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NUMBER THEORY 
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COURSE INTRODUCTION 

 

 

Block 1 :-  Basic Introduction of Number Theory  
Block 2 :- Gauss theorem  & Applications   

 

The block 1
st
 is Basic Introduction of Number Theory organized into  

following three units as under: 

Unit- 1 Analytic Number Theory 

Unit- 2 Congruence’s  

Unit-3 Euler’s Function and application 

The Block 2
nd

 is Gauss theorem & Applications: 

Unit -4  Quadratic residues of Number Theory 

 

Unit-5   Gauss theorem 

 

Unit-6   Arithmetic Functions and applications 

 

  

 

 

 

 

 

 

 



Block-1:  Basic Introduction of Number Theory  

 
Introduction 

Number theory is a branch of pure mathematics devoted to the study of the set of positive 

whole numbers which are usually called the set of natural numbers. This provides an 

introduction to the important basic topics of number theory: Division Algorithm Euclids 

Algorithm, Congruences, Residue Classes, Chines Remainder Theorem, Euler’s Function 

and application. Originally an abstract mathematical concept from the branch of number 

theory known as modular arithmetic, quadratic residues are now used in applications ranging 

from acoustical engineering to cryptography and the factoring of large numbers. 

Objectives: 

 To understand the difference between the quadratic residues and non residues. 

 To verify the given number is  Division Algorithm. 

 To understand the Euclids Algorithm and its basic properties. 

 To understand the Congruences. 

 To differentiate the Residue Classes. 

 To understand the definition of multiplicative functions. 

 To understand the Chines Remainder Theorem. 

 Use of Euler’s Function and application.  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Acoustical_engineering
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Integer_factorization


LIST OF SYMBOLS USED 

Symbol Explanation 

      is an element of set   

      is not an element of the set   

      is a subset of   

      Contains   as a subset 

      Union   

      Intersection   

      Implies   

      is implied by   

      implies and is implied by   

      Less than   

      greater than   

   For all   

        
Set of all integers. 

  
Set of all natural numbers. 

      divides   

      does not divide   

    (mod m)   is congruent to b modulo m 

A\B The set of elements of A that are not in B 

iff If and only if  

∃ There exist 

  For every 



UNIT-1 Analytic Number Theory 

 

Structure 

1.1 Introduction 

1.2  Objectives 

1.3    Basic Definitions   

1.4    Divisibility 

1.5   Division Process in     

1.6   Division Algorithm 

1.7    Application of   Division Algorithm 

1.8   Euclid’s Algorithm 

1.9   Greatest Common Divisor 

1.10   Prime Numbers 

 

1.11   Fundamental Theorem of Arithmetic 

1.12 Summary  

1.13   Terminal Questions 

 

 



1.1 Introduction 

 

In this unit we first discuss some basic definition of divisibility these 

concepts are fundamental to the study of any branch of mathematics in 

particular of Algebra. 

We shall discus some analytic number theory. The primary aim of this 

section is to assemble a few facts that we will need in the rest of the 

course. We also hope to give you a glimps of the elegance of number 

theory .it is this elegance that led the mathematician gauss to call 

number theory the “queen of mathematics” 

Number theory deals with the properties of integers….-3,-2,-1, 0, 1, 2, 

3……….because it concerns with the simplest number system, with 

equally simple operations. Number theory has aroused great curiosity 

and interest from very early times, not only among professional 

mathematicians but also among many  inquisitive amateur.  

In this unit we discuss division algorithm, Euclid’s algorithm for the 

greatest common divisor, prime numbers and fundamental theorem of 

arithmetic. 

 



 1.2 Objectives: 

 

After reading this unit learner should be able to understand about: 

 Define divisibility 

 Use the division algorithm theorem 

 Use the Euclid’s algorithm theorem 

 Define and use greatest common divisor 

 Define prime number 

 State and proof fundamental theorem of arithmetic. 

1.3 Basic Definitions: 

 

We have a basis of many other topics in Mathematics. Let us be begine 

by understanding various types of numbers. 

1. Natural Numbers: All the counting numbers are called natural 

number. 

Example-1: 1,2,3,4,5,…………… 

(a).Even Numbers: The Numbers Which are exactly divisible by 2 are 

called even numbers. 

Example:2,4,6,8…………… 



(b).Odd Numbers: The Numbers which leave a remainder 1 when 

divided by 2 are called odd numbers. 

Example:1,3,5,7…………… 

(c) Prime Numbers: If a number is not divisible by any other number 

except 1 and itself.It is called a prime number. 

Example:2,3,5,…………… 

(d) Co-Primes: Two numbers which have no common factor between 

them are said to be Co-Prime to each other, the two numbers 

individually may be prime or composite. 

Example:13 and 29 are Co-Primes. 

(e) Composite Numbers: Numbers which are divisible by other 

numbers along with 1 and itself are called composite numbers. 

Example:4,6,8,9,10…………… 

2. Whole Numbers: Natural numbers along with ‘o’ form the set of 

whole numbers. 

Example:0,1,2,3,4,5,…………… 

3. Integers: All Counting numbers and their negatives along with zero 

are called integers. 

Example:-4,-3,-2,-1,0,1,2,3,4………… 



4. Rational and irrational Numbers: Any number which can be 

expressed in the form of p/q,where p and q are integers and q≠0 is a 

rational numbers. 

Example:3/5,4,-6…………… 

Numbers which are represented by non-terminating and non-

recurring decimals are called irrational Numbers. 

Example:                        

5. Real Numbers: Rational and irrational number taken together are 

called real numbers. 

 

 



                                                                   

                                                     

 

Well-Ordering Principal: Every non-empty subset S of non-negative 

integers contains a least element that is there is some integers ’a’ in S 

such that     for all b in S. 

                      

                                  

                                       

                          

2 is least element of   . 

‘If                                   ’ 

    1.4 Divisibility. 

 An integer b is said to be divisible by integer     if there exist some 

integer   such that       

Example: 

1.
  

 
                    



2. 
  

 
                                  

K in z such that                       

3.-8 is divisor or 72 since                

 

Notation:                                                     

Properties of divisibility: For integer       the following hold: 

Note: In following all cases when we are using any of       as a divisor; 

it is non-zero. 

a. a/0,1/0,a/a(a/0 means ‘a’ divides 0) 

b. a/1; if and only if      1 

c.                          

Example-1:                         

We have                

d.if a|b and b|c, then a|c 

Example-2: 7|56 and 56|168 

 7|168 



                  

                          

   a|b and b|a if and only if      

                                

                                                                 

Example-3: 5|25 and 5|50 

 5|(4          

            

Law of Trichotomy: For any        one and only one of the following is 

true: 

(i)     (ii)     (iii)     

The Absolute value of an integer   denoted by     is defined as:       

 

        
                          

                             

  

Thus  

     ,         ,        



If       , where       are integers, then it can be proved easily that 

               

Properties of absolute values of integers: 

(i)           

(ii)                       

(iii)               

(iv)                        

(v) If                           

1.5 Division Process in     

Definition: An integer a is said to be divisible by an integer        if there 

exists an integer c, such that        the integer    is called a divisor of a 

and a is called a multiple of b. 

When b is a divisor of a, we write b|a. 

Note: Every integer b is a divisor of 0, 

Since             . it is also apparent that +1, and +a are divisors of 

a   Divisors of a other than +1,+a are called proper divisors of a. 



  

Division and its Properties: 

Definition: Let a, b   Z and a/0.Then a is said to divide b if there is an 

integer k such that b = a k. We denote it by a | b and a b means that a does 

not divide b. 

Remark1.2. a | b is a statement, for example 2|6 is true, and 6|2 is false. Whereas 

6|2 is a number equal to 3. 

Following properties are easy to verify, hence we state them without proof. 

 (Few properties of division): Let a, b, and d be integers. Then, the 

following statements hold: 

Reflexive property: a |a (every integer divides itself),a 0 

Transitivity property: d |a and a |b ⇒d |b. 

Linearity Property: d |a and d |b ⇒d| a n + b m for all n and m. 

That is if d |a, b, then d divides every integer linear combination of a and b. 

Cancellation Property: ad |an and a/0⇒d|n. 

Multiplication Property: d |n ⇒ad |an. 

1and−1divideseveryinteger:1|n, −1|n   n   Z. 

1 and −1 are divisible by 1and−1only: n |1⇒ n=±1. 

Another equivalent way of stating the above two properties is: 1and−1are the 

only invertible elements in Z. 



Every number divides zero: d | 0   d   Z. 

Comparison Property: If d and n are positive and d |n then d ≤ n. 

1.6 Theorem: Division algorithm. 

 Let   be an integer and    . Then there exist unique integers      such 

that       , where        . 

Proof: Consider the set 

                            

Now                  

Hence when                      therefore the set S is non empty. 

Further S is a set of non-negative integers and therefore by the well ordering 

property, S has a least element say            

Now                                          

For if not, let      .then 

                                 



Therefore               and                     which 

contradicts 

That         is the least element of S. 

Hence        

Thus we get            

Where either                 

Now if     then      . Putting              

       

 if     then       . Putting               

                  

This Prove the existence of the integers        . 

Now we prove their Uniqueness. 

If possible, let there be a second pair of integer       

Such that                    

Then             or              



Which gives   to be a divisor of      which is not possible because 

             and therefore           

Hence   can not be a divisor of      unless        

Therefore      and consequently we get        

           

Corollary (1.1): If       with      there exist unique integers   and   

such that        where           

Associate: If       such that     and     then   and   are said to be 

associate to each other. In this case      

         

         

So                        

Thus      

Thus it          then units and associates of   are always divisors of   

called improper divisors. Other divisors are called proper divisors. 



Common divisor: Let            is called a common divisor of a and b 

if c|a and for Example, 2 is a common divisor of 2 and 4. 

You know that 1 and -1 common divisors of          for any        

Thus, a pair of integers does have more than one common divisor. This fact 

leads us to the following definition. 

Example: 1 No integer in the following sequence is a perfect square {11, 111, 

1111, 11111,... }. 

Solution: We already know that the square of any integer is either of the form 4r 

or 4r+1. 

An arbitrary number of the form1111...1111=1111...1108+3 and 4 divides 

1111...1108.Thus, all the numbers are of the form 4k+3.Hence, they cannot be 

perfect squares. 

1.7. APPLICATION OF DIVISION ALGORITHM 

 

Theorem 9: Every integer can be written in the form of 3n, 3n + 1 & 3n – 

1. 

Proof:Let “a” be any integer. Then for b = 3 > 0, the euclide theorem will be 

a = 3q + r where 0 ≤ r < 3 



Here 0 ≤ r < 3 implies that r = 0, 1, 2 

Case-1: When r = 0 

Then, 

a = 3q + 0 

  a = 3q 

  a = 3n           by replacing q by n 

Case-2: when r = 1 

Then, 

a = 3q + 1 

  a = 3n + 1            by replacing q by n 

Case-3: when r = 2 

Then, 

a =3q + 2 

  a = 3q + 3 – 1          since 2 = 3 – 1 

  a = 3(q + 1) – 1  

  a = 3n – 1               by replacing q + 1 by n 

This completes the proof. 

Theorem 5: Every odd integer can be written in the form of 4n + 1 & 4n 

– 1  



Proof: Let “a” be any odd integer. Then for b = 4 > 0, the euclide theorem 

will be 

a = 4q + r  where  0 ≤ r < 4 

Here 0 ≤ r < 4 implies for odd integer that r = 1, 3 

Case-1: when r = 1 

Then, 

a = 4q + 1 

  a = 4n + 1          by replacing q by n 

Case-2: when r = 3 

Then, 

a =4q + 3 

  a = 4q + 4 – 1         since 3 = 4 – 1 

  a = 4(q + 1) – 1 

  a = 4n – 1              by replacing q + 1 by n 

This completes the proof. 

 

1.8 Euclidean Algorithm 

 



Since gcd (a,b) = gcd (a,−b) = gcd (−a,−b) = gcd (−a,b) =gcd (|a|,|b|), we 

may assume that a and b are both positive. Since gcd(a,b)= gcd (b,a), 

we may assume a ≥ b. Also, by ignoring the trivial case, gcd (a,a) =a, we 

suppose a>b. So, we have a > b >0. 

Lemma (Euclidean Algorithm): Let a>b>0. If a = bq+r, then 

gcd (a,b) = gcd (b,r). 

Solution: In fact we prove more. That is, we show that Da ∩ Db =Db ∩ 

Dr, or equivalently, the common divisors of a and b are same as the 

common divisors of b and r. 

To show this, first let d|a and d|b. Note that r = a−bq, which is a linear 

integer combination of a and b. So, from the linearity property of 

division, d|r. Thus, d|b and d|r 

Next assume d|b and d|r. Using linearity property of division again and the fact 

that a=bq+r is a linear combination of b and r, we have d|a. So, d|a and d|b. 

We have thus shown that Da ∩ Db= Db∩Dr. Hence, gcd(a,b)=gcd(b,r). 

Euclid’s algorithm uses this repeatedly to simplify the calculation of 

greatest common divisors by reducing the size of the given integers 



without changing their gcd. 

Let gcd (a,b)=d. 

• By division algorithm a=q1b+r1 with 0 ≤r1<b.If r1=0, then b|a and gcd 

(a,b)=d=b.Stop. 

• If r1  0, then by division algorithm b=r1q2+r2with0≤r2<r1.Ifr2=0, then d=r1. 

Stop. 

• If r2  0  then we continue in this way; since b>r1>r2>···≥0, we must 

eventually get a remainder rn=0 (after at most b steps). 

• Sinced=gcd(a,b)=gcd(b,r1)=gcd(r1,r2)=···=gcd(rn−2,rn−1) and from last equation 

rn−2=rn−1.qn+rn=rn−1qn, 

we have gcd (rn−2,rn−1)=rn−1. 

Example 2 .2. Find gcd (34,55). 

Solution: we have 

55=34.1+21 

34=21.1+13 

21=13.1+8 

13=8.1+5 



8=5.1+3 

5=3.1+2 

3=2.1+1 

2=1.2+0. 

Consequently, 

gcd(55,34) = gcd  (34,21) = gcd (21,13) = gcd (13,8) = gcd (8,5) 

= gcd (5,3) = gcd  (3,2) = gcd (2,1) = 1. 

1.9. Common divisor 

Suppose a and b be any two integers then a number “c” is called common 

divisor of a and b if 

c/a  & c/b 

Example-1: 

2 is common divisor of the set {4, 8} because 

2/4  & 2/8 

1.9.1. Greatest common divisor 

The largest positive integer that divides both a and b is called greatest 

common of a and b. it is denoted as (a, b). 

Example-1: 



Let us calculate the g.c.d of 42 and 48 

Divisor of 42 = {1, 2, 3, 6, 7, 14, 21, 42} 

Divisor of 48 = {1, 2, 3, 4, 6, 8, 12, 16, 24, 48} 

Common divisor of 42 & 48 = {1, 2, 3, 6} 

Therefore, 

(42, 48) = 6 

1.9.2. Linear combination 

Suppose a and b be any two integer then “m” is called linear combination of a 

and b  x, y   Z, we have 

m = ax + by 

Remark: 

The greatest common divisor of two numbers a and b is the smallest positive 

linear combination of a and b. That is, 

(a, b) = ax + by 

1.10. Relatively Prime 

The integers a and b is called relatively prime if (a, b) = 1. More generally, it 

is defined as “The integers m1, m2, …………. mn are relatively prime if every 

pair of mi is relatively prime i.e. 

(mi, mj) = 1, whenever ≠ j” 



Remark: Any two consecutive integers are relatively prime. 

Proof: Assume that n and n + 1 are two consecutive integers. Then for all x, 

y   Z, we have        (n, n + 1) = nx + (n + 1)y 

Take x = -1 & y = 1, then we have 

(n, n + 1) = n(-n) + (n + 1)1 

  (n, n + 1) = 1 

This completes the proof. 

Theorem 5: If c is any common divisor of a and b, then c divides (a, b). 

Proof:  Suppose c is common divisor of a and b. Then by definition 

c/a & c/b 

Then by a result, we have 

c/ax + by 

  c/(a, b)   Because (a, b) = ax + by 

This proves the result. 

 Alternative Definition of G.C.D. 

In view of the previous result we can reformulate the definition of g.c.d. 

Definition: A positive integer d is called g.c.d of a and b if 

i. d ≥ 0 

ii. d/a and d/b 



iii. If some other integer e/a and e/b, the e\d 

Theorem 6: The greatest common divisor of a & b is unique. 

Proof: Suppose (a, b) = d1   & (a, b) = d2 

Then, we have to show that 

d1 = d2 

if “d2” is G.C.D of a & b and “d1” is common divisor of a & b. Then, by 

definition of G.C.D, we have 

d1/d2                      (A) 

if “d1” is G.C.D of a & b and “d2” is common divisor of a & b. Then, by 

definition of G.C.D, we have  

d2/d1                  (B) 

From (A) & (B), we have 

d1 = ±d2 

Since d1 & d2 are non-negative. Therefore. 

d1 = d2 

Theorem 20: if (a, b) = 1 then show that (a – b, a + b) = 1 or 2. 

Proof: 

Suppose that 

(a – b, a + b) = d                      (A) 



This implies by alternative definition of G.C.D, we have 

d/a – b, d/a + b 

  d/a – b + a + b & d/a – b – a – b 

  d/2a & d/-2b 

  d/2a …… (a) & d/2b  …… (b) 

Since it is given that (a, b) =1 

  ∃ Two integers x & y such that 

ax + by = 1 

  2ax + 2by = 2 ………. (i) 

From (a) & (b) , we have 

d/2a & d/2b 

  d/2ax & d/2by 

  d/2ax + 2by 

  d/2         from (i) 

Since 2 is a prime number. Therefore, 

d = 1 or 2 

Using d = 1 or 2 in equation (A), we have 

(a – b, a + b) = 1 or 2 

This is completes the proof. 



Example. 1: Let a and b be integers. Then 

(I) (ca.cb) = c(a, b) for any positive integer c; 

(II)  
 

 
 
 

 
 =1 if d = (a, b). 

Solution: 

I. (ca.cb) = c(a, b) for any positive integer c; 

As we know “The greatest common divisor of two numbers a and b is the 

smallest positive linear combination of a and b”. Therefore, 

(ca.cb) = ca(x) + cb(y)                     

(ca.cb) = c(ax + by)                        

Here ax + by is the smallest linear combination of a and b. Therefore, 

ax + by = (a, b) 

It follows that, 

(ca.cb) = c(a, b) for any integer c 

II.  
 

 
 
 

 
 =1 if d = (a, b). 

Since d = (a, b). Then, 
 

 
 & 

 

 
 both are integers. 

Now consider that, 

          d 
 

 
 
 

 
  =    

 

 
   

 

 
  

  d 
 

 
 
 

 
  = (a, b) 



  d 
 

 
 
 

 
  =d     since d = (a, b) 

   
 

 
 
 

 
  =

 

 
 

   
 

 
 
 

 
  = 1 

This is completes the proof. 

Example .2: If (a, b) =d then (ma.mb) = md. 

Solution: Since it is given that (a, b) = 1 

 ∃ Two integers x and y such that 

ax + by = d 

  max + mby = md ………….. (i) 

Let (ma.mb) = d1 ……………….. (A). Then, we have to show that d1 = md 

  d1/ma & d1/mb 

  d1/max & d1/mby 

  d1/max + mby 

  d1/md ……………. (*) 

As (a, b) = d. This implies by definition 

d/a & d/b 

  md/ma & md/mb 



The above shows that “md” is common divisor of ma and mb. But from (A), 

d1 is G.C.D of ma and mb. Then by definition of G.C.D, we have 

md/d1 ……………. (**) 

Now from (*) and (**), we have 

d1 = md 

It follows that 

(ma.mb) = md 

This completes of proof. 

Example .3: If a/bc and (a, b) = 1, then a/c. 

 Solution: Since it is given (a, b) = 1 

 ∃  Two integers x and y such that 

ax + by = 1 

  cax + cby = c  (by multiplying c on both sides) 

Since  

a/cax       (by division) 

a/bcy        (by supposition) 

Therefore, 

a/cax + cby 

  a/c           (by 1) 



This completes the proof. 

 

Example .4: Let a, b and c be integers. 

(I) If (a, b) = (a, c) = 1, then (a, bc) = 1 

(II) If a\c, b\c and (a, b) = 1, then ab\c. 

Solution: 

I. (a, b) = (a, c) = 1, then (a, bc) = 1 

Since (a, b) = (a, c) = 1. Then, there exists the integers s, t, x & y such that 

as + bt = 1                       bt = 1 – as        (i) 

ax + cy = 1                      cy = 1 – ax        (ii) 

Multiplying (i) & (ii), we have 

(bt)(cy) = (1 – as)(1 – ax) 

  bc(ty) = 1 – ax – as + a
2
sx 

  bc(ty) = 1 – a(x + s – asx) 

  a(x + a – asx) + bc(ty) = 1 

  (a, bc) = 1   (by definition) 

II. a\b, b\c and (a, b) = 1, then ab\c. 

since a\c & b\c. This implies that there exists two integers c1 & c2 such that 

c = ac1                (i) 



c = bc1               (ii) 

Also it is given that (a, b) = 1 

  ∃ Two integers x & y such that 

ax + by = 1 

  cax + cby = c  (by multiplying c on both sides) 

  (bc2)ax + (ac1)by = c    (by using (i) & (ii)) 

  abc2x + abc1y = c 

  ab(c2x + c1y) = c 

  c = ab(c2x + c1y) 

  ab/c           c2x + c1y   Z 

This completes the proof. 

Example .5: if (d1, d2) = 1,d1/a & d2/a then d1d2/a. 

Proof: Since d1/a & d2/a. This implies that there exists two integers c1 & c2 

such that 

a = d1c1          (i) 

a = d1c2         (ii) 

Also it is given that (d1, d2) = 1 

  ∃ Two integers x & y such that 

d1x + d2y = 1 



  ad1x + ad2y = a  (by multiplying c on both sides) 

  (d2c2)d1x + (d1c1)d2y = a   (by using (i) & (ii)) 

  d1d2c2x + d1d2c1y = a 

  d1d2(c1x + c1y) = a 

  a = d1d2(c2x + c1y) 

  d1d2/a           c2x + c1y  Z 

This completes the proof. 

Theorem 7: if (b, c) = 1 & a/c, then (a,b) = 1 

Proof: If a/c, then there exist on integer c1 such that 

c = ac1 ……………….(a) 

Also it is given that (b, c) = 1 

  ∃ Two integers x & y such that 

bx + cy = 1 

  bx + ac1y = 1 …………..(b)        since c = ac1 

Let (a, b) = d ……. (c) 

Then we have to show that d = 1 

As (a, b) = d. Then, by definition of G.C.D, we have 

d/a & d/b 

  d/ac1y & d/bx 



  d/ac1y + bx 

  d/1           from (b) 

  d = 1 put in (c), we have 

(a, b) = 1 

This completes the proof. 

Theorem .8: if (a, c) = 1 then (a, bc) = (a, b). 

Proof: Suppose that 

(a, bc) = d1         (i) 

(a, b) = d2         (ii) 

Then, we have to show that d1 = d2. 

From (ii), we have 

(a, b) = d2 

  d2/a & d2/b 

  d2/a & d2/bc 

Which shows that “d2” is common divisor of a & bc. But from (i), it is clear 

that “d1” is G.C.D of a & bc. This implies by the definition. 

d2/d1      …………………(A) 

Since (a, c) = 1 

  ∃ Two integers x & y such that 



ax + cy = 1 

  bax + bcy = b           (iii) 

Now from (i), we have 

(a, bc) = d1 

  d1/a & d1/bc 

  d1/bax & d1/bcy 

  d1/bax + bcy 

  d1/b  from (iii) 

d1/a & d1/b implies that “d1” is common divisor of a & b. But from (ii), 

G.C.D of a & b is “d2”. 

Then by definition of G.C.D, we have 

 d1/d2 ……………… (B) 

from (A) & (B), we have 

d1 = d2 

Therefore 

(a, bc) = (a, b) 

This completes the proof. 

Example .1: If a = bq + r then show (a, b) = (b, r) 

Solution: Suppose that 



(a, b) = d1  ………………. (i) 

(b, r) = d2 ………………..(ii) 

a = bq + r ……………..  (iii) 

From (ii), we have 

(b,r) = d2 

  d2/b & d2/r 

  d2/bq & d2/r 

  d2/bq + r 

  d2/a       from (iii) 

d2/a and d2/b shows that “d2” is common divisor of a & b. But from (i) G.C.D 

of a & b is “d1”. Then by definition of G.C.D, we have 

d2/d1 ………………………. (A) 

From (i), we have 

(a, b) = d1 

  d1/a & d1/b 

  d1/a & d1/bq 

  d1/a – bq  

  d1/r since r = a – bq from (iii) 



d1/b & d1/r shows that “d1” is common divisor of b & r. But from (ii), G.C.D 

of b & r is “d2”. Then by definition of G.C.D, we have 

                   d1/d1 …………………..(B) 

From (A) & (B), we have 

                   d1 = d2 

Therefore, 

                 (a, b) = (b, r) 

This completes the proof. 

Example .2: If (b, c) = 1 then show that (a, bc) = (a, b)(a, c). 

Proof: 

Suppose that 

(a, b) = d1 …………. (i) 

(a, c) = d2 …………(ii) 

(a, bc) = d3 ……….(iii) 

From (i), we have 

(a, b) = d1 

  d1/a & d1/b 

  d1/a & d1/bc 



This show that “d1” is common divisor of a & bc. But from (iii), G.C.D of a 

& bc is “d3”. Then by definition of G.C.D, we have 

d1/d3 …………………. (A) 

From (ii), we have 

(a, c) = d2 

  d2/a & d2/c 

  d2/a  & d2/bc 

This shows that “d2” is common divisor of a and bc. But from (iii), G.C.D of 

a & bc is “d3”. Then by definition of G.C.D, we have 

d2/d3 ……………………. (B) 

Since it is given that (b, c) = 1 

  ∃ Two integer x & y such that 

bx + cy = 1 ………………. (iv) 

From (i) & (ii), we have 

d1/b & d2/c 

  ∃ the integers m & n such that b = d1m & c = d2n 

Put in (iv), we have 

d1mx + d2ny = 1 

  (d1, d2) = 1…………. (v)    m, n, x, y,   Z 



From (A) & (B), we have 

d3 = d1f ……………… (vi) & 

d3 = d2g ………………..(vii)   f, g   Z 

From (v), we have 

(d1. d2) = 1 

  d1x + d2y = 1      x, y   Z 

  d3d1x + d3d2y = d3 multiplying with d3 

  (d2g)d1x + (d1f)d2y = d3 

  d1d2(gx + fy) = d3 

  d1d2/d3 …………. (C) 

From (i) ax1 + by1 = d1 …………. (viii) 

From (i) ax2 + cy2 = d2 ……………(ix) 

Multiplying (viii) & (ix), we have 

(ax1 + by1)(ax2 + cy2) = d1d2 

  ax1x2a + ax1cy2 + ax2by1 + bcy1y2 = d1d2 

  a(x1x2a + x1cy2 + x2by1) + bc(y1y2) = d1d2 

  (a, bc) = d1d2 

  (a, bc) = (a, b)(a, c) 

This is complete the proof. 



Theorem-9: (Fundamental Theorem of Arithmetic): 

 

Every integer            can be written as               , where 

             are prime numbers. This representation is unique, except for 

the order in which the prime factors occur. 

Proof: We will first prove the existence of such a factorisation. Let      be 

the statement that     is a product of primes.      is true, because 2 is a 

prime number itself. 

 Now let us assume that      is true for all positive integers      we want 

to show that      is true. If       is a prime,      is true. If     is not a 

prime, then we can write           where          and   

      . But then         and         are both true. Thus,     

                              where 

                          are primes. Thus, 

                              i.e      is true. Hence , by       is 

true for every      

Now let us show that the factorization is unique. 

Let                             where  

 



                          are primes. We will use induction on    

If      then                 but    is prime. Thus, its only factors are 1 

and itself. 

Thus,      and       . 

Now suppose     and the uniqueness holds for a product of     

Primes. Now                   and hence, by       for some    by re-

ordering              we can assume that      . But both           are 

primes. Therefore,      . But then                            so 

by induction,         and              are the same as 

              in some order. Hence we have proved the uniqueness of the 

factorization. 

This theorem is also known as the Unique Prime Factorisation Theorem. 

The primes that occur in the factorization of a number may be repeated, just 

as 5 is repeated in the factorization           by collecting the same 

primes together we can give the following corollary to theorem. 

Corollary: Any natural number   can be uniquely written as 

     
      

           
   Where for               each      and 

each     is a prime with               



As an application of theorem, we give the following important theorem, due 

to the ancient Greek mathematician Euclid. 

1.10. SUMMARY 

In this unit we have covered the following points. 

1) Properties of divisibility in, like the division algorithm and unique 

prime factorization. 

2) Proof of the indefinite of primes and its variants. 

3) How to complete the gcd of two numbers from a factorization or 

from the Euclidean Algorithm. 

4) Statement of the Fundamental Theorem of Arithmetic. 

 

1.11TERMINAL QUESTION. 

1. The value of 155 mod 9 is? 

2. Find the remainders obtained on division of the following: 

(a)     by 101             (b)         by 23 

3. If   and   are prime numbers show that 

                        

4. Prove that           is divisible by 899. 



5. Find the g.c.d. of 163 and 34 and express it in the form      

    in two ways. 

 

 

 

 



UNIT-2                                                      CONGRUENCES 

Structure 

2.1  Introduction 

            2.2       Objectives 

2.3  Congruence’s 

2.4  Residue Classes 

2.5  Linear Congruence’s 

2.6  Simultaneous Congruence’s 

2.7  Chines Remainder Theorem 

2.8  Classical Theorem 

2.9  Summary 
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2.1  Introduction 

51 The so called Arithmetic dealt with in elementary test books was 

separated by the Greeks into two distinct compartments, logistica and 

arithmetica. The former deals with the practical applications of reckoning to 

trade and daily life in general. The latter which is known as the theory of 

Number is concerned with the properties of numbers and it is one of the most 

extensive and most elegent disciplines in the field of mathematics. Gauss, 

Lagrange, Euler, Fermat, are some of the mathematicians who contributed 

mnch to the development of the theory of numbers. 

Congruence which has influenced many branches of mathematics, is one of 

the most important concepts in the theory of numbers. Its notation is the 

invention of Gauss. Karl Friedrich Gauss (1777 – 1855) was one of the 

leading mathematicians of his time. He is regarded as one of the three 

greatest mathematicians of all time, the other two being Archimedes and 

Newton. This chapter is devoted to an elementary approach to linear 

congruences. 

 



 

2.2 Objectives. 

After reading this unit the learner should be able to understand about: 

 Congruence’s 

 Linear Congruence’s 

 To find the solution of Linear Congruence’s  

 State and proof Chines Remainder Theorem 

 To Solve Chines Remainder Theorem based problem  

2.3 Congruence’s: 

Definition: Let m be a positive integer. An integer a is said to be congruent to 

an integer b modulo m, denoted by a ≡ b (mod m) iff m ⎸(a – b) 

Example: 5 ≡ 3 (mod 2). 1 ≡ 16 (mod 5)           -4 ≡ 5 (mod 3) 

  73 ≡ 33 (mod 8) 

We write a ≠ b (mod m) iff m   (a – b); then we say that a is incongruent to b 

modulo m. The following are the consequences of the definition: 



a ≡ b (mod m), iff there exists an integer k such that , a = b + km. 

a ≡ b (mod m), iff both a and b give the same remainder on formal division 

by m. 

Suppose a ≡ b (mod m). if a < b and a ≤ a < m, then a will be the remainder 

obtained when b is divided by m. 

Theorem 2.1 If m is a given positive integer, the relation a ≡ b (mod m) as 

defined above, in the set integers, is an equivalence relation. 

Proof: Let a, b, c be any integers. 

(1) For every a, a ≡ a (mod m), because, zero is divisible by any integer 

other than zero. Hence the congruence relation is reflexive. 

(2) Assume a ≡ b (mod m). So the congruence relation is symmetric. 

Since -k is also an integer, b = a (mod m). So the congruence relation is 

symmetric. 

(3) Assume a ≡ b (mod m) and b ≡ c (mod m). 

By (i) a = b + km and b = c + k’m where k, k’   Z. 

∴ a = (c + k’m) + km = c + (k + k’)m. 



Since (k + k’) is an integer, a ≡ c (mod m). 

Hence the congruence relation is transitive. 

Thus “congruence modulo m” is an equivalence relation. 



2.4 Arithmetic of Congruence’s: 

In this section we prove some elementary properties of congruence’s. 

Theorem 2.2 If a ≡ b (mod m) and c ≡ d (mod m) 

Then (i) a + c ≡ b + d (mod m) 

         (ii) a – c ≡ b – d (mod m) 

         (iii) ac ≡ bd (mod m) 

Proof: a ≡ b (mod m) ⇒ a = b + km, k    Z 

           c ≡ d (mod m) ⇒ c = d + k’m, k’   Z 

(i) a + c = b + d + (k + k’)m and k + k’   Z 

∴ a + c ≡ b + d (mod m). 

(ii) a – c = b – d + (k + k’)m and k + k’   Z 

∴ a – c ≡ b – d (mod m). 

(iii) ac = bd + (kd + k’b + k’k)m and kd + k’b + k’k   Z 

∴ ac ≡ bd (mod m) 

Corollary: If a ≡ b (mod m) and c is any integer, 



Then (i) a + c ≡ b + c (mod m) 

          (ii) a – c ≡ b – c (mod m) 

         (iii) ac ≡ bc (mod m) 

Check Your Progress 

 (1). Determine which of the following are true: 

(a) 15 ≡ 3 (mod 4)  (b) 28 ≡ 0 (mod 7) 

(c) 47 ≡ -9 (mod 5)  (d) -6 ≡ -54 (mod 12) 

(e) -49 ≡ 3 (mod 3) 

(2) Find any two values of k which satisfy each of the following congruences. 

 (a) 33 ≡ k (mod 5)  (b) -14 ≡ 6 (mod k) 

 (c) k ≡ 5 (mod 7)  (d) k ≡ -3 (mod 6) 

(3) Find the values of x > 0 and less than the modulus m in each of the 

following congruences. 

 (a) x ≡ 6 + 9 – 3 (mod 5) (b) x – 3 ≡ 15 – 49 (mod 14) 



 (c) 2x + 9 ≡ x – 14 + 12 (mod 8) 

(4) Prove that if a ≡ b (mod m) and n is a positive factor of m then a ≡ b (mod 

n) 

(5) Prove that if a ≡ b (mod m1) and a ≡ b (mod m2) then a ≡ b (mod m2) then 

a ≡ b (mod [m1, m2]) where [m1, m2] is the L.C.M. of m1 and m2. 

Given a ≡ b (mod m) and (a, m) = 1, show that (m, b) = 1. 

Prove that if a ≡ b (mod m) then a’ ≡ b’ (mod m) where r is a positive integer. 

If p is a prime number, prove that (a + b)
p
 ≡ a

p
 + b

p
 (mod p). 

Find the first 10 powers of 7 (mod 11) with minimum effort. 

[Hint : 7
2
 = 49 = 5 (mod 11)  7

3
 = 7

2
7 = 5.7 = 2 (mod 11)     7

4
 = (7

2
)

2
 = 5

2
 

(mod 11) 

∴ 7
4
 = 3 (mod 11). 

Reduce the following congruences, modulo m, to the form with non-negative 

coefficients less than m. 

(a) 55x + 3 = -15 (mod 12) 



[we have, -3 = -3 (mod 12) 

Adding 55x = -18 (mod 12) 

Now -18 = 6 (mod 12) 

But 55 = 7 (mod 12)                ∴ 55x = 6 (mod 12) 

∴  7x = 7 (mod 12) 

(b) 136 x = 71 (mod 5) 

(c) 48x – 23 = 34 (mod 15) 

(d) (4x – 8)(3x – 5) = 10 (mod 6) 

2.3 we know that the cancellation law, c ≠ 0, ac = bc ⇒ a = b holds for 

integers. Does the cancellation law for congruences, c ≠ 0 (mod m), ac = bc 

(mod m) ⇒ = b (mod m) hold? To answer this consider the following 

examples: 

(1) 3 ≠ 0 (mod 4) and 3.6 = 3.2 (mod 4) ⇒ 6 = 2 (mod 4) 

(2) 2 ≠ 0 (mod 4) and 2.1 = 2.3 (mod 4) but 1 ≠ 3 (mod 4) 

Now it is clear that the cancellation law with respect to multiplication does 

not always hold. The following theorem gives the condition under which it is 

true. 



Theorem 2.3: Cancellation law: If ac = bc (mod m) and (c, m) = 1, then a ≡ b 

(mod m) 

Proof: ac ≡ bc (mod m) ⇒ m (a – b) 

 Since (c, m) = 1, m ⎸(a – b). Hence a ≡ b (mod m) 

Theorem 2.4: If p is a prime number, c ≠ 0 (mod p) and ac = bc (mod p), 

then a ≡ b (mod p). 

Proof: Since c ≠ 0 (mod p) and p is a prime number (c, p) = 1, Hence, by the 

theorem 5.3, ac ≡ bc (mod p) implies a ≡ b (mod p). 

Theorem 2.5: If ac ≡ bc (mod m), then a ≡ b (mod k) where d = (a, m) and kd = m. 

Proof: Now d = (c, m) and kd = m 

Let c = k’d. then (k, k’) = 1 

ac ≡ bc (mod m). 

∴ ac = bc + 1 mnt  Zn 

Substituting for c and m, ak’d = bk’d + tkd. 

∴ ak’ = bk’ + tk ⇒ ak’ = bk’ (mod k) 



Since (k, k’) = 1 by the theorem 5.3, a ≡ b (mod k). 

Exercises 2.2:  

1. Prove that the remainder obtained on dividing a positive integer n by 9, 

in equal to that on dividing the sum of the digits of n by 9. 

[We know that in the decimal representation 3576 = 3.10
3
 + 5.10

3
 + 7.10 + 6. 

In general, if n is nay positive integer, then n = a0 + a1.10 + a3.10
2
 + 

…..+ak.10
k
 where a0, a1, …..ak are digits of the integer n = akak-1 …….a1a0. 

Since 10 = 1 (mod 9)    ∴ 10
r
 = 1 (mod 9) for any r   Z 

∴ a0 + a1.10 + a2.10
2
 + ……+ ak10

k
 ≡ a0 + a1 + a2 + …….+ak (mod 9) 

2. Prove that we can replace 9 by 3  

3. Prove that 11 ⎸n iff 11 ⎸[a0 – a1 + a2 – ……….+ (-1)
k
ak]. Where the 

decimal representation of n is a0 + a1.10 + a2.10
2
 + ……+ ak10

k
. 

4. If a0, a1, a2, a3, a4, a5 are the digits commencing from the units place, in the 

decimal notation of a number n, prove that n = (a0 + 3a1 + 2a2 – a3 – 3a4 – 2a5) 

(mod 7) 



2.4 Residue Classes. 

Theorem 2.6 If m is a positive integer, no two integers of the set S = {0, 1, 2, 

…..(m – 1)} are congruent modulo m and every integer is congruent modulo 

m to one and only one integer of S. 

Proof: Let b and c be any two distinct elements of S since 0≤ b, c < m and b 

≠ c, 0 <           and m   (b – c). Hence b ≠ c (mod m). 

Let a be any integer. By the division algorithm for the integers a and m, there 

exists unique integers q and r such that a = qm + r, 0 ≤ r < m. Therefore a ≡ r 

(mod m) and r   S. 

Since r is unique for a given pair a and m, any integer a is congruent (mod m) 

to one and only one integer   S. 

Definition: The set {0, 1, 2, …..(m – 1)} is called “the set of the least non-

negative residues modulo m” 

Definition: The set of all integers which give the remainder r, when divided 

by a positive integer m is called “the r-residue class modulo m” and is 

denoted by the symbol    (mod m). 



The integer of r-residue class modulo m, are of the form r + km where k is an 

integer. Thus r = {……..r – 2m, r – m, r, r + m, r + 2m ……} 

[Show that       for any s.    ] 

The elements of    are the terms of an arithmetic progression of common 

difference m and are mutually congruent (mod m). Thus it is easily seen that 

a residue class is an equivalence class. 

As there are only m non-negative integers less than m, there exist exactly m 

residue classes (mod m) 

For example, the five residue classes modulo 5 are 

0  = {……-10, -5, 0, 5, 10 , ….} 

   = {……..-9, -4, 1, 6, 11, …..} 

    = {…….-8, -3, 2, 7, 12, …..} 

   ={…….-7, -2, 3, 8, 13,…….} 

   = {…….-6, -1, 4, 9, 14, ……} 



Theorem 2.7. Let m be any positive integer, and    and    residue classes (mod 

m). 

                       If        , then    =   . 

Proof: Let         then      and      

This implies that x = s + km and x = t + lm by subtraction, 0 = (x – t) + (k – 

l)m. 

 ∴ s ≡ t (mod m) 

∴   =    thus        ⇒    =    

The contrapositive of the above theorem viz.,    ≠    ⇒        , is true. 

That is , distinct residue classes have no element in common. 

Now it is clear that the equivalance relation, congruence (mod m) 

decomposes the set Z of all integers into m distinct, equivalence classes 

which are none other than the m residue classes (mod m). 

2.5 Special Residue Systems (mod m) 



Let   ,   , …………  , ………                  be the m residue classes (mod m). 

Then the set S = {x0, x1. ……..xn-1} where each      for all i = 0, 1, 2, ….., 

(m – 1) is called a complete system of residues (mod m). 

Examples: (1) {0, 1, 2, ……….(m – 1)} is the complete system of least non-

negative residues (mod m). 

(2) {1, 2, ………, m} is the complete system of least positive residues (mod 

m). 

(3)    
 

 
                    

 

 
  is the completes system of 

residues (mod m), of least absolute value where m is even. 

When m is odd this will be    
   

 
                    

   

 
  

(4) Any m consecutive numbers will form a complete residue system (mod 

m). Prove. 

Check Your Progress 

1) If (a, m) = 1 and x is in the residue class    (mod m), Prove that (x, m) = 1. 



2) If (x1, x2, ……xm) is a complete set of residues modulo m, prove that 

{ax1 + b, ax2 + b, ……………axm + b} is a complete set of residues 

modulo m provided (a, m) = 1. 

Out line of proof:- Show that axi + b = axj + b (mod m) ⇒ i = j 

∴ if p0, p1, ……pm-1 are the least non negative residues (mod m) of thse 

numbers, then, p0, p1, ……pm-1 are only 0, 1, 2, ……, (m – 1) in some 

order. 

In particular, choosing (x1, x2, ……xm) = 0, 1, 2, ……, (m – 1) we find 

that {b,  b + a, b + 2a, ……..b + (m – 1)a} is a complete residue system 

modulo m. 

∴ The number of numbers among {b,  b + a, b + 2a, ……..b + (m – 1)a} 

which are relatively prime to m is the same as that of numbers among 0, 1, 2, 

……, (m – 1) which are relatively prime to m, i.e. to     . 

Hence we may state the following proposition:- 

If a is relatively prime to m, the number of terms in the arithmetical 

progression: 

b,  b + a, b + 2a, ……..b + (m – 1)a which are relatively prime to m is     . 



2.6 Alternative Development of the formula for the Euler’s Totient     . 

The proposition obtained above can be used with the advantage of simplicity, 

to prove the multiplicative property of     , and hence to derive the formula 

for    . 

Theorem 2.8 If m and n are relatively prime, the       =     ..     . 

Proof: Let us arrange the numbers 1, 2, 3, ……..mn is n rows and m columns 

as shown below: 

 1  2  l  m 

 m + 1  m + 2  m + 1  2m, 

 2m + 1  2m + 1  2m + 1  3m, 

 ………… ……… ……… …….. 

(n – 1)m – 1  (n – 1)m – 2 (n – 1)m + 1 nm 

Since (m, n) = 1, any number which is relatively prime to mn is relatively 

prime to both m and n. 



∴       is the number of numbers from 1 to mn which are relatively prime 

to both m and to n. Each of the numbers in the column headed by 1 will be 

relatively prime to m iff I is relatively prime to m. Thus, there are exactly 

     columns in the above arrangement, which contain numbers from 1 to 

nm, which are relatively prime to m. 

Now each column is an arithmetical progression containing n terms. Each 

column contains      numbers which are relatively prime to n. 

Thus the numbers which are relatively prime to both m and n are actually the 

numbers which are relatively prime to n found in each of the      columns 

headed by the      numbers which are relatively prime to m; and in each 

such column there are      such numbers. Hence the number of numbers 

which are relatively prime to both m and n and hence to mn is equal to 

         . 

∴                 

corollary: If m1, m2, …….mk are relatively prime to one another, then 

 ( m1, m2, …….mk) =  (m1).  (m2       (mk), 

For ( m1, m2, …….mk) = the g.c.d. of m1, m2, …….mk = 1 



∴  ( m1, m2, …….mk) =  (m1).  (m2       (mk), and so on. 

Theorem 2.9 If p is a prime, then            
 

 
  

Proof: W    α                                    

 W    α                                            

Among them those that are not relatively prime to    are p1             α-1.p . 

Their number is pα-1 

∴                              α and relatively prime to it 

                      =                
 

 
  

Corollary: Let m =   
     

           
   

Be the canonical resolution of m into the production of powers of distinct 

primes p1, p2      k. 

∴             .8, we have  

         
        

          
    

  =   
     

 

  
    

     
 

  
       

     
 

  
  



∴          
 

  
     

 

  
        

 

  
  

Which is the required formula for      

2.7 The Linear Congruence 

A                                                   “                 ” 

in x. An integer α                                                        

            “        ”      “    ”                    

Example:                                               -2, 12, 19 are also 

roots of this congruence. Note that they are all congruent to one another 

(mod 7). 

I  α                                                                  

congruent to α                                 I                       

                              α                                 

F       α’   α               α’    α                α                α     

                                            α’                           

     α’                



                                α                                       

any integer from the residue class    (mod m), is also a solution. So we 

                                            α                   + tm 

where t   Z. 

It may turn out as will be seen in example 3 given below, that (1) has 

             β   α                                      α     β         

distinct (mod m) or incongruent (mod m) roots; of the congruence (1). 

Thus in counting the number of roots of a given congruence, we take into 

account only incongruent (mod m) roots. 

Consider the following example: 

(1) 2x = 3 (mod 4) 

By substituting each of the integers 0, 1, 2, 3, in succession, we find 

that none of them satisfies the congruence. Therefore it has no 

solution in any one of the residue classes          and   . But these 

classes comprise all the integers. Thus the congruence has no 

solution. 

(2) 3x = 1 (mod 5) 



Among the integers 0, 1, 2, 3, 4 only 2 satisfies the congruence. 

H                               q                                 

2 + 5t., t  Z. 

(3)                                                                                                Of 

the integers, 0, 1, 2, 3, 4, 5, both 2 and 5 satisfy the congruence. 

Hence the congruence has 2 solution, namely x = 2 + 6t and x = 5 

+ 6t where t  Z. 

Thus a linear congruence may or may not have a solution. It may even 

have more than one solution whereas a linear algebraic equation has one 

and only one solution. The following two theorems reveal the conditions 

for the existence of a solution and the number of solution when they 

exist. 

Theorem 2.10 I                                 has a unique solution. 

Proof:- Since (a, m) = 1, there exists two integers p and q such that pa + 

qm = 1 

∴          q      

A(pb) = b + (-qm)m and -qb   Z. 



∴                      

                                         

If possible, let a be another solutio                           α          

                                                           α       

                                                                        

   α                                       H                        q    

Theorem 2.11 Let ax = b (mod m) and (a, m) = d. 

  Then (i) if d   b, the congruence has no solution. 

             ⎸                                           

Proof:- (i)                

1 let d   b, if (i) has a solution x0 then ax0             

And ax0 = b + km (k  Z) 

                   ⎸        ⎸  

∴   ⎸  0 – k           ⎸   

This is a contradiction 



∴        b (1) has no solution 

           ⎸             B  

            ∴     A       M       A  M       

∴ on substitution in (1) we get 

Adx = Bd (mod Md) 

∴ M  ⎸A   – B  ⇒ M ⎸A  – B. 

∴ A    B      M              

       A  M                           I           q             L         α 

+ tM, (t   Z). 

                        α    M                           

      α    M                       M ⎸A  α    M  – B. 

∴ M  ⎸A  α    M  – Bd. 

∴   ⎸  α       – b. 

∴   α                   



∴ α                                      

Thus every solution of (2) is a solution of (1) also. 

III                α  Α   M  α    M      α      – 1)M) which is a subset 

of    (mod M). Clearly, the elements of S are the solutions of (2). Hence 

those of (1) also. 

                                              α    M                   

m) to one and only one element of S. 

B               A              q                     q           q    

∴ α    M   α    q      M   α    M   q M    α    M    q  

∴ α    M   α    M         

                 α    M                    q   α    M                   

                                  α  

IV Now we shall prove that the elements of S are incongruent modulo m. 

A      α    M   α    M               α    M  α    M                    

< d. 



      M    M         

                        M   

                                                            ∴ α    M   α   

sM (mod m). Thus the elements of S are incongruent (mod m) and 

consequently S contains exactly d distinct elements. 

H         III       IV                         (mod m) has exactly d 

solutions and they are the elements of the set S. 

Note in general we write the d solutions of (1) as 

α       α   
 

     
 +     α   

  

     
               

α   
      

     
                                  α                              

is called the reduced congruence of (1). 

5.8 The following examples illustrate several indirect and easy ways of 

solving linear congruences. 

Example I.                       



                 ⎸   H                                                   

Now let us find the solution. 

I Method: Of the integers 0, 1, 2, 3, 4, it can be easily verified that only 4 

satisfies the congruence. Therefore 4 is the solution or x                

the solution. 

II Method:               H                     

2, the common factor of 2 and 8, is prime to 5. 

∴               

                                                    

III Method:                 

Since it has a solution 2x = 3 + 5k, where x, k   Z. 

  
    

 
 is an integer. 

    

 
      

   

 
  

   

 
 must be an integer. Let 

   

 
  . Then k = 2t – 1 . 



Setting t = 0, we get k = -1. Hence x = -1 or x = -1 (mod 5) 

                                    

Example 2. Find all the integers x,  -                            

                          

From the example (1) 4 is a solution. All the integers congruent to 4(mod 

5) satisfy the congruence. Hence the required integers are 4, 4 + 5,  4 + 2 

x 5, 4 + 3 x 5, 4 – 5, 4 – 2 x 5, 4 – 3 x 5, 4 – 4 x 5, i.e. 4, 9, 14, 19, -1, -6, -11, 

-16. 

Example 3.                          

                       A     ⎸    ∴                 solution. 

Since 31 is a big number, the I method described in example (I), is 

laborious. 

I Method:           -5 (mod 31) 

                        ∴ -5x = 35 (mod 31) 

                   ∴ -5x = 35 (mod 31) 



-5, the common factor of -5 and 35, is relatively prime to 31. 

∴     -7 (mod 31) 

∴                  I                   

II Method:                     ⇒ -                

-5x = 4 + 31k 

X =  
       

 
= -6k – 1 - 

   

 
  

Setting 
    

 
  , k = 5t + 1. 

Taking t = 0, we get k = 1 and x = -7 

∴     -                                 

Example 4:                             

36 x = -                           

                ⎸ -12). Therefore it has 3 solutions, the reduced 

               I                                                           



-4               -4 (mod 5). 2 is the g.c.d. of 2 and -                   ∴   

  -                          

Thus 3 is a root of (2) 

The first three values of x satisfying (2) are 3, 3 + 1 x 5 = 8 and 3 + 2 x 5 

= 13. Thus the solutions of (1) are 3 + 15t, 8 + 15t and 13 + 15t  where t 

                                                                        

13 (mod 15). 

Example 5. Find all integer x, -                                          

  -12 (mod 15). From the example, 4. The solutions of the congruence 

are                                                     

The integers congruent to 3 (mod 15) and lying between -10 and 40 are 

3, 18, 33. The integers between – 10 and 40 and congruent to 8 (mod 15) 

and 13 (mod 15) are -7, 8, 23, 38 and -2, 13, 28 respectively. 

Thus the required integers are -7, -2, 3, 8, 13, 18, 23, 28, 33 and 38. 

 

Check Your Progress 



1. Find b in order that the following linear congruences may have 

solutions. 

(a)                                      

(b)      b (mod 15)                       

(c)            35)                        

2. Find all integers between -40 and 30 which satisfy the following 

congruences. 

(i)                                         

(ii)       -12(mod 8)                        

3. Solve the following:- 

(i)                                            

(ii)       15 (mod 40)                            

(iii)                                       – 1 (mod 35) 

(iv)                                            

(v)                                            

 

 



2.9 Simultaneous Congruences 

We shall describe a method of solving simultaneous congruence of the 

form xi = ai                        k  I                               

prove a theorem for a set of two congruences: it can be generalised 

easily. 

Theorem 2.12 The Chinese Remainder theorem 

If (m1, m2) = 1, then the congruenc            1 (mod m1               2 

(mod m2) have a common solution which is unique modulo m1m2. 

Proof: The solution of (1) is a1 + k1m1, where k1 is an integer. Suppose 

this is a common solution of (1) and (2).   ∴  1 + k1m1    2 (mod m2   ∴ 

k1m1     2 – a1)(mod m2). Since (m1, m2) = 1, k1 has a value which 

satisfies the congruence and it will be of the form b + k2m2 where b and 

k2 are integers. Therefore the common solution is 

a + k1m1 = a1 + (b + k2m2)m1 = (a1 + bm1) + k2m1m2 

∴  1 + k1m1     1 + bm1)(mod m1m2) 



Thus the common solution of (1) and (2) is an integer congruent to a1 + 

bm1 (mod m1m2) 

                        q                                α     β         

                       α    1 (mod m1      β    1 (mod m1  ∴ α   β 

(mod m1), Thus m1/(α – β                                    2   α – β  

Since (m1, m2) = 1, m1m2 ⎸  α – β           α   β       1m2). Thus the 

solution is unique. 

The following is the formal generalisation of the above theorem. :if m1, 

m2      r                                                              

a1 (mod m1       2 (mod m2         r (mod m) have a common solution 

which is unique modulo (m1m2    r) 

Example I                                                     5) and 

                    

Let the solution, 3 + 5k of (i) be a solution of (ii) 

          k              

        k             



            k         k                  k        k’       k’   Z. Hence 

                                          ‘    k               k’         

  k’ 

i.e.,                 

Example 2. Find two least positive integers which give remainders 2, 3, 2 

when divided by 3, 5, 7 respectively. (An old Chinese problem. Sun tsu – 

first Century). 

                          q                                                 

                                   

Thus x is a common solution of (i), (ii) and (iii). 

L            k                                           k              

Solving this we get k1                   k1 = 2 + k2 5. 

Hence x = 2 + 3(2 + 5k2) = 8 + 15k3 

Substituting in (iii), 8 + 15k2 = 2 (mod 7). 

Solving for k2, we get k2 = 1 (mod 7) k2 = 1 + 7k3. 



Therefore X = 8 + 15(1 + 7k2) = 23 + 105k2 

  x = 23 (mod 105) 

The required two smallest positive integers are 23 and 23 + 105 = 128 

Example: Let   and   be positive integers. Show that there exists a sequence 

of   consecutive composite integers such that each is divisible by at least   

distinct prime numbers. Using this result, find the smallest sequence of four 

consecutive integers divisible by 3,5,7 and 11 respectvely. 

Solution: Let    stand for the r-th prime number. for each integer       

   let             .                          .    and consider the system 

of congruences 

 
 
 
 

 
 
 

                 

                 
 
 
 
 
 

                       

  

Since the   
   are pairwise coprime, the Chinese Remainder theorem 

guarantees a solution     



Then,                        Therefore,                   

is a sequence of   consecutive intgers which are divisible by at least   prime 

numbers. 

For the second part                we must solve 

 

             
              
               
                

  

In this case,                and therefore         The four numbers 

are therefore 789,790,791 and 792. 

Check Your Progress 

1. Solve the following simultaneous congruences. 

(a)                              

(b)                               

(c)                                             

2. Find three least positive integers which leave the remainders 2, 3, 4 

when divided by 3, 4, 5 respectively. 



3. Find a number having remainders 2, 3, 4, 5 when divided by 3, 4, 5, 

6 respectively (Brahmaguptha – 7th century) 

4. A father has 7 children of whom 4 were sons. When he divided gold 

coins that he has equally among his children 5 were left over and 

when divided among his daughters 1 was left over. Find the 

smallest number of coins he had. 

2.10 Classical Theorem 

We shall now prove some important classical theorems on congruences. 

Fermat (1601 - 65), the founder of modern number theory discovered a 

                       k        F     ’           I        

indispensable use in many branches of mathematics the first proof was 

given by Leibnitz. 

Theorem 2    F     ’           If p is a prime number and p  a then ap-1 

= 1 (mod p). 

                                                     “I               

number and a is any integer, ap            ”  



Proof:- Case (I) Let a be a positive integer 1p = 1 (mod p). Hence the 

theorem is true when a = 1. 

Assume the theorem to be true when a = r, i.e. rp = r (mod p) 

Now (r + 1)p = rp + pC1rp-1        pCp-1r + 1p 

pCi                            – 1) because p is a prime 

∴         p    p + 1p (mod p) 

Bur, by the assumption it follows that (rp + 1p                  

Hence (r + 1)p = r + 1 (mod p). Thus the theorem is true when a = r + 1. 

Therefore by induction, the theorem holds for all positive integers a. 

Case 2 The theorem is clearly true when a = 0 

Case 3 Let a be a negative integer and a = -b where b is a positive integer. 

Then by Case (i) bp = b (mod p) 

∴    -bp = -b (mod p) 

∴   -b)p = -b(mod p) when p is an odd prime. 



When p = 2, b2 + b = (-b)2 + b = -b(-b – 1) = 0 (mod 2) 

∴                                  

Thus ap = a (mod p) for all a and for any primes p. 

Now if p   a, p being a prime (a, p) = 1 

By cancellation law ap-1 = 1 (mod p) 

Now we state and prove a lemma which will be used in the proof of a 

                                    F     ’                          

case. 

Lemma: if (a1, m) = 1 and (a2, m) = 1 then (a1a2, m) = 1. 

For, if (a1a2, m) = gthen g        m. 

I                                                   ⎸        ⎸ 1a2   

∴   ⎸ 1a2 

Since p is a prime number , p           a2 

Therefore (a1            2                                         

hypothesis, 



∴     1, g = 1 

Theorem 2    E    ’           If (a, m) = 1 then      
  (mod m), 

Proof:- Let S = {r1, r1            }, where the elements of S are 

positive integers each less than and prime to m. 

{S is called the reduced system of least positive residues (mod m)} 

1.                   ’     1, r1            }, 

                                      F                     r     t (mod 

m). then a being prime to m, rs    t (mod m). But rs    t and 0 < rs, rt < m 

∴  s    t (mod m). This contradicts rs    t         ∴   t     s (mod m). 

II  E                     is prime to m and a  is prime to m. Hence, by the 

Leema each ari is prime to m. 

The remainder Ai that is obtained when ari is divided by m, is also prime 

      E        V  I            ∴ Ai   S. 

Now, the elements of S are incongruent (mod m) and all the remainders 

are elements of S. Besides they are all distinct. 



Hence ar1   A1 (mod m) 

 ar2   A2(mod m) 

             

 a              (mod m) 

 and A1A2         = r1r2          

Multiplying these congruences 

 ar1.ar2            = A1.A2         (mod m) 

    = r1.r2         (mod m) 

                                  , by the cancellation law      = mod 

(m) 

Corollary: F     ’          

If p is a prime number and p   a then ap-1 = 1 (mod p) 

Proof:- p is a prime number and p      ∴             H        E    ’  

theorem ap(m)= 1 (mod p). But      = p –   ∴  p-1 = 1 (mod p) 



Theorem 2.15 L       ’  F               

L                         I                                            exists 

a polynomial g(x) such that f(x) = (x – a)g(x) (mod m) and conversely. 

Proof:                                                                  

m). By the division of f(x) by (x – a), f(x) = (x – a)ge(x) + r. 

Suppose that the coefficients of ge(x) are replaced by their least non 

negative residues (mod m) and the polynomial so obtained is denoted by 

g(x). Then g(x) = ge(x) (mod m) 

∴           – a)g(x) + r(mod m). 

Substituting a or any integer congruent to a (mod m) for x. 

          – a)g(a) + r(mod m). 

                                      

          – a)g(x) (mod m) 

                      (x –                                                      



For f(x) = (x –                 ⇒                  ⇒                     

             

Definition:                                                               

the polynomial f(x) is of degree n. 

Theorem 2.16.                                                            

a0 ’    1an-1 + an, a0                                                    

Proof:- (1) When the degree of f(x) is one, the congruence will be a linear 

congruence, since a0                                    0, p) = 1. By 

theorem 5.8 it has one solution. Thus the theorem is true when n = 1. 

(2) Assume that every congruence of degree r has at most r roots. Lets a 

be a root of the (r + 1)th degree congruence, f(x) = 0 (mod p), where 

f(x) = a0xr+1 + a1xr        r+1                                       – a) 

g(x) (mod p). Where g(x) is of degree r. B                        

0(mod p) has at most r roots. Let them be c1, c2        r                

r. 

I                                          –                      H       

being a prime number either c –                                         



either c                                        1, c2       cs (mod p). 

                                                                       

                                 

The theorem is true for a congruence of degree r + 1. Hence by the first 

principle of induction of theorem follows. 

Theorem 2.17. If p is a prime and r is any positive integer; less than (p – 

                                                             – 1) taken r at 

a time, is denoted ar, then ar              

Proof:-                            F     ’                          – 1) are 

the roots of xp-1                                     – 1) are relatively prime 

to p. By the theorem 5.14, it can not have any more roots. 

Hence xp-1 –        – 1)(x –              – p + 1) (mod p) is an 

identity. That is, for all integers x, this is a true congruence. Since xp-1     

(mod p). 

(x – 1)(x –              –                    

∴  p-1 – a1xp-2 + a2xp-3 -           - ap-2x + (p –                 



Where ar, denoted the sum of the                              – 1) 

taken r at a time. 

Since xp-1              

– a1xp-2 + a2xp-3 -                 –                    

Since this is an identity, coefficients of various powers of x are congruent 

0 (mod p). 

∴  r                         p – 1  

Theorem 2    W     ’          

An integer p is a prime number if and only if (p –                      

Proof:- Suppose that p is a prime number. 

Then we have the identity 

– a1xp-2 + a2xp-3 -                 –                    

(Refer to the identity A in theorem 5.15) 

Putting x = 0, we get (p –                     



II. Suppose that (p –                     

Then p / (p – 1)! + 1. If p is a composite number, it has a factor d, 1 < d < 

p. d divides both p! and (p –                                          

∴                              B              H                  

number. 

This theorem stated by John Wilson (1741 – 93), was proved first by 

Lagrange (1736 – 1813) 

2.9  Summary 

We conclude with summarizing what we have covered in this unit.  

(1) We have defined Congruence, linear Congruence and algorithm with 

examples. 

(2) We have discussed Arithmetic of Congruence’s. 

(3) We have defined Residue Classes with examples and discussed its Wilson 

theorem. 

(4) Statement and Proved in Chinese Remainder Theorem  



2.10  Terminal Questions 

 I. Verify the following: 

(a) 56 = 1 (mod 7) 

(7, 5) = 1 and             ∴ B  E    ’           6             

52 = 25 = 4 (mod 7) 

56 = (4)3             

(b) 3                         22                      46            

2. Find the remainders obtained on division of the following: 

(a) 223 by 47  (b) 350 by 101  (c) 2460 by 47 

(d) 21000 by 17 (e) 21000 by 13  (f) 1597654 by 23 

(b) 34        -20 (mod 101) 

         38     2   -4 (mod 101) 

        348    -4)6    6 (mod 101) 

Now 44                      ∴  6                                     

∴  50    48 x 32             100 (mod 802). 



∴                                                               

(f) 7654 = 247 x 22 + 20 

               ∴ B  E    ’              22               

∴     22)247   1247              

      -2 (mod 23) 

(159)20    -2)20     5)4    4       2     2              

∴     7654 = (15922)247 x (15922                       

∴                     

3. If p is an odd prime and (a, p) = 1, prove that 

 
   

                

          
   

      
   

                         ] 

4. U   F     ’                                                  

                                                             

5. If p is a prime, show that [1p-1 + 2p-1               – 1)p-1 + 1 is a 

multiple of p. 



6. If a and b are prime to n-            ⎸ n-1 – bn-1. 

7. If a and b are prime numbers show that ab-1 + ba-1 –                

Ab-1                  a-1             

ab-1 = 1 + kb and ba-1       k’         k  k’   1. 

ab-1 + ba-1       k    k’    b-1ba-1       k    k’    kk’    

∴  b-1 + ba-1 + ab(1 – kk’    b-2ba-2) 

∴  b-1 + ba-1              

8. Prove that n5 – n is divisible by 30 where n is any integer. 

30 = 5.3.2 and 5, 3, 2 are prime 

For any integer n,                    ∴   ⎸ 5 – n . 

            ⎸ 3 –         ⎸ 2 – n 

n5 – n = n(n – 1)(n + 1)(n2 + 1). Thus n3 – n, n2 – n are the divisors 

of n5 – n 

∴                   –    ∴    ⎸ 5 – n. 

9. P                                                      ⎸ 6 – 1. 

10. P                                        ⎸ 6 – n. 

11. Show that the 4th power of any integer is of the form 5m or 5m + 1. 

For any integer a, 5 being a prime a5              



∴   ⎸   4 –        ⎸       ⎸ 4 – 1. 

I    ⎸                                     4. 

If 5 ⎸a4 –      ⎸ 2 –        ⎸ 2 + 1. 

a2 = 5k + 1 or 5k –    ∴  4 = 5(5k2 ± 2k) + 1. 

Thus a4 is of the form 5m + 1 or 5m. 

12. Show that the 6th and 12th powers of any integer are of the forms 

7m or 7m + 1 and 13m or 13m + 1 respectively  

13. Show that 9th power of any integer is of the form 19m or 19m ± 

1. [a19                      9-1)(a9+1)] 

14. Prove that the 8th power of any integer is of the form 17m or  

17m ± 1. 

15. Show that 5th power of any integer n has the same right hand 

digit as n. 

              ⎸ 5 – n. Then n5 – n = 10k (k   Z). If a0 is the right 

hand digit in n then n = 10m + a0 where m  Z. n5 = 10(k + m) + a0 

] 

16. Prove that 712! + 1 is divisible by 719. 

                             W     ’          



718! + 1 = 0 (mod 719). 

∴                                      1 

   -6)(-5)(-4)(-3)(-2)(-1)(712)! + 1 

                                          

17. If p is a prime number, show that 2(p – 3)! + 1 is divisible by p 

[Prove (p – 1)! – 2 x (p –     I                          W     ’  

theorem] 

18. Prove that (28)! – 666 is divisible by 899. 

Now we have 899 = 29.31 

      -                     -1 (mod 29). 

∴                            ⎸     – 666) 

                            -1 (mod 31) 

∴                    -1)(-                    – 30 (mod 31). 

Since (2, 31).  1, 28! –             31). 

∴     –                      ⎸    – 666. 

∴               ⎸    – 666 

19. P                                                                 

20. If p is a prime of the form 4n + 1 obtain the solution of x2   -1 (mod p) 



 A     W     ’                   -(p – r) (mod p) to pair the 

factors (p – 1)!] 

21. Find all the solutions of x12               

22. I                                                                

that (ax + b, m) = 1. 

23. Show that every square is congruent to 0 or 1 (mod 8). 

24. If a is odd, show that    
  1 (mod 2n+2). [use Induction] 



UNIT-3 Euler’s Function & Application 

 

Structure 

3.1  Introduction 

          3.2       Objectives 

3.3  Euler’s Function 

3.4       Applications of Euler’s Function 

3.5  Properties of the Phi function 

          3.6       Multiplicative Function 

3.7       Multiplicative property of Euler’s  -function 

3.8  Summary 

3.9  Terminal Questions 

 

 

 



 

3.1 Introduction:  

 

This is unit in number theory of Leonhard Euler introduced the function in 

1763. It is written using the Greek letter phi as  (n). It is number of 

integers   in the range       for which the greatest common divisor 

gcd      is equal to 1. The integers   of this form are sometimes referred to 

as totatives of    

In 1879, J.J.Sylester coined the term totient for this function, so it is also 

referred to as Euler’s totient function, the Euler totient or Euler’s totient. 

Jordan’s totient is a generalization of Euler’s. The cototient of   is defined as 

   (n). It counts the number of positive integers less than or equal to   that 

have at least one prime factor in common with  . 

3.2 Objectives. 

After reading this unit the learner should be able to understand about: 

 Euler’s Function 



 Application of Euler’s Function 

 Properties of the Phi function 

 Statement and Prove Gauss Theorem 

 Multiplicative Function 

 Properties of the Multiplicative Function 

3.3 Totient Function or Euler’s Function (  - Function) 

 

Definition:  

 Euler’s function  (n) for all positive integers n is defined by  (n) = 1 for n = 

1 and for n > 1,  (n) = number of positive integers less than n and co-prime 

to n. 

 (n), where n = 1   than  (1)= 1 

There is three standard method: 

1. If    is prime: Let   is a prime number, then           

Example:1  (2) means number of positive integers <2, that are co-prime to 

2. 



 (2) = 1 

Example:2  (3) means number of positive integers < 3, that are co-prime to 

3. Clearly, 1 and 2 are co-prime to 3. 

 (3) = 2 

Example:3  (8) means number of positive integers < 8, that are co-prime to 

8. Clearly, 1, 3, 5, 7 are co-prime to 8 

 (8) = 4 

Similarly we have  (4) = 2,  (6) = 2 and  (7) = 6 etc. 

2. If    is product of distinct prime numbers: Let          

                     

                     

                        

Example:4 Find the value  (10). 

Solution: Let     ,then  (10)        

           



 Since                     

        

Example:5 Find the value  (15). 

Solution: Let     ,then  (15)        

           

 Since                       

        

Example:6 Find the value  (42). 

Solution: Let     ,then  (42)          

                

 Since                        

            

         

3. If    is a number of prime-power: Let            



                   

Example:7 Find the value  (8). 

Solution: Let    ,then  (8)       

             

 Since            

       

 

Example:8 Find the value  (49). 

Solution: Let     ,then  (49)       

             

 Since              

         

 

3.4    Applications of Euler phi Function     : 



 

1.Number of Generators in Cyclic group of order    are     . 

Example :1 Let G be a cyclic group of order 18. find the generators. 

 Solution: We know that     The number of generators in G are      . 

              

                  

                 

                   

        

2.Number of Elements of order   in Cyclic group are     . 

Example :1 Let G be a cyclic group of order 100, then number of elements 

of order 20 are 

Solution: We have      Then               

           

                 



                  

3.Order of Group of units i.e., order of               

Example: Order of Group        is 

Solution: We have                 

            

                

                     

          

4. Number of Cyclic subgroups of order   in any  

group 
                             

    
 

 

Example: Number of cyclic subgroups of order 2 in Klien’s 4 group 

Solution: We have number of elements of order     

group 
                             

    
 



 

 
 

    
 

 

     
 

 
 

   
   

 

3.5    Multiplicative Function: 

 

A function f(x) defined on the set of positive integers is said to be a 

multiplicative function if f(ab) = f(a).f(b) for all co-prime positive integers a 

and b. 

Example:1- Let f(x) = x
3
                  (a, b) = 1 

                  f(ab) = (ab)
3
 = a

3
b

3
 = f(a).f(b) 

Some theorems on  -function:- 

Theorem 1: If p is a prime and k be any positive integer, then 

 (p
k
) = p

k
 – p

k-1
 = p

k-1
(p – 1) = p

k
(1-1/p) 

Proof:- Let S = {1, 2, 3, ………. p
k
} 



The set S has pk elements. The numbers which are divisible by p in set S are 

p, 2p, 3p, …….p
k-1

.p. Then are p
k-1

 in all and these numbers are not relatively 

prime to p
k
.  

Now,  (pk) =  number of integers in S which are relatively prime to p
k
. 

P
k
 – p

k-1
 = p

k
(1-1/p) 

Example:-  (9)     p = 3, k = 2 

 (9) =  (3
2
) 

 (9) = p
k
(1-1/p) 

                          = 3
2
(1-1/3) 

                          = 9(2/3) 

 (9) = 6 

Note:  (3
2
) = 3

2
 – 3 = 9 – 3 = 6 

Here 1, 2, 4, 5, 7, 8 are co-prime to 3
2
. Where 3, 6, 9 (three in number) are 

not co-prime to 3
2
. 

 



 

Theorem:2- Euler’s function   is a multiplicative function or if m and n 

are relatively prime, then  (mn) =  (m). (n) 

Proof:- for m = 1 or n = 1, the result in obviously true, as  (1)= 1 

∵   (mn) =  (m)     

Let m = 1 then  (n) =  (1)                                    ∵ (1) = 1 

∴  (n) =  (n)  

Again let n = 1 

 (m) =  (m). (1) 

 (m) =  (m) 

For m  >1 and n > 1 

L                                         M                          

as follows 

1  2                         

m + 1            m +                                 



                                                      

(n-1)m + 1       (n-1)(m+2)       (n-              

Here  (mn) = number of entries that are relatively prime to mn. 

                      = number of integers that are relatively prime to both m and n 

∵        g.c.d.(a, b, c) = 1 if g.c.d.(a, b) = 1 and g.c.d(a, c) = 1 

Consider the entries in the rth column 

                  -                 

The entries of (i) form an A.P. of n terms with common difference m 

relatively prime to n. Also, each term of (i) is relatively prime to m if (r, m) 

=1 

But (r, m) = 1 for  (m) values of r. 

Thus, there are exactly  (m) columns in which every integer is relatively 

prime to m. Now, each column in the above array contains exactly  (n) 

integers relatively prime to n. 

∴ There are in all  (m) (n) integers less than mn and relatively prime to 

both m and n. 



Hence  (mn) =  (m)  (n) 

Cor. If n1, n2, n3                                             (n1, n2, n3, 

  r) =  (n1). (n2       (nr) 

Theorem:3- For any positive integer n > 1,  (n) =     
 

 
  or 

                If the integer n > 1 has the prime factorization n = 

  
     

          
   

Then  (n) =    
     

    
    

     
    

          
     

    
  

                 =     
 

  
    

 

  
            

 

  
  

Proof:- Let n =   
     

          
   be the standard form of n 

Now, since   
     

          
   = 1 

i.e. all pi’s are distinct primes. 

∴ (n)  =    
     

     
          

    

            =     
        

     
          

    

∵ (mn) =  (m) . (n)  for (m, n) = 1 



=     
        

        
          

    

∵  
     

     
          

   = 1 

Proceeding like this, we get 

 (n) =      
        

           
    

=   
     

 

  
    

     
 

  
        

     
 

  
  

Using theorem 1 

   
     

     
          

     
 

  

     
 

  

       
 

  

  

=      
 

  
  

    

Or  (n) =      
 

 
     

Example:1- Evaluate  (600) 

Solution:  ∵ n = 600 

                    n = 2
3
.3

1
.5

2
 

k1 = 3, k2 = 1, k3 = 2 



p1 = 2, p2 = 3, p3 = 5 

∵ (n) =  (2
3
.3

1
.5

2
) 

∵ (p
k
) =      

 

 
  

      
 

 
       

 

 
       

 

 
  

          
 

 
  

 

 
  

 

 
  

 =     
 

 
 

 

 
 

 

 
 

 (600) = 160 Ans. 

Example:2 Find the value  (200). 

Solution: Since             

∴  (200) =             
 

 
     

 

 
     

 

 
     

 

 
     

 

 
  

            
 

 
 

 

 
 

 

 
 

 

 
  

          



Example:3 Find the value  (100). 

Solution: Since           

∴  (100) =          
 

 
     

 

 
  

            
 

 
 

 

 
  

          

 

Theorem 4:- For n > 2,  (n) is an even integer 

Proof:- Case I – Let n = 2k, k > 1 

i.e. n is power of 2 only 

Then  (n) =  (2
k
) = 2

k   
 

 
  

=    
 

 
 =      

Since k  > 1. Therefore      is even. 

 (n) =      an even integer 

Thus  (n) is even if n > 2. 



Case II:- When n is not a power of 2, then n is divisible by an odd prime p 

(say) 

Let n = p
k
m, where k ≥ and (p

k
, m) = 1 

∴ (n) =  (p
k
m) =  (p

k
) (m) 

∵   is a multiplicative function 

Or  (n) =      
 

 
      = even 

Hence      is even when n > 2. 

Theorem 5:- Let m and n be positive integers. If every prime divisor of n 

is a prime divisor of m, then 

             

Also, in particular,  (m
2
) = m (m) 

Proof: Let us assume that 

     
    

           
   

And m    
    

           
     

    
           

   

Where pi’s qi’s are all distinct primes and  



ai ≥ 1, bi ≥ 1, ci ≥ 1 for all i. 

Therefore  

          
       

              
        

    
           

   

=      
 

  
    

 

  
        

 

  
    

 

  
    

 

  
        

 

  
  

=       
 

  
    

 

  
        

 

  
    

 

  
    

 

  
        

 

  
   

= n.  (m) ……………… (1) 

Put n = m is equation .(1) 

We get      = m     

Example:1- Find      for n = 68 

Solution:- We have n = 68 = 2
2
.17 =   

     
   

Here p1 = 2, p2 = 17, k1 = 2, k2 = 1 

Using          
 

  
    

 

  
        

 

  
  we have 

           
 

 
    

 

  
  



     
 

 
  

  

  
     

∴         

Example:2-       

Solution:- we have n = 462 = 2
1
.2

1
.7

1
.11

1
 =   

     
    

     
   

Here p1 = 2, p2 = 3, p3 = 7, p4 = 11 

k1 = k2 = k3 = k4 = 1 

Example:3- Show that  (15
k
) =  (15) x 15

k-1
, where k is a positive integer 

Solution:- We have      =        

⇒            

⇒  (3 – 3
0
)(5 – 5

0
)      ∵     = p – 1 where p is prime 

∵   (p
k
) = p

k
 – p

k-1
 for any prime p. where k is a positive integer 

⇒  (3 – 1)(5 – 1) 

  = 2.4 = 8 

∴   (15) = 8 ………………… (1) 



Now  (15k) =  (3k.5k) =  (3k). (5k) 

  = (3k – 3k-1)(5k – 5k-1) 

  = 3k-1(3 – 1).5k-1(5 - 1) 

  = 3k-1(2).5k-1(4) 

  = 8.(3x5)k-1 

  = 8.15k-1         using (1) we get 

 (15
k
) =  (15) x 15

k-1 

Example:4- Show that 2
4⎸        

Solution:- we have 1155 = 3.5.7.11 

                                         

We know that      is even if n > 2 

∴     ,     ,      ,       all are even. 

⇒ 2⎸    .2⎸    .2⎸    . 2⎸      

⇒ 24⎸    ,     ,      ,       



⇒ 24⎸        

Example:5- Show that                    for n = 5186. 

Solution:- We have n = 5156 = 2.2593 

               

Using          
 

  
    

 

  
        

 

  
  we have 

               
 

 
    

 

    
  

     = 5186  
 

 
  

    

    
 = 2592 ……………… (1) 

Now n + 1 = 5187 = 3.7.13.19 

∴                

      = 5187   
 

 
    

 

 
    

 

  
    

 

  
  

      = 5187  
 

 
  

 

 
  

  

  
  

  

  
       …………….. (2) 

Now                

    = 5188   
 

 
    

 

    
  



     = 5188 
 

 
  

    

    
                ………………… (3) 

From (1), (2), (3) we have 

                    for n = 5186 

We have              

  =           

  =              (∵  is multiplicative) 

  = (21 – 20).(25931 = 25930) 

∴               for any prime p. where k is a positive integer. 

  = (2 – 1).(2593 – 1) = 2592      ………(1) 

       =  (5187) 

      =  (3.7.13.19) 

      =  (3). (7).  (13). (19) 

      = (3 – 1)(7 – 1)(13 – 1)(19 – 1) = 2.6.12.18 

                          



       =  (5188) 

 =  (2
2
.1297) 

 =  (2
2
). (1297) 

 = (22 – 2).(1297 – 1) 

 = 2.1296 

                       

From (1), (2) and (3) 

                   for n = 5186 

Example:6- Prove that             is satisfied by n = 2(2p –1) 

whenever p and 2p – 1 are both odd prime. 

Solution:- Let p and 2p – 1 be odd primes. Then                  

    =             ∵  is multiplicative as (2, 2p - 1) = 

1 

    = (2 – 1).(2p – 1 – 1)  ∵ for any prime p,  (p) = 1 

    = 2(p – 1) ………………. (1) 



Also        =  [2(2p – 1) + 2] 

  =  (4p) =  (2
2
.p) 

  =  (2
2
).            ∵   2, p) = 1, so   is multiplication] 

  = (22 – 2).(p –        ∵  (pk) = pk – pk-1 for any prime p 

       Where k is a prime 

  = 2(p –                

The from (1) and (2), we have             

Example:7- Prove that      
 

 
  if n = 2k                  k     

Solution:- Let      
 

 
 

Since      is an integer for all positive integers n, therefore 
 

 
 is an 

integer. 

⇒ n is an even integer   ∵      
 

 
] 

Let n = 2k          k                  

Now,        
 

 
 



⇒  (2k.m) = 
    

 
 

⇒  (2k). (m) = 2k-1.m 

⇒ (2k – 2k-1). (m) = 2k-1.m 

⇒ 2k-1(2 – 1) (m) = 2k-1.m 

 

⇒  (m) = m  if m = 1 

  (1) = 1  n = 2k.m = 2k 

(2) n = 2k,    k ≥ 1 

  (n)= 
 

 
 

  (n)= (2k) = 2k – 2k-1 

           = 2k-1(2 – 1) = 2k-1 = 
  

 
 = 

 

 
 hence prove 

3.6   Properties of the Phi function:- 

1. If p is prime then prove that  (pk) = pk – pk-1 

2. If a and b are co-prime to each other, prove that  (a, b) =  (a), (b) 



3. Prove that          
 

  
    

 

  
        

 

  
  

4. Prove that  (m
2
) = m  (m), for every positive m. 

5. If m > 1. Prove that the sum of positive integers     . Which are less 

than m and relatively prime to m is m[ (m)/2] 

6. If p is prime then  (p) = p – 1  

 

Theorem-6: Gauss Theorem:- 

 

For each +ve integer n.           

Where sum is carried over all +ve divisors of n. 

Proof:- Let d to be +ve divisor of n and sd = {l/gcd(l, n);1 ≤ l ≤ n} 

We know that gcd.(l, n) = d if gcd (l/d, n/d) = 1 

Thus the number of integers in the set sd is equal to number of +ve integers 

less than n/d which are co-prime to n/d i.e. equal to   
 

 
   {by def.     } 

As each integer in the set 

T = {1, 2, 3, ……..n} lies in exactly one class sd 



∴n =    
 

 
       =          

(∵ n/d = e ⇒ n= de ⇒ e/n) 

 =           hence            

Example:1- for n = 10 the +ve divisor are 1, 2, 5, 10 

 ∴ S1 = {l/gcd(l, 10) = 1; 1 ≤ l ≤ 10} 

          = {1, 3, 7, 9} 

 S2 = {l/gcd(l, 10) = 2; 1 ≤ l ≤ 10} = {2, 4, 6, 8} 

 S5 = {l/gcd(l, 10) = 5; 1 ≤ l ≤ 10} = {5} 

 S10 = {l/gcd(l, 10) = 10; 1 ≤ l ≤ 10} = {10} 

Here S1 contains 4 elts i.e.  (10) elts (1) = 4,    (5) = 4,    (2) = 1,  (10) = 

1 

∴                               

⇒ 4 + 4 + 1 + 1 = 10 = n 

Cor:- for any positive integer n 

    
 

 
       



Proof:- we have ∴           

As d/n 

∴    n = de,   e   z 

 
 

 
   and e/n 

Thus n =                   

 =    
 

 
       

3.7    Summary : 

 

We conclude with summarizing what we have covered in this unit.  

Euler’s Function we shall introduce the concept of complete Residue 

System (mod m) and Residue system (mod m) which have important 

application in the field of number theory. 

1 We have defined the Euler’s Function with Example. 

2 We have discussed the Euler’s Function Properties and Proved. 

3 We have defined the Multiplication Function and Properties of 

Euler’s Function with Example. 



Terminal  Questions: 

 

1. Find the value of              

2. Find the value of               

3. Let G be a cyclic Group of order 50, find the number of elements of 

order 10. 

4. F               ‘   prove that            

5. Evaluate      for               

6. If            and      prove that     and   is odd. 

7. Find the value  (360). 

8. Show that                   ,where k is positive integer. 

9. Show that                               

10 .Show that      
 

 
         for some integer      
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Block- 2: Gauss theorem  & Applications   
 

Introduction 

Number theory is a branch of pure mathematics devoted to the study of the set of positive 

whole numbers which are usually called the set of natural numbers. This provides an 

introduction to the important basic topics of number theory: Euler’s function, congruence, 

module and arithmetic functions, gauss lemma, quadratic residue and Euler’s criterion. 

Originally an abstract mathematical concept from the branch of number theory known 

as modular arithmetic, quadratic residues are now used in applications ranging 

from acoustical engineering to cryptography and the factoring of large numbers. 

Objectives: 

 To understand the difference between the quadratic residues and non residues. 

 To verify the given number is quadratic residue or non residue by using Euler’s criterion. 

 To understand the Legendre symbols and its basic properties. 

 To understand the quadratic reciprocity law. 

 To differentiate the Jacobi symbol with Legendre ones. 

 To understand the definition of Arithmetic functions and multiplicative functions. 

 To understand the mobius function and mobius inversion formula. 

 Use of Gauss lemma and gauss reciprocity theorem.  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Acoustical_engineering
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Integer_factorization


Unit-4:         Quadratic Residue of Number Theory 

Structure 

4.1  Introduction 

4.2  Objectives 

4.3  Group of units of Zn 

4.4    Primitive roots modulo n 

4.5   Quadratic Residues and Non-Residues 

4.6   Legendre Symbol 

4.7    Properties of Legendre symbol 

4.8   Wilson’s Theorem 

4.9   Euler’s Criterion 

4.10 Summary  

4.11   Terminal Questions 

 

 



 

4.1   Introduction 

This is unit of important in number theory. The prime numbers, their properties, 

and their relation to the composite numbers have fascinated mathematicians for 

thousands of years. Yet it was not until the 1700s that the first really deep result 

about prime numbers was discovered, by Leonhard Euler. The Quadratic 

Reciprocity Theorem was proved first by Gauss, in the early 1800s, and reproved 

many times thereafter (at least eight times by Gauss). We conclude our brief 

study of number theory with a beautiful proof due to the brilliant young 

mathematician Gotthard Eisenstein, who died tragically young, at 29, of 

tuberculosis. The proof is similar to one by Gauss, but it replaces a complicated 

lemma by an ingenious geometrical argument. This is a good place to leave 

number theory, as it hints at the wonderful but difficult and subtle areas of the 

subject; we hope it makes you want to explore number theory further. See the 

bibliography for some starting points. we discuss the structure of the groups Zn. 

Suppose p is an odd prime and p does not divide b. Then b is a quadratic 

residue (mod p) if b ≡ c
2
(mod p) for some c, and otherwise b is a quadratic 



nonresidue. In other words, a quadratic residue is a "perfect square'' in the world 

of modular arithmetic. 

It is easy to see that x
2 

≡ (p−x)
2 

≡ (−x)
2
 for any x, so at most half of the elements 

of {1,2,3,…,p−1} are quadratic residues modulo p. It is also not hard to see 

that x
2
≡ y

2
 implies that y ≡ ±x, so in fact exactly half of the elements 

of {1,2,3,…,p−1} are quadratic residues. 

 4.2 Objectives 

After reading this unit learner should be able to understand about: 

 To understand the difference between the quadratic residues and non 

residues. 

 To understand the definition of Group of units of  

Zn = {0, 1, 2, ……, n-1} 

 To verify the given number is quadratic residue or non residue by using 

Euler’s criterion. 

 To understand the Legendre symbols and its basic properties. 

 To understand the quadratic reciprocity law. 



 To differentiate the Jacobi symbol with Legendre ones. 

4.3 Group of units of Zn 

Let n  N. we write Un =     ⎸              . So, Un is set of all 

numbers from 1 to n that are relatively prime to n. 

For example, U8 = {1, 3, 5, 7} 

U12 = {1, 5, 7, 11}, Up = (1, 2, 3, …… p-1). 

Why are we interested in these numbers? 

Zn⎸{0} is not a group with respect to multiplication. 

As we know Zn = {0, 1, 2, ……n-1} forms a group with respect to addition modulo n. 

But, in general Zn
* = Zn⎸{0} does not form a group with respect to multiplication 

modulo n. 

For example  

Z6 = {0, 1, 2, 3, 4, 5} is a group with respect to addition modulo 6, but Z6
* = Z6⎸{0} = 

{1, 2, 3, 4, 5} is not a group with respect to multiplication modulo 6 as 2 * 3 = 6 ≡ 0 

(mod 6). Also, the elements 2, 3 and 4 do not have multiplicative inverses modulo 



6, or equivalently. Exe is congruent to 1 mod 6 does not have solution whenever a 

is equal to 2 or 3 or 4 so that is why you are looking for Un. 

Un = {x N⎸1≤x≤n, (x, n) = 1} a group with respect to 

Next obvious equation is “Un = {x N⎸1≤x≤n, (x, n) = 1} a group with respect to 

multiplication modulo n.” (Answer yes verify it) 

The next question is “Is Un = {x N⎸1≤x≤n, (x, n) = 1} cycle group     ? 

Solution: No, for example U8 is not cyclic. In general, Un is cyclic whenever n = 2, 

4, pk, 2pk k≥1. Where p is an odd prime. 

For n = 2, 4, pk, 2pk k≥1. The generators of Un are called primitive roots modulo n. 

Example:1- for n = 5, U5 = {1, 2, 3, 4} and 2, 3 are primitive roots modulo 5.  

Solution: As U5 = {20, 21 ≡ 2(mod 5), 22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5).} so we are 

getting all the elements in U5 so 2 in one of the generators so 2 is a primitive root 

modulo 5. 

Similarly we can verify that 3 is a primitive root modulo 5 so that me 2 and 3 are 

generation of the cyclic group. 



Order of an integer: - fix a positive integer n then by Euler’s theorem, for any 

a N, gcd(a, n) = 1, one has         (mod n). Therefore, there exists a smallest 

positive integer say x such that      (mod n) and      mod n for 1 ≤ k ≤ x – 1 

. 

4.4 Primitive roots modulo n 

Definition: - Fix a positive integer n and let a N with gcd (a, n) = 1. 

Then, the least positive integer x such that      (mod n) is called the order of a 

modulo n, denoted ordn(a). 

If ordn(a) =      then, a is said to be a primitive root modulo n. 

For example, for n = 13, 3 power 1 is 3 congruent mod (13). 

31 = 3 (mod 13), 32 ≡9 (mod 13), 33 ≡ 1 (mod 13) so ord13(3) = 3. 122 ≡ 1 (mod 13) 

so ord13(12) = 2. 

In fact n – 1 ≡ -1 (mod n) every n and hence ordn(n-1) = 2 

Example for non-existence of primitive roots: 

Example:1- Show that there are no primitive roots modulo 16. 



Solution.: U16 = {1, 3, 5, 7, 9, 11, 13, 15}. 

So               verify that a4 ≡ 1 (mod 16). For all a   U16. 

Hence there is no element a with (a, 16) = 1 such that ord16(a) = 8 =       

Example:2- for a positive integer n and let a   N such that gcd (a, n) = 1. If a is 

primitive root of n and Un= {a1, a2, ……      } then {a1, a2, ……     } ≡ {a1, a2, 

……     } (mod n) 

Solution: .: As a is a primitive root modulo n. The numbers ai(mod n) and aj (mod 

n) are distinct, whenever 1 ≤ i ≠ j ≤      – 1. Moreover, gcd(a, n) = 1 implies that 

gcd (ak, n) = 1 for all 1 ≤ k ≤     . Thus the required result follows. 

Example:3- Fix a positive integer n and assume that n has a primitive root. Then, 

the number of primitive roots of n equal         . 

Solution:- Note that if a is a primitive root modulo n then, ordn(a) =     . Now 

observe that for 1 ≤ k ≤     . 

Ordn(ak) =      

If and only if gcd(k,     ) = 1 But by definition 

                                     



Example:4- Find all primitive roots modulo 13. 

Solution: Using the example given before, we see that 2 is a primitive root 

modulo 13. As       = 12 and the number 1, 5, 7 and 11 are coprime to 12. We 

see that 2 = 21, 6 ≡ 25 (mod 13), 11 ≡ 27 (mod 13) and 7 ≡ 211 (mod 13) are the 

primitive roots modulo 13. Thus the number of primitive roots modulo 13 equal 4 

=               . 

Theorem:1- Let n = 2k, for some positive integer k. then, n has a primitive root 

modulo n (Un is cyclic) whenever k = 1 or k = 2. 

Proof:- If k = 1 or k = 2 then U2 = {1} and U4 = {1, 3} are indeed cyclic. So, we now 

show that U2k(x) <       = 2k-1, for all        In fact, we will use induction to 

show that      
   (mod 2k). for all       when ever k ≥ 3. 

Base case k = 3, U8 = {1, 3, 5, 7} it is easy to check that 32 ≡ 52 ≡ 72 ≡ 1 (mod 8) 

Hence ord8(9) ≤ 2 for all a    . Thus U8 is not cyclic and hence no primitive root 

modulo 8. 

We prove the base case now induction hypothesis suppose the result is true for k, 

where k ≥ 3. 



i.e. we assume      
                  with k ≥ 3. 

Or equivalently      
       for some positive integer m. we will now prove 

the result for k + 1 that is we need to show that for every               
 

             

So, Let        . Then either 1 ≤ x ≤ 2k or y = x + 2k with 1 ≤ x ≤ 2k. In either case , y 

= x + t2k, where t {0, 1} and 1 ≤ x ≤ 2k. Hence using k ≥ 3 and the binomial 

theorem, we have 

     
            

      
 (mod     ) 

                 
 

 
(mod     ). 

Thus, using      
= 1 + m2k for some positive integer m and k ≥ 3. We get  

     
       

 
 
 (mod     ) ≡ (1 + m2k)2 

          = 1 + m2k+1 + m222k ≡ 1 (mod 2k+1) 

i.e. Un is cyclic. 

 



4.5 Quadratic Residues and Non-Residues 

Definition :- Let p be an odd prime and let (a, p) = 1. Then a is said to be a 

quadratic residue (mod p) if ∃ an integer x such that 

x2 ≡ a (mod p) 

otherwise, we say that a is a quadratic non-residue (mod p). 

Remark :- If a is a quadratic residue (mod p) ∃ x (1 ≤ x ≤  p – 1) such that x2 ≡  a 

(mod p) 

Quadratic Residues:-  

Let P be an odd prime and a   N such that gcd(a, p) = 1. If the quadratic 

congruence x2 = a (mod p) has a solution. Then a is said to be quadratic residue 

modulo p. 

Two basic problems:- Note that if a is a quadratic residue modulo p then, a + kp is 

also a quadratic residue modulo p for all k   z and hence. Our proofs will mostly 

consider those a for which 0≤ a≤ p – 1. 

 Two basic problems dominate the theory of quadratic residues. 



1. Given a prime p, finding all n   N such that n is a quadratic residue modulo p or 

finding all m N that are quadratic non residue modulo p. 

2. Given a number n finding those primes p for which n is a quadratic residue 

modulo p or the prime q for which n is quadratic non residue modulo q. 

Solution: Let p be an odd prime. Then, by definition, a number a N can be a 

quadratic residue modulo p only if gcd(a, p) = 1. Hence, the quadratic residues 

other than 0 are relatively prime to p. 

1 is always a quadratic residue modulo any number n as x1 = 1 (mod n), has 

solutions 1 and -1 for all n N. 

Example:-1: To find quadratic residues modulo 11. We look at the number 12 

(mod.11), 22 (mod 11), 32 (mod. 11). 

5 ≡ 42 (mod 11), 

3 ≡ 62 (mod 11), …………….. 102 (mod 11) to obtain 1, 4, 9, 5 and 3 as quadratic 

residues modulo 11. 

Similarly, It can be easily verified that 1, 3, 4, 9, 10 and 12 modulo 13. 

Now that, In general, if p is a prime then, it suffices to square only the numbers. 



1, 2, ………..
   

 
 as for any x with 

   

 
 ≤ x ≤ p – 1, we can find y          

   

 
  

such that x = p – y and hence x2 = y2 (mod p)  

Moreover, It can be easily verified that for any two numbers x, y, 

         
   

 
 , x2 ≠ y2 (mod p). Hence, we obtain the following result. 

Theorem:-2: Let p be an odd prime. Then, every reduced residue system modulo 

p contains exactly 
   

 
 quadratic residues and exactly 

   

 
 quadratic non-residues 

modulo p. 

Further more, the quadratic residue classes correspond to the numbers 

12 (mod p), 22 (mod p), …………(
   

 
)2 (mod p). 

4.6 Legendre Symbol: 

Definition: - The Legendre Symbol denoted by  
 

 
 , where (a, p) = 1 is defined as 

 
 

 
  = 1 if a is a quadratic residue (mod p) and 

 
 

 
  = 1, if a is a quadratic non-residue (mod p). 

Remark: - If a ≡  b (mod p), clearly  
 

 
    

 

 
  provided (a, b) = 1 



4.7 Properties of Legendre Symbol: - 

Theorem:3- Let p be an odd prime and let a and b be two integers that are 

relatively prime to p then, the Legendre symbol satisfies the following Properties: 

- 

If a ≡ b (mod p) then, (a/p) = (b/p) 

(a2/p) = 1 

(a/p) ≡ a(p-1)/2 (mod p) 

(1/p) = 1 and (-1/p) = (-1)(p-1)/2 

(ab/p) = (a/p)(b/p) 

Proof:- Let a ≡ b (mod p). Then a = b + kp for some k   z.  

hence x2 ≡ a ≡ b + kp = b (mod p). 

Thus, (a/p) = 1 if and only if (b/p) = 1, or equivalently, (a/p) = (b/p) 

Clearly, the quadratic equivalence x2 ≡ a2 (mod p) has ± a as a solution and hence 

a2/p = 1. 



By theorem 2 (Euler’s criterion) a is a quadratic residue modulo p if and only if a(p-

1)/2 ≡ 1 (mod p). Also (a/p) = 1 if and oly if a is a quadratic residue modulo p and 

hence, a/p = a(p-1)/2 (mod p) 

Follows form the previous statement. 

We know that ab is a quadratic residue modulo p if and only if either “both a and 

b are quadratic residues modulo p” or “both a and b are quadratic non-residues 

modulo p” or equivalently, either “both (a/p) = (b/p) = 1” or both (a/p) = (b/p) = -

1” 

Thus, (ab/p) = (a/p)(b/p). In other words legendre symbol is a completely 

multiplicative function for a fixed prime p. 

Theorem:-4: Let p be an odd prime, then 

  
 

 
   

   
     

  
 

 
   

           
            

   

Proof 1:- 



Since p is an odd prime, by theorem (2) the number of quadratic residues modulo 

p and the number of quadratic non-residues modulo p is the same and this 

number equals  
   

 
 . 

Thus, the numbers 1 and  -1 appear exactly 
   

 
 times in  

                                              
 

 
 

   
   , and hence   

 

 
   

   
    

Proof 2:- By theorem 5 (-1/p) =     
   

  so (-1/p) = 1 if and only if 
   

 
 = 2k for 

some positive integer k. But this holds if and only if p = 4k + 1. Thus the required 

result follows. 

Example:1-Let p be an odd prime dividing 9n + 1 for some positive integer n. Then, 

prove that p ≡ 1 (mod 4). 

Solution: Let p be an odd prime dividing 9n + 1. Then 9n + 1 ≡ 0 (mod p) or 

equivalently, (3n)2 ≡ -2 (mod p). 

Thus, (-1/p) = 1 and hence by theorem (6.2)(Previous theorem), p ≡ 1 (mod 4). 

Theorem:5- There are infinitely many primes of the form 4k + 1. 



Proof:- Let if possible, suppose there are only finitely many primes of the form 4k 

+ 1 say p1, p2, ……………… pn. Consider the positive integer N = (2p1p2, …..pn)2 + 1. 

Then N > 1 is odd and hence there is an odd prime, say p dividing N. Hence 

(2p1p2….pn)2 ≡ -1 (mod p) that is (-1/p) = 1 and hence by theorem (6.2), p ≡ 1 (mod 

4) clearly p ≠ pi for 1 ≤ i ≤ n Hence, the required result follows. 

Cont.: Let p be a prime with p ≡ 1 (mod 4). Then, verify that the sum of the 

quadratic residues modulo p that lie in the set (1, 2, ….. p-1) is equal to 
      

 
. 

Proof:- Let a1, a2, …….ar be all the quadratic residues modulo p that are less than 

p/2. Since p ≡ 1 (mod 4) (-1/p) = 1 and hence the number p – a, p – a2 ….., p – ar 

are all the quadratic residues modulo p that are greater than p/2. As the number 

of quadratic residues modulo p equals  
   

 
, we see that   

   

 
. Thus the 

required sum equals  

   

 

   

           

 

   

 

   

    
      

 
 

Example:4- Let p be an odd prime and a, b   N such that gcd (ab, p) = 1. Then 

exactly one of a or b or ab is a quadratic residue modulo p. 



Let p be an odd prime. Then, show that there are 
   

 
        quadratic non-

residues which are not primitive roots modulo p. 

For any odd prime p there are 
 

 
                consecutive pairs of 

quadratic residues exists. 

Solution: If both k and k + 1 are quadratic residues then  
 

 
   

   

 
   . Other 

wise    
 

 
  or  

   

 
  is zero. 

Hence the number of consecutive pairs of quadratic residues is 
 

 
     

   
   

  
         

   

 
   . If we simplify and use the fact that   

 

 
 

   
     , we get 

 
 

 
       

 

 
    

   

 
   

   
   

   
    , 

Where     
      

 
 

   
      

  

 
    

   

 
 

   
    

     
   

 
    

   
     

Hence the required answer is  



 
 

 
      

   

 
   

 

 
      

 
 

 
      

   

 
   

 

 
         

     
     

Example:5- Check whether x2 = 73 (mod 173) is solvable or not? 

Solution: .: First note that x2 ≡ 73 (mod 173) is solvable if and only if  
  

   
    . 

Hence it is sufficient to compute  
  

   
 . 

 
  

   
   

    

   
   

  

   
     as 173 is prime of the form 4k + 1. 

Theorem :6- Let p be an odd prime and let gcd (a, p) = 1 then 

      
 

 
   

 

 
      (mod p) 

Proof :- Let S = {1, 2,…, p – 1} is a reduced set of residues (mod p).  

Consider any x such that 

1 ≤ x ≤ p – 1 then  

xS = {x, 2x,…, (p – 1)x}  

is also a reduced set of residues (mod p)  



So there exists y in S such that xy ≡ a (mod p)  

Now distinguish two cases 

Case I:  
 

 
    then ∃ such that 1 ≤ x ≤ p – 1  

  x2 ≡ a (mod p) 

Let us find out all the solutions of the quadratic congruence  

x2 ≡ a (mod p) ……………..(I) 

Then (I) has at least one solution X = x. We know two solutions x1 and x2 are said 

to be same if x1 ≡ x2 (mod p). Let x1 & x2 be two solutions of (I) then 

   x1
2 ≡ a (mos p) 

                     and  x2
2 ≡ a (mos p) 

   x1
2 ≡ x2

2 (mod p) 

   p divides (x1
2 - x2

2) 

   p⎸ (x1 + x2)(x1 – x2) 

  then  p⎸ (x1 + x2) or (x1 – x2)     (∵ p is a prime) 



       either x1 + x2 ≡ 0 (mod p) 

or    x1 – x2 ≡ 0 (mod p) 

further   x2 ≡ x1 ≡ p – x1 (mod p) 

or    x2 ≡ x1 (mod p) 

So (I) has exactly two solutions (mod p) 

Thus x and p – x are two solutions of (1) (mod p) since x is a solutions of (1) (mod 

p) 

Further        x ≠ p – x  

 ∵ p is odd 

So (I) has exactly two solutions (mod p) 

Let us take y1 in S such that y1 ≠ x & y1 ≠ (p – x) 

Now consider the set  y1 S. Then y1 S is also a reduced residue system (mod p).  So 

∃ y2 in S such that  

y1 y2 ≡ a(mod p) 



and further y1 y2 since otherwise y1 will also be a solution of (1). Thus for y1 ≠ 

x, y1 ≠ p – x, the remaining (p – 3) elements in S can be divided into 
   

 
 pairs (y1, 

y2) such that 

y1 y2 ≡ a(mod p) 

so  

1.2.3 …………(p – 1) = x.(p – x)(y1, y2) 

   ≡     
   

  (mod p) 

   ≡  
 

 
      (mod p)      (∴ x2 ≡ a (mod p)) 

   ≡  
 

 
  

 

 
      (mod p)       ∴  

 

 
     

Case II:  
 

 
     

Then the congruence (1) has no solutions. So if we take y1  S, we know ∃ y2  S 

such that  

y1 y2 ≡ a(mod p) amd y1 ≠ y2 

Thus we divide S into (p - 1)/2 pairs (y1, y2) such that y1 y2 ≡ a(mod p) 



           
   

  (mod p)    
 

 
  

   

  (mod p)  ∴  
 

 
     

Thus theorem is proved completely. 

4.8 Theorem: 7- Wilson’s Theorem 

  If p is any prime, then          (mod p) 

Proof :- If p = 2 or p = 3; theorem is clearly true. 

So let p ≡ 5. Taking a = 1 in the last theorem we note  
 

 
    for all prime p. 

Then we get 

          (mod p) 

Converse of Wilson’s Theorem: - The converse of Wilson‟s theorem is also 

true. Given that          (mod p), they must be a prime. 

Proof:-  If possible, suppose n is not a prime. Then there exists a divisor d of n 

such that 

1 < d < n, then d⎸       

∴                  (mod d) 



On the other hand 

          (mod n) 

          (mod d) 

-1 ≡ 0 (mod d) ⇒ d⎸1 which contradicts that d > 1 

So n must be a prime number. 

4.9 Theorem: 8- (Euler’s Criterion)  

 Let p be an odd prime and let gcd (a, p) ≡ 1 Then 

 
 

 
   

 

 
     

 (mod p). 

Proof :- We know 

         
 

 
     

 (mod p) 

We also know           (mod p) 

⇒                 
 

 
  

 

 
     

 (mod p) 

Multiplying by  
 

 
  we get 



 
 

 
   

 

 
 

 
 

 

 
     

  
 

 
     

 (mod p) 

Theorem:9- -1 is a quad reside of primes of the form 4k + 1 & a quad non- residue 

of primes of the form 4 k + 3. 

Proof :- By Euler‟s Criterion 

 
  

 
      

 

 
     

 (mod p) 

⇒      
  

 
      

 

 
     

   

The value of the quantity in brackets is either 0 or -2. But p is an odd prime and it 

divides the quantity in brackets, so we must have 

 
  

 
      

 

 
     

    

⇒    
  

 
      

 

 
     

 

When p = 4k + 1,  
  

 
      

  

           

And when p = 4k + 3, 

 
  

 
      

    

              



Theorem:10- Let a & b be integers such that gcd (ab, p) =1, then 

 
  

 
   

 

 
  

 

 
  

Proof :- By Eule’s criterian 

 
  

 
      

 

 
         

 

 
        

 

 
         …………… (1) 

But gcd (ab, p) = 1 ⇒ p  (a b) 

⇒             b   a and p   b. 

⇒  g c d (a, p) = 1 = gcd (b, p) 

By Euler’s criterion, 

 
 

 
   

 

 
      (mod p)               …………… (2) 

and    
 

 
   

 

 
      (mod p)               …………… (3) 

From (2), (3), we get 

 
 

 
  

 

 
   

  

 
  (mod p) 



⇒      
 

 
  

 

 
   

  

 
     (∵ p is an odd prime) 

Corollary :- The product of two quadratic residues (mod p) or two quadratic non-

residues (mod p) is a quadratic residues (mod p) where as the product of a 

quadratic residue (mod p) and a quadratic non-residue (mod p) is quadratic non-

residue (mod p) 

Theorem :11- Let p be an odd prime and let p does not divide product ab where a 

& b are integers. Then   
   

 
   

 

 
  

Proof:- Since p   ab ⇒ p   a & p   b 

⇒  p   b2, 

   
   

 
   

 

 
  

  

 
  

     
 

 
  

[∵ (±1)2 = 1] 

Theorem:12- Given any odd prime p, there are 
 

 
      quadratic residue & 

 

 
      quadratic non-residues. 



Proof :- Let a be any quadratic residue then ∃ x (1 ≤ x ≤ p – 1) such that 

x2 ≡ a (mod p) 

But  x2 ≡ (p – x)2 (mod p) 

Therefore 12 ≡ (p – 1)2 (mod p) 

  22 ≡ (p – 1)2 (mod p) 

  ……………………. 

  ……………………. 

   
   

 
 

 
    

   

 
 

 
  

   

 
 

 
 (mod p) 

Thus there are a maximum of 
   

 
 quadratic residue (mod p) 

But for 1 ≤ i, j ≤ 
   

 
, i ≠ j 

  i2 ≡ j2 (mod p) 

since if i2 ≡ j2 (mod p) ⇒ p          

⇒  p                                   



Which is not possible under the given condition. So there are exactly 
 

 
      

quadratic residues. 

The remaining 
   

 
 numbers must be quadratic non-residues. 

Theorem 13:- Given any prime p of the for 4k + 1, ∃ x and on integers m such that  

1 + x2 = mp where 1 ≤ m < p 

Proof:- Since -1 is a quadratic residue of primes of the form 4k + 1, ∃ x such that 

x2 = -1 (mod p) 

∴ W.L.O.G, we can assume 1 ≤ x ≤ 
   

 
 

Then ∃ an integer m such that 

  mp = x2 + 1 ≤ x ≤  
   

 
 

 
    

⇒  m < p 

Clearly  m > o 

⇒  1 ≤ m ≤ p 



Theorem 14:- Given any prime p, there exist x ≥ 0, y ≥ 0 and m(1 ≤ m < p) such 

that 1 + x2 + y2 = mp 

Proof:-  If p = 2, theorem is trivially true 

∵  1 + 12 = 2 = 1 . 2 

So let p be an odd prime. 

Consider S =                   
   

 
  

     T =                  
   

 
   

Here elements of S are mutually incongruent (mod p) 

Similarly elements of T are mutually incongruent. S contains 
   

 
 elements and T 

also contain 
   

 
 elements. 

∴  SUT contains p + 1 district element. But there are only p residue classes (mod p) 

Therefore at least two elements of SUT must be congruent to each other (mod p). 

However, no element of S is congruent to another element of S and no element of 

T is congruent to another element of T. So at least one element of S must be 

congruent to an element of T i.e., 



∃ x, y such that 0 ≤ x ≤ p – ½ and 0 ≤ y ≤ p – ½ such that 

-x2 ≡ 1 + y2 (mod p) 

Or   1 + x2 + y2 = 0 (mod p) 

So, ∃ an integer m such that 

  1 + x2 + y2 = mp 

Clearly m > p 

Now   mp = 1 + x2 + y2 ≤ 1 +  
   

 
 

 
  

   

 
 

 
 

   < 1 + 
  

 
 

  

 
    

⇒  m < p and so 1 ≤ m < p which proves the theorem. 

Definition:- Let m ≥ 2 be any given integer and let gcd (a, m) = 1 for some integer 

a. They by Euler fermat theorem, 

          (mod m) 

Now take S = {n N; an ≡ 1 (mod m)} 



Then S ≠   since  (m) S. so by L.W.O., S has a smallest element say ‘d’. Then we 

say d is the order of a (mod m) and we write d = ordm
a (order a mod m) 

Theorem 16:  Let ordm
a = d then 

  an ≡ 1 (mod m) 

⇒  d ⎸n. In particular d ⎸ (m) 

Proof:- Since     (mod m), so if d ⎸n, then 

  an ≡ 1 (mod m) 

Now let an = 1 (mod m). By division algorithm theorem, write 

  n = dq + r, 0 ≤ r < d 

then 

  1 ≡ an = adq+r = ad/q – ar 

            = (ad)q.ar 

            = ar (mod m)  (∵ ad ≡ 1 (mod m)) 

So if r ≠ 0, then we get a number r < d such that ar ≡ 1 (mod m) which contradicts 

the definition of d 



⇒  r = 0 ⇒ d⎸n 

Theorem 17 :  Let ordm
a = d. Then for any positive integer k, 

      
  

 
 

         
 

Proof:- Let gcd(d, k) = g and     
  

   

Then   1 = (ak)r ≡ akr (mod m) 

⇒  d⎸kr 

⇒  
 

 
  

 

 
    

But       
 

 
 
 

 
    

⇒  
 

 
          ⇒ 

 

 
  . Now since gcd(d, k) = q 

⇒  q⎸d, q⎸k 

Let  k = qk1 

Now       
 

        
 

                

              ≡ 1 (mod m) 



⇒    
 

 
  [by definition of order] 

So  
 

 
   

Or    
 

 
 

Hence the theorem. 

Theorem:18 (Euler’s Criterion):-  

Let p be an odd prime and let a   N such that gcd (a, p) = 1, then, a is a quadratic 

residue modulo p if and only if  
   

 ≡ 1 (mod p) 

Proof:- Suppose a is quadratic residue modulo p. Hence, by definition, the 

quadratic equivalence x2 ≡ a (mod p) has a solution, say x0, As gcd (a, p) = 1. We 

get gcd(x, p) = 1. Therefore, by fermat’s little theorem, we have 

 
   

  ≡    
  

   

  ≡     
    ≡ 1 (mod p). 

Conversely, assume that  
   

  ≡ 1 (mod p). 

As p is an odd prime, so up is cyclic and hence there exists r   N such that r is a 

primitive root modulo p. 



As gcd (a, p) = 1, there exists a, k, 1 ≤ k ≤ p – 1 

Such that a ≡ rk (mod p) 

Thus, we see that  

  
   

  ≡  
   

  ≡ 1 (mod p) 

And hence p – 1 = ord p (r) divides  
   

 
. 

Therefore k = 2j, for some j and hence rj is a solution of the quadratic equivalence 

x2 ≡ a (mod p) as (rj)2 = r2j = rk = a (mod p) 

Even powers of a primitive root are quadratic residues:- The proof of above 

theorem suggests that, if r is a primitive root of an off prime p then, the set of 

quadratic residues modulo p is the set {r2, r4, r6, …….rp-1} 

And the set of all quadratic non-residues modulo p is given by the set {r1, r3, r5, 

…..rp-2} 

Further, one can check that 

r2j, r2k = r2(j+k), 1 = rp-1 and (r2j)-1 = rp-2j-1 



 and hence, the set of all quadratic residues modulo p forms a multiplicative 

abelian group. 

r2j+1, r2k+1 = r2(j+k+1) and hence, the product of two quadratic non-residues modulo p 

is a quadratic residue modulo p. 

r2j, r2k+1 = r2(j+k)+1 and hence, the product of a quadratic residue modulo p and a 

quadratic non-residue modulo p is a quadratic non-residue modulo p. 

Example:-2: Let p be an odd prime and let r be a primitive root modulo p. Then 

The product of quadratic residues is congruent modulo p to r 
   

 
. 

The product of quadratic non-residues is congruent modulo p to r 
      

 
. 

Solution:- By the above observation 

{r2, r4, r6, .,……….. rp-1} is the set of all quadratic residues modulo p. Hence, 

        r2, r4, r6, ………… rp-1 = r2+4+6+….+p+1 

                                             = r2(1+2+3+………   

 

) 

                                             =    
 

 
 
   

 
 
   

  



                                             =  
    

   

As {r1, r3, r5, …………..rp-2} is the set of all quadratic non-residues modulo p. we 

have 

   r1, r3, r5, …………..rp-2    =             
   

 
   

                                             =  
      

  

 4.10 Summary  

In this Unit, we defined the quadratic residue (and non residues) and established 

some of their basic properties. We demonstrate which integers have primitive 

roots. We start by showing that every power of an odd prime has a primitive root 

and to do this we start by showing that every square of an odd prime has a 

primitive root. We defined the Legendre symbols which allow us to detect 

quadratic residues and non residues. We proved the Euler’s criterion, which 

provides a method for calculating Legendre symbols efficiently. 

4.11   Terminal Questions 

1. Find a primitive root (mod 23). 



……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

2. Find a primitive root of (mod 43). 

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

3. If p is a prime of the form 4t + 1, show that a is a primitive root (mod p) 

if and only if     is a primitive root (mod p). 

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

4.  Find the following Legendre symbols: (a)  
  

  
   (b)  

 

 
  (c)  

 

  
   (d)  

 

  
  

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

5. Compute the following Legendre symbols: (a)  
   

   
   (b)  

  

  
  (c)  

  

   
   

(d)  
  

  
  



……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

6. Describe the primes p for which      splits into linear factors modulo p. 

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

7. If      
    for some      is a prime, so that 3 is a primitive root for 

       

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

8. For g = 2,3,5,7,11 determine a prime number p > g such that g is a 

primitive root mod p. 

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

9. The set {1,5,7,11} is a reduced residue system modulo 12.. 



……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 

10. Check whether the Quadratic residue      
  

  
          

 

  
  

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

……………. 
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5.1. INTRODUCTION 

This unit introduces Gauss's lemma in number theory gives a condition for an 

integer to be a quadratic residue. It made its first appearance in Carl Friedrich 

Gauss's third proof (1808) of quadratic reciprocity and he proved it again in 

his fifth proof (1818). Gauss's lemma plays an important role in the study of 

unique factorization. Gauss reciprocity law A relation connecting the values 

of the Legendre symbols for different odd prime numbers and Quadratic 

reciprocity law. In addition to the principal reciprocity law of Gauss for 

quadratic residues, which may be expressed as the relation. 

Let p and q be two distinct odd primes. Then, the quadratic reciprocity law 

relates the numbers (p=q) and (q=p). In particular, it gives us an algorithm to 

find whether p is a quadratic residue modulo q or not, depending on whether 

q is a quadratic residue modulo p or not. Gauss gave many different proofs of 

this law, some of which led to completely new areas of number theory. 

5.2. Objectives 

After studying this unit we should be able to: 

∙ Statement and Proof Gauss lemma 



∙ Application of Gauss lemma 

∙ Define Gauss reciprocity theorem 

∙ Gauss criterion for quadratic residues 

∙ Check the Quadratic residues for prime-power moduli 

∙ Define the Quadratic residues for arbitrary moduli 

∙ Finding all primes p such that 2 is a quadratic residue modulo p 

5.3 Gauss’s Lemma: 

Statement: Let p be an odd prime and let gcd (a, p) = 1 

Let            
   

 
  

Let μ be the number of elements in the set S such that least positive residue of a  

S > p/2 

Then    
 

 
        

Proof:- Consider any integer n where gcd(n, p) = 1. Apply division algorithm 

to n & p, ∃ q & r such that n = qp + r where 0 ≤ r ≤ (p - 1). Since gcd (n ,p) = 1 



⇒  p   n ⇒ r ≠ 0 

⇒      1 ≤ r ≤ p – 1  

Since p is odd p/2 is not an integer. So either r < p/2 or r > p/2. If r < p/2, we 

leave it as it is if r > p/2, write r = p – r' where 1 ≤ r' < p/2, 

Thus n = qp + (p-r') = (q+1)p-r' ≡ -r' (mod m). 

Now we consider least positive residues of every element of aS. We are given 

that μ of those elements have least positive residues > p/2. Let k be the 

elements of  as with least positive residues < p/2. 

Then      
   

 
 

If the least positive residues <p/2 are r1, r2, …….rk and the least positive 

residues >p/2 are -r1, -r2, …..-rμ such that 1≤rμ≤
   

 
 then 

  r1, …….rk, -r1, -r2……,-rμ 

are the residues of elements of aS in some order such that 

  1≤ r ≤ 
   

 
 or 1 ≤ r’ ≤ 

   

 
 



Since S is a subset of a reduced residue set {1, 2, ……, p-1} and gcd(1, p)=1, 

so {a, 2a, …..,(p-1)a} is also a reduced residue set. Then first of all 

  ri ≠ rj for i ≠ j 

If possible, let ri = rj for some pair (i, j) 

Then ∃ xi  S and xj  S such that 

  axi ≡ ri (mod p) & axj ≡ -rj (mod p) 

But  ri = rj 

⇒  axi ≡ axj (mod p) 

This means a(xi + xj) ≡ 0 (mod p) 

⇒  p⎸a(xi + xj) 

But   gcd(a, p) = 1 

⇒  p⎸a(xi + xj) 

But  1 < xi ≤ 
   

 
 

And   1 ≤ xj ≤ 
   

 
 



⇒  2 ≤ xi + xj ≤ p -1  

⇒  p   (xi + xj) 

Which is a contradiction and so {r1, r2, …..rk, r1', r2',…..rμ'} are all distinct. 

But  μ + k = 
   

 
 

So there are 
   

 
 distinct numbers lying between 1 & 

   

 
 

So   r1. …….rk, r1'…….rμ' 

Are the natural numbers 1 to 
   

 
 in some order. Therefore 

   
   

 
   r1. …….rk, r1'…….rμ' (mod p) 

Then by definition of r1. …….rk, r1'…….rμ' 

 
   

 
           

 
        (mod p) 

          =        
   

 
   

   

  (mod p) 

But   gcd   
   

 
       



⇒        
   

    (mod p) 

But by Euler’s criterion, 

   
   

   
 

 
  (mod p) 

⇒        
 

 
    (mod p) 

⇒   
 

 
        (mod p) 

But the value of  
 

 
        is either 2 or 0 or -2 and p is an odd prime 

⇒   
 

 
        

Example:              

 

Solution:              

According to Euler’s Criterion, the equation  

              has solutions since.              To find the 

solutions, we keep adding the modulus to     until we get a perfect square. 



 

                                 

             

So we have                which gives      and      . The 

solutions are                    and              

Example:                   

Solution:                   

Since,                      the equation has solutions. We then add 

the modulus repeatedly to 899 until we get a perfect square. So we have  

                    which gives         and         . The 

solutions 

are                    and                            

Example: Let a = 7 and p = 17. 

Then {7 · 1 (mod 17), 7 · 2 (mod 17), 7 · 3 (mod 17),  

7 · 4(mod 17), 7·5  (mod 17), 7·6  (mod 17), 7·7  (mod 17), 7·8  (mod 17)} 

 = {7, 14, 4, 11, 1, 8, 15, 5}. 



Since 17/2 = 8.5, hence three numbers 14, 11, 15 are greater than p/2.  

Thus (7/17) = (-1)
3
 = -1. 

Where as if choose a = 17, p = 7, then 

{17 · 1(mod 7), 17 · 2(mod 7), 17 · 3 (mod 7)} = {3, 6, 2} 

Hence (17/7 ) = (−1)
1
 = −1 

Theorem. If p is an odd prime, then 

 
 

 
   

                            

                               
  

Proof. Since p is an odd prime, gcd(2, p) = 1. Thus, one can apply Gauss 

lemma (see Theorem 1), for a = 2 to get S = {2, 4, . . . , p − 1}. Let us now 

compute n for different values of the prime p. 

Case p = 4k + 1: Then, the numbers 2k + 2 = 
   

 
, 

   

 
. . . , p − 1 are elements of S 

that exceed    . Thus, in this case n = p−1 and hence, (2/p) =     
   

 = (−1)
k
. 

Therefore, we see that (2/p) = 1 whenever k is even (corresponds to the case 

p ≡ 1 (mod 8)) 



and (2/p) = −1 whenever k is odd (corresponds to the case p ≡ 5 (mod 8)). 

Case p = 4k + 3: In this case, the numbers 2k + 2 = 
   

 
, 

   

 
, . . . , p − 1 are 

elements of S that exceed p/2. Thus, in this case n = 
   

 
 and hence, (2/p) = 

    
   

 = (−1)
k+1

 

Therefore, as above, (2/p) = 1 whenever k is odd (corresponds to the case p ≡ 7 

(mod 8)) and (2/p) = −1 whenever k is even (corresponds to the case p ≡ 3 (mod 8). 

We state a corollary of the above theorem which follows from the fact that 

    

 
 is even if and only if either p ≡ 1 (mod 8) or p ≡ 7 (mod 8) and hence we 

omit the proof. 

Corollary 4. Let p be an odd prime. Then, (2/p) =     
    

 . 

Example: Let p be a prime of the form p ≡ 7 (mod 8). Then prove that p 

divides  
   

   . 

Solution: Using Theorem 3, we know that (2/p) = 1 whenever p ≡ 7 (mod 8). 

Therefore, using 



Theorem 8.3 of Module 2 of Chapter 4, we have 1 = (2/p) ≡  
   

  (mod p). 

Hence, p divides  
   

   . 

Example: If n   {11, 23, 83, 131, 179, 183, 239, 251} then, 2n − 1 is 

composite. 

Solution: Let n   {11, 23, 83, 131, 179, 183, 239, 251}. Then, 

                               2n + 1   {23, 47, 167, 263, 359, 367, 479, 503}. 

This set contains primes of the form 8k + 7 and therefore, from the above 

problem, we see that 2n + 1|2
n
 − 1 as n =

   

 
. Thus, the required result 

follows. 

5.4 Application of Gauss’s Lemma”- 

Theorem : for every odd prime p, 

 
 

 
               

When [x] means greatest integer 

Proof:- Let S =         
   

 
  



Then   2S = {2, 4, ……p – 1} 

Let x  S, then the number of elements of 2S with least positive value <
 

 
 is x<

 

 
 

But x is an integer ⇒ x = [p/4] 

∴ The number of elements of 2S with least positive value > p/2 is 
   

 
  

 

 
  

(i) If p is of the form 4k + 1, then 

   
   

 
   

 

 
   

         
   

 
   

   

 
   

(ii) If p is of the form, 4k + 3 then 

   
   

 
   

 

 
  

      

 
  

    

 
   

   = 2k + 1 – k = k + 1 =  
   

 
  

Thus in both cases,    
   

 
  

So by Gauss’s Lemma 

   
 

 
             

 

 
      

 



Corollary:- 2 is a quadratic residue of primes of the form 8k ± 1 and 

quadratic non residues of primes of the form 8k ±3 

Proof:- Let p = 8k ± 1 

Then   
 

 
        

 

 
             

Therefore, in these two cases 

   
 

 
       

 

 
                

Let   p = 8k ±3 

Then    
 

 
        

 

 
             

And if p = 8k – 3 

Then    
 

 
        

 

 
          

           
 

 
             

Therefore in these two cases 

    
 

 
     



Therefore 2 is a quadratic non-residue. 

Corollary:- For every odd prime p 

    
 

 
      

 
    

 
 
 

Proof:- We know 2 is a quadratic residue of primes of the form 8k ± 1 & a 

quadratic non residue of primes of the form 8k ± 3. 

Let  p = 8k ± 1 

Then   
    

 
 

         

 
 

            

 
 

           

   = an even number 

⇒      
    

     
 

 
  

Let  p = 8k ± 3 

Then   
    

 
 

         

 
 

   = 
            

 
 



   = 
          

 
 

   =          

   = An odd number 

Therefore      
    

      
 

 
  

Thus in all cases 

    
 

 
      

    

  

5.5 Quadratic Law of Reciprocity:-  

For Legendre Symbols 

Statement:- Let p & q be distinct odd primes then 

   
 

 
  

 

 
      

   

 
 
   

          
 

Where     
   

 
,     

   

 
 

Alternative statements: - 

(i) Let p or q be a prime of the form 4k + 1. Then either p’ is even or q’ 



is even 

⇒   p’q’ is even 

∴    
 

 
  

 

 
     

 

 
   

 

 
  

(ii) If both p & q are of the form 4k + 3 then both p’ & q’ are odd 

Therefore   
 

 
  

 

 
     

⇒    
 

 
    

 

 
  

So sometimes quadratic law of reciprocity is also asked in the following 

form. 

Theorem:  Let p & q be two distinct odd primes. Then 

   
 

 
   

 

 
  if either of p & q is of the form 4k + 1 

And    
 

 
    

 

 
  if both of p & q are of the form 4k + 3 

Proof:- By Gauss’s Lemma 

   
 

 
        



Where v is the number of integers x      
   

 
  such that 

  qx = py + r where  
 

 
     

Since q > 0, x > 0 and r < 0 

⇒  (p y) > 0 ⇒ y ≥ 1 

Further 

  P y = qx – r < 
   

 
  

 

 
 

 

 
      

⇒  y < 
   

 
 

⇒  y ≤ 
   

 
 

Similarly,  
 

 
        where μ is the number of integers y     

   

 
  

such that  

Py = qx + s where  
 

 
     

Therefore   
 

 
  

 

 
                        ………………. (1) 

Where μ + v is the number of pairs of integers (x, y) such that     
   

 
 



      
   

 
 

And    
 

 
            

 

 
 

Note, let us consider the following sets of pairs of integers (x, y) 

  S =            
   

 
     

   

 
  

  S1=                 
 

 
  

  S2=         
 

 
       

 

 
  

  S1 =                
 

 
  

 Then  #(S) = #(S1) + #(S2) + #(s’1)                  ………….. (II) 

Consider a mapping θ from S defined by 

   (x, y) =  
   

 
   

   

 
    

Since      
   

 
          

   

 
 

⇒    
   

 
   

   

 
 



So that θ is a mapping from S to S. Now let (x, y)   S1 

Then, by definition  

  θ (x, y) =  
   

 
   

   

 
                 

Now           
   

 
      

   

 
    

        = 
 

 
 

 

 
         

        
 

 
 

 

 
   

 

 
           (∵ (x, y)  S1) 

       = q/2 

⇒            
  

This means 

  #(S1) ≤ #(S’1)                                       …………….. (III) 

Then            
   

 
      

   

 
    

        = 
 

 
 

 

 
          

         
 

 
 

 

 
   

 

 
           (∵ (x, y)  S’1) 



        =-p/2 

⇒          S1 

This means 

  #(S’1) ≤ #(S1)                                       …………….. (IV) 

From (III) & (IV) 

  #(S1) = #(S’1)                                       …………….. (V) 

Therefore from (II) & (V) we get 

  #(S) ≡ #(S2) (mod p) 

But  #(S) = p’.q’ 

⇒  #(S2) = μ + v 

   =p’q’ (mod 2) 

∴ From (I);  
 

 
  

 

 
         

Example: Evaluate   
   

   
  

Or Determine whether 202 is quadratic residue of 257 or not? Or Determine 



  X
2
 ≡ 202 (mod 257) is solvable or not 

Solution:- we have  202 = 2 x 101 

   
   

   
   

 

   
  

   

   
  

   
 

   
     since 

  257 = 1 (mod 8) 

∴   
   

   
   

   

   
   

   

   
  

   ∵  
 

 
   

 

 
   

    
  

   
  

    
 

   
  

  

   
  

But   
 

   
   

   

 
   

 

 
    

And    
  

   
   

   

  
  

 



By reciprocity law 

    
 

  
  

  = -1 

∴   
   

   
     

Alternative  
   

   
   

   

   
  

     
  

   
  

 

   
  

  

   
  

⇒  
  

   
    

 

   
   

   

 
   

 

 
     

  

   
   

   

  
   

 

  
    

∴  
   

   
                

Example: Evaluate   
   

   
   

  

   
  

  

   
  

         
  

   
  

 

   
  

  

   
  

        
  

   
   

  
   

  
   

  

  
   

  

  
   



  
 

  
      

Theorem: If p is an odd prime & gcd (a, 2p) = 1 

Then    
 

 
        

Where      
  

 
 

   
    

Also   
 

 
      

    

  

Proof:- Let S =         
   

 
  

 

Let  r1, ….., rλ and r’1, …..r’μ 

Be the least positive remainders of the elements of the set aS, which are <p/2 

and >p/2 respectively. 

Then as shown in the proof of Gauss’s Lemma 

 r1,……rλ, p – r’1,…..p –  

are all distinct 



Since      
   

 
. Therefore r1,……rλ, p – r’1,…..p –μ are the integers 

       
   

 
 in some order so that 

  

   

 

   

                   
  

 

   

 

          
 
       

  
    ………………….. (I) 

Further by definition of r1, ….., rλ ,  r’1, …..r’μ 

   
   

 
   

   
   

 
   

 
  

 
     

 
       

  
                  ……. (II) 

Subtracting (I) from (II), we get 

       
   

 
   

        
  

       where     
   

 
   

 
  

 
  …. (III) 

But   
   

 
   

 
    

 
 

∴        
    

 
             

  
    …………….. (IV) 

Since g.c.d. (a, 2p) = 1 

⇒  a is odd. 



⇒  (a – 1) is even. Also 
    

 
 is an integers as p is odd 

∴ From (IV), we get 

        (mod 2) as p is odd 

⇒              

By Gauss’s Lemma 

   
 

 
        

Therefore  
 

 
        

Now set a = 2 in (II) since for j = 1, 2, …, 
   

 
 

   
  

 
    for all j ⇒ t = 0 

∴ From (III); e get   
   

 
   

        
 
    

∴   
   

 
   

      (mod 2) 2\RHS  ∴   2\LHS 

But      p ≡ -1 (mod 2) 



∴      
   

 
   

 
    

 
 (mod 2) 

∴ By Gauss’s Lemma 

   
 

 
            

    

  

The Jacobi Symbol: - Let Q > 1 be an odd integer and Q = q1, q2, ….qs its 

prime factorization where q1, q2, …., qs are odd primes, not necessarily 

distinct. 

Then the Jacobi symbol, denoted by  
 

 
 , is defined as: 

 
 

 
    

 

  

   
 

  

  
 

  

     
 

  

 

 

   

 

Where  
 

 
  is the Legendre symbol. 

Remark 1, If Q itself is an odd prime then the Jacob symbol and Legendre 

symbol are same 

(2) If gcd (P,Q) > 1, then  
 

 
    

For,   gcd(P, Q) > 1 ⇒qi⎸p for some (1 ≤ i ≤ j) 



The corresponding Legendre symbol  
 

  
    and hence  

 

 
    

(3) if gcd(P, Q) = 1, then  
 

 
     

(4) If P is a quadratic residue mod Q, then P is a quadratic residue mod each 

prime qj dividing Q, so that  
 

  
    for each j and hence  

 

 
   . However 

 
 

 
    does not imply that P is a quadratic residue of Q. 

Theorem: Let Q and Q’ be odd and positive, then 

(1)  
 

 
  

 

     
 

     

(2)  
 

 
  

  

 
   

   

 
  

(3) If gcd (P, Q) = 1, then  
  

 
   

 

      

(4) If gcd (PP’, QQ’) = 1, then  
    

       
  

    

(5) P’ ≡ P (mod Q) ⇒  
  

 
   

 

 
  

 



Theorem (Eisenstein’s lemma): Let p be an odd prime and let a be an odd 

integer with gcd(a, p) = 1. Then, (a/p) =             where T (a, p) = 

  
  

 
        

   

 
   

 is the largest integer (box) function. 

Proof: Recall that the numbers v1, v2, . . . , vm, p − u1, p − u2, . . . , p − un in 

the proof of Theorem 1 were are all positive, distinct and less than or equal to  

   

 
. Moreover, ui’s and vj’s were obtained as remainders when ka, for 1 ≤ k 

≤
   

 
, was divided by p. 

Also, by division algorithm, for each k, 1 ≤ k ≤
   

 
, we obtain integers qk and 

tk such that ka = qkp + tk with 1 ≤ tk ≤ p – 1. Consequently qk = [qk + tk/p] = 

[ka/p]. Thus, ka =  
  

 
      with 1 ≤ tk ≤ p – 1. We further see that 

   
   

 
      

  

 
  

   

 
       

 
       

 
                      (3) 

From the proof of Theorem 1, we also recall that the numbers v1, v2, . . . , vm, 

p − u1, p − u2, . . . , p − un were a re-arrangement of the numbers 1, 2, . . . , 

   

 
. Hence 



  
   

 
   

        
 
       

 
          

 
       

 
     

………………(4) 

Now, subtracting Equation (4) from Equation (3), we get 

       
   

 
        

  

 
   

   

 
         

 
                                            

(5) 

But, we know that p_a_1 (mod 2) and hence Equation (5) gives 0  

  
  

 
   

   

 
    (mod 2). Or equivalently, n =   

  

 
 

   

 
    (mod 2). In other 

words, n and   
  

 
 

   

 
    have the same parity and hence,  

(a/p) = (-1)n =     
  

  

 
 

   
 

   . 

Example. Find (7/11). 

Solution: (7/11) =       
  

  
 

    
 

    =      
  

 
   

   

  
   

   

  
   

   

  
   

   

  
  

                . 



Example. Find (11/7). 

Solution: (7/11) =       
   

 
 

   
 

    =      
  

 
   

    

 
   

    

 
              

Theorem:  Let p be an odd prime and let a, k   N such that gcd(a, p) = gcd(k, 

p) = 1. Then, (a/p) = 1, whenever the equation x
2
 − ay

2
 = kp admits a 

solution. 

Proof. Let (r, s) be a solution of x
2
 − ay

2
 = kp. Then, r

2
 − as

2
 = kp. Thus, r

2
 ≡ 

as
2
 (mod p) and hence r

2
s

2
p

−4
 ≡ as

2
s

2
p

−4
 ≡ a(s

p−1
)

2
 (mod p). As gcd(k, p) = 

gcd(a, p) = 1, we have gcd(s, p) = 1 and hence, s
p−1

 ≡ 1 (mod p). Therefore, 

                                      (rs
p−2

)
2
 ≡ r

2
s

2
p

−4
 ≡ a(s

p−1
)

2
 ≡ a (mod p). 

Thus, (a/p) = 1. 

But converse of this result is not true. That is, we can find a prime p and 

integers a, k such that gcd(a, p) = gcd(k, p) = 1 and (a/p) = 1 but the equation 

x
2
 − ay

2
 = kp has no solution. For example, take p = 7, a = 4 and k = 1. Then, 

it can be easily verified that gcd(a, p) = gcd(k, p) = 1 and (a/p) = 1 as (4/7) = 

1. But, it can be checked (using modulo 4 congruence) that the equation x
2
 − 

4y
2
 = 7 does not have any integer solution as x

2
 ≡ 0 or 1(mod 4). 



Theorem: Let p ≡ ±3 (mod 8) then, the equation x
2
 − 2y

2
 = p has no solution. 

Proof. If x
2
 − 2y

2
 = p has a solution then, x

2
 ≡ 2y

2
 (mod p) and hence (2/p) = 

1. A contradiction to Theorem 3, where it has been shown (2/p) = −1 

whenever p ≡ ±3 (mod 8). 

Theorem:  Let p and 2p + 1 are odd primes. Then show that     
   

    is 

primitive root of 2p + 1.  

Proof.  Let q = 2p + 1. Since p is odd prime, hence q ≥ 7 and ordq(2), 

ordq(−2)   {1, 2, p, 2p} as ϕ(q) = 2p. Further it is easy see that ordq(2), 

ordq(−2)  / {1, 2} As if ordq(2) = 2 or ordq(−2) = 2,  then  q|3.   Hence  we  

have  ordq(2), ordq(−2)   {p, 2p}.   Now  it  is  sufficient  to  prove  that ordq 

    
   

     . We show this in the following two cases. 

p ≡ 1 (mod 4) In this case q ≡ 3 mod 8,     
   

     and  
 

 
    . Or 

equivalently 2
p
 = -1. 

Hence  

                                                   ordq(2) = 2p =  (q). 



p ≡ 3 (mod 4) In this case q ≡ 7 mod 8,     
   

      and  
 

 
   . Hence  

 
  

 
   

  

 
 

 

 
  

  

 
     

Hence ordq(-2) = 2p =  (q). 

Theorem: There are infinite number of primes of the 8k − 1. 

Proof: Let p1, p2, . . . , pk be finite number of primes of the form 8k −1. 

Consider P = (4p1 p2 . . . pk)
2
 – 2. Then it is easy to see that P is for the 16k − 

2. Let p be any prime divisor of P. Then (4p1 p2 . . . pk)
2
 – 2. (mod p) or 

equivalently  
 

 
   . Hence p is of the form 8a + 1 or 8a – 1. 

If every odd prime divisor of P is of the 8a + 1 then P is of the 16k + 2 as 2|P. 

Hence there exists a prime divisor q of P of the from 8a − 1. Which is 

different from p1, p2, . . . , pk. 

5.6 Quadratic residues for prime-power moduli 

Theorem: Let   be an odd prime, let      and let      then       if 

and only if       



Proof: we know that there is a primitive root             so with      we 

see that     consists of the even powers of    Now    regarded as an element 

of     is also a primitive root (mod p),and with      we know that    also 

consists of the even powers of    Thus        if and only if        this 

completes the proof. 

Note: for odd primes    we can find square roots in             by 

applying the iterative method to the polynomial           we use a 

square root of a mod       to find the square roots mod          suppose that 

     are   is a square root of a mod       for some      thus    

            say           If we put          where   is as yet 

unknown, then                                        

Since         Now              

So we can choose   to satisfy the linear congruence                  

giving                as required. An element         has just two 

square roots in       for odd    so these must be     It follows that if we 

have a square root for a in   , then we can iterate this process to find its 

square roots in      for all    



Example: Let us take     and          in    we have         so we 

can take     as a square root (mod 5). Then                     

   and we need to solve the linear congruence                 this 

has solution               

So we take                   and the square roots of 6 in     are 

given by      or equivalently              If we want the square root 

          with                

        Solving                we have             

             giving square roots               

Theorem: Let a be an odd integer, then 

(a)       

(b)      if and only if             

(c)                    if and only if             

Proof: Part (a) and (b) are obvious: squaring the elements of           

and of               we see that                   for part (c) we 

use the theorem which states that the elements of     all have the form     

for some    squaring, we see that the quadratic residues are the even powers 



of 5. Since             these are all represented by integers   

          

Now both the even powers of 5 and the elements            account 

for exactly one quarter of the classes in       since the first set is contained 

in the second, these two sets are equal. 

Example:                                            

Note: One can find square roots in     by adapting the iterative algorithm 

given earlier for odd prime-powers. Suppose that       for some      

say           If we put            then            

                                 

                  Now   is odd, so we can choose          to 

make      even, giving                 Thus   is a square root of a 

in       There are four square roots of a in         and these have the form 

      where              is a square root of 1. 

Since             we can start with a square root     for a in      

and then by iterating this process we can find the square roots of a     for 

any    



Example: Let us find the square roots of               these exist 

since              First we find a square root                   

  we have                   

                                                  

  is square root of             Now  we repeat this process, using     

as a square root          to find a square root             We have 

                                               

                       is a square root of             The 

remaining square roots   are found by multiplying             

     so we have       as the complete set of square roots of 

            

5.7 Quadratic residues for arbitrary moduli: 

Theorem: Let                 where the integers    are mutually 

coprime. Then      if and only if      
 for each    

Proof: If      then             for some       Clearly   

           for each    with   coprime to     so      
  Conversely, if 

     
 for each   then there exist elements       

 such that   



  
           By the Chinese Remainder Theorem there is an element 

     such that              for all             
          for all    

and hence             since the moduli    are coprime, so       

We can now answer the question of whether      for arbitrary moduli    

Theorem: Let       Then      if and only if 

(a)      for each odd prime   dividing    and 

(b)            if                             

(Note the condition (b) is relevant only when   is divisible by 4; in all 

other cases we can ignore it.) 

Proof: By Theorem above,     if and only if       for each prime 

power    in the factorization of    For odd primes   this is equivalent to 

      by giving condition (a); for     it is equivalent to condition (b), by 

theorem. 

Example: Let              An element        is a quadratic residue 

if and only if                      since            this is 

equivalent to              so                                any 

       must have     square roots. To find these, we first find its four 



square roots          and its two square roots          by the methods 

described earlier, and then we use the Chinese Remainder Theorem to covert 

each of these eight pairs of roots into a square root            For instance, 

let                         with square roots                    

and similarly              with square roots                solving 

these eight pairs of simultaneous congruence’s for    we get the square roots 

                             

5.8. Summary  

 We study the Gauss's Lemma is needed to prove the quadratic reciprocity 

theorem, that for odd primes p and q, (p/q) = (q/p) unless p ≡ q ≡ 3 (mod 4), 

in which case (p/q) = - (q/p), and it also asserts that the product of 

two primitive polynomials is primitive (a polynomial with 

integer coefficients is primitive if it has 1 as a greatest common divisor of its 

coefficients). 

In this Unit, we have discussed the several applications of quadratic 

reciprocity:  

▪ Defined and given examples Gauss’s Lemma. 

https://en.wikipedia.org/wiki/Primitive_part_and_content
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Greatest_common_divisor


▪ Characterizing the primes p for which a is a quadratic residue modulo p.  

▪ Characterizing primes dividing values of a quadratic polynomial. 

▪ Quadratic residues for prime-power moduli and arbitrary moduli. 

5.9. Terminal Questions 

1.Using Gauss’s lemma, find  
 

 
      

 

 
 . 

2. Determine whether 112 is a quadratic residue or nonresidue modulo 675. 

3. Evaluate (4661/9901). 

4. Evaluate (24 /31). 

5. Characterize all prime numbers      for which              has a 

solution. 

6. Find all prime numbers   for which  
 

 
    . 

7. Evaluate   
  

  
 . 
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6.1. INTRODUCTION 

This unit introduces the concept of functions such as      of that are defined 

for all positive integers   are called arithmetic functions. The Mobius 

Function is an arithmetic function of a natural number argument   with 

              if   is divisible by the square of a prime number. 

August Ferdinand Mobius (1790-1868) is perhaps most well known for the 

one-sided Mobius Strip and, can be seen in the important technique of 

Mobius Inversion, which utilizes the important Mobius Function, finally, 

we’ll use Mobius Inversion to solve a problem concerning Euler’s totient 

function. 

6.2. Objectives 

After studying this unit you should be able to  

 To understand the Introduction to arithmetic functions. 

 To understand the definition of Arithmetic functions and multiplicative 

functions. 

 To understand the mobius function and mobius inversion formula. 



 

 To understand the Properties of few well known multiplicative 

functions. 

 To understand the definition of Perfect numbers. 

 An arithmetic function takes positive integers as inputs and 

produces real or complex numbers as outputs. 

6.3 Arithmetical Functions: 

Definition: A function F(a) whose domain is a set of positive integers is 

called an arithmetical function, or a numerical function or a function of 

Number Theory. 

e.g. F(a) = a,      F(a) = sin a,   F(a) = 
 

   
  F(a) = e

ia
,  etc. 

6.4 Multiplicative Functions: 

 

Definition: “An arithmetical function F(a) is said to be multiplicative or 

factorable if for every pair of positive integers a and b where (a, b) = 1, we 

have F(ab) = F(a)F(b)” 

We now describe some important number theoretic functions. 



(1) The number of all positive divisors of a given number a. we 

denote this by the symbol T(a) 

Let     
    

        
   be the canonical resolution of a as the product of 

powers of distinct primes p1 < p2 < ……pn. Then any divisor of the number 

a is of the form     
    

        
   where for each i = 1, 2, …..n, we have 

0 ≤ l ≤ α. Thus there are (αi+1) choices for each l.  ∴ The number of divisors 

d of a is the same as the number of distinct ways of choosing the set (l1, l2, 

…..ln), subject to the above restrictions. But the number of these selections is 

obviously. 

(1 + α1)(1 + α2)………….(1 + αn). 

∴ T(a) = (1 + α1)(1 + α2)………….(1 + αn). 

(2) The sum of all positive divisors of a given number a. We 

denote it by the symbol S(a). 

Let a =   
    

        
   be the canonical prime power resolution of a. 

Then every term in the product. 



P = (1 +    +   
  + ……….  

  
) (1 +    +   

  + ……….  
  

)……….. (1 +    

+   
  + ……….  

  
) is of the form d =   

    
         

   where 0 ≤ li ≤ αi for 

each I = 1, 2, ….., n. 

But the numbers such as d exhaust all the divisors of a when the indices l, and 

the suffixed I are given the full range of variation, already specified. And this 

is provided for in the product P. ∴ P represents the sum S(a). 

Thus S(a) =  
  

    

    
  

  
    

    
      

  
    

    
  

After summing up each geometric progression in the expression for p. 

Example: (1) Find T(768).      

Solution: Now 768 = 2
8
.31 

∴    T (768) = (1 + 8)(1 + 1) = 9 x 2 = 18 

Example: (2) Find S(960).        

Solution: Now 960 = 2
6
.3

1
.5

1
 

∴ S (960) = 
    

   
 
    

   
 
    

   
 

   

 
 
 

 
 
  

 
      

It is easy to prove that both T(a) and S(a) are multiplicative functions, for (a, 

b) = 1 where a =  
    

        
    and b =   

    
        

  . 



Where none of the q’s is a p. then the product ab = 

  
    

        
     

    
        

  , we find that all the primes are 

distinct. Hence we find 

(I) T(ab) = (1 + α1)……….(1 + αk)(1 + β1)…….(1 + βt) = T(a.T(b) 

(II) S(ab) =  
  

    

    
      

 
 

    

    
  

  
    

    
    

  
    

    
  

We shall now prove some general results concerning multiplicative 

functions. 

Theorem 1: If θ is a multiplicative function, then (θ, 1) = 1 

Proof:- We have θ(a.b) = θ(a).θ(b) whenever (a, b) = 1 

Let a be such that θ(a) ≥ 0     ∴ θ(a.1) = θ(a).θ(1) 

i.e. θ(a) = θ(a).θ(1)    ∴ θ(1) = 1, ∵ θ(a) ≠ 0 

Theorem 2: Let θ1 and θ2 be two multiplicative functions, and define θ = θ1θ2 

as θ1θ2(x) = θ1(x).θ2(x) for all positive integers x. Then θ is also 

multiplicative. 

Proof.:- θ(ab) = θ1θ2(ab) = θ1(ab).θ2(ab), for all a, b. 

If now (a, b) = 1, since θ1, and θ2 are multiplicative, we get 



θ(ab) = θ1(a).θ2(b) = θ2(a).θ2(b), 

 = θ1(a).θ(b) = θ1(b).θ2(b), 

 = θ1θ2(a). θ1θ2(b) 

 = θ(a).θ(b) 

Theorem 3: Let θ(a) be a multiplicative function, and let a = 

  
    

        
   be the canonical prime power resolution of a. Then, 

denoting by the symbol d/a summation extended over all the positive divisors 

of a, we have the formula, 

                   
            

    

   

 

                 
            

     

  

 ……………………………………………………………………… 

                 
            

     

Proof:- Any term in the product on the right side is of the form     
    

    
             

    where for each i = 1, 2, ……k, 0≤ ti ≤ αi. 

But     
        

             
        

     
      

    



Here   
     

      
   is any divisor of a and when the powers and suffixes are 

given the full range of variation already specified, these numbers exhaust all 

the divisors of a. 

∴   R.H.S. of the given formula          . 

Corollory 1: Taking θ(d) = d, for all d, we find that 

         = the sum of the sth powers of all the divisors of a 

      = (1 +   
     

        
   )……… (1 +   

    
        

   ) 

      =  
   

  
    

  

   
    

  
   

  
    

  

   
    

      
   

  
    

  

   
    

  

Corollory 2: The case s = 1 gives the expression for S(a), already 

determined. 

6.5 Properties of Multiplicative Function:  

 

A Multiplicative Function is completely determined by its values at the 

powers of prime numbers, a consequence of the fundamental of arithmetic. 

Thus, if   is product of powers of distinct primes, say           



Then            (     this property of multiplicative functions 

significantly reduces the need for computation, as in the following examples 

for            

6.6 The Mobius Function: 

 

The number theoretic function μ(a), the Mobius function, is defined by the 

equations: 

      

         
                                            
                                            

  

Thus we have 

 μ(1) = 1  μ(5) = -1  μ(9) = 0 

 μ(2) = -1  μ(6) = 1  μ(10) = 1 

 μ(3) = -1  μ(7) = -1  μ(11) = -1 

 μ(4) = 0  μ(8) = 0  μ(12) = 0 

       etc 

In fact for any prime p, μ(p) = -1 

Theorem 5: μ(a) is a multiplicative function. 



Proof:- (1) If at least one of a and b is not square free i.e. divisible by the 

square 0 at least one prime, than ab is not square free ∴ μ(ab) = 0 and one at 

least of μ(a) and μ(b) = 0 

∴ μ(ab) = μ(a) μ(b) 

(2) If a is the product of r distinct primes, and b that of s other distinct 

primes, then as is the product of r + s distinct primes. 

∴ μ(ab) = (-1)
r+s

 = (-1)
r
(-1)

s
 = μ(a). μ(b) 

Theorem 6: Let θ(a) be a multiplicative function, and let   
    

        
   

be the canonical prime power resolution of the number a, then 

                                  if a > 1 

     = 1 ………………………. If a = 1 

Proof:- Putting                  , we see that on using theorem 2.12 

     

   

              
             

     

                         
             

     

                        
             

     

But                = (-1)θ(p) = -θ(p) 



And                     for s > 1 

∴                                    if a > 1. While 

      = 1, if a = 1 

Corollary 1. In particular, taking θ(a) = 1,    a, we get, 

     

   

  
   

 

  

    
 

  

         
 

  

        

                                                                                     

  

Corollary 2. Taking θ(x) = 
 

 
   x, we get 

 
    

 
   

  
   

 

  

    
 

  

         
 

  

        

                                                                                     

  

6.7 Properties of Mobius Function: 

If      then        
 

 
      

        
        

  

Where   runs over positive divisor of  ,        

Consider     , the positive divisors of      are              . 

            
 

 
 

   

 



      
 

  

                               

      
 

  

              

      
 

  

          

6.8 Mobius inversion formula: 

Result obtained is the following theorem is known as Mobius inversion 

formula. 

Theorem 7: Let F(a) be any number theoretic function and define the 

number theoretic function G(a) as 

  G(a) =          

Then F(a) =           
 

 
  which is called the Mobius inversion formula. 

Proof:- For every positive divisor d of a. 

  
 

 
       

   
 

 
 

 



∴          
 

 
            

 
 
 

 

          
   

 

 
 

 

∴           
 

 
            

   
 

 
 

              
   

 

 
     

      =            

 
 
 

 

         for 

      

 
 
 

 

  
     

 

 
             

     
 

 
        

   

6.9 Application of Mobius Inversion: 

There are two main uses Mobius Inversion, the first is that we can just 

apply the formula to immediately obtain identities which might be 

difficult to obtain directly. 

1. By definition               

Mobius Inversion gives that      
 

 
  

 

     

2. By definition                  

Mobius Inversion gives that      
 

 
  

 

     

 



Euler’s   Function or the totient 

The number theoretic function  (a) called the Euler’s Function, is defined as 

the number of positive integers less than a and relatively prime to a. 

Example:-  (1) = 1   (5) = 4 

   (2) = 1   (6) = 2 

   (3) = 2  in general, if p is a prime 

   (4) = 2   (p) = p – 1  

Theorem 4.16. For any positive integer a, we have            

Leema: If F(x) is any number theoretic function then          

   
 

 
    , for if d is a divisor of a, then b = 

 

 
 is the complementary divisor 

of a. ∴ if d runs over the set of all divisors of a, then b also runs over the same 

set. Thus             
 

 
    . 

Proof of the theorem. Let d1 < d2 < …… < ds, be all the positive divisors of 

a. Any d, is such that (d, a) = di, for all i = 1, 2, …..s Let Ci = {x ⎸0 < x ≤ ai, 

(x, a) = di} 

Thus for an x   Ci, x = kidi where     
 

  
   .        



∴ Ci has as many elements as there are ki such that 0 < kidi ≤ a, and     

 

  
     ∴ ki ≤ 

 

  
 and relatively prime to 

 

  
.    ∴ number of elements 

in Ci =   
 

  
 . 

If y   {1, 2, 3, ….., a} then (y, a) will be one and only one of the s divisors 

d1, d2, ……ds of a. 

∴ The classes C1, C2, …..Ci form a partition of the set S = (1, 2, 3, ……, a). 

∴  if o(Ci) = the number of elements in Ci, 

We have    
    

 

  
   o(S). 

∴     
    

 

  
     

    
 

 
    

∴             , using the lemma. 

e.g. Taking a = 12 its divisors are 1, 2, 3, 4, 6, and 12. 

                                          

    

Theorem 4.17: If the canonical decomposition of the number a is 

   a =   
    

        
  , then 



         
 

  

    
 

  

         
 

  

  

Proof: We have Mobius inversion formula, that if 

G(d) =         . Then F(a) =       
 

 
     

By taking F(x) =   (x), we find that 

G(a) =           . Using theorem     ∴   
 

 
  

 

 
 

∴             
 

 
  

    

        

    =     
 

  
    

 

  
         

 

  
  on using theorem 4.14 

Theorem 4.18  (x) is a multiplicative function 

Proof:- Let (a, b) = 1, a > 0, b > 0. Then, if a =   
    

        
   and b = 

  
 
  

        
  , the p’s and q’s are (k + t) distinct primes, and  

∴  ab =   
    

        
  .   

 
  

        
   is the complete resolution of 

ab into the product of powers of distinct primes. 

         
 

  

    
 

  

         
 

  

  

         
 

  
    

 

  
         

 

  
  



And            
 

  
    

 

  
         

 

  
    

 

  
    

 

  
         

 

  
  

                      =      
 

  
         

 

  
       

 

  
         

 

  
   

                  

An alternative method of obtaining the formula for      will be described in 

pervious unit. 

Example 1: Let k be a positive even number, and the canonical 

decomposition of a is of the form a = p1p2…..pk; let dt run through the 

divisions of the number a, such that 0 < d1 < a prove that           
 

    Solution: [Hints: Let d1 be a divisor of a, where 0 < d1 <    

Then if a = d1d2, d2 is a divisor of a where d2 >    

Now μ(a) = μ(d1d2) ∴ (-1)k = μ(d1)μ(d2), where k is even 

∴ μ(d1) = μ(d2)   ∴          
         

         
 

            

 



Example 2: Find for what values of m, does       . 

For what value of n is (1)      odd?  (2)      
 

 
? 

    Solution: [     is even for all n ≥ 3. As can be seen from its value 

    
 

  
      

 

  
  let m = 2t,    

    
        

  , where p1, p2, ……pk, 

are distinct odd primes. 

Then      = m   
 

 
     

 

  
      

 

  
  

 

 
⇒    

 

 
    

 

  
      

 

  
  

 

 
 which is the case only when m = 2. So that α1 = 

…… = αk = 0.1 

Example 3: If f(n) is a multiplicative function, and              , 

prove that F(n) is multiplicative. 

     Solution: [Let (a, b) = 1, and then we have 

F(ab) =                     
 

 
  
 

              
 

 
  
 

 

i. =               
 

  
 

           ] 

Example:4 Verify Mobius Inversion formula for      



Solution: We know that Mobius Inversion formula states that for any two 

arithmetic functions F and f and             
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6.11 Summary: 

A simple but very beautiful concept in number theory is that of an arithmetic 

function. An arithmetic function is just a sequence of real or complex 

numbers. Arithmetic functions have applications in number theory, 

combinatorics, counting, probability theory, and analysis, in which they arise 

as the coefficients of power series. 

In this unit we have covered the following points. 

1) The definition of Arithmetic Functions. 

2) The definition of Multiplication Functions and their Properties. 

3) The definition of Mobius Function and their Properties. 

4) The definition of Mobius Inversion Formula and its Examples. 

6.12 Terminal Questions 

1. Evaluate T(a), S(a), μ(a) and  (a) for each of the numbers a = 1024, 

1025, 1026 

2. Show that the sum of positive integers less than the positive 

integer n and relatively prime to it is 
 

 
     . 



3. A number a is said to be a perfect number if S(a) = 2a. Verify that 6, 

28, 496, 8128 are perfect. 

4. Show that 2n-1(2n-1) is perfect if 2n – 1 is a prime. This is Euclid’s 

theorem concerning even perfect numbers: Whether any odd 

perfect number exists is not yet known. 

5. A number n is said to be a perfect number of multiplicity k if S (n) = 

kn, where k ≥ 3. Show that 120 and 672 are multiplicative perfect, 

and find their multiplicities. 

6. If t is the number, and p the product of all the divisors of a number 

A show that p2 = At 

7. In the notation of Ex. 6 if A2 = P. Prove that A is the product of two 

primes or the cube of a prime. 

8. Prove that there is an infinity of primes of the form (6n - 1). 

9. If a and b are natural numbers, prove that           

           where d = (a, b). 

10. For all m, prove that  (m2) = m (m) 

11. Let k be a positive integer, and let d run through the positive 

integers such that       . Prove that         



[Pair all square free numbers into pairs (x, y) such that x is an odd 

number d1 and y is the even number 2d1. Now μ(2d1) = -μ(d1). 

∴ μ(d1) + μ(2d1)=0   ∴ μ(d) =                       

         

12. Show that the number of positive fractions in lowest terms 

between 0 and 1 and whose denominators do not exceed n is 

                  . 

[for each integer k < n, the various fractions in lowest terms which 

lie in (0, 1) are 
  

 
 

  

 
     

     

 
.   ∴ their number is     .] 

 (b) Prove that              for any prime p, and natural 

number n. 

(c) Use (a) and (b) to prove           . 

13. Find the value of Mobius function      for   

(i) 15  (ii) 30    (iii) 47 (iv) 100 

 

 


