2 is called a transposition.

Example Let S ={1,2,3,4}. Then the cycle (13) is a transposition of S. Similarly
(12),(14),(23) and (3 4) are transpositions of S. Can you find all possible transpositions of S?
How many transpositions are there in all?

We multiply cycles by multiplying the corresponding permutations. For example, suppose
§=1{1234,56}.Letf =(25)and g = (43 6), then

fg=@25)(436)



(G5 6324

Example Let S = {1,2,3,4,5}. The inverse of the cycle (1 2 3 4) is the cycle (4 3 2 1), since

23 419G 1 239

(12 3439

(1234)(4321):(

= (1234)1=04321)
We can generalize this result to any cycle of length n, i.e.
(12.... nNtl=mnn-1....21)
Definition Two cycles (i; i, ... i) and (j; j, ... j,) are said to be disjoint if
{iyige 3Ny j, i} =0
For example, if S = {1,2,3,4,5,6}, then the cycles (2 3 5) and (4 1) are disjoint.
Proposition Any two disjoint cycles commute.

Proof: Let S ={1,2,...,n}. Let f = (i; i, ... iy) and g = (j; j» ... j,-) be any two disjoint cycles.
Let LeS. If [ €{iji,.. i} then there exists i,(1 < p < k) such that [ =i,. Then f(l) =
f(ip) €{iy iy ... iy}.Since f and g are disjoint, hence g(1) = g(i,) =i, =L Also g(f (1)) =
9(f (i) = F(@) = FQ)

Now

W =fg®) =)
@NHW=g(f®O)=rW

and

Therefore (fg)(1) = (gf) (D).
Similarly, if L € {j; j, ... jr}, then f(1) = Land f(g(1)) = g(1). Therefore
FHW=fg®)=9®

and

9N =g(f) =9®
Thus (fg)(D) = (gfH(D.
Now let ! & {i; iy ... ix,j1j2 - jr}, then f(1) = g(l) = l. Hence

FOD=f(g)=f) =1



N =g9(f) =9 =1

= (fg9) () =@NW
Thus we have shown that (fg)(1) = (gf)(D VL€ S, ie. fg = gf.

5.5 Orbits

Let S be a non-empty set. Let f € A(S). Define a relation =¢ on S as follows:
Forany a,b € S,a = bifand only if b = f™(a) for some integer n.
Now we prove that the relation = is an equivalence relation on S.
Reflexivity: Since f°(a) = I(a) =aVa € S,hencea = aforalla e S
Symmetry: a =¢ b = b = f"(a) for some integer n
= f(b)=a
=b=ra
Transitivity: a =¢ b, b =f ¢ = b = f"(a),c = f™(b) for some integers m,n
= ¢ = f"(f"(@)) = f™*"(a)
=a=fc

Therefore the relation =, is an equivalence relation on S. This relation induces a decomposition of
S into equivalence classes called orbits. So we have the following definition:

Definition Let S be a non-empty set and f € A(S). Let s € S. Then the orbit of s under f is
defined as follows

05 = {x € Sts = x} = {x € S:x = f™(s) where n is some integer}
O, is called the f-orbit of s.
We can write
O, = {f™(s):where n is some integer}

Hence the f-orbit of s consists of all elements f*(s), n =0,+1,%2, ....... This appears to be an
infinite set but this is not the case as the following proposition shows.

Proposition Let S be a finite set and f € A(S). Let s € S. Then there exists a positive integer k
such that the f-orbit of s is given by

Os = {5, £(5), f2(s), ., f¥7H(8)}



Proof: Since S is a finite set, the symmetric group A(S) is of finite order. Therefore if f € A(S),
the order of f is also finite. Let o(f) =1 Then
fl=1=fl(x)=I(x)=xforallx €S

Obviously f!(s) = s. Now [ is the smallest positive integer satisfying f!(x) = x for all x But [
may not be the smallest positive integer satisfying f'(s) = s (why?). Let k be the smallest positive
integer such that f*(s) = s.

Then s = f°(s), £ (s), f2(5), ..., f"*(s) are all distinct, for if f'(s) = f/(s),0<i<j<k-1,
then f/7'(s) =s where 0 <j—i <k —1 contradicting the fact that k is the smallest such
positive integer satisfying this condition.

Now suppose t € O,. Then t = f™(s) for some integer m. By division algorithm, we have

m=qk+r,where0 <r<k

So we have t = f™(s) =t = fak+7(s) = fr(f"q(s)) = f7(s) asfk(s) =s = fki(s) = s, i.e.
= f7(s) , where 0 < r < k. Thus t is one of the elements s = f°(s), £(s), f2(s), ...., f¥71(s).
Hence s, £(s), f2(s), ..., f¥~1(s) are the only distinct elements in Oy, i.e.

Os = {5, £ (5), f2(5), o, fX71 (8D}
Corollary: The cyclic permutation f=0x1%x5 .. X) is the cycle
(xl f(xy) fz(x1) ----fm_l(x1))-

Proof: Let S = {1,2,...,n} be afinite set and f = (x; x, ... x,,) be a cyclic permutation of S. Then
f(x1) = x3, f(x2) = %3, 000, f(X—1) = X, f (X)) = x; and forany y € S, y # x; (1 < j < m),
f»=y.

Obviously x3 = f(x;) = f2(x1), x4 = f(x3) = f3(x;), and so on. Therfore x,, = f™ 1(x,).
Since f(x,,) = x4, hence x; = f™(x;). Hence we can write the cyclic permutation (x; x5 ... X;;,)

as (xl f(x1) f£2(x1) ----fm_l(x1))-

5.6 Decomposition of a permutation

Let S = {1,2, ..., n} be a finite set. A cyclic permutation on S is represented by a single cycle. If a
permutation f on S is not cyclic, then for any s € S, there exists a positive integer m such that
{s,f(s),f2(s), ..., f™1(s)} is an f-orbit of S. We can define a cycle of permutation f
corresponding to this orbit. So we have the following definition-

Definition Let S ={1,2,...,n} be a finite set and f € S,,. Then for any s € S, there exists a
positive integer m such that (s £(s) f2(s) ... f™ 1(s)) is a cyclic permutation corresponding to
the orbit {s, f(s), f2(s),...,f™ 1(s)} . This cyclic permutation is called a cycle of the
permutation f.



Also if o(s) denotes the cycle (s f(s) f2(s) ...f™1(s)) off, then for any
t € {s, f(s),f2(s), ..., f™1(s)} we have a(t) = a(s).

Suppose f be a permutation on S = {1,2,3,4,5,6} such that

=52 1634

Then the orbit of 1 consists of 1,f(1) =5,f2(1) =f(5)=3,f3(1)=f3) =1, ie. 15.3.
Hence (15 3) isacycle of f.

The orbit of 2 contains only 2 as f(2) = 2, i.e. (2) isacycle of f.
Since the orbit of 1 contains 3 and 5, hence the orbits of 3 and 5 are the same as that of 1.

The orbit of 4 consists of 4, f(4) = 6, f%(4) = f(6) = 4. Hence (4 6) is a cycle of f. Also the
orbit of 6 is the same as that of 4.

Therefore the cycles of f are (2), (15 3) and (4 6).
Here you observe that any two cycles of f are disjoint. Hence we have the following proposition-
Proposition Any two cycles of a permutation of a finite set are disjoint.

Proof: Let S=1{1,2,...,n} be a finite set and f € S,,. The f-orbits of elements in S are
equivalence classes. Hence any two orbits such as {s, f(s), f2(s),...,f™ 1(s)} and
{t, f(®), f2(t), ..., f™1(t)} are either identical or disjoint, i.e. distinct orbits are disjoint.
Therefore the distinct cycles (s £(s) £2(s) ...f™ 1(s)) and (¢ f(t) f2(t) ....f™1(t)) are
disjoint.

Now if you multiply these disjoint cycles in any order, the result is the permutation. Let us verify it
for the permutation f described above.

asv@=( 3 1439G 330306 2 1430
Therefore
asvweo=( 3 31390 1 3439

Since any two disjoint cycles commute, hence
f=(0153)(2)(46)=(2)(153)(46) =(2)(46)(153) etc.

Therefore we have the following result.



Proposition Every non-identity permutation of a finite set can be written uniquely as a product of
disjoint cycles, each of length> 1, upto rearrangement of cycles.

Proof: Let S ={1,2,...,n} be a finite set and f € S,, be a non-identity permutation of S. Let
01, 0y, .... 0, ... 0 be all pairwise disjoint cycles of f. Let x € S. Then there exists cycle o; such
that a; = (s f(s) f2(s) ...f™(s)) and x = f/(s) for some 0 <j<m—1. Then f(x) =
fI*(s) if j<m—1 and f(x) =s if j =m — 1. Therefore f(x) = g;(x). Since o; has no
element common with other cycles, the elements of o; are left fixed by the cycles
01,09, ....0i_1, 0;4+1 ... 0. Hence we have

0105 ... 0; . 0 (x) = 0;(x) = f(x)
Therefore f = 040, ... 0%.
Since f is a non-identity permutation, hence there must exist cycles of length greater than one
among a,, 05, ..., 0. Now a cycle of length one represents an identity permutation, we can drop

such cycles from the product o0, ... g,. Hence we can write f as a product of disjoint cycles of
length greater than one as

f = a0, ..q;
Where a; € {01,0,, ...,0:}, 1 < i <[, are cycles of length greater than one.

To prove uniqueness, suppose if possible f = B;f; ... B, Where B’s are some disjoint cycles of
length> 1.

Let B = (t f(©) f2(t) ....fP72(t)). If t is not an element of any a; , then ¢ is left fixed by each
a;. Then f(t) = aya, ...a;(t) =t. Which is not possible as the orbit of ¢t contains distinct
elements t, £(t), f2(¢t), ..., fP1(t), i.e. t # f(¢t). Hence our assumption that ¢ is not an element of
any «;, is wrong. Hence t is an element of some «;, say «,. Hence t is common to the orbits
corresponding to the cycles a,, and S}, therefore these orbits are identical. consequently B;, = a,,.
Thus each g;(1 <j <) is equal to some a;(1 < i <1). Since all a’s are disjoint, each f; is
equal to a; for unique i. Similarly each a; is equal to g; for unique j. Thus there is a one-to-one

correspondence between a’s and £’s such that corresponding cycles are equal and [ = r. This
proves the uniqueness of the product.

Now we shall prove an interesting result.
Proposition Let S = {1,2, ...,n}. Then

(12.n)=1n)(1n-1)..(13)(12)
Proof Lety; = (1i+ 1). Then

Ynog P2 = (1n)(An-1)..(13)(12)
Since (1) = 2 and y;(2) = 2 forall j # 1, hence

Ynoq P2 1(1) = Ppq .. Pp(2) = 2



Also y;1(2) = 1, ¥,(1) = 3 and ¥;(3) = 3 forall j # 2, hence
Un-1 - P201(2) = Y1 . P3P2(1) = Pp_qg .. P3(3) =3
Now ¥;(3) = 3,9,(3) = 1,¥3(1) = 4 and y;(4) = 4 forall j # 3, hence
Yn1 ---ll’zl/)1(3) =4
and so on, and finally
Yno1 - Pp1(n) =1

Thus we see that the product ¥,,_4 ... 1,1, takes 1 to 2, 2 to 3, 3 to 4, and so on, and finally n to 1.
Hence Y,,_; ... ¥, = (12...n).

In this way, every cycle can be expressed as a product of transpositions. Since every permutation is
product of disjoint cycles, we have

Corollary combining above two propositions we can say that
Every permutation of a finite set S having more than one element is a product of transpositions.

However the representation of a permutation as product of transposition is not unique. For
example,

f=(01523)=(13)12)(15=(13)(12)15)(23)(32)

5.7 Even and odd permutations

We have seen that a permutation is a product of transpositions. The number of transpositions in the
product may be even or odd. Suppose a permutation has a representation as a product of even
number of transpositions, you may ask whether it is possible to express it as a product of odd
number of transposition in some other representation. The answer is no. Let us see why this is not
possible.

Consider a polynomial p(x;, x,, ..., ¥,) = [1i<j(x; — x;). Let f €S,. Suppose f acts on

p(xq1, x5, ..., x,) by the rule
l_[(xi - %)= H(xf(i) = %)

i<j i<j
For instance, if f = (3 4) € S, is a transposition, then f takes

p(x1, %2, %3, %4) = (X1 — %) (1 — x3) (g — x4) (23 — x3) (X3 — x4) (%3 — x4)

into (o) = %)) ey = %) () = %r) (Xr ) = %£ (1))



X (xr) = Xp ) () — Xar)
e (xg —x2) (g — x4) (X1 — x3) Oy — x4) (2 — x3) (x4 — x3) = —p(xq, X2, X3, X4)

Hence the action of a transposition changes the sign of the polynomial. You can verify it for any
transposition (r s). Therefore if a permutation f is expressed as a product of even number of
transpositions, it leaves p (x4, x, ..., x,,) fixed (i.e. unchanged) and if any representation of f is a
product of odd number of transpositions, it changes the sign of the polynomial p(xy, x5, ..., X5,).
Hence if a permutation is expressed as a product of transpositions, the number of transpositions is
either always even or always odd.

Now if o € S,, is any permutation on n-symbols, then
alp(xy, xz, oo, X)) = £ (X1, X5, .0, Xp)
If we denote p(xq, x5, ..., X,) by A, then
o(A)=+A
Let us define a function y: S,, — {—1,1} such that

_(+1, ifo(d) = A
x(0) = {—1, ifo(A) = — A

Then y is called the alternating map of degree n or the signature function or simply the sign
function. y(o) is called the sign of o. A simple formula for y (o) is given as

a()—a())
x(0) = —
L t=J
1<i<jsn
Let us discuss the nature of the map x:S,, — {—1,1}.

Proposition: The alternating map y:S, — {—1,1} is a surjective homomorphism such that
x(f)==x1forall f €S,.

Proof: Let f,g € S,,. Then

(o= [] Y0020

i—J

1<i<jsn
flg()3-r{g(N}
i—j
fla@D}-rlg(}
g@-g(j)

flg@3-rig(N} |
a(D—-g() (9)

= H15i<an

g@-g(j)
i-j

= H15i<jsn ' H1si<jsn

= H15i<jsn

Since g is a bijection on {1,2,...,n} and 1 < i < j < n, hence g(i) and g(j) take all possible pair
of distinct values from {1,2, ..., n}. Therefore



flg@D} = flg(N}
9@ —g()

= x(f)

1<i<jsn
Hence y(fg) = x(f) - x(g), i.e. the alternating map y:S,, — {—1,1} is a homomorphism.
Now let t € S,, be a transposition such that t = (p q), p < q.
t@ —t()
x(@) = 1_[ —
1<i<js l ]
jsn
This product has the following types of factors-

(1) factor involving both p and q, i.e.

p—q
Since t(p) = q and t(q) = p, we have —t(”) ACH
(2) factor that contains neither p nor g, i.e.
t(@)—t
@ (]) ; where 1,j #p,q
i—j
Then t(i) = iand t(j) = j. Thus t(l) 5(1) 1

(3) factors such as

t@ —tlp) t@M)—tlg) i—-q i-p

- - = - - =1,wherei <p
L—p L—q L=p t—¢q

t(p) —t@) t@)—t —i i-

(p) .()_ (). (@ _q LLTP ) wherep<i<g
p—i i—q p—1i i—q

t —t() t —t(i —i p—i

(p) .()_(q) .():q Pl wherei> g
p—t q—1 p—i q-—i

Therefore we have

x() = H t(lz:]tm -1

1<i<jsn

Let f € S,,. Since every permutation is a product of transpositions, hence there exist transpositions
ty, ty, ..., t; such that

f = tltZ tk



= x(f) = x(tit, ... tp) = x(t)x(ty) ... x(t,) as y is a homomorphism
= x(f) = (D"
= x(f) =+1

Hence y is a homomorphism of S,, onto the multiplicative group {—1,1}.

The implications of above proposition are interesting. If a permutation f is a product of even
number of transpositions, i.e. f = t;t, ... ty, where k is even, then

x()=CEDk=1
and if the permutation f is a product of odd number of transpositions, i.e. k is odd, then
x(f)=(=D*=-1

Corollary: Let f € S, such that
f=tity .ty = 10y ...y
Where ty, t,, ..., trand aq, @y, ..., a, are transpositions. Then k = r (mod2).
Proof: From above proposition, we have
x(f) = x(@&)x(t2) - x (&) = x(a)x(az) ... x(ar)

= (-Dk = (-1)"

= k = r (mod2)
That means k and r both are simultaneously even or simultaneously odd.
Now we are in position to define even and odd permutations.

Definition: A permutation f € S,, is said to be an even permutation if it can be represented as a
product of an even number of transpositions, otherwise it is said to be an odd permutation.

In other words, f is called an even permutation if y(¢) = 1 and an odd permutation if y(o) = —1.
For example, f = (124 6 3) € S, is an even permutation as
f=03)16)(14(12)
and we have
x(F) =x[(13)(16)(14)(1 2)]
= x[(A3)]-x[(A 6)]- x[(1 4]~ x[(12)]
=D DD (D



=1
Also g = (136)(42) € S, is an odd permutation as

g=016)(13)42)
and x(9) = x[(16)(13)(42)]
= x[(16)] - x[(13)] - x[(4 2)]
= (-1 (-1 (-1
=-1

Obviously every transposition is an odd permutation and the identity permutation is an even
permutation. You will also observe that the product of two even or product of two odd
permutations is even and product of an even and an odd permutation is odd.

Alsosince (12..7r) = (1r)(1r—1)..(12), hence an r-cycle is odd if r is even and an r-cycle
is even if r is odd.

5.8 Alternating group

We have seen that the alternating map x:S,, — {—1,1} is a surjective homomorphism and
x(f) =1if f € S, isan even permutation. The kernel of this homomorphism is

Kery = {f € Sp:x(f) =1}
= {f € S,: f is an even permutation}

Since Kery is a normal subgroup of S,,. Hence the subset of S,, containing all even permutations is
a normal subgroup of S,,. So we have the following definition-

Definition: The group of all even permutations of degree n is called the alternating group of
degree n and is denoted by A4,,.

Since Kery = A,,, hence by fundamental theorem of homomorphism
Sp/An = {-1,1}
= 0(S,/A,) =2

0(Sn)
2PnJ _ 9
0(4n)
= 0(4,) =% =2

Hence there are n!/2 even permutations and the rest n!/2 are odd.



Example Let us determine the alternating group A; of degree 3. We have
S;={1,(123),(132),(23),(13),(12)}. The even permutations are I,(123) and (13 2),
since the identity permutation is always even and we have (123)=(13)(12) and (132) =
(12)(13). Hence 45 = {I,(123),(132)}.

5.9 Cayley’s theorem

In 1878 the English mathematician Arthur Cayley published an important result which had
tremendous influence in the development of group theory. He noticed from the group table that
multiplication by any group element permuted the group elements and therefore any group can be
considered as an abstractly similar copy of some permutation group. In other words, every group
is isomorphic to some group of permutations. We now proceed to prove the Cayley’s theorem.
Theorem Every group is isomorphic to a permutation group.

Proof: Let G be a group and let A(G) be the group of all permutations of G. Let a € G. Define a
map f,: G — G by f,(x) = ax Vx € G. The map f, is called the left multiplication by a.

fa isone-one: Letx,y € G. Then f,(x) = fop(y) 2 ax=ay =>x =y

f, is onto: Suppose y € G, then a~y € G such that
fal@y)=a(ay) =(aa Dy =ey=y

Hence f, is a permutation of G, i.e. f, € A(G).
Now for any a, b, x € G, we have
(fa0fp) (xX) = falfpy ()] = fa(bx) = a(bx) = (ab)x = fop(x)

This shows that f,o0f, = f,;,. Define Y: G — A(G) by Y(a) = f, Va € G. Thenfora,b € G, we
have

Y@ =yb)=fo=fp
= fa(e) = fp(e)
= ae = be
=a=5»>

i.e. ¥ is injective. Also Y(ab) = f,p = fa0f, = Y(a)oy(b) Va,b € G. Thus Y is a one-one
homomorphism of G into A(G), i.e. G is isomorphic to the subgroup ¥ (G) of A(G). This proves
the theorem.



Note: If the group G is finite containing n elements, then A(G) is isomorphic to S,, and therefore
G is isomorphic to a subgroup of S,,.

Example Let G = {1, w, w?} be the multiplicative group of cube roots of unity. Then f;(x) = 1 -
2
1l w w ) =1

x=xVxeG,hencef1=(1 )
w w

2
foX)=w-x VxEG,hencefa,z(j) a(;)z C‘1)=(1wwz)

1 2
foz(x) = w?-x Vx € G, hence f 2 =(w2 (f (‘;)z(l w? w)

By Cayley’s theorem G is isomorphic to the permutation group {/, (1 w w?), (1 w? w)}. Since
{I, 1w w?),(1 w?w)} = A;, therefore G = A;.

5.10 Automorphisms and Inner automorphisms of groups

In unit-2, we introduced the concept of an isomorphism. Recall that An isomorphism of a group G
onto itself is called an automorphism of G.

Example The mapping f:(R.,,) — (R, ) such that f(x)=% for all x e R,, is an
automorphism of R.,.

Obviously, f is one-one and onto. Let x,y € R.,. Then

1 11
f(x'}’)=g=;';=f(x)'f()’)

Let Aut(G) be the set of all automorphisms of a group G. Let f € Aut(G). Since every
automorphism is a one-one mapping of Gonto itself, hence f € A(G). Therefore Aut(G) < A(G).
We shall show that Aut(G) is a group with respect to composition of functions. Since the identity
map I € Aut(G), hence Aut(G) is non-empty.

(1) Closure Property: Let f,g € Aut(G). Then f and g are both one-one mappings of G onto
itself. Therefore the composition fog is also a one-one mapping of G onto itself. Also we have

(fog)(xy) = flg(xy)] = flg(x)g(y)], as g is an automorphism
= flg()1f[g(y)], as f is an automorphism
= (fog)(x)(fog) ()

= fog € Aut(G)

(2) Associativity: Since Aut(G) € A(G) and the composition of mappings is associative in A(G),
the composition is also associative in Aut(G).



(3) Existence of identity: If I: G — G is the identity map, i.e. I(x) =x Vx € G, then I is an
automorphism of G and fol = f = lof Vf € Aut(G). Thus I is the identity of Aut(G).

(4) Existence of Inverse: Let f € Aut(G). Since f is one-one and onto, we can define f~:G — G
such that f~1(y) = x whenever y = f(x). Obviously f~1 is also one-one mapping of G onto
x,. Now

y1iyv2 = fx)f () = faxy) = fIf 7 ) f (2]
= [T 0ny2) = T DT 0)
Hence £~ is an isomorphism of G onto itself, i.e. f~1 is an automorphism of G.

Therefore f~1€Aut(G). Also we have fof~* =1= ftof, ie. f~1 is the inverse of f in
Aut(G).

Thus Aut(G) is a group.

For an abelian group G, you will observe that the map x +— x~! is an automorphism of a
group G and this map is different from the identity map. For a non-abelian group G, an
automorphism of G can be obtained by congjugation by a fixed element in G.

Let a € G be fixed element. Let us define a function f,: G — G given byf,(x) = axa™ Vx €
G. We can verify that this is an automorphism of the group G.

(1) f, isone-one: Let x,y € G. Then

fax) = fo(y) = axa™! = a:ya_1

= x =y, by cancellation laws in G
Hence f, is one-one.

2) f, isonto: Let y € G. Then a~1ya € G such that
) fa y y

1 _

fala™tya) = a(a™tya)a™ ' =y

=~ faisontoG.
(3) Letx,y € G. Then fo(xy) = a(xy)a™ = (axa™)(aya™) = fL()fa(y)

This proves that f, is an automorphism of G. This automorphism is called an inner automorphism
corresponding to a.

Definition: Let a be an element of a group G. The automorphism f,: G — G given byf,(x) =
axa™! Vx € G is called an inner automorphism corresponding to a. The set of all inner
automorphisms of a group G is denoted by Inn(G).



Obviously for an abelian group, every inner automorphism turns out to be the identity map.
However a non-abelian group G has non-trivial automorphisms. The following result shows that
for a non-abelian group G, Inn(G) is a not a trivial group.

Proposition Let G be a group. Then Inn(G) is a normal subgroup of Aut(G) and Inn(G) =
G/Z(G), where Z(G) denotes the center of G.

Proof: We have e € G, hence f,(x) = exe™ = x Vx € G. Thus f, =1 € Inn(G), i.e. Inn(G) #
@.

First we shall show that every element f, € Inn(G) has its inverse in Inn(G).

Since a€G=aleG, hence for any x € G, we have (f,of,-1)(x) = fulfa-1(x)] =
fula tx(a™)™ ] = f,(a " xa) = a(a™xa)a™! = x = I(x).

ie. (f,0fq-1)(X) = 1(x) VX €G = fiof g1 =1
Similarly f,-10f, = I. Therefore foof ;-1 =1 = f-10f,

= (f) 7' = fo1 € Inn(G)
Now for a, b € G, we have

(fa0fp) () = falfp ()] = fo(bxb™") = a(bxb™Ha™" = (ab)x(b~'a™")
= (ab)x(ab)™! = fu(x) VX €G
ie. (faofp)(x) = far(x) VX EG
= fa0fp = fap € Inn(G)
Therefore f,0(f,) ™! = fu0fp-1 = fap-1 € INn(G), i.e. Inn(G) is a subgroup of Aut(G).
To show that Inn(G) is a normal subgroup of Aut(G), we prove that
fa € Inn(G), p € Aut(G) = pof,op~t € Inn(G)

For x € G, we have

(pofaop™)(x) = (pof)p™* ()] = plap~t(x)a™'] = p(@)plp~* (X)]pla™) = p(a)x[p(a)]™*
= fp(a) (x)

= pofgop™t = fp(a) € Inn(G)
Hence Inn(G) is a normal subgroup of Aut(G).
Now to prove the remaining part of the proposition, consider the mapping

Y: G — Inn(G) defined by Y (a) = f, forall a € G.



Let a,b € G. Then Y(ab) = f,, = f,ofp, = Y(a)oy(b). Thus y is a homomorphism. Now
fa € Inn(G) = 3Ja € G such that Y(a) = f,. Hence y is onto Inn(G). Therefore Inn(G) is a
homomorphic image of G. By the fundamental theorem of homomorphism, G /Keryp = Inn(G).

Now Kery = {x € G:y(x) = I}. Hence
a €Kerp  Yla) =1
S fo=1
S fu(x)=1(x)forall x € G
Saxa l=xforallx € G
< ax =xaforallx € G
S a€Z(6)

Thus Kery = Z(G). This proves the proposition.

5.11 Summary

In this unit, we have

(1) Proved that the set of all permutations on a finite set S forms a group with respect to
composition of mappings and defined the symmetric group S,,.

(2) Defined cycles, transpositions and orbits and proved that a permutation can be represented as a
product of transpositions.

(3) Defined alternating map y:S,, — {—1,1} and proved that it is a surjective homomorphism such
that y(f) = 1 forall f € S,,.

(4) Defined even and odd permutations and proved that the subset of S, containing all even
permutations is a normal subgroup of S,,. This group of all even permutations is called the
alternating group A,,.

(5) Discussed and proved the Cayley’s theorem, i.e. every group is isomorphic to a permutation
group.

(6) Defined automorphism of a group G as an isomorphism of G onto itself and proved that the set
Aut(G) of all automorphisms of a group G is a group with respect to composition of functions.

(7) Defined inner automorphism corresponding to a € G as the automorphism f,: G — G given
byf,(x) = axa™! Vx € G and proved that the set Inn(G) of all inner automorphisms of a group
G is a normal subgroup of Aut(G) and Inn(G) = G/Z(G), where Z(G) denotes the center of G.



5.12 Self assessment questions

(1) LetS = {1,2,3,4,5,6,7}. Express the following permutations of S as products of disjoint cycles
. (1 2 34567\, _(1 2 34567
Or=(, 1 55367M9=(G 5 25173

[Ans: (i)f = (142)(35) ()= (15)(26734)]
@ Iff=(13)(456)and g = (13 4),determine fg~1f~1.
[Ans: g71f1=(135)]

(3) Decompose the permutation f = ( 31 ‘; 53

g O

2 7\ - .
4 6) Into transpositions.

Ul =

[Ans: = (13)(15)(24)(67)]
(4) Let f € S,, be acycle of length r. Prove that o(f) = r.

(5) Let f = aja, ... be a permutation on S = {1,2,...,n}.Where ay,a,,...,a; are pairwise
disjoint cycles of lengths m;, m,, ..., my, respectively. Prove that o(f) = [my, m,, ..., m,] the least
common multiple of m,, m,, ..., my.

(6) Prove that S, contains no elements of order 8.

(7) Show that K = {I,(12)(34),(13)(24),(14)(23)} is a normal subgroup of S,. Also show
that K is isomorphic to the Klein’s four group V.

(8) Show that S, /V, = S,
(9) Prove that there are only two groups of order six, one is cyclic and other is isomorphic to Ss.
(10) Prove that A,, is simple for n > 5.

(11) Show that (i) Aut(Ss) = S5 (ii) Aut(V,) = S, (iii) Inn(Qg) = V,

5.13 Further readings
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Unit-6 In this unit, we introduce an algebraic structure with two binary operations called ring. We
define ring with examples and discuss various properties of rings. We define zero divisors and then
introduce rings without zero divisors. Some special rings such as integral domain, division ring
and field are studied. We introduce subring and subfield with examples.

Unit-7 In this unit, we define characteristic of an integral domain. We study homomorphism and
isomorphism of rings, Kernel of a homomorphism, direct and inverse images of subring and
subfield under homomorphism. We discuss the embedding of a ring into another ring and the field
of fractions of an integral domain.

Unit-8 In this unit, we deal with the left ideal, right ideal, principal ideal, prime ideal and maximal
ideal with examples. We define quotient ring and prove the fundamental theorem of
homomorphism for rings and fields.
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6.1 Introduction
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6.6 Integral domain, division ring and field
6.7 Subrings and subfields

6.8 Summary

6.9 Self assessment questions

6.10 Further readings

6.1 Introduction

Recall that a set with one or more operations (unary, binary or other) obeying a particular
collection of axioms is termed as ‘algebraic structure’. In previous blocks, you have studied an
algebraic structure called ‘group’. A group is a non-empty set equipped with a binary operation
satisfying axioms: closure property, associativity, existence of identity and existence of inverse.
Let us take an example to show how we can equip a non-empty set with two binary operations.

Consider the set Z of integers with two binary operations, namely the addition and multiplication.
We know that (Z, +) is an abelian group, i.e.

(1)a+beZforala,belZ
Qa+bB+c)=(a+b)+cforalla,b,ceL.
(3) Thereexists0 € Zsuchthata+0=a=0+4+a Va€Z.

(4) To each a € Z, there is an element —a € Z such that
a+(—a)=0=(-a)+a

5)a+b=b+aforalla,beZ

The set Z fails to form a group under multiplication, however it is closed under multiplication and
the associative law holds in it, i.e.

(6)a-beZforalla, b €Z

(Ma-(b-c)=(a-b)-cforalla,b,c€eZ

Moreover you will see that these two operations are interrelated by distributive law-
B)a-(b+c)=a-b+a-cforalla,b,c €Z

and (b+c)-a=b-a+c-aforalla,b,c €Z



This algebraic framework forms a model for abstract definition of an algebraic structure called
ring. In this unit, you will study different types of rings in details.

Not all rings follow commutativity of multiplication. We shall introduce some special rings in
which commutative law of multiplication holds and which contains multiplicative identity, i.e.
unity. In a ring, sometimes it happens that a # 0,b # 0 but ab = 0. Such elements are called
divisors of zero. Commutative rings with unity and without zero divisors are called integral
domains. As the name suggests, these rings share many properties with the integers.

Some rings have unity and in some rings every nonzero element has multiplicative inverse. A
ring with unity is called a division ring if its nonzero elements form a group under multiplication.
A Commutative division ring is called a field. We shall study these structures with examples and
prove some interesting results.

You will see how the study of groups provides parallels to study rings. The notions of subring and
subfield are quite similar to that of a subgroup you studied in unit-2. We shall discuss these
concepts and establish some results.

Let us first discuss the objectives of this unit.

6.2 Objectives

After reading this unit, you should be able to

® Understand the definition of ring and observe how different sets equipped with two binary
operations form rings.

Discuss the elementary properties of rings

Describe rings with or without zero divisors with examples

Define different types of rings such as integral domains, division rings and fields
Describe subrings and subfields with examples

6.3 Rings

The German mathematician David Hilbert introduced the term Zahlring (number ring) in his 1897
paper “The theory of algebraic number fields”. Actually the abstract definition of ring stemmed
from two independently developed theories: commutative ring theory and noncommutative ring
theory. Let us first discuss the abstract definition of a ring.

Definition A ring (R, +, -) is an algebraic structure consisting of a non-empty set R equipped
with two binary operations ‘+’ and °-’, called addition and multiplication respectively, such that
the following axioms are satisfied:

()a+beRforalla,b eRr

a+b+c)=(a+b)+cforalla,b,ceR

(3Ya+b=b+aforalla,beRr

(4) Thereisanelement 0 € R suchthata + 0 =aforalla € R

(5) For each a € R, there exists —a € R suchthata + (—a) = 0

(6)a-beRforalla,b €R

(M@@-b)-c=a-(b-c)foralla,b,c €R




(8) Foralla,b,c R, a.(b+c)=a-b+a-cand(a+b)-c=a-c+b-c
The additive identity 0 of R is called the zero of the ring R.
We can say that the triple (R, +, ) isaring if
(1) (R, +) isan abelian group.
(2) (R, -) isasemigroup.
(3) The left distributive law and the right distributive law hold.
Remarks 1. we shall denote a + (—b) by a — b.
2. For the sake of convenience, sometimes we denote a - b by ab.
3. Instead of saying that (R, +, -) isaring, we simply say that R is a
ring with the understanding that there is no confusion regarding the
binary compositions ‘4’ and -’.
The multiplication operation in a ring needs not to be commutative as we shall see in example
6.3.2 and example 6.3.8. Also the multiplicative identity may or may not exist. So we have the
following definitions:

Definition A ring (R, +, -) is called commutative if
a-b=b-aforalla b €RrR
Definition A ring (R, +, -) is said to be a ring with identity (or unity) if there exists 1 € R such
that
a-l=a=1-aforalla eRr
This element 1 is called the unity or identity of the ring R.

Let us illustrate these concepts with some examples.
The simplest ring is the zero ring, where R = {0} is the trivial group and multiplication is defined
by ab = 0 forall a,b € R. This is the only ring where 1 = 0.
Example 6.3.1 We have already seen that the set Z of integers is a ring under usual addition and
multiplication. Also we have

ab = baforalla,b € Z
and 1 € Zsuchthatal = a = 1a forall a € Z.
i.e. (Z,+, -) is a commutative ring with unity. You can check for yourself that (Q,+, -),
(R,+, -)and (C, +, -) are also commutative rings with unity.

Now we give an example of a non-commutative ring with unity involving matrices.
Example 6.3.2 The set M,,(Z), n = 2, of all square matrices of order n X n with entries in Z is a
noncommutative ring with unity under the addition ‘+’ and multiplication ‘> defined as follows-
Let 4, B € M,(Z) such that A = [a;;| and B = [b;;], where a;;, b;; € Z. Then
A+ B = [ay] + [by] = [ai; + byj]

and AB = [Cij] where Cix = Z;‘lzl aijbjk
Since a;; + b;j € Zand Y7, a;;bj € Zforall1<i<nand 1< j <mn,hence
A+ B € My(Z) and AB € M,,(Z) for all A,B € M, (Z). Also we observe that
(L)A+(B+C)=(A+B)+Cforall 4,B,C € M, (Z)
(2)A+B =B+ Aforall A,B € M,(Z)
(3) If O is the null matrix of order n X n, then

A+0=Aforall A e M, (Z)
(4) To each 4 = [a;;] € M, (Z) there exists —4 = [—a;;] € M,(Z) such that



(5) Since the multiplication of matrices is associative, hence
A(BC) = (AB)C forall A,B,C € M,,(Z)
(6) Also the multiplication of matrices is distributive with respect to matrix addition. Hence
A(B+C)=AB+ ACand (A+ B)C = AC + BC forall A,B,C € M,(Z)
(7) Let I = [a;;] such that a;; = 1 for i = j and a;; = 0 for i # j, i.e. I is the n x n identity
matrix. Then
Al = A =1Aforall A € M,(Z)
i.e. the identity matrix is the unity.
We know that the matrix multiplication is not commutative in general. Hence M,(Z) is a
noncommutative ring with unity for n > 2.
Similarly, you can check that M,,(Q), M, (R) and M,(C) are also noncommutative rings with
unity. In fact, if R is any ring, then M,,(R), n = 2, is a noncommutative ring with unity.

Example 6.3.3 Let (R, +, -) be any ring. Let X be any non-empty set. The collection, R%, of all
functions f: X — R is a ring with respect to pointwise addition and multiplication defined as
follows:

FPgx)=f(x)+gx) forall x € X
and FOMX) =fx)-gkx) forallx € X

Since R isaring and f(x),g(x) € R for all x € X, hence f(x) + g(x) € R and f(x)-g(x) €ER
for all x € X. Therefore f @ g € R¥ and fOg € RX. Also for all x € X, we have
D [f D g) @ hl(x) = (f & g)x) + h(x)
= [f(x) + g(x)] + h(x)
f(x) + [g(x) + h(x)], since f(x), g(x), h(x) € R
f&x)+ (g @ h)(x)

=f(x) + (g S hk)

=[f @ (g ® M)
e (f@YPYOh=fBGYDH
@ FBPH =fx)+g9x)

= g(x) + f(x), since f(x),g(x) € Rand R is aring
= D)
ie.f@g=9gDf
Similarly, you can see that other axioms of a ring hold in RX. The zero of R¥ is the mapping
0:X — Rgivenby 0(x) = 0 Vx € X.
You will also note that R¥ is commutative if and only if R is commutative. Also R* has unity if
and only if R has unity. If 1 is unity of R, then the unity of R¥ is the mapping i: X — R given by
i(x) =1vVx €eX.
Let us have another interesting example involving mappings.
Example 6.3.4 Let End(G) denote the set of all endomorphisms of an abelian group (G,+). Then
End(G) is a ring under the addition and multiplication defined by
FD M) =flx)+gx)forallx € G

and (FfOg)x) =f{gx)}forallx € G



An endomorphism of a group G is a homomorphism of G into itself. Let f, g € End(G). Then for
all x,y € G, we have
FOPx+y)=flx+y)+gx+y)
=[f)+ O]+ [g9(x) + 9]
Since G is abelian, hence

FRPx+y)=[f)+g]+[f)+90)]
=fEgx)+(FDPY»)

i.e. f @ g is an endomorphism of G. Hence f @ g € End(G).
Also (fOg)(x +y) = flg(x + ¥)}

=flg(x) +g()}

= f{g()} + flgO}

= (fOgx) + (fO9 )
Hence fOg € End(G).
It can be readily checked that End(G) is a ring.

Now we give an example of a commutative ring which does not have an identity.
Example 6.3.5 The set 2Z of all even integers is a commutative ring without unity under usual
addition and multiplication.

Example 6.3.6 The set Z¢ = {0,1,2,3,4,5} forms a commutative ring with unity under addition
modulo 6 and multiplication modulo 6.
Let us have a look at the composition tables for 4+, and X4

+6 10|12 |3[4]|5 Xe| 0|12 |3[4]|5
O 0|12 |3(4]5 0000|000
1 |12 3]4|5|0 1 (012|345
2 |23 |4]|5|0]1 2102 14]|101|2]4
3 /3|4 |5|0(1]2 310(310|3|0]3
4 |4 50| 11]2]3 4 1042 |0|4]|2
5 (5|01 ]2 3|4 510514321

We know that (Z4, +¢) is an abelian group.
From the composition table for X, we see that Z is closed under X, i.e.
aXegb €Zgforall a,b € Zg.
Also we have
aXg (b Xgc)=(axXgh) Xgc forall a,b,c € Z¢
Further a X¢ (b+4c) =aXg(b+c) asb+gc =b+c (mod6)
= a(b + ¢)(mod 6)
= ab + ac (mod 6)
= ab+gac
=a Xg b+ga XgC
Similarly, you can show that (a+¢b) X¢ ¢ = a X¢g c+eb Xg €
Also 1 € Z, istheunityasa Xg 1 =a =1 Xq a forall a € Zg and
aXeb=>bxgaforalla,b € Zg



Therefore (Zg, +4, Xg) IS a commutative ring with unity. In general, (Z,, +,, X,) is a
commutative ring with unity.

Example 6.3.7 The set Z/nZ = {[0],[1],[2],...,[n — 1]} of residue classes modulo n is a
commutative ring with unity [1] under the addition and multiplication of residue classes given by
[a] + [b] =[a+b], wherea+ b =a+ b (modn)
[a][b] = [ab], where ab = ab (modn)

Now we shall give an example created by Irish mathematician William Rowan Hamilton which is
historically important in noncommutative ring theory and has many applications in algebra,
number theory, geometry and mechanics.
Example 6.3.8 (Ring of real Hamilton Quaternions) Let

H={a+bi+cj+dk:ab,cdEeR}
Where ay + byi +c;j +dik =a, +byi+c,j+dyk if and only if a; =a,, by =by,c; =
Cy,di = ds.

Define addition and multiplication on H as follows
(a; + byi + cqj +dik) + (a, + byi + cyj +dyk) = (ag + ay) + (by + by)i
+(c;+cy)j+(dy +dy)k
(a; + byi + cyj +dik) - (ay + byi + cyj + dyk)
= (a1a; — bib; — c1¢, — dydy) + (aib; + bia; + ¢idy — dqcy)i
+(a;c, + cia, +dyb, — bidy)j + (a4dy + bicy, +dia, — c1by)k
This multiplication follows from the distributive law and the relations
iri=jj=k-k=i-j-k=-1,i-j=—j-i=k,
jrk=—k-j=ik-i=—i-k=j
You can verify that H is a noncommutative ring with zero, 0 = 0+ 0i + 0j + Ok and unity,
1=1+0i+ 0j + Ok.
Similarly, you can define ring of rational Hamilton Quaternions by taking a, b, ¢, d € Q.
Example 6.3.9 (Ring of Gaussian integers) Gaussian integers are complex numbers a + ib such
thata, b € Z. Let
Zli] ={a+ib:a,b € Z}
Consider addition and multiplication of Gaussian integers a, + ib; and a, + ib, induced by those
in the set C of complex numbers, i.e.
(a; +iby) + (ay, + ib,) = (a; + a,) + i(b; + by)
(ay + iby)(a; + iby) = (a,a; — byby) + i(bya; + a1by)
You can verify for yourself that Z[i] is indeed a commutative ring with unity.

Example 6.3.10 The set Q[v2] = {a + bv2:a,b € Q} is a commutative ring with unity under
addition and multiplication induced by those in R.
Solution Let a; + b;V2, a, + b,V2 € Q[\/f] Define addition and multiplication operations
in Q[v2] as induced by those in R, i.e.
(ay + bV2) + (ay + bpV2) = (ay + ay) + (by + b)V2
(a1 + blx/i)(az + bzx/i) = (a,a, + 2b,b,) + (ayby + bya)V2



Since a; + ay, by + by, aja; + 2byby, aib, + bya, € Q, hence Q[v2] is closed under these
operations.
Now the elements of Q[v2 ] are real numbers. Therefore the associative law and commutative law

of addition and multiplication must hold in Q[v2 ], i.e. forall x,y,z € Q[v2 ], we have
Mx+@+2)=+y)+z

@x+y=y+x

Q) x(yz) = (xy)z

(4)xy = yx

Also the multiplication is distributive over addition. Hence for all x,y,z € Q[v2], we have
x(y+z)=xy+xzand (x +y)z =xz + yz.

The element 0 + 0v2 is the zero element of Q[v2 ] and 1+ 0v2 is the identity (unity). Thus
Q[\/E] is a commutative ring with unity under addition and multiplication induced by those in R.

Example 6.3.11 Let (R;,P;,®;),i = 1,2, ...,n berings. Let
R, X R, X ..X R, ={(ay,ay,...,a,):a, € Ry,a, €ER, ...,a, € R,;}
Then R; X R, X ... X R, is a ring with respect to the following operations (verify):
(ai,ay, ...,ay) + (by, by, ..., by) = (ay D1 by,a, P, by, ..., a,, By by)
(alJ az, -, an) ’ (bli bZi s bn) = (al @1 blr az @2 bl' ey A @n bl)
This ring is called the direct product of Ry, R,, ..., R,,.
Now we give an important example of ring of polynomials.
Example 6.3.12 Let R be a ring and x be an indeterminate. A polynomial f(x) with coefficients in
R is an infinite formal sum
Z axt =ag+ax+ ot apx™ T+ a,x™ + .
i=0
Where a; € R and all except finite number of a;’s are equal to zero. If a,, # 0 and a; = 0, for all
i > n, then the polynomial is said to be of degree n.
Let R[x] be the set of all such polynomials. Let f(x), g(x) € R[x] such that f(x) = X2, a;x* and
g(x) = Xi2obixt. We define polynomlal addition and multlpllcatlon as follows:

f(x)+g(x)—Zax +be —Z(al+b)x

=S ) (S-S

, i=0 i=0
Where ¢; = Y=o xbi—k.
You can verify that R[x] is a ring under polynomial addition and multiplication.

6.4 Properties of rings

If (R, +, *) is aring, then (R, +) is an abelian group. Hence R enjoys all the properties of an
additive abelian group. Let us see what else we have for a ring.



Proposition Let (R, +, -) be a ring with 0 as its zero. Then for all a, b, c € R, we have
()a0 =0a=0foralla eR
(i) a(—b) = (—a)b = —(ab) forall a,b € R
(ii)(—a)(—b) = ab forall a,b € R
(ivya(b—c) =ab —acforall a,b,c €R
(V) (b —c)a = ba —caforall a,b,c €R
Proof (i) We have a0 = a(0 + 0)
= a0 + a0, by left distributive law
=0+a0=a0+a0, {0+ 0a=0a}
= 0 = a0, by right cancellation law for addition in the group (R, +,)
Similarly 0Oa = 0.
Hence a0 = 0a = 0 for all a € R.
(i) We have a[(—b) + b] = a0
= a(—b) + ab = 0, by left distributive law and using (i)
= a(—b) = —(ab)
Also [(—a) + a]b = 0b
= (—a)b + ab = 0, by right distributive law and using (i)
= (—a)b = —(ab)
Hence a(—b) = (—a)b = —(ab) forall a,b € R
(iii) We have (—a)(—b) = —[(—a)b] by (ii)

= = —[—(ab)]
— =ab
(iv)We have a(b — ¢) = a[b + (—¢)]
=ab + a(—c)
=ab + [—(ac)]
=ab —ac

Similarly we can prove (v).

Proposition If R is a ring such that a?> = a Va € R, then
(i) Each element of R is its own inverse, i.e.a+a =0 Va € R
(ila+b=0=a=>»h
(iii) R is a commutative ring.
Proof: (i) Since a € R, hence a + a € R. Therefore
(a+a))=a+a

= (@+a)at+a)=a+a
= a(a+a)+ala+a)=a+a byrightdistributive law
= (a?+a?) + (a?+a?) = a+a by left distributive law
= (a+a)+(a+a)=a+a,since a> =a
= (a@+a)+(a+a)=(a+a)+0
= a+ a = 0, by left cancellation law for addition in R
(i) We have,

a+b=0=a+b=a+aasa+a=0

= b = a, by left cancellation law for addition in R
(iii) We have
(a+b)?>=a+b=(a+b)(a+b)=a+b
= a(a+b) + b(a+ b) = a+ b, byright distributive law



= (a%? + ab) + (ba + b?) = a + b, by left distributive law
= (a+ab)+ (ba+b)=a+b,sincea’? =a ,b?=»b
= a + (ab + ba) + b = a + b, by associativity of addition
= (ab + ba) + a + b = a + b, by commutativity of addition
= (ab+ba)+ (a+b)=0+(a+Db)
= ab + ba = 0, by right cancellation law
= ab = ba,sincea+b=0=a=5»>

Hence R is a commutative ring.

Definition An element a € R is called an idempotent element if a? = a. A ring R is a Boolean
ring if every element of R is idempotent.
In light of above proposition we can say that every Boolean ring is commutative.

Remark Let R be aring. If n is a positive integer, we define

na=a+a+ .... , n times
If n is a negative integer,i.e. n = —m, where m is a positive integer, then we define
na = (—m)a = —(ma) = m(—a)
and hence na = (—a) + (—a) + ...... , m times

Also if m and n are integers, then
ma + na = (m + n)a, m(na) = (mn)a

Now we shall prove that the binomial theorem holds in commutative rings.
Proposition Let R be a commutative ring. Then for all a, b € R and given positive integer n, we
have

(a+b)*=a" + (111) a™1p + (721) a™%ph% + ... + b"

Proof We shall prove it by mathematical induction.
For n = 1, the result is obviously true, i.e. (a + b)! = a® + b*.
Suppose that the result is true for n = m.

(a+b)m=i(T)am-rbr
Now =
+1 _ m — M\ n—rpr
(a+b)™ = (a+b) (a+b)—[;)(r)a b\ (a+b)

Since R is commutative, hence

(a+b)m+1 Z( m r+1br _l_z m rbr+1

— m+1+2 1(m)am r+1br+2 (m)am rbr+1+bm+1

— am+1+2 1(m)am r+1br+2 1(r 1)am r+1br+bm+1
— am+1+2 1[(m)+(r 1)] m— r+1br pm+1

= qm*1 +Z (m+1) m-r+1pr +bm+1
m+1(m+1)am+1 rpr



Hence the result is also true forn = m + 1.

6.5 Rings with or without zero divisors

Consider the example 6.3.6, (Zg, +¢, X¢) IS @ commutative ring with unity. Here you will
observe that 2 X3 =0,3 Xg2 =0, i.e.a # 0,b # 0 but we have a X b = 0 = b Xg a. Also in
example 6.3.2, if A, B € M, (Z) such that

0 0

Az[(l) 8]andB=[(1) 8],thenAB=[0 O]=0andBA=[(1) 8]¢0.

Therefore in a ring, it may happen that a # 0,b # 0 but ab = 0 and ba # 0. So we have the
following definition:

Definition Let R be a ring. An element a € R is called a left zero divisor, if there exists b € R,
b # 0 such that ab = 0. Also a € R is called a right zero divisor, if there exists b € R, b # 0
such that ba = 0.

Obviously 0 is always a left as well as right zero divisor in any given ring. 0 is called a trivial zero
divisor. In example 6.3.6, the element 2 € Z, is a left as well as right zero divisor. In example

6.32, 4= [(1) 8] € M,(Z) is a left zero divisor.

A non-zero element of a ring R which is a left (right) zero divisor is called a proper left (right) zero
divisor of R. If aring R has no proper left or right zero divisors, then it is called a ring without
zero divisors.
For example, the ring Z of integers is a ring without zero divisor.
Suppose a ring R has no proper left zero divisors. Let b be a right zero divisor. Then there exists
a # 0 in R such that ab = 0. Then we must have b = 0 for otherwise a will become a proper left
zero divisor. Hence R has no proper right zero divisor. Therefore

R has no proper left zero divisors = R has no proper right zero divisors
Similarly, you can show that

R has no proper right zero divisors = R has no proper left zero divisors
Now suppose that R has no proper left zero divisors. If a,b € R such that ab = 0, then we must
have either a = 0 or b = 0. Let us see how:
Suppose ab = 0. If a = 0, then there is nothing to show. If a # 0, then a cannot be a proper left
zero divisor hence we must have b = 0.
Hence if R is without zero divisors, then

ab=0=a=00rb=0

or equivalently,a #0,b # 0 = ab # 0

6.6 Integral domain, division ring and field

Rings without zero divisors are special and have many interesting properties. These rings are
discussed at length in this section.

Definition A commutative ring R with unity 1 # 0 is called an integral domain if it contains no
proper zero divisors.

However, some authors do not include the existence of unity as a necessary condition to define
integral domain and simply define integral domain as a commutative ring without zero divisors.



Example 6.6.1 Since for any two integers a, b; we have ab = 0 = a = 0 or = 0, hence the ring
Z of integers is an integral domain.
Example 6.6.2 The ring Q[v2 ] ={a + bv2:a,b € Q} is an integral domain. Solution From
example 6.3.10, We know that Q[v2 | is a commutative ring with unity 1 + 0v/2.
Letx,y € Q[v2 ] suchthatx = a; + byvV2 and y = a, + b,V2 .Then
xy=0= (a1 + blx/i)(az + bz\/f) =0+ 0v2

= (a,a, + 2b;b,) + (a1b, + byay)V2 = 0+ 0v2

= a,a, + 2bb, = 0,a,b, + bja, =0
Which is possible only when either a; = 0,b; = 0o0ra, =0,b, =0, i.e. eitherx =0ory = 0.
Hence the ring Q[v2 | is without zero divisors. Therefore Q[v2 | is an integral domain.
Example 6.6.3 We have seen that the ring (Zs, +¢, Xg)has zero divisors. Hence it is not an
integral domain. However from the following composition table we observe that the ring (Zs, +s,
Xs) IS without zero divisors

X 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

ie.aXsb=0=a=00rb=0
Hence (Zs, +5, Xs5) is a commutative ring with unity and without zero divisors, i.e. it is an
integral domain.
What do you say about (Z,, +,, X,)? The following proposition gives the answer.
Proposition The ring (Z,, +,, X,) is an integral domain if and only if n is prime.
Proof: Suppose that n is a prime number and a, b € Z,, such that a x,, b = 0. Then n divides ab.
Since n is a prime, hence njab = n|aorn|b. Now 0 <a <n-—1and 0 < b < n — 1. Therefore
nla = a = 0. Similarly n|p = b = 0.
Thusax, b=0=a=0o0rb =0,i..Z, is an integral domain.
Conversely, suppose that (Z,, +,, X;) isan integral domain and n is not prime. Let n = pq such
that 1<p<n and 1<qg<n but then p,q €Z, such that p#0,gq#0 and p X, q =
pq (mod n) = 0, i.e. Z,, has zero divisors, a contradiction. Hence n must be a prime.
Proposition The cancellation laws hold in an integral domain.
Proof Let R be an integral domain, i.e. R is a commutative ring with unity and without zero
divisors. Let a # 0 and ab = ac. Then
ab—ac=0
=ab+a(—-c)=0
=alb+(—-c)]=0
=b+(—c)=0 asa#0
=b=c

Similarly, if a # 0, then ba = ca = b = c.



So far we have not talked about the multiplicative inverses of the elements of a ring. However,
we know that the multiplicative inverses of elements do exist in some rings. For example, the non-
zero elements in (Zs, +s, Xs) have multiplicative inverses, i.e. 1 Xs1=1,2Xs3=1=3 X 2
and 4 Xz 4 = 1. These elements are called units. So we have the following definition-

Definition Let R be a ring with unity 1 # 0. An element u of R is called a unit (or invertible) in R
if there exists some v € R such that uv = 1 = vu. The set of units of R is denoted by R*.

Now we shall show that R* forms a group under multiplication.

Proposition Let R be a ring with unity. The multiplication in R induces a multiplication in the set
R* of units with respect to which R* is a group.

Proof: Since the unity is the multiplicative inverse of itself, hence 1 € R*. Let a,b € R*. Then
there exist elements ¢,d € R such that ac = 1 = ca and bd = 1 = db. Let dc = h. Now (ab)h =
abdc = ac =1 and h(ab) = dcab = db = 1. Thus (ab)h = 1 = h(ab), i.e. ab is a unit in R.
Hence ab € R*.

Now a € R* implies that there exists ¢ € R such that ac = 1 = ca. Thus ¢ is a unit in R, i.e.
c € R*. The associativity holds in R* as it holds in R. This shows that R* is a group with respect
to the induced multiplication.

Example 6.6.4 The units of the ring Z are 1 and —1, i.e. Z* = {—1,1}
Example 6.6.5 In unit-1, you have seen that the set of all invertible elements (units) of
Z/nZ,(n = 2) forms an abelian group with respect to multiplication of residue classes. This set of
units is denoted by (Z/nZ)*, i.e.

(Z/nZ)* = {[a] € Z/nZ: |a] is invertible }
Also we proved that [a] € Z/nZ is invertible with respect to residue multiplication if and only if
gcd(a,n) = 1. Hence

(Z/nZ)* = {[a] € Z/nZ: a and n are co-prime}

Therefore in the ring Z/nZ the elements [a] for which a and n are co-prime are units. You can
verify that every non-zero element of Z/nZ is either a unit or a zero divisor. For example, in the
ring Z/8Z, the units are [1], [3], [5] and [7]. The zero divisors are [0], [2], [4] and [6].
Note: From unit-1, we know that the set of all invertible elements (units) of Z,, forms an abelian
group with respect to multiplication modulo n and is denoted by U,. Where U, = {a €

Zy: aand n are co-prime}.
Hence for the ring (Z,,, +,, X;), we have (Z,)* = U,.

Now let us define some special rings which contain units.

Definition A ring R with unity 1(+ 0) is called a division ring (or skew field) if every nonzero
element of R is a unit (invertible). In other words, A ring with unity is a division ring if its nonzero
elements form a group under multiplication.

In a division ring (R, +, -), R — {0} is a group with respect to multiplication induced by ‘-’ i.e.
R* =R —{0}.

Definition A commutative ring R with unity 1(# 0) is called a field if every nonzero element of R
is a unit (invertible). In other words, a field is a commutative division ring. In this way, every field
is a division ring.



Please be careful while using the words unit and unity. Unity is the multiplicative identity
element, while a unit is an element having a multiplicative inverse. Now let us illustrate the
concepts of division ring and field with examples.

It is obvious that the ring Z of integers is not a division ring and hence not a field as its nonzero
elements do not have multiplicative inverses. The rings (Q,+, -), (R,+, -) and (C,+, -) are all
fields. Now we give an example of a division ring which is not a field.

Example 6.6.6 You have seen in example 6.3.8 that the ring of real Hamilton Quaternions H is a
noncommutative ring with unity.
Let a + bi + cj + dk be a nonzero element of H. Then a — bi — ¢j — dk is also a nonzero element
of H. By the definition of quaternion multiplication, we have
(a+ bi+cj+dk)-(a—bi—cj—dk)
=(a?+b*+c*+d*) + (—ab+ ba —cd + cd)i + (—ac + ac — db + bd)j
+(—ad — bc +da + cb)k
= (a® + b%? + c? + d?)
Hence
] ] (a —bi —cj —dk)
(a + bi+cj+dk) @107+ 2+ d?) =1
(a — bi — ¢j — dk)
~ (a®+b% +c? +d?)
Thus each nonzero element of H is invertible. This makes the ring of real Hamilton Quaternions H
a division ring. However It is not a field as it is not commutative.
Example 6.6.7 The ring (Zs, +5, Xs) is a field.
As you have seen earlier in example 6.6.3 that (Zs, +5, X3) is a commutative ring with unity.
From the composition table, we observe that every nonzero element has a multiplicative inverse,
ie.1Xs1=1,2%Xs3=1=3%s2and 4Xs4=1. Thus (Zg, +5, Xg) is a field. This is an
example of a finite field.

= (a+bi+cj+dk)™t=

Example 6.6.8 The ring Q[v2 | = {a + bv2:a,b € Q} is a field.
Solution From example 6.3.10, We know that Q[\/?] is a commutative ring with unity 1 + 0v/2.
Let a + b2 be a non-zero element of Q[v2 ]. Then at least one of a and b is not zero. Now

(a + bv2)(a — bV2) = a? — 2b?

a— b2
= (a+ b\/_) ( bz))
Now a,b € Q, hence a? —2b> =0 = a =0, b = 0 This is not possible. Therefore a? — 2b% #

0. Hence

(a+b\/§)_1=((;1_bﬁ) = VZ € QVZ]

2_2p2)  qZ—2bh%2 q2 2b2

This shows that every nonzero element in Q[v2 ] is a unit, i.e. Q[v2 | is a field.

Proposition Every field is an integral domain.

Proof Let (F,+, -) be a field. Then F is a commutative ring with unity 1 # 0 such that every
nonzero element of F is invertible. To show that F is an integral domain, we have to show that F is
without zero divisors.



Let a, b € F such that ab = 0.

If a # 0, then there exists a™! € F suchthataa™! =1 = a™la.
Thenab = 0 = a~(ab) = a0

= (a ta)b=0

=b=0

Similarly, if b # 0, then you can show thatab =0 = a =0

Thusab = 0= a =0o0rb =0, i.e. F is without zero divisors and hence an integral domain.
Now you may ask whether the converse is true. It is true but only for finite integral domains.
Hence we have the following proposition.

Proposition Every finite integral domain is a field.

Proof : Let R = {a4, a,, ..., a,} be a finite integral domain with n distinct elements. Then R will
be a commutative ring with unity 1 # 0. To prove that R is a field, we show that every nonzero
element of R is a unit. Let a # 0 be a nonzero element of R. Since R is closed under
multiplication, hence aa4, aa,, ..., aa, are elements of R. All these elements are distinct. For if
aa; = aaj, i # j then the cancellation law in R gives a; = a;, a contradiction. Since 1 € R, hence
one of the products aa,, aa,, ..., aa,, must be equal to 1. Therefore there exists a unique element
ax € R, 1 < k < n, such that aa;, = 1. Since R is commutative, hence aa, = 1 = aya, i.e. a is
invertible. Hence R is a field.

6.7 Subrings and subfields

The notion of a subring in ring theory is analogous to that of a subgroup in group theory. We have
seen that the set 2Z of all even integers is a ring under usual addition and multiplication and
27 c Z. Soon we shall see that 2Z is a subring of the ring Z of integers. Also we shall demonstrate
that Z is a subring of the ring Q of rational numbers. In a similar fashion we can define a subfield
of a given field.

Definition A non-empty subset S of a ring R is called a subring of R if S is closed under the
addition and multiplication compositions in R and S itself is a ring under the induced addition and
multiplication compositions.

Since S € R, hence the properties such as associative law, commutative law and distributive law
hold good in S as they hold good in R. So we need to check only few conditions in order to show
that S is a subring of R. Let us establish this criterion.

Proposition A non-empty subset S of a ring R is a subring of R if and only if a— b € S and
ab € Sforalla,b € S.

Proof First suppose that S is a subring of R. Then S is a group under induced addition ‘4. Let
a,b €S. Then —b € S and hence a + (—b) €S, i.e. a—b € S. Also S is closed under induced
multiplication. Hence ab € S.

Conversely, suppose that S is a non-empty subset of R such that a—b € S and ab € S for all
a,b€S.

Now the condition a — b € S for all a,b € S implies that (S, +) is a subgroup of (R, +). Since
commutativity of addition holds in R, it will hold in S as well. Hence (S, +) is an abelian group
under induced addition.



The condition ab € S for all a,b € S implies that S is closed under induced multiplication. The
remaining properties such as associativity of multiplication and the distributive laws hold in S
since they hold in R. Thus S is a ring under induced addition and multiplication. Hence S is a
subring of R.

Now we shall apply this result to check whether a given subset of ring is a subring.

Example 6.7.1 Z is a subring of the ring Q.

Obviously we have a — b € Z and ab € Z for all a, b € Z and hence the result.

Example 6.7.2 Let S be a set of all 2 x 2 matrices of the type [Z 8] where a,b € R. Then Sis a
subring of M, (R).
Let A, B € S such th tA—[a1 O] olB—[a2 O] Th

et 4, suca—bloan =lb, of en

_np_[a 0] [az 0]_[a1—a2 0]
a=s =[5 ol =[5 ol =[5k oS

_[ar 0][a; O]_[alaz 0]
AB_[b1 OHbz 0]  lbia, 0 €5

Hence S is a subring of M, (R).

Also

Example 6.7.3 2Z is a subring of the ring Z of integers.

Leta,b € 2Z. Then a = 2x,b = 2y where x,y € Z. Now
a—b=2x—-2y=2(x—y)€2Zand (2x)(2y) = 2(2xy) € 2Z.

Hence 27 is a subring of the ring Z of integers.

Here you will notice one interesting thing that Z is a ring with unity, however 27 is a subring of
Z without unity. Thus subring of a ring with unity may not have unity. Also it may happen that a
subring may have unity which is different from the unity of the ring. So we have the following
example.

Example 6.7.4 Z X Z = {(m,n): m,n € Z} is a ring under following addition and multiplication
(my,ny) + (my,ny) = (My + my,ny +ny)
(my,ny)(my, ny) = (Mymy, nyn,)
The unity of thisring is (1,1).
We have Z x {0} c Z X Z. Let (m4,0), (m,,0) € Z x {0}. Then
(my,0) — (my,0) = (my —my, 0) € Z x {0}
and
(mlﬂ 0)(m2, O) = (mlmZ' 0) EZX {0}
Hence Z x {0} is a subring of Z x Z. Now
(m, 0)(1,0) = (m, 0) = (1,0)(m, 0)
Therefore (1,0) is the unity of Z x {0} which is different from the unity of Z x Z.
Example 6.7.5 The set of Gaussian integers
Z[i] ={a+ib:a,b € 7}
is a subring of the complex numbers C.
Note {0} and R are subrings of any ring R. Subring {0} is called the trivial subring of R.

You have seen while studying group theory that the intersection of two subgroups is again a
subgroup. We have similar result for subrings.



Proposition The intersection of two subrings is a subring.
Proof: Let S; and S, be any two subrings of a ring R. We have 0 € S; N S,, hence S NS, is a
non-empty subset of R. Let a,b €S, NS,. Then a,b € S; and a,b € S,. Since S; and S, are
subrings of R, hence we have

a,beS, =a—-beS; andab €S,

a,beS,=a—-beS,andab €S,
Now a—beS; anda—beS,=a—-—beS; NS,
and ab e S;andab€e S, =abeS; NS,
Therefore S; N S, is a subring of R.
Now we shall define the notion of a subfield of a given field.
Definition A non-empty subset K of a field F is said to be a subfield of F if K is closed with
respect to the addition and multiplication compositions in F and K itself is a field under the
induced addition and multiplication compositions.
Let us establish the following important characterization of a subfield.
Proposition Any subset K of a field F, containing at least two elements, is a subfield of F if and
only if
(laeKbeK=a—-beKkK
(ilaeK0+beK=ab leK
Proof: Suppose that K is a subfield of F. Then (K, +) is an abelian group. Let a,b € K. Then
—b € Kand hencea + (—b) €K,ie.a—b €K.
Also every nonzero element of K is a unit. Hence 0 # b € K = b~ € K. Now K is closed under
multiplication, hencea € K, b € K = ab™! € K.
Conversely suppose that the conditions (i) and (ii) hold. Now the condition (i) implies that (K, +)
is a subgroup of (F,+). Since commutativity of addition holds in F, it will hold in K as well.
Hence (K,+) is an abelian group under induced addition.
Let 0 # a € K, then from (ii), we have aa™! € K, i.e. 1 € K, hence the unity exists. Again from
(i)wehave 1€ K,0 #a € K = 1la ! € K, i.e. a~! € K. Hence each nonzero element of K has
multiplicative inverse.
Nowa €K 0+b€eK=a€K,bleK=alb 1) eK,by (ii.

= ab €K

If b =0, then ab = 0 € K. Hence we have ab € K Va,b € K.
The remaining properties of a field such as associativity of multiplication, commutativity of
multiplication and the distributive laws hold in K since they hold in F. Thus K is a Field under
induced addition and multiplication. Hence K is a subfield of F.

Example The field Q of rational numbers is a subfield of the field R of real numbers. Also the
field R of real numbers is a subfield of the field C of complex numbers.

6.8 Summary

In this unit, we have

(1) Discussed the notion of a ring with examples.
(2) Defined zero divisors and introduced rings with zero divisors.
(3) Defined integral domain, division ring and field with examples.



(4) Proved that the ring (Z,,, +,, %X;) is an integral domain if and only if n is prime.

(5) Proved that the cancellation laws hold in an integral domain.

(6) Proved that every field is an integral domain and every finite integral domain is a field.

(7) Introduced the notion of a subring and subfield with examples and proved that the intersection
of two subrings is a subring.

6.9 Self assessment questions

(1) Let G be an additive abelian group. Define an operation in G by ab = 0 for all a,b € G. Prove
that (G,+, .) isaring.

(2) Show that the power set P(A) of a given set A forms a Boolean ring under the compositions:
X+Y=X-Y)u(y—X)and XY =XnYforall X,Y € P(4)
(3) Show that any ring (R, +, .) inwhich a + b = ab for all a,b € R is the zero ring.

(4) Show that the set Z[v2] = {a + bV2: a, b € Z} is a commutative ring with unity under addition
and multiplication induced by those in R.

(5) Let (R,+, .) be aring. Prove that Z X R is a ring with unity under the operations @ and ©
given by
(m,a) ® (n,b) =(m+n,a+b)
and
(m,a) ® (n,b) = (mn,mb + na + ab)

(6) Let D[0,1] denote the set of all real valued differentiable functions on [0,1]. Show that it is a
commutative ring with respect to pointwise addition and pointwise multiplication.

(7) Show that R = {0,2,4} is a subring of the ring Z,.

(8) Show that for each positive integer n, the set nZ is a subring of Z.
(9) Prove that a ring can have at most one unity.

(10) Let R be aring. Let m,n € Z and a, b € R. Show that —

(i) (ma)(nb) = (mn)(ab)

(it) m(ab) = (ma)b = a(mb)

(11) Let R be aring and a € R. Show the set S = {x € R: ax = 0} is a subring of R.

(12) Let R be aring. The center of R is the set {x € R:ax = xa Va € R}. Prove that the center of
aring is a subring of R.

(13) Show that every nonzero element of the ring (Z,,, +,, X;) is either a unit or a zero-divisor.



(14) Prove that the sets of idempotents of a commutative ring is closed under multiplication.

(15) Prove that the only idempotents in an integral domain are 0 and 1.

(16) Let d be a positive integer. Prove that Q[Vd | = {a + bVd: a,b € Q} is a field.

6.10 Further readings

(1) Herstein, 1.N. (1993): Topics in Algebra, Wiley Eastern Limited, New Delhi.

(2) Fraleigh, J.B. (2003): A first course in abstract Algebra, New Delhi, Pearson Education, Inc.
(3) Dummit, D.S. and Foote, R.M. (2009): Abstract Algebra, New Delhi, Wiley India (P) Ltd.
(4) Artin, M.(1996): Algebra, New Delhi, Prentice Hall of India.

(5) Birkhoff,G. and MacLane,S (1965): A survey of modern Algebra, Macmillan, N.Y.

(6) Lang, S. (1965): Algebra, Reading, Massachusetts, Addison-Wesley.

(7) Barshay, J. (1969): Topics in ring theory, N.Y., W.A. Benjamin Inc.

(8) Burtan, D. M. (1968): A first course in Rings and Ideals, Reading, MA., Addison-Wesley.



Unit-7: Homomorphisms and Embedding of rings

Structure

7.1 Introduction

7.2 Objectives

7.3 Characteristic of an integral domain

7.4 Homomorphism and isomorphism of rings

7.5 Some properties of ring homomorphism

7.6 Kernel of a homomorphism

7.7 Direct and inverse images of subring and subfield
7.8 Embedding of a ring

7.9 The field of quotients (fractions) of an integral domain
7.10 Summary

7.11 Self assessment questions

7.12 Further readings

7.1 Introduction

In unit 6, we introduced the notion of a ring. You studied different types of rings such as integral
domain, division ring and field and their properties. We begin this unit by associating a special
number with an integral domain. You will see that for an integral domain R there may exist a
positive integer n such that na = 0 for all a € R. The smallest such integer, if it exists, is called
the characteristic of the integral domain. Otherwise the integral domain is said to be of
characteristic zero. We shall illustrate this concept with examples.

Next we shall define the concept of a homomorphism for a ring. You have already studied these
composition preserving mappings for groups. Since in rings we have two operations, so we have
two conditions, i.e. for a mapping f from a ring R to a ring R'to be a homomorphism, we must
have

(i) fa+b) = f(a) + f(b) (ii) f(ab) = f(a)f(b) forall a,b € R.

If £ is a bijection, we call it an isomorphism. The isomorphic rings are abstractly identical in the
same way the isomorphic groups are. We shall study different ring homomorphisms with
examples. We shall define kernel of a ring homomorphism as we did for group homomorphism.
Similar to the notion of a normal subgroup in group theory, we shall introduce the concept of an
ideal here. However a detailed study of ideals is the central theme of our next unit. The direct and
inverse images of subring and subfield will be discussed.

You know that a field has richer structure than an integral domain. How can we enlarge an integral
domain to a field? The answer is the concept of embedding of rings. We shall discuss different
procedures of embedding one ring into another. You will see that an integral domain can be
embedded in a field. This special field is called the field of fractions or field of quotients of the
corresponding integral domain. The motivation comes from the construction of rational numbers
by integers. So the natural example of a field of fractions is Q which embeds the integral domain Z



of integers. You will observe that the field of fractions is the smallest field containing the given
integral domain.

7.2 Objectives

After reading this unit, you should be able to
® Define and illustrate the concept of characteristic of a ring.

® Define and discuss different homomorphisms of rings such as monomorphisms,
epimorphisms, isomorphisms, endomorphisms, and automorphisms.

® Discuss the kernel of a ring homomorphism.
® Obtain properties of direct and inverse images of subrings and subfields.

® Define embedding of rings and discuss different procedures of embedding one ring into
another.

® Describe the embedding of an integral domain in a field and define the field of fractions or
quotients.

® Discuss results concerning the field of fractions.

7.3 Characteristic of an integral domain

Let us consider the integral domain (Zs, +s5, Xs). We observe that
1(1) =1,2(1) = 1451 = 2,3(1) = 1+51+51 = 3,

4(1) = 1451451451 =4, 5(1) = 14+51+514+514+51 = 0, hence the additive order of 1 is 5, i.e.
o(1) =5.

Also 1(2) =2,2(2) =4,3(2)=1,4(2) =3,5(2) =0, hence 0(2) = 5.

Similarly o(3) =5, o(4) = 5. Interestingly, the additive order of each element of the integral
domain Zs is the same. Let us see whether it is true for all integral domains.

Let (R, +, .) be an integral domain. We shall see that
ma=0< mb=0forall a,b € R — {0}.

We have (ma)b = (a + a + ---m times)b
=ab + ab + - mtimes, by distributive law
= a(b + b + --- mtimes), by distributive law
= a(mb)
If ma =0, then a(mb) = (ma)b = 0b = 0. Since a # 0 and R is an integral domain, hence
mb = 0. Similarly mb = 0 = ma = 0.
Thus ma = 0 & mb = 0 forall a,b € R — {0}. That means
In an integral domain the additive order of any two nonzero elements are same.
This promotes the following definition.



Definition Let (R, +, .) be an integral domain. The smallest positive integer n, if it exists, such
that na = 0 for all a € R is called the characteristic of the integral domain R. If no such positive
integer exists, then R is said to be of characteristic zero.
Examples
(i) The characteristic of the integral domain (Zs, +5, Xs) is 5.
(ii) The characteristic of the integral domain Z is zero.
(iii) The characteristic of the integral domain Q is zero.
Now we shall prove a result that puts some restrictions on the characteristic of an integral domain.
Proposition The characteristic of an integral domain is either zero or a prime number.
Proof Let R be an integral domain. Let R have finite characteristic n.. We shall prove that n is a
prime number. Suppose on the contrary that n is not prime. Then n = pq, where 1 < p <n and
1< g <n.Leta#0.Since R is an integral domain, hence a®> = aa # 0. Now the order of each
nonzero element of an integral domain is the same. Hence o(a) = o(a?) = n.
~na?=0= (pq)a’=0

= (pq)(aa) =0

= (pa)(qa) =0

= Eitherpa=0 or ga=0
This is a contradiction to our assumption that n is the order of a. Hence n must be prime.
Note: Since every field is an integral domain, hence the characteristic of a field is either 0 or prime
number.
Corollary If R is a finite integral domain, then the characteristic of R divides o(R).
Proof Let R be a finite integral domain with n elements, i.e. o(R) = n. Since R is finite, hence the
order of its elements cannot be infinite. Then the characteristic of R is a prime number p (say).
Hence the additive order of every nonzero element of R is also p. By Lagrange’s theorem, order of
an element divides the order of the group, i.e. p divides n.
Example Let (R, +, .) be an integral domain of characteristic p. Then show that

(a+ b)P =aP + bP forall a,b € R.

Solution: We have

(a+b)? =aP + (I;) aP~1b + (Z) aP=2b% + ... + bP

Now p divides (?) for all r, 1 <7 <p—1. Hence (?) =mp for some positive integer m.
Therefore forall r, 1 <r < p — 1, we have

(li) aP~Th" = mpaP~"h" = mpc

where ¢ = aP~"b" € R. Since p is the characteristic of R, hence pc = 0. Therefore (f)ap‘rbr =
Oforallr,1 <r <p-—1.This gives

(a+ b)P = aP + bP
Proposition The order of a finite field is p™ for some prime p and n > 0.
Proof Let F be a finite field. Then its characteristic is a prime number p (say). Hence the additive
order of each nonzero element is also p, i.e. (F,+) is a p-group. Now any prime g other than p
cannot divide o(F). For otherwise, by Cauchy’s theorem, F will contain an element of order
q(# p). Which is not possible as each element of F has the same order p. So we must have
o(F) = p™ forsomen > 0.

7.4 Homomorphism and isomorphism of rings




In unit 2, we introduced the notion of a homomorphism for groups as a mapping satisfying the
composition preserving property. In a similar way, we can define homomorphism for a ring.

Definition Let R and R’ be any two rings. A mapping f: R — R’ is called a ring homomorphism
or simply a homomorphism if it satisfies the following properties:

() fla+b) = f(a) + f(b) (i) f(ab) = F(@)f(b) forall a,b € R.

A homomorphism is called a monomorphism if it is one-one and epimorphism if it is onto. A
bijective homomorphism is called an isomorphism. A homomorphism of a ring R into itself is
called an endomorphism. An isomorphism of a ring R onto itself is called an automorphism.

Let us illustrate these concepts with some examples.
Example 7.4.1 The mapping f:Z — Z, given by
f(a) = a(modn) foralla € Z
is a ring homomorphism.
Solution: Let a, b € Z. Then
f(a+b) = (a+ b)(modn)
= a(mod n)+,b(mod n)

= f(a)+.f(b)
and
f(ab) = (ab)(mod n)

= a(mod n) X,, b(mod n)

= f(a) X, f(b)
Example 7.4.2 The mapping ¢: R[x] — R given by ¢[f(x)] = f(1) Vf(x) € R[x]is a ring
homomorphism.

Solution: Let f(x),g(x) € R[x] such that f(x)=Y2,a;x! and g(x) = X2, b;xt. The
evaluation of f(x) at 1eR is given by f(1) = X2, a;. Hence

PlF @1 =F =) @
Now f(x)+ g(x) =Y2,aixt + X2, bixt = Y2 (a; l—:obi)x". Therefore

o)

PIFG) + 90T = ) (@ + )

i=0

=XiZoa; + Xi2ob;



=f(M+g9)
= olf (O] + olg(0)]
Also f(x)g(x) = (X7Zg aix’)(XiZo hix") = Xi2q cix’, Where ¢; = Yje—o aib;_y.

Hence
elf()g)] = ¢ (Z cixi>

= Diz0Ci _ =

= Y2 0(Zh=o axbi—k)
= (22 ai)(Z?io b;)
= f(Mg(D)

= o[f()]elg(x)]

Hence ¢ is a ring homomorphism.

Example 7.4.3 Let f: C — C be a mapping from the ring of complex numbers to itself such that
f(z) = zforallz € C. Then f is a ring homomorphism.
Solution: Let z;,z, € C. Then
g fzitz) =2, +2, =21 + 7, = f(z1) + f(23)
an
f(z125) = 7175 = 717, = f(21)f (2)
This proves that f is a ring homomorphism.

Example 7.4.4 Let us discuss the endomorphisms of the ring Z of integers. In unit 2, we have seen
that the mapping f:Z — Z given by f(x) = 2x for all x € Z is an endomorphism of the additive
group Z of integers. But it is not a ring homomorphism as f(1) = 2-1 = 2 and hence
2=f(=fA-D=fD-f(1H)=2-2=4

which is not possible. So what kind of endomorphisms of the ring Z we can have?
Suppose f:Z — Z is a ring homomorphism, i.e. an endomorphism. Then f is a group
homomorphism from Z to itself. Thus there exists m € Z such that f(x) = mx for all x € Z. Now
f(1)=m-1=m, Since f is a ring homomorphism, hence m = f(1) = f(1-1) = f(1) -
f(1) =m-m =m?. Therefore m? = m. This gives m =0 or m = 1. Hence f is either zero
homomorphism or identity homomorphism.
Example 7.4.5 From unit 6, we know that Z[v2]| = {a + bv2:a,b € Z} is a ring under addition
and multiplication of real numbers.
The mapping f: Z[v2] — Z[v2] given by f(a + bv2) = a — b+/2 is an automorphism of Z[v2].
f is one-one: Let a; + byV2, ay + byV2 € Z[V2]. Then
f(ay +bV2) = f(a, + b,V2) = a; — byV2 = ay — byV2

= a, =a,; by =Db,

= a; + biV2 = a, + b,\2
f is onto: Suppose a — bv2 € Z[v2]. Then a, b € Z which implies that
a+bvV2 € Z[V2] . Hence for a—bv2 € Z[V2], there exists a + bv2 € Z[V2] such that

f(a+bv2) =a—bv2,ie. fisonto.



f is a homomorphism: Let x,y € Z[V2] such that x = a, + b;V2 andy = a, + b,v/2. Then
f(x) = a; — b;vV2and f(¥) = a, — b,v/2. Now
flx+y) = fl(a; + b1vV2) + (az + boV2)]
= f[(al +ay) + (b + bz)‘/i]
=(a; +az) — (by + bz)‘/E
= (a1 = b:1v2) + (az — b,V2)
=f()+f)
Also
fxy) = fl(ay + biV2)(ay + bV2)| = f[(aya, + 2byby) + (arb; + byaz)V2]
= [(alaZ + 2b;1b,;) — (a1b, + b1a2)\/§]
= (a1 = b1v2)(a, — b;V2)
= ff )
Hence f is an automorphism of Z[v2].
Example 7.4.6 Let R be a ring with unity e. Then the mapping f:Z — R given by f(n) =
ne VYn € Z is a ring homomorphism.
Let m,n € Z. There arise three cases.
Case | when both m and n are nonnegative. Then
fm+n)=(m+n)e
=e+e+-+ (Mm+n)times
=(e+e+-- mtimes)+ (e+ e+ - ntimes)
= me + ne
=f(m)+f(n)
Case Il when both m and n are negative. Then
fm+n)=(m+n)e
= (—m —n)(—e)
= (-m)(—e) + (—n)(—e)
= me + ne
=f(m) + f(n)
Case Il when one of m and n is nonnegative, say m > 0,n < 0. Then
fm+n)=(m+n)e=[m-—(—n)le
=e+e+ [m—(—n)ltimes
=(e+e+-+ mtimes)— (e+e+ - (—n)times)
=me — (—n)e
= me + ne
=f(m)+f(n)
Now in aring R, we have (ma)(na) = (mn)(ab) for all a,b € R and for all m,n € Z. Hence we
have
f(mn) = (mn)e = (mn)(ee) = (me)(ne) = f(m)f(n)
Thus £ is a ring homomorphism.
[Note: Here we denote unity by e instead of 1 in order to differentiate it from 1 € Z]

7.5 Some properties of ring homomorphism




In unit 2 you have seen that a group homomorphism f has the properties such as e’ = f(e) and
fl@a™) =[f(a)]"!. Since a ring R is an additive abelian group (R,+), hence a ring
homomorphism shares similar properties.

Proposition: Let f be a homomorphism of aring R into aring R'. Then
(i) f£(0) = 0, where 0 and 0"are the zero elements of R and R'respectively.
(i) f(—a) = —f(a)
(ii)f(a = b) = f(a) — f(b)
(iv)f (na) = nf(a)
foralla,b € Rand n € Z.
Proof: (i) Leta € R. Then f(a) € R'.
Now f(a) + 0" = f(a)
=f(a+0)
= f(a) + f(0), since f is a homomorphism
Therefore by left cancellation law in the additive group (R, +), we have
0" = f(0)
(i) f(0)=0"= fla+(-a)] =0
= f(@+f(-a) =0
= f(-a) = —f(a)
(iii) Let a, b € R. We have
fla=Db) =fla+ (=b)] = f(a) + f(=b) = f(a) — f(b)
(iv) Let n € Z. If nis a positive integer, then
f(na) = f(a+ a+ --ntimes)
= f(a) + f(a) + -~ ntimes, since f is a homomorphism
= nf(a)
If n is a negative integer, i.e. n = —m (say), then

f(a) = fl[(-m)a] = f[-(ma)] = —f(ma) = —mf(a) = nf(a)

Proposition Let f be a homomorphism of a ring R onto a ring R'. Let 1 be the unity of R and
R’ # {0}. Then f(1) is the unity of R'.

Proof Let y € R'. Since f is onto, hence there exists x € R such that y = f(x).

Nowyf(1) = f()f (1) =f(x1) =f(x) =y. Also f(Dy=f(Df(x) =f1x) = f(x) =y.
Hence f(1) is the unity of R’'.

7.6 Kernel of a homomorphism

You are familiar with the concept of the kernel of a group homomorphism. Now we shall give a
similar definition for the kernel of a ring homomorphism.
Definition Let f be a homomorphism of a ring R into a ring R’. Kernel of the homomorphism f is
defined as the set

Kerf ={x €R:f(x) =0}
In case of group homomorphism, you observed that the kernel of a homomorphism is a normal
subgroup. Here we have a similar notion that we call “ideal”. So let us define ideals for a ring. You
will learn more about ideals in the next unit.



Definition A non-empty subset A of aring R is called an ideal if
abeEA=a—-b€eAanda€AreR=are€Aandra €A
Example The set E of even integers is an ideal of the ring Z of integers.
Leta,b € E. Thena = 2m and b = 2n for some m,n € Z. Now
abeEE=a—-b=2m—-2n=2(m—n)€E
anda€E,r€eZ=ar=02m)r=2mr €E,ra=r(2m) =2rme€E.
Now we shall show that Ker f is an ideal of R.
Proposition Let f be a homomorphism of a ring R into a ring R’. Then the kernel of the
homomorphism f is an ideal of R.
Proof We have Ker f = {x € R: f(x) = 0'}. Since f(0) = 0’, hence 0 € Ker f. Hence Ker f is
non-empty. Let a,b € Ker f. Then f(a) = 0" and f(b) = 0'. Now
fla=b)=f(@—-fb)=0"-0" =0

= a—b€eKerf

Letr € R. Then
flar) = f(@)f(r) =0'f(r) =0

= ar € Ker f
Also fra) = f(r)f(a) = f(r)0" =0

= ra € Ker f
Hence a,b€eKerf=a—beKerf and a€Kerf,r€R= ar e Kerf and ra € Ker f.
Therefore Ker f is an ideal of R.
One more result is similar to that of group theory:
Proposition Let f be a homomorphism of a ring R into a ring R'. Then f is injective if and only if
Ker f = {0}.
Proof First suppose that f is an injective homomorphism. Let a € Ker f. Then

f(a) =0
= f(a) =f(0) asf(0)=0
= a=0 asfisone-one

Therefore Ker f = {0}.
Conversely, suppose that Ker f = {0}. To show that f is an injective, let a,b € R. Then

f@=fb)=fla)-fb) =0
= f(a—b) =0'as f isa homomorphism
= a—-beKerf
=a—-b=0 asKerf ={0}.
=a=5>b

Hence f is an injective homomorphism of R into R'.

7.7 Direct and inverse images of subring and subfield

Let £ be a homomorphism of a ring R into a ring R'. Let S be a subring (or subfield) of R. We
define the direct image of S under f as follows-
f©) ={f(a) eR"a €S}

Let K be a subring (or subfield) of R’. Then the inverse image of K is defined as follows-



) ={reR:f(r) €K}
Similarly we can define the direct images and inverse images of ideals. Let us prove some results
related to these concepts.

Proposition Let f be a homomorphism of a ring R into aring R'. If S is a subring of R, then £(S)
is a subring of R'.
Proof Let x,y € f(S). Then x = f(a) and y = f(b) for some a,b € S. Obviously a — b € S and
ab € S. Now

x—y=f(a)—f()=f(a—Db)E€ f(S)
and  xy = f(a)f(b) = f(ab) € f(S).
Hence f(S) is a subring of R".

Proposition Suppose f is a homomorphism of a ring R onto a ring R'. If A is an ideal of R, then

f(A) isan ideal of R'.

Proof Let x,y € f(A). Since f is onto, hence x = f(a) and y = f(b) for somea,b € A. Let

r€R.Hencea—b€eAandra € A,ar € A. Suppose k = f(r) € R". Now
x—y=f(a)—f(b)=f(a—Db)€ f(A)

and kx = f(r)f(a) = f(ra) € f(A), xk = f(a)f(r) = f(ar) € f(4)

Hence f(A) is an ideal of R'".

Proposition Every homomorphic image of a commutative ring is commutative.
Proof Let R be a commutative ring and R’ be a homomorphic image of R under the
homomorphism f. Then f isonto and R’ = f(R).
Letx,y € R". Then x = f(a) and y = f(b) for some a, b € R. Now
xy = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = yx

Hence R’, i.e. f(R) is a commutative ring.

Proposition Let K be an ideal of R’. Then f~1(K) is an ideal of R.
Proof We have
f7U(K)={r € R:f(r) € K}
Since 0’ = f(0) € K, hence 0 € f~1(K). Therefore f~1(K) is non-empty. Let a,b € f~1(K).
Then f(a), f(b) € K. Now K is an ideal of R’, hence
fl@—f() ek
= f(a—b) € K asf isahomomorphism
= a— b € f~1(K), by definition of f~1(K)
Letr € R. Thenf(r) € R'. Since K is an ideal of R’, hence
f@eK,f(reR = f(a)f(r) €K
= f(ar) €K
= ar € f71(K)
Also f(a) EK,f(r) ER' = f(r)f(a) EK = f(ra) E K = ra € f1(K).
Therefore f~1(K) is an ideal of R.

7.8 Embedding of a ring into another ring




A ring R is said to be embedded in a ring R'if there is a subring S of R’such that R is isomorphic
to S. In other words, a ring R can be embedded in a ring R’ if there exists a monomorphism of R
into R'.
For example, the ring R of real numbers can be embedded in the ring C of complex numbers. As
you can see that the map f: R — C given by f(a) = (a,0) Va € R is a monomorphism.
Sometimes it is easier to deduce the structure of embedded ring R by using the properties of the
ring R’ embedding it. There are many ways we can embed a ring in another ring. You will see that
(1) Every ring can be embedded in a ring with unity
(2) A ring can be embedded in a ring of endomorphism of some abelian group.
(3) An integral domain can be embedded in a field
We shall discuss the first two embeddings in this section. Our next section is devoted to the last
one where we shall construct a field in which a given integral domain can be embedded.
Let (R, +, .) be aring. Then we can show that
RXZ={(a,n):a € R,n €L}
IS a ring with unity under the addition and multiplication defined as under:
(a,n) + (b,m) = (a+ b,n +m)
and
(a,n)(b,m) = (ab + nb + ma,nm)

forall (a,n),(b,m) € R X Z.
Since R is a ring, hence a+ b € R, ab € R and nb, ma € R. Therefore ab + nb + ma € R.
Hence (a + b,n+m) € R X Z and (ab + nb + ma,nm) € R X Z. Thus R X Z is closed under
the addition and multiplication defined above. Let 0 be the zero element of R. Then
(0,0) € R X Z and

(0,0) + (a,n) = (0 +a,0+n) = (a,n)
Also

(a,n) +(0,0) = (a+0,n+0) = (a,n)
Thus (0, 0) is the additive identity of R X Z.
Now (0,1) € R X Z such that

(a,n)(0,1) = (a0 + n0 + 1a,n1) = (0+ 0 + a,n) = (a,n)
Similarly, (0,1)(a,n) = (a,n). Therefore (0, 1) is the multiplicative identity of R x Z.
You can check that other properties of a ring are satisfied by R X Z under under the addition and
multiplication defined above. Thus R X Z is a ring with unity (0, 1). Now we shall prove our
main result.
Proposition Every ring can be embedded in a ring with unity.
Proof: Let R be a ring. We know that R X Z is a ring with unity (0, 1). Let us define a mapping
fiR — R X Zby f(a) = (a,0) Va € R. We shall show that f is a monomorphism.
Leta,b € R. Then
fla+b)=(a+b,0)=(a0)+(b0)=f(a)+f(b)

and f(ab) = (ab,0) = (a,0)(b,0) = f()f (b)
since (a,0)(b,0) = (ab + 0b + 0a,00) = (ab + 0+ 0,0) = (ab,0)
Hence f is a homomorphism of R into R X Z.
Now f(a) = f(b) = (a,0) = (b,0) = a=0b
= fisone-one, i.e. f isa monomorphism of R into R X Z. Hence R is embeddable in R X Z.



Let us now discuss the embedding of a ring in a ring of endomorphism of some abelian group. Let
End(G) denote the set of all endomorphisms of an abelian group (G, +). In unit 6, we have seen
that End (G) is a ring under the addition and multiplication defined by
FD PN =fx)+gx) forallx € G
and FOg)Xx) =f{gx)}forallx € G
For the sake of convenience we shall write f + g for f @ g and fg for f©Og.
You will observe that End (G) is a ring with unity I, where I: G — G is the identity mapping given
by I(x) = x Vx € G. We shall show that a ring R is embeddable in some End(G).
Proposition Every ring(R, +,.) with unity can be embedded in a ring of endomorphisms of the
additive abelian group (R, +).
Proof Let us denote the additive group (R,+) by R*. The ring of endomorphisms of R* is
End(R™). Define f:R — End(R"%) by f(r) = ¢, Vr € R such that ¢,: R* — R* is given by
¢,(a) =raVa € R*. Obviously, ra € R* and
¢,(a+b)=r(a+b) =ra+rb=¢.(a)+ ¢,.(b)forall a,b € R*
Hence ¢, is an endomorphism of R*, i.e. ¢, € End(R™). Therefore the mapping f is justified.
To prove that f is a homomorphism, let ,s € R. Then for all a € R*, we have
@res(@) = (r+s)a
ra+sa
or(a) + ¢s(a)
= (or + ¢5)(a)
= QPris = Pr T @5

Therefore
fr+s)=¢rs =0+ s =)+ f(s)
Also for all a € R*, we have
(prs(a) = (rs)a =7(sa) = (pr(sa) = (pr{(ps(a)} = (‘prq)s)(a)
= Qrs = PrPs
Therefore f(rs) = @rs = @rps = f(r)f(s)
Hence f is a homomorphism of R into End(R").
Finally, f(r) = f(s) = ¢r = ¢s
= @, (a) = gs(a) forall a € R*
= ra = sa foralla € R*
= rl=slas1€R*sincel €R
=r=s
Thus f is one-one and so f is a monomorphism of R into End(R™), i.e.
R = f(R) € End(R")
Consequently R is embeddable in End(R™).
Corollary Every ring can be embedded in a ring of endomorphism of some additive group.
Proof We know that a ring R can be embedded in a ring R'(= R x Z) with unity and there exists a
monomorphism f: R — R’ such that f(a) = (a,0) Va € R. Let us denote the additive abelian
group (R',+) by R'*. Then by above proposition, the ring R” with unity can be embedded in a ring
of endomorphism of the additive group R'"and there exists a monomorphism g: R’ — End(R'")
such that g(r) = ¢, Vr € R'. Then the composition map gf: R — End(R'") given by (gf)(a) =
g{f(a)} Va € R is a homomorphism. Since f and g both are one-one, hence gf is also one-one,
i.e. gf is a monomorphism of R into End(R'"). Hence R = gf(R) € End(R'"). Thus R is
embeddable in End(R'").



Note: Some authors use the notation Hom(R*,R*) for End(R™).

7.9 The field of quotients (fractions) of an integral domain

In this section we shall discuss how an integral domain can be embedded in a field. Suppose we
are given an integral domain. You may ask, is it possible to construct a field embedding this
integral domain as a subring? In other words, is it possible to extend an integral domain to a field?
We know that in a field every non-zero element is invertible however in an integral domain it is
not always the case. For example, in Z the elements are not invertible. That means the equation
ax = b, a # 0 with integer coefficients does not have solution in Z. But the equation has a
solution in the field @ of rational numbers. So at least in this case it appears that we can construct
Q such that Z can be embedded into it. Now you will see that we can always embed an integral
domain in a field.
Theorem Every integral domain can be embedded in a field.

Proof Let D be an integral domain with at least two elements and let Dy = D — {0}. Then
D X Dy ={(a,b):a,b € D,b # 0}.
The proof consists of three parts. First we shall define a relation ‘~’ on D X D, such that

(a,b)~(c,d) if and only if ad = bc. We shall show that ‘~’ is an equivalence on D X D,. Next
we shall construct a family F of all equivalence classes and define addition and multiplication in it
such that F becomes field. Finally, we shall prove that D can be embedded in F.
Let us first show that the relation ‘~” on D X D, as defined above is an equivalence relation.
Reflexivity: Since D is an integral domain, hence ab = ba for all a, b € D. Therefore by definition
of ‘~’ we have
(a,b)~(a,b) forall (a,b) € D X D,
Symmetry: (a,b)~(c,d) = ad = bc
= cb =da
= (c¢,d)~(a,b)

Transitivity: (a, b)~(c,d) and (c,d)~(e, f)

= ad = bc and cf = de

= adf = bcf and bcf = bde

= adf = bde

= afd = bed as D is commutative

= af = be as d # 0 and cancellation law holds in D,

= (a,b)~(e, f)
Hence ‘~’ is an equivalence relation on D X D,. This relation decomposes D x D, into disjoint
equivalence classes. Let us denote the equivalence class of (a, b) by a/b. Hence

a/b ={(c,d) € D X Dy: (c,d)~(a,b)}
Obviously a/b = c/d if and only if (a,b)~(c,d), i.e. ad = bc
Let F be the family of all equivalence classes a/b of D x Dy, i.e.
F={a/b:(c,d) € D X Dy}
Let us define addition and multiplication in F as follows:
a/b+c/d = (ad + bc)/bd
(a/b)(c/d) = ac/bd



You will observe that theses operations are inspired by addition and multiplication of rational
numbers.
Since D is an integral domain, b # 0,d # 0 = bd # 0. Hence (ad + bc)/bd and ac/bd € F.
Now we shall show that these operations are well defined, i.e. they are independent of the
representation of equivalence classes. Hence we show that if a/b = a’/b'and ¢/d = ¢'/d’ then
a/b+c/d=a'/b" +c'/d" and (a/b)(c/d) = (a'/b")(c'/d").
We have a/b = a'/b'and c¢/d = c¢'/d’
= ab’ = ba' and cd’' = dc’
= ab'dd’' = ba'dd’' and bb'cd’ = bb'dc’
= ab'dd’' + bb'cd’' = ba'dd' + bb'dc’
= adb'd’ + bcb'd’ = bda'd' + bdb'c’ as D is commutative
= (ad + bc)b'd' = bd(a'd’ + b'c")
= (ad + bc)/bd = (a’d" + b'c")/b'd’
=a/b+c/d=a'/b' +c'/d
Alsoa/b =a'/b'andc/d = c'/d’
= ab’ = ba' and cd' = dc’
= ab’cd’' = ba'dc’
= (ac)(b'd") = (bd)(a'c")
= ac/bd = a'c'/b'd’
= ac/bd =a'c'/b'd’
= (a/b)(c/d) = (@' /b")(c'/d")
You will observe that if a € Dy, then 0/a # a/a as 0a # aa. Hence 0/a and a/a are two distinct
elements of F, i.e. F has at least two elements. Also we have 0/a = 0/b for all a,b € D, and
ac/bc = a/b forany c € D,.
Now we shall show that F is a field under the addition and multiplication defined above.
(1) Associativity of addition: For all a/b,c/d,e/f € F, we have
a/b+ (c/d+e/f)=a/b+ (cf +de)/df
= {a(df) + b(cf + de)}/b(df)
= {(ad + bc)f + (bd)e}/ (bd)f
= (ad + bc)/bd +e/f
=(a/b+c/d)+e/f
(2) Commutativity of addition: For all a/b,c/d € F, we have
a/b+c/d = (ad + bc)/bd
= (cb +da)/db
=c/d+a/b
(3) Existence of zero element: We have 0/a € F for 0 # a € D such that
0/a+c/d=(0d+ac)/ad = (0+ ac)/ad = ac/ad = c/d
Hence 0/a is the zero element of F. Also if 0 # b € D, then
0/a=0/bas0b=a0
Let us denote 0/a (or 0/b) by 0.
(4) Existence of additive inverse: If a/b € F, then (—a)/b € F such that
a/b+ (—a)/b = {ab + b(—a)}/bb = (ab — ba)/b* = 0/b?
Since 0/b% = 0, hence a/b + (—a)/b = 0. Therefore
—(a/b) = (—a)/b €F
(5) Associativity of multiplication: Forall a/b,c/d,e/f € F, we have
[(a/b)(c/D)](e/f) = (ac/bd)(e/f) = (ac)e/(bd)f



= a(ce)/b(df) = (a/b)(ce/df) = (a/b)[(c/d)(e/f)]
(6) Commutativity of multiplication: For all a/b,c/d € F, we have
(a/b)(c/d) = ac/bd = ca/db = (c/d)(a/b)
(7) Existence of unity: Let 0 # a € D, then a/a € F such that

(a/a)(c/d) =ac/ad =c/d
(c/d)(a/a) = ca/da =c/d

Hence a/a € F is the multiplicative identity, i.e. unity for F. Let us denote it by 1.
(8) Existence of multiplicative inverse of non-zero elements: Let 0 #+ a/b € F. Now a/b # 0 =
a+0,b+0=b/a+0and

(a/b)(b/a) = ab/ba = ab/ab =a/a =1

Also

Thus (a/b)~! = b/a.
(9) Distributivity: Forall a/b,c/d,e/f € F, we have
(a/b)[(c/d) + (e/f)] = (a/b)(cf + de/df) = alcf + de)/b(df)
= (acf + ade)/(bdf) = (acf + ade)b/(bdf)b
= (acfb + adeb)/bdfb = {(ac)(bf) + (ae)(bd)}/(bd)(bf)
= (ac/bd) + (ae/bf) = (a/b)(c/d) + (a/b)(e/f)
Hence (F, +,.) is a field.
Now we shall show that D can be embedded in F. Define ¢: D — F by
@(x) =xa/a Vx € Dwhere0 #a € D
Then for x,y € D, we have
¢(x) = p(y) = xa/a =ya/a
= xaa = aya
= xa? = ya?
= xa’—ya? =0
= (x-y)a’t=0
=x—y=0,aa?+0
=>x=Yy
Hence ¢ is one-one.
Also p(x +y) = (x + y)a/a = (x + y)a?/a? = (xa? + ya?)/a?
= (xaa + aya)/aa = (xa/a) + (ya/a) = ¢(x) + ¢(y)
and p(xy) = (xy)a/a = (xy)a*/a* = (xa)(ya)/aa
= (xa/a)(ya/a) = p(x)p(y)
Thus ¢ is a monomorphism of D into F. Hence D = ¢ (D) S F, i.e. D can be embedded in a field
F.
This field F is called the field of quotients or the field of fractions of D.
Letx/y € F.Thenx,y € Dandy # 0 and
x/y = xaa/aya = (xa/a)(a/ya) = (xa/a)(ya/a)™" = () [e()]™*
So we have the following definition:
Definition Let D be an integral domain with more than one element. A field of quotients (or field
of fractions) of D is a pair (F, ¢) consisting of a field F and a monomorphism ¢: D — F such
that every element u = x/y of F is expressible as ¢ (x)[@(y)]~* for some x,y € D with y # 0.

Proposition Let D be an integral domain and (F, ¢) be its field of fraction. Let K be a field and i
be an injective homomorphism from D to K.Then there exists unique homomorphism f from F to
K such that fop = .



Proof Since D = y(D) € K, hence the field K contains an isomorphic copy of the integral
domain D. Now v is injective, therefore y(y) # 0 whenever y # 0. Let us defineamap f: F —
K by

fG/y) =) forallx,y € Dandy # 0
Then the mapping is well defined as
x/y=u/v=xv=yu
= P(xv) = P (yu)
= Y)Y ) = Pp(y)yYw)
= Y)Y =P Pp@)]™
= f(x/y) = f(u/v)
Now f(x/y +u/v) = f(xv + yu/yv) = (v + yw) [ (yv)]
= [Ow) + pOWIY Y@
[ ()Y @) + YY1 @] )]
=@M + Y@
=f(x/y) + f(u/v)
and f[(x/y)(u/v)] = f(xu/yv) = pxw)[Y(yv)] ™
= PP [P PO ™
= YOO YW P@)]
= f(x/y) f(u/v)

Hence f is a homomorphism.

Now if f(x/y) = 0 = Y)Y~ = 0= P(x) = 0p(y) = 0
Since v is an injective homomorphism, hence (x) =0 =x =0
Thus x/y = 0/y = 0. Hence f(x/y) = 0 = x/y = 0. Therefore Kerf = {0}, i.e. f is injective.
Now (F, ¢) is the field of fractions of D, hence f: F — K is an injective homomorphism such that
fop = 1. Also ¢ (D) generates the field Fasx/y € F = x/y = o(X) [ ()] L. Thusif f": F —
K is some other injective homomorphism such that f'op = ¥, then f' = f.

It is clear from above result that any field K containing an isomorphic copy of integral domain D
must also contain an isomorphic copy of the field of fractions F. Since the injective
homomorphism f: F — K is unique, this establishes the uniqueness of the field of fractions.

Note: Since D = ¢(D), we can identify D with ¢(D). Hence ¢(x) and ¢(y)can be identified as x
and y. Therefore any element x/y of F can be expressed as xy~?. In this case, D is itself regarded
as a subring of F.

In view of above result we can say that if K is any field containing an integral domain D, then K
contains a subfield isomorphic to the field of fractions F of D. In other words, the field of fractions
F of an integral domain D is the smallest field containing D.

Proposition The fields of fractions of isomorphic integral domains are isomorphic.
Proof Let D, and D, be two isomorphic integral domains and f: D; — D, be the isomorphism.

Let F, and F,be the fields of fractions of D; and D, respectively. Define a mappinge: F;, — F,by
o(x/y) = f(x)/f(y) where x,y € D, and y # 0. Obviously f(y) # 0.

Let f(x)/f(y) €EF,, then f(x),f(y) € D, and f(y) # 0. Since f is an isomorphism, hence
x,y € D; and y # 0. This implies that x/y € F; and ¢ (x/y) = f(x)/f (). Therefore ¢ is onto.
Now ¢(x/y) = ¢(u/v) = f(x)/f () = fFW)/f (W)

= f)f) =ffw
= f(xv) = f(yu)

= xv = yu as f is one-one



=x/y=u/v
Hence ¢ is one-one.
Also p(x/y +u/v) = (xv + yu/yv) = f(xv + yuw)/f (yv)
={fv) + FOWY/fOf W) = {f()f W) + fFOf WY fFOf (v)
=f)/fO)+FW/f() =ox/y) + o/v)
Similarly, you can check that ¢[(x/y)(w/v)] = o(x/y)e(u/v)
Therefore ¢ is an isomorphism, i.e. F; = F,.
Examples
(1) If F is a field then its field of fractions is F itself.
(2) The field of fractions of the integral domain Z is the field Q of rational numbers.

(3) The field of fraction of the integral domain Z[v2 | = {a + bv2:a, b € Z} is the field Q[v2 | =
{x +yV2:x,y € Q}.

7.10 Summary

In this unit, we have

(1) Defined the Characteristic of an integral domain and proved that the characteristic of an
integral domain is either zero or a prime number.

(2) Defined and illustrated the homomorphism and isomorphism of rings and discussed their
properties.

(3) Defined kernel of a homomorphism and proved that the kernel of a homomorphism f is an
ideal.

(4) Proved results concerning the direct and inverse images of subring and subfield.

(5) Discussed embedding of rings and proved that every ring can be embedded in a ring with unity.
(6) Proved that every ring can be embedded in a ring of endomorphism of some additive group.

(7) Discussed the embedding of an integral domain in a field and defined the field of fractions of
an integral domain. We also showed that the field of fractions F of an integral domain D is the
smallest field containing D.

7.11 Self assessment questions

(1) Let f be a non-zero ring homomorphism from an integral domain D; of characteristic p to an
integral domain D,. Show that the characteristic of D, is also p.

(2) Show that the field R of real numbers is not isomorphic to the field C of complex numbers.

(3) Let F be a field of characteristic p # 0. Show that there is an injective homomorphism from Z,
to F.



a 0
0 O

multipliacation of matrices and f: M — R given by f([

(4) Let R be a ring and M = {[ ‘a € R}. Show that M is a ring under addition and

a O

0 0)=afora|| [g g]eMisan

isomorphism.

(5) If f is a homomorphism from a ring R into a ring S and g is a homomorphism from S into a
ring T, show that gof is a homomorphism from R into T

(6) Show that f: C — M, (R) given by f(a + ib) = [—ab Z] is a monomorphism.
(7) Let Z* denotes the additive abelian group (Z, +). Show that

End(Z*) = (Z,+,.)

(8) Determine the field of quotient of the integral domain containing rational numbers of the form
of m/10™, (m,n € Z). [Ans. Q]
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8.1 Introduction

In unit 7, we introduced the notion of an ideal of a ring R. Recall that a non-empty subset A

of aring R is called an ideal if
a,bEA=a—-bedanda€Ad,reER=ar€Aandra €A
In this unit, we shall see how the notion of an ideal is evolved by defining an equivalence relation
on the elements of a ring. You have studied similar equivalence relation on a group in unit 3.
The ideals are similar to normal subgroups you studied in group theory. You have seen that a
quotient group is defined as a group of cosets of a given normal subgroup. Since a ring (R, +,°) is
an abelian additive group and an ideal I of R is an additive subgroup of R, hence I is normal in R
and R/I is a quotient group. The addition in R/I is defined as follows:
(a+D+ b+ =(@+b)+Iforalla,b €R
We then require multiplication composition to be defined on R/I in order to make it a ring. So we
define multiplication composition on R /I as follows:
(a+DMb+I1)=ab+Iforalla,b €R

You will see that R/I is indeed a ring under these two compositions. This ring is called a quotient
ring of R modulo 1.
The construction of quotient ring together with the concept of homomorphism naturally leads you
to the fundamental theorem of homomorphism. This theorem is similar to that you have proved for
groups, i.e. every homomorphic image of a group is isomorphic to a quotient group. So we shall
prove the theorem for rings and discuss its consequences. Then we shall discuss some special
ideals namely the principal ideals, prime ideals and maximal ideals.
Let us first discuss the objectives of this unit-

8.2 Objectives

After reading this unit, you should be able to



e Define left ideal, right ideal and ideal of a ring.

e Discuss different properties of ideals.

¢ Define quotient rings with example.

e Prove the Fundamental theorem of homomorphism for rings and some isomorphism
theorems.

e Define and discuss principal ideals, prime ideals and maximal ideals with examples.

8.3 ldeals

Let us see what concepts really motivate the definition of an ideal. In unit 6, we have defined
subrings analogous to subgroups in group theory. Following this analogy further, we can define
equivalence relations on the elements of a ring R as follows:

Let S be asubring of aring R. Let a,b € R. Then a is said to be left congruent to b modulo S if
andonlyifa — b € Sand x(a — b) € S for all x € R. Symbolically
a=;b(modS) ifandonlyif a—beSandx(a—b) € Sforallx eR
and a is said to be right congruent to b modulo § ifand onlyif a —b € Sand (a — b)x € S for
all x € R.Symbolically
a=,b(modS) ifandonlyif a—beSand (a—b)x e Sforallx €R
The element a is said to be congruent to b modulo S if a is both right and left congruent to b
modulo S and then we write a = b (mod S). Now we shall prove that =, and =, are equivalence
relations on R. Let us first consider the relation =,.. Let a,b,c € R.
Reflexivity: For all a € R, we have a—a=0€ S and (a—a)x =0 € S for all x € R. Hence
a=,a(modS)foralla € R
Symmetry: a =, b (modS) = a—beSand (a—b)x e Sforall x R
= b—a=—(a—b)eSand(b—a)x =—(a—b)x €S
forall x e R
= b =, a(mod )
Transitivity: a =, b (modS), b=, c(modS) =>a—b€eS, b—ceS and (a—b)xES,
(b—c)xeSforallx eR .
Since S isasubring, hencea—beS,b—ceS=(a—b)+(b—c)ES
= a—cCcE€ES
Also (a—b)x €S, (b—c)xeS=(a—b)x+(b—c)x €S
= (a—c)x €S
Therefore a =, ¢ (mod S). Hence =, is an equivalence relation on R. Similarly you can verify
that =; and hence the relation of congruence modulo S is an equivalence relation on the ring R.
These equivalence relations partition the ring into equivalence classes which motivates the
definition of some important objects in ring theory called the ideals. Let us first discuss the
equivalence classes for the relation =,..
Let x € R. We define a subset x + S as follows:
x+S={x+s:s€S}
We shall show that if S is a subring of R such that a € S,y € R = ay € S then the equivalence
class of x € R under the relation =,is x + S.
The equivalence class of x € R under =, is given by



[x], ={z € R:z =, x(mod S)}
Let y € [x],. Then y =, x(modS) > y—x€S=>yeES+x=>y€Ex+SasS+x=x+S.
Thusy € [x], = y € x + S. Hence [x], S x + S.
Againu € x + S = u — x € S. Now by our hypothesis
U—x€ES,yeER= (u—x)y€ES

= u =, x(mod S)

= u € [x],
This gives x + S < [x],. Hence [x], = x + S.
You can verify that the converse is also true, i.e. if [x], = x + S for all x € R, then ay € S for all
a € S,y € R. Similarly, if [x]; is the equivalence class of x € R under =, then you can show that
if Sisasubringof R suchthata € S,y € R = ya € S then [x]; = x + S and conversely.
Also if S is a subring of R such that foralla € S,y € R = ya € S,ay € S then for every x € R
the equivalence class [x] under the relation congruence modulo S is equal to x + S, i.e. [x] = x +
S =S5 + x and conversely.
All this stuff motivates us to define an ideal of a ring.
Definition Let R be a ring and I be a non-empty subset of R. Then
(i) I is called a left ideal of R if I isa subringof R and rI < I forall r € R.
ieabeEl=a—-belanda€l,reER=ra€l

(it) I'is called a right ideal of R if I isa subring of R and Ir < [ forall r € R.
ieeabel=a—-belandae€el,reR=ar el

(iii) I is called an ideal (or two-sided ideal) of R if I is both left and right ideal of R, i.e. a,b €
I=>a—-belanda€el,reR=ra€landar €l
Thus we can say that a non-empty subset Iof a ring R is said to be an ideal of R if (I,+) is a
subgroup of the additive group (R,+) and ra € I and ar € [ forall a € [ andr € R.
Here you will notice that every subring is not an ideal as an ideal has a stronger closure property
than a subring, i.e. an ideal I is closed (under multiplication) not just by elements of I but by all the
elements of R.
Also it is obvious that for commutative rings left, right and two-sided ideal are all identical.
Examples
(1) R and {0} are ideals of any ring R. The ideal {0} is called the trivial ideal and
the ideal R is called improper ideal.
(2) For any positive integer n, the set nZ is an ideal of Z.
Let x,y € nZ. Then x = na,y = nb for some a, b € Z. Now
x—y=na—nb=n(a—b)€EnZasa—beZL
Letr € Z and x € nZ then rx = r(na) = n(ra) € nZ ,by the commutativity
and associativity of multiplication in Z.
Similarly, xr = (na)r = n(ar) € nZ. Hence nZ is an ideal of Z.
(3) Z is a subring of Q but Z is not an ideal of Q. Since 2/3 € Q, 5 € Z but
(2/3)5 =10/3 ¢ Z.

(4) Let R be aring. You can verify that the subring I = {[g g] ra,b € R} of
M, (R) is a right ideal but not a left ideal.

Since 0 € R, hence [0 O] € 1. Thus I is non-empty. Let [g g , [C

0

0 0 g]eL



Then [2 D] [¢ 4] =[*0¢ P9 e
[} JJem.men[T ([T I =[PP e
Hence I is aright ideal of M,(R). But I is not a left ideal of M, (R), since for

non-zero elements a, b, r of R such that ra # 0 and rb # 0, we have

7 % o= fle

Similarly you can verify that { Z 8] :a,b € R} is a left ideal but not a right ideal of M,(R) and
{[g g :a,b € R} is neither a left ideal nor a right ideal of M, (R).

Let us discuss some results concerning ideals.
Proposition Let R bearingand a € R. Then Ra = {ra:r € R} is a left ideal of R.
Proof Let r;a,,a € Ra where r;,1, € R. Then
rna— ra=((;—nrn)a€Raasr, —1, ER
Also for r € R, we have
r(rna) = (rrp)a € Rasrr; ER
Hence Ra is a left ideal of R.
Proposition A commutative ring R with unity is a field if and only if its only ideals are {0} and R.
Proof First suppose that the only ideals of R are {0} and R. In order to show that R is a field, we
have to show that every non-zero element of R is a unit. Let 0 # a € R. Then by above
proposition, the set Ra is a left ideal of R. Since R is commutative, it is also a right ideal of R.
Thus Ra is an ideal of R. Now 1 € R, hence 1a = a € Ra. Therefore Ra # {0}. Hence we have
Ra = R. Now
1 € R = 1 € Ra. That means there exists an element b € R such that ba = 1, i.e. a is a unit.
Thus R is a field.
Conversely, suppose that R is a field. Let A be a nontrivial ideal of R, A # {0}. Let a € A. Then
a € R. Since every element of R is a unit, hence there exists b € R such that ab = 1. Now A4 is an
ideal, hence
a€EAbER=abeA=1€A
Let  be any element of R. Then
leA,reR=1reA=reA
Thus A contains every element of R, i.e. A = R. Therefore the only ideals of R are {0} and R.

Definition A ring R is said to be simple if it has no proper nontrivial ideals, i.e. its only ideals are
{0} and R.
Example M,(Q) is a simple ring.
Solution Let E;; denote the 2 X 2 matrix whose (i, /)" element is 1 and all other elements are

o _[0 0 . [ o0y_
zero. Then E;; = [O O]’ E,, = [0 1]. Obviously I = [O 1] =E1 + Eyp.
Let T' be an ideal of M,(Q) such that I' # {0}. Then there exists a matrix A € " such that A #
[8 8] By the theory of matrices we know that there exist non-singular matrices P and Q in
M, (Q) such that

I if the rank of A is 2

PAQ = {En if the rank of A is 1



Since I' is an ideal, hence
PeM,(Q),Ael’=PAET
Therefore Q e M,(Q),PAET = PAQ €T
Hence either PAQ =1 € T'or PAQ = E;; €T.
If /€T, then] €T, NeM,(Q) = IN=NE€T,ie =M (Q).
If E,; €T, then E; E 1E{1E;, = E,, € Tas T isan ideal of M,(Q).
Now E,; €T, E,, eI =E;+E,, €l =1€Tl as E;; + E,, =1. Then again we have I' =
M, (Q). Therefore M,(Q) is simple.

Proposition A division ring is a simple ring

Proof We shall show that a division ring has no proper nontrivial ideals. Let A be a nontrivial ideal
of a division ring R, i.e. A # {0}. Let 0 # a € A. Since R is a division ring, a must be a unit in R.
Therefore there exists b € R such that ab=1. Now a€ A, bER=abe A= 1€ A. Also
1€eA, reR=1r =r € A. Thus A= R. Hence R has no proper nontrivial ideals, i.e. R is
simple.

Now we shall discuss some properties of ideals.

8.4 Some properties of ideals

Proposition Intersection of two right (left) ideals of a ring R is a right (left) ideal of R.
Proof Let A and B be any two right ideals of a ring R. Since 0 € A and 0 € B, hence 0 € A N B.
Thus A N B is nonempty. Let x,y € AN B. Then x,y € A and x,y € B. Now A and B are right
ideals, hence x,y e A= x—y€Aandx,y € B= x —y € B.Therefore x —y € AN B.
Alsore Randx e A= xr e Aandr € Rand x € B = xr € B. Therefore xr € A n B.Thus we
have shown that
X, YEANB,reR=x—y€eANnBandxre AnB
Therefore A N B is a right ideal of R. Similarly we can show that the intersection of two left ideals
of aring is also a left ideal.
Proposition Intersection of any non-empty family of right (left) ideals of a ring R is a right (left)
ideal of R.
Proof Let {A4;:t € A} be a non-empty family of right ideals of a ring R. Since 0 € A, Vt € A,
hence 0 € N¢ep A¢. Therefore Neep Ay 1S NON-empty. Let x,y € Ngep 4¢- Then x,y € A, Vt € A.
Since A, is an ideal for all t € A, hence
x,yEA, = x—yeA, forallt e A
=X =Y € Neea 4t
Alsox e A, rER=xr €A, VteA
= X1 € Niep At
Hence N:ep A; is aright ideal of R. Similar proof can be given for left ideals.

Now what do you say about the union of two ideals? For example, 4Z and 5Z are ideals of the ring
Z of integers. Is 4Z U 5Z an ideal of Z? The answer is no. let us see how. We have 4 € 4Z and
5 € 5Z, therefore 4,5 € 4Z U 5Z. But 5 —4 =1 ¢ 47 U 5Z. Hence 4Z U 5Z is not an ideal of Z.
Now we prove the following result which gives the necessary and sufficient condition for a union
of two ideals to be an ideal of the given ring.



Proposition Let A and B be any two ideals of a ring R. Then A U B is an ideal of R if and only if
either A € B or B C A.
Proof First suppose that A € B. Then AU B = B, i.e. AU B is an ideal of R.
If B< A,then AU B = A is an ideal of R. Therefore if A € B or B € A, then A U B is an ideal of
R.
Conversely, suppose that A U B is an ideal of R. Assume on the contrary that A is not contained in
B and B is not contained in 4, i.e. A € B and B € A. Then there exist x € A and y € B such that
x ¢ Band y¢& A. Then x,y € AU B. Since AU B is an ideal, hence x —y € AU B. Therefore
eitherx —yeAorx —y € B.
If x —y € A, then y = x — (x — y) € A. This contradicts the fact that y ¢ A.
Similarly if x —y € B, then x = (x —y) + y € B. Which is against the fact that x ¢ B. Hence our
assumption is wrong. Therefore either A € B or B € A.
Now we define the sum of two ideals as follows:
Definition Let A and B be any two ideals of a ring R. Then the sum of ideals A and B is defined as
follows:
A+B={a+b:a€AbeB}
Proposition Let A and B be any two ideals of a ring R. Then A + B is an ideal of R containing
both A and B.
Proof Since 0 € A and 0 € B, hence 0 =0+ 0 € A+ B. Therefore A+ B is nonempty. Let
Xx,yEA+B.Thenx=a+b,y=a'+b" where aq,a’ € A and b,b’ € B. Then a —a’ € A and
b — b’ € B and we have
x—y=(a+b)—(a+b)=(@—-a)+(b-b)EA+B
Also for r € R, we have xr = (a+ b)r =ar+br € A+ B as ar € A and br € B. Similarly,
rx =r(a+b)=ra+rb €A+ B.Hence A+ B is an ideal of R.
NowaeAand 0eEB=a+0€A+B,ie.a€A+B. ThusA < A+ B. Similarly 0 € A and
beB=b=0+b€A+B.Hence B € A+ B.

Definition Let A and B be any two ideals of a ring R. Then the product AB of A and B is defined
as the set of all those elements of R which can be written as finite sums of elements of the form ab
wherea € Aand b € B, i.e.

AB = {albl + azbz + -4+ anbn: a,,a,..,a, € A, bl' bz,..,bn € B}

Proposition Let A and B be any two ideals of a ring R. Then the product AB is an ideal of R.
Proof Since 0 = 00 € AB, hence AB is nonempty. Let x,y € AB such that x = X, a;b; and
y = %7, a;'b;’, where a;,a;' € A, b, b;’ € B. Then
x —y = (aby + ayb, + -+ a,b,) — (a;'b;’ + a,'b,’ + -+ a,,'b,,)

= a;by + ayb, + -+ apb, + (—ay )b, + (—a, )by + -+ (—ap )by,
Sincea;' € A = —a;' € A, hence x —y € AB.
Let r € R. Then rx =Y r(a;b;) = Xi=,(ra;)b; € AB as ra; € A for all i =1,2,..,n. Also
xr =Yt (ab)r =Y, a;(b;r) € AB as b;r € B for all i = 1,2,..,n. Hence AB is an ideal of
R.
So now we can define AA as{a,b, + ayb, + -+ a,b,:a4,a,,..,a,, by, by, .., b, € A}. We
denote AA by A2. For any positive integer n, we define A™ = AA ... A (ntimes). We assume
Al = A. If R is a ring with unity, then we define A° = R.



You can verify that A"A™ = A™*™ and (A™)™ = A™™ for any positive integers m, n.
Definition An ideal A of a ring R is said to be nilpotent if A™ = {0} for some positive integer n.

Example Let U,(Z) be the ring of all 2 x 2 upper triangular matrices over integers. Let A =

{[8 g 'a € Z} be a subset of U,(Z). You can verify that A is an ideal of U,(Z). Let

[Oa

0 0 [g g]eAthen

0 a][0 b 0 0
0 o] [o o] B [0 0
Hence A% = {0}. Thus A is nilpotent.
Definition An element a of aring R is said to be a nilpotent if a® = 0 for some positive integer n.
Now you can verify that the collection of all nilpotent elements in a commutative ring R is an
ideal.
Let R be a commutative ring. Let
A = {a € R: a™ = 0 for some positive integer n }
Obviously 0 € A. Leta,b € A, then a™ = 0 and b™ = 0 for some positive integers n and m.

Since R is a commutative ring, hence
n+m

_ n+m _ _1\7 n+m> n+m-rpr
(a—b) _;(1)(r @M
When r < m, then a™™"h" = a"a™ "h" = 0
Whenr > m,i.e.r = m+ q where g = 1,2, ...n, then
an+m—rbr — an+m—rbm+q — an+m—rbmbq — 0
Hence we have (a —b)"*""™ =0=a—-b€EA
Also if r € R and a € A, then a™ = 0 for some positive integers n and
(ra)" =r"a™ =
=ra€A
Also ar € A as R is commutative. Thus A is an ideal of R. This ideal is called the nilradical of R.
You can observe that every nilpotent ideal is a nilradical. Suppose A is a nilpotent ideal, then
A™ = {0} for some positive integer n. Now
a€EA=a"e A" = a" =
Hence A is a nil radical.

0 aj, . I
0 ol'? € Z} of U,(Z) is a nilradical.

Proposition Let R be a commutative ring and A an ideal of R. Then
VA = {a € R: a™ € A for some positive integer n }

Therefore in above example the nilpotent ideal A = {

is an ideal of R.
Proof: Since 0 € A, hence 0 € v/A. Therefore v/A is non-empty. Let a,b € VA. Then a™, b™ € A
for some positive integers n and m.

Since R is a commutative ring, hence
n+m

(a—bp)yrtm = Z (-1 (n -: m) QT T
r=0

Let s+t =n+m. Now 4 is an ideal, hence we have a’ht = a™(a*"bt) € A for s > n, and
a’bt = (a°b*"™)b™ € A for t > m.
Hence we have (a —b)"*""m e A= a—-b €A



Also if r € R and a € /A4, then a™ € A for some positive integers n and
(ra)"=r"a" € A
=ra €A
Also ar = ra € VA as R is commutative. Thus VA is an ideal of R. This ideal is called the radical
of R.

8.5 Quotient rings

In unit 4, you have seen that if N is a normal subgroup of a group G, then the set of all cosets of N
forms a group called the quotient group G /N under coset multiplication. In ring theory, the ideals
play the same role as normal subgroups do in group theory. So for a given ideal S of aring R, we
can define quotient ring R/S.

In section 8.3, we have seen that if S is a subring of R then the relation of congruence modulo S
IS an equivalence relation on the ring R. This equivalence relation partitions the ring into
equivalence classes and if a € S,y € R = ya € S,ay € S then for every x € R the equivalence
class [x] under the relation congruence modulo S is equal to x + S, ie. [x] =x+S =S+ x and
conversely. In other words, if S is an ideal of R, then for every x € R we have [x] =x+S =S+
x. Let R/S be the set of all equivalence classes for the relation of congruence modulo S. Then

R/S={r+S:r € R}
Since S is an additive subgroup of R, we can define the quotient group (R/S,+) under the
addition given by (a + S) + (b+S) = (a + b) + S for all a, b € R. Now we want to make R/S a
ring. So we define multiplication composition on R/S as follows:
(a+S)Db+S)=ab+S
First we shall show that this multiplication is well defined.
Leta+S=a"+S,b+S=>b"+Sforsomea,b,a’,b’ €R.
=a—a €S,b—b' €S
=a—a =u,b—b'=vforsomeu,vesS
=a=u+a,b=v+b
=ab=Ww+a)wv+b)=uw+ub' +a'v+abd
Since S is an ideal, hence a’v € S, ub’ € S, uv € S and therefore uv + ub’ + a'v € S. Thus
ab—a'b' =uv+ub' +a'ves

=ab+S=ab +S

= (a+S)@+S=WbB+SB' +Y5)
Hence the multiplication in R/S is well defined. Now we shall show that R/S is a ring with
respect to addition and multiplication defined above.
Proposition Let R be a ring and S be an ideal of R. Then R/S is a ring under the addition and
multiplication defined as follows:

(a@a+S)+B+S)=(@+b)+S
(a+S)Db+S)=ab+S

Forall a+S,b+S€R/S
Proof: The addition and multiplication are well defined and (R/S, +) is an abelian group. Also by
definition R/S is closed under multiplication, hence we shall prove the remaining properties of a
ring for R/S.



Associativity of multiplication: Leta + S,b + S,c+ S € R/S. Then
(a+)[B+S)c+S)]=@+S)(bc+S)

=a(bc)+ S

= (ab)c + Sasa(bc) = (ab)cinR

=(ab+S)(c+YS)

=[(a+ B +3)](c+YS)
Distributive Laws: we have

@a+9)[b+S)+(c+9)]=>W@+99)[(b+c)+S5]

=ab+c)+S

=(ab+ac)+S

=(ab+S5)+ (ac+5)

=@+S)b+S)+@+S)(c+S)
Similarly, we can show that

[(b+S)+(c+9)]a+S)=b+SHa+S)+(c+S)a+9)
Hence (R/S,+, -) isaring.
Definition Let R be aring and S be any ideal of R. Then R/S = {r + S:r € R} forms a ring with
respect to the binary compositions ‘+’ and ‘-’ defined as follows
(a+S)+B+S)=(@+b)+S
(a+S)b+S)=ab+S
forall a,b € R. Thisring (R/S,+,7) is called the quotient ring of R with respect to the ideal S or
guotient ring of R modulo S.
Obviously R/S is commutative if R is commutative. Also if R has a unity 1, then R/S has unity
1+S.
Examples
(1) We know that nZ is an ideal of the ring Z of integers. Hence (Z/nZ, +,") is a ring. Where
Z/nZ = {nZ,1+nZ,..,(n — 1) + nZ}
Here you will observe that the compositions ‘+’ and ‘-> are modulo n arithmetic and r + nZ =
[r] ={x € Z: x =r (mod n) }.
For instance, suppose n = 4. Then Z/4Z = {4Z,1 + 4Z,2 + 47,3 + 4Z)}.
Now (2 +4Z) + (3+4Z) = (2+3)+4Z =5+4Z =1+ 4Z
Q4+ 4Z)(3+4Z) =6+ 4Z =2 + 4L
You can make composition tables to verify that (Z/4Z, +,") is a ring.
(2) In unit 7, you have seen that if f be a homomorphism of aring R into a ring R’, then the kernel
Ker f of the homomorphism f is an ideal of R. Therefore R /Ker f is a quotient ring.
Proposition Let N be an ideal of a ring R. Then the mapping m: R — R/N given by n(r) =r +
N is an epimorphism with kernel N.
Proof Since N is an ideal of aring R, hence R/N is a quotient ring. Letr + N € R/N. Thenr € R
and (r) = r + N. Therefore m is onto.
Letr,s € R. Then
T(r+s)=+s)+N=@+N)+(s+N) =n(r)+n(s)
and
n(rs)=rs+ N =+ N)(s+N) =na(r)n(s)

Hence m is a homomorphism of R onto R/N, i.e. w is an epimorphism. This map is called
canonical or natural epimorphism.
NowKermt ={reR:n(r)=N}={reR:r+ N=N}={reR:reN}=N



8.6 Fundamental theorem of homomorphism

In unit 4 we proved fundamental theorem of homomorphism for groups. Now we shall prove a

similar result for rings.

Theorem Every homomorphic image of a ring R is isomorphic to some quotient ring.

Proof Let f be a homomorphism of a ring R onto a ring R’. Then R’ is a homomorphic image of

the ring R. Let N = Ker f. Then N is an ideal of R and R/N is a quotient ring. Define ¢: R/N —

R'byo(r+ N) = f(r)forall r+ N € R/N.Thenforr + N,s+ N € R/N, we have
r+N=s+N&sSr—seN

= f(r—s)=0
= f0) - f(s) =0
S f(r) =f(s)

< o(r+N)=¢p(s+N)
Hence ¢ is well-defined and one-one.
Now @[(r+ N) + (s+ N)] = @[(r+s)+ N] = f(r +s)

=f(r)+f(s) = +N)+¢o(s+N)
@l(r+ N)(s + N)] = o(rs + N)
=f(rs) = f(r)f(s) = o(r + N)o(s + N)

Hence ¢ is a monomorphism.
Let b € R'. Since f is onto, hence there exists a € R such that b = f(a). Now a + N € R/N and
we have ¢(a + N) = f(a) = b. Thus ¢ is onto R'. Hence ¢ is an isomorphism of R/N onto R’,
i.e. R/N =R’
This theorem is also called “The first isomorphism theorem for rings”.

Theorem (Correspondence Theorem) Let R and S be rings and f: R — S be an epimorphism.
Then there exists a one-to-one correspondence between the collection of ideals of R containing
Ker f and the collection of ideals of S.
Proof Let K = Ker f. Let J(R) be the collection of all ideals of R containing K and J(S) be the
collection of all ideals of S. Define ¢: J(R) — J(S) by (1) = f(I) for all I € J(R). Since f isa
homomorphism, hence f(I) is an ideal of S. Therefore f(I) € 3(S).
Let A,B € J(R). Then ¢(4) = ¢(B) = f(A) = f(B).
We shall prove that A = B. Let a € A. Then f(A) = f(B) implies that there exists b € B such that
f(a) = f(b). Which gives
fl@)—f(b)=0=f(a—b)=0=a—beKerf=KCB
Now beEB, a—beEB=a=(a—b)+b€B. Thus a€ A= a € B, ie. A< B. Similarly,
B € A. Thus A = B. Therefore we have shown that

_ p(A) =9B) = fA)=f(B)=A=B
Hence ¢ is one-one.
Let N € J(S). Since f is an epimorphism, hence f~1(N) is an ideal of R containing K. Let
f~Y(N) = M. Then ¢~ }(N) = f~1(N) = M. Now

fIf 7'M =Nnf(R)=N=f(M) =N

Hence N = f(M) = @(M). Thus ¢ is onto. Hence ¢ is a one-to-one correspondence between
J(R) and 3(S).



8.7 Isomorphism theorems

Now we prove some important results called “The second isomorphism theorem for rings” and
called “The third isomorphism theorem for rings”.

Theorem (The second isomorphism theorem for rings) Let A be an ideal and B be a subring of a
ring R. Then
(A+B)/A=B/(ANB)
Proof A + B is a subring of R containing A. Since A is an ideal of R, therefore A is an ideal of
A + B. Hence the quotient ring (A + B)/A is defined. Also AN B is an ideal of B, i.e. the
quotient ring B/ (A n B) is also defined.
Defineamap f:B — (A+ B)/Aby f(b) =b + Aforall b € B.
Let by, b, € B. Then
f(b1 +by) = (by + b)) + A= (b +A) + (b, + 4) =f(b1) + f(b2)
f(biby) = bib, + A= (by + A)(by + A) = f(b)f(by)
Hence f is a homomorphism.
Let x + A€ (A+ B)/A. Then there exist a € A and b € B such that x = a + b. Hence x + A =
a+b+A=b+a+A=b+A=f(b). Thus f is onto.
Also if Ker f is the kernel of the homomorphism £, then
beKerfe f(b)=A
Sb+A=A
< beA
< beANBasbeRB
Hence Ker f = A n B. Therefore by fundamental theorem of homomorphism
(A+B)/A=B/(ANB)

Theorem (The third isomorphism theorem for rings) Let A and B be ideals of a ring R such that
B € A, then
R/A = (R/B)/(A/B)
Proof Since B < A, hence B is an ideal of A. Hence the quotient ring A/B is defined. Also A/B is
an ideal of R/B.
Define a map f:R/B — R/A by f(r+ B) =r+ A for all r € R. Then the mapping is well
defined as
r+B=s+B=r—se€B
=r—s€eA aaBCA
==r+A=s+A4
= f(r+B)=f(s+B)
Now f[(r + B) + (s + B)] = f[(r + s) + B]
=(r+s)+4
=r+A)+(G+A4)
=f(r+B)+f(s+B)
and f[(r + B)(s + B)] = frs + B]
=rs+A
=r+A)(s+A4)



=f(r+B)f(s+B)

Therefore f is a homomorphism.
Letr+ A€ R/A. Then r € R. Therefore r+ B € R/B and r + A = f(r + B). Hence f is onto.
Thus f is an epimorphism.
Now if Ker f is the kernel of the homomorphism £, then
r+BeKerfo f(r+B)=A

Sr+A4=4

Sred

< r+BeA/B
Hence Ker f = A/B . Therefore by fundamental theorem of homomorphism

R/A = (R/B)/(A/B)

8.8 Principal ideals

Definition Let S be a non-empty subset of a ring R. Then an ideal of R generated by S is defined

as
(S) =n{I:S € I;Iis anideal of R}

If S ={ay,a,,..,a,}, then the ideal generated by S is denoted by (a;,a,, ..., a,). An ideal {(a)
generated by a single element a of R is called a principal ideal generated by a.

In other words, ideal A is generated by S if S € A and for any ideal B of SS€ B = A C B.
Obviously (S) is the smallest ideal of R containing S.

Let R be a commutative ring with unity. Let a € R. Then you can verify that the set Ra =
{ra:r € R} is a principal ideal of R generated by a. We have already seen that Ra is a left ideal of
R. Since R is commutative, hence Ra is also a right ideal. Thus Ra is an ideal of R. Now 1 € R =
a = la € Ra. If S is any ideal of R containing a, thena € S, r €ER = ra € S. Hence Ra C S.
Therefore Ra is the smallest ideal containing a, i.e. Ra = {a).

We can generalize this process and show that if R is a commutative ring with unity and
a, a,, ...,a, € R, then
Ra; + Ra, + -+ Ra, = {rja; + na, + -+ ma,:r,1,..1m, € R}
is an ideal of R generated by a4, a,, ..., a,, i.e.
Ra, + Ra, + -+ Ra, = (a4,ay, ..., ay)

Proposition Let A and B be any two ideals of aring R. Then A+ B = (A U B).

Proof We have seen that A + B is an ideal of R containing A and B. Now A€ A+ B, BC A+
B=AUBC A+ B. Let S be any ideal of R such that AUB € S. Let u € A+ B. Then there
existsa€ Aand b e Bsuchthatu=a+b.Nowa €A, beEB =a,b€EAUB=abeS=
a+beS=u€eS Hence A+ B c S. Consequently , by definition A + B = (A U B).

Examples
(i) The trivial ideal {0} and the ideal R are principal ideals as (0) = {0}and (1) = R.
(if) Consider the ring Z of integers. You will observe that every ideal of Z is a principal ideal.
Suppose A is any non-trivial ideal of Z. By well ordering principle, the positive integers in A must
have a least element u(say). Suppose n € A. Then by division algorithm, there exists integers g
and r such that n = qa + r, where 0 < r < a. Now 4 is an ideal, hence

a€A qgEZ=qacA
and neA,gaeEA=n—qa€cA



=red
But a is least positive integer in A. Hence we have r = 0. Thus n = qa.
Therefore A = {qa: q € Z}. Suppose B is any other ideal of Z containing a, thena € B, q € Z =
qa € B,i.e. A € B. Hence A = (a).
So every ideal of Z is a principal ideal. You can verify that (0) = {0}, (1) = Z,
(2) = {2q:q € Z} ,i.e. the ring of even integers forms an ideal of Z. Moreover you will also
observe that (n) = {nq: q € Z} = nZ. Thus every ideal of the ring Z of integers is of the form of
nz.
All this leads to the following definitions:
Definition A commutative ring R with unity is said to be a principal ideal ring if every ideal of R
is a principal ideal.
Definition A principal ideal domain (P.1.D.) is an integral domain in which every ideal is a
principal ideal.
Thus the integral domain Z of integers is a P.1.D.
You have seen that the only ideals of a field F are {0} and F. Now {0} = (0) and F = (1).
Hence every field is a P.1.D.

8.9 Prime ideals

The concept of prime ideal is similar to the notion of prime numbers in integers.
Definition Let R be a commutative ring. An ideal P of R is called a prime ideal if P # R and
a,b€R,abeP=a€PorbeP.
Consider the ideal nZ of the ring Z of integers. If n = 0, then (0) is a prime ideal since a,b € Z,
ab €(0) =a=0or b =0 as Z is an integral domain. Let n # 0. Since we require nZ # Z,
hence n # 1. Then by above definition nZ is a prime ideal if the product ab of two integers a and
b whenever belongs to nZ, either we have a € nZ or b € nZ. In other words, n|ab = n|a or n|b.
Hence n must be a prime number. Thus the prime ideals of Z are (0) and pZ (p is prime).
In fact, you will notice that in any integral domain(0) is a prime ideal. Now we shall see how we
can characterize a prime ideal with the notion of quotient ring. For the sake of simplicity, we shall
use the bar notation for the congruence classes modulo N, i.e. we shall denote r + N € R/N by .
Proposition An ideal P of a commutative ring R is prime if and only if the quotient ring R /P is an
integral domain.
Proof First suppose that R/P is an integral domain. Then forall a, b € R
abeP=ab+P=P

= (a+P)(b+P)=P

= ab=0

= a = 0orb = 0as R/P is without zero divisors

= a€PorbePr
Hence P is a prime ideal.
Conversely, suppose that P is a prime ideal. Then

ab=0=(a+P)(b+P)=P

= ab+P=P

= ab€P

= a € PorbePasPisaprime ideal

=a=0orb=0



Hence R /P is without zero divisors.
Now R is commutative = R/P is commutative. Thus R/P is a commutative ring without proper
zero divisors, i.e. R/P is an integral domain.

8.10 Maximal ideals

We have seen that the quotient ring R/P is an integral domain when P is a prime ideal. You may
ask when a quotient ring becomes a field. The notion of maximal ideals gives the answer. Let us
first define a maximal ideal for a ring. By the notation A c B, we shall mean A < B.
Definition Let R be aring. An ideal M # R of R is said to be a maximal ideal of R if there exists
no ideal J of R such that M c J < R. In other words, An ideal M of a ring R is a maximal ideal if
M =+ R and the only ideals containing M are M and R.
In a division ring D, the ideal (0) is a maximal ideal. Since 0 = 1 € D, hence (0) # D. Let ] be
any non-trivial ideal of D. Then there exists x € J such that x # 0. Since D is a division ring hence
x must be a unit, i.e. there exists y € D such that xy = 1. Since xy € ] = 1 €/, hence | = D.
Therefore (0) is a maximal ideal of D.
Example The ideal (p) is a maximal ideal of Z for each prime integer p.
Let J be an ideal of Z such that (p) c J. Then there exists an integer n € J such that n & (p).
Hence p does not divide n, i.e. gcd(n,p) = 1. Hence there exist u, v € Z such that nu + pv = 1.
Since J is an ideal, hence n€eJ, u€eZ—=nu€j and pe(p)cJ,veZ=pv e]. Also
nu,pv € ] = nu +pv € J,i.e. 1 € J. Therefore ] = Z. Hence (p) is a maximal ideal of Z.
Example In the ring 2Z of even integers, the principal ideal (4) is a maximal ideal. We have
(4) # 2Z and if ] is any ideal of 2Z such that (4) c J, then there exists a € J such that a & (4).
Hence a is an even integer which is not a multiple of 4 i.e. a = 4n + 2 for some integer n. Now
dne(4) =>4n €] as (4) cJ. Therefore ae J4n €] =a—4n €], i.e. 2 € J. Since J is an
ideal, hence every even integer belongs to J. Therefore | = 2Z. Consequently, (4) is a maximal
ideal of 2Z.
Example Let R be a ring of all real valued continuous functions on the closed interval [0,1]. Let
M = {f € R: f(1/3) = 0}. Then M is a maximal ideal of R.
First we show that M is an ideal of R. If h is a real valued function such that h(x) = 0 for all
€ [0,1], then h € R. Obviously h(1/3) = 0, hence h € M. Hence M is non-empty. Let f,g €
M. Then
f—9(@1/3)=f(1/3)—g(1/3)=0-0=0
=f—-—g€EM
Letu € R. Then (uf)(1/3) = u(1/3)f(1/3) =u(1/3).0=0=>uf € M
Since R is commutative, hence fu = uf € M. Hence M is an ideal of R.
Now there exists p € R such that p(x) = 1 for all x € R. Obviously p ¢ M. Therefore M # R. Let
J be an ideal of R such that M < J. Then there exists A € J such that A ¢ M. Hence A(1/3) # 0.
Let A(1/3) = k where k # 0. Define f(x) = k forall x € [0,1]. Then 8 € R. Now
A-p)(1/3)=A(1/3)-p(1/3)=0=A—-BEM=A1-P€]
Therefore A€ J,A-BE]=L=2+(1—-p) €].
If we define y(x) = 1/k forall x € [0,1]. Then y € R. Therefore
VB)x) =y)Bx)=1=px) =>yB=p
Nowy ER, B €] = yB €]as]isanideal. Thus p = yB € J. But p is the unity of R. Hence we
have ] = R. Consequently, M is a maximal ideal of R.



Proposition An ideal M of a commutative ring R with unity is a maximal ideal if and only if R/M
is a field.
Proof First suppose that M is a maximal ideal of R. Since R is a commutative ring with unity,
hence R/M is a commutative quotient ring with unity 1 + M. To prove that R/M is a field, we
have to show that each non-zero element a + M of R/M is a unit. Since a + M # M, hence a ¢
M. Now Ra is an ideal of R and a = 1a € Ra. Therefore a € M + Ra. But a € M, hence M c
M + Ra. The ideal M is maximal, hence M + Ra = R. Since 1 € R, hence there exists m € M and
r € R such that m 4+ ra = 1. Therefore
l—-ra=meM=1+M=ra+M= @+ M)(a+M)
=1=ra
Since R/M is commutative, 7a = 1 = ar. Hence @ = a + M is a unit. Thus R/M is a field.
Conversely, suppose that R/M is a field. Hence 1 # 0, i.e. 1+ M = M. Therefore 1 & M, i.e.
M # R. Let J be an ideal of R such that M c J. To prove that M is maximal, we shall show that
J=R.Leta€]suchthat ag M. Thena+M = M, i.e. @ # 0. Since R/M is a field, hence a
must be a unit, i.e. there exists b € R/M such that
ab=1=((@+MODB+M)=1+M=ab+M=1+M=1—abeM

Now M c J, hence 1 —ab €. Since J is an ideal and a € J, hence ab € J. Thus we have (1 —
ab) + ab € ] = 1 € ]. Therefore ] = R, i.e. M is maximal in R.
You have seen that an ideal P of a commutative ring R is prime if and only if the quotient ring
R/P is an integral domain. Since every field is an integral domain, hence we have the following
result:
Proposition Let R be a commutative ring with unity. Then every maximal ideal of R is a prime
ideal.
Proof Let M be a maximal ideal of R. Then R/M is a field. Since every field is an integral domain,
hence R/M is an integral domain. Thus M is a prime ideal of R.

However the converse of this proposition is not true. Z is an integral domain and (0) is a prime
ideal of Z, but (0) is not maximal as (0) c (2) c Z.

8.11 Summary

In this unit, we have

(1) Defined relations of congruence modulo a subring S on a given ring R and proved that these
are equivalence relations on R.

(2) Defined left ideal, right ideal and ideal of a ring with examples.

(3) Defined simple ring and proved that a division ring is a simple ring.

(4) Proved that a commutative ring R with unity is a field if and only if its only ideals are {0} and
R.

(5) Defined quotient ring with examples.

(6)Proved the fundamental theorem of homomorphism for rings (first isomorphism theorem for the
rings), i.e. every homomorphic image of a ring R is isomorphic to some quotient ring.

(7) Proved the second isomorphism theorem and the third isomorphism theorem for rings.

(8) Defined principal ideal, prime ideal and maximal ideal with examples.

(9) Proved that an ideal P of a commutative ring R is prime if and only if the quotient ring R/P is
an integral domain.



(10) Proved that an ideal M of a commutative ring R with unity is a maximal ideal if and only if
R/M is afield.
(11) Proved that every maximal ideal of commutative ring R with unity is a prime ideal.

8.12 Self assessment questions

(1) Let R be a ring with unity. If R has no right ideals except R and {0}, show that R is a division
ring.
(2) Let A be an ideal of R such that A # R. Show that if R has unity then 1 ¢ A.

(3) Let R be a commutative ring and A an ideal of R. Prove that (i) A € VA4 (ii)VVA = VA (iii) if
R has unity and VA = R, then A = R.

(4) Let E be the ring of even integers. Prove that the set of all matrices of the form [Z cci] where

each element is of the form of 4n, (n € Z) is an ideal of M, (E), the ring of 2 X 2 matrices over E.
(5) Prove that if R is a ring with more than one element such that aR = R for every non-zero
element a of R then R is a division ring.
(6) If a ring R is finitely generated, then prove that each proper ideal of R is contained in a
maximal ideal.
(7) Prove that a nontrivial ideal I of a Boolean ring R is prime if and only if I is a maximal ideal.
(8) If A,B and C are ideals of aring R prove that A(B + C) = AB + AC.
(9)Let A be aright ideal and B be a left ideal of a ring R Show that AB € A N B.
(10) If A,B, C are ideals of aring R such that B € A then prove that

AN(B+C)=B+(ANC)
(12) In aring R define S = {ab — ba:a, b € R}. Show that for any ideal A of R, the quotient ring
R /A is commutative if and only if § € A.
(12) Let fora p(# 0) € Z, (p) = {pn: n € Z}. Show that Z/(p) is a field if and only if p is a prime
number.
(13) Let f: R — S be an epimorphism. Let A and B are ideals in R and U,V are ideals in S. Prove
that
() f(A+B) =f(A) +f(B)
(ii) f(AB) = f(A)f(B)
(i) frU+V) = O+ V)
(V) fHUV) 2 fHOO V)
(14) Let N be an ideal of R. Prove that there is a one-to-one correspondence between ideals of R
containing N and ideals of R/N.
(15) If A and B are ideals of aring R, define A: B = {r € R:rB < A}. Show that A: B is an ideal of
R.
(16) Let R be aring and S a subring. Let P be a prime ideal of R. Show that P N S is a prime ideal
of S.
(17) Show that the intersection of a maximal ideal of a ring with a subring need not be maximal
ideal of the subring whereas it remains prime ideal.
(18) Let R be a commutative ring with unity. Let A be an ideal of R. Then V4 is the intersection of
all prime ideals containing A.
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