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Block-1 

Complex variables and Power series 

 

In the first Unit, we discussed function of complex variables which are 

useful in evaluating a large number of new definite integrals, the theory of 

differential equations, the study of electric fields, thermodynamics and 

fluid mechanics. The Functions of that depend only on the combination are 

called functions of a complex variable and functions of this kind that can 

be expanded in power series. They are vectors in this two-dimensional 

complex number space, each with a real and an imaginary part (or 

component). Since we can multiply z by itself and by any other complex 

number, we can form any polynomial in z and any power series also. Since 

all the operations that produce standard functions can be applied to 

complex functions, we can produce all the standard functions of a complex 

variable by the same steps as go to producing standard functions of real 

variables. 

In the second unit we shall introduce the series representation of a complex 

valued function . We shall show that if f is analytic in some domain then it 

can be represented as a power series at any point in powers of (- which is 

the Taylor series of f about . If f fails to be analytic at a point , we cannot 

find Taylor series expansion of f about that point. However, it is often 

possible to expand f in an infinite series having both positive and negative 



powers of series. This series is called the Laurent series. In order to obtain 

and analyse Taylor and Laurent series, we need to develop some concepts 

related to series. We shall start the unit by discussing basic facts regarding 

the convergence of sequences and series of complex numbers in we have 

introduced the concept of radius of convergence of a power series and 

given the conditions for absolute and uniform convergence of the power 

series in relation to its radius of convergence. 

 



UNIT-1: Complex Variable 

 

Structure 

1.1  Introduction 

          1.2       Objectives 

1.3  Concept of a Complex Variable 

1.4       Properties 

1.5    Continuity of Complex Functions 

1.6  Uniformly Continuous 

1.7     Derivative 

1.8     Analytic Functions 

          1.9       The Necessary and Sufficient Condition for f(z) to be Analytic 

          1.10       Milne’s Thomson Method 

         1.11     Harmonic Functions 

          1.12  Summary 

1.13  Terminal Questions 

 



 

1.1 Introduction 

In this Unit, we discussed function of complex variables which are 

useful in evaluating a large number of new definite integrals, the theory of 

differential equations, the study of electric fields, thermodynamics and 

fluid mechanics. the Functions of        that depend only on the 

combination          are called functions of a complex variable and 

functions of this kind that can be expanded in power series in this variable 

are of particular interest. This combination          is generally called z, 

and we can define such functions as z
n
, exp(z), sin z, and all the standard 

functions of z as well as of x. They are defined in exactly the same way the 

only difference being that they are actually complex valued functions, that 

is, they are vectors in this two-dimensional complex number space, each 

with a real and an imaginary part (or component). Since we can multiply z 

by itself and by any other complex number, we can form any polynomial in 

z and any power series as well. We define the exponential and sine 

functions of z by their power series expansions which converge 

everywhere in the complex plane. Since all the operations that produce 

standard functions can be applied to complex functions, we can produce all 

the standard functions of a complex variable by the same steps as go to 

producing standard functions of real variables.  

1.2       Objectives 

After reading this unit the learner should be able to understand about: 



 Continuity of Complex Functions 

 Uniformly Continuous  

 Derivative 

 Analytic Function 

 Necessary and Sufficient Condition of function 

 Milne’s Thomson Method  

1.3 Concept of a Complex Variable 

A number of the form     , where x and y are real numbers and   

    is called a complex number. x is called the real part of      and is 

written as         and y is called the imaginary part and is written 

       . It is represented by       . 

A pair of complex numbers      and      are said to be conjugate of 

each other 

If        then        . 

 1.4 Properties 

1. The sum, difference, product and quotient of two complex numbers is a 

complex number. 

2. If a complex number is equal to zero then its real and imaginary parts are 

separately equal to zero.  Thus        ⇒ x = 0 and y = 0 

3. If two complex numbers are equal, then their real and imaginary parts are 

separately equal. Thus           ⇒ x = a and y = b 

4. If two complex numbers are equal, then their conjugates are also equal 



a.            ⇒           

 

Note: Let ℝ be the set of real number then an element       ℝ  ℝ is 

called a complex number if it satisfies  

(i)                               

(ii)                                

(iii)                                         

If we take            &            then we get           

           

5. Every complex number      can always be expressed in the form r (cos 

θ + i sin θ) 

           Put           ………………… (1) 

                           ……………………(2) 

                  i.e.                       

squaring and adding 

         

Or                (take +ve root only) 

Dividing (2) by (1) 

                            
 

 
  

i.e.                      
 

 
 



thus                    where          

and                                 
 

 
 

the number          is called the modulus of      and is written as 

mod       or        

The angle θ is called the amplitude or argument of      and is written as 

amp (    ) or org (    )  

Geometrical Representation of Complex Number: 

 

Plane representing complex number as ordered pairs of real number (x, y) 

is called the complex plane or argand plane or gaussian plane. 

(i) If z1 and z2 are two complex number, then addition of two complex number 

are                  . 

(ii) Difference of two complex number are                   

(iii)  
  

  
  

    

    
          (iv)                     



                                            (v)        
         

      
      

   

De Moivre’s Theorem: 

If n is any integer +ve or -ve then                            and  

If n is a fraction +ve and -ve, then one of the values of       

                          

Function of complex variable:  

If for each value of the complex variable        in a given region R 

we have one or more value of 

       

Then w is said to be a complex functions of z and we write 

                      

Or        

Where u and v are real functions of x and y. 

For e.g. if      

            and        

Then              

                                   

⇒                        



                          

Thus u and v are the real and imaginary part of w are functions of the real 

variables x and y. 

Limit of f(z):-                   

Definition:  

A function        is said to tend to limit l as z approaches a point z0 if 

for every real    we can find a +ve real   s.t. 

           for          

i.e. for every      in the  -disc of z-plane f(z) has a value lying in the  

disc of w-plane. 

We write               

. 



Note:- In real variable x → x0 implies that x approaches along the number 

line either from left or from right. 

But in complex variables z → z0 implies that z – approaches z0 along any 

path straight or curved since the two points representing z and z0 in a 

complex plane can be joined by an infinite number of curves. 

 

Means (i) along real axis  (ii) image axis  (iii) along the path y = mx. 

Continuity of f(z): 

A function        is said to be continuous at z = z0 if             

     . 

Further f(z) is said to be continuous in any region R of the z-plane, if f(z) is 

continuous at every point of that region. 

1.5 Continuity of Complex Functions 

In order to perform operations such as differentiation and integration of 

complex functions. We must be able to verify of the complex function is 

continuous. A complex function      is said to be continuous at a point z0  



If as z approaches z0 (from any direction) then      can be made arbitrarily 

close to        

1.6 Uniformly Continuous 

 A function      is said to be uniformly continuous in a domain D if  

Given                                                    

s.t.                           

whenever             

      being any two points of the domain D. 

Example: Show that      
 

  
 is uniformly continuous in the region 

 

 
        

Solution: Here      
 

  
 

Suppose       
 

  
 is uniformly continuous in the region 

 

 
        

Then for a given     we can choose      

Such that               
 

  
 

 

   
                     

When   depends only on   and not on the particular choice of the point   , 

if   and    are only point in 
 

 
       



Then  
 

  
 

 

   
   

  
    

    
   

            

         
 

 
            

        
 

                       

Since     
 

 
 and      

 

 
 

 

   
   and 

 

    
   

Now if we choose   
 

  
, it follows that 

 

  
 

 

   
    

This ensure that      
 

  
 is uniformly continuous in the region 

 

 
     

   

Bounded Function: A function f defined on some set X with real or 

complex values is called bounded if the set of its values is bounded. In 

other words, there exists a real number M such that for all x in X. A 

function that is not bounded is said to be unbounded. 

Multivalued Function: If   takes two or more values for some values or 

all values of   in the region   then   is said to be multivalued function of 

   

Example: we have           

If we take          

Then            

         



           

Hence function is called Multivalued. 

Branch: A branch of a multi-valued function is a single-valued analogue 

which is continuous on its domain.  

Branch Cut: The set of points that have to be removed from the domain of 

a multivalued function to produce a branch of the function.  

Branch Point: The point in the complex plane which lies in every branch 

cut of a complex function. It is often the origin. 

1.7 Derivative 

 Let        be a single values function of the variable       , then 

the derivative or differential coefficients of        is defined as 

             

          

    
 

  

  
          

    

            

  
 

Provided the limit exists and unique when      along different paths 

  

  
 
  

  
 
   

  
 

Or  

  

  
 
  

  
 
   

  
 



  

  
    

   

           

 
 

  

  
    

    

  

  
 

 

Cauchy-Riemann Equations: 

 A necessary condition for                       to be analytic in 

domain   is that   and   satisfy the Cauchy-Riemann Equations 

  

  
 

  

  
 and 

  

  
  

  

  
 at every point           …………(1) 

If these partial derivatives (1) are also continuous, then Cauchy-Riemann 

Equations are sufficient condition for      to be analytic in    

(i) Necessary Conditions for      to be analytic 

We have        

            

Let                       be analytic function inside a region  . 

It means differentiable of   exist at any point of this region i.e., 
  

  
 

       
  

  
        

            

  
           

Exist and unique along whatever path    may across to zero. 

Now, we take      along two paths        and         

Along         there is no change in             therefore       

       



Using equation (1), we have 
  

  
        

  

  
          

And when the motion is parallel to        then there is no change in    

So       therefore                

By equations (1) and (2) 
  

  
        

  

   
          

Now by equations (2) and (3), 
  

  
 

  

  
 

  

   
          

We have        

 
  

  
 

  

  
  

  

  
 

And 
  

  
 

  

  
  

  

  
 

 
  

   
 

  

   
 

  

  
 

By equation (4) we have, 
  

  
 

  

   
 

  

  
  

  

  
 

  

   
 
  

  
 

 
 

  
  

  
 
  

  
 

  

  
  

  

  
   

  

  
 
  

  
 

Equating real and imaginary parts, we get  

  

  
 

  

  
 and 

  

  
  

  

  
 or 

  

  
  

  

  
 

These are the necessary condition for a function of analytic. 

                        



(ii) Sufficient Condition: Sufficient condition of      to be analytic 

assume the existence and continuity of 
  

  
, 
  

  
, 
  

  
, 
  

  
  

The Sufficient condition for the function      to be analytic required other 

the continuity four partial derivatives of        . Since   is a function of 

         

So,                             

                        

                                          

      
                      

  
 

    
                

  
  

                                                            

       

                  

                                                                              

……(2) 

And                                                                      

…….(3) 

                                                          



Now by C-R equations  

                                                                                

And                                              

Or                                                

On adding last two equation and simplify, we get  

                                               

                    

          

Dividing by         we get  

 
      

      
           

  

  
   

  

  
 

 
  

  
            

  

  
   

  

  
                      ∵          

  
  

  
   

  

  
                                     

 
  

  
   

 
  

  
   

  

Therefore, in the        
  

  
 

  

  
  

  

  
 

  

  
 
  

  
  

  

  
 

Hence 
  

  
 exist because 

  

  
 
  

  
 exists. 



1.8 Analytic Functions 

If a complex function f(z) is a single valued and differentiable at any point 

z = z0 in the given region R then f(z) is called an analytic or regular or 

holomorphic function of z at the point z = z0.  

The point at which the function is not differentiable is called a singular 

point of the function. 

A function f(z) which is single valued and possesses a derivative w.r.t. z at 

all parts of a region R, is called an analytic function. 

 

Theorem: - The necessary and sufficient conditions for the derivatives of 

the function. 

                      to exist for all values of z in a region R are 

(i) 
  

  
, 
  

  
, 
  

  
, 
  

  
  are continuous function of x and y in R. 

(ii) (a)  
  

  
 

  

  
     (b)  

  

  
 

  

  
    

Or                      

The relation (ii) are known as Cauchy Riemann equation or C-R equation. 

Example. If           is analytic function and             

       find    in the term of     

Solution-we have          ,then            



Adding we have                      

 − +( + )=1+   =      

                               is analytic function. 

                

Now 
  

  
                 

  

  
                

   
  

  
   

  

  
    

  

  
   

  

  
   

                     (         )   

Integrating, we have                   

                                          

               

                     

        
  

   
 

           

Example. Using C-R equations show that           is not analytical at 

any point.                                            

Solution-                           



  

  
     

  

  
     

  

  
    

  

  
    

By C-R equation 

  

  
 

  

  
     

  

  
 

  

  
                                              

Since differentiable at origin but not at neighbourhood point. it is nowhere 

analytic. 

1.9 The Necessary and Sufficient Condition for f(z) to be Analytic 

 

The necessary condition for a function           to be analytic at all 

the points in a region R are  

(a)  
  

  
 

  

  
     (b)  

  

  
 

   

  
 provided 

  

  
, 
  

  
, 
  

  
, 
  

  
 exists,  

Sufficient condition for f(z) to be analytic: - 

The sufficient condition for a function           to be analytic at all 

the points in a region R are 

(i) 
  

  
 

  

  
  ,     

  

  
 

   

  
 

(ii) 
  

  
, 
  

  
, 
  

  
, 
  

  
 are continuous function of x and y in region R. 

C-R equation in polar form 



  

  
 

 

 

  

  
    and 

  

  
   

  

  
 

Remember:  

1. If a function is analytic in a domain  , then      satisfy C-R conditions at 

all points in      

2. C-R conditions are necessary but not sufficient for analytic function. 

3. C-R conditions are sufficient if the partial derivative continuous. 

 

Example .1 If        find 
  

  
 and determine where w is? 

Solution:- We have                   

                     
 

 
                 

 

 
 

Equating real and imaginary parts. 

   
 

 
          ,                     

 

 
 

General value                      

Preverbal value                

                                               
 

 
 

  

  
 
 

 
 

 

     
    

 

     
 



  

  
 

 

     
 

  

  
 

 

       
 
  

  
  

  

     
 

  

  
 

 

       
 
 

 
  

 

     
 

           
  

  
 

  

  
    and 

  

  
  

  

  
 

The Cauchy – Riemann equation are satisfied and the partial derivatives 

are continuous except at (0, 0). 

Hence w is analytic everywhere except at z = 0. 

  

  
 
  

  
 
   

  
 

 

     
   

  

     
  

    
    

     
 

    
    

            
 

 
 

      
 

 
 

 
 

Example .2 Show that the function      is not analytic anywhere. 



Solution.:- Let       . Here        and        

                               

                             ,                        

  

  
   

  

       
        

        

      
 

 
      

      
 

  

  
   

  

       
        

        

      
 

 
      

      
 

           
  

  
 

  

  
                when x = y 

                             
  

  
 

  

      
,            

  

  
 

  

      
 

                         
  

  
 

   

  
 

Hence C – R conditions are not satisfied at any point. The function      is 

not aualy til anywhere. 

Example.3 Show that the function            equation is not regular at 

the origin although C – R equation are satisfied. 



Solution:- Let                           

          Then             ,               

At the origin (0, 0) we have 

                          
  

  
 
     

       
             

 
       

   

 
                

 
  

  
       

                  

 
  

                          
  

  
 
     

       
             

 
       

   

 
                

             

 
  

  
 
     

    
   

             

 
    

   

   

 
   

 
  

  
 
     

    
   

             

 
    

   

   

 
   

Clearly C – R equations are satisfied at the origin. 

 
  

  
 
  

  
   

  

  
  

  

  
 

Now,             
         

   
       

       

    
  

If     along the line      we get 



         
    

      

       
    

   

    

    
 

Now this is not unique since it depends on m therefore       does not 

exist. 

Hence the function f(z) is not regular at the origin. 

Example.2 Examine the nature of the function 

     
          

      
     

            In the region including the origin.                                            

  

Solution- we have           
          

      
     

Equating real and imaginary parts , we get  

  
    

      
 ,   

    

      
 

  

  
    

   

             

 
   

  

  
    

   

             

 
   

  

  
    

   

             

 
   



  

  
    

   

             

 
   

From the above results that , it is clear that  

  

  
 

  

  
  and 

  

  
  

  

  
 

Hence , C-R equations are satisfied at the origin. 

         
   

         

 
    

   
   

 
          

      
   

 

    
 

 

    
   
   

    

      
 

Let       along the radius vector      then  

         
   

    

         
    

   

    

       
 

 
 

 
   

Again let       along the curve        then  

 

         
   

  

     
 
 

 
 



Which show that      does not exist. here     is not analytic at origin 

although Cauchy-Riemann equations are satisfied there. 

Example.6 If f(z) is an analytic function with constant modulus show that 

f(z) is constant.  

Solution: Let an analytic function be           

            Taking modulus 

                          squaring both sides 

                          

Given        = constant = c (say) and c ≠ 0, 

         ………………. (1) diff. w.r.t. x 

      
  

  
   

  

  
   

 
  

  
  

  

  
   ………………….(ii) 

Diff. (i)  partially w.r.y. y 

 
  

  
  

  

  
    

  
  

  
  

  

  
   ………………. (iii) 

Squaring and adding (ii) and (iii) 



   
  

  
 
 

    
  

  
 
 

    
  

  

  

  
    

   
  

  
 
 

    
  

  
 
 

    
  

  

  

  
    

            ⇒          
  

  
 
 

  
  

  
 
 

    

             ⇒     
  

  
 
 

  
  

  
 
 

    

             ⇒     
  

  
 
 

  
  

  
 
 

                                

              ⇒                                   
  

  
 
 

   
  

  
 
 

 
  

  
  

  

  
   

                    ∵       
  

  
  

  

  
  

           ⇒           

           ⇒  f(z) = constant. 

1.10 Milne’s Thomson Method 

 

This method is used to find                     in terms of   when 

       and        are given. 

We have        and         

              
    

 
 and               

 

  
       



                      
    

 
 
 

  
           

    

 
 
 

  
        

This being an identity in two independent variables         . 

(i) When u(x, y) is real part is given then f(z) is obtained as follows. 

                                         

            Where         
  

  
  and         

  

  
 

(ii) When v(x, y) is imaginary part is given then f(z) is obtained as 

follows. 

                              

Where         
  

  
,               

  

  
 

Example 1 Determine the analytic function where real part is 

          

Solution: Let                  

          
  

  
 

  

       
 

 

      
 

         
  

  
 

 

      
 

                                    

                   
 

  
     



                         

Example.2 Find the regular function whose imaginary part is       . 

Solution: Let                

               
  

  
            ,       

  

  
              

                                       

                             

                          

Example.3 Find the analytic function           if      

             . 

Solution:   Let           

      Or                  ……………………(1) 

                i           ……………………… (2) 

Subtract (2) from (1) 

                                         

               Let                

                              

        And                 then 



                                 

        is analytic because      is analytic and u be the real part 

                  
  

  
                       

                  
  

  
                        

                                               

                                              

                                        

                                     

 ⇒                       

 ⇒          
       

   
 

 

   
 

                   
          

          
      

                   
        

   
      

                  
    

 
               Ans. 

 

1.11 Harmonic Function: - 



Any function which satisfies the Laplace equation is known as a Harmonic 

functions. A function           is said to Laplace equation is  

   

   
 

   

   
   etc. 

Theorem: If           is an analytic function then u and v both are 

harmonic function. 

Proof: Let           be an analytic function then  

            We have    
  

  
 

  

  
 …………….. (1) 

                              
  

  
  

  

  
  ……………….(2) 

Diff partially equation (1) w.r.t. x 

                      
   

   
 

   

    
         ……………….. (3) 

Diff. partially equation (2) w.r.t. y 

               
   

   
 

    

    
         ……………….. (4) 

Adding (3) and (4) 

               
   

   
 

   

   
       ……………. (5)     

Similarly by diff. partially (1) w.r.t.y and (2) w.r.t. x and subtracting we 

obtain 



                   
   

   
 

   

   
       ……………. (6)     

 Thus both the functions u and v satisfy the Laplace equation in two 

variables. For this reason they are known as harmonic functions and their 

theory is called potential theory. Such functions u and v are called 

conjugate harmonic function as      is also analytic function. 

Example.1 If             , prove that the u satisfies Laplace 

equations. 

Solution: we have              

  

  
        

  

  
    

Then 
   

   
       

   

   
   

Hence Laplace equation is 
   

   
 

   

   
       

 

Example.2 Prove that         and           are harmonic 

function of (x, y) but are not harmonic conjugates. 

Solution:        ,      
  

  
   ,          

  

  
     

           
   

   
  ,       

   

   
    



Now     
   

   
 

   

   
   

  u(x, y) satisfy Laplace equation, hence u(x, y) is harmonic function 

                               

                       
  

  
 

     

        
 

    

        
 

                      
  

  
 

              

        
 

     

        
 

                     
   

   
 

       
 
                        

           
 

                             
                       

           
 

                             
        

        
 

      
   

   
 

       
 
                         

           
 

              
                           

        
 

               
        

        
 

Hence,  
   

   
 

   

   
   

    v(x, y) also satisfy Laplace equation. 

Hence v(x, y) is also harmonic function. 



But 
  

  
 

  

  
  and 

  

  
  

  

  
 

Therefore u and v are not harmonic conjugates. 

Example.3 If f(z) is a regular function of z prove that  
  

   
 

  

   
        

         . 

Solution: Let                     so that 

                         

and                          say, 

           
  

  
   

  

  
   

  

  
 

         
   

   
    

   

   
  

  

  
 
 

  
   

   
  

  

  
 
 

  

Similarly  
   

   
    

   

   
  

  

  
 
 

  
   

   
  

  

  
 
 

  

Adding 

   

   
 
   

   

     
   

   
 
   

   
    

   

   
 
   

   
   

  

  
 
 

  
  

  
 
 

  
  

  
 
 

  
  

  
 
 

  



Since u and v have to satisfy C-R equation and the Laplace equation. 

                            
  

  
 
 

  
  

  
 
 

  
  

  
 
 

  
  

  
 
 

  

                             
  

  
 
 

  
  

  
 
 

  

                                     

 

Example.4 Define a harmonic function. Show that the function 

                   

is harmonic. Also find the analytic function 

                     

Solution- A function        of  x , y which processes continuous partial 

derivatives of the first and second orders and satisfies 

 
   

   
 

   

   
    Laplace’s equation is called a harmonic function. 

 We have  

                   

  

  
                putting              

                 



  

  
              putting                

then               

   

   
                           (1) 

   

   
                         (2) 

Adding equation (1) and (2) we have 

   

   
 

   

   
   hence, u is a harmonic function. 

                                      (3) 

Putting value                        then  

 

             

 

1.12 SUMMARY 

 

We shall formally define the definition of the limit of a complex function 

to a point and use this definition to define the concept of continuity in the 

onctext of a complex function of a complex variable. A variable that can 

take on the value of a complex number. In basic algebra, the variables x 



and y generally stand for values of real numbers. The algebra of complex 

numbers (complex analysis) uses the complex variable z to represent a 

number of the form a + bi. 

We conclude with summarizing what we have covered in this unit.  

▪ Analytic function 

▪ Cauchy-Riemann equations 

▪ Milne Thompson Method. 



1.13 Terminal Questions 

 

1. Prove that         is uniformly continuous in the region        

2. The function              has a branch point at      

3. Construct a function      which has a real function        

                for its real part, satisfying Laplace’s equation. 

4. Prove that        is continuous everywhere but nowhere differentiable 

except at      

5. Prove that the function            is everywhere continuous but 

not analytic. 

6. Prove that analytic function with constant real part is constant. 

7. If   
 

 
            find   such that           is analytic. 

Determine      in terms of    

8. Show that the following functions are not analytic (i)      (ii)    

9. Show that the following functions are not analytic (i)   (ii)    

10.  Continuity of functions of a complex variable . 

(i) Let      
    

   
 for     and        if   continuous at 1? Is   

continuous at 0? 

(ii) Let      
 

  
 for    , can   be defined at 0 so that the new function 

is continuous at 0. 

(iii) It the function           continuous at every point where it is 

defined? 



UNIT- 2: POWER SERIES 

 

Structure 

2.1  Introduction 

2.2       Objectives 

2.3  Power Series 

2.4       The circle of convergence of power series 

2.5  Power series and analytic function 

2.6       Radius of convergence of power series  

2.7       Exponential Function of a complex variable 

2.8        Hyperbolic Functions 

2.9         Trigonometric Functions 

2.10          Logarithmic functions of a complex variable 

2.11          Summary 

2.12  Terminal Questions 

 

 



 

2.1 Introduction 

In this unit we shall introduce you to the series representation of a 

complex valued function  . We shall show that if f is analytic in some domain 

    then it can be represented as a power series at any point      in powers 

of z-   which is the Taylor series of f about   . If f fails to be analytic at a 

point   , we cannot find Taylor series expansion of f about that point. 

However, it is often possible to expand f in an infinite series having both 

positive and negative powers of z-  . This series is called the Laurent series. 

In order to obtain and analyse Taylor and Laurent series, we need to develop 

some concepts related to series. We shall start the unit by discussing basic 

facts regarding the convergence of sequences and series of complex numbers 

in we have introduced the concept of radius of convergence of a power series 

and given the conditions for absolute and uniform convergence of the power 

series in relation to its radius of convergence. 

2.2 Objectives 

 After studying this unit, you should be able to:  

• discuss the convergence of sequence of complex numbers; 

• use the properties of convergence and absolute convergence of infinite 

series of complex numbers in order to check the convergence of any 

given series; 



• obtain the Taylor series representation of a complex-valued function 

about a point at which the function is analytic;  

• Obtain a series representation of a complex-valued function about a 

point at which the function is not analytic in terms of Laurent series; 

• Obtain the radius of convergence of a power series. 

2.3 Power Series  

A series of the types          
  

   , whose terms are variable, is called a 

power series about z0, where z is a complex variable, an, z0 are complex 

constants and an is independent of z. 

By substituting       , the above power series becomes     
  

   , 

where   is the new complex variable. Since the first form of the power series 

can be reduced to the second form merely by changing the origin, it is 

sufficient to consider the series of the form     
  

   . 

2.4 The circle of convergence of power series 

The circle       such that the power series     
  is convergent for every 

z within it is called the circle of convergence of the series. 

2.5 Power series and analytic function 

Sum function of a power series- If          
 , then f(z) is called the sum 

function of the power series     
 . 



In the following theorem we show that the derivative of a power series has 

the same radius of convergence as the original series. 

Theorem 1: The power series      
    obtained by term by term 

differentiation of the power series     
  has the same radius of 

convergence as the original series     
 . 

Power series as an analytic function, the following important theorem says 

that every power series can be treated as an analytic function by means of its 

sum functions. 

Theorem 2: The sum function f(z) of the power series     
  

    represents 

an analytic function inside its circle of convergence. 

Further, every power series processes derivative of all orders within its circle 

of convergence and these derivatives are obtained through term by term 

differentiation of the series. 

2.6 Radius of convergence of power series 

Consider the power series     
 . Here          

 . By nth root test, this 

series is convergent if              
      

i.e.               
              i.e.          

   
    

          

i.e.         
   

    
      ,      i.e.       , 

where R is given by 



   
 

 
    

   
    

    ………………. (1) 

The relation (1) is known as Hadamard formula for radius of convergence. 

Thus     
  is convergent or divergent according as 

        ,    or       

The above discussion leads to the following result. 

Radius of Convergence: The number R such that the power series     
  is 

convergence of the series. 

 Thus, of the radius of the circle of convergence is the radius of 

convergence of the series. 

 There are three possibilities for R: 

i. R=0 In this case, the series is convergent only at z = 0 

ii. R is finite and positive. In this case, the series is convergent at every 

point within the circle      . 

iii. R is infinite. In this case, the series is convergent for all values of z. 

Note:- If the given power series           and 
 

 
    

   
    

   , then the 

circle of convergence is        . 

Example1- Find the radius of convergence for each of the following power 

series: 

(i)  
  

  
 



(ii)            

Solution: (i) Comparing the given  
  

  
 with the standard form     

 , we 

have 

      
 

  
 

So,            
 

 
    

   
    

           
 

  
 
   

    
   

 

 
   

This gives R =   

Hence the radius of convergence of the given series is  . 

(iii) Here           . We have 

 
 

 
    

   
    

                 
      

        
   

                    

Thus 
 

 
    So that R = 0 

Example 2: Find the radius of convergence of the power series    
   , 

where for each n: 

       
 

  
     

 

  
 

Solution:- Here      
       

 

  
     

 

  
 
 

. Therefore 



                 
 

 
    

   
    

               
 

  
     

 

  
    

               Hence R (radius of convergence) = 1/e. 

Example 3. Find the radius of convergence for 

                

Solution:- Here           . Therefore 

                                          
 
    

 Now  
 

 
    

   
    

            
         

   
    

Example.4 Find the radius of convergence of the power series 

    
     

     
 

Solution:- Here    
   

     
. We have 

                 
 

 
    

   
    

           
   

       
 
   

    
   

 
   

         
 
   

 

                        
   

 

           
 

 

 
   
   

 

                    
 

                     
 

 
   
   

 

                    
 

                     
 

 
   
   

 
 

      
    

 

   
       



                     
 

 
     

 

 
   Ans. 

Example 5.:- Find the radius of convergence of the power series: 

      
     

     
   . 

Solution:- Here    
     

     
. We have 

                       
     

     
   

     

     
 
   

  
   

   
 
   

 
       

       
 
   

 

So,          
 

 
    

   
    

       
   

 

     

         
    

             
 

 

  
 
 

 
  . 

Thus R = 1. Here the radius of convergence of the given power series is 1. 

Example 6: Find the radius of convergence of the power series. 

                                   
            

 
 

Solution: Comparing the given series with the standard form          , 

we find that a = 2i, which is the centre of the circle of convergence. Also, 

       
     

 
 

So,  
 

 
    

   
    

       
   

 
     

 
 
   

    
   

 

    
   

Thus R = 1. Hence the radius of convergence is 1 i.e., the given power series 

is convergent in the circle         . 



Theorem:    
 

 
        

    

  
  

Example 7.: Find the radius of convergence of the series: 

  
 

 
 

   

   
   

     

     
      

Solution:- The coefficient of    in the given series will be: 

     
                

                
 

So,                    
                      

                      
 

Whence    
 

 
    

   
 
    

  
     

   

    

    
 

 

 
 

Therefore the required radius of convergence is 
 

 
. 

Example 8: Find the radius of convergence for each of the following power 

series 

(i)   
  

    
 ,                  (ii)     

 

 
 
  

   

Solution: (i) Here    
 

    
 and      

 

      
. So 

 
 

 
    

   
 
  

    
     

   
 
      

    
     

   
 
      

      
  

   

   
   

Hence the radius of convergence of the given series is 2. 



(ii) Here       
 

 
 
  

. So, 

 

 
    

   
          

   
   

 

 
 
 

   

Thus R = 1/e. Hence the radius of convergence of the given series is 1/e. 

2.7 Exponential Function of a complex variable 

When x is real, we are already familiar with the exponential function 

       
  

   
 
  

   
        

  

   
       

Similarly, we define the exponential function of the complex variable z = x + 

iy as 

                                  
  

   
 

  

   
        

  

   
       

……(1) 

Putting x = 0 in (1) we get 

               
     

   
 

     

   
        

     

   
        

        
  

   
 

  

   
        

  

   
 

  

   
    

                

Thus                               



Also                          

Changing   to   ,                     

Example.1 Split up into real and imaginary parts     
 

 . 

Solution:-     
 

       
 

        
 

 
     

 

 
      

      Real part of     
 

    

       Imaginary part of     
 

     

Circular function of a complex variable 

Since                and                 

The circular functions of real angles can be written as 

      
        

  
,             

        

 
 and so on. 

It is therefore natural to define the circular function of the complex variable z 

by the equation. 

       
        

  
,             

        

 
 

       
    

    
 

        

           
 

Example.1 Prove that                                 

Solution.:- L.H.S. =                      



                                            

                                              

                         

                    

                 

     = R.H.S. 

2.8 Hyperbolic Functions 

If x be a real or complex 

(1) 
      

 
 is defined as hyperbolic sine of x and written as sinhx 

(2) 
      

 
 is defined as hyperbolic cosine of x and written coshx. 

                                                         

 

2.9 Trigonometric Functions 

The definitions of sine and cosine are unacceptably vague because they 

involve measuring of an angle without giving a precise algorithm for 

doing so. We are now in a position to remedy this defect. Namely, we 

take the Taylor expansions 

       
        

     

 
 ,       

          

       

 
  



 Relation between hyperbolic and trigonometry circular function 

 

Since for all values of  ,      
        

  
  and      

        

  
 

Putting      we have 

                                       
            

  
 

      

  
  

                                               
         

  
 

                                                                
          

  
  

         
         

 
  

                

So,               

And                      
      

 
       

              

               

Cor.:              

             



              

Fundamental formula 

(i)                 

(ii)                 

(iii)                   

Proof:- for all values of   

                 putting      we get 

                    

                       

                 

(ii) Since we know that                 dividing by        

 ⇒                

 ⇒                 

(iii) We know                 dividing by        

 ⇒                  

 ⇒                   

Inverse Hyperbolic function 



If        , then u is called the hyperbolic sine inverse of z and written as 

          

Similarly we define         and        . 

The inverse hyperbolic function like other inverse functions are many values, 

but we shall consider only their principle values. 

Example.1 Prove that        
 

 
    

   

   
  

Solution:- Let          

 ⇒       divide by I, we get 

       
    

 
 

 

 
 

 ⇒
 

    
 

 

 
 

By componendo and dividendo  

 ⇒ 
      

      
 

   

   
 

 ⇒
  

    

    

  
    

    

 
   

   
 

 ⇒
          

          
 

   

   
 

 ⇒
             

             
 

   

   
 



 ⇒
    

   
 

   

   
 

 ⇒      
   

   
 

 ⇒           
   

   
  

 ⇒  
  

  
     

   

   
  

 ⇒       
 

 
     

   

   
               hence proved. 

Example.2 To show that                      . 

Solution:- Let           

 ⇒        

 ⇒
      

 
   

 ⇒          

 ⇒      
 

  
 

 ⇒           

 ⇒             

    
         

 
         

We take only +ve sign then 



            

 ⇒                

 ⇒                                       hence proved 

Example.3  If          
 

 
 

 

 
 . Prove that 

 (i)     
 

 
    

 

 
          (ii)            

Solution:- Since, we have           
 

 
 

 

 
  

 ⇒        
 

 
 

 

 
  

 ⇒
    

     
 

   
 

 
    

 

 

     
 

 
    

 

 

 
     

 

 

     
 

 

 

By componendo and dividend 

 
          

          
 

     
 

 
      

 

 

     
 

 
      

 

 

 

 ⇒     
 

 
 

    
 

 

 
 

 ⇒     
 

 
    

 

 
     hence proved 

Example.4: If          , prove that         
 

 
             . 

Solution: We have           



 ⇒        

 ⇒                   and             

 ⇒                     

 ⇒
        

 
 

 

 
                 hence proved. 

Example.5 Prove that                             . 

Solution:                       
 

 
      

 

 

               
 

  
      

 

 

                        

                        

                           

                                         hence proved. 

Example.6 Find       if                

Solution: Give                

 ⇒  
      

 
   

      

 
    

 ⇒        -          

 ⇒              



 ⇒               

           
                

   
 

               
          

 
 

         
       

 
 

          
     

 
    and     

     

 
 

          
  

 
           

  

 
 

                          
  

 
 

If      

Then         
      

      
 

     

     
 

   

   
 

 

  
 

 

 
 

If    
  

 
 

      
 

 

 
  

 
 

 
  

 
    

    
 

 

  
 
  

 
 

Real and imaginary parts of circular and hyperbolic function 

(i)                               

                          

                  



                     

(ii)                                 

                             

Example.1 If               . Prove that 

 
  

      
 

  

      
  , 

  

     
 

  

     
   

Solution: It is given that                

   ⇒                           

   ⇒                          

 Equating real and imaginary parts 

            ;              

 ⇒
 

     
       ;  

 

     
      

 ⇒
  

      
 

  

      
               

Now,        
 

    
       ; 

 

    
       

 
  

     
 

  

     
                 

Example.2 If               , prove that 

 (i)                 



 (ii)                    

Solution:- Given                

 Now changing   to    

                 

Now,                           

       
                    

                     
 

       
         

              
 

 
 

     
 

  

         
 

 ⇒                

 ⇒               

(iii) Now,                              

            
                    

                      
 

            
           

              
 

 ⇒
 

      
 

         

       
 

⇒                  

⇒                    

⇒          
 

 
                     hence proved 

                 

         
 

 
       



Example.3 If                     . Prove that 

         
 

 
   and         

 

 
    . 

Solution: We have                      

 Replacing   as    

                      

        
                   

                    
 

         
                     

                          
 

          
      

               
 

           
      

           
 

                  
      

      
 

                

 ⇒
          

          
 

    

 
 

        

        
 

 Apply componendo and 

dividendo 

                         

                
                   

                     
 

                 
                     

                          
 

                  
     

             
 

                    
     

               
    

       
     

      
 

             



⇒
                     

                     
 

      

       
 

⇒
     

      
 

     
 

 

     
 

 

 

⇒         
 

 
 

⇒         
 

 
      hence proved 

             
 

 
    

      
 

 
      

 

 
      

Example.4 If                        . Prove that 

       
         

         
 

Solution: Give                        . 

 ⇒                                   

 ⇒                                  

Equating real and imaginary parts 

                        …………….. (1) 

                       ……………… (2) 

Dividing (2) by (1) 



 
          

         
 

    

    
 

 ⇒                

 ⇒      
    

    
 

 ⇒
      

      
 

     

    
 
    

    
 

Now, Apply componendo and dividend 

 
             

             
 

                    

                    
 

 ⇒
   

     
 

         

          
 

 ⇒    
         

         
   Hence proved 

Example.5 If                    . Prove that 

 
     

      
 

    

     
 

Solution: We have                     ……….. (1) 

 Changing   as    in (1) 

                      ……….. (2) 

Dividing (1) by (2) 

 
         

         
 

         

         
  



 ⇒
         

         
 

                    

                    
 

Apply componendo and dividend 

 ⇒
                   

                   
 

                                        

                                        
 

                   
   

 
     

   

 
  

                   
   

 
     

   

 
  

 ⇒
     

         

 
      

         

 
 

     
         

 
      

         

 
 
 

               

               
 

 ⇒
          

          
 

     

      
 

 ⇒
          

           
 

     

       
 

 ⇒
    

     
 

     

      
                      hence proved 

Example.6 If                 , Prove that       and        are the 

roots of the equation  

                   

Solution: We have                  

  ⇒                

  ⇒                          



                                          

Equating real and imaginary parts 

             

             

Now, 

                                   

                                          

                                            

                       

  = sum of roots. 

Hence required equation is 

     (sum of roots) + (product of root) = 0 

⇒                                        [               ] 

      Hence proved 

2.10 Logarithmic functions of a complex variable 

If        and        be so related that      then w is said to a 

logarithmic of z to the base e and written as         ………… (1) 



Also                   

                             ∵                        

                

              ……………………. (ii) 

i.e. the logarithm of a complex number has an infinite number of values and 

is therefore a multivalued function. The general values of the logarithm of z 

is written as logz so as to distinguish it form its principle value which is 

written as logz. This principal value is obtained by taking n = 0 in logz. 

                                                         [put        , 

       ] 

                              

                  
    

                      
   

                    

                            
 

 
 

                            
 

 
  

                        

                                
 

 
 



Example.1 Prove that     
    

    
         

 

 
. Hence evaluate 

         
    

    
   

Solution: Put        ,            so that        
 

 
 

Now,      
    

    
     

             

             
    

   

    
 

            

        

            
 

 
 

Thus,          
    

    
                     

          
       

       
 

          
  

  

  

  
  

  

 

           
     

     
 

Example.2 Prove that          
    

    
   

   

     
 

Solution: Let                         

Then equating real and imaginary parts 



         

         

Also                          

L.H.S.                      
    

    
   

              
     

    
   

                    

                    

              

         
     

       
 

    
    

       
 

   
    

     

  

 

   
   

     
 

  = L.H.S.  Hence proved 

Example.3 If           . Prove that                  

Solution: We have 



                 
    

             

                      

 Let                            

       

                              
 

 
 

                           
 

 
  

            
 

 
       

          
    

 
  

          
    

 
  

                              
    

 
 
 

                          

        
  

 
                

 

  

                
 

    
  

 
        

  

                 
 

           
 

 
            

 

 
   

                  
 

           
 

 
            

 

          
 

 
  



Equating real and imaginary parts 

                   
 

           
 

 
  

                   
 

          
 

 
  

Squaring and adding 

                 
 

            
 

 
             

 

 
   

                            

                                   

Example.4 If               then prove that 

   
 

 
 

           

          
 

Solution: We have 

               

 Taking log both sides 

 ⇒                       

 ⇒  
 

 
                                     

Equating real and imaginary parts 



       
 

 
                    ………….. (1) 

                             …………… (2) 

Dividing (2) by (1) 

 
 

 
 

           

          
   

Example.5 If                   where        , show that 

              
  

       
 

Solution: Since                       …… (1) 

                        ……. (2)    

 Changing   as    

Now,        (                             

                                       

             
                         

                           
 

             
         

              
 

             
  

         
 

             
  

       
              

Example.6 If                        show that  



 
  

     
 

  

     
  , where           

Solution: We have 

                               

Let                

 Then given equation becomes 

                  

 ⇒                

                          

                           

                 and  

              

 
 

    
       and 

 

    
        ……….. (2) 

We know that 

                 

  
  

     
 

  

     
   ……….. (3)                         

Now,                     



 
 

 
                 

 

 
      

                             
 

 
            

 ⇒               

 ⇒                ………(4) 

Hence the equation (3) holds only when equation (4) is true. 

Example.7 if   
  
 

      prove that    
  

 
 

 

 
 and             

Solution: We have   
  
 

      

 ⇒           

 ⇒                      

 ⇒                  

             
 

  

                  

 ⇒                
  

 
     

  

 
  

             
  

 
;              

  

 
 

     
 

 
    

  

 
    hence proved 



And                 
  

 
     

  

 
                

 

Example.8 Expand  
 

            
 in the regions        

Solution- we have      
 

            
 

     
 

 
 

 

   
 

 

   
  

If the regions       

     
 

 
                  ,                

   

 
   

     
 

 
        

 

 
   

 

 
    

     
 

 
              

 

 
   

 

 
 
  

 
 
  

  
    

      
 

 
 
 

 
    

 

 
 

 

  
   

  

 
 
  

  
    

  

 
 

  

   
  

     
 

 
 
 

 
  

  

  
   

  

  
      

Example.9 Expand      
 

          
                                                                                                        

Solution-     
 

          
 

 

   
 

 

   
 



In first bracket      ,we take out 2 as common and from second bracket z 

is taken out common as        

      
 

 
 

 

  
 

 

  
 

 
 

 

  
 

 

   
 

 
   

 

 
 
  

 
 

 
   

 

 
 
  

 

      
 

 
   

 

 
 
  

 
 
  

 
    

 

 
   

 

 
 

 

  
 

 

  
    

      
 

 
 
 

 
 
  

 
 
  

  
   

 

 
 

 

  
 

 

  
  

Example.10 Expand the function          in powers of z. 

Solution- Let          

  

  
 

 

     
 

        
 

                    (1) 

On expanding the R.H.S. of binomial theorem, we have 

  

  
   

 

 
      

  

 
  

 

 
 

  
         

  

  
   

  

 
 
 

 
     

On integrating, we have     
  

 
 

   

  
     



Putting                     

              

We have           
  

 
 

   

  
   

2.11 SUMMARY 

 

In this unit, we have covered the following: 

1. If                                      

   
   

        
   

            
   

     

2. If                      and         then        
   

      
    and       

    

3. If   analytic in a domain  , Then it can be represented as a power 

series at any point      in powers of      which is the Taylor 

series of   about     If   fails to be analytic at a point   . It is possible 

to expand f in an infinite series having both positive and negative 

powers of      using the Laurent series. 

4. If   is an analytic function in the disk         . Then   has the 

power series representation       
      

  
      

  
           

 . 

5. To every power series    
 
         

  there corresponds     

   for the series  



(i)       Converges absolutely in         ,if       . 

(ii) Converges absolutely in           ,if       . 

(iii) Converges absolutely in         ,if       . 

The number R is called the radius of convergence of the power series and the 

circle           is called its circle of convergence. 

 

6. A power series always converges inside and diverges outside the circle 

of convergence            . But a power series may converge at 

all, none, or some of the points on the circle of convergence. 

2.12 Terminal Questions 

 

1. Find the radius of convergence of the series           
     

2. Find the radius of convergence R of the following power series: 

(i)     
             (ii)  

  

 
 
               (iii)  

  

  
 
    

Discuss the behaviour of each series at the points               

3. Find the radius of convergence of the power series 

   
    

    
 
 
       

    

4. Find the radius of convergence of the power series     
  

    where 

      if   is even and        if   is odd. 

5. Find the radius of convergence of the following power series 



(i)  
  

  

 
        (ii)       

    

6. Show that if       
   , then         

    

7. Does the series     
    converges if      ? Justify your answer. 

8. Determine whether there the series  
  

  
 
    converges. 

9.  To prove                      . Try yourself. 

10.  To prove         
 

 
   

   

   
. Try yourself. 
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Block – 2 

 

Complex Integration and Expansion of series 

 

In the first unit we will introduce complex integration. We begin by 

discussing the integration of complex valued function of a real variable. We 

also discuss some basic results regarding differentiation of such functions. we 

introduce contour integration which is a powerful tool in Complex Analysis, 

discuss the existence of anti-derivatives, Cauchy-Goursat theorem which is 

an important result in complex analysis. 

In this unit, we shall study a result called Cauchy integral formula (CIF) and 

use it to evaluate certain integrals along simple closed contours. In this 

section, we shall also discuss Morera’s theorem, a converse of Cauchy’s 

theorem, Liouville’s theorem. We shall also prove here the fundamental 

theorem of algebra as a consequence to Liouville’s theorem. Finally, we shall 

show that moduli of analytic functions behave strangely if we talk about their 

maximum or minimum. 

In the second unit we shall introduce the series representation of a complex 

valued function f.  We shall show that if f is analytic in some domain D., then 

it can be represented as a power series at any point  D in powers of which is 

the Taylor series of f about . If f fails to be analytic at a point , we cannot find 

Taylor series expansion of f about that point. However, it is often possible to 



expand f in an infinite series having both positive and negative powers of . 

This series is called the Laurent series. 

This leads up to study of Morera’s theorem, Cauchy’s inequality, Liouville’s 

theorem,  maximum Modulus theorem. The study of complex integration will 

be incomplete without the study of Taylor’s series and Laurent’s series, 

which we also kept up in this unit. 

 

 



Unit-3: Complex Integration 

Structure 

3.1  Introduction 
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3.1 INTRODUCTION 

In the earlier units you have studied differentiation of complex analytic 

functions. In this unit we will introduce you to complex integration. We 

begin by discussing the integration of complex valued function of a real 

variable. We also discuss some basic results regarding differentiation of such 

functions. In we introduce you to contour integration, a powerful tool in 

Complex Analysis, discuss the existence of antiderivatives. In we prove 

Cauchy-Goursat theorem an important result in complex analysis. 

In this unit, we shall study a result called Cauchy integral formula (CIF) and 

use it to evaluate certain integrals along simple closed contours. we shall start 

with proving the formula and discuss its applications in the remaining 

sections of this unit. It has been shown in that an analytic function is 

infinitely differentiable and all its derivatives are again analytic. In this 

section, we shall also discuss Morera’s theorem, a converse of Cauchy’s 

theorem, which you studied in Unit 4. As an application to Cauchy integral 

formula, we shall prove, Liouville’s theorem and show that an entire bounded 

function has to be a constant. We shall also prove here the fundamental 

theorem of algebra as a consequence to Liouville’s theorem. Finally, we shall 

show that moduli of analytic functions behave strangely if we talk about their 

maximum or minimum. 

3.2 Objectives 

 After studying this unit, you should be able to:  

• find the derivatives of complex valued functions of a real variable;  



• state and apply the chain rule for differentiation of complex valued 

functions; 

 • define the concepts of arc, contour, rectifiable arc and the arc length of a 

rectifiable arc;  

• define, state and apply the properties of complex valued functions of a real 

variable; 

 • define the integral of a function over a contour and state its basic 

properties; and  

• state the Cauchy-Goursat theorem and apply it to evaluate contour integrals 

whenever possible. 

3.3 Complex line Integral: 

Consider a continuous function f(z) of the complex variable z = x + iy 

defined at all points on a curve c having end points A & B. Divide c into n 

parts at the points z0, z1, z2, z3, …….zn. 

Let A = z0 and B = zn 

We choose a point     on each are joining      to    

 

From the sum                    
 
    

Suppose maximum value of             as    . 



Then the sum    bends to fixed limit which does not depend upon the made 

of sub division and denote this limit by 

       
 

 

               
 

 

Which is called the complex line integral or line integral of f(z) along c. an 

evaluation of integral by such method is also called ab-initio method. In case 

of real variable the path of integration of        
 

 
 is always along the x-

axis from x = a to x = b. but in case of complex function f(z) the path of the 

definite integral        
 

 
 can be along the curve from z = a to z = b. its 

value depends upon the path of integration. But the value of integral from a to 

b remains the same if the different curves from a to b are regular curves. 

Note: By the symbol        
 

 we mean the integral of f(z) along a 

boundary c in the +ve sense. In case of closed path the +ve direction is 

anticlockwise. The integral also c is often called contour integral. 

If                     then since       ,            

       
 

                
 

  

                                
  

 

Which shows that the evaluation of the line integral of a complex function 

can be reduced to the evaluation of two line integral of real functions. 

3.4 Jordan Arc.: 

 A continuous are without multiple points is called a Jordan Arc. 



Thus, for a point z on a Jordan are, z as expressed in equation (A), is one 

valued and           are also continuous. In addition, if             are 

also continuous in the range      , then the arc is called a regular of a 

Jordan curve. 

 A continuous Jordan Curve consists of a chain of finite number of 

continuous arcs. 

3.5 Rectifiable Arc: 

 Let                   be any given curve and let t take up any value 

between a and b, i.e.,      . 

 Let                     be a partition of [a, b]. if P0, P1, P2, ……, 

Pn be the points on the curve corresponding to the points                , 

then the lines P0, P1, P2, P3 ……,Pn-1 Pn. 

 Let Z0, Z1, Z2, ……, Zn be the points on the curve corresponding to the 

values                , i.e.          then the length of the polygonal line 

             
 
    

 

 The value of this sum depends upon the made of the sub division and is 

called the length of an inscribed polygon. 



 If the curve is such that this sum (the length of the inscribed polygon) 

have a finite upper bound l, for all modes of the subdivision, the curve is said 

to be rectifiable and l is called the length of the curve. 

 

3.6 Contour:  

By contour, we mean a continuous chain of a finite no. of regular arcs.  If the 

contour is closed and doesn’t intersect itself then it is called a closed contour. 

Example: Boundaries of triangle and rectangle. 

By Contour we mean a Jordan Curve consisting of continuous chain of a 

finite number of regular arcs. 

 If A be the starting point of the first arc and B the end point of the last 

arc, then integral along such a curve is written as        
  

. 

 If the starting point A of the arc coincides with the end point B of the 

last arc, then the contour AB is said to be closed. 

 The integral along such closed contour is written as        
 

, and is 

read as integral f(z) taken over the closed contour C. Although        
 

 

does not indicate the direction along the curve, but it is conventional to take 

the direction positive which is anticlockwise, unless indicated otherwise. 

3.7 Complex Integration: 



Let                          , be a given curve C joining a and b 

and let f(z) be a function of a complex variable z defined and continuous on 

C. 

 

Consider the partition                         of the interval [a, b]. 

Let z0, z1, z2, …..zn be the points on the curve corresponding to the values to 

               , i.e.,      . On each are joining      to   , choose a point 

     . Where r = 1, 2, ….., n, on the arc joining      and    . Form the 

following sum Sp for the partition P; 

                                                  

                

i.e.,                  
 
             

               
 
       , 

Where             

 As    , i.e., the largest of the chord lengths       approaches to 

zero and if for every partition P and for every choice of points   , the sum Sp 



tends to a uniue limit, then the function f(z) is said to be integrable from a to 

b along C. this limit is denoted by 

       
 

 

               
 

 

And is called the complex line integral or briefly the line integral of f(z) 

along the curve C. 

It is also known as the definite integral of f(z) from a to b along the curve C. 

Thus 

       
 

    
   

      

 

   

          

 It C happens to be a closed contour, then the line integral        
 

 is 

usually denoted by        
 

. 

Example 1: Evaluate    
 

. 

Solution: By the definition of complex integral, we have  

       
 

             
 
              ………….. (1) 

Here f(z) = 1, so that        . Now from (1), we have 

       
 

          
              

                                         

       

              
   

           , Since      and     . 



Note: If C is a closed curve, then the points a and b coincide, i.e., b = a. 

Hence    
 

  , (for closed curve). 

Example 2.: Evaluate       
 

, where C is the upper half of circle      . 

Solution: By the definition of complex integral, we have 

         
 

             
 
            , 

 

Where    is any point on the arc joining the points      and   . 

Here          so that              

Since    lies on the unit circle 

Hence        
 

          
             

                                      

       

                      
   

           , Since       and 

    . 

         
   

           

      = 2 

3.8 Some elementary properties of complex line integrals: 

Property 1.:                
 

       
 

        
 

. 

This property can be generalized for any finite number of functions. 



Property 2.:        
 

         
  

 

     Where    is the opposite arc of C. 

Property 3.:        
     

        
  

        
  

. 

Where the end point of C, coincides with the initial point of C2. 

 This property can be extended for a finite number of arcs provided the 

end point of the preceding arc coincides with the initial point of the arc which 

follows it. 

Property. 4.:         
 

         
 

, 

  Where R is any complex constant. 

Property 5.:                                  
 

                         
                

 

Where R1, R2, ….Rn are complex constants. 

 This property is a direct consequence of properties 1 and 4. 

Property.6:         
 

             
 

 

 

Example.1 Evaluate  
  

    
, where c represents the circle         

Solution: Parametric equation of the circle         is 

          , where        

Therefore,           . Hence 



   
  

    
  

       

    

  

 
     

  

 
 

         
       

3.9 Cauchy’s Theorem: 

If f(z) is analytic in a simply connected domain D, and C is any closed 

continuous rectifiable curve in D, then 

       
 

 

Proof: First we shall prove the following lemma known as Goursat’s lemma. 

Lemma, let f(z) be analytic within and on a closed contour C. Then for every 

   , it is possible to divide the region within C into a finite number of 

squares and partial squares whose boundaries are denoted by Si(i = 1, 2, 

……., n) such that there exists a point zi within each Si such that 

 
          

    
                     ……………… (1) 

For each point        within or on Si(i = 1, 2, ……., n) 

Proof of the Lemma. Suppose the lemma is false. It means the lemma does 

not hold at least in one mesh, i.e., there exists on     such that in however 

small meshes (squares and partial squares) we subdivide the region within C, 

there will be at least one mesh (square are a partial square) where the 

inequality (1) does not hold good. 

 Let R denote the region within and on the closed contour C. Cover the 

region R by a network of finite number of meshes (squares and partial 



squares) by drawing lines parallel to the co-ordinate axes. Then as per 

assumption there is at least one mesh for which (1) does not hold. Let us 

denote it by   . It may be a square or a partial square. Then at least one of 

these squares contains the points of R for which (1) is not true. Suppose it is 

  . Quadrisect   and repeat the above process. If this process comes to an 

end after a finite number of steps we arrive at a contradiction and the lemma 

is proved. 

 

On the other hand if the process is continued indefinitely, we obtain a nested 

sequence of squares                   each contained in the previous one, 

for which lemma is not true. Consequently there exists a point    which is the 

limit point of the set of points in R. Also      because R is closed. Since 

f(z) is analytic at every point which lies within and on the closed contour C, 

f(z) is differentiable at   . So for    , there exists a     such that 

 
          

    
                     ……………… (2) 

For all z for which         . 



We can choose a positive integer N so large that the diagonal of the square    

is less than  . Then all the squares         are contained in the 

neighbourhood. 

 

Also       

 Thus there exists a point    (here    is   ) within each Si for which 

inequality (1) is satisfied which contradicts the hypothesis. Thus the lemma is 

true 

Proof of the theorem: The inequality (1) can be written as 

               
                                    ……… (3) 

Since (3) also gives the value of f(z) at any point on the boundary of Si, 

integrating (3) around Si, we get 

       
  

           
         

  
                

    

            

                         
,     since    

  
       

  
     ……(4) 

It is clear from the adjoining diagram that the integral around the closed 

curve C is equal to the sum of the integrals around all the Si’s because the 



line integrals along the common boundaries of every pair of adjacent meshes 

cancel each other. We are left only with the integrals along the arcs which 

from parts of C. 

 

Hence        
 

         
  

 
    

From (4) and (5) we have 

        
 

                  

 
   , 

i.e.,          
 

                    

 
     

                      
  

    

                       

 
    

                   

 
       …………….(6) 

The boundary Si of a mesh either completely or partially coincides with the 

boundary of a square. Let ai be the length of a side of that square. The point z 

lies on Si and zi lies either on the boundary of Si or inside   . Therefore the 



distance between the points z and zi cannot be greater than the length      of 

the diagonal of that square i.e., 

            

So,          
              

  
          …………… (7) 

We know that      
 

  length of Si 

       , if Si is a complete square; and               
, if 

Si is a partial square,    denotes the length of arc of C which forms a part of 

Si. 

 Substituting these values in (7), we get 

          
             

                   ……………… (8) 

  If Si is a square 

and          
                     

            ………………. 

(9) 

 If Si is a partial square, where a denotes the length of the side of the 

square which encloses the curve C together with the squares which are used 

in covering C. obviously the sum of the areas   
  of these squares cannot 

exceed   . 

 If l denotes the arc length of C, we have from (6), (8) and (9) that 

         
 

          
        

 
    



                          

              (a constant) 

Hence            
 

 

3.10 Extension of Cauchy’s theorem on contours: 

The following result is regarded as an extension of Cauchy’s theorem. 

Corollary 1: If f(z) is analytic in a simply connected domain D, then the 

integral along any rectifiable curve in D joining any two given points of D is 

the same, i.e. it does not depend upon the curve joining the two points. 

Proof: suppose the two points A(z1) and B(z2) of the simply connected 

domain D are joined by the curves C and C2 as shown in the figure given 

below. Then by Cauchy’s theorem, we have 

         
     

 

 

i.e.,                    
      

 

i.e.,          
  

         
  

 



(Using property 2 of section 5.3 in the second term) 

i.e.,          
  

       
  

 

3.11 Defining multiply connected regions: 

The following corollary may be called Cauchy’s theorem for multiply 

connected domain. 

Corollary 2. If a closed contour C1 contains another closed contour C2 and 

f(z) is analytic at every point lying in the ring-shaped domain bounded by C1 

and C2, then 

        
  

       
  

 

Proof: First we connect the outer contour C1 to the inner contour C2 by 

making a narrow cross cut joining a point A on C1 to a point P on C2. 

 

Now ABCDAPQRPA is a simply connected domain. Clearly f(z) is analytic 

in this domain and is continuous on its boundary. Hence by Cauchy’s 

theorem, we have  



         
          

 

i.e.,                                   
             

 

        
     

          
    

 

 Since          
  

       
  

, 

So, the second and fourth integrals cancel each other  

i.e.,         
  

        
   

   

i.e.        
  

        
  

     

i.e.,         
  

        
  

 

Deduction: If the contour C contains non-intersecting contours C1, C2, 

……Cn, then 

       
 

        
  

        
  

           
  

 

Example1: Evaluate:  
  

    
, where C is       

Solution: Since the point z = 5 is outside the simple closed curve C :      , 

the function 
 

   
 is analytic inside and on C. Hence by Cauchy’s theorem, we 

have 

 
  

    

   



Example2.: Evaluate  
  

    
, where C is the circle      . 

 Let       be the circle C, where r < 1, then the function 
 

   
 is 

analytic on and inside C. Hence by Cauchy’s theorem, we have 

 
  

    

   

Remark: We know that the complex integration is defined along a curve. 

The inequality       taken in the statement of the question represents, in 

fact, an open unit disc and not a circle, as stated. So we have taken       as 

the equation of the circle. 

Example 3.: Evaluate the integral    
   

 
  . 

Solution: Refer the figure of example 3 of the preceding section. 

 Let B be the point of affix     in the z-plane join OB. Here the given 

function         is analytic for all finite values of z. therefore, its integral 

between two fixed points will be the same irrespective of the path joining the 

two fixed points. 

 We choose the straight-line OB as the path for integration. 

On OB: y = x so that          …………… (1) 

 So,      
   

 
                  

  
 

                           
  

 

           
 

 
       , using (1) 



              
 

 
   

 

 

 
 

 
       

 

 
       

3.12 Cauchy’s integral formula: 

 In this section we prove Cauchy’s integral formula and several other 

related theorems. These results are found to be of great help in solving 

various problems of complex integration. 

 

Theorem: 

Let f(z) be an analytic function in a simply connected domain D enclosed by 

a rectifiable Jordan curve C and let f(z) be continuous on C. Then 

      
 

   
 

    

     

   

Where    is any point of D. 

Proof: With    as centre draw a circle of radius r lying entirely within C. 

Equation of the circle r is 

                     …………… (1) 

Consider a function      defined by 

     
    

    
 

 Then      is analytic in the doubly connected region bounded by C 

and r. By Cauchy’s theorem for multiply connected regions, we have 



 

     
 

        
 

   

When c and r are both traversed in anticlockwise directions. 

i.e.  
    

     
    

    

     
   

i.e.,   
    

     
    

    

     
    

          

     
      ………. (2) 

Putting          ,        , we have  

  
  

     
  

     

    

  

 
       

  

 
     

Substituting this value in (2), we have 

 
    

    
   

 
          

          

    
  

 
           …………….. (2) 

The function f(z) is continuous at z0. Therefore for a given    , there exists 

a     such that 

                                         …………… (4) 

For all z satisfying          



Since r is arbitrary, we can choose     so that (4) is satisfied for all points 

on r. 

 Taking modulus of both sides of (2), we have 

  
    

    
   

 

            
          

    
  

 

 

  
            

      
    

 

 

    
 

 
    

 
  from (1) and (4) 

   
 

 
      

 

 
       

 
 

Since   is arbitrarily small and positive, we have 

 
    

    
   

 
          ,    

i.e.,             
 

   
 

    

    
  

 
. 

3.13 Derivative of an analytic function: 

Theorem 4. If a function f(z) is analytic within and on a closed contour C 

and ‘a’ is any point within C, then derivatives of all orders are analytic and 

are given by 

        
  

   
 

      

         

 

Proof: We known Cauchy’s integral formula 



      
  

   
 

      

       

 

 This shows that the required result is true for n = 1 suppose that this 

result is true for n = k so that 

        
  

   
 

      

         

 

 Let a + h be a point in the neighbourhood of a. then 

                 

 
 

  

    
     
 

 
 

          
 

 

        
    

 
  

    
 

      

         

    
 

   
 
      

      

 
  

    
 

    

         

 
      

   
 
            

  

 

      
      

 
  

   
 

    

        
 
   

   
 
           

  

 

      
     

 

 

Taking limit as h → 0, this gives 

   
   

                 

 
 

  

   
 

    

        
 
   

   
         

 

 

i.e.             
       

   
 

    

              
  

 
, 

i.e.,             
      

   
 

    

        
  

 
, 



 Thus the required result is true for n = k + 1 if it is true for n = k, Hence 

by the principle of mathematical induction, it is true for all positive integral 

values of n. 

Problem. Prove that         
  

   
 

      

       
, 

Where c is any contour containing z = a 

This result follows by taking n = 3 in the above theorem. 

Example 1: Evaluate  
    

    
, where C is       

Solution: Cauchy’s integral formula is: 

 
    

   
          

 

  

Where z = a is a point inside contour C and f(z) is analytic within and on C. 

 Here C is       , which represents a circle centred at z = 0 and having 

radius 2. Also, a = 1, which lies inside C. 

Taking f(z) – 1, it follows that 

 
  

    
        .  

i.e.,   
  

    
    ,    since f(1) = 1 

Example 2: Using Cauchy’s integral formula, calculate the following 

integrals: 

 
  

        
 where C is          

Solution: By Cauchy’s integral formula, we have 



 

 
    

   
  

 
        .                   …….. (1)  

Where z = a is a point inside the contour C and f(z) is analytic within and on 

C. 

Let    
  

        
       take      

 

 
. Then 

   
  

       
 

 
         , by (1) 

     
 

   
      

Here       lies inside C and f(z) is analytic within C. 

Example 3: Evaluate             
   

 
 

1. Along the straight line from z = 0 to z = 1 + i 

2. Along the real axis from z = 0 to z = 1 and then along a line parallel to 

imaginary axis from z = 1 to z = 1 + i. 

3. Along the imaginary axis from z = 0 to z = I and then along a line 

parallel to real axis from z = i to z = 1 + i  



Solution: Along the straight line OP joining O(z = 0) and P(z = 1 + i) y = k 

so that  

dy = dx and x varies from 0 to 1. 

 

            
   

 
  

                   
   

 
  

   

  

                   
 

 
  

             
 

 
 

        
  

 
 
 

 

 

  
   

 
 

(ii) Along the path OAP where A is z = 1 

            
   

 

             
  

             
  

 



Now along OA, y = 0,  along AP z = 1 

  ⇒        ⇒     

                
 

 

                   
 

 

 

           
 

 

              
 

 

 

  
  

 
 
   

 
 
 

 

        
  

 
            

 

 

 

 
 

 
 
 

 
         

   

 
 
 

 

 

 
 

 
 
 

 
     

 

 
 

 
            

 
 

 
    

 
 

(iii) Along the path OBP where B is z = 1 

            
   

 

             
  

             
  

 

Now along OB,   x  = 0,  along BP  y = 1 

  ⇒        ⇒     

            
   

 
       

 

 
             

 

 
  



     
    

 
 
 

 

  
  

 
   

   

 
 
 

 

 

    
  

 
 

 

 
   

 

 
 

    
          

 
 

    
    

 
 

    
      

 
   Ans. 

Example: Find the value of the integral         
 

       

(a) Along      having (0, 0), (3, 9) end points. 

(b) Along      between the same points. 

Solution: Along      

 ⇒            and x varies from 0 to 3 

        
 

                
 

 
              

                    
 

 
 

       
  

 
 

  

 
 

   

 
 
 

 

 

       
  

 
 

  

 
 

   

 
  

         
 

 
    Ans. 

(b) Along      

  ⇒        and x varies from 0 to 3 



        
 

                
 

 
            

                  
 

 
 

        
   

 
 

   

 
 
 

 

 

         
  

 
  

  

 
 

          
 

 
              Ans. 

Example: Evaluate         
   

 
 along 

(a) Real axis to 2 and then vertically to     

(b) Along the line      

Solution: Let        then 

         

 ⇒                          

Along the path OAP where  A(2, 0) and P(2, 1) 

 



               
   

 

                
  

                
  

 

Along OA;    y = 0;  Along   AP;  x = 0 

              

      
 

 

               
 

 

 

      
  

 
 
 

 

               
 

 
 

     
  

 
       

    
  

 
 
 

 

   
  

 
 
 

 

 

     
 

 
    

 

 
 

 

 
 

     
            

 
 

     
      

 
             Ans. 

(b) Along the OP,   2y = x   or dx  = 2dy 

And y varies from 0 to 1 

               
   

 

                           
 

 

 

                           
 

 
 

                    
  

 
 
 

 

 



                
  

 
  

         
         

 
 

        
     

 
  Ans. 

Example 4: Use the Cauchy’s integral formula to calculate  

(i)  
        

    
     where c is     

 

 
 

(ii)  
    

     
    where c is     

 

 
 

(iii)  
 

        
    where c is       

 

 
 

Solution:  
        

    
      

 Since a = -1 which lies outside the circle c is     
 

 
. Hence 

     
 

     

⇒    
        

    
     =0 

(ii)   
    

     
    where c is     

 

 
 

Since z = 0 and z = -1 but z = -1 lies outside the circle and z = 0 is only point 

lie inside the circle. 

 
    

     

           
 

 
 

 

   
 

 

   

       
    

  
    

    

   
   ………(1) 



               at a = 0  

             

       
 

   
 

    

  
   

     ⇒ 
    

  
       

   At z = -1 ,    
    

   
   

     fr       

Hence  
    

       
          Ans. 

(iii)  
 

        
    where c is       

 

 
 

   
 

          
     

   
 

          
  

 
          here a = +1,      a = +2 

Now        
 

 
 

 ⇒         
 

 
      

 ⇒           
 

 
 
 

 

Which is a circle having centre (2, 0) and radius 
 

 
.               

   centre is (-h, k) and radius is r. 

  
 

          
  

 
    

 

   
 

 

   
 

 
    



           
 

    
    

 

    
   

At a = 2      f(2) = 2 

⇒  
 

   
 

 

   
   

⇒ 
 

   
       

At a = 1 which lies outside the circle. 

 
 

    
      

Hence    
 

          
  

 
       Ans. 

Example 5: (i) Prove that  
  

    
     

(ii)            
 

 (n, any integer    ) 

        Where c is the circle         

Solution:  The parametric equation of c is           where   varies 

from 0 to    as z describes c once in the anticlockwise direction. 

                 &           

(i)  
  

    
  

       

    

  

 
      

       

(ii)           
 

       
 
    

  

 
   

                         
  

 
 

               
        

      
 
 

  

 



         
    

   
              

         
    

   
      

            

Example 6:  
       

   
 

 
 
  

 where c is the circle       

Solution:             is analytic inside the circle c :       and the 

point   
 

 
 

    

 
         lies within c. 

By C u hy’       r   f r u   

       
 

   
 

    

         

 

N w ⇒            

 ⇒                      

 ⇒              

        
 

 
        

 

 
   

 

 
   

        
 

   
 
       

   
 

 
 
  

 ⇒ 
       

   
 

 
 
       Ans. 

Example 7: Ev  u    u     C u hy’       r   f r u    
   

          
  

 
 

where c is a circle       



Solution:  we have          is analytic within the circle       and 

two singular point a = 1 and a = 2 lie inside c. 

 
   

          
  

 

     

 

 
 

     
 

 

     
    

     

 

 
 

     
        

 

 
 

     
    

                 

             

                                                                                      Ans. 

Example 8: Evaluate  
  

     
 where c is the circle         

 Solution:  Here      

 
  

          
 
 

 
 

  

     

 
 

 
 

  

    

 

When a = 1;    when a = -1 

         
  

    
                                           

  

    
      

Hence  
  

          
 

 

  
            Ans. 

 

3.14 Morera’s Theorem: 

The significance of the following theorem is that it is a sprt pf cpmverse 

 f  h      br   d C u hy’   h  r    



Theorem (Morera’s theorem): If f(z) be continuous in a simply 

connected domain D and  

         
 

 

Wh r  τ      y r    f  b        d J rd    urv  in D, then f(z) is analytic in 

D. 

Proof.: Suppose z is any variable point and z0 is a fixed point in the 

r      D        u      τ1   d τ2 are ay two continuous rectifiable curves 

in D joining z0    z   d τ     h       d       u u  r    f  b    urv  

consist     f τ1 and -τ2. Then we have 

     
 

          
  

        
   

 

And             
 

  (given) 

So          
  

         
   

        
  

 

i.e., the integral along every rectifiable curve in D joining z0 to z is the 

same. 

Now consider a function f(z) defined by  

            
 

  

 

As we know that the integral (1) depends only on the end points z0 to z. 

we have 



              
   

  
                             

From (1) and (2) we have 

                   
   

  
        

 

  
  

           
   

  
        

  

 
 

           
   

 
                   

Since the integral on the right hand side of (3) is path independent, it 

may be taken along the straight line joining z to z+h, so that 

           

 
      

 

 
       

   

 

 
    

 
  

       
 

 
        

   

 
        

   

 
  

       
 

 
              
   

 
          

The function f(t) is given to be continuous at z. therefore for a given 

    there exists a     such that 

             , 

Where         

Since h is arbitrary, choose       so that every point t lying on the line 

joining z to z+h satisfies (5) from (4) and (5), we have 

 
           

 
       

 

   
            

   

 

     



 
 

   
      

   

 
, from (5) 

 
 

   
       

Since   is small and positive, we have 

   
   

 
           

 
         

i.e.          
           

 
            

H     f’ z    f z        f z     d ff r     b   f r     v  u    f z    D  

consequently f(z) is analytic in D. Since the derivative of an analytic 

function is analytic, it follows that f(z) is analytic in D. 

3.15 SUMMARY 

 In this unit we have discussed:  

• Integration and differentiation of complex valued function of a real variable;  

• The concept of an arc and the concept of a contour;  

• The concept of a rectifiable arc, some conditions for an arc to be rectifiable 

and the concept of arc length of a rectifiable arc;  

• Integration of a continuous function defined on a domain of the complex 

plane along a contour; 

 • The concept of antiderivative of a function and conditions for the existence 

of a function in a domain; 



The results of this unit may be summarised as follows:  

• An oriented curve is an ordered aggregate of points; the order being induced 

by the manner in which the parameter of the curve varies.  

• A continuous curve in the complex plane C is a continuous mapping from a 

closed interval into C. 

 • If a continuous mapping is one-to-one, it is called a Jordan arc.  

• A Jordan curve is a Jordan arc z (t) such that z (a) = z (b), when t   (a, b). 

 • Jordan curve z divides the complex plane into two parts: the interior and 

exterior of z.  

• A domain bounded by a Jordan curve is called a Jordan Domain. 

 • If two end points of a curve meet but it does not intersect at any other 

point, the curve is called a Closed Curve. 

 • A curve z (t) = x (t) + i y (t) is called a Smooth Curve if x (t) and y (t) have 

continuous derivatives at all points of its interval and the derivatives do not 

vanish simultaneously in the interval.  

• For a curve z (t) = x (t) + i y (t), if x (t) and y (t) have continuous derivatives 

at all points except at finite number of points, then the curve is called 

Sectionally or Piece-wise Smooth Curve.  

• Jordan arcs with continuously turning tangent are called Regular arcs.  

• A contour is a continuous curve consisting of finite number of regular arcs.  



• A region in which every closed curve can be contracted to a point without 

passing out of the region is called a Simply-connected Region, otherwise the 

space is Multiply-connected. 

 

3.16 Terminal Questions 

1. Evaluate  
   

      
  

 
  where   is       

2. Using Cauchy integral formula, calculate the following integrals. 

(i)  
 

           
  

 
, where   is the circle       described in positive sense. 

(ii)  
       

       
  

 
  where   is the circle       

3.  Evaluate  
  

        
 where   is          

4. Evaluate     
   

 
  along the line joining the points (0, 0) and (3, 1). 

5.  Evaluate  
  

     
 

 
 where C is a closed curve and     is (i) outside c and 

(ii) inside c. 

6. Evaluate  
  

    
             where     is a point inside the simple 

closed curve c. 

7. Evaluate  
  

    
 around (i) the circle         and (ii) the circle 

         

8. Show that f z      
   d 

 

 
 is entire, and compute f ′ (z). 



9. Evaluate  
  

    
 around the square vertices at             

10. Evaluate  
    

     
 over the circular path       
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4.1 Introduction: 

In this unit we shall introduce you to the series representation of a complex 

valued function f . We shall show that if f is analytic in some domain D., then 

it can be represented as a power series at any point     D in powers of 

    which is the Taylor series of f about   . If f fails to be analytic at a 

point    , we cannot find Taylor series expansion of f about that point. 

However, it is often possible to expand f in an infinite series having both 

positive and negative powers of      . This series is called the Laurent 

series. 

This leads up to study of Morera’s theorem, Cauchy’s inequality, Liouville’s 

theorem, Maximum Modulus theorem. The study of complex integration will 

be incomplete without the study of Taylor’s series and Laurent’s series, 

which we also kept up in this unit. 

You have already studied that the sum of a power series with non-zero radius 

of convergence is an analytic function, regular within the circle of 

convergence. We now prove the converse theorem, known as Taylor’s 

theorem concerning analytic function of a complex variable. 

4.2 Objectives: 



After studying this unit, you should be able to 

• obtain the Taylor series representation of a complex-valued function about a 

point at which the function is analytic;  

• obtain a series representation of a complex-valued function about a point at 

which the function is not analytic in terms of Laurent series;  

• obtain the radius of convergence of a power series. 

 • Learn the results of Morera’s theorem, Cauchy’s inequality, Maximum as 

well as Minimum Modulus Theorem and Lioville’s theorem, and  

• study the use of Taylor’s series and Laurent’s series for development of 

series of complex functions. 

 

 

4.3 Taylors series: 

You may recall from your knowledge of real analysis that certain real-valued 

functions can be approximated by polynomials using Taylor theorem. Under 

certain conditions, an infinitely differentiable function in a neighbourhood of 

a point x0  R has a Taylor series expansion about that point. The Taylor 

series about zero is referred as Maclaurin series. Some of the well-known 

Maclaurin series expansions are: 

       
  

  
 

  

  
  ,     



       
  

  
 

  

  
 

  

  
 ,     

       
  

  
 

  

  
 

  

  
 ,    , 

We shall now extend these series expansions for functions of complex 

variables. 

If a function f(z) is analytic within a circle co with centre z0 and radius to then 

for every point z within c0 

                  
      

      
 

   
          

 
      

 

   
         

Or 

        
 
         

    where 

   
      

   
,  r <δ                    

 



Taylor’s Theorem:- If a function f(z) is analytic within a circle c with its 

centre z = a and radius R, then at every point z inside c. 

            
   

      

  
              i.e.,                   

    

Where            
     

  
 

 

[The series on the right-hand side is known as Taylor’s series of f(x).] 

Proof: - Let f(z) be analytic within a circle c whose equation is        . 

Let z be any point within c such that          . 

     
 

   
 

      

    

 

 
 

   
 

      

            

 

 
 

   
 

    

    

    
   

   
  

  

   



 
 

   
 

    

    

    
   

   
  

   

   
         

            
     

  

 

 

4.4 Cauchy’s Inequality: 

Statement: If f (z) is analytic within and on a circle              and 

if          on  ,Then          
   

  
 

Proof: From the n
th
 derivative of an analytic function, we have 

         
   

  
 

    

      
   

  
 

 

 
   

  
 

          

      
   

 

 

 
  

  

 

    
     
 

 

 
  

  
 
 

    
     

    

  
 

Which prove Cauchy’s Inequality. 

For the special case,      Cauchy’s Inequality becomes           



which shows that on every circle around   , no matter how small, | f (z) | has 

a maximum value M which is at least as great as f (  ). This result is usually 

referred to as the Maximum Modulus Theorem, which may stated as  

The absolute value of non-constant function f (z) cannot have a maximum at 

any point where the function is analytic. If f (z) is analytic at all points of a 

closed region R, bounded by a simple closed curve C, then the real function | 

f (z) | must have a maximum at some point of R. By the Maximum Modulus 

Theorem, the maximum cannot occur in the interior of Ri hence it must occur 

on the boundary C. This gives the following result: 

 Corollary of the Maximum Modulus Theorem If f (z) is a non-constant 

function which is analytic over a closed region R bounded by a simple closed 

occur C, then the maximum value of | f (z) | over R occurs on the boundary C. 

A similar result is true for the minimum value of | f (z) | over R, provided f 

(z) ≠ 0 in R. This result is known as Minimum Modulus Theorem, which 

states If f (z) is analytic inside and on a simple closed curve C, and f (z) ≠ 0 

inside C, then | f (z) | must assume the minimum value on C. This result can 

be proved by applying the maximum modulus theorem to 
 

    
. 

Example: If f (z) be analytic within and on the boundary of a bounded 

domain D, show that Re f (z) and Im f (z) attain maximum values on the 

boundary of D.  

Solution: Let                     be an analytic function within and 

on the boundary of D. Then g (z) = exp [f (z)] is analytic in D.  



Hence, by maximum modulus theorem, 

                          is attained on the boundary of D.  

Since real exponential function is an increasing function, therefore         

         also attains its maximum exactly at the same points at    , i.e. on 

the boundary of D.  

Similarly, by considering g (z) = − i f (z), we can show that Im f (z) = v (x, y) 

also attains its maximum on the boundary of D. 

Another theorem, which can be readily deduced from Cauchy’s Inequality is 

called Lioville’s Theorem, which we take up next. 

4.5 Liouville’s Theorem: -  

Bounded function: - A function f(z) analytic in a domain D is said to be 

bounded if there exists a number M > 0 such that 

        ,                   

Theorem: - If a function f(z) is analytic for all finite values of z and is 

bounded, then it is a constant. 

Or 

If f(z) be an integral function satisfying the inequality          for all 

finite values of z, where M is a positive constant, then f(z) is constant. 



Proof: - Let z1, z2 be any two points of the z-plane take the contour C to be a 

large circle, with its centre origin and radius R, enclosing the points z1 and 

z2, so that        and also       . By Cauchy’s integral formula, we 

have 
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Whence  

                
 

   
 

             

             

  

  
 

   
  

                 

             

 

 
 

  
        

    

                     

 

 
 

  

        

                
     
 

 



 
 

  

        

                
    

  

 

 

Since       ,             

 
           

                  
 

        

    
    

 
    

    

 
 
 

4.6 Laurent’s Theorem 

Suppose a function      is analytic in the closed ring bounded by two 

concentric circles C and    of centre   and radii   and   (       . 

If   is any point of the annulus. Then                 
   

           
    

Where    
 

   
 

      

        
 

 
   

 

   
 

      

         
 

 
 

Proof: Let      be analytic in the closed ring bounded by two concentric 

circles C and    of centre   and radii   and   (       . 

Then if   is any point within the ring space, then 

             

By Cauchy’s integral formula  
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We let    
 

   
 

      

        
 

 
   

 

   
 

    

         
        

 

Then by equation (1), we have  
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Where      
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And  
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Let                            

                              

From equation (3), 
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  ……………..(5) 

Now from equation (4),        
 

  
 

      

     

        

          
                      

                   

Solving above  

                      
  

 
 
   

 
 

 

  
  

      
  

 
      

 

  
 

  ……………..(6) 

Now by equation (2), using equations (5) and (6), we have  

        
 
             

 
          ……………….(7) 

 

Where     
 

   
 

      

         
 

     
 

   
 

      

           
 

 

4.7 Laurent’s Series: - 



If f(z) is analytic in the ring-shaped region (annulus region) R bounded by 

two concentric circles c1 and c2 with centre a and radius r1 and r2 (r1 > r2) then 

all z in R. 

        

 

   

          

 

   

        

Where     
 

   
 

      

          
 

     
 

   
 

      

           
 

z be any point in the annulus region s.t.        , r1 > r2 and w be any 

point on the circle c1. 

 

 

Remark 1 It should be noted that the coefficients of the positive powers of (z 

– a) in Laurent’s expression, although identical in form with the integrals of 

Taylor’s Theorem, cannot be replaced by the derivative expressions 
       

  
 , 



since f (z) is not analytic throughout the entire interior of C2 (or C) and hence 

Cauchy’s generalised integral formula cannot be applied. Specifically, f (z) 

many have many points of non-analyticity within C1 and therefore within C2 

(or C). 

 Remark 2 The Laurent expansion of a function over a given annulus, if it 

exists, is unique. Remark 3 As in the case of Taylor’s series, the Laurent 

expansion of a given function in a given annulus is usually not found through 

the use of Laurent’s Theorem but rather by algebraic manipulations 

suggested by the nature of the function. Such procedures are correct because 

Laurent expression, if exist, is unique. Thus if an expansion of the Laurent 

form is found by any process, it must be the Laurent expansion.  

Remark 4 The real importance of Laurent’s theorem rests in the fact that it is 

an existence theorem. It shows that an analytic function can be expanded, 

under certain circumstances, as a series of a given type, but it does not 

necessarily provide the simplest method of calculating the coefficients.  

Remark 5 It should be observed that Laurent’s theorem will not provide an 

expansion of the logarithm of z as a series of positive and negative powers of 

z – for log z is a many valued functions, whose principal value, log z, is 

discontinuous along the negative half of the real axis and so is not regular in 

any annulus with centre at the origin. 

Example.1 Find the first four terms of the Taylor’s series expansion of the 

complex variable function      
   

          
 about z = 2 



Solution. We have  

     
   

          
       at z = 2,   f(2) = 3/2 

To make the differentiation easier let us  

   

          
 

  

   
 

 

   
 

      
 

      
 

 

      
 

        
 

 
 
  

 
 

      
  

      
 

 

      
 

        
  

 
 
  

 
 

       
  

      
 

  

      
 

          
  

  
 
   

 
 

Then Taylor’s Series is 

                     
      

   
        



 
 

 
       

  

 
 
      

 
 
  

 
       

  

  
 

Example.2 expand      
 

          
 in the region 

(a)               (b)           

Solution: by Partial fraction 
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Which is a Taylor’s series. 

(b)            i.e.   
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Which is Laurent’s series. 

Example.3 Obtain the Taylor’s & Laurent’s series which represent the 

function 
    

          
 

(i)               (ii)                     (iii)        

Solution: - if                 

              Or  
   

 
   

       
    

          
   

 

   
 

 

   
  

         
 

 
   

 

 
 
  

 
 

 
   

 

 
 
  

 

     
 

 
   

 

 
 

  

 
 

  

 
      

 

 
   

 

 
 

  

 
 

  

  
      

     
 

 
      

  

  
 
    

 

 
      

  

  
 
    

     
 

 
       

 

    
 

 

    
  

      

Which is Taylor’s series valid in                

(ii) when        ,   
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Which is Laurent’s series in the annulus region. 

(iii)               or          or    
 

   
   

        
 

   
 

 

   
 

     
 

    
 

 
 
 

 

    
 

 
 
 

     
 

 
   

 

 
 
  

 
 

 
   

 

 
 
  

 

     
 

 
   

 

 
 

  

  
 

  

  
     

 

 
   

 

 
 

  

  
 

  

  
     

     
 

 
      

  

  
 
    

 

 
      

  

  
 
    

            
  

    
 
           

  

    
 
    



           
 

    
 
                 Ans. 

Example.4 Find the Laurent’s series expansion of      
    

           
 in the 

region          . 

Solution: The given function is      
    

           
 

Let              then 

      
        

             
 

    

           
 

By partial function 

      
  

 
 

 

   
 

 

   
 

Since         
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Hence  



      
  

   
 

 

      
 

 

      
     

 
 

 
   

     

 
 
      

  
 
      

  
       

Example.5 Find the Laurent’s series expansion of      
       

               
 in 

region  

          

Solution: The given function is       
       

               
 

By partial fraction 

      
 

   
 

 

   
 

 

   
 

Since            writing        
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Which is required Laurent’s series. 

Example.6 Expand      
 

          
                                                                                                        

Solution-     
 

          
 

 

   
 

 

   
 

In first bracket      ,we take out 2 as common and from second bracket z 

is taken out common as        

      
 

 
 

 

  
 

 

  
 

 
 

 

  
 

 

   
 

 
   

 

 
 
  

 
 

 
   

 

 
 
  

 

      
 

 
   

 

 
 
  

 
 
  

 
    

 

 
   

 

 
 

 

  
 

 

  
    

      
 

 
 
 

 
 
  

 
 
  

  
   

 

 
 

 

  
 

 

  
  

Example.7 Expand  
 

            
 in the regions        



Solution- we have      
 

            
 

     
 

 
 

 

   
 

 

   
  

If the regions       
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Example.8 Expand the function          in powers of z. 

Solution- Let          

  

  
 

 

     
 

        
 

                    (1) 

On expanding the R.H.S. of binomial theorem, we have 



  

  
   

 

 
      

  

 
  

 

 
 

  
         

  

  
   

  

 
 
 

 
     

On integrating, we have     
  

 
 

   

  
     

Putting                     

              

We have           
  

 
 

   

  
   

4.8 Singular point: 

A point at which a function f(z) is not analytic is known as a singular point or 

singularity of the function. 

For e.g.       
 

   
 has a singular point at z – 2 = 0 or z = 2 

(1) Isolated singularity: - 

If z = a is a singularity of f(z) such that f(z) is analytic at each point in 

its neighbourhood (i.e. there exists a circle with centre ‘a’ which does 

not contain other singularity), then z = a is called an isolated 

singularity. 

In such a case, f(z) can be expanded in a Laurent’s series around z = a, 

giving 



                             
  

   
 

  

      
     

…….(1) 

  g. of non isolated singularity:- 

     
 

   
 

 

 is not analytic at the points where    
 

 
   i.e. at the points 

 

 
      i.e., the points   

 

 
               , thus       

 

 
     

 

 
    are all isolated singularities or there is no other singularity in their 

neighbourhood. 

But when n is large, z = 0 is such a singularity that there are infinite number 

of other singularities in its neighbourhood. Thus z = 0 is the non-isolated 

singularity of f(z). 

(ii) Removable singularity: - 

If all the negative powers of (z – a) in  (1) are zero, then      

          
   . There the singularity can be removed by defining f(z) at z 

= a in such a way that it becomes analytic at z = a such a singularity is called 

a removable singularity. 

Thus if            exists finitely, then z = a is a removable singularity. 

(iii) Poles: 

If all the negative powers of (z – a) in (1) after the nth are missing, then the 

singularity at z = a is called a pole of order n. 



A pole of first order is called a simple pole. 

(iv) Essential singularity: - 

If the number of negative powers of (z – a) in (1) is infinite, then z = a is 

called an essential singularity. In this case              does not exist. 

Example.1 Find the nature and location of singularities of the following 

functions. 

(i) 
      

  
   (ii)           

 

   
       (iii) 

 

         
 

Solution: (i) Here z = 0 is a singularity. 

Also 
      

  
 

 

  
      

  

  
 

  

  
 

  

  
      

   
 

  
 

  

  
 

  

  
    

Since there are no negative powers of z in the expantion z = 0 is a removable 

singularity. 

(ii)          
 

   
 ,     writing z – 2 = t 

                         
 

 
 

           
 

 
 

 

    
 

 

    
    

       
 

    
 

 

    
     

 

 
 

 

   
 

 

    
    



      
 

 
 

 

   
 

 

   
 

 

     
        

     
 

   
 

 

       
 

 

       
 

 

         
          

Since there are infinite number of terms in the negative powers of (z – 2), z = 

2 is an essential singularity. 

(iii) Poles of       
 

         
are given by equating denominator to zero, i.e. 

by 

                     or           or    
 

 
 clearly   

 

 
 is a simple pole 

of f(z). 

4.9 Zeros of an analytic function: - 

The zeros of analytic function: - The value of z for function f(z) becomes 

zero is said to be the zero of f(z). 

 If f(z) is analytic in a domain D and z0 is any point of D, then we can 

expand f(z) as Taylar’s series about z = z0 given by 

              
 

 

   

 

If a0 = a1 = a2 = …..=an-1 = 0 and am ≠ 0, f(z) is said to have a zero of order m 

at z = z0 

 In this case Taylor’s expansion of f(z) reduces to 



              
             

   

 

   

 

   

 

               
            

  
    

A zero of order one (m=1) is said to be a simple zero, the following theorem 

shows that the zeros. 

Theorem1:- If f(z) is an analytic function in a domain D, then unless f(z) is 

identically zero. There exists a neighbourhood  of each point in D throughout 

which the function has no zero except possibly at the point itself. 

Or 

The zeros of analytic function are isolated. 

Proof:- Let z = zo be a zero of order m of the function f(z). then we can write 

           
            

  
           …………………… (1) 

        
     , say 

Where                    
  

    

Clearly                    

 Now the series (1) is uniformly convergent and its each term is 

continuous at z0. Therefore,      is also continuous at z0. Hence for     

there exists a     such that  

               



Where            

Let us choose   
 

 
     and let    be the corresponding values of  . 

Then from (2) and (3), we have 

          
 

 
     

Where          . Now if we set       ,  (4) will not hold. Thus 

       can not be zero at any neighbourhood of z0. The argument also 

holds good when m = 0 in which case           and        ,  

 Hence the zeros of an analytic function are isolated. 

4.10 Limit Points of Zeros and Poles: 

Limit point of zeros: - we prove here the following result concerning limit 

point of the set of zeros of an analytic functions. 

Suppose     is a limit point of the sequence of poles of an analytic 

function f(z). then every neighbourhood of the point     containing poles 

of the give function. Therefore the point     is a singularity of       This 

singularity cannot be a pole, since it is not isolated. Such a singularity is 

called non-isolated essential singularity or essential singularity simply. 

Theorem 1. If f(z) is an analytic function in a simply connected region D and 

a1, a2, a3….. is a sequence of zeros of f(z), having a as its limit point, then 



eighter f(z) vanishes identically or else has an isolated essential singularity at 

z = a. 

Proof. Let E be the set of sequence of zeros a1, a2, a3, …..  if    . Then we 

would have f(a) = 0. Since a is a limit point of the set E, every neighbourhood 

of a must contain infinitely many points of E. But this is contrary to the fact 

that zeros are isolated. Hence a can not be a zero of the function f(z) unless 

f(z) is identically zero in the region D. 

 On the other hand, if f(z) does not vanish identically in D, then a is not 

a zero of f(z) while being surrounded by many zeros. This shows that a is a 

singularity. This singularity can not be a pole since f(z) does not tend to 

infinity in the neighbourhood of a, the function f(z) is analytic (tending to 

zero everywhere in the neighbourhood). Hence a is an isolated essential 

singularity. 

Working Rule:- If we are to show that a certain point a is an isolated 

essential singularity of f(z) it will do if we prove that a is the limit point of 

zero of f(z). 

Limit point of Poles:- we prove below a useful result for limit point of poles. 

Theorem 2. The limit point of a sequence of poles of a function f(z) is non-

isolated essential singularity. 

Proof- Let a be the limit point of a sequence of poles so that f(z) becomes 

unbounded there. Consequently, f(z) can not be analytic at a. 



Thus a is a singularity of f(z) but is not isolated. Hence a must be a non-

isolated essential singularity of f(z). 

Working Rule: - If we are to show that a certain point a is a non-isolated 

essential singularity of f(z) it will do if we prove that a is the limit point of 

poles of f(z). 

Example: - Show that the function      
 
 has no singularities. 

Solution. We have f(z) =      
 
. The zeros of f(z) are given by      

 
  ,   

i.e.       

So z = 0 is a zero of order two, since these zeros have no limit point, there is 

no singularity of f(z). 

 Further, poles of f(z) are given      
 
   which does not hold for any 

z. so there exist no poles. 

 Hence      
 
 has no singularities. 

4.11 SUMMARY 

The results of this unit may be summarised as follows: 

Maximum Modulus Theorem: The absolute value of a non-constant function 

f (z) cannot have a maximum at any point where the function is analytic. 

Further, if f (z) ≠ 0 inside C, then | f (z) | must assume its minimum value on 

C. 



 • Lioville’s Theorem: If f (z) is an integral function which satisfies inequality 

| f (z) | for all z, M being a constant, then f (z) is a constant. 

 • Taylor’s Theorem: If f (z) is an analytic function, regular in the 

neighbourhood | z – a | < R of the point z = a, it can be expressed in that 

neighbourhood as a convergent power series of the form           

      
      

  

 
      

The above expansion is uniformally convergent when | z – a | ≤ R1, provided 

R1 < R. When a = 0, in the above expansion, it becomes 

                
  

  

 

   

 

which is called Maclaurin’s Series for f (z). 

Laurent’s Theorem: If f (z) is analytic throughout the closed region bounded 

by two concentric circles, then at any point of the annulus region bounded by 

the circles, f (z) can be represented as                   
   

where a is the centre of concentric circles and 

   
 

   
 

    

         

   

each integral being taken in the counter clockwise direction around any curve 

C lying in the annulus and encircling the inner boundary. The Laurent’s 

expansion of a function over a given annulus, if it exists, is unique. 



4.12 Terminal Questions 

1. If f (z) is entire and satisfies an inequality             for some n and 

sufficiently large | z |, then prove that f (z) must be a polynomial. 

2. Find Taylor Series of      
 

 
 about                   

Determine the circle of convergence in each case. 

3. Develop the function      
 

      
  into Taylor series about 0. 

4. Expand sin z in a Taylor series about the point    
 

 
 . 

5. Find the Laurent’s expansion of the function      
    

           
 in the 

annulus  

1 < | z + 1 | < 3. 

6. For the function      
     

    
, find (a) Taylor’s series expansion valid 

in the neighbourhood of the point z = i. 

 (b) Laurent’s series expansion within the annulus when centre is the 

origin. 

      7. A rational function has a no Singularities other than poles. 

      8. Find zeros and poles of  
   

    
 
 

 

      9. What kind of Singularity has the function 

         (a)      
 

    
 

 
 
        

         (b) and cot z at     



     10. Show that the function  
 

 

   has no Singularities. 
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Block – 3 

 

The Calculus of Residues (Integration)and Evaluation of real definite 

integrals by contour integration 

 

The calculus of residues (integration) is an important and useful tool in complex analysis. A zero 

of analytic function is the value of for which. A point at which a function is not analytic is 

known as a singular point or singularity of the function. Residue of at is defined as where the 

integration is taken round in anti-clockwise direction, where is a large circle containing all finite 

singularities of  in the second unit we introduce Contour Integration of residue classes which is 

an important and useful tool in complex analysis. It gives many important techniques for finding 

the complex integration and it is useful to find many other important theories of complex 

analysis which are necessary for the development in mathematics. A large number of real 

definite integrals, whose evaluation by usual methods become sometimes very tedious, can be 

easily evaluated by using Cauchy’s theorem of residues. For finding the integrals we take a 

closed curve, find the pole of the function and calculate residues at those poles only which lie 

within the curve. (Sum of the residues of at the pole within) We call the curve, a contour and the 

process of integration along a contour is called contour integration. 

 

 

 



Unit-5  

THE CALCULUS OF RESIDUES (INTEGRATION) 

5.1. Introduction  

5.2. Objectives 

5.3. Zero of Analytic function 

5.4. Singular point 

5.5. The residue at a pole 

5.6. The residue at infinity 

5.7. Method of finding residues  

5.8. Applications 

5.1. INTRODUCTION: 

The calculus of residues (integration)  is an important  and useful tool in complex analysis. A 

zero of analytic function      is the value of   for which         . A point at which a function 

     is not analytic is known as a singular point or singularity of the function. For example, the 

function 
 

   
 has a singular point at z – 2 = 0 or z = 2. If       is a singularity of      and if 

there is no other singularity within a small circle surrounding to the point      , then       is 

said to be an isolated singularity of the function     ; otherwise it is called non-isolated. Let a 

function      have an isolated singular point            can be expanded in a Laurent’s series 

around      , giving 

                           
  

   
 

  

      
   

  

      
 

    

         

    

                   …………. (1) 

In some cases it may happen that the coefficients                 , then     reduces to 

                           
  

   
 

  

      
   

  

      
 

                          

 
 

      
                                        

When       is said to be a pole of order m of the function     , when        the pole is said 

to be simple pole. In this case                           
  

   
 



If the number of the terms of negative powers in expansion (1) is infinite, then       is called to 

essential singular point of       Let       be a pole of order m of a function      and    

circle of radius   with centre at       which does not contain any other singularities except at 

      then      is analytic within the annulus           and can be expanded within the 

annulus. The coefficient b1 is called residue of      at the pole      . it is denoted by symbol,  

     at         b1.Residue of      at     is defined as  
 

   
     
 

   where the 

integration is taken round   in anti-clockwise direction, where   is a large circle containing all 

finite singularities of     .  

5.2. Objectives 

After studying this unit we should be able to: 

 The definition of Zero  and poles of Analytic function; 

 Definition of Singular point ; 

 Definition of the residue at a pole; 

 The residue at infinity; 

 Method of finding residues; 

 Applications; 

A point at which a function      is not analytic is known as a singular point or singularity of 

the function. 

For example, the function 
 

   
 has a singular point at z – 2 = 0 or z = 2. 

If       is a singularity of      and if there is no other singularity within a small circle 

surrounding to the point      , then       is said to be an isolated singularity of the function 

    ; otherwise it is called non-isolated. Let a function      have an isolated singular point 

           can be expanded in a Laurent’s series around      , giving 

                           
  

   
 

  

      
   

  

      
 

    

         

    

        
           …………. (1) 

In some cases it may happen that the coefficients                 , then     reduces to 

                           
  

   
 

  

      
   

  

      
 

                          

 
 

      
                                        



When       is said to be a pole of order m of the function     , when        the pole is said 

to be simple pole. In this case                           
  

   
 

If the number of the terms of negative powers in expansion (1) is infinite, then       is called to 

essential singular point of       Let       be a pole of order m of a function      and    be 

circle of radius   with centre at       which does not contain any other singularities except at 

      then      is analytic within the annulus           and can be expanded within the 

annulus. Laurent’s series: 

        
 
                     

                         …………… (1) 

Where      
 

   
 

      

         
                                    ……………..(2) 

And         
 

   
 

      

           
                                    ……………..(3) 

        being the circle C1. 

Particularly,    
 

   
       
  

 

The coefficient b1 is called residue of      at the pole      .  

it is denoted by symbol,       at         b1. 

Residue of      at     is defined as  
 

   
     
 

   where the 

integration is taken round   in anti-clockwise direction, where   is a large circle containing all 

finite singularities of     . 

5.3. Zero of Analytic Function: 

A zero of analytic function      is the value of   for which         , 

Example 1: Find out the zeros and discuss the nature of the singularities of      
     

  
    

 

   
  

Solution: Pole of      are given by equating to zero the denominator of                is a 

pole of order two. 

Zeros of      are given by equating to zero the numerator of              –         
 

   
    

⇒   Either   –        or     
 

   
    

⇒               and  
 

   
    

⇒                
 

  
              

Thus,       is a simple zero. The limit point of the zeros are given by  



  
 

  
                is      . 

Hence       is an isolated essential singularity.    

5.4 Singular Point: 

A point at which a function      is not analytic is known as a singular point or singularity of 

the function. 

For example, the function 
 

   
 has a singular point at z – 2 = 0 or z = 2. 

Isolated singular point: If       is a singularity of      and if there is no other singularity 

within a small circle surrounding the point      , then       is said to be an isolated 

singularity of the function     ; otherwise it is called non-isolated. 

Example 2: The function 
 

          
 has two isolated singular points, namely       and      . 

[(  –       –                      

Example 3: Non-isolated singularity. Function 
 

   
 

 

 is not analytic at the points where    
 

 
 

 i.e. at the point 
 

 
    i.e., the points   

 

 
            . Thus     

 

 
 
 

 
         are 

the points of singularity.       is the non-isolated singularity of the function 
 

   
 

 

 because in the 

neighbourhood of      , there are infinite number of other singularities   
 

 
, where   is very 

large. 

Pole of order m:  Let a function      have an isolated singular point            can be 

expanded in a Laurent’s series around      , giving 

                           
  

   
 

  

      
   

  

      
 

    

         

    

                   …………. (1) 

In some cases it may happen that the coefficients                 , then     reduces to 

                           
  

   
 

  
      

   
  

      
 

                          

 
 

      
                                        

When       is said to be a pole of order m of the function     , when        the pole is said 

to be simple pole. In this case                           
  

   
 

If the number of the terms of negative powers in expansion (1) is infinite, then       is called to 

essential singular point of       



Example 4: Define the singularity of a function. Find the singularity (ties) of the functions 

(i) f(z) =    
 

 
           (ii)         

Solution:  (i). We know that 

   
 

 
 
 

 
 

 

    
 

 

    
          

 

            
 

Obviously, there is a number of singularity. 

   
 

 
 is not analytic at                               

 

 
           

Hence    
 

 
 has a singularity at      . 

(i) Here, we have      
 

  

  
 

We know that,  
 

  
  

 

  
  

 

  
   

 

 
 

 

    
 

 

    
     

 

    
    

 
 

  
 

 

  
 

 

    
 

 

    
     

 

      
  + 

Here,      has infinite number of terms in negative powers of z. 

Hence,      has essential singularity at      . 

Example 5:  Find the pole of the function 
    

      
 

Solution:  
    

      
 

 

      
         

      

  
    

The given function has negative power         –      

So, the given function has a pole at        of order 2. 

Example 6:  Find the pole of            
 

   
  

Solution:     
 

   
  

 

   
 

 

  

 

      
 

 

  

 

      
    

The given function      has infinite number of terms in the negative power of   –     so      has 

essential singularity at        

Example 7:  Find the pole of      
         

      
 

Solution:  
         

      
 

 

      
       

      

  
 

      

  
 

      

  
    

 
 

      
   

      

  
 
      

  
 
      

  
    



The given function has a negative power 3 of    –      

So,      has a pole at       of order 3. 

Example 8: Prove that             
 

    does not exist. 

Solution:          
 

    

    
   

   
 

   
 

 

        
 

 

        
   

 

        
      

Here    ,      has infinite number of terms in negative power of    –      

Thus,      has essential singularity at      . 

Hence, f(z) =        
 

    does not exist. 

Example 9:  Discuss singularity of 
 

    
         . 

Solution: We have,          
 

    
 

The poles  are determined by putting the denominator equal to zero. 

i.e.,        

⇒                             

⇒        (n = 0, ±1, ±2, ……) 

Clearly z =     is a simple pole. 

Example 10: Discuss singularity of 
     

      
 at       and z = ∞ 

Solution: Let      
     

      
 

     

           
 

The poles are given by putting the denominator equal to zero, 

i.e.,              ⇒          or               

⇒                                   

⇒             

     has essential singularity at        

Also,       being repeated twice gives the double pole.                                    

Example 11:  Show that  
  

 

  
 
 has no singularities. 

Solution:          
  

 

  
 
 

 

 
 
 

  
 
 



The poles are determined by putting the denominator   
 
 

  
 
   

It is not possible to find the value of   which can satisfy equation (1). 

Hence, there is no pole or singularity of the given function   

Example 12:  Define the Laurent series expansion of a function and expand        
 

   
 
 in a 

Laurent series about the point      . 

Solution:  Here, we have  

       
 

   
 
    

     

   
 
 

     
 

   
 
     

 

     
 
 
  

    
    

 

 
 
  

 
 
  

 
    

 

       
  

 

 
 
  

 
 
  

 
    

    
  

 

 
 
  

 
 
  

 
    

 

    
 

 
 
  

 
 
  

 
 
 
 

 
 

  

 
 

  

 
 
 

  
 
 
 

 
 

  

 
 

  

 
 
 

  
     

    
 

 
 
  

 
 
  

 
 
  

 
 
  

  
 
  

 
 
  

  
 
  

  
     

   
 

 
 
  

 
 
  

  
      

Example 13: Find the nature of singularities of      
      

  
 at      . 

Solution:              
      

  
 

 
 

  
      

  

  
 
  

  
 
  

  
      

 
 

  
 
  

  
 
  

  
 
  

  
    

 

  
 
  

  
 
  

  
    

There is no negative power of z; 

Hence, there is no pole. 

Example14: Determine the pole of the function z,        
 

    
 

Solution:      
 

    
 



The poles of      are determined by putting the denominator equal to zero. 

i.e.,                   

      
 

                            
 

    

                          
 

    

     
       

 
      

       

 
 [By De Moiver’s theorem] 

 If n = 0, pole at       
 

 
      

 

 
    

 

  
  

 

  
  

If n = 1, pole at       
  

 
      

  

 
    

 

  
  

 

  
  

If n = 2, pole at        
  

 
      

  

 
    

 

  
  

 

  
  

If n = 3, pole at       
  

 
      

  

 
   

 

  
  

 

  
       

Example 15: Show that the function    has an isolated essential singularity at        

Solution:    Let        . Putting    
 

 
, we get 

  
 

 
   

 

    
 

 
 

 

    
 

 

    
   

Here, the principal part of   
 

 
  is 

   
 

 
 

 

    
 

 

    
   

Contains  infinite number of terms. 

Hence       is an isolated essential singularity of   
 

  and 

        is an isolated essential singularity of   . 

Check your progress 

Find the poles or singularity of the following functions: 

1. 
 

          
                                                          Ans: 2 simple poles at       and      . 

2. 
  

      
                                                                Ans:  Pole at       of order 3, 

3. 
 

         
                                                           Ans: Simple pole at   

 

 
 

4.    
 

 
                                                                  Ans: Essential singularity at       

5.                                                                    Ans: Non-isolated essential singularity 

6.    
 

 
                                                                  Ans: Essential singularity 



Theorem: If      has a pole at        then                 

Proof:  Let       be a pole of order   of     . Then by Laurent’s theorem 

              
 

   

           
 

   

 

          
 

 

 
  

   
 

  
      

   
  

      
 

          
 

 

 
 

      
                                     

          
 

 

 
    

      
 

Now                

Hence                 

 Example 16: If an analytic function f(z) has a pole of order m at      , then 
 

    
 has a zero of 

order m at z = a. 

Solution:  If f(z) has a pole of order m at      , then 

     
    

      
  where      is analytic and non-zero at        

Hence, 
 

    
 

      

    
 

Clearly, 
 

    
 has a zero of order m at      , since       . 

5.5.  The residue at a pole 

 Let       be a pole of order m of a function      and    circle of radius   with centre at 

      which does not contain any other singularities except at       then      is analytic 

within the annulus           and can be expanded within the annulus. Laurent’s series: 

        
 
                     

                         …………… (1) 

Where      
 

   
 

      

         
                                    ……………..(2) 

And         
 

   
 

      

           
                                    ……………..(3) 

        being the circle C1. 



Particularly,    
 

   
       
  

 

The coefficient b1 is called residue of      at the pole      .  

it is denoted by symbol,       at         b1. 

5.6 Residue at infinity 

Residue of      at     is defined as  
 

   
     
 

   where the integration is taken round   

in anti-clockwise direction, where   is a large circle containing all finite singularities of     . 

5.7.  Method of Finding Residues 

(a)  Residue at simple pole 

      (i) if      has a simple pole at      , then 

                           

Proof:                              
  

   
 

⇒                                          

⇒                                            

Taking limit as z   , we have                                                        

(ii) If      is of the form      
    

    
 where,       ,  

but       .                 = 
    

     
 

Proof:      
    

    
 ,                                               

    

    
 

       
                        

                  
       

  
        

  (By Taylor’s Theorem) 

       
                        

             
      

  
        

    [since       ] 

       
                 

      
     

  
        

  

                    
    

     
 

(b) Residue at a pole of order  ,  

If      has a pole of order n at      , then  

                  
 

      
 
    

     
             

   
 



Proof: If       is a pole of order n of function     , then by Laurent’s theorem 

                           
  

   
 

  
      

   
  

      
 

Multiplying by       , we get  

                                                      

                            

Differentiating both sides w.r.t.   ’   –     times and putting        we get 

 
    

     
             

   

          

⇒    
 

      
 
    

     
             

   

 

                      
 

      
 
    

     
             

   
 

(c) Residue at a pole z = a of any order (simple or of order m) 

                      coefficient of 
 

 
 

Proof:  If      has a pole of order  , then by Laurent’s theorem 

                           
  

   
 

  
      

   
  

      
 

If we put   –                        then 

                   
    

  
 
 

  
    

   
  
    

 

             ,                   coefficient of  
 

 
 

Rule:  Put           in the function     , expand it in powers of  . coefficient of 
 

 
 is the 

residue of              . 

(d) Residue of                                

     Or, The residue of      at infinity =  
 

   
     
 

   

Example 17:  Find the residue at       of     
 

 
. 

Solution: Expanding the function in power of 
 

 
 we have 



    
 

 
     

 

   
 

 

    
      

   
 

  
 

 

    
    

This is the Laurent’s expansion about       

The coefficient of 
 

 
 in it is  

 

 
. So the residue of     

 

 
 at       is  

 

 
    

Example 18: Find the residue of      
  

    
 at        

Solution:  We have,      
  

    
 

     
  

     
 

  
 
     

 

  
 
  

  

     
 

  
 

 

  
      

 

 
 

 

  
   

Residue at infinity =           
 

 
    .                       

Example 19:  Determine the pole and residue at the pole of the function       
 

   
 

Solution:  The pole of     are given by putting the denominator equal to zero 

      ⇒     

The function      has a simple pole at       

Residue is calculated by the formula,        at                         

                                            
 

   
  

    
   

      

Hence      has a simple pole at       and residue at the pole is 1.                      

Example 20: Determine the pole and the residue at simple pole of the function       
  

           
 

Solution:  The pole of      are given by putting the denominator equal to zero. 

                              z = 1, 1, -2 

The function      has simple pole at                     pole of second order. 

Residue of                is                    [Residue =                ] 

    
    

     
  

           
 



    
    

  

      
 

     

       
 
 

 
 

Hence, residue at simple pole is 
 

 
 

Example 21:  Find the order of each pole and residue at it of 
    

           
. 

Solution: Let      
    

           
 

The poles of f(z) are given by               

           all are simple poles. 

Residue of                                       
   

       

           
 

    
   

    

           
 
 

 
 

                                           

    
   

           

           
    

   

    

      
   

                                           

    
   

           

           
    

   

    

      
  

 

 
 

Hence, the residue  of      at               

              
 

 
        

 

 
  respectively.  

Example 22: Determine the residue of      
  

                
 at its simple poles. 

Solution:  The poles of      are determined by putting the denominator equal to zero. 

i.e.                     

                                 

The simple poles of the function                              

Pole at       

Residue                 
  

                
  [Residue                     ] 

    
   

     
  

           
 

    

        
    

Pole at       



Residue                 
  

                
 

    
   

     
  

           
 

 
    

           
 
  

  
 

Hence, residue at       and              and 
  

  
 respectively                        

Example 23: Evaluate the residues of 
  

               
 at           at infinity and show that 

their sum is zero. 

Solution: Let      
  

               
 

The poles of      are determined by putting the denominator equal to zero. 

                                  

                                             

  =            
  

               
 

  =       
  

           
 

 

 
 

Residue of f(z) at (z = 2) =                 

=            
  

               
 

=       
  

           
    

Residue of                                   

 =            
  

               
 

  =       
  

          
 

 

 
 

Residue of f(z) at (z = ∞) =                

 =       
     

               
 

  =       
  

   
 

 
    

 

 
    

 

 
 
    

Sum of the residues at all the poles of f(z) 



 
 

 
   

 

 
    . Hence, the sum of the residues is zero.   

(e).  Residue of                     
 

      
 
    

     
             

   
 

Example 24:   Find the residue of a function      
  

           
 at its double pole. 

Solution: We have,       
  

           
 

Poles are determined by putting denominator equal to zero. 

i.e.,                

                     

The function has a double pole at          then  

Residue at                   
 

      
 
 

  
       

  

           
   

  
 

  
 
  

   
  

    
    

            

      
 
    

 

  
     

      
 
    

 
           

       
 

                         
   

 
 

 

 
 

Example25:  Find the residue of 
 

       
 at       

Solution: Let      
 

       
 

The pole of      are determined by putting denominator equal to zero. 

i.e.;             

or,                   or,       

Here,       is a pole of order 3 of      

Residue at       :        
 

      
 
    

     
       

 

       
   

        
 

  
 
  

   
 

 

      
           

 

 
 

   

      
  

 
 

 
 

  

      
 

 

   
 

 

   
  

  

  
 

Hence, the residue of the given function at z = i  is  
  

  
 



(f).  Residue (at          
    

     
 

Example 26: Determine the poles and residue at each pole of the function f(z) = cot z. 

Solution:           
    

    
 

The poles of the function f(z) are given by                                 

  Residue of                is 

 = 
    

 

  
      

 
    

    
                 

    

     
  

Example 27: Determine the poles of the function and residue at the poles      
 

    
. 

Solution:      
 

    
 

Poles are determined by putting                          

         
 

    
 
    

  
  

     
   

  

     
 

Hence, the residue of the given function at pole            
  

     
                  

(g).  Residue with Coefficient of 
 

 
,  Where   

 

 
 

Example 28: Find the residue of 
  

                
 at a pole of order 4. 

Solution: The poles of      are determined by                                 

  Here            is a pole of order 4. 

     
  

                
 ……………(1) 

Putting   –                     in (1), we get 

       
      

              
 

 
 

  
                    

 

 
   

 

 
 
  

 

 
 

 
 
 

 
 

 

  
 

 

  
 

 

  
                   

 

 
 
  

 
 
  

 
   

 
 

 
 
 

 
 

 

  
 

 

  
 

 

  
    

 

 
   

 

 
   

  

 
       

 
 

 
 
 

 
 

 

  
 
  

 

 

 
 
  

 

 

 
     



= 
 

 
   

 

 
 

  

 
 

  

 
 
 

 
 

Coefficient of 
 

 
 

 

 
   

 

 
 

  

 
 

  

 
  

   

  
 

Hence, the residue of the given function at a pole of order 4 is 
   

  
. 

Example 29: Find the residue of      
   

      
 at its pole. 

Solution: The pole of      is given by         i.e.       

Here,        is a pole of order 3. 

Putting            where   is small. 

     
   

      
 
         

  
 

  
 

  
 

 

  
         

 

  
 

 

  
    

    
 

  
 

 

  
    

 

  
 
  

  
    

    
 

  
 

 

  
 

 

  
 

 

  
 
 

 
 
 

 
    

    
 

 
  

 

 
   

 

 
      

 

  
    

 

  
    

Coefficient of 
 

 
    

 

 
    

Hence the residue at       is    
 

 
                         

Example 30: Find the sum of the residues of the function      
    

     
 at its poles inside the 

circle      . 

Solution: We have,      
    

     
 

The pole can be determined by putting denominator 

        

⇒       ,  
 

 
  

  

 
     

Of these poles only            
 

 
 lie inside a circle       

Residue of               is                      
    

    
      …………………… (1) 

Residue of             
 

 
 is 



     
 

 
   

 

 
         

  
 

 

   
 

 
     

    
  

    
  

 

 

   
 

 
           

           
[by L’Hopital’s Rule] 

 
 

 
 

 

  
 

 
            ………………. (2) 

Similarly, residue of      at    
 

 
  

 

 
                        …………….. (3) 

  Sum of the residues     
 

 
 

 

 
  . 

Check your progress 
1. Determine the poles of the following functions. Find the order of each pole. 

(i) 
  

               
           Ans. Simple poles at                   

(ii) 
     

           
                Ans. Pole at       of second order and       of first order. 

(iii) 
    

     
                       Ans. Poles at          order 1 

(iv) 
 

          
                Ans.             

Find the residue of the followings: 

2. 
  

          
 at its poles.   Ans. 27, -8 

3. 
  

     
 at z = ia               Ans. 

 

 
   

4. 
 

        
 at z = ia                       Ans.  

 

   
 

5.      at its pole   Ans. -1 at its poles     
 

 
  

6.    
 

  at the point             Ans. 1/6  

7.       
 

 
  at             Ans. 1/6 

8. 
 

       
 at             Ans. -1 

9. 
   

    
 at its pole       Ans. -1 

10. 
    

           
 at                     Ans. 1 

11. 
 

       
 at its poles     Ans. ½ 

Choose the correct answers: 

12. The function           
 

 
  

  

 has multiple poles all of which are isolated singularity. 

(i) False  (ii) True  (iii) Partially true  (iv) None of these 



13. The residue of a function can be evaluated only if the pole is an isolated singularity. 

(i) False  (ii) True  (iii) Partially true  (iv) None of these 

(ii)  

Residue Theorem: If f(z) is analytic in a closed curve  , except at a finite number of poles 

within  , then            
 

 (sum of residues at the poles 

within  ). 

Proof:  Let C1, C2, C3, …..Cn be the non-intersecting circle 

with centres at a1, a2, a3, …..an respectively, and radii so small 

that they lie entirely within the closed curve  . Then f    is 

analytic in the multiple connected region lying between the 

curves   and C1, C2, C3, …,Cn. 

Applying Cauchy’s Theorem 

       
 

        
  

        
  

        
  

            
  

 

                                              . 

Rouche’s Theorem: Suppose that   and   are meromorphic in a neighborhood        with 

no zeroes or poles on the circle                If                 are the number of 

zeroes(poles) of         inside   counted according to their multiplicities  and if       

   <  +|  ( )| on  , then      =       

Proof: From the hypothesis  
    

    
     

    

    
    on    If     

    

    
 and if   is a positive real 

number then this inequality becomes         which is a contradiction. Hence, the 

meromorphic function 
    

    
 maps   on             If   is the branch of logarithm on   them 

  
    

    
  is a well defined primitive for  

    

    
 
 

 
    

    
 
  

 in a neighborhood of     

Thus   
 

   
  

    

    
 
 

 
    

    
 
  

 
 

   
  

     

    
 

     

    
 

  
 

              

5.8. Applications: 

Example 31: Evaluate the following integral using residue 

theorem   
   

       
    Where   is the circle       

Solution:  The pole of the integrand are given by putting the 

denominator equal to zero. 

                  



The integrand is analytic on       and all points inside except      , as a pole at       is 

inside the circle      . 

 Hence by residue theorem 

 
   

       
       [        ]           ……………. (1) 

Residue              
   

      
    

   

   

   
 

 

 
 

Putting the value of Residue      in (1), we get 

 
   

       

       
 

 
     

Example 32: Evaluate the following integral using residue theorem 

 
    

            
     Where c is the circle     

 

 
 

Solution: The pole of the function      are given by equating the 

denominator is zero. 

                      

The function has poles at                       of which the 

given circle encloses the pole at                . 

Residue of      at the simple pole       is 

    
   

 
    

           
    

   

    

          
 

 
   

          
   

Residue of      at the simple pole       is  

    
   

 
    

           
 

    
   

    

      
 

   

      
    

By Cauchy’s integral formula 

     
 

                                    

                                          

Example 33:  Evaluate  
     

             
   where   is the circle: 



(i)                           (ii)          

Solution: We have      
     

            
 

Pole are given by 

      (double pole) and    
 

 
 (simple pole) 

Residue at         is 

   
 

      
 
 

  
        

     

            
  
   

 

  
 

  
 
     

    
  

   
 

  
                   

       
 
   

 

 
     

  
 

  

  
   

Residue at simple pole     
 

 
  is  

      
      

   
 

 
  

     

            
 

    
      

 

 
 
     

      
    

(i) The contour       encloses both the poles 1 and  
 

 
. 

  The given integral =                       

(ii) The contour          is a circle of radius    and centre at       . the distances 

of the centre from       and  
 

 
 are respectively    and  

  

 
. The first of these is 

    and the second is    . 

  The second contour includes only the first singularity        

Hence, the given integral                   .                           

Example 34: Evaluate the complex integral  
        

     
           

 
 

Solution:   
        

     
  

      

               
   

The pole of the integration are given by                 

i.e.            and        



i.e.                        

Both the poles are inside        . 

Residue (at      ) =            
      

             
 

 
      

      
    h   

To find the residue at      , we apply 
    

    
 method 

    

    
 

      

   

      
 
    

     
 

      

   

      
 

Residue [at (     )] = 
    

    
 

   

   

   
  

 

 
   

                                

By C u hy’  R   du  Th  r         
 

                             

 
   h  

    

                

Example 35:  Determine the poles of the following function and residue at each pole: 

     
  

           
 and hence evaluate  

    

            
 where        .  

Solution:       
  

           
 

Pole of      are given by                i.e.              

The pole at       is of second order and the pole at        is simple. 

Residue of      at (     ) 

=      
 

      

 

  

        

           
 

    
   

 

  

  

     
 

    
   

            

      
 

   
   

     

      
 

   

      
 
 

 
 

Residue of f(z) (at z = -2) =       
       

           
        

  

      
    



 
 

       
 
 

 
 

 
  

            

     
 

 
 
 

 
      

Example 36: Using residue theorem, evaluate 
 

   
 

     

            
 where C is the circle      . 

Solution:  Here, we have
 

   
 

     

            
 

Pole are given by       (double pole)  

And     -1    (simple poles) 

all the four poles are inside the given circle       

Residue (at      ) is        
 

  
    

   

           
 

    
   

 

  
 

   

           
  

    
   

                       

          
 

 
        

 
 
     

 
 

Residue at (          ) =          
          

                
 

    
      

   

         
 

        

                 
 

 
        

            
 
        

 
 

Similarly, Residue at (       –      = 
        

 
 

 
   

           
       (sum of the residues) 

 

   
 

   

           
   

   

 
 
        

 
 
        

 
 

 
   

 
 

   

 
            

   

 
 

   

 
           

 
   

 
 
   

 
     



Example 37: Evaluate  
 

      
  , where   is the circle       

Solution:   Here      
 

     
 

Poles are given by     h     

   h       So,       where n is an integer. 

Out of these, the poles      , 0 and    lie inside the circle 

      

The given function 
 

     
 is of the form 

    

    
 

Its pole at (       is 
    

     
 

 Residue at (           
 

         
 

 

         
 

 
 

    
   

 

  
    

Residue at (z = 0) = 
 

     
 

 

 
   

R   du      z   π     
 

        
 

 

         
 

 
 

        
  

 

    
 

 

  
    

Residues             are respectively -          . 

Hence, the required integral =                                   

Example 38: Evaluate  
  

     
   

 
 is the unit circle about origin. 

Solution: 
 

      
 

 

    
  

  
 
  

  
   

 
 

     
  

  
 
  

  
   

 

 
 

  
    

  

 
 

  

   
   

  

 

 
 

  
    

  

 
 

  

   
   

  

 
 

  

   
 

 

   

 
 

  
   

  

 
 

  

   
 
  

  
    

 

  
 
 

 
 

  

   
 
  

  
   

 
 

  
 
 

 
 
   

   
   



This shows that       is a pole of order 2 for the function 
 

     
 and the residue at the pole is 

zero (coefficient of 
 

 
).  Pole at z = 0 lies within C. 

 
 

      
       (sum of residues) = 0      

Check your progress 

1.  Ob     L ur   ’            f r  h  ju            
 

       
 at the isolated singularity and 

hence evaluate  
 

       
  

 
, where   is the circle        . 

2.  Evaluate  
 

       
   where C is triangle with vertices (0, 1), (2, -2), (7, 1). 

Evaluate the following complex integrals:  

3.   
    

            
  , where   is the circle         

4.   
     

     
     where   is the circle       

5.  
   

            
  , where   is the circle       

6.  
     

     
     where   is the circle         

7.  
 

             
     where   is the circle         

8.The residue at the pole of the function f(z) = cot z, equals, 

(i) 0 (ii) 1  (iii) -1  (iv) 2πi               Ans (ii) 

9.The function (z – 1)sin 1/z at z = 0 has 

(i) A removable singularity (ii) a simple pole 

(iii)    an essential singularity  (iv) a multiple pole           Ans. (iii) 

Conclusion: After studying this unit we should be able to know the definition of Zero  and 

poles of Analytic function, definition of Singular point  definition of the residue at a pole, the 

residue at infinity, method of finding residues and its applications in brief. 

 

 

 



Unit-6 

Evaluation of Real Definite Integrals by Contour Integration 

6.1. Introduction  

6.2. Objectives 

6.3 .Evaluation of real definite integrals by contour integration 

6.4. Integration round the unit circle of the type:                 
  

 
 

6.5. Evaluate of  
     

     

 

  
   where       and       are polynomials in    

6.6. Rectangular contour 

6.7. Indented semi- circular contour 

 

 

6.1. INTRODUCTION 

Contour Integration of residue classes is an important and useful tool in complex analysis.It 

gives many important techniques for finding  the complex integration and it is useful to find 

many other important theories of complex analysis which are necessary for the development in 

mathematics. A large number of real definite integrals, whose evaluation by usual methods 

become sometimes very tedious, can be easily evaluated by using Cauchy’s theorem of residues. 

For finding the integrals we take a closed curve  , find the pole of the function      and 

calculate residues at those poles only which lie within the curve  . 

           
 

 (sum of the residues of      at the pole within  ) 

We call the curve, a contour and the process of integration along a contour is called contour 

integration. 

6.2. Objectives 

After studying this unit we should be able to: 

 Evaluation of real definite integrals by contour integration; 

 Integration round the unit circle of the type:                 
  

 
 ; 

 Evaluate of  
     

     

 

  
   where       and       are polynomials in  ; 

 Rectangular contour; 



 Indented semi- circular contour; 

Contour Integration of residue classes is an important  and useful tool in complex analysis.It 

gives many important techniques for finding  the complex integration and it is useful to find 

many other important theories of complex analysis which are necessary for the development in 

mathematics. A large number of real definite integrals, whose evaluation by usual methods 

become sometimes very tedious, can be easily evaluated by using Cauchy’s theorem of residues. 

For finding the integrals we take a closed curve  , find the pole of the function      and 

calculate residues at those poles only which lie within the curve  . 

           
 

 (sum of the residues of      at the pole within  ) 

6.3. Evaluation of real definite integrals by contour integration 

A large number of real definite integrals, whose evaluation by usual methods become sometimes 

very tedious, can be easily evaluated by using Cauchy’s theorem of residues. For finding the 

integrals we take a closed curve  , find the pole of the function      and calculate residues at 

those poles only which lie within the curve  . 

           
 

 (sum of the residues of      at the pole within  ) 

We call the curve, a contour and the process of integration along a contour is called contour 

integration. 

6.4. Integration round the unit circle of the type:                 
  

 
 

Where              is a rational function of             . 

Convert           into    

Consider a circle of unit radius with centre at origin, as contour. 

     
        

  
 

 

  
   

 

 
 ,                        

     
        

 
 
 

 
   

 

 
  

As we know                         
  

  
 

The integrand is converted into a function of  . 

Then apply Cauchy’s residue theorem to evaluate the 

integral. 

Some examples of these are illustrated below. 



Example 1: Evaluate the integral:   
  

       

  

 
. 

Solution:   
  

       

  

 
  

  

    
        

 
 

  

 
 

 
   

             

  

 

                            

  
 

      
 

 
 

  

  
 , [C is the unit circle      ] 

 
 

 
 

  

            

  
 

 
 

  

            

    
  

            

 

Let      
  

            
 

Poles of the integrand are given by                  
 

 
   

There is only one pole at   
 

 
 inside the unit circle C. 

Residue at   
 

 
    

  
 

 

   
 

 
         

  
 

 

     
 

 
 

           
    

  
 

 

  

      
 

 
  

  
 

 
   

  
 

 
 

Hence, by Cauchy’s Residue Theorem 

I = 2πi (Sum of the residues within Contour) =      
 

 
  

 

 
 

 
  

       
 

 

 

  

 
                                              

Example 2: Use residue calculus to evaluate the following integral  
  

       

  

 
 

Solution:  Let I =  
  

       
  

 

    
        

  
 

  

 

  

 
   

  
  

              

  

 
      [putting          

  

  
] 

 
 

      
  

 
 

  

  
    where c is the unit circle      . 



  
  

          

 

Pole of integrand are given by 

                    
           

  
 
      

  
    

 

 
 

Only   
 

 
 lies inside  . 

Residue at the simple pole at   
 

 
 is 

   
  

 

 

   
 

 
   

 

             
     

  
 

 

 

        
 

 

   
 

 
    

 
 

  
 

Hence, by Cauchy’s residue theorem 

          of residues within the contour      
 

  
 

  

 
 

Hence, given integral = 
  

 
                               

Example 3:  Evaluate  
  

        
         

  

 
 

Solution:  Let    
  

        

  

 
 

  
 

    
        

  
 

  

 

            
  

  
  

  
 

  
 

  
   

 

 
 

  

   
       (where   is the unit circle      ) 

  
 

           

   

  
 

           

   
 

 
 

   

   
    

 
  

 

 
 

 
 

 

           

                        
    

 
    

and              
   

 
 

                         
   

  
    



      then       

i.e., pole lies at z = α in the unit circle. 

Residue at z = a =            
 

          
 

 

   
 

 

      
 

 

       
 

 
 

        

  

 

 
 

 
 

   

   
    

 
  

    
 

        
 

  

      
 

Example 4: Evaluate  
  

       

 

 
 by contour integration in the complex plane. 

Solution:   
  

       

 

 
 

 

 
 

  

       

 

 
 

 
 

 
 

  

            

  

 
    [putting          

  

  
] 

 
 

 
 

  

  

    
 

 

 
 

 

  
 

  

        
,  where c is the unit circle      . 

Poles are given by           or   
       

 
 

     

 
 

There are two poles at   
     

 
 and   

     

 
 

Only one of these poles at   
     

 
 is inside the circle 

Residue at   
     

 
 

   
  

     

 

   
     

 
 

 

   
     

 
    

     

 
 
 

 

     

 
 

     

 

 
 

  
 

Hence by Cauchy Residue theorem 

 

  
 

  

        

 
 

  
                   

     

 
   

 

  
     

 

  
 

 

  
 

 
  

       

 

 
 

 

  
                Ans. 

Example 5: Use the complex variable technique to find the value of the integral  
  

      

  

 
. 

Solution:  Let   
  

      

  

 
  

  

  
        

 

  

 
  

   

          

  

 
 

Put       so that                      
  

  
 

   
 
  

  

    
 

 
 

       where c denotes the unit circle       



 
 

 
 

   

        

 

The poles are given by putting the denominator equal to zero. 

          or   
        

 
 

      

 
       

The pole within the unit circle C is a simple pole at         . 

Now we calculate the residue at this pole. 

Residue at                     
 

 

         

                
 

    
         

 

         
 

 

             
 

 

   
 

Hence by Cauchy’s Residue theorem, we have 

 
  

      

  

 
     (sum of the residues within the contour) 

    
 

   
 

  

  
                          

Example 6: Using complex variable techniques evaluate the real integral  
        

       

  

 
 

Solution: If we put       

     
 

 
   

 

 
 ,      

  

  
 

And so    
        

       

  

 
 

 

 
 

         

       

  

 
 [where c is a circle of unit radius with centre z = 0] 

              
 

 
 

                   

       

  

 

 

             
 

 
 

         

       

  

 

 

             
 

 
 

    

      
 

 
  

  

  
 

             
 

  
 

    

         

   

             
 

  
 

    

         

 



Pole are determined by            or     –       –                    

so inside the contour c there is a simple pole at        

Residue at the simple pole    
 

 
     

  
 

 

   
 

 
 

    

           
 

    
  

 

 

    

      
 

 

 
  

  
 

 
   

 
 

 
 

Real part of 
 

  
 

    

         
   

 

  
    (sum of the residues) 

       
        

       

  

 

     
 

 
  

 

 
 

Example 7: Using the complex variable techniques, evaluate the real integral  
    

      

  

 
   

Solution:  Let      
    

      

  

 
    

                
   

      

  

 

   

               
   

  
        

  

  

 

   

Putting        so that                         
  

  
 

                 
 

  
 

  
   

 

 
    

  

  
 

               
 

    
  

 
 

 

 
 

                 
  

        
  

 

 

The poles are given by putting the denominator equal to zero 

            
          

 
 

           and          

The pole within the unit circle c is a simple pole at             

Now we calculate the residue at             

 Residue =                          
  

        
 



    
           

              

                      
 

    
           

  

         
 

 
          

                
 

 
        

    
 

  

   
   

Hence by Residue theorem, we have 

Real part of  
  

        
  

 
 

                  
  

   
    

 
    

      

  

 

     

Example 8: Using contour integration, evaluate the real integral  
       

       

 

 
   

Solution:  Let    
       

       

 

 
   

 
 

 
 

       

       

 

 

   

             
 

 
 

      

       

 

 

   

              
 

 
 

      

             

 

 

   

Putting             
  

  
 where   is the unit circle      . 

             
 

 
 

    

      
 

 
  

  

  
   

             
 

 
 

        

         

   

             
 

 
 

        

            

   



              
 

 
 

 

    

   

Pole is given by                       

Thus there is no pole of f(z) inside the unit circle C. hence f(z) is analytic in C. 

By Cauchy’s Theorem          
 

if f(z) is analytic in C. 

    I = Real part of zero = 0. Hence the given integral = 0                                  

Example 9: Using complex variable, evaluate the real integral  
  

            

  

 
, where     . 

Solution:   
  

            

  

 
  

  

    
          

  
   

  

 
 

Let           
  

                 

  

 
 

Writing                          
  

  
 

   
 

       
 

 
     

  

  
     [where c is the unit circle      ] 

  
  

              

 

 
  

              

  
  

              

 

Poles are given by                 

   
 

 
            

 

  
 

 

 
        

     
 

 
            

   is the only pole inside the unit circle. 

Residue at (                 
      

             
 

    
    

 
 

        
  

 

 

 

        
 

Hence by Cauchy’s residue theorem 

 
  

            

  

 

     
 

 

 

    
  



 
  

    
 

Example 10: Apply calculus of residue to prove that:  
       

           
 

    

    

  

 
            

Solution:  Let    
       

           

  

 
 

  
       

                

  

 

 

               
    

                 

  

 

   

               
  

         
 

 
  

  

  
                      

  

  
  

               
    

            
     [C is the unit circle      ] 

Poles of 
    

           
 are given by               

Thus,   
 

 
         are the simple poles.  

Only z = a lies within the unit circle C as a < 1. 

The residue of f(z) at (z = a) =            
    

           
 

    
   

    

      
  

   

    
 

Hence, by Cauchy’s Residue Theorem, we have 

           
 

 [Sum of residues within the contour] 

      
   

    
  

    

    
 ,  which is purely real. 

Thus,  I = Real part of         
 

    

    
 

Hence      
       

           

  

 
 

    

    
                        

Example 11: Using complex variable techniques, evaluate the integral  
           

      
  

  

 
 

Solution:   
           

      
  

  

 
  

 

 
 
 

 
           

      
  

  

 
 



 
 

 
 

             

      
               

 

 
 

           

      
  

  

 

  

 

 

  Put                                          
  

  
 

             
 

 
 

       

  
 

 
   

 

 
 

  

   

 

             
 

 

           

       
 

The poles are given by           

  
        

 
       

The pole within the unit circle c is        

Residue at the simple pole         

    
      

        
       

                
 

    
      

 
       

        
  

 
         

 
         

            
 

 

  
 

Real part of 
 

 
 

           

       
               

 

 
   

 
            

                 
 

  
       

  

  
 

Hence,  the given integral = 
  

  
                                 

Example 12:  Evaluate  
     

       
  

  

 
 by using contour integration. 

Solution:  Let     
     

       
  

  

 
 

               
             

       
  

  

 

 

               
    

             

  

 

   

           
          

   
  

    
 
  

  

  



               
  

      
 

 
 

  

   
   [C is the unit circle      ] 

               
  

         

  

 
 

               
    

         

   

               
    

            

   

Poles are determined by putting denominator equal to zero, 

                       
 

 
    

Only the simple pole at    
 

 
 is inside the contour. 

Residue at     
 

 
     

   
 

 

   
 

 
      

    
   

 

 

   
 

 
 

    

           
 

   
   

 

 

    

      
 

    
 

 
 
 

   
 

 
   

  
 

  
 

By Cauchy’s Integral Theorem 

           
 

 (Sum of the residues within C) 

      
 

  
  

 

 
, which is real. Hence,   

     

       
  

  

 
 

 

 
            

Example 13:  Evaluate contour integration of the real integral  
     

       
  

  

 
 

Solution:    
     

       
                 

    

       
  

  

 

  

 
 

               
    

             
  

  

 

 

On putting z =     and    
  

  
 

               
  

      
 

 
  

  

  
 where c is the unit circle. 



             
 

 
 

  

        
  

 

 

              
 

 
 

  

        
  

 

 

               
  

           
  

 

 

Poles are given by               

        
 

 
      

  
 

 
 is the only pole inside the unit circle. 

Residue at   
 

 
    

  
 

 

    
 

 
   

           
 

    
  

 

 

   

      
 

 

 

  
 

 
   

  
 

  
 

 
     

       
  

  

 
                   

 

  
  

 

 
                        

Example 14:  Use the residue theorem to show that 
  

           
 

   

       
 
 

                  
  

 

0,  >0,  > . 

Solution:   
  

           
  

  

     
       

 
 
 

  

 

  

 
 

Put                                                 
  

  
 

  
 

   
 

 
   

 

 
  

 

  

   
    where c is the unit circle       

 
 

   
  

 
 

 

  
 
 

  

   

  
    

   
  

 
 

 

  
 
 

  

      

 

 
      

              

 

 
   

  
 

   

    
   

 
   

 
 

 



The poles are given by putting the denominator equal to zero. 

i.e.,      
   

 
   

 

   

                

Where,   
 
  

 
  

   

  
  

 
 

         

 
 

  
 

  

 
  

   

  
  

 
 
         

 
 

There are two poles at z = α and z = β, each of order 2. 

Since                                        

There is only one pole       of order 2 within the unit circle c. 

Residue (at the double pole z = α) =       
 

  
      

    

              
 

    
   

 

  

    

        
 

 
   

  
   
   

                

      
 

 
   

  
   
   

      

      
 
   

  
   
   

      

      
 

 
  

  
     

      
 
  

  
   

            
 

 

 

 
  

  

 
  

 

   
  

 
        

 

 

 

 
    

         
 

 

  
  

       
 

 

 

Hence,    
  

           
     

   

       
 
 

 
   

       
 
 

  

 
              

Example 15: Show by the method of residues, that  
   

        

 

 
 

 

     
 

Solution:   Let    
   

        

 

 
  

    

          

 

 
               

  
    

           

 

 
   

   

          

 

 
   [putting 2          ] 



  
   

      
 

 
          

  
    

                

 

 

 

 

 

Putting                                   
  

  
 

  
  

         
 

 
 
 
  

   
   [where,  c is unit circle        

 
  

 
 

  

             
 
  

  
 

  

               

 

     
  

              

 

The poles are given by                 

  
                   

 
 

 
                  

 
 

               

Let                  

                

                         

      
  

          
 

Product of the roots =                

But                

Only β lies inside the circle c. 

Now we calculate the residue at z = β 

Residue at (z = β) =            
   

          
       

   

     
 

 
   

     
 

   

                               
 

 
   

        
  

 

      
 

Hence by Cauchy’s residue theorem 



I = 2πi (Sum of the residues within the contour c) 

    
  

      
 

 

     
 

Hence,    
   

        

 

 
 

 

     
                

Example 16:  Evaluate by contour integration                      
  

 
 

Solution:  Let                                      
  

 
 

                                          
  

 

  

 
     

  
        

  

 
 

Put                  
  

  
 

Then,        
 

  
 
  

  
   

  

    
  

  
 

Pole is at       of order        . It lies inside the unit circle 

Residue of               is   
 

        
 
  

   
      

    

    
   

 
  

  
 
  

   
     

   
 
  

  
        

  

  
 

     By Cauchy’s Residue theorem 

      
  

  
  

  

  
 

Comparing real part of                                     
  

 
 

  

  
 

We have                       
  

  

  

 
 

Check your progress 

Evaluate the following integrals: 

1.  
     

        

  

 
                                   Ans. 

  

  
                 

2.  
               

       

  

 
                     Ans. 

  

  
            

3.  
 

       
  

  

 
                                Ans. 

  

 
 

4.  
  

        

 

 
                                     Ans. 

 

  
 

5.  
  

        

 

 
              Hence or otherwise evaluate  

  

       

  

 
. Ans. 

 

      
    

6.5.  Evaluate of  
     

     

 

  
   where       and       are polynomials in  . 



Such integrals can be reduced to contour integrals, if 

(i)        has no real roots 

(ii) The degree of       is greater than that of       

by at least two. 

Procedure: Let      
     

     
 

Consider        
 

, Where   is a curve, consisting of the upper half    of the circle       

and part of the real axis from        . 

If there are no poles of      on the real axis, the circle       which is arbitrary can be taken 

such that there is no singularity on its circumference   in the upper half of the plane, but 

possibly some poles inside the contour   specified above. 

Using Cauchy’s theorem of residues we have 

     
 

       (sum of the residues of f(z) at the poles within  ) 

i.e.      
 

  
        

  
       (sum of residues within  ) 

     
 

  
         

  
       (sum of residues within  ) 

             
 

  
         

  
       (sum of residues within    …(1) 

Now,    
   

     
  

                  
 

 
 

(1) reduces       
 

  
       (sum of residues within  ) 

Example 17: Evaluate  
     

    

 

 
   

Solution:   
     

    

 

 
   

Consider the integral      
 

  , where 

     
    

    
, taken round the closed contour   

considting of the upper half of a large circle       

and the real axis from          

Poles of      are given by                                 

The only pole which lies within the contour is at z = i . 

The residue of      at              
         

    
       

    

   
 

   

  
 

Hence by Cauchy’s residue theorem, we have 



     
 

  
       (sum of residues within    

 
    

     

       
   

  
 

    

    

 

  

        

Equating real parts, we have 

 
     

    

 

  
        

     

    

 

 
   

    

 
           

Example 18: Evaluate  
      

       

 

  
   

Solution: Here, we have  
      

       

 

  
   

Let us consider  
      

        
   

The pole can be determined by putting the denominator equal to zero. 

           
        

 
       

Out of two poles, only         is inside the 

contour 

Residue at         

   
        

        
      

       
 

    
       

        
      

                
 

    
       

      

        
 
                  

            
 

 
                  

  
 

 
      

       

 

  
       (Residue) 

    
                  

  
 
 

 
                  

 
 

 
                   

                
      

  

 
 

 
              

 

 
          h    

 
 

 
        h   



      Hence,  
      

       

 

  
     h      (Taking real parts)           

Example 19: Evaluate  
      

           

 

  
   

Solution:  We consider  
      

            
    

      

             
        

 
   

Poles at z =    and z =      

Simple poles at z = i  and z = 3i lie in the given ontour. 

The residue at (z = i)  

   
   

     
      

                

    
   

      

           
 

      

        

 
      

     
 
   

   
 

 

   
 

 

  
 

The residue at          

   
   

      
      

                  
    

   

      

            
 

       

             
 
     

   

 
 

   
 

 

  
 

By residue theorem, 

       
 

     [Res f(i) + Res f(3i)] =     
 

   
 

 

  
 

 

   
 

 

  
  

     
 

   
 

 

   
      

  

   
  

  

  
 

i.e.          
 

  
      

  
   

  

  
 

Now            
  

     

       
      

           

 

  
 

  

  
                    

Example 20: Use contour integration to evaluate the real integral  
  

       

 

 
 

Solution:  Consider        
 

, where      
 

       
taken round the closed contour 

  consisting of real axis and upper half    of a large semi-circle      . 

Poles of      are given by 



                             

i.e.        are the poles each of order 3. 

The only pole which lies within C is z = i of order 3. 

    Residue of 
 

      
 

 

      
          

 

 
 
  

   
       

 

      
 

 

      
 
   

 
 

 
 
  

   
 

      
 
   

 
 

 
 
        

      
 
   

 
 

   
 

Hence by Cauchy’s residue theorem, we have 

                                      

       
 

  
      

  
       

 

   
 

 

       

 

  
    

 

         
   

  

 
 ….. (1) 

Now,    
 

         
      

 

       
 

  
      

 

           
      

   

       

 

 
     

 [since               ] 

 
  

       
, which            

Hence making    , relation (1) becomes 

 
 

       

 

  
   

  

 
              or        

 

       

 

 
   

  

  
    Ans. 

Example 21: Evaluate by the method of complex variables, the integral  
  

       

 

  
   

Solution: Consider  
  

        
   where c is a closed contour 

consisting of the upper half CR of a large circle       and the 

real axis from -R to R. 

Pole of 
  

       
 are given by                                

   

         and        are the two poles each of order 3.But only       lies within the contour. 

To get residue at      , put         , then 

  

       
 

      

           
         

             
 

 
         

         
 

  
  

  
         

      
   

 

  
  

  

 



  
 

  
  

 

  
 
  

  
 
 

 
    

  

  
 
        

 

  

  
     

  
 

  
  

 

  
 

  

  
 

 

 
    

  

  
 

   

 
     Hence coefficient of 

 
 

 
    

 

  
 
 

 
        

 

 
  

 

 
    

 

  
 which is therefore the residue at       . 

Hence by Cauchy’s residue theorem we have 

            (sum of the residues within c) 

i.e.      
 

  
                

 

  
 

  
 

 
  

       

 

  
    

  

       
   

 

   
            ……… (1) 

Now,     
  

       
  

  
   

    

         
    

  
 

  

       
    
 

 
 

Since,                     

 
   

       
, which            

Hence, by making    , equation (i) becomes  
  

       
   

 

 

 

  
                   

Example 22: Evaluate  
    

            

 

  
  

Solution: We consider  
    

             
      

 
   

Where   is the contour consisting of the semi-circle    of radius   together with the part of the 

real axis from        . 

The integral has simple poles at             

Of which        only lie inside CR. 

The residue at (z = i) =            
  

                
 

=       
  

           
 

  

        
  

 

  
 

The residue at (z = 2i) =              
  

                  
 

    
    

  

            
 

     

             
 

 

  
 

By theorem of residue; 



       
 

                               
 

  
 

 

  
  

 

 
  ………… (1) 

i.e.       
 

  
        

  
   

 

 
 

Hence, by making     relation (1) becomes 

     
 

  

      
   

     
  

   
 

 
 

Now              
  

   vanishes 

For any point on CR as              

   
     

     
  

          
 

  

    
 

 
 

Hence,  
    

            

 

  
 

 

 
            

Example 23: Using the complex variable techniques, evaluate the integral  
 

     

 

 
   

Solution:  For  
 

     

 

 
    

Consider      
 

               
 

     
 

Taken around the closed contour consisting of real axis and 

upper half of CR, i.e.     . Poles of f(z) are given by 

                                    

                                   

                            
 

             
 

 
            

 

 
    

      
 

  

If      ,          
 

       
 

 
      

 

 
    

 

  
  

 

  
         

            
  

       
  

 
      

  

 
     

 

  
  

 

  
          

            
  

       
  

 
      

  

 
     

 

  
  

 

  
          

n = 3       
  

       
  

 
      

  

 
    

 

  
  

 

  
         

There are four poles, but only two poles at    and    lie within the contour. 



Residue at        
 

    
 

 

  
       

 
     

 
 
 

  
 

   
 
     

 
 
 
 

 

    
 
 
  

  
 

   
 
 
 

 

 

  
   

 

  
 

  
    

  

 
      

  

 
  

 

  
  

 

  
  

 

  
  

Residue at        
  

   
 

    
 
  
  

  
 

   
 
  
 

 

 
 

  
   

  

  
 

  
    

  

 
      

  

 
  

 

  
 
 

  
  

 

  
  

We know that      
 

       (sum of residues at poles within  ) 

     
 

  
        

  
       (sum of the residues) 

 
 

     

 

  
    

 

       
       (sum of the residues) 

Now,         
 

       
    

 

         
      

 

         
     

        [since                          ] 

  
 

     

 

 

    
 

     
   

 

 

 

 
  

     
 

    

       
 which           

Hence,   
 

     

 

  
       (sum of the residues within contour) As      

Hence   
 

     

 

  
       (sum of the residues within contour) 

 
 

     

 

  

       
 

  
  

 

  
  

 

  
  

 

  
 
 

  
  

 

  
   

 
 

  
   

 

  
  

 

  
 

 

  
  

 

  
  

 

  
    

 

  
  

 

   
 
   

  
 

  
 

     

 

 
   

   

  
 

 

     

 

 
   

   

   
                    

Example 24: Using the complex variable techniques, evaluate the integral  
 

    
  

 

  
 

Solution:   
 

    
  

 

  
 

Consider             
 

            
 

    
 



Taken around the closed contour consisting of real axis and upper half CR, i.e. z = R. 

Poles of f(z) are given by 

                               

                             

                           
 

            
 

 
            

 

 
  

If         ,          
 

 
      

 

 
   

 

  
  

 

  
    

 

  

n = 1          
  

 
      

  

 
    

 

  
  

 

  
    

  

  

             
  

 
      

  

 
    

 

  
  

 

  
  

             
  

 
      

  

 
   

 

  
  

 

  
  

There are four poles, but only two poles at z1 and z2 lie within the contour. 

Residue at      
 

    
 

 

  
      

 
   

 
 
 

  
 

   
 
   

 
 
 
 

 

   
 
 
  

  
 

  
 
  
 

 

 
 

 
   

  

  
 

 
    

  

 
     

  

 
  

 

 
  

 

  
  

 

  
  

Residue at      
  

    
 

 

  
      

 
   

 
  
 

  
 

   
 
   

 
  
 
 

 

   
 
  
  

  
 

  
 
  
 

 

 
 

 
   

  

  
 

 
    

  

 
     

  

 
  

 

 
 
 

  
  

 

  
  

           
 

 (sum of residues at poles within c) 

       
 

  
        

  
     (sum of the residues) 

 
 

    
  

 

  
  

 

    
  

  
     (sum of the residues) 

Now,     
 

    
  

  
   

 

      
    

  
  

 

      
    

  
 

                 [since                          ] 

  
 

    

 

 

    
 

    
   

 

 

 



 
  

    
 

    

      
 which           

Hence   
 

    

 

  
       (sum of the residues within contour) 

 
 

    

 

  

       
 

 
  

 

  
  

 

  
  

 

 
 
 

  
  

 

  
   

 
 

 
   

 

  
  

 

  
 

 

  
  

 

  
  

 

 
    

 

  
  

 

  
.  Hence the given integral = 

 

  
   

Example 25: Using complex variable techniques, evaluate the real integral  
  

    

 

 
 

Solution:  Let        
  

    

 

 
 

We consider      
  

     
 

Where   is the contour consisting of the semi-circle    of 

radius   together with the part of real axis from        . 

Poles of      are given by 

                               

                                       

   
    

 
             

 

 
            

 

 
   where                 

If         ,      
  

      
 

 
      

 

 
  

  

 
 

 

 
 

      ,      
  

      
 

 
      

 

 
    

 n = 2,      
   

      
  

 
      

  

 
  

   

 
 

 

 
 

     ,      
   

      
  

 
      

  

 
  

   

 
 

 

 
 

            
   

      
  

 
      

  

 
     

            
    

      
   

 
      

   

 
  

  

 
 

 

 
 

Only, first three poles i.e. 
  

   
  

   
   

  are inside the contour 

Residue at      
 

      
   

 
 
 

 
 

  
      

    
   

 
 
 

 

   
 

 

 
   

  

  

Residue at      
 

      
   

 
 
 

 
 

  
      

    
   

 
 
 

 

   
 

 

 
   

  

  



Residue at      
  

      
   

 
  
 

 
 

  
      

    
   

 
  
 

 

   
 

 

 
   

   

  

Sum of residues  =  
 

 
    

  

     
 

     
   

   
 

 
  

  

 
 

 

 
     

  

 
 

 

 
  

 

 
       

 

 
 

 
  

    
    

 

               
 

 
  

  

 
 

 
  

    

 

  

 
  

 
 

       
  

    

 

 
 

 

 
                

Example 26:  Using complex variable, evaluate the real integral  
       

            

 

 
 

Solution: Let      
    

            
 

Poles are given by                

i.e.                 

                 

Let   be a closed contour consisting of the upper half 

   of a large circle       and the real axis from        . the poles at                   lie 

within the contour. 

Residue at         =       
         

            
       

    

           
 

   

  
 

Residue at          =        
          

            
        

    

            
 

   

   
 

By theorem of Residue            
 

 [sum of residues] 

 
      

            

 

  

  
      

            
     

   

  
 
   

   
 

  

 

  
      

            
                    

  

  

 
      

            

 

  

   
   

 
 
   

 
  

 

 
       

            

 

 

             
 

 
 

      

            

 

  

 



             
 

 
 
   

 
 
   

 
  

Hence, given integral = 
 

 
 
   

 
 

   

 
  

Example 27: Using the calculus of residues, evaluate the integral given by the following: 

 
     

        
   

 

 
          

Solution: Consider the integral      
 

   

Where      
    

        
 

Taken around the closed contour   consisting of the 

upper half of a large circle       and the real axis from        . 

Poles of      are given by           

i.e.,                    are two poles of order two. The only pole which lies within the 

contour is        of order two. 

Residue at                   
 

  
       

    

        
        

 

  

    

       
 

    
    

                         

       
    

    

                

       
 

 
               

      
 
            

     
 
          

    
 

Hence, by Cauchy’s residue theorem, we have 

     
 

       sum of the residues within C 

     
 

  

        
  

      
          

    
 

 
    

        

 

  
    

    

          
    

          

   
                         …….(1) 

Now,     
      

          
   

          

          
  

          

            
 

  
            

        

 

 

 
 

        
             

 

 

 

        
     

  

   

 

 

 

 

 
 

         
          which           



Hence, by making    , (1) becomes. 

 
    

        
   

 

  

 
          

   
 

Equating real parts we have 

 
     

        
    

          

   

 

  

 

 
     

        
    

          

   

 

 

 

Example 28: Using complex variable techniques, evaluate the real integral  
     

              
  

 

 
 

Solution: Consider the integral      
 

   

Where,       
    

              
 

Taken around the closed contour   consisting of 

the upper half of a large circle       and the real 

axis from        . 

Poles of      are given by 

                 

                              

i.e.                 

The poles which lie within the contour are        of the second order and        simple pole. 

Residue of                

 
 

  
 
 

  
        

    

                     
  

    

  
 

  
 

    

              
  

    

 

  
                                                   

               
 
    

 

  
                                           

               
 
    

 

 
                         

         
 
            

      
 
         

      
 

      

      
 

Residue of f(z) at (z = 4i) =              
    

                   
 



 
   

               
 

   

     
 
     

   
 

Sum of the residues = 
      

      
 

    

   
 

Hence by Cauchy’s residue theorem, we have 

     
 

       (sum of the residues within C) 

i.e.        
 

  
      

  
       (sum of residues) 

or,    
    

              
  

 

  
  

    

                
       (sum of residues)        ……(1) 

Now let    , so as to show that the second integral in above relation vanishes.  

For any point on CR. As       

Let,       
 

  
    

   
 

  
 
 
   

  

  
 
 

   
     

       
    

                

     

Hence, by making     relation (1) becomes 

  
    

              
       

       

      
  

   

   
 

 

  
 

  

   
 
     

  
 

   

 
  

Equating real parts, we have 

 
     

              
 

 

  
 
     

  
 
   

 
 

 

  

 

 
     

              
 

 

   
 
     

  
 
   

 
 

 

 

 

6.6.  Rectangular contour 

Example 29: Evaluate  
   

    
  

 

  
 

Solution: We consider   
   

     
        

 
   

Where   is the rectangle      with vertices at                                 

     has simple poles       

                                    

⇒            ,                      where n = 0, ±1, ±2, … 



The only pole inside the rectangle is z = πi. Therefore, By Residue theorem 

                               
   

 

  
      

 

    
 

      
    

     
  

       
   

  
 
    

    
    

   
          

               
     
   

  

Also       
 

        
  

          
  

      
  

        
  

    ………. (1) 

            
  

 
            

  

 
            

 

  
        

 

  
…(2) 

                                                                      

     
 

     
        

     
  

  

 

  
         

      
  

  

 

   
         

        
  

 

  

  
   

    
  

 

  

 

Now for any two complex number                 

We have,                    

So that,               .  Also                 

    For the integrand of first integral in (2), we have 

 
        

       
  

   

    
                    ∵      

Similarly, for the integrand of the third integral in (2), we get 

 
         

        
  

    

     
                        ∵      

Hence as R   since the first and third integrals in (2) approach zero, we get 

     
 

          
   

    
  

 

  

  
   

    
  

 

  

 

           
   

    
  

 

  
            …………… (3) 

Thus,  from (1) and (3) we obtain 

          
   

    
  

 

  

              
   

    
  

 

  

 
   

          
 

 
   

    
  

 

  
 

 

     
                            



Example 30: By integrating    
 
 round the rectangle whose vertices are               Show 

that (i)     
 
         

   
 

 
  

 

 
 and   (ii).     

 
            

 
   

 
  

 

 

 

 
 

Solution: (i). Let         
 
 

            
 

 

  
 

 

Here   is the closed contour, a rectangle       

Since      is analytic within and on the contour. There is no pole within rectangle     . Hence 

by Cauchy’s residue theorem we have 

    
 
    

    
 or,     

 
  

  
     

 
  

  
     

 
  

  
     

 

  
    …..(1) 

Since,  on                 .     And On                        

 Also, On                         and On                    

Hence (1) becomes 

    
 
  

 

 
          

 
   

 

 
          

 
  

 

 
        

  

 
     …..(2) 

Now,           
 
   

 

 
            

  

 
           

     

 
       

      
 

 
    

         

As     

Hence by making     equation (2) becomes 

         
 
   

 

 

    
 

 

 

       
 
  

 

 

 

⇒     
             

 

 

  

 
     

 
  

 

 
 

     
               

 

 

  

 
     

 
  

 

 

 

     
                          

 

 

  

 
     

 
  

 

 

 

     
                       

 

 

  

 
   

 
     

 
   

 
  

 

 

 

Now we equating real and imaginary parts we have 

(i)     
 
         

 

 

  

 
   

 
 

(ii)     
 
         

 

 
   

 
   

 
  

 

 
                   



Check your progress 

Evaluate the following: 

1.  
 

    
  

 

 
                                                            Ans. 

 

 
 

2.  
 

       
  

 

  
                                                      Ans. 

 

 
 

3.  
      

              
  

 

 
                                           Ans. 

 

        
              

4.  
    

              
  

 

 
                             Ans. 

 

       
 
   

 
 

   

 
  

5. Show that  
    

     
   

    

  

 

 
 

6. Evaluate  
     

            
  

 

  
                            Ans. 

 

 
 
   

 
 

   

 
  

7. Show that  
      

       
    

 

 
            

 

  
 

Evaluate the following  

8.  
     

        
  

 

  
                                 Ans. 

 

  
         

9.  
  

    
  

 

 
                                                        Ans. 

 

 
 

10.  
       

     
  

 

 
                                                    Ans. 

 

   
 
 
  

  
   

  

   

11.  
  

        
  

 

 
                                                 Ans. 

    

   
     

12.  
             

  

 

 
                                          Ans. 0  

13.  
     

       
  

 

 
                                                  Ans. 

 

  
   

 

 
   

 

 
   

 

 
    

14.  
         

    

 

 
                                                  Ans.       

15. Using contour integration, show that  
    

        
 

    

   

 

 
,    (a > 0). 

16. Using method of contour integration, evaluate  
       

    
  

 

 
         Ans. 

 

 
        

17. Integration 
   

   
 along the boundary of the square defined by                  . 

Prove that (i)  
    

   
  

 

 
  

     

    

 

 
   

                 (ii)  
    

   

 
  

    

    

 

 
   

18. Evaluate using Cauchy’s integral formula  
     

    
  

 
 around a rectangle 

(i) 2 ± i,  -2 ± i     Ans. 0    (ii) –i, 2 – i , 2 ± i  and i 

19. By integrating 
    

 

      
 round the rectangle with vertices    

 

 
, show that  

 
         h   

   h   

 

 

   
 

 
    

 

 
       

         h   

   h  

 

 

   
 

 
    

 

 
           



6.7. Indented semi-circular Contour 

 When the integrand has a simple pole on real axis, it is deleted from the region by 

indenting the contour (a small semi-circle having pole is drawn) 

Example 31: By contour integration, prove that  
     

 

 

 
   

 

 
 

Solution:  Consider the integral  
    

  
   

When   is a large semi circle      indented at 

      (pole), let r be the radius of indentation. 

There is no singularity within the given contour. 

Hence by Cauchy Theorem. 

 
    

 
  

 

   

i.e.,  
    

 
    

    

 
    

    

 
    

    

 
  

  

 

   

  

  
    …………(1) 

Substituting z for x in the first integral and combining it with the third integral, we get 

 
          

 
  

 

 

  
    

 
  

  

  
    

 
  

  

                          

   
     

 
  

 

 
  

    

 
  

  
  

    

 
  

  
             ……..(2) 

Now,   
    

 
  

  
  

 

 
    

      

 
  

    
               ……………….(3) 

On                    

Therefore,     
 

  
    

       

    
         

 

 

 

 
 

Also,       
      

 
  

  
    

    

   
   

  
 

When   is the maximum value on    of                                

Clearly,                

  From (3),    
    

   
                            …………… (4) 

Putting          in the integral over C1, we get 

 
    

 
  

  

  
                 

    
 

 

 

                              
 

 

 



Since                 

          
    

 
  

  
              

 

 
              

 

 
 

 

Also,  
    

 
 continuously decreases from 1 to 

 

 
      increases from 0 to 

 

 
. 

  for     
 

 
 
    

 
 

 

 
         

  

 
 

    
    

 
                 

 

 
 

   
 

  
         

 

   

 
 

  
         

As      
 

  
            

   
    

 
  

  
   

Hence from (2), on taking the limit as                , we get 

   
     

 

 

 

              
     

 

 

 

   
 

 
 

Example 32: Evaluate   
    

 

 

 
  . 

Solution: Consider the integral  
   

 
  

 
 

Where   is a large semi circle      indented at       (pole), let   be the radius of 

indentation. There is no singularity within the given contour. 

Hence, by Cauchy theorem,  
   

  
     

i.e.  
   

 
  

  

  
  

   

   
    

   

 

 

 
    

   

   
    ….. (1) 

Now,    
   

   
    

                

    
        

 

 
   [      ] 

                     
 

 

 

                                              

  
   

   

               
 

 

             

 

 

 

    
    

   

 

 

 

 
    

 

 
    

 
 
 

 

  

 
   

  
  

    

  
 

 

 

 
 

 
               as     



 
   

   
                       

 

 
     

 

 
        as     

     

Equation (1) is reduced to  

 
   

 

 

 
      

   

 
       

 

  
    [          ] 

 
   

 

 

  

      

 
          

 

 

  

      

Equating imaginary parts, we get 

 
    

 

 

  
          or         

    

 
  

 

 
 

 

 
. 

Example 33:  Show that, if       then  
             

  
         

 

 
 

Solution:  Consider the integral      
 

   

Where,       
           

  
 

And   is a large semi-circle       

indented at       (pole), let   be the radius 

of indentation. Now there is no singularity 

within the given contour. 

     
 

     (By Cauchy Integral Theorem) 

     
  

  
        

  
        

 

 
        

  
                 ………… (1) 

Now,        
  

    

  
             

      

     

  
               

      

     

  
                     

  
   

 

 

 

 
 

 
   

     

   
     

    
 

 
 

                [By Jordan’s inequality] 



 
 

 
 
 

   
          

 

   
           

         or     

We have,                         
           

  
  

    
   

                               

   
   

       
 

                          

Hence, by making            , equation (1) reduces to  

       
 

  

              
 

 

     

             
 

  

           

 
           

  

 

  

           

 
                                   

  

 

  

           

Equating real parts, we get 

 
             

  

 

  

           

        
 

  

         
 

 

                          

Hence,  
             

  
  

 

 
                                          

Example 34: Using contour integration method, prove the integral 

(i)  
    

   

 

 
   

 

     
.             (0 < a < 1) 

(ii)  
    

   

 

 
         . 

Solution:  Let the integral be      
 

  , where      
    

   
 

Taken around the closed contour C consisting of real axis from –      , and upper half of a 

circle       indented at            , the radii of indentations being        ’ respectively. 

  The singularities of      are             which have been avoided by the indentation, so 

there no singularities within the contour. 



Hence, by Cauchy’s residue theorem, we have 

     
  

  
        

  
        

   

 
        

  
        

 

    
        

  
      (1) 

Since                     
    

   
       

  

   
          

            
  

             

Again                       
      

   
  

       
  

   
         

   
   

     
  

               

Also,                               
    

   
     

   
   

     
  

                 

Hence making             , we have from (1) 

     
 

  

                   
 

 

    
 

 

 

                 
 

  
 

 
    

   

 

  
    

    

   

 

 
       or,   

    

   

  

 
    

    

   

 

 
       

Putting –x for x in the first integral, we have 

 
           

   
    

    

   
      

 

 

 

 

 

 
            

   
    

    

   
      

 

 

 

 

 

 
            

   
    

    

   
      

 

 

 

 

 

      
    

   
    

    

   
      

 

 

 

 
   [since,        ] 

                 
    

   
    

    

   
      

 

 

 

 

 

Equating imaginary and real parts, we have 



       
    

   
           ⇒      

    

   
   

 

     

 

 

 

 
…..(1) 

And –       
    

   

 

 
    

    

   

 

 
   

–       
    

   

 

 
     

    

   

 

 
   ⇒        

 

     
  

    

   

 

 
             [from (1)] 

Thus,  
    

   

 

 
                                         

Check your progress 

Using the method of contour integration, evaluate the following: 

1.  
    

 

 

 
                                                        Ans. 0 

2.  
         

    

 

 
                                   Ans. 0 

3.  
    

      

 

 
                                                      Ans. ½  

4.  
 

    

 

  
                                                         Ans. 

 

  
 

5.  
  

       

 

  
                                                 Ans. 

 

 
 

6.  
 

   

 

 
                                                         Ans. 

 

 
 

7.  
    

    

 

 
                                                       Ans. 

  

 
 

Conclusion: After the study of this chapter we are able to get evaluation of real definite integrals 

by contour integration, Integration round the unit circle of the type:                 
  

 
 , 

evaluate of  
     

     

 

  
   where       and       are polynomials in  , Rectangular contour and 

Indented semi- circular contour. 
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Block -4 

 

Conformal Representation 

 

Conformal mapping is an important and useful tool in complex analysis. To draw a curve of 

complex variable on plane we take two axes i.e., one real axis and the other imaginary axis. A 

number of point are plotted on plane, by taking different value of (different values ). The curve is 

drawn by joining the plotted points. The diagram obtained is called Argand diagram in -plane. 

But a complex function involves four variables A figure of only three dimensions is possible in a 

plane. A figure of four dimensional regions for is not possible. So, we choose two complex 

planes plane and plane. In the plane we plot the corresponding point By joining these points we 

have a corresponding curve in plane. 



Unit -7 

Conformal Representation 

 

7.1. Introduction  

7.2. Objectives 

7.3. Mapping 

7.4. Conformal Mapping 

7.5. Translation       

7.6. Rotation        

7.7. Magnification 

7.8. Magnification and Rotation      

7.9. Inversion and Reflection 

7.10. Mobius Transformation 

7.11. Invariant points of Bilinear Transformation 

7.12. Properties of Bilinear Transformation 

7.13. Methods to find Bilinear Transformation 

7.14. Inverse point with respect to a circle 

7.15. Transformation      

7.1. INTRODUCTION 



Conformal mapping is an important  and useful tool in complex analysis. To draw a curve of 

complex variable       on   plane we take two axes i.e., one real axis and the other imaginary 

axis. A number of point       are plotted on   plane, by taking different value of   (different 

values of   and  ). The curve   is drawn by joining the plotted points. The diagram obtained is 

called Argand diagram in  -plane. 

But a complex function                                    involves four variables 

             

A figure of only three dimensions         is possible in a plane. A figure of four dimensional 

region for         is not possible. 

So, we choose two complex planes   plane and   plane. In the   plane we plot the 

corresponding point           . By joining these points we have a corresponding curve  ’ in 

  plane. 

7.2. Objectives 

After studying this unit we should be able to: 

 Define Mapping and Conformal Mapping ; 

 Translation       and Rotation        ; 

 Magnification and Rotation     ; 

 Inversion and Reflection; 

 Mobius Transformation; 

 Invariant points of Bilinear Transformation; 

 Properties of Bilinear Transformation; 

 Methods to find Bilinear Transformation; 

 Inverse point with respect to a circle; 

 Transformation     ; 

Conformal mapping is an important  and useful tool in complex analysis.To draw a curve of 

complex variable       on   plane we take two axes i.e., one real axis and the other imaginary 



axis. A number of point       are plotted on   plane, by taking different value of   (different 

values of   and  ). The curve   is drawn by joining the plotted points. The diagram obtained is 

called Argand diagram in  -plane. 

But a complex function                                    involves four variables 

             We know that a figure of only three dimensions         is possible in a plane. A 

figure of four dimensional region for         is not possible. 

So, we choose two complex planes   plane and   plane. In the   plane we plot the 

corresponding point           . By joining these points we have a corresponding curve  ’ in 

  plane. For every point       in the  -plane, the relation          defines a corresponding 

point       in the  -plane. We call this “transformation or mapping of   plane into 

  plane”. If a point   maps into the point        s also known as the image of   . 

If the point        moves along a curve   in   plane, the point  ’      will move along a 

corresponding curve  ’ in   plane, then we say that a curve C in the   plane is mapped into 

the corresponding curve  ’ in the   plane by the relation         . 

7.3.  Mapping 

For every point       in the  -plane, the relation          defines a corresponding point       

in the  -plane. We call this “transformation or mapping of   plane into   plane”. If a point 

maps into the point        s also known as the image of   . 

If the point        moves along a curve   in   plane, the point  ’      will move along a 

corresponding curve  ’ in   plane, then we say that a curve C in the   plane is mapped into 

the corresponding curve  ’ in the   plane by the relation         . 

Example 1: Transform the rectangular region      in z-plane bounded by x = 1, x = 3; y = 0 

               Under the transformation                  

Solution:  Here,                  

                                              

By equating real and imaginary quantities, we have                        



                                

                        

                          

                          

Here the lines                    and       in the   plane are transformed onto the line 

                   and       in the   plane. The region      in   plane is 

transformed into the region      in   plane. 

Example 2: Transform the curve    –         under the mapping       . 

Solution:                                –           

This gives        –                

Table of                 

                       

                                         

                      

                                       



 

Image of the curve    –        is a straight line,       parallel to the  -axis in   plane axis. 

7.4. Conformal Mapping 

Let two curves      in the   plane intersect at the point   and the corresponding plane  ’   ’ 

in the   plane intersect at  ’. If the angle of intersection of the curves at   in   plane is the 

same as the angle of intersection of the curves of   plane at  ’ in magnitude and same then the 

transformation is called conformal. 

Conditions:          is analytic         ’        or 

If the sense of the rotation as well as the magnitude of the angle is preserved, the transformation 

is said to be conformal.  

If only the magnitude of the angle is preserved, transformation is Isogonal. 

Theorem: If      is analytic, mapping is conformal 

Proof:  Let    and    be the two curves in the   plane intersecting at the point    and let the 

tangents at this point make angles    and    with the real axis, Let    and    be the points on the 

curves    and    near to    at the same distance   from  , so that we have 

                             



As                           

Let the image of the curves    and    be     and     in   plane and image of   ,    and    be 

  ,    and   . Let  

                            

          
     

     

     
 

 

           
   

   

     
                     (since            ) 

     
  
 
         

  
 
          

Hence        
  

 
                 

               

⇒ lim   – lim   =    or                            

Similarly, it can be proved         curve    has a definite tangent at   making angles  

     and      so curve   . 

Angle between two curves     and     

   =                             

So the transformation is conformal at each point where  ’       . 

Note 1: The point at which  ’        is called a critical point of the transformation. Also the 

points where 
  

  
   are called ordinary points. 

2. Let         or         shows that the tangent at   to the curve is rotated through an 

              under the given transformation. 



Angle of rotation =      
 

 
 

3. In formal transformation, element of are passing through   is magnified by the factor          

The area element is also magnified by the factor         or   
      

      
 in a conformal 

transformation. 

  
      

      
   

  

  

  

  
  

  

  

  

    

  

  
 
  

  
  

  

  

  

   
  

  
 
 

  
  

  
 
 

 

  
  

  
  

  

  
 
 

                      

        is called the coefficient of magnification. 

4. Conjugate functions remain conjugate functions after conformal transformation. A function 

which is the solution of Laplace’s equation, its transformed function again remains the solution 

of Laplace’s equation after conformal transformation. 

Theorem: An analytic function      ceases to be conformal at the points where          

Proof:  Let          and          at      

Suppose that        has a zero of order       at the point   , then first    –     derivative of 

     vanish at    but f''’(  ) ≠0, hence at any point   in the neighbourhood of   , we have by 

Taylor’s Theorem. 

                    
      

Where,     
      

  
 . So, that      

Hence,                       
    

i.e.                 
    

or     
          

                              where          

hence                          

Similarly,             



Thus the curves    and    still have definite tangents at    

But the angle between the tangents =                      . 

So magnitude of the angle is not preserved. 

Also the linear magnification R =             

Hence, the conformal property does not hold good at a point where         

Example 3: If              and   
  

 
, show that the curves              and    

          cut orthogonally at all intersections but that the transformation            is not 

conformal. 

Solution: For the curve              

            constant      (say) …………(1) 

Differentiating (1), we get 

     
  

  
   ⇒ 

  

  
  

  

 
…..(2) 

 
  

 
   

For the curve, 
  

 
            (say)    

⇒         ……….(3) 

Differentiating (3), we get 

   
  

  
    

⇒ 
  

  
 

  

  
 

  

 
 

 

  
 

 

  
….(4) 

From (2) and (4) we see that 

        
   

 
  

 

  
     

Hence, two curves cut orthogonally 

However, since  
  

  
    

  

  
     



and  
  

  
  

  

  
 

  

  
 

  

 
 

The Cauchy-Reimann equations are not satisfied by        . 

Hence, the function        is not analytic. So the transformation is not conformal.  

Example 4: (i) for the conformal transformation     , show that 

(a) The coefficient of magnification at                   

(b) The angle of rotation at                        

(ii)  For the conformal transformation     , show that 

(a) The co-efficient of magnification at                   

(b) The angle of rotation at               
 

 
  

Solution:  (i) Let          ,           

                      

(a) Coefficient of magnification at       is                            

(b) Angle of rotation at       is                        

       
 

 
             

(ii) Here            ,           

And                      

(a) The co-efficient of magnification at       is                           

(b) The angle of rotation at       is             

                       
 

 
  

 

 
 

Some Standard Transformations: 

7.5.  Translation      , 

Where         

               



         and         or,           and            

On substituting the values of   and   in the equation of the curve to be transformed, we get the 

equation of the image in the   plane. 

The point        in the   plane is mapped onto the point              in the   plane. 

Similarly other points of   plane are mapped onto   plane. Thus if   plane is superimposed 

on the   plane, the figure of   plane is shifted through a vector  . 

 

In other words the transformation is mere translation of the axes. 

7.6. Rotation        

The figure in   plane rotates through an angle   in anticlockwise in   plane. 

Example 5: Consider the transformation          and determine the region    in   plane 

corresponding to the triangular region   bounded by the lines             and           in 

  plane. 

Solution:          

            
 

 
     

 

 
  

⇒             
   

  
  

 
 

  
             

Equating real and imaginary parts, we get 

⇒   
 

  
     ,    and  



  v 
 

  
      

(i) Put          
 

  
 ,      v 

 

  
  or        

(ii) Put          
 

  
 ,      v 

 

  
  or       

(iii) Putting           in      we get v 
 

  
 

 

Hence the triangular region     in   plane is mapped on a triangular region  ’   of 

  plane bounded by the lines            
 

  
 

      
 

  
      

      
 

  
              

Amp.                
 

 
 

The mapping          performs a rotation of R through an angle 
 

 
          

7.7.  Magnification:     , Where c is a real quantity 

(1) The figure in    lane is magnified  -times the size of the figure in   plane. 

(2) Both figures in   plane and   plane are singular. 

Example 6: Determine the region in   plane on the transformation of rectangular region 

enclosed by            ,       and       in the  -plane. The transformation is     . 

Solution: We have,        that is               



Equating the real and imaginary parts, we get,                      

                

                  

        

        

 

7.8.  Magnification and Rotation      ……………(1) 

Where,       all are complex numbers. 

       ,              ,               

Putting these values in (1), we have 

                            .           and         

Thus we see that the transform      corresponding to a rotation, together with magnification. 

Algebraically             

or                   

⇒                      



or,                         

On solving these equations, we can get the values of        . 

    
     

     
,      

      

     
 

 

On putting values of         in the equation of the curve to be transformed we get the equation 

of the image. 

Example 7: Find the image of the triangle with vertices                 –    in the   plane under 

the transformation 

(i)          ,  

     (ii)       
   

         

Solution. (i)          ,  

⇒                    

⇒                  

                 

                        

          

           

             



      

(ii)    
   

         

         
  

 
     

  

 
             

  
 

 
 
  

 
              

  
 

 
   

  

 
     

  

 
  

 

 
    

⇒   
 

 
   

  

 
    and      

  

 
  

 

 
   

   

    

                    

                     

    
  

 

 
   

  

 
  

 
   

  

 
  

 

 
   

         
   

  

 
      

 ’  

 
     

        
 
 

 
 
  

 
     

 ’ 
 
  

 
 
 

 
     



          
 
 

 
 
  

 
      

   C’ 
 
  

 
 
 

 
     

 

 

7.9.  Inversion and reflection:    
 

 
               …..(1) 

If             and          

Putting these values in (1), we get  

     
 

    
 
 

 
     

On equating, we get   
 

 
    and        

Thus the point        in the   plane is mapped into the point            in the   plane. 

Hence the transformation is an inversion of   and followed by reflection into the real axis. The 

points inside the unit circle         map into points outside it, and points outside the unit circle 

into points inside it. 

Algebraically   
 

 
    or     

 

 
 



     
 

    
  ⇒      

    

            
 

    

     
 

   
 

     
,      

 

     
 

Let the circle                        be in   plane. 

On substituting the values of   and   in (1), we get 

  

        
 

  

        
   

 

     
   

    

     
     

This is the equation of circle in   plane. This shows that a circle in   plane transforms 

another circle in   plane. But a circle through origin transforms into a straight line. 

Example 8:  Find the image of          under the mapping   
 

 
  . 

Solution:     
 

 
  

⇒   
 

 
 

⇒     
 

    
 

    

            
 

    

     
 

⇒  
 

     
,      

 

     
     ……….. (1) 

The given curve is          

⇒           ⇒           ….(2) 

On substituting the values of x and y from (1) into (2), we get 

  

        
   

 

     
   

 

   

  

        
 
             

        
   

⇒                            



⇒                               

                  

⇒                  

⇒                   

                  

        is the equation of the image 

 Also         ,       
 

 
 

Or   
 

 
      ⇒             

                     

⇒                    

                     

⇒                       

Or,            

Another method:          

⇒          

⇒          

  
 

 
 

 

       
 ⇒    

 

     
 

        
              

               
⇒    

      

       
  

 

 
   Ans. 

Example 9:  Image of         under the mapping   
 

 
 is 

(a)                (b)          (c)                 (d)        



Solution:     
 

 
  

⇒      
 

    
 

    

     
 

⇒   
 

     
,        

  

     
 

Given            ⇒           

⇒            

⇒           

⇒          

⇒
 

 
 

  

     
    

⇒ 
 

 
    ⇒       .  

Hence   is correct answer.     

Example 10: Show that under the transformation   
 

 
 the image of the hyperbola         

is the lemniscate        . 

Solution:         

Putting                                         

⇒                    

⇒                      

                                    ……….. (1) 

And    
 

 
 ⇒   

 

 
  

⇒      
 

    
⇒     

 

 
      



⇒    
 

 
      and           

Putting the values of r and θ in (1), we get 

 
 

  
          ⇒         

Check your progress 

1. Find the image of the semi infinite, strip                 under the transformation 

         

2. Determine the region in the w-plane in which the rectangle bounded by the lines    

                          is mapped under the transformation           . 

3. Show that the condition for transformation             to make the circle 

        respond to a straight line in the   plane is (a) = (c). 

4. What is the region of the w-plane in two ways the rectangular region in the z-plane 

bounded by the lines                              is mapped under the 

transformation          . 

5. For the mapping      
 

 
, find the image of the family of circle         , where   

is real. 

6. Show that the function   
 

 
 transforms the straight line       in the   plane into a 

circle in the   plane. 

7. If        
 

 
, then prove that the unit circle in the  -plane corresponds to a parabola 

in the  -plane, and the inside of the circle to the outside of the parabola. 

8. Find the image of          under the mapping   
 

 
. 

9. Determine the region in the  -plane by          . 

7.10.  Bilinear transformation (Mobius Transformation):   
    

    
 ……(1) 

is known as bilinear transformation if  then  
  

  
    i.e. transformation is conformal. 

From (1),    
     

    
.  This is also bilinear except   

 

 
 



Note:  From (1) every point of   plane is mapped into unique point in   plane except   
 

 
 

From (2) every point of   plane is mapped into unique point in  -plane except   
 

 
 

7.11.  Invariant points of Bilinear Transformation: 

We know that   
    

    
 ………(1) 

If   maps into itself, then       

(1) becomes     
    

    
 ……….(2) 

Roots of (2) are the invariants of fixed points of the bilinear transformation. 

If the roots are equal, the bilinear transformation is said to be parabolic. 

Cross Ratio: If there are four points             taken in order, then the ratio 
              

              
 is 

called cross ratio of            . 

Theorem: A bilinear transformation preserves cross ratio of four points. 

Proof: We know that   
    

    
. 

As             are image of             

   
     

     
,     

     

     
,     

     

     
 and    

     

     
 

      
       

              
       …………………(1) 

Similarly       
       

              
       …………………(2) 

      
       

              
       …………………(3) 

      
       

              
       …………………(4) 



From (1), (2), (3) and (4), we have 

              

              
 
              

              
 

⇒   (           ) = (           ) 

7.12.  Properties of bilinear transformation: 

1. A bilinear transformation maps circles into circles. 

2. A bilinear transformation preserves cross ratio of four points. 

 If four points                of the   plane map onto the points             of the   plane 

respectively. 

⇒  
              

              
 

              

              
 

Hence under the bilinear transform of four points cross ratio is preserved. 

7.13.  Methods to find bilinear transformation: 

1. by finding         for   
    

    
 with the given conditions. 

2. with the help of cross-ratio 

             

             
 
             

             
 

Example 11: Find the bilinear transformation which maps the points      , i, -1 into the points 

            . Hence find the image of      . 

Solution: Let the required transformation be   
    

    
 

Or,    
 

 
  

 

 
 

 
   

   
    

    
         …………….. (1)          

 

 
   

 

 
   

 

 
  

On substituting the values of   and corresponding values of   in (1), we get 



  
   

   
⇒         ……..  (2) 

  
    

    
             …….         (3) 

   
    

    
⇒            (4) 

    

    

    

     

On subtracting (4) from (2), we get                  

On putting the value of   in (3), we have                       

On substituting the values of   and   in (2), we obtain 

                                         

by using the values of       and (1), we have   
    

     
 

     
         

          
 

                

                 
 
            

         
 

Equating real and imaginary parts, we get   
        

         
   and   

  

         
 

But       ⇒         ⇒          

From (5)       as denominator is positive 

Example 12:  Find a bilinear transformation which maps the points        of the   plane into 

      of the   plane respectively. 

Example 13: Find the bilinear transformation which maps the points            into  



           . Also find the image of the unit circle      . 

Solution:  On putting            into           respectively in 

             

             
 
             

             
 

⇒  
       

  
  

   

 
 

  
          

  
             

             
 

⇒ 
         

         
 

           

           
 ⇒  

   

  
   

      

   
 

⇒     
       

   
 ⇒   

      

   
   

           

   
  ⇒    w  

   

   
      …….(2)      

From (2),    
    

   
….. (3)   [  Inverse transformations is   

     

    
 ] 

And                       ⇒  
    

   
   ⇒             

⇒                      

⇒                   ⇒                     

⇒                       ⇒       ⇒        

Example 14: Find the fixed points and the normal form of the following bilinear transformations 

(a).   
    

   
      and    (b)      

   

   
. Discuss the nature of these transformations. 

Solution:  (a) The fixed points are obtained by 

  
    

   
   or,               or,           ⇒   z = 2 

      is the only fixed point. This transformation is parabolic. 

Normal form:    

  
    

   
 ⇒ 

 

   
   

 

    

     
    

   

         
   

   

   
   



⇒ 
 

   
 

 

   
+1 

 Example 15: Show that   
   

   
 maps the real axis of the   plane into (i). The circle       

and (ii) the half plane     into the interior of the unit circle       in the   plane. 

Solution: We have   
   

   
 

     
   

   
  

     

     
 
        

        
 

   
         

        
 ,      

          

          
 

Now the real axis in   plane i.e.,       transform into 

    
     

     
            

Hence the real axis in the   plane is mapped into the circle,      . 

(ii) The interior of the circle i.e.,       gives. 

          

          
   

⇒ 
         

         
   ⇒                     

                ⇒      ,      ⇒     

Thus the upper half of the   plane corresponds to the interior of the circle      . 

Example 16: Show that the transformation   
   

   
 transforms the circle with centre 

 

 
    and 

radius    in the   plane into the imaginary axis in the  -plane and the interior of the circle into 

the right half of the plane. 

Solution:   
   

   
 ⇒      

      

      
 ⇒                       



⇒                             

⇒                             

Equating real and imaginary quantities, we have 

             and               

⇒               and              

On solving the equation for   and  , we have 

  
            

          
,        

  

          
 

Here, the equation of the given circle is      
 

 
 
 

    
 

 
 ………………(1) 

Putting the values of   and   in (1), we have 

 
            

          
 
 

 
 

 

  
  

          
 
 

 
 

 
 

⇒  
        

             
 
 

  
  

          
 
 

 
 

 
 

⇒                               

⇒                                    

⇒                                                   

⇒                          

⇒                                     

⇒                ⇒                 

⇒       i.e. equation of imaginary axis. 

Equation of the interior of the circle is    
 

 
 
 

    
 

 
. 



Then corresponding equation in      is 

                 Or,                 

As               so, u > 0 i.e. equation of the right half plane.    

7.14.  Inverse point with respect to a circle: 

Two points   and   are said to be the inverse points with respect a circle   if they are collinear 

with the centre   on the same side of it, and if the product of their distances from the centre is 

equal to   where r is the radius of the circle. 

Thus when   and   are the inverse points of the circle, then the three points       are collinear, 

and also           

Example 17: Show that the inverse of a point  , with respect to the circle         is the 

point    
  

     
 ) 

Solution: Let   be the inverse point of the point  ’ with respect to the circle        . 

Condition I: The points       are collinear. Hence   r          r           r          

⇒  r          r             or,    r                   

                   is real, so that,                                  

Condition II:                    ⇒                   

                                        ⇒       
  

     
 

 ⇒     
  

     
           

Example 18: Find a Mobius transformation which maps the circle       into the circle 

        and maps             respectively into   
 

 
,        

Solution: Let the transformation be,     
    

    
 ……..(1) 



Since,       maps into   
 

 
 

From (1) we get 

   
 

 
  

 

 
  

 ⇒ 
 

 
            

Since       maps into      , from (1), we get 

   
   

   
  ⇒           ………..(3) 

Here         corresponding to         

Therefore points w, 
 

 
 inverse with respect to the circle       correspond to the points z, 

  
 

   
 inverse with respect to the circle        . 

[  and   
  

   
 are the inverse points on the circle       ] 

Particular     and   correspond to    
 

 
,   

 
 

 
  
 ⇒   

 

 
    

Since,    maps into      from (1), we get   
    

     
 ⇒     d     ⇒   d      

From (2), (3), and (4) we get     
 

 
       

From (1),   
    

    
 

      

    
 

     

   
. 

Example 19: Show that the transformation    
    

    
  transform the circle       into a circle 

of radius unity in    plane and find the centre of the circle. 

Solution:  Here.   
    

    
 

⇒  
    

    
 ⇒      

    

    
    

⇒               

⇒                           [∵      ] 

    

    

    



⇒                                   

⇒                                 

⇒                   ⇒         
 

 
          

This is the equation of circle in    plane. 

Now we have to find its centre 

                 ……..(3) 

From (2) and (3)                
 

 
                

 

 
 

Centre is         i.e.    
 

 
       and Radius =            

 

 
   

 

 
   

Thus (2) is circle with its centre at   
 

 
       and of radius unity in   plane.     

Example 20: Find the image of              under the mapping   
   

    
 

Solution:      
   

    
 ⇒             that is              …….(1) 

⇒   
   

    
  ⇒      

        

        
         

⇒      
        

         
            …………..(3) 

Multiplying (2) and (3) we get  ⇒       
         

         
             …………….. (4) 

Subtracting (3) from (2), we get     
              

         
        …………….(5) 

Putting the values of       and y in (1), we get  
         

         
  

         

         
     

⇒                                       



⇒                . This is the image of              under the mapping 

 
   

    
 . 

Check your progress 

1. Find the bilinear transformation  that maps the points                       into the 

points                           respectively.   Ans.   
     

    
 

2. Determine the bilinear transformation which maps                     onto 

                          respectively.    Ans.   
   

    
 

3. Verify that the equation   
    

   
 maps the exterior of the circle       into the upper half 

plane      . 

4. Find the bilinear transformation which maps                  respectively. Find the fixed 

and critical points of the transformation.    Ans. i, 2i  

5. Show that the transformation   
      

   
 maps the circle       into the real axis of the  

  plane and the interior of the circle       into the upper half of the   plane. 

6. Show that the transformation   
    

    
 transforms the real axis in the   plane into circle in 

the   plane. Find the centre and the radius of this  circle.  Ans.    
 

 
  

 

 
 

7. If    is the upper half of the  -plane show that the bilinear transformation       
    

       
  

maps the upper half of the   plane into the interior of the unit circle at the origin in the 

  plane. 

8. Find the condition that the transformation   
    

    
 transforms the unit circle in the 

  plane into straight lines the   plane. 

9. Prove that   
 

   
 maps the upper half of the   plane into the upper half of the   plane. 

What is the image of the circle       under this transformation? 

10. Show that the map of the real axis of the   plane on the   plane by the transformation 

  
 

   
 is a circle and find its centre and radius. 



11. Find the invariant points of the transformation     
     

    
 . Prove also that these two 

points together with any point   and its image  , form a set of four points having a contant 

cross ratio. 

12. Show that under the transformation   
   

   
 the real axis in   plane is mapped into the 

circle      . What portion of the   plane corresponds to the interior of the circle? 

(Ans. the half   plane above the real axis corresponds to the interior of the circle      .) 

13. Discuss the application of the transformation   
    

   
 to the areas in the   plane which are 

respectively inside and outside the unit circle with its centre at the origin. 

14. What is the form of a bilinear transformation which has one fixed point α and the other fixed 

point  ? 

Choose the correct alternative: 

The fixed points of the mapping                are 

(a)  
 

 
             (b) 2,   2  (c) -2,   -2  (d) 2,  -2 

The invariant points of the bilinear transformation are 

(a)       (b)          (c)     (d) invariant point does not exist  

7.15. Transformation      

Solution:      that is                         

Equating real and imaginary parts, we get                   

(i)(a).  Any line parallel to   axis, i.e.,      , maps into 

                  

Eliminating,  , we get             ……. (1) which is a parabola. 

(b). Any line parallel to   axis, i.e.,      , maps into a curve 

       ,         



Eliminating,  , we get              , …….. (2) which is a parabola 

(c). The rectangular region bounded by the lines                             maps into 

the region bounded by the parabolas. 

 

By Putting           in (2) we get            

By putting           in (2) we get             

By putting           in (1) we get           

By putting           in (1) we get            

(ii) (a). In polar co-ordinates:       ,,         

    ,               

 

Then          ,           



In   plane a circle       maps      in   plane. 

Thus, circles with centre at origin map into circles with at the origin. 

(b).  if          , i.e. real axis in   plane maps into real axis in   plane. 

If   
 

 
    , i.e. the positive imaginary axis in   plane maps into negative real axis in 

same. Thus, the first quadrant in   plane     
 

 
, maps into upper half of    plane 

      . 

The angle in    plane at origin maps into double angle in   plane at origin. 

Hence the mapping      is not conformal at the origin. 

It is conformal in the entire   plane except origin. Since,  
  

  
      for         therefore 

critical point of mapping. 

Example 21:  For the conformal transformation        Show that the circle         

transforms into the cardioid             where        in the   plane. 

Solution:        ………………… (1) 

Equation (1) represents a circle with centre at (1, 0) and radius 1. 

Shifting the pole to the point (1, 0), any point on (1) is       

Transformation is under     . 

     =          =      
  

    
  

               
 

 
              

 

 
   

This gives that          
 

 
  ⇒ R          

 

 
   ⇒ R              

Summary 

 After studying this unit we will be able to define Mapping and Conformal Mapping ,translation 

      and Rotation         magnification and Rotation       inversion and reflection, 

Mobius transformation, invariant points of Bilinear transformation, properties of Bilinear 



transformation, methods to find Bilinear transformation , inverse point with respect to a circle 

and transformation     . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


