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UNIT 1 BASIC CONCPET 

Structure 

1.1 Introduction 

1.2 Objectives 

1.3 Need of Quantum Theory and Quantum Mechanics 

1.4 Fundamental Equation of Wave Mechanics 

1.5 Wave Function 

1.6 Stationary States 

1.7 Probability Current Density 

1.8 Equation of Continuity 

1.9 Summary  

1.10 Terminal Questions 

1.11 Answer and Solution of Terminal Question 

1.12 Suggested Readings 

1.1 INTRODUCTION 

On the one hand the quantum theory of light cannot be considered 

satisfactory since it defines the energy of a light particle (photon) by the equation 

E=hf containing the frequency f. Now a purely particle theory contains nothing 

that enables us to define a frequency; for this reason alone, therefore, we are 

compelled, in the case of light, to introduce the idea of a particle and that of 

frequency simultaneously. On the other hand, determination of the stable motion 

of electrons in the atom introduces integers, and up to this point the only 

phenomena involving integers in physics were those of interference and of 

normal modes of vibration. This fact suggested to me the idea that electrons too 

could not be considered simply as particles, but that frequency (wave properties) 

must be assigned to them also. (Louis de Broglie, Nobel Prize Speech, Quantum 

Physics, 1929) 

The development during the present century is characterized by two 

theoretical systems essentially independent of each other: the theory of 

relativity and the quantum theory. The two systems do not directly contradict 

each other; but they seem little adapted to fusion into one unified theory. ... 

Experiments on interference made with particle rays have given brilliant proof 

that the wave character of the phenomena of motion as assumed by the theory 

do, really, correspond to the facts. ... de Broglie conceived an electron revolving DCEPHS-108/5



about the atomic nucleus as being connected with a hypothetical wave train, and 

made intelligible to some extent the discrete character of Bohr's 'permitted' paths 

by the stationary (standing) character of the corresponding waves. (Albert 

Einstein, On Quantum Mechanics, 1940) 

A careful analysis of the process of observation in atomic physics has 

shown that the subatomic particles have no meaning as isolated entities, but can 

only be understood as interconnections between the preparation of an experiment 

and the subsequent measurement. Quantum theory thus reveals a basic oneness of 

the universe. It shows that we cannot decompose the world into independently 

existing smallest units. As we penetrate into matter, nature does not show us any 

isolated ‗basic building blocks‘, but rather appears as a complicated web of 

relations between the various parts of the whole. (Fritjof Capra, The Tao of 

Physics, On Quantum Theory) 

From 1900 to 1930 there was a revolution in the foundations of our 

understanding of light and matter interactions. In 1900 Planck showed that light 

energy must be emitted and absorbed in discrete 'quanta' to explain blackbody 

radiation. Then in 1905 Einstein showed that the energy of light is determined by 

its frequency, where E=hf. Finally, in the late 1920s, de Broglie and Schrodinger 

introduced the concept of Standing Waves to explain these discrete frequency and 

energy states of light and matter (standing waves only exist at discrete frequencies 

and thus energy states). 

So, it is clear that Waves are central to Quantum Physics and our 

understanding of the structure and discrete energy states of Matter (which 

explains why Quantum Theory is also called Quantum Wave Mechanics). As we 

shall explain, the problems and absurdities of quantum theory have been caused 

by the continuing assumption of the discrete 'particle' concept for both light and 

matter, and thus the resulting paradox of the 'Particle / Wave' duality. 

As we are dealing with a scientific theory, it is necessary to begin by 

stating the central Principles of the 'Metaphysics of Space and Motion and the 

Wave Structure of Matter', which describe how Matter exists in Space as a 

Spherical Standing Wave and interacts with other Matter in the Space around it. 

From this foundation we can then deduce the solutions to many problems 

currently found in Quantum Theory caused by this ancient concept that matter 

exists as 'particles'. 

For example, the obvious solution to the paradox of the particle / wave 

duality of matter is to realise that the Wave-Center of the Spherical Standing 

Wave causes the observed 'particle' effects of Matter (see wave diagram below). 

Likewise, the discrete 'particle' properties of Light (quanta / photons) are caused 

by Standing Wave interactions which only occur at discrete frequencies and thus 

energy states. 

What we observe as material bodies and forces are nothing but shapes and 

variations in the structure of space. Particles are just schaumkommen 

(appearances). The world is given to me only once, not one existing and one 

perceived. Subject and object are only one. The barrier between them cannot be 

said to have broken down as a result of recent experience in the physical sciences, 

for this barrier does not exist. (Erwin Schrodinger, on Quantum Theory) DCEPHS-108/6



Because Schrodinger believed in real waves, he was never happy with 

Max Born's statistical / probability interpretation of the waves that became 

commonly accepted (and was actively promoted by Heisenberg and Bohr) in 

Quantum Theory / Mechanics. 

Secondly, David Bohm provides a clear account of how this incorrect 

'particle' conception of matter not only causes harm to the Sciences, but also to the 

way we think and live, and thus to our very society and its future evolution. 

The notion that all these fragments is separately existent is evidently an 

illusion, and this illusion cannot do other than lead to endless conflict and 

confusion. Indeed, the attempt to live according to the notion that the fragments 

are really separate is, in essence, what has led to the growing series of extremely 

urgent crises that is confronting us today. Thus, as is now well known, this way of 

life has brought about pollution, destruction of the balance of nature, over-

population, world-wide economic and political disorder and the creation of an 

overall environment that is neither physically nor mentally healthy for most of the 

people who live in it. Individually there has developed a widespread feeling of 

helplessness and despair, in the face of what seems to be an overwhelming mass 

of disparate social forces, going beyond the control and even the comprehension 

caught up in it. 

In this unit we will discuss some basic fundamentals and need of quantum 

mechanics. 

1.2 OBJECTIVES 

 After studying this unit, student should able to, 

 Concept of Quantum Mechanics  

 Explain the concept of stationary states  

 Know about wave function  

 Explain the concept of probability current density  

 Know about equation of continuity 

1.3 NEED OF QUANTUM THEORY AND QUANTUM 

MECHANICS 

(Quantum theory is needed because many phenomena at the microscopic level 

cannot be explained using classical theory, eg: Photoelectric effect, interaction among   

elementary particles.) 

Quantum mechanics and classical mechanics are two cornerstones of 

physics we know today. Classical mechanics describes the behavior of 

macroscopic bodies, which have relatively small velocities compared to the speed 

of light. Quantum mechanics describes the behavior of microscopic bodies such 
DCEPHS-108/7



as subatomic particles, atoms, and other small bodies. These two are the most 

important fields in physics. It is vital to have a proper understanding in these 

fields in order to excel in any part of physics. In this article, we are going to 

discuss what quantum mechanics and classical mechanics are, where they are 

applied, their special characteristics, the similarities between quantum mechanics 

and classical mechanics, their variations, and finally the difference between 

quantum mechanics and classical mechanics.  

What is Classical Mechanics? 

Classical mechanics is the study of macroscopic bodies. The movements 

and statics of macroscopic bodies are discussed under classical mechanics. 

Classical mechanics has three different branches. They are, namely, Newtonian 

mechanics, Lagrangian mechanics, and Hamiltonian mechanics. These three 

branches are based on the mathematical methods and quantities used to study the 

motion. For an example, Newtonian mechanics uses vectors such as displacement, 

velocity, and acceleration to study the motion of the object, whereas Lagrangian 

mechanics uses energy equations and rate of energy change to study. The proper 

method is selected depending on the problem to be solved. Classical mechanics is 

applied in places such as planetary motion, projectiles, and most of the events in 

daily lives. In classical mechanics, energy is treated as a continuous quantity. A 

system can take any amount of energy in classical mechanics. 

What is Quantum Mechanics? 

Quantum mechanics is the study of microscopic bodies. The term 

―quantum‖ comes from the fact that energy of a microscopic system is quantized. 

The photon theory is one of the cornerstones of quantum mechanics. It states that 

the energy of light is in the form of wave packets. Heisenberg, Max Plank, Albert 

Einstein are some of the prominent scientists involved in developing the quantum 

mechanics. Quantum mechanics falls into two categories. The first one is 

quantum mechanics of non-relativistic bodies. This field studies the quantum 

mechanics of particles with relatively small speeds compared to the speed of light. 

The other form is relativistic quantum mechanics, which studies particles moving 

with speeds compatible with the speed of light. Heisenberg‘s uncertainty Principal 

is also a very important theory behind quantum mechanics. It states that the linear 

momentum of a particle and the position of that particle in the same direction 

cannot be measured simultaneously with 100% accuracy. 

Difference between Classical and Quantum Mechanics 

1. Classical Mechanics deals with macroscopic particles whereas Quantum 

Mechanics deals with microscopic particles. 

2. Classical Mechanics is based on Newtons laws of motion. Quantum 

Mechanics takes into account Heisenberg‘s uncertainty principle and de 

Broglie concept of dual nature of matter. 

3. Classical Mechanics is based on Maxwells electromagnetic wave theory. 

According to it any amount of energy may be emitted or absorbed 

continuously. Quantum Mechanics is based on Planck‘s quantum theory 

according to which only discrete values of energy are emitted or absorbed. DCEPHS-108/8



4. In Classical Mechanics, the state of a system is defined by specifying all 

the forces acting on the particles. It also counts, particles positions and 

velocities (moment). The future state then can be predicted with certainty. 

Quantum Mechanics gives probabilities of finding the particles at various 

locations in space. 

1.4 FUNDAMENTAL EQUATION OF WAVE 

MECHANICS 

The Schrödinger equation is the fundamental equation of physics for 

describing quantum mechanical behavior. It is also often called the Schrödinger 

wave equation, and is a partial differential equation that describes how the 

wavefunction of a physical system evolves over time. 

Quantum mechanics is a branch of physics that studies the behaviors of 

matter and light on an atomic and subatomic level. It tries to explain and classify 

the properties of molecules and atoms as well as their constituents, which include 

electrons, protons, neutrons, and other more esoteric particles including quarks 

and gluons. These properties include the interactions of the particles with one 

another and with electromagnetic radiation (i.e., light, X-rays, and gamma rays). 

Quantum mechanics is based on the Schrodinger equation, which is a 

fundamental equation. In classical mechanics, the Schrodinger equation plays the 

function of Newton's laws and energy conservation, predicting the potential 

behaviour of a complex system. It is a wave equation in terms of the 

wavefunction that predicts the likelihood of events or outcomes analytically and 

precisely. The precise outcome is not predetermined, but the Schrodinger equation 

can predict the distribution of outcomes provided a large number of events. 

Kinetic energy + Potential energy = E 

The kinetic and potential energies are combined into the Hamiltonian, 

which acts on the wavefunction to cause it to evolve in time and space. The 

Schrodinger equation gives the system's quantized energies as well as the 

wavefunction's structure, which can be used to calculate other properties. It is 

written as – 

      

Where,   Hamiltonian Operator,    Wave function and E Energy. 

THEORY OF SCHRODINGER EQUATION 

The theory of Schrodinger equation was formulated by Erwin Schrodinger 

in the year 1926. His formulation is based on de-Broglie‘s concept of matter-

wave. The theory aims at setting up a differential equation (wave equation) for a 

wavefunction that can describe the detailed behavior of matter wave. 

The main assumptions made in the theory are : 

(i) Creation and destruction of material particles do not take place. 

DCEPHS-108/9



(ii) All material particles move with small velocities so that they can be 

treated non-relativistically. 

Inspire of the above assumptions, the theory has proved to be immensely 

successful when applied to atoms and molecules. The theory provides a 

quantitative formulation of some of the basic principles of quantum mechanics, 

shows how a wave theory of matter works out in practice, tells how physical 

quantities, for systems for which the laws of classical mechanics are not 

applicable, can be actually computer within the framework of the theory. 

The Schrodinger equation for a free non-relativistic particle may be 

arrived at by making straightforward uses of the new concepts that have been 

obtained in the domain of microscopic particle. 

TIME-DEPENDENT SCHRODINGER EQUATION FOR A FREE 

PARTICLE: EQUATION OF MOTION FOR MATTER WAVE 

The wavelength λ of the de-Broglie wave associated with a free particle of 

mass m moving along the x-axis with momentum px is given by 

   ……… (1) 

The wave-vector k is related to the wavelength λ as 

   ……… (2) 

From the above two equation, we get 

  ……… (3) 

The kinetic energy E of the particle is related to the angular frequency of the 

wave associated with it as 

   ……… (4) 

Further, we have 

   ……… (5) 

so that Eqs. (3), (4) yields 

DCEPHS-108/10



  ……… (6) 

The wave function ѱ(x, t) which describes the free particle localilzed in the 

region of the x-axis is given by 

  ……… (7) 

Using   given by Eq. (6), the above becomes 

 ……… (8) 

Differentiating Eq. (8) with respect to time t, we get 

 ……… (9) 

Further, differentiation of Eq. (9) with respect to x gives 

 

The above on differentiation with respect to x gives 

  ……… (10) 

Multiplying Eq. (9) by iℏ we obtain 

DCEPHS-108/11



 ……… (11) 

In view of Eqs. (10) and (11) we obtain 

 ……… (12) 

Equation (12) is the one-dimensional time-dependent Schrodinger equation for a 

particle of mass m localized in the region of the x-axis and described by the 

wave function ѱ(r, t). 

OPERATORS CORESPONDING TO ENERGY AND LINEAR 

MOMENTUM 

It is possible to write the one-dimensional Schrodinger equation for a free particle 

given by Eq. (12) as 

 ……… (13) 

The energy E of the free particle is related to the momentum component px as 

  ……… (14) 

Comparison of Eqs (13) and (14) allows us the associate differential operators 

with the energy E and the momentum component px, which operate on the wave 

function ѱ(x, t), as 

   ……… (15) 

as 

   ……… (16) 

Extending the above for the three-dimensional case the operators associated 

with the momentum components px, py, pz are given as 
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   ……… (17) 

In view of the above, the operator corresponding to the linear momentum vector 

 ⃗ is 

 

i.e.      ……… (18) 

 

TIME-DEPENDENT SCHRODINGER EQUATION FOR A PARTICLE 

MOVING IN A FORCE FIELD 

Let us now consider the particle to be moving in space under the influence 

of a force field and not freely. Under such a case, the particle possesses potential 

energy besides kinetic energy. Let us consider the potential energy of the particle 

to be a function of position  ⃗ and time t. 

Denoting the potential energy as V( ⃗, t), we may write the total energy of 

the particle 

    ……… (19) 

According to Schrodinger, the operators for  ⃗ and t are respectively 

      ……… (20) 

and      ……… (21) 

Replacing E, p, r and t by their respective operators given by Eqs. (15), (18), 

(19) and (20) in Eq. (19) we obtain 
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  ……… (22) 

Allowing the operator Eq. (22) to operate on the wave function ѱ( ⃗, t) 

describing the state of the particle, we getV( ⃗, t). 

 ……… (23) 

Equation (23) is the time- dependent Schrodinger equation for a particle of mass 

m moving in space in a force field describe by the potential energy functionV( ⃗, 

t). 

The operator *
   

  
    ( ⃗  )+ is the operator corresponding to the total energy 

of the particle or the Hamiltonian of the particle. It is usual to denote this 

operator as  ̂ so that the Schrodinger Eq. (23) can be written in its usual form as  

    ……… (24) 

TIME-INDEPENDENT SCHRODINGER EQUATION 

Consider a particle of mass m moving freely in space. Let ѱ( ⃗, t) or ѱ(x, y, 

z, t) be the wave function for the de-Broglie wave associated with the particle at 

the location  ⃗ or (x, y, z) at the instant of time t. 

In analogy with classical mechanics, the differential equation for the wave 

function can be written as 

 

Where u in the wave velocity of the de-Broglie wave. The above equation can 

also be written as  

 

or   ……… (25) 

The solution of Eq. (25) in its most general form is given by DCEPHS-108/14



    ……… (26) 

where     ……… (27) 

v being the frequency of the wave and  ( ⃗) is the time-independent function 

and represents the amplitude of the wave at the location  ⃗.  

We get from Eq. (26) an differentiation with respect to time t 

     

Differentiating the above equation with respect to time t we get 

   ……… (28) 

Using Eq. (28) in Eq. (25) we get 

   ……… (29) 

We have 

     ……… (30) 

where λ is the wavelength of the de-Broglie wave. Equation (30) gives 

      ……… (31) 

Use of Eq. (31) in Eq. (29) gives 

 

or       DCEPHS-108/15



or 

or ……… (32) 

It v the velocity of the particle, we have 

Substituting the above in Eq. (32) we obtain 

or   ……… (33) 

It E be the total energy of the particle and V be its potential energy then we have 

the kinetic energy of the particle 

so that 

……… (34) 

Substituting Eq. (34) in Eq. (35) we obtain 

……… (35) 

Equation (35) is the time-independent Schrodinger equation for a particle 

of mass m, total energy E moving in a force field described by the potential 

energy function V. 
DCEPHS-108/16



For a freely moving particle in space, V = 0, so that Eq. (34) reduces to 

……… (36) 

For one-dimensional motion localized in the region along the x-axis, Eq. (35) 

gives 

……… (37) 

1.5 WAVE FUNCTION 

In quantum physics, a wave function is a mathematical description of a 

quantum state of a particle as a function of momentum, time, position, and spin. 

The symbol used for a wave function is a Greek letter called psi, 𝚿. 

By using a wave function, the probability of finding an electron within the 

matter-wave can be explained. This can be obtained by including an imaginary 

number that is squared to get a real number solution resulting in the position of an 

electron. The concept of wave function was introduced in the year 1925 with the 

help of the Schrodinger equation. 

Schrodinger equation is defined as the linear partial differential equation 

describing the wave function, 𝚿. The equation is named after Erwin Schrodinger. 

Using the postulates of quantum mechanics, Schrodinger could work on the wave 

function. 

Following is the equation of the Schrodinger equation: 

DCEPHS-108/17
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Properties of Wave Function 

 All measurable information about the particle is available.

 𝚿 should be continuous and single-valued.

 Using the Schrodinger equation, energy calculations become easy.

 Probability distribution in three dimensions is established using the wave

function.

 The probability of finding a particle if it exists is 1.

Postulates of Quantum Mechanics 

 With the help of the time-dependent Schrodinger equation, the time

evolution of the wave function is given.

 For a particle in a conservative field of force system, using wave function,

it becomes easy to understand the system.

 The linear set of independent functions is formed from the set of

eigenfunctions of operator Q.

 Operator Q associated with a physically measurable property q is

Hermitian.

 By performing the expectation value integral with respect to the wave

function associated with the system, the expectation value of the property

q can be determined.

 For every physical observable q, there is an operator Q operating on a

wave function associated with a definite value of that observable such that

it yields a wave function of that many times.

PHYSICAL INTERPRETATION OF WAVE FUNCTION 

Schrodinger wave function ψ(x, t) or ψ( ⃗, t) is the amplitude of the de-

Broglie wave for a particle. A rough interpretation of the wave function is that the 

particle is most likely to be found in those regions of space in which ψ(x, t) (in 

one dimension) or ψ( ⃗, t) (in three dimensions) is large. 

The wave function ψ(x, t) or ψ( ⃗, t) being a complex valued function of 

position and time cannot as such have any physical existence. However, the wave 

function must, in some way, be related to the presence of the particle at the 

position x or  ⃗ at the instant of time t. Furthermore, the behavior of the particle 

should become completely known if the wave function is known at all possible 

positions at all possible of time. 

(a) Max Born and Jordan’s probabilistic Interpretation. Max Born and 

Jordan in 1926 gave a probabilistic interpretation of the wave function 

which is characteristic of and fundamental to the Schrodinger theory. This 

interpretation of the wave function is found to be both convenient and 

physically transparent enabling us to make precise computations regarding 

the behavior of the particle. According to Max Born and Jordan, the wave 

function describes the probability distribution of the particle in space and DCEPHS-108/18



time as follows. If we try to locate the particle through a measurement of 

its position at a given instant of time t, the probability of finding the 

particle in a small region of volume d
3
( ⃗) containing the position r in

space is given by  

……… (38) 

where ψ*( ⃗, t) is the complex conjugate of ψ( ⃗, t). 

The probability density is thus proportional to the square modulus of the 

wave function (b) The Schrodinger wave function is a complex valued function of 

position and time which satisfies the linear Schrodinger equation [Eq. (12) in one 

dimension. 

Every definite wave function describes a definite state of motion of the 

particle. 

It is important to note that if ψ( ⃗, t) is a possible wave function then 

  ( ⃗  )      ( ⃗  ) is also a possible wave function if θ is an arbitrary real 

constant. The probability distribution define by ψ and ψ’ are exactly identical 

* |  ( ⃗  )|   ( ⃗)  |    ( ⃗  )|    ( ⃗)  | ( ⃗  )|   ( ⃗)+. This means that two 

wave function ψ and ψ’ describe the same state of motion of the particle. 

From the above we find: 

To every wave function there corresponds a unique state of motion of the 

particle. However, a given state of motion of the particle does not correspond to a 

unique wave function. The wave function corresponding to a given state is known 

only to within a constant complex factor (phase factor) of modulus unity. 

ACCEPTABLE WAVE FUNCTIONS FOR A PHYSICAL SYSTEM 

The dynamical state of a physical system say, a particle moving in space, 

is defined by the wave function ψ( ⃗, t) which is a complex valued function of 

position  ⃗ in space and time t. 

The quantity ψ*(r, t) ψ( ⃗, t)d
3
 ( ⃗), i.e., the quantity | ( ⃗  )|   ( ⃗)  gives

the probability of finding the particle within a volume element d
3
( ⃗) about the

position  ⃗. In other words,  | ( ⃗  )|   is the probability density, i.e., the 

probability density, i.e., the probality of finding the particle within a unit volume 

about the position  ⃗ at the time t. This probabilistic interpretation of the wave 

function necessitates some conditions that must be satisfied by it for its physical 

acceptability. These conditions are: 

(i) Wave function must be finite at all positions at all instants of time. This 

requirement stems from the fact that | ( ⃗  )|   ( ⃗) must lie between 0 

and 1. 
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(ii) Wave function must be single valued at any position at all instants of time. 

This requirement of single validness arises from the fact that at any given 

position, the wave function must be unique so that the probability density 

at the position be uniquely defined at all instants of time. 

(iii) Wave function ψ( ⃗, t) must be a continuous function of position  ⃗ and 

time t. Further, the gradient of the wave function  ⃗⃗⃗ ( ⃗  ) should be

continuous at all points in space. These requirements follow from the fact 

that the probability current density  ⃗( ⃗  ), which is intimately related to

the probabilistic interpretation, is define through ψ( ⃗, t) and  ⃗⃗⃗ ( ⃗  ). The

Schrodinger equation satisfied by the wave function contains the term  ⃗⃗⃗ 

which can exist provided  ⃗⃗⃗  is a continuous function at all points in

space. 

(iv) The wave function must be quadratically integrable, i.e., we must have 

If the above condition is satisfied then we may define a normalized wave 

function that corresponds to a total probability to unity. 

1.6 STATIONARY STATES 

The time-dependent states of a quantum system are the solutions of the 

general time-dependent Schrodinger equation 

……… (39) 

the operator  ̂ being the Hamiltonian for the system. The solution of the above

equation when  ̂ is explicitly dependent on time is generally a difficult task and is

treated most commonly by approximate methods. For the moment, it will suffice 

to consider conservative system, that is, system for which  ̂ does not depend

explicitly on time. If such is the case, the above equation becomes. 

 ……… (40) DCEPHS-108/20



Since the operator (  
 

  
) on the left is independent of coordinates while the 

operator *
   

 
   ( ⃗)+ on the right is independent of time, it is reasonable to 

use, as a trial solution of eq. (40), one in the separated form: 

……… (41) 

Substituting Eq. (41) in Eq. (40) we get 

Dividing throughout by ψ( ⃗)T (t), we get 

…… (42) 

The left-hand side of the above equation is a function of only time while 

the right-hand side is a function of only coordinates. Hence for the above equation 

to hold, each side must be equal to some constant. Taking this constant as equal to 

E we obtain. 

 …… (43) 

........… (44) 

Solution of eq. (43) is given by 

……… (45) 

Using Eq. (45) in Eq. (41) we may write the solution of the Schrodinger Eq. 40 

as  

……… (46) 

Equation (44) can be written as DCEPHS-108/21



……… (47) 

where ……… (48) 

i.e.,  ̂ = operator corresponding to kinetic energy + operator corresponding to

potential energy 

or  ̂ = operator corresponding to the total energy of the system.

Equation (47) is the energy eigenvalue equation and the constant is thus 

identified as the energy eigenvalue. In general, Eq. (47) has a complete set of 

solutions ψn( ⃗) such that 

……… (49) 

En represent the possible results of energy measurement performed on the 

system. Including the time-dependent part, we have the wave function of the 

system 

……… (50) 

Equation (50) gives the time-dependent states of the system. 

The probability density, i.e., the probability of finding the particle, with energy 

eigenvalue En within unit volume about the position  ⃗ at the instant t is given by 

……… (51) 

We find that Pn( ⃗, t) = constant in time. ……… (52) 

The states describe by wave function such as ψn( ⃗, t) given by eq. (50) for 

which the probability density is constant in time are called stationary or steady 

states of the system. 
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Let us now consider an observable A for the system whose operator  ̂
does not depend on time explicitly. By definition, the expectation value of A in 

the stationary state describe by the wave function ψn( ⃗, t) is given by  

……… (53) 

We find that the expectation value of an observable, which is not an 

explicit function of time, in any stationary state is constant in time. 

We  know that the equation of continuity for probability is given by 

……… (54) 

For stationary states, probability density P( ⃗, t)  is independent of time so that 
  ( ⃗  )

  
  . 

Clearly, for stationary states, the current density  ⃗( ⃗  ), according to Eq. (54),

satisfies 

or ……… (55) 

Bound States 

Under many physical situations, we come across states of a quantum 

system called the bound states. These are essentially stationary states which are 

described by wave functions which vanish at infinity. Clearly, for bound states, 

the probability also vanishes at infinity. DCEPHS-108/23



Superposition States 

As we have seen, the particular solution of Eq. (40) are of the form 

……… (56) 

The general solution of Eq. (40) are of the form 

 ……… (57) 

Where an are constants and, in particular, do not depend on time. The state 

of the system described by the wave function ψ( ⃗, t) [eq. (57)] is called a 

superposition state. 

The probability density corresponding to the superposition state is given 

by 

……… (58) 

Clearly, P( ⃗, t) is not independent of time in a super position state. Further, the 

expectation value of an observable A in a super position state is given by 

……… (59) 

As we have seen earlier ψn‘s are the energy eigen functions, i.e., the eigen 

functions of the Hamiltonian operator  ̂.
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If  ̂ commuters with  ̂, then ψn‘s are also the eigen function of  ̂. In such a case

we may write 

where

Hence, we obtain 

……… (60) 

Clearly <A> is constant in time in a super position state provided  ̂
commutes with  ̂. If A does not commute with  ̂, ( ̂) is time-dependent in

general as indicated by Eq. (134). 

1.7 PROBABILITY CURRENT DENSITY 

The wave function  ( ⃗  ) which describes the state of motion of a particle 

of mass m moving under a force field described by the potential energy function 

V( ⃗  ) [assumed real] satisfies the time dependent Schrodinger equation 

  
  ( ⃗  )

  
 *

   

 
    ( ⃗  )+  ( ⃗  ) ………… (61) 

Taking complex conjugate of Eq. (61) we get 

   
   ( ⃗  )

  
 *

   

 
    ( ⃗  )+   ( ⃗  )  ………….. (62) 

Multiplying Eq. (61) by   ( ⃗  ) from the left and Eq. (62) by  ( ⃗  ) from the 

left and subtracting we obtain 

  [  
  

  
  

   

  
]  

  

  
[       ] 

or   
  

  
[   ]  

   

 
[       ] 

or 
  

  
[   ]  

  

 
[       ] …….. (63) DCEPHS-108/25



Writing the Laplacian operator   in term of derivatives we get according to Eq. 

(63),  

  

  
[   ]  

  

  
[  

  

  
   

  

  
   

  

  
   

   

  
   

   

  

   
   

  
] 

or 
  

  
[   ]   

  

 

 

  
*  

   

  
   

  

  
+  

  

 

 

  
*  

   

  
   

  

  
+ 

 
  

 

 

  
*  

   

  
   

  

  
+              ………. (64) 

Let us define 

   
  

 
*  

   

  
   

  

  
+ ……….  (65) 

   
  

 
*  

   

  
   

  

  
+           ………….  (66)   

   
  

 
*  

   

  
   

  

  
+ ………….  (67)   

Then using Eqs. (65), (66) and (67) in Eq. (64) we obtain 

 

  
[   ]  *

   

  
 
   

  
 
   

  
+   ……………. (68)   

Equation (68) can alternatively be expressed as 

 

  
[ ( ⃗  )]   ⃗⃗⃗  ⃗( ⃗  )   ……………. (69)   

where  ⃗( ⃗  )  
  

 
[  ⃗⃗⃗      ⃗⃗⃗ ]       ……..……. (70)   

 ( ⃗  )        ………….. (71)   

We have the well-known equation of continuity in fluid dynamics 

  

  
  ⃗⃗⃗  ⃗      ………….. (72)   

Where, 

  = number of fluid particles per unit volume or particle density 

 ⃗= the number of fluid particles that cross unit area in unit time in a direction

perpendicular to the area, and is called the current density. 

Comparing Eq. (69) with Eq. (72) we may interpret  ( ⃗  )      as the 

position probability density so that      ( ⃗) is the probability of finding the 

particle in the volume element   ( ⃗)about the point ( ⃗) at the instant t. 

and 

 ⃗( ⃗  )                               
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The above result is referred to as the conservation of probability. The 

result holds as long as the particle under consideration is stable and does not 

undergo any kind of decay or does not annihilate or disappear due to some reason. 

1.8 EQUATION OF CONTINUITY 

We generate one equation by multiplying the Schrödinger equation with, 

where  means conjugate complex. We generate another equation by multiplying 

the (Schrödinger equation)  with  and add both equations. The result 

is 

This can be written in the form of a continuity equation: 

1.9 SUMMARY 

Quantum mechanics is the branch of physics that deals with the behavior 

of matter and light on a subatomic and atomic level. It attempts to explain the 

properties of atoms and molecules and their fundamental particles like protons, 

neutrons, electrons, gluons, and quarks. The properties of particles include their 

interactions with each other and with electromagnetic radiation. So below 

mentioned are those two pointers one should know necessarily before tackling 

quantum mechanics. 

Schrodinger wave equation is a mathematical expression describing the 

energy and position of the electron in space and time, taking into account the 

matter wave nature of the electron inside an atom. 

It is based on three considerations. They are; 

a. Classical plane wave equation,

b. Broglie‘s Hypothesis of matter-wave, and

c. Conservation of Energy. DCEPHS-108/27
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Schrodinger equation gives us a detailed account of the form of the wave 

functions or probability waves that control the motion of some smaller particles. 

The equation also describes how these waves are influenced by external factors. 

Moreover, the equation makes use of the energy conservation concept that offers 

details about the behaviour of an electron that is attached to the nucleus. 

Besides, by calculating the Schrödinger equation we obtain Ψ and Ψ2, 

which helps us determine the quantum numbers as well as the orientations and the 

shape of orbitals where electrons are found in a molecule or an atom. 

There are two equations, which are time-dependent Schrödinger equation 

and a time-independent Schrödinger equation. 

Time-dependent Schrödinger equation is represented as; 

………………M 

Equation (M) is the time-independent Schrodinger equation for a particle of 

mass m, total energy E moving in a force field described by the potential energy 

function V. 

1.10 TERMINAL QUESTIONS 

1. Explain the concept of Quantum Mechanics.

2. Difference between Classical Mechanics and Quantum Mechanic.

3. Describe the concept of Stationary States.

4. Discuss about Probability current density.

5. Explain equation of continuity.
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1.11 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 1.3

2. Section 1.3

3. Section 1.6

4. Section 1.7

5. Section 1.8

1.12 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT 2 CONDITION OF WAVE 

FUNCTION 

Structure 

2.1 Introduction 

2.2 Objectives 

2.3 Physical Interpretation of Wave Function 

2.3.1 Normalizable and Unnormalizable Wave Function 

2.4 Condition for Normalized Wave Function 

2.5 Expection Values of a Physical Quantity 

2.6 Dirac-Delta Function 

2.7 Kronecker Delta Function 

2.8 Non-degenerate States and Degenerate State 

2.9 Ehrenfest Theorem 

2.10 Summary 

2.11 Terminal Questions 

2.12 Answer and Solution of Terminal Question 

2.13 Suggested Readings 

2.1 INTRODUCTION 

In quantum physics, a wave function is a mathematical description of a 

quantum state of a particle as a function of momentum, time, position, and spin. 

The symbol used for a wave function is a Greek letter called psi, 𝚿. 

By using a wave function, the probability of finding an electron within the 

matter-wave can be explained. This can be obtained by including an imaginary 

number that is squared to get a real number solution resulting in the position of an 

electron. The concept of wave function was introduced in the year 1925 with the 

help of the Schrodinger equation. 

Significance of wave function 

The wave function ψ itself has no physical significance but the square of 

its absolute magnitude ∣ψ2∣ has significance when evaluated at a particular point 

and at a particular time ∣ψ2∣ gives the probability of finding the particle there at 

that time. The wave function ψ(x,t) is a quantity such that the product 

P(x,t)=ψ (x,t)ψ(x,t) is the probability per unit length of finding the particle at the 

position x at time t. P(x,t) is the probability density and ψ*(x,t) is complex DCEPHS-108/31
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conjugate of ψ(x,t). Hence the probability of finding the particle is large 

wherever ψ is large and vice-versa. 

We have learned about Schrödinger‘s wave equation in previous unit. 

2.2 OBJECTIVES 

 Know about the normalizable wave function.

 Discuss about condition for normalized wave function.

 Define Dirac Delta Function.

 Explain Ehrenfest Theorem.

 Understand Expectation value of a Physical Quantity.

2.3 PHYSICAL INTERPRETATION OF WAVE 

FUNCTION 

 We know that the moving particle has a wave nature. The mathematical

function which describes motion is the wave function ψ(x, y, z, t). The

wave function actually contains all the information which the uncertainty

principle allows us to know about the associated particle. But the wave

uncertainty ψ itself has no physical interpretation, as it may be positive,

negative or complex.

 The basic connection between the properties of the particle and its

associated wave function is expressed in terms of the probability density.

The square of absolute magnitude of wave function |ψ|2 (called probability

density) evaluated at a particular place at a particular instant of time is
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proportional to the probability of finding the particle there at that time. As 

the wave functions are usually complex with real and imaginary parts, the 

probability |ψ|2 is taken as the product ψψ*, where ψ* is a complex 

conjugate of ψ. This interpretation was given by Max Born in 1926. 

According to Born‘s postulate. 

“If at an instant t, a measurement is made to located a particle having 

the wave function ψ(x, t), then the probability P(x, t) of finding the 

particle in a range x and x + dx will be equal to ψ(x, t)ψ*(x, t) dx”. 

 In general, the probability of finding the particle in volume element dV is

P(r, t) dV = |ψ(r, t)|2 dV 

The function ψ(r, t) is called probability amplitude. 

 Since |ψ|2 or ψψ* represents the probability density, the integral of |ψ|2

over all space representing the total probability must be finite because the

particle is present somewhere. Because of the way of definition of ψ, |ψ|2

cannot be negative or complex. Since the particle under consideration will

always be found somewhere, total probability always equal to unity i.e.

∫| |                         ∫         

 The integral in the above equation is carried out over the entire space. The

above condition on ψ is called the normalization condition. The wave

function that satisfies the above condition is called normalized wave

function.

 If the wave function is not normalized, in order to normalize the wave,

function it is multiplied by some arbitrary constant and then the above

integral is evaluated over the entire space. The normalization procedure is

as follows:

If ψ is not normalized, multiply it by some constant A. Then evaluate the

integral and equate it to unity calculate the constant A called normalization 

constant i.e. 

∫  (  )       

or    ∫        

As A is real constant, we get 

| | ∫        

This gives normalization constant as 

| |  
 

∫      

The normalization constant can be taken as positive square root of the above 

result. 
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2.3.1 NORMALIZABLE AND UNNORMALIZABLE 

WAVE FUNCTION NORMALIZED WAVE 

FUNCTION 

If the motion of the particle takes place in a space of finite extent, then the 

total probability P of finding the particle in the space is unity, i.e., 

P = 1 

or ∫ ( ⃗  )  ( ⃗)    

or ∫  ( ⃗  )   ( ⃗  )  ( ⃗)    

or ∫|  ( ⃗  )|   ( ⃗)     …………… (1) 

The wave functions which satisfy Eq. (1) are called normalized wave 

functions. Equation (1) is usually referred to as the normalization integral. 

Normalization of wave function can be understood from the following: 

The Schrodinger equation given by is linear and homogeneous in the wave 

function  ( ⃗  ) and its derivatives. Hence, if the solution of Equation is 

multiplied by a constant the resulting function is also a solution. Let  ( ⃗  )be a 

solution of the Schrodinger equation. We know from the discussions in the earlier 

section that |  ( ⃗  ) | is a positive real number and hence its integral over the 

entire space is also a real positive number. We may hence write 

∫|  ( ⃗  )|   ( ⃗)                                            ……….. (2) 

The number N2 is called the norm of the wave function   ( ⃗  ). 

Let us define 

 ( ⃗  )  
 

 
  ( ⃗  )        ……. (3) 

Since  ( ⃗  )  is different from   ( ⃗  ) only by the multiplicative constant 
 

 
, it is 

also a possible function which satisfies the Schrodinger equation. 

We get 

∫|  ( ⃗  )|   ( ⃗)  ∫
 

 
|  ( ⃗  )|   ( ⃗) 

In view of Eq. (2), the above gives 

∫|  ( ⃗  )|   ( ⃗)   ………(4) 

The wave function  ( ⃗  ) satisfies Eq. (1) and is hence a normalized wave 

function. Comparing Eq. (4) we find that the norm of the wave function  ( ⃗  ) is 

unity. 

We can thus define a normalized wave function as one which has unit norm. 

In Eq. (3), through which normalized wave function is defined, N must be finite. 

In other words, normalizable wave functions must have finite norms. For N and DCEPHS-108/34



hence N2 to be finite we get according to Eq. (2). 

|  ( ⃗  ) |                  

or     ( ⃗  )                      …………… (5) 

Equation (5) is the boundary condition that must be satisfied by normalizable 

wave functions. 

2.4 CONDITION FOR NORMALIZED WAVE 

FUNCTION 

1. In Classical Physics (CP), we use momentum and position to describe

an object. In Quantum Physics (QP), we use ―wave function‖. Wave

function does the job of what momentum and position do in CP.

2. CP is ―deterministic‖. It means that an object is ―definitely there at

x‖. QP is not. QP is ―probabilistic‖. In QP, at a given point, we only

have a ―probability of finding the object at that point‖. At a given

point in time, different points in space have different probabilities of

existence of the particle. It means that unlike CP an object is NOT at

one point, its existence (probability) is spread out.

3. To get the probability of finding a particle at a given point in space,

you have to calculate the modulus of square of the value of wave

function at a given point.

4. Now, logic suggests that at a given point in time, if I calculate the

probability of finding an electron at every point in space, and add up

all those probabilities, it should be equal to 1. In the mathematical

form we write it as

OR 

OR 

This is the summation of probability at all possible points of its existence, 

from minus infinity to plus infinity. Such sum should be equal to 1. DCEPHS-108/35



A valid wave function should satisfy this property. We call this 

“normalization condition”. 

To ―normalize‖ a wave function, calculate the sum of probabilities of 

finding the electron at all points in space (at a given time). It is the above integral. 

Let us say that this turns out to be x. But the actual answer should be 1. So, it 

means that you have to divide the actual wave function by x to make it 1. This 

process of adjusting the integral to 1 is called normalizing a vector. 

REQUIREMENTS OF WAVE FUNCTION 

 To be an acceptable solution of Schrodinger‘s time-independent equation,

the wave function ψ(x) and its first order derivative 
  

  
 should satisfy

certain requirements. These requirements are:

1. ψ(x) must be continuous everywhere i.e., at each and every point on

space.

2. ψ(x) must be finite everywhere.

3. ψ(x) musts be single valued everywhere.

4. Similarly, the first order derivative must be continuous, finite and

single valued everywhere.

 In order to ensure that the wave function must be mathematically ‗well

behaved‘ above requirements are imposed on the wave function. (Fig. 1)
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illustrates the meaning of the properties of wave functions. If ψ(x) and 
  

  

are not finite and single valued, then the wave function  (   )  

  ( )       and its derivative 
  (   )

  
       

  ( )

  
 will not be 

continuous and single valued. The general formula of calculation of 

expectation values of x and p contain either  (   )       
  (   )

  
. 

Therefore, in any of these cases we might not obtain finite and definite 

values of the measurable quantity. This is completely unacceptable 

because the measurable quantities like <x> and <p> do not behave in 

unreasonable way. 

 In order that
  

  
  be finite, the wave function must be continuous. If the 

wave function ψ(x) is discontinuous, the first order derivative
  

  
  will be 

infinite at the discontinuity and the second order derivative will also be

infinite. We have Schrodinger‘s time-independent equation

  

  
 
  

 
 (   )    

 For finite values of E, V and ψ(x), the second order derivative 
   

   
  must

be finite. This requires that dψ/dx must be finite and hence the wave

function should be continuous.

 Thus, it is necessary that the wave function must be mathematically ‗well

behaved‘ and satisfies the above requirements. In Fig. 1 the wave

functions in (a), (b), (c) and (d) are not acceptable. The wave function in

(e) is well behaved and hence acceptable.
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2.5 EXPECTATION VALUES OF A PHYSICAL 

QUANTITY 

Let us consider a particle in a definite state described by the normalized 

wave function  ( ⃗  ). Let us make a large number of observations 

(measurement) of the position vector  ⃗ of the particle. We know that each 

observation causes the wave function to undergo some change. Let us suppose 

that we have at our disposal some technique to bring the wave function to the 

original form before any observation is made. Even if we ensure that before any 

measurement the wave function is restored to its original form, we do not get the 

same result each time. The average of the value obtained in these measurements is 

called the measured value or the expectation value and is denoted as ( ⃗). Since 

  ( ⃗  )  ( ⃗  ) represents the probability with which the value  ⃗ occurs in the 

measurement we get   

〈 ⃗〉  ∫  ⃗      ( ⃗)  ∫   ⃗    ( ⃗) ……. (6) 

If the wave function  ( ⃗  ) is not normalized the expectation value of  ⃗ is 

given by 

〈 ⃗〉  
∫   ⃗     ( ⃗)

∫      ( ⃗)
.......…. (7) 

Generalizing, the expectation value of any quantity f( ⃗), which is a 

function of  ⃗, in the state described by the normalized wave function  ( ⃗  )may 

be written as 

〈 ( ⃗)〉  ∫ ( ⃗  )  ( ⃗)  ( ⃗) 

or 〈 ( ⃗)〉  ∫  ( ⃗  )  ( ⃗)  ( ⃗  )  ( ⃗) …… (8) 

Expectation Value of Total Energy E of a Particle 

Consider a particle of mass m moving in space under the action of a force 

field describe by the potential energy function  ( ⃗  ). Let  ( ⃗  )be the 

normalized wave function that describes the state of the particle. The time 

evolution of the wave function is given by the Schrodinger equation 

  
  ( ⃗  )

  
 [
  

  
   ( ⃗  )]  ( ⃗  ) 

Multiplying the above by   ( ⃗  ) from the left and integrating over the 

entire space we get 

∫  ( ⃗  )   
  ( ⃗  )

  
  ( ⃗)  ∫  ( ⃗  ) [

  

  
   ( ⃗  )]  ( ⃗  )  ( ⃗) 

or ∫  ( ⃗  ) *  
 

  
+   ( ⃗  )  ( ⃗)  ∫  ( ⃗  ) *

   

 
 +   ( ⃗  )  ( ⃗) 

 ∫  ( ⃗  )  ( ⃗  )  ( ⃗  )  ( ⃗) 
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Using the definition of expectation value given above we obtain 

〈  
 

  
〉  〈

   

 
  〉  〈  ( ⃗  )〉                          ………  (9) 

In view of Eq. (15) and Eq. (18) from Unit 1(Basic Concept) of block I, Eq. (9) 

gives 

〈 〉  〈
  

 
〉  〈 〉 …...… (10) 

Classically, the total energy is 

                                  
  

 
            …... (11) 

Equation (10) tells that the expectation value of the total energy is the sum of 

the expectation values of the kinetic energy and the potential energy. 

2.6 DIRAC-DELTA FUNCTION 

The Dirac delta function is the name given to a mathematical structure that 

is intended to represent an idealized point object, such as a point mass or point 

charge. It has broad applications within quantum mechanics and the rest 

of  quantum physics, as it is usually used within the quantum wave function. The 

delta function is represented with the Greek lowercase symbol delta, written as a 

function: δ(x). 

This representation is achieved by defining the Dirac delta function so that 

it has a value of 0 everywhere except at the input value of 0. At that point, it 
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represents a spike that is infinitely high. The integral taken over the entire line is 

equal to 1. 

Properties of Dirac Delta Function 

2.7 KRONECKER DELTA FUNCTION 

The Kronecker delta (named after Leopold Kronecker) is a function of 

two variables, usually just non-negative integers. The function is 1 if the variables 

are equal, and 0 otherwise: 

where the Kronecker delta δij is a piecewise function of variables i and j. 

For example, δ1 2 = 0, whereas δ3 3 = 1. 

The Kronecker delta appears naturally in many areas of mathematics, 

physics and engineering, as a means of compactly expressing its definition above.  
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2.8 NON-DEGENERATE STATES AND DEGENERATE 

STATE 

Degeneracy of an energy state means number of different ways (given by 

number of different wavefunctions) an energy state occurs.  

Non-degenerate state is a state differing in both energy and the quantum 

state of the system. Like, a degenerate state is those having a state defined by 

combination of different quantum but all these states have same energy level, 

which is not the case in non-degenerate state. 

The dimension of the eigenspace corresponding to that eigenvalue is 

known as its degree of degeneracy, which can be finite or infinite. An eigenvalue 

is said to be non-degenerate if its eigenspace is one-dimensional 

An eigenvalue is degenerate if there is more than one linearly independent 

eigenstate belonging to the same eigenvalue. 

2.9 EHRENFEST THEOREM 

 We know that a particle‘s momentum is equal to its mass times group

velocity of a wave packet of a particular type that is associated with it. But

this type of treatment is not adequate to the general case, in which the

shape and size of wave packet changes as the packet moves.

Then the questions arise how the <x> and <px> behave as wave packet

moves, that is, what is
    

  
 ? this difficulty was solved by Ehrenfest. 

 According to him Newton‘s laws of motion in classical physics of the

form like

 
  

  
                                  

  

  
 
  

  

Are still valid in quantum mechanics provided that we use the expectation 

values of the dynamical variables. This is Ehrenfest‘s theorem. 

 In other words, the theorem states that the average motion of wave packet

agrees with the motion of the corresponding classical motion of particle.
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Ehrenfest‘s theorems are 

1. First theorem:

 
    

  
      

For all components, 

 
   ⃗  

  
    ⃗   

2. Second theorem: For conservative force field,

     

  
 〈 

  

  
〉 

For all components, 

   ⃗  

  
       

Thus, there exists a relation among expectation values which is exactly 

parallel to Newton‘s second law expressed in terms of potential energy. 

2.10 SUMMARY 

Therefore, one can't impose an arbitrary condition on ψ without checking 

that the two are consistent. Interestingly, if ψ(x, t) is a solution, Aψ(x, t) is also a 

solution where A is any (complex) constant. Therefore, one must pick a 

undetermined multiplicative factor in such a way that the Schrodinger Equation is 

satisfied. This process is called normalizing the wave function. 

For some solutions to the Schrodinger equation, the integral is infinite; in 

that case no multiplicative factor is going to make it 1. The same goes for the 

trivial solution ψ= 0. Such non-normalizable solutions cannot represent particles, 

and must be rejected. Physically realizable states correspond to the "square-

integrable" solutions to Schrodinger's equation. 
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It shows how we represent the delta function. The delta function, δ(x), is 

shown by an arrow at x=0. The height of the arrow is equal to 1. If we want to 

represent 2δ(x), the height would be equal to 2. In the figure, we also show the 

function δ(x−x0), which is the shifted version of δ(x). 
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2.11 TERMINAL QUESTIONS 

1. Define Expectation valueDCEPHS-108/44



2. Explain Ehrenfest Theorem.

3. Give the Physical interpretation of the wave function.

4. Write down the condition for normalized wave function.

5. Explain Dirac Delta Function.

6. Define Kronecker Delta Function.

2.12 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 2.5

2. Section 2.9

3. Section 2.3

4. Section 2.4

5. Section 2.6

6. Section 2.7

2.13 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-3 OPERATOR ALGEBRA 

Structure  

3.1 Introduction 

3.2 Objectives 

3.3 Concept of Operator 

3.4 Null Operator 

3.5 Inverse Operator 

3.6 Operator in Quantum Mechanics 

3.7 Physical Operators 

3.8 Commutator and Non-Commutator Operators 

3.9 Eigen Function, Eigen Values 

3.10 Ladder Operates (J
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3.1 INTRODUCTION 

An operator can be imaginary as well as a complex quantity. It is a 

mathematical rule that acts upon a function and produces another function. As the 

operators of mathematical algebra, quantum mechanical operators also function 

under certain rules like addition, multiplication, etc. An operator has no meaning 

if it is written alone. Linear operators, SQR – Square operators, and Hermitian 

operators are some types of operators. 

Classical observables have an associated quantum mechanical operator. In 

other words, for every measurable parameter in physical systems, there exists a 

quantum mechanical (QM) operator. DCEPHS-108/47



Quantum Operators: 

3.2 OBJECTIVES 

After studying this Unit, student should able to: 

 Know about Operators in QM.

 Define Null operator and Inverse Operator.

 Explain the concepts of Linear and Hermitian Operators.

 Discuss the Concept of Orbital angular Momentum.

 Know about Ladder OperatorsDCEPHS-108/48



3.3 CONCEPT OF OPERATOR 

An operator is a symbol that tells you to do something to whatever follows 

that operator. They are commonly used to perform specified mathematical 

operations on certain functions. Operators may be used in mathematics, physics, 

or chemistry but their primary purpose is always to perform operations on 

variables. The quantum mechanical operators are used in quantum mechanics to 

operate on complex and theoretical formulations. The Hamiltonian operator is an 

example of operators used in complex quantum mechanical equations 

i.e. Schrodinger‘s wave energy equation. 

Â is a function here, acting on a function (ψ). Now if Â is an operator, it 

will map one state vector (ψ) into another one (Φ). 

Consider a function of n independent variable, q1, q2, ……, qn, such as 

ψ = ψ (q1, …, qn)     ………….. (1) 

Using this function, it is possible to generate any number of other 

functions by a simple mathematical procedure, namely, the application of a 

mathematical operator. Such an operator may take any one of many forms, for 

example 

Addition operator        

Multiplication operator        

Differential operator       
 

   
    

Integral operator ∫        
 

 
etc. 

An operator thus defines a relationship between two functions. If the 

function ϕ is obtained from a function ψ then the relationship between ψ and ϕ 

can be expressed as 

 ̂     ………. (2) DCEPHS-108/49
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We then say that  ̂ is the operator representing the generation of ϕ from ψ.

It is important to note that the left-hand side of Eq. (2) does not necessarily mean 

that the function ψ is multiplied by the operator  ̂, instead, it may represent

addition, differentiation, integration. Alternatively, we can say, in view of Eq. (2) 

that an operator maps a given function. As indicated in Eq. (2), it is usual to write 

an operator with the symbol of cap ( )overhead. 

The set of functions {ψ1} for which  ̂ {ψ1} has a meaning is called the domain of

 ̂.

The set of function {ϕ1} which can be expressed as ϕi =  ̂ψi, is called the range of

 ̂.

3.4 NULL OPERATOR 

3.5 INVERSE OPERATOR 

Consider an operator  ̂ defined in a certain domain of definition.

The inverse of  ̂ is written as  ̂   and is defined such that

 ̂ ̂    ̂   ̂   

It is easy to see that any operator commutes with its inverse 

[ ̂  ̂   ]   ̂  ̂    ̂   ̂        

3.6 OPERATOR IN QUANTUM MECHANICS 

 The mathematical operations like differentiation, integration,

multiplication, division, addition, subtraction etc. can be represented by

certain symbols known as operators. In other words, an operator Ô is a

mathematical operation which may be applied to function f(x), which

changes the function f(x) to another function g(x). This can be represented

as

Ô f(x) = g(x) 

For example, 
 

  
(     )       

 In operator language   
 

  
operates on the function f(x) = 4x

2
 + 2x and

changes the function f(x) to function g(x) + 2. 

Now, The wave function is given as  
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 (   )     
 

 
(     )

………………………(3) 

Differentiating equation (3) with respect to x, we get 

  

  
 
  

 
   

 
 
(     )

or 
  

  
 
  

 
   

⸫     
 

 

  

  

or       
  

  
……………. (4) 

Differentiating ψ(x, t) with respect to t, we get 

  

  
  

  

 
   

 
 
(     )

or 
  

  
  

  

 
   

⸫  
 

 

  

  
   

or        
  

  
          ……………… (5) 

 Equation (4) indicates that there is an association between the dynamical

quantity p and the differential operator    
 

  
 . That is the effect of

multiplying ψ(x, t) by p is same as the operating the differential operator

   
 

  
 on ψ(x, t). This differential operator is called momentum operator. 

It can be written as 

 ̂     
 

  
         ……………. (6) 

As it is related to variable x, therefore, we have 

 ̂     
 

  

Corresponding components of momentum operators for y and z variables 

are  

 ̂     
 

  

and   ̂     
 

  

In three dimensions, the momentum operator is 

 From equation (5), a similar association can be found between dynamical

variable E and the differential operator  
 

  
 . Thus,

    
 

  
…………… (7) 

We have Schrodinger‘s time independent equation 
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(   )    

or  
  

 
         

or * 
  

 
    +              ……….. (8) 

 or 

Hψ = Eψ 

where    
  

 
    is the differential operator and called as 

Hamiltonian operator. 
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3.7 PHYSICAL OPERATORS 

(1) LINEAR OPERATOR 

A particular class of operators is of primary interest in the mathematical 

formulation of quantum theory. These are the so-called linear operators. 

Consider an operator  ̂ define in a certain domain of definition. Let ψ1 and

ψ2 be any two arbitrary functions defined in the domain of definition of  ̂.

If on operating on the sum of the functions ψ1 and ψ2 the operator  ̂ yields

the same result as the sum of the operations on the two functions 

separately, then  ̂ is said to be linear operator. Thus, for the operator  ̂ to

be linear we must have 

 ̂(    )   ̂    ̂ ………… (9) 

For linearity of  ̂ we must also have

 ̂(   )    ̂  

 ̂(  )    ̂  ……………. (10) 

where c is a number. 

The properties of linear operator expressed by the Eqs. (9) and (10) will be 

useful in later developments of quantum mechanics. 

(2) HERMITIAN OPERATOR 

Definition 

The operators which play important role in quantum mechanics can be 

further specialized. They are not linear, they are Hermitian. 

Before we define Hermitian operator, we need to define the complex 

conjugate of a linear operator  ̂. Let us suppose

 ̂     ……… (11) 

The operator denoted by  ̂  is called the complex conjugate of the

operator  ̂ if, by the action  ̂ on the function    (complex conjugate of

the function ψ), we get the function    complex conjugate of the function 

ϕ), i.e., we get 

 ̂      ………… (12) 

In the domain of definition V in which the operator  ̂ is define, let u and v

be two functions subject to identical boundary conditions. 

The operator  ̂ is said to be Hermitian operator if it satisfies the condition

∫    ̂    ∫ ( ̂ )
 
     ∫  ̂       

   
 ….. (13) 
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Alternatively, the Hermitian character of the linear operator  ̂ is made

through the definition of transpose of the operator  ̂. The transpose of the

operator  ̂ is denoted by  ̂ and is defined according to the relation

∫  ( ̂ )   ∫  ( ̂ )  
  

……………. (14) 

The transposed operator  ̂  for the operator  ̂  is, according to Eq. (14),

given by 

∫ ( ̂  )   ∫ ( ̂  )  ………………. (15) 

It is usual to denote  ̂  and  ̂  (read as A-dagger) and is said to be the

Conjugate to the operator  ̂. Now the operator  ̂ is called Hermitian or

self-adjoint if. 

 ̂    ̂        ……………. (16) 

3.8 COMMUTATOR AND NON-COMMUTATOR 

OPERATORS 

(A) Commutator of Two Operators 

Let  ̂ and  ̂ be two operators defined in the same domain of definition. A

useful operator called the commutator of  ̂ and  ̂ which is usually written

as [ ̂,  ̂] is defined as

[ ̂  ̂]   ̂ ̂   ̂ ̂ …….. (17) 

From the definition given by Eq. (17) it follows that 

[ ̂  ̂]   ̂ ̂   ̂ ̂ ……………. (18)   

Equations (17) and (18) give 

[ ̂  ̂]  [ ̂  ̂] ……… (19)   

The operator  ̂ and  ̂ are said to commute with each other or the operators

 ̂ and  ̂ are said to be commutative, if

 ̂  ̂   ̂ ̂ ……………… (20) 

or 

 ̂  ̂   ̂ ̂          …………. (21)   

And hence the commutator 

[ ̂  ̂]        …………… (22) 

If the operators  ̂ and  ̂ are such that Eq. (20) or Eq. (21) or Eq. (22) does

not hold, then they said to be non-commutative. 
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(B) Anti-commutator of Two Operators 

If  ̂ and  ̂ are two operators defined in the same domain of definition then

an operator called the anti-commutator of the operators usually written as 

[ ̂,  ̂]+ or { ̂,  ̂} is defined as

[ ̂  ̂]
 
 { ̂  ̂}   ̂ ̂   ̂ ̂ ……….. (23) 

The operators are said to anticommute, if 

[ ̂  ̂]    

or 

 ̂ ̂   ̂ ̂    

3.9 EIGEN FUNCTION, EIGEN VALUES 

 Let ψ be the well-behaved function of the state of the system and an

operator  ̂ operates on this function such that it satisfies the equation

 ̂  ( )     ( ) …………. (24) 

where a is number then we say that a is an eigen value of the operator  ̂
and the operand ψ(x) is called the eigen function of  ̂. Eigen is the

German word meaning characteristic or proper. 

 An operator is a rule which changes a function into another function. For

example, when operator
 

   
 operates on a function i.e. 

 ( )    

  

  
       

 Another example is,
  

   
          

 We say that
  

   
  is the operator operating on function     giving result 

     . The operand      is called eigen function of operator 
  

   
 and 16 is 

the eigen value. 

The total energy operator E of equation  is usually written as 

   
 

  
    

and is called Hamiltonian operator. If the Hamiltonian operator 

   
  

 
     operates on a wave function ψn, we get 

[ 
 

  
   ]       

or          DCEPHS-108/55



The wave function ψn is called eigen function and En is called energy 

eigen value of the Hamiltonian operator H for a state of the system. 

Eigen Functions and Eigen Values of a Linear Operator 

Consider a linear operator   ̂ defined in a certain domain of definition. If

ψ is any function define in the domain of the definition of  ̂, then in general, we

have 

 ̂ψ = ϕ …… (25) 

However, for every linear operator  ̂, there exists a set of functions ψ1, ψ2,

…., ψn, such that  

 ̂         

 ̂     
  

 ̂        

………… (26) 

where d1, d2, ….., dn are constants with respect to the variables of which 

ψ1‘ S (i = 1, …., n) are functions. The set of functions ψ1, ψ2, ….., ψn are called 

eigenfunctions of the operator  ̂ and the constant a1, a2, ….., an are called the

eigenvalues belonging to the eigenfunctions ψ1, ψ2, …., ψn, respectively. 

Eigenvalue Equation 

The equation 

 ̂                            (           )      ……….. (27) 

is called the eigenvalue equation for the operator  ̂.

COMMUTATION RELATIONS OF TOTAL ANGULAR MOMENTUM 

WITH COMPONENTS 

The total angular momentum is defined by the relation 

     ………. (28) 

We can derive the commutation relation of J
2
 with components Jx, Jy, Jz. Let us

take 

… (29)

We know that [ab, c] = a[b, c] + [a, c] b, 

So DCEPHS-108/56



   ………. (30)   

⸫  [J
2
, Jx] = 0

Similarly, 

[J
2
, Jy] = 0, …………… (31) 

[J
2
, Jz] = 0,    ………….. (32) 

3.10 LADDER OPERATES (J
+
 AND J

-
)

Ladder Operators J+ and J- Now let us define the new operators. 

 ………. (33) 

Commutation relation of Jz with J+ an J-. 

………. (34) 

And similarly, 
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     ……. (35) 

or we can write (34) and (35) in compact form as 

     ………. (36) 

3.11 COMMUTATOR RULES AMONGST J
+
, J

-
, Jz

AND J
2

Commutation Relation of J+ and J- Mutually. 

……. (37) 

Commutation Relations of J
2
 with J+ and J-. Let us take [J

2
, J+] first,

Using (30) and (31), we get 

[J
2
, J+] = 0 + 0 = 0 ……………. (38) 

Similarly       …. (39) DCEPHS-108/58



Combining (38) and (39), we have 

………. (40) 

3.12 ANGULAR MOMENTUM OPERATOR IN 

POSITION REPRESENTATION 

Classically the angular momentum L of a particle relative to some arbitrary 

origin is defined as 

L = r × p   ………. (41) 

where    ̂   ̂   ̂   is position vector and p the linear momentum of the

particle ( ̂   ̂and  ̂) are unit vectors along X, Y, Z axes respectively. In quantum

mechanics, the associated with linear momentum p is 
 

 
 (  √   )

Thus the angular momentum operator is 

   ………. (42) 

If Lx, Ly and Lz are components of angular momentum operator L, then equation 

(42) gives 

Comparing coefficients of  ̂  ̂ and  ̂ and on either sides, the components of

angular momentum operator can be explicitly written as 

………. (43) 

and 
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Using these definitions, it is easy to show that Lx, Ly and Lz satisfy the 

following commutation rules  

and  ………. (44) 

These relations can be written in the compact form as 

L ×L = i ħ L.  .....…….. (45) 

THE ROTATION OPERATOR AND ANGULAR MOMENTUM 

If we consider the rotation of a co-ordinate system through an angle θ 

about an axis specified by unit vector  ̂, then the transformation of a wave 

function ψ(r) under rotation is described by unitary transformation 

………. (46) 

where R( ̂, θ) is the rotation operator and is unitary operator. This 

equation means that the rotated wave function ψ’(r) at any point r is equal to the 

value operated by rotation operator on unrotated wave function. 

Let us first consider the rotation of angle ϕo about z-axis. The effect of this 

rotation is that it leaves the coordinates (r, θ) unchanged, while the coordinate ϕ is 

changed to    ϕ - ϕo. Hence equation (1) implies 

      ………. (47) 

Now assuming the wave function as the well-behaved function, we may expand 

ψ by Taylor‘s series about (r, θ, ϕ), so that 

………. (48) 

But        ………. (49) 

Therefore equation (48) may be expressed as 

   ………. (50) 

Now expressing components of angular momentum L in spherical polar 

coordinates, we get 
DCEPHS-108/60



        ………. (51) 

Using third of equation (51), we may write equation (50) as 

 ………. (52) 

Now comparing (46) and (52), we get 

……. (53) 

Since above equations holds for any arbitrary wave function ψ(r, θ, ϕ), therefore 

equation (53) yields  

   ………. (54) 

This equation shows that the rotation about z-axis are generated by an operator 

which depends on z-component of angular momentum. 

In general equation (53) may be expressed as 

  ………. (55) 

Now if there exists any operator Q(r, θ, ϕ) which satisfies the condition 

    ………. (56) 

Then the operator Q is said to be rotationally invariant. Equation (56) is 

satisfied if operator Q satisfies the following commutation relations with 

components of angular momentum operator L. 

  ………. (57) 

As the components L are Hermitian, θ is real, therefore R( ̂, θ) is unitary. 

Also, we require R = 1 for θ = 0. [This is also obvious from (55)] 

Also, we must have R ( ̂. (2πk)) = 1., where k is an integer. Since physically the 

rotation of 2πk means no rotation at all. DCEPHS-108/61



Infinitesimal Rotation: 

If the angle of rotation θ is very small, the rotations are said to be 

infinitesimal rotations. If     is very small rotation; then equation (55) may be 

approximated as 

………. (58) 

It is obvious that any finite rotation can be considered as the product of a 

large number of infinitesimal rotations. These infinitesimal rotations commute 

with each other, while rotations, in general, do not commute. 

Another important property of infinitesimal rotations is the transformation 

of operators under them. This is achieved by substituting (58) in (56). 

Thus, if we define        then we get 

     ………. (59) 

Commutability of Angular Momentum Operators: 

Equation (55) may be used to define the transportation operator for an 

arbitrary rotation about an arbitrary axis. In many cases it is convenient to express 

the arbitrary rotation as a sequence of rotations about, say, X, Y and Z axes. For 

example, if the desired rotation θ can be carried out by a rotation θy about Y-axis 

followed by a rotation θx about X-axis, we have 

Now finite rotations, in general, do not commute. Because if above 

rotations are made in opposite order (i.e. first θy about Y-axis and then θx about 

X-axis), then it would be essential to perform a further rotation of θx θy about Z-

axis to reach the same final position. This is represented geometrically in fig. (1). 

The statement holds only for small angles (upto order θ
2
 in exponential).

Analytically this result may be expressed as 
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Expanding exponentials to second order in θ‘s, we get 

Retaining only second order terms in angles, we get 

or 

Cancelling the common factors, this gives 
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This is a familiar commutation relation of angular momentum operator. 

The other commutation relation can be obtained by considering infinitesimal 

rotations about the other two pairs of coordinate axes, i.e. 

and 

The relation in compact form is expressible as 

L ×L = i ħ L 

SPIN ANGULAR MOMENTUM 

The electron also possesses spin motion and hence contributes to the total 

angular momentum. It is denoted by S. It follows the same commutation relations 

as those of orbital angular momentum. 

THE TOTAL ANGULAR MOMENTUM OPERATORS 

The total angular momentum which may include the spin contribution is 

conveniently denoted by J = (Jx, Jy, Jz) and is define as the generalized angular 

momentum operator J as any Hermitian operator whose components, satisfy the 

commutation rules. 

………. (60) 

The above three equations can equivalently be written as 

          ………. (61) 

In order to avoid cumbersome factors of ħ, it is sometimes convenient to use 

quantum mechanical definition of angular momentum as 

         ………. (62) 

In other words we are choosing a system of units in which ħ = 1. 

If we use definition of angular momentum given by (62) the commutation rules 

satisfied by the components Jx, Jy, Jy takes the form 

  ……. (63) 

or equivalently 

J × J = i J      ………… (64) 
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It will be seen that these rules are satisfied by quantities which are more general 

than the angular momentum of a single particle and therefore the results 

obtained will be applicable to system of greater complexity. 

Note:  If sometimes the factors of ħ are omitted; then it means that quantum 

mechanical definition (62) of angular momentum has been used instead of 

classical definition. 

J = r × p. 

3.13 SUMMARY 

The mathematical formulation of quantum mechanics (QM) is built upon 

the concept of an operator. 

Physical pure states in quantum mechanics are represented as unit-norm 

vectors (probabilities are normalized to one) in a special complex Hilbert 

space. Time evolution in this vector space is given by the application of 

the evolution operator. 

Any observable, i.e., any quantity which can be measured in a physical 

experiment, should be associated with a self-adjoint linear operator. The operators 

must yield real eigenvalues, since they are values which may come up as the 

result of the experiment. Mathematically this means the operators must 

be Hermitian. The probability of each eigenvalue is related to the projection of the 

physical state on the subspace related to that eigenvalue. See below for 

mathematical details about Hermitian operators. 

In the wave mechanics formulation of QM, the wavefunction varies with 

space and time, or equivalently momentum and, so observables are differential 

operators. 
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3.14 TERMINAL QUESTIONS 

1. Explain the concept of Operator in Quantum Mechanics

2. Define Null Operator.

3. Discuss Linear Operator and Hermitian Operator.

4. Explain Ladder Operator.

5. Define Commutator and Non-Commutator Operators.

3.15 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 3.3

2. Section 3.4

3. Section3.7

4 Section 3.10

5. Section 3.8

3.16 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-4 ONE AND THREE 

DIMENSIONAL PROBLEM 

Structure  

4.1 Introduction 

4.2 Objectives 

4.3 Free Particle 

4.4 Particle in a Box 

4.5 Potential Step 

4.6 Rectangular Potential Barrier 

4.7 One Dimensional Linear Harmonic Oscillator 

4.8 Zero Point Energy and Parity Oscillator 

4.9 Summary 

4.10 Terminal Questions 

4.11 Answer and Solution of Terminal Question 

4.12 Suggested Readings 

4.1 INTRODUCTION 

The quantum particle in the 1D box problem can be expanded to consider 

a particle within a higher dimension as demonstrated elsewhere for a quantum 

particle in a 2D box. Here we continue the expansion into a particle trapped in a 

3D box with three lengths Lx, Ly, and Lz. As with the other systems, there is NO 

FORCE (i.e., no potential) acting on the particles inside the box: 

The potential for the particle inside the box: DCEPHS-108/69



In this unit we will discuss Free particle and particle in a box also we will discuss 

about one dimensional linear harmonic Oscillator. 

4.2 OBJECTIVES 

After studying this unit, student should able to: 

 Know about Free particle.

 Explain particle in a Box problem.

 Discuss Potential Step.

 Define Zero Point Energy.

 Concept of Rectangular Potential Barrier.

4.3 THE FREE PARTICLE 

The Schrödinger wave equation for a particle of mass m, total energy E and 

potential energy V is written as 

…………….. (1) 

where , being Planck‘s constant. 

A free particle is one for which potential energy V is quite independent of 

position and hence, for convenience, it may be set equal to zero, so that 

Schroedinger wave equation for a free particle becomes  

 …………….. (2) 

or, in cartesian coordinates. 
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…………….. (3) 

This is a partial differential equation in three independent variables x, y and z 

and may be solved by the method of separation of variables imposing the 

boundary that ѱ is infinite everywhere in space since the particle is free to move 

anywhere in space, so that we may write the solution of equation (3) in the form 

…………….. (4) 

where X(x), Y(y) and Z(z) are functions of their respective co-ordinate alone. 

Substituting this in equation (3) and dividing by X(x) Y(y) Z(z) we get 

………….. (5) 

The equation may be written as 

…………….. (6) 

In above equation L.H.S. is function of x along, while R.H.S. is function of y 

and z and is independent of x. It is, therefore, necessary that the value of the 

quantity to which each side is equal must be independent of x, y and z, i.e., both 

sides must be equal to a constant kx, (say), so that 

…………….. (7) 

and  …………….. (8) 

Equation (8) may be written as 

…………….. (9) 

In above equation L.H.S. is independent of z while R.H.S. is independent of y. 

Therefore if above equation is to be satisfied both sides must be equal to 

constant ky (say), so that DCEPHS-108/71



…………….. (10) 

…………….. (11) 

Equation (11) may be written as 

In above equation R.H.S. is constant. Let this constant be kz, so that we may 

write 

…………….. (12) 

and 

or …………….. (13) 

For convenience let us substitute 

…………….. (14) 

Then the differential equation in x, from equation (7), may be written as 

…………….. (15) 

The general solution of above equation can be written as 

…………….. (16) 

where Nx and x0 are arbitrary constants. 

Similarly we may obtain the differential equation in y and z by substituting
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and in equation (10) and (12) 

respectively, viz., 

…………….. (17) 

and …………….. (18) 

The general values of kx, ky and kz in equation (19), we get 

…………….. (19) 

…………….. (20) 

Substituting values of kx, ky and kz in equation (19), we get 

…………….. (21) 

As any since function is single valued, valued, finite and continuous for real 

values of its argument, therefore for finite values of X, Y and Z, (i.e., ѱ) Ex, Ey, 

Ez and hence E must be positive. 

Thus the eigen (or wave or characteristic) functions and energy values of the 

free particle are 

Ѱ = X Y Z 

…………….. (22) 

and …………….. (23) 

where N = (Nx Ny Nz) is a normalization constant, Ex, Ey and Ez arepositive. 

Clearly the free particle has a continuous set of energy levels, however, the 

quantization may occur if the particle is not entirely free, but is constrained to 

remain in box, which we shall consider in next section. 

The complete weave functions with the time factor can be written as follows : 
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…………….. (24) 

4.4 PARTICLE IN A BOX 

Let a single particle, e.g. a gas molecule of mass m, be confined within a 

rectangular potential box with edges parallel to the X, Y and Z-axes of lengths lx, 

ly and lz respectively. The particle can move freely within the region 0 < x < lx, 0 

< y < ly,0 <z < lz i.e., inside the box the potential function V(x, y, z) is equal to 

zero but it rises suddenly to a very large value at the boundaries of this region 

remaining infinitely large everywhere outside the boundaries. Therefore the 

particle will rebound when it will strike either of the boundaries. 

If m is the mass of the particle and E its total energy, the Schroedinger 

wave equation, for the case under consideration may be written as 

or …………….. (25) 

This is a partial differential equation in three independent variable and may be 

solved by the method of separation of variables, so that we may write the 

solution of above equation in the form 

…………….. (26) 

where X(x) is a function of x alone, Y(y) a function of y alone and Z(z) a 

function of z alone. 

Substituting value of ѱ from equation (26) in (25) and dividing by X(x) Y(y) 

Z(z), we get 

…………….. (27) 

Above equation may be written as DCEPHS-108/74



…………….. (28) 

In above eqn. L.H.S. is a function of x alone, while R.H.S. is a function of y and 

z and is independent of x. It is, therefore, necessary that the value of the 

quantity to which each side is equal must be independent of x, y and x, i.e., both 

sides must be equal to a constant, kx (say), so that 

…………….. (29) 

and …………….. (30) 

In above equation L.H.S. is a function of y alone, while R.H.S. is a function of z 

and is independent of y. Therefore, if above equation is to be satisfied both side 

must be equal to a constant, ky (say), so that 

…………….. (31) 

and  …………….. (32) 

Eqn. (32) may be written as 

so that we have …………….. (33) 

and  …………….. (34) 

For convenience let us substitute 

DCEPHS-108/75



and      …………….. (35) 

Then the differential equation in x, y and z from (29), (31) and (32) may be 

written as 

…………….. (36) 

…………….. (37) 

and     …………….. (38) 

The general solution of equation (36) will be sine function of arbitrary 

amplitude, frequency and phase, i.e., 

…………….. (39) 

where A, B and C are constants to be determined from the consideration of the 

boundary conditions. 

According to quantum mechanics |ѱ|
2
 represents the probability of finding the

particle at any point within the box. Therefore |X(x)|
2
 which is a function of x

coordinate only, represents the probability of finding the particle at any point 

along X-axis. As the potential is very high at the walls of the box, the 

probability of finding the particle at the walls will be zero i.e., 

or 

Using these boundary conditions, eqn. (39) give 

sin C = 0 

and  sin (Blx + C) = 0 

which yields  C = 0 

and sin Blx = 0 DCEPHS-108/76



Substitution values of B and C in eqn. (39), we get 

…………….. (40) 

For simplicity we may assume A to be real number, then using the condition 

we have 

or 

or 

or 

or …………….. (41) 

Substitution this value of A in eqn. (40), the normalized function X(x) is given 

by 

…………….. (42) 

Finding its second derivative, we have DCEPHS-108/77



…………….. (43) 

Substitution values from (42) and (43) in (36), we get 

or …………….. (44) 

since 

Similarly, we may solve equations (37) and (38) and obtain 

…………….. (45) 

…………….. (46) 

…………….. (47) 

…………….. (48) 

Using (34) and (35), we have 
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Equations (44), (47) and (48) give the allowed values of energy along X, Y and 

Z axes respectively. 

The allowed values of total energy are given by 

…………….. (49) 

where nx, ny, nz denote any set of three positive numbers.  

The complete wave function ѱnx, ny, nzhas the form, for various values of the 

quantum numbers nx, ny, nz, 

…………….. (50) 

Fig.2 represents the first three normalized wave functions X(x) for a 

particle in a box. 

4.5 POTENTIAL STEP 

In the case of a potential step the potential function undergoes only one 

discontinuous change as shown in fig 3 and hence the potential function of a 

potential step may be represented as  

…………….. (51) 
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Let the electron of energy E move from left to right i.e. along the positive 

direction of X-axis. Let us apply quantum mechanics to the problem, according to 

which the electrons behave like a wave moving from left to right and face a 

sudden shift in the potential at x = 0. 

The problem is analogous when light strike a sheet of glass where there is 

a shift in the index of refraction and the wave is partly transmitted. Hence in this 

problem the electrons will be partly reflected and partly transmitted at the 

discontinuity. 

To solve the problem let us write the Schrodinger equation for two regions. 

The Schrodinger equation for the first region is given by 

…………….. (52) 

The Schroedinger wave equation for II region is 

…………….. (53) 

The general solutions of equations (51) and (52) may be written 

as …………….. (53) 

and    …………….. (54) 

where p1 and p2 are the momenta in the I and II regions respectively and are 

given by 

…………….. (55) 

ψ1 and ψ2 are functions for I and II regions respectively. A, B, C and D are 

constants and may be determined by boundary conditions. 

In equation (53) the term represents the wave travelling along +ve X-axis 

in first region, i.e., the incident wave and the second term represents the wave 

travelling along +ve X-axis in first region, i.e., the incident wave and the second 

term represents the wave travelling along –ve X-axis in the 1
st
 region, i.e., the

reflected wave. In equation (54), the first term represents the wave travelling 

along +ve X-axis in 2
nd

 region i.e., transmitted wave while the second term

represents the wave travelling along –ve X-axis in second region : but there is no DCEPHS-108/80



reflection of electrons in 2
nd

 region and hence there will be no wave travelling

along –ve X-axis Consequently D = 0 so that the solution of equation (51), i.e., 

equation (54) may be written as 

…………….. (56) 

According to probability interpretation of the wave function ψ must be 

finite, whereas E and V must be finite, because infinite energies do not exist in 

nature. Then from Schrödinger‘s equation we may conclude that 

is  everywhere finite : but not necessarily continuous. But  can 

only be finite if  is continuous everywhere, this is first boundary 

condition. If  is continuous everywhere, then necessarily ψ must be 

continuous. This is second boundary condition. 

Now the boundary conditions, in this case may be represented as follows: 

The continuity of ψ implies ψ1 = ψ2 at x = 0. …… (A) 

The continuity of    implies  at x = 0. …… (B) 

Applying boundary condition (A) to equations (53) and (56), we get 

A + B = C ……………. (57) 

Differentiating equation (53) and (56), we get 

…………….. (58) 

…………….. (59) 

Applying boundary conditions (B) to (58) and (59), we get 

…………….. (60) 

Solving (57) and (60), we get 

…………….. (61) 

…………….. (62) 

where B and C represent the amplitudes of reflected and transmitted 

beams respectively in terms of the amplitude of incident wave. DCEPHS-108/81



The reflectance of reflectivity or reflection coefficient and the 

transmittance or transmissivity or transmission coefficient at the potential 

discontinuity may be defined as follows. 

The reflectance, i.e., the fraction of electrons reflected is equal to the ratio 

of reflected current to be incident current i.e. 

       ………… (63) 

The transmittance, i.e., the fraction of electrons transmitted, is equal to be 

ratio of transmitted current to the incident current, i.e., 

………. (64) 

There may be two cases: 

Case I.  is real. 

In this case the expressions for the current density in the 1
st
 and 2

nd
 regions may

be derived as follows: 

In 1
st
 region, we have

…………….. (65) 

Its complex conjugate  is given by 

…………….. (66) 

so that we have 

…………….. (67) 

and  …………….. (68) 

The probability current is defined as 
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The expression in the case for 1
st
 region becomes

…………….. (69) 

Since in the electron are moving only along X-axis. 

Using equations (65), (66), (67) and (68), we have 

…………….. (69) 

From above expression it is clear that the current in the 1
st
 region is made

up of the difference between two terms, of which the first is proportional to p1|A|
2

and represent the wave travelling from left to right, i.e., the incident wave, while 

the second is proportional to p1|B|
2
  and represents the wave travelling from right

to left, i.e., the reflected wave. 

⸫ The probability current of the incident beam .....(70) 

and the probability current of the reflected beam       ........ (71) 

In 2
nd

 region, we have

……. (72) 

The probability current in this case is 
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Using (72), we get 

……. (73) 

In second region, there is only transmitted wave; therefore equation (73) 

represents the transmitted current. 

Now we can obtain the expressions for reflectance and transmittance in this 

case, i.e., when E > V0 or p2 is real. 

⸫ {from (63)} 

⸫ ……. (74)   

{from (62)} 

{from (64)} 

or     ……. (75) 

According to definitions the sum of reflectance and transmittance must be equal 

to unity. It may be verified from equation (74) and (75), i.e., 
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……. (76) 

From equation (74) it is clear that reflectance approaches zero as p2 approaches 

p1 and unity as p2 approaches zero. 

But 

Clearly p2 will approach p1 if V0 is and hence the reflectance will be zero only if 

V0 is equal to zero. Therefore, there must be some reflection even if E>>V0. 

The reflectance will be large only if V0 becomes comparable in size with E. It 

should be noted that the property of reflection from a sudden change in potential 

aries from nature of matter and does not exist in classical theory if E > V0. Thus 

we may say that it is purely a quantum mechanical effect. 

Case II if  is 

imaginary. 

 We have  

Its complex conjugate 

……. (77) 

As p2 imaginary, the probability current associated with wave function ψ2 may 

be calculated as follows: 

We have 

so that 
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The probability current, in this case, is given by 

Substituting  we get 

i.e., the transmitted current is zero.

⸫     T = 0  …………. (78) 

The reflectance = 1 (from definition i.e., since R + T = 1). 

The reflectance may also be deduced as follows: 

[using (62) and its complex congugate] 

⸫     R = 1   …………. (79) 

From (78) and (79) it is clear that in this the entire wave is reflected, i.e., all of 

the electrons are reflected and none of them is transmitted. 
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4.6 RECTANGULAR POTENTIAL BARRIER 

Let us consider the one-dimensional problem where the potential function is 

defined as in fig. 3.6 

……. (80) 

Here we have a potential barrier between x = 0 and x = a. 

If a particle having energy less than V0, i.e., E < V0, approaches this 

barrier from the left, i.e., from 1
st
 region, classically the particle will always be

reflected and hence will not penetrate the barrier. However, wave mechanics 

predicts that the particle has some probability of penetrating to region 3
rd

, the

probability of penetration being greater if (V0– E) and a are smaller. Moreover, if 

E > V0 classical mechanics predicts that the particle will always be transmitted; 

while according to wave mechanics, the particle has a finite probability of 

transmission and hence it is not certain that the particle will penetrate the barrier. 

Figure: 3 

To solve the problem, let us write there Schrödinger equations, one for each 

region. 

The Schrödinger equation for I region is 

……. (81) 

(Since V = 0) 

The Schrödinger equation for II region is 

……. (82) DCEPHS-108/87



The Schrödinger  equation for III region is 

……. (83) 

Here ψ1, ψ2 and ψ2 are wave functions for I, II and III regions respectively. 

The general solutions of equation (82), (83) and (84) may be written as 

……. (85) 

……. (86) 

……. (87) 

where p1 and p2, the momenta of particle in the corresponding regions, given by 

……. (88) 

A1, B1, A2, B2, A3 and B3 are constants to be determined by boundary 

conditions. 

In equation (85) the first term represents the wave travelling along (+) ve X-axis 

in the I region, i.e., the incident wave and second term represents the wave 

travelling along negative X-axis i.e., wave reflected at x = 0. 

In equation (86), the first term represents the wave travelling along (+)ve X-axis 

in II region i.e., the wave transmitted at x = 0 and second term represents the 

wave travelling (-)ve X-axis in II region, i.e.,  the wave reflected at x = a. 

In equation (87) the first term represents the wave travelling along (+)ve X-axis 

in III region, i.e., the wave transmitted at x = a and the second term represents 

the wave travelling along (-)ve X-axis in III region ; but no wave travels back 

from infinity in III region. Consequently B3 = 0, so that the solution of equation 

(83), i.e. equation (87) can be written as 

……. (89) 

For evaluation the constants A1, B1, A2, B2, A3 and B3 we shall apply the 

conditions at the two boundaries x = 0 and x = a. 

One condition is that ψ must be continuous at the boundaries, i.e., 

……. (90) DCEPHS-108/88



The other condition is that  must be continuous at the boundaries 

i.e.,

……. (91) 

Applying boundary condition (90) to equations (85) and (86), we have 

……. (92) 

Applying boundary condition (90B) to equations (86) and (89), we get 

……. (93) 

Differentiating equations (85), (86) and (89) we get 

……. (94) 

……. (95) 

……. (96) 

Applying boundary conditions (91A) and (91B) to these equations, we get 

and 

or ……. (97) 

……. (98) 

Solving (92) and (97) for A1 and B2, we get 

……. (100) 
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……. (101) 

Solving (93) and (98) for A2 and B2, we get 

……. (102) 

……. (103) 

Substituting values of A2 and B2 from these equations in (102) and (103), we get 

……. (104) 

……. (105) 

Equation (104) may be written as 
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Here is imaginary since E < V0, therefore p2 is 

real, so that we have 

 ……. (106) 

The complex conjugate of above equation is written as 

……. (107) 

But we have 

⸫ 

and so 

Then equation (107) becomes 

……. (108) 

The transmittance or the transmission coefficient is given by 
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or ……. (109) 

Here p2 is imaginary, i.e., ip2 is real and so  is real. Therefore, T is 

real. 

The reflectance of the barrier or the reflection coefficient is given by 

……. (110) 

Using equation (104) and (105), their conjugates and remembering the fact that 

 , equation (110) after simplification yields 

……. (111) 

The reflection coefficient R may be obtained by the fact 

R + T = 1 

i.e., R = 1 – T. ….. (112) 

The property of the barrier penetration is entirely due to the wave nature 

of matter and is very similar to the total internal reflection of light waves. If two 

plates of glass are placed close to each other with a layer of air as a medium 

between them, the light will be transmitted from one plate to another, even though 

the angle of incidence is greater than the critical angle. However, the intensity of 

transmitted wave will decrease exponentially with thickness of the layer of air. In 

this case the intensity of electron waves decreases exponentially with the 

thickness of the barrier. The wave function has the form more or less as shown in 

fig. 4. 
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Figure: 4 

Now let us consider a special case when the barrier is thick, i.e., 

In this case tanh (ip2)/a/ħ) = 1 

and  

It is to be noted that p2 is imaginary and so ip2 and  are  real and 

negative. Then equation (102) and (111) yield. 

or ……. (113) 

and  ……. (114) 

Substituting values of p1 and p2 from equation (88) equation (113) gives 
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This is the expression for transmission coefficient for a very large barrier. The 

phenomenon of the particle‘s (electrons, say) penetrating the potential barrier is 

called the “tunnel effect” and is especially important in thermionic and field 

emission. 

4.7 ONE DIMENSIONAL LINEAR HARMONIC 

OSCILLATOR 

The wave equation for an oscillator 

A particle understanding simple harmonic motion in one dimension is called 

one-dimensional harmonic oscillator. 

In S. H. M. the restoring force is proportional to displacement 

i.e. F = - kx ……….. (115) 

where k is a positive constant, called the force constant. 

According to Newton‘s II law 

Where m is the mass of the particle. 

⸫ From (115) we have equation of oscillator as 

or ……. (116) 

This equation represents a periodic motion of angular frequency 

……. (117) 

The potential energy of oscillator is 

……. (118) 
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The one-dimensional Schrödinger time independent equation is 

……. (119) 

Substituting    in (119), the wave equation for an harmonic 

oscillator becomes 

……. (120) 

where k is given by eqn. (119), 

or 

or 

or  …. (121) 

For convenience let us substitute 

and ……. (122) 

in eqn. (121) ; then we have 

……. (123) DCEPHS-108/95



Again, for convenience, let us introduce a new variable q related to x such that 

……. (124) 

where  is a constant given by eqn. (122). 

Now 

from (124) 

and 

substituting these values in eqn. (123), we get 

……. (125) 

Asymptotic Solution. 

To  solve eqn. (125) let us first make an attempt to obtain an asymptotic 

solution for the case when q
2
 >>λ,  in this case, eqn. (125) becomes

……. (126) 

The solution of above equation in 

……. (127) 

which may be verified by differentiating above equation twice with respect to q 

; this 

……. (128) 
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As q is very large  and so eqn. (128) becomes 

which is same as eqn. (126). 

Thus quantity |ψ|
2
 represents the probability of finding the particle along X-axis

; therefore it must decrease continuously to zero as x, i.e., q approaches 

. 

Clearly out of the two possible solutions represented by (127). 

the solution is not acceptable since it increases with 

increasing x, i.e. q, while the solution  satisfies the conditions 

and therefore is an asymptotic solution of the equation. 

Recursion formula. 

From above consideration it is clear that the solution of eqn. (125) will contain 

the term  as a factor; the possible solution may be written as 

……. (129) 

where ϕ(q) is a function of q and hance of z. 

Differentiating equations (129) twice with respect to q, we get 

……. (130) 

where ϕ is written for ϕ(q). 

Substituting values of ψ and  from (129) and (130) in eqn. (125) we 

get 

or DCEPHS-108/97



⸫ ……. (131) 

Now let us assume that the function ϕ(q) may be expressed in the form power 

series in q, i.e. 

…… (131A) 

Differentiating, we get 

and 

Substituting these values in (131), we get 

or

This equation is a power series and is satisfied only if coefficient of each power 

in q most be separately equal to zero. Equating to the zero coefficient of lowest 

power of q(i.e. q
s-2

)we get

As  being first of power series, we have 

s = 0 or s = 1  …………… (132) 

Now equating to zero the coefficient q
s-1

 we get

a1(s + 1) (s) = 0 

This gives either a1 = 0 or s = 0 or s = -1. 

As s  -1, we have either a1 = 0 or s = 0 or both.  …… (133) 

Now equating to zero the coefficients of q
s+r

, we get
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or ……. (134) 

where r is an integer or zero. This expression is called recursion formula. 

From this we can calculate the coefficients of q
2
, q

4
, q

6
, etc. if that of q0 is known.

Similarly, we calculate the coefficients of q
3
, q

5
, q

7
 etc. if the coefficient of q

1
 is

known. Thus, if we choose a1 = 0, then all odd coefficients ar will be zero. 

Examining the series. 

If no restriction is placed on λ which is related to the energy E of the 

oscillator by eqn. (122) the series for ϕ(q) consists of infinite number of terms and 

does not correspond to a satisfactory wave function, for large values of r which 

may be seen as follows: 

Examining eqn. (134) for large values of n, we get 

……. (135) 

Now consider the series 

then the recursion formula for the exponential series for e
q2

 is give by

Where  n is very large, so that unity is negligible in comparison with , 

then above equation gives 

……. (136) 

Thus, we see that for large values of n, the series for ϕ(q) will behave like  

. If this is case, the eigen function ψ for large values of n will behave 

like 

……. (137) DCEPHS-108/99



According to this equation if  thus making the ware 

function physically unacceptable. Thus, the series governed by the recursion 

formula (133) does not lead to a satisfactory wave function unless some 

restriction is introduced which make the series break off after a finite number of 

terms. 

Eigen values of harmonic oscillator. 

From above discuss we have seen that in order to obtain a satisfactory 

wave function, the series (126A) must break off after a finite number of terms. 

The series will break off after rth term if we get the numerator in the recursion 

formula (134) equal to zero, i.e., 

i.e. ……. (138) 

For s = 0, we have 

For s = 1, we have 

Thus equation (138) may be written more generally as 

……. (139) 

Substituting this value of λ in equation (122B) we get 

or  from (117) 

or 

or 

or   ……. (140) 

The allowed integral values of n lead to certain discrete values of energy, 

represented by equation (140) known as eigen value of the harmonic oscillator. DCEPHS-108/100



Moreover equation (140) indicates that the energy levels of harmonic oscillator 

are equally spaced. 

4.8 ZERO POINT ENERGY AND PARITY 

OSCILLATOR 

Significance of zero-point energy. 

For ground state (or lowest state) n = 0, so that we have 

……. (141) 

This is called zero-point energy 

A comparison with the result  obtained by old quantum 

they show that the only difference is that all the equally spaced energy levels are 

shifted upward by an amount equal to half the separation of energy levels, i.e. 

 equal to zero point energy. Thus, it is clear that even in the lowest 

state, the harmonic oscillator has finite energy while according to classical 

mechanics the harmonic oscillator possesses zero energy at state. The existence of 

zero-point energy is in agreement with experiment and is important feature of 

quantum mechanics. 

The energy levels of the harmonic oscillator according to wave mechanics are 

represented in fig. 5.  

Figure: 5 

Eigen functions of harmonic oscillator. We have seen that in order to have a 

satisfactory solution of wave equation (120), ϕ must break off after a finite 

number of terms, i.e. ϕ should be restricted in such a manner so as to make it a 

polynomial rather than a power series. The best suitable polyhomial  is Hermite  

polynomial denoted by Hn (q). Then the eigen function ψ can be set equal to the 

product of polynomial Hn (q) and the factor , i.e. 
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where Nn in normalizing factor and the Hermite polynomial Hn (q) of degree n 

is defined by  

Values of Hermite polynomials of different orders may be obtained by using 

above equation. 

and so on. 

The orthogonality condition of Hermite polynomials is 

where  Kronecker delta symbol defined as 

The normalizing condition is 

As q =  we have 

or 

i.e. 
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But from orthogonality condition of Hermite polynomials 

⸫ 

or 

Thus normalized wave functions of harmonic oscillator are 

where  is given by equation (121). 

The wave function corresponding to the lowest state of energy is 

A few of these wave functions are shown in figures 6 (a), (b), (c). 

Figure : 6 DCEPHS-108/103



The probability distribution function ψ*n ψn for n = 0, 1, 6 are shown in 

fig. 2.18. The classical limits of x for corresponding energy are shown by A and B 

in each case. The departures of wave mechanical results from classical 

mechanical results are as under : 

1. The probability distribution function ψ*n ψn has finite value beyond the

classical limits A and B.

2. For the lowest energy state  , the probability is maximum

at centre while according to classical theory the maximum time is spent

near the ends.

3. The probability distribution function does not very smoothly but shows (n

+ 1) maxima for energy state.

The wave mechanical predictions of the harmonic oscillator have been 

verified experimentally, thus establishing the superiority of wave mechanics over 

classical mechanics. 

Parity : It may be observed that harmonic oscillator wave functions are even 

functions of  x if n is even odd functions of x if n is odd. This property is due to 

the fact that the Hamiltonian of the oscillator is invariant under parity. If P is 

parity operator, then for every eigen state one has degenerate eigen state Pψ(x). 

As the Hermite polynomials have definite parity, the functions ψ(x) and P(ψ) 

must be linearly dependent. 

i.e. 

If the transformation x → - x through parity operator is made again. We gee 

P
2
 ψ (x) = ψ (x).

Also P
2
 ψ(x) = P C ψ (x) = C

2
 ψ (x)

i.e.,  C2 = 1 or C =  1  

and so ψ (-x) =  ψ (x) 

i.e., every eigen function for a bound state in a symmetric field [u(x) = u (-x)] is

either an even or odd function of x. This fact is expressed by the statement that for 

the oscillator wave function ψ (x) = - ψ (x) the parity of ψ is odd. From parity 

considerations it can be deduced immediately that for states of definite parity the 

expectation value of any odd operator is always zero without reference to the 

explicit of ψ. 

Recurrence relations: From the recurrence relations of Hermite polynomials, the 

recurrence relations of harmonic oscillator wave functions may be deduced. 

From recurrence relation of Hermite polynomials, we have DCEPHS-108/104



This can be written equivalently as 

Multiplying above equation by 

or 

or 

or …..(142) 

We have 

DCEPHS-108/105



Using other recurrence relation for Hermite polynomials as 

we get 

Now using eqn. (142), we get 

or

or  ……. (143) 

Equations (142) and (143) represent two important recurrence relations of the 

harmonic oscillator wave functions. 

4.9 SUMMARY 

In this unit we studied about particle in a Box problem, Potential Step, 

recursion formula, tunnel effect, Zero-point Energy. 

4.10 TERMINAL QUESTIONS 

1. What do you mean by Tunneling through a Barrier.

2. Discuss one dimensional linear harmonic oscillator.

3. Write down Schrödinger wave equation for a particle in a box.

4. Solve the Schrödinger wave equation in three dimensions for a free

particle.

5. Discuss the motion of an electron across a potential step of finite height.

calculate the reflection and transmission coefficients.DCEPHS-108/106



4.11 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 4.6

2. Section 4.7

3. Section 4.4

4. Section 4.3

5. Section 4.5

4.12 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-5 SPHERICALLY SYMMETRIC 

SYSTEMS 

Structure 

5.1 Introduction 

5.2 Objective 

5.3 Schrodinger equation for Spherically Symmetric Potential 

5.4 Three-Dimensional Harmonic Oscillator 

5.5 The Rigid Rotator with free axis 

5.6 The Rigid Rotator in Fixed Plane 

5.7 The Hydrogen Atom 

5.8 Degeneracy 

5.9 The Normal State of the Hydrogen Atom 

5.10 Summary  

5.11 Terminal Questions 

5.12 Answer and Solution of Terminal Question 

5.13 Suggested Readings 

5.1 INTRODUCTION 

In the presence of spherical symmetry, the Schrödinger equation has 

solutions that can be separated into a product of a radial part and an angular part. 

In this unit, all possible solutions of the equation for the angular part will be 

determined once and for all. 

We start by discussing symmetry transformations in general. In quantum 

mechanics, all symmetry transformations may be realized by unitary or 

antiunitary operators.   

5.2 OBJECTIVES 

After studying this unit, student should able to: 

 Know about Schrodinger equation for Spherically Symmetric Potential.

 Discuss about Three-Dimensional Harmonic Oscillator. DCEPHS-108/109



 Explain The Rigid Rotator with free axis.

 Know about The Hydrogen Atom.

5.3 SCHRODINGER EQUATION FOR 

SPHERICALLY SYMMETRIC POTENTIAL 

The potential energy of a particle moving under a central spherically field 

of force depends only upon is distance from the centre of force, i.e., the potential 

energy in such cases has the form V(r), r being the distance between the particle 

and the centre of force (i.e. origin). The Schroedinger equation for such a system 

would be given by 

………………………..1 

In such cases it is appropriate to write the Schredinger‘s equation in 

spherical polar co-ordinates (r, θ, ϕ) since the potential energy V(r) is independent 

of the angular variables θ and ϕ. 

Let P be the point in space such that its cartesian co-ordinates of the point 

P are specified by (r, θ, ϕ), where r = OP is the radius of the sphere on which 

point P lies, θ is the colatitude, i.e., the angle between OP and z-axis and ϕ is the 

longitudinal or azimuthal angle, i.e., the angle included between XZ plane and the 

plane OPZ, from fig.1 the transformations between cartesian co-ordinates (x, y, z) 

and spherical co-ordinates (r, θ, ϕ) are given by 

…………………..2 

From (2), we have 

i.e. 

and ……………………..3 

Using (2) and (3), we have DCEPHS-108/110



.……4 

Then 

⸫ 

Now 

……5 

Similarly, 

so that 

…………..6 DCEPHS-108/111



Also 

so that 

and

……..7 

Adding and simplifying (5), (6) and (7) we get 

Substituting this in equation (1), the Schrödinger wave equation for spherically 

symmetric potential in spherical polar co-ordinates is given by 

……..8 

Figure 1 DCEPHS-108/112



5.4 THREE DIMENSIONAL HARMONIC 

OSCILLATOR : (SPHERICALLY SYMMETRIC 

CASE) 

Here we shall consider a particular case of the three-dimensional harmonic 

oscillator already discussed in previous unit 4, where the frequencies along X, Y, 

Z-axis are equal. 

i.e.,

The system consists of a point bound to origin by a force proportional to the 

displacement r from the fixed point, 

i.e. F = - kr, 

where k is force constant given by 

k = 4π
2
 v

2
 m ……… (9) 

so that the potential energy function of the oscillator will be 

assuming V(r) = 0, where r = 0 i.e. at the origin 

But 

⸫ 

The Schroediner were equation in this case will be 

or

or 

…………..(10) DCEPHS-108/113



Substituting 

and 

equation (10) becomes 

  ……(11) 

For convenience substituting 

and ………………………..(12) 

in equation (11), we get 

………....(13) 

The equation can be solved exactly in the same manner as in the case of free 

particle, i.e., by the method of separation of variables. Then the substitution of  

where Qx is function of qx, Qy is function of qy and Qz is function of qz only, 

results in separate equations for Qx, Qy and Qz i.e. 

…………………………(14) 

…...……………(15) 
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...………………(16) 

where the constant λx, λy and λz are related by 

λz + λy + λz = λ ………...……. (17) 

Each of the euqtions (14), (15) and (16) represents the wave equation for 

the dimensional harmonic oscillator (see equation (125) of unit 4 for which the 

eigen values and normalized wave functions are given by equations (140) and 

(140A) of unit 4. By analogy, we have 

and λx, λy and λz restricted to the values 

The given values are given by 

Where n = nz + ny + nz may the called total quantum number. As the 

energy of this system depends only on the total quantum number, a l the energy 

levels except the lowest one are degenerate with the quantum weight   DCEPHS-108/115



 
(   )(   ). Fig.2 represents a few energy levels together with their 

quantum weights and quantum numbers. 

Figure:2 

5.5 THE RIGID ROTATOR WITH FREE AXIS 

The system, consisting of two spherical particles attached together, 

separated by finite fixed distance and capable of rotating about an axis passing 

through the centre of mass and normal to the plane containing the two particles, 

constitutes, a rigid rotation. If these two particles are constrained, to remain in one 

plane, then the direction of the axis of rotations in fixed and so the system is 

called the rigid rotator with axis. If the plane of these two particles can move, then 

the axis of rotation is free to take any position in space and so the system is called 

the rigid rotator with free axis. In a diatomic molecule the atoms vibrate with 

respect to each other and so the distance between atoms will not be always 

constant; while the distance apart of the equilibrium position is constant. Thus, the 

system of diatomic molecules is not really rigid; however, it may be treated, at 

least as a first approximation, as a rigid rotator with free axis. 

Figure:3 

Energy for the rotator. 

The kinetic energy of a particle of mass m can be expressed as 
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……………………….18 

where  ̇  ̇  ̇are the components of the velocity of a particle along X, Y and Z 

axes respectively. 

the transformations between cartesian co-ordinates (x, y, z) and spherical co-

ordinates (r, θ, ϕ) are given by 

so that the kinetic energy in spherical co-ordinates is expressed as 

…………………….19 

If the distance r of the particle from the origin is fixed, its derivative r will be 

zero, then from equation (19) the kinetic energy would be 

………………………………20 

Taking O, the centre of mass of the rotator, as origin, the K.E. of the particle of 

mass m1 is given by 

Similarly, the K.E. of the particle of mass m2 is 

Hence the total kinetic energy of the rotator will be 

As there is no potential energy of the rotator, total is given by 

………………………..21 DCEPHS-108/117



But     
      

    the moment of interia of the system about the axis 

passing through the centre of mass and perpendicular to the line joining the two 

masses. 

The equation (21) may be written as 

………………………………22 

The moment of inertia of the rotator may be expressed in a more convenient 

form as follows : 

According to definition of centre of mass     
         

     
, we have 

…………………………….23 

i.e. 

But 

i.e. 

Substituting this in eqn. (23) we get 

⸫ 

Similarly 

Then the moment of intertia of the rotator may be expressed as 

⸪ ……………………..24 DCEPHS-108/118



where 

is called the reduced mass of the system. 

Form equation (20) and (22) it is evident that the rotator behaves like a single 

particle of mass μ given by eqn. (24) placed at a fixed distance, equal to unity 

(since r = 1) from the origin, which in this case in the centre of mass of the 

system. 

Wave equation for the rotator: The Schroedinger wave equation in three 

dimensions in spherical co-ordinates is given by  

For a rigid rotator we have seen that potential energy is zero r = 1 and the mass 

m may be replaced by the moment of inertia l. Therefore the Schroedinger wave 

equation for a rigid rotator becomes 

…………………25 

This equation consists of two variable θ and ϕ which represent the processional 

motion of the rotator‘s free axis and the rotation of the system respectively. 

Solution of wave equation : Eigen function for the rotator : 

Equation (25) may be solved by the method of separation of variable, i.e., the 

wave function ѱ(θ, ϕ) may be represented by 

where ϴ (θ) is function θ of alone and ф(θ) is the function of ϕ alone. 

Substituting in equation (25) and dividing by ϴ ф we get 

Multiplying this equation by sin
2
 θ we get

or DCEPHS-108/119



In this equation L.H.S. is a function of θ alone, while R.H.S. is a function of ϕ 

alone. Therefore if this equation is to be satisfied, both sides must be equal to 

the same constant, m
2
 (say) i.e.

…………………..26 

and .....………………27 

Equation (27) may be rewritten as 

the solution of above equation may be written as 

where                   

A is any arbitrary constant which may be chosen is such a way that the function 

is normalized i.e. 

or 

i.e. 

or 

i.e. 

Thus the normalized function is 

DCEPHS-108/120



Multiplying equation (26) by 
 

     
, we get 

…………………28 

Let us now define a new variable x such that 

x = cos θ ……………………..28(A) 

so that 

Then ……………….29 

And hence in general, we have 

…………………………….30 

⸫ 

…………………..31 

Using equations (29), (30) and (31) equation (28) can be written in terms of 

variable x as 

……………….32 

where ……………………..33 

Equation (33) is known as Legendre‘s equation. It has physical significance 

only for values of x between the limits of – 1 and + 1 since x is equal to cos θ 

[equation (28A)]. 

In order to solve eqn. (33) let us substitute, for convenience. 
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where X (x) is the function of x only. 

Equation (34) yields 

⸫

………………35 

where 

Using equation (34) and (35), equation (32) becomes. 

Dividing this by  (    )   , we get 

…………….36 

or 

………………..36A 

Now let us assume that X(x) may be expressed as a power series, i.e. 

so that 
DCEPHS-108/122



and 

Substituting these values in equation (36) and simplifying, we get 

In order that the series may be zero for all possible values of x, the coefficients 

of individual powers of x must vanish separately, i.e., in general 

where n = 0, 1, 2, 3, …… 

or 

Substituting values of α and λ in above equation, we get 

…………………………37 

This is called recursion formula for the coefficients in power series for X(x). 

In order to obtain a satisfactory wave function ѱ it is necessary that X(x) should 

be a polynomial breaking off after a finite number of terms, as in the case of 

harmonic oscillator. The series will break after nth term if the nominator of 

equation (37) is zero 

i.e. 

or …………………….38 

It has already been pointed out that m zero or an integer and n is also zero or 

integer. Therefore, the sum (n + m) may be replaced by I, is also zero or an 

integer. 

Then equation (38) gives 

…………………39 

Substituting this value of β in equation (27), we get 
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………………40 

The solution of above of above equation contains the factor called the 

associated Legendre function  
 ( ) which may be defined as 

where P1(x) is Legendre polynomial of degree l. 

The solution of equation (40) is written as 

[since x = cos θ] 

where B is a constant which may be normalizing factor. 

According to orthogonal properties of associated Legendre‘s Polynomials, 

and 

According to normalizing condition. 

i.e. 

i.e. 

i.e. 
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Substituting value of B in (36A), the normalized wave function ϴ is given by 

The complete wave function or eigen function for the rigid rotator is given by 

or 

Eigen values or energy levels of the rigid rotator. Form equations (33) and 

(39), we have  

or 

l = 0, 1, 2, 3, …… 

This equation gives allowed values for the energy (i.e. eigen values) of  a rigid 

rotator with free axis. 

5.6 RIGID ROTATOR IN A FIXED PLANE 

If we consider the rotator to be only in XY plane, then θ = 90
o
 and hence the

Schoredinger‘s equation, in this case may be written as  

……………….41 

In this case ѱ = фm (ϕ), so that 

so that we have 
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i.e. ………………42 

where …………………43 

Eigen function : The solution of equation (42) can be written as 

where A is arbitrary constant and m = 0, ± 1, ± 2, …….. 

According to normalization condition, 

or 

or 

i.e. 

⸫ The eigen functions are given by 

Eigen values : From equation (43), we have 

This equation represents the rotational energy eigen values of the rigid rotator. 

5.7 THE HYDROGEN ATOM 

Hydrogen atom may be regarded as a system fir two interacting point charges, DCEPHS-108/126



the positively charged nucleus consisting of a proton and negatively charged 

electron, revolving around the nucleus. 

For a system of two or more particles the equation of motion can be more 

conveniently written in the form 

Hѱ = Eѱ ……… (44) 

where H is the Hamiltonian operator, ѱ is the eigen function and E is thue 

energy of the whole system. 

If (x1, y1, z1) (x2, y2, z2) are the cartesian co-ordinates of the nucleus and the 

electron and m1 and m2 their masses respectively. The Hamiltonian of the 

system is given by 

where V is the potential energy. 

So the Schroedinger wave equation for the whole system is written as 

………………………………..45 

Where ѱT and ET are the total eigen function and the total energy respectively. 

Equation (45) may be written as  

…………………………………………46 

In general the potential energy V of the system may be written as 
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Equation (46) can be separated into two equations one of which represents 

translational motion of the whole system i.e., the centre or mass and the relative 

motion of the two particles. In order to separate the two equation let us 

introduce the new variables      , the cartesian co-ordinates of the centre of 

mass of the system and (r, θ, ϕ) the polar co-ordinates of the electron relative to 

the nucleus. These new co-ordinates are related to the cartesian co-ordinates of 

the particles by the equations. 

Introducing these new variable in equation (46), we get 

………………………………….47 

when   
    

     
                             

Let us now apply the principle of separation of variables to separate the two 

equations. For the purpose let us assume 

Substituting this value of ѱT in equation (47) and dividing by fѱ, we get 
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In above equation L.H.S. in a  function of (     ). Therefore if above equation 

is to be satisfied both sides must be equal to a constant 2E/ℏ
2
, (say) i.e.

or 

…………48 

and

or       

…………………………..49 

Equation (48) represents the equation of motion of a free particle of mass m1 + 

m2 and 

Energy (Er – E) : thus the translational motion of the centre of mass is the same 

as that of a free particle of mass m1 + m2 and energy (Er – E). Thus result 

corresponds to the classical result that the centre of mass moves in a straight 

line with constant speed. Equation (49) is identical with Schroedinger‘s wave 

equation for a single particle of mass μ and total energy E (exclusive of the 

translational energy) moving under the influence of a potential function V(r) = -

e
2
/r since for hydrogen atom Z = 1. The energy E of the relative motion is

determined as the eigen value of this equivalent problem. 

In order to solve equation (49), let us express eigen function ѱ(r, θ, ϕ) as the 

product of three functions, viz. R(r) ϴ (θ) ф (ϕ), each of which is function of the 

one indicated variable, thus 
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Substituting this in equation (13) and dividing by R ϴ ф, we get 

Multiplying this equation by r
2
 sin

2
θ and rearranging, we get

In this equation L.H.S. is function of r and θ is independent of ϕ, while R. H. S. 

is function of ϕ alone. Therefore if this equation is to be satisfied each side must 

be equal to same constant m
2
 (say), i.e.

…………………………….50 

and 

or ……………..51 

Dividing equation (50) by sin
2
θ and rearranging, we get

The L.H.S. of this equation is a function of the variable r only while R.H.S. is a 

function of the variable θ only. Therefore if above equation is to be satisfied 

each side must be equal to the same constant, β (say) i.e. 
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……………………..52 

and 

 ………….53 

The solution of ϴ equation. As discussed in last article the solution of eqn. 

(53) can be written as 

where the constant m = 0, ± 2, ± 3, …. and is called the magnetic quantum 

number. 

The solution of ϴ equation. Let us substitute a new variable x such that 

x = cos θ  

in equation (53), then we have 

Therefore, we must have 

β = l (i + 1)  

where i = 0, 1, 2, 3, ….. and is called the azimuthal quantum number. 

Also solution of equation (53) may be written as 

where      is called the associated Legendre function. 

Solution of radial equation 

Substituting value of β in equation (52), we have 
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or 

…………………….54 

This equation with   ( )   
   

 
 is called the radial equation for hydrogen-like 

atoms and for Z = 1 it is radial equation for hydrogen atom. 

Substituting   ( )   
   

 
 in equation (54), we get 

…………55 

According to classical mechanics E < 0, i.e., negative energies correspond to 

elliptical orbits representing bound states in atomic system: while E < 0, i.e., 

positive energies correspond to hyperbolic orbits representing unbound states. 

In this case let us consider that the electron in bound is the hydrogen atom, i.e. E 

< 0. Then let us substitute 

and ……………………56 

in equation (55), so that we have 

…………….57 

Let us now introduce a new independent variable   such that 

so that we have 
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Substituting these values of 
  

  
     

   

   
in equation (57) and dividing by 4α

2
, we

get 

 ……….58 

Asymptotic behaviour : If       equation (58) approaches the form 

The solution of above equation is 

As   may vary from 0 to  , former of these solutions will increase as   

increases and so it will lead to an unacceptable wave function. On the other 

hand second solution decreases to zero as   (and hence r) increases to infinity. 

Consequently second solution is satisfactory. 

Recursion Formula : Keeping in mindthe asymptotic solution, the exact 

solution of equation (58), must be of the form 

where F( ) is another function of variable  . 

Substituting this in equation (34), we get 

……………..59 

where 

Let us now find a solution for F in the form 
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………………………….60 

where G( ) is a power series in  , beginning with a non-vanishing constant, i.e., 

…….61 

Differentiating equation (60), w.r. to  , we get 

and  

Substituting these values of F, F’ and F” in equation (59), we get 

Dividing above equation by  s
and arranging the terms, we get 

If   is set equal to zero in above equation, we get 

[using (61)] 

which yields 

The boundary condition that R( ) be finite at     requires that s = l so that 

………62 

Differentiating equation (61) w.r. to  , we get 

…………………63 

and …………………64 
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Substituting value of G, G’ and G” from (61), (63) and (64) in equation (62), 

we get 

If  this equation is to be satisfied the coefficients of various powers of   must 

vanish separately. 

or    

or ………………………65 

This expression is called recursion formula. Here k is an integer or zero. 

For any value of λ and l the series for F( ) consists of infinite number of terms 

and does not correspond to a satisfactory wave function; because value of the 

series as shown below, increases with increasing   and consequently with 

increasing r with the result that the function R( ), i.e., e-      s
 G( ) increases 

without limit as   increases. 

To prove this consider the series. 

so that 

If k is large k + 1, then 

Also from (65), we have 

Thus the series for F( ) i.e.  s
 G( ), for large values of   behaves like  s

 e
ρ
. If

this is the case, the function R( ) for the large of   will  behave like 

                : which approaches infinity as   approaches infinity : thus DCEPHS-108/135



making the wave function physically unacceptable. Thus the series governed by 

the recursion formula (65) does not lead a satisfactory wave function unless 

some restriction some restriction is introduced which make the series break off 

finite number of terms. 

Energy Eigen values for the hydrogen atom : 

From the above discussion we have seen that in order to obtain a satisfactory 

wave function the series will break off after a finite number of terms. The series 

will break off after  k
 if we see the nominator in the recursion formula (65) 

equal to zero, i.e. 

or   ……………………….66 

Here k is called the radial quantum number can have the values 1, 2, 3, ……, 

while n is called total quantum number and can have the values 1, 2, 3,…. 

or 

so that      [using (66)] 

The equation gives the energy eigen values for hydrogen atom with Z = 1 and is 

agreement with the old quantum theory and experiment. 

Radial wave function : Substituting λ = n in equation (62) we get 

………..67 

in equation (67), we have 

The solution of this equation will be the associated Laguerre polynomial or 

more correctly the associated Laguerre polynomial multiplied by a constant 

factor i.e. 
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where C is constant and may be made equal to the normalization factor 

Thus the total wave function R(r) is given by 

 …………..68 

The normalization condition, for the physically significant interval of zero to 

infinity is 

……………….69 

Here the factor r
2
 is necessary to convent the length the length dr into an

element of volume. 

We have 

……………………..70 

where 
  
 
   

  
, a0 being Bohr‘s radius. 

From (70) 

so that 

Substituting values of R(r), R*(r), r and dr in equation  (69), we get 
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i.e. 

i.e. 

or 

Substituting this value of C in (68), the radial wave function may be represented 

by 

……………………71 

The first radial functions, found from equn. (71), are 

Complete wave function : The complete wave function or the normalized 

eigen functions for hydrogen like atoms are 

with 

andDCEPHS-108/138



The real forms of the complete eigen function ѱnlm. Exclusive of spin, for 

various values of n, l and m are given below : 

If Z = 1, these wave function represent specifically the eigen function of 

hydrogen atom. 

5.8 DEGENERACY 

The energy eigen values given by equation (48) of section 3.5 depend only 

on n and hence are degenerate with respect to booty l and m. For each value of n, l 

can take value from o to n – 1 and for each or these l values, m can take values 

from – l to + l. Then the degeneracy of the energy level En is 

The degeneracy with respect to m is the characteristic of the central force 

i.e. the force field depending only on the radial distance r, while the degeneracy 

with respect to lis characteristic of the Coulomb field. In the presence of some 

external field (such as a magnetic field) (2l + 1), fold m degeneracy disappears 

and the level is spited up into n
2
 different energy levels.

The existence of the degenerate energy level means that the linear 

combinations of the corresponding eigen function are the solution of the wave 

equation with the same energy. For m degeneracy nth linear combination of the 

function Yim (θ, ϕ) = ϴim (θ) фm (θ) can be found that correspond to new choice of 

the polar axis. In general the degeneracy will occur whenever the wave equation 

is solved in different co-ordinate systems; because in the absence of the 

degeneracy the wave functions obtained in different co-ordinate system would 

differ only by a multiplying constant, which is usually not possible. However, DCEPHS-108/139



there occurs an exception in a general central field for l = 0 where the wave 

function is spherically symmetric and has the same form for all orientations of the 

polar axis : consequently these will be no degeneracy. A similar exception occurs 

for hydrogen atom when n = 1, where the solution obtained by spherical and 

parabolic separation of the wave equation are identical. 

5.9 THE NORMAL STATE OF THE HYDROGEN ATOM 

In the case of normal state of hydrogen atom (Z = 1, n = 1, l = 0, m = 0) the 

wave function takes the form 

Then the probability distribution function of the electron relative to the nucleus 

is given by 

The probability that the electron will lie in the volume element 

is given by 

The probability that the electron will lie between distance r and r + dr from the 

nucleus irrespective of its angular distribution is given by 

The radial distribution function P(r) dr is shown in fig. 3.4 together with ѱ100 

with |ѱ100|
2
. The dotted curve represents the probability distribution function for

a Bohr orbit 

The most probable distance of the electron from the nucleus, i.e. the value of r DCEPHS-108/140



at which P(r) is maximum may be obtained as follows : 

For the most probable distance r, P(r) should be maximum, 

i.e.,

or 

which gives 

r = a0 = Bohr‘s radius. 

Thus the most probable distance of the electron from the nucleus in the normal 

state of hydrogen atom is equal to the Bohr‘s radius. 

Figure:4 

5.10 SUMMARY 

In quantum mechanics description of a particle in spherical coordinates, 

a spherically symmetric potential, is a potential that depends only on the 

distance between the particle and a defined center point. In particular, if the DCEPHS-108/141
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particle in question is an electron and the potential is derived from Coulomb's 

law, then the problem can be used to describe a hydrogen-like (one-electron) atom 

(or ion). 

In the general case, the dynamics of a particle in a spherically symmetric potential 

are governed by a Hamiltonian of the following form: 

Where  is the mass of the particle,  is the momentum operator, and 

the potential  depends only on , the modulus of the radius vector r. 

The quantum mechanical wavefunctions and energies (eigenvalues) are found by 

solving the Schrödinger equation with this Hamiltonian. Due to the spherical 

symmetry of the system, it is natural to use spherical coordinates  . 

When this is done, the time-independent Schrödinger equation for the system 

is separable, allowing the angular problems to be dealt with easily, and leaving an 

ordinary differential equation in  to determine the energies for the particular 

potential  under discussion. 

5.11 TERMINAL QUESTIONS 

1. Obtain Schrödinger‘s equation for spherically symmetric potential in

spherical co-ordinates.

2. Obtain Schrödinger‘s equation for spherically symmetric case of three-

dimensional harmonic oscillator. Solve it obtain eigen functions and eigen

values.

3. Obtain and solve the Schrödinger‘s equation for a rigid rotator with free

size.

4. Solve Schrödinger‘s equation for the hydrogen atom and discuss the radial

wave-function.

5. Obtain and solve the radial equation for the hydrogen atom. Calculate the

most probable distance of the electron from the nucleus.5.

5.12 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 5.3

2. Section 5.4
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3. Section 5.5

4. Section 5.7

5. Section 5.7

5.13 SUGGESTED READINGS

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-6 IDENTICALS PARTICLES 

Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Distinguishable and Indistinguishable Particles 

6.4 Symmetric and Anti-symmetric Wave Function 

6.5 Concept of Spin 

6.6 Pauli Spin Matrices 

6.7 Exchange Operator 

6.8 Pauli Exclusion Principle 

6.9 Summary 

6.10 Terminal Questions 

6.11 Answer and Solution of Terminal Question 

6.12 Suggested Readings 

6.1 INTRODUCTION 

There are many systems in nature that are made of several particles of the 

same species. These particles all have the same mass, charge, and spin. For 

instance, the electrons in an atom are identical particles. Identical particles cannot 

be distinguished by measuring their properties. This is also true for classical 

particles. In classical mechanics we can always follow the trajectory of each 

individual particle, i.e., their time evolution in space. The trajectories identify 

each particle in classical mechanics, making identical particles distinguishable. In 

quantum mechanics the concept of trajectory does not exist and identical particles 

are indistinguishable 

Two particles are said to be identical if all their intrinsic properties (mass, 

spin, charge, etc.) are exactly the same: no experiment can distinguish one from 

the other. Thus, all electrons in the universe are identical, as are all the protons 

and all the hydrogen atoms. Note that this definition is independent of the 

experimental conditions. Even if, in a given experiment, the charges of the 

particles are not measured, an electron and a positron can never be treated as 

identical particles. An important consequence can be deduced from this DCEPHS-108/147



definition: when a physical system contains two identical particles, there is no 

change in its properties or its evolution if the roles of these two particles are 

exchanged. In classical mechanics, the presence of identical particles in a system 

poses no particular problems. Each particle moves along a well-defined trajectory, 

which enables us to distinguish it from the others and follow it throughout the 

evolution of the system. It is immediately apparent that the situation is radically 

different in quantum mechanics, since the particles no longer have definite 

trajectories, but rather are treated in a probabilistic manner. For example, in figure 

2 two identical particles approach one another. When the two particles are still far 

away from each other, they are distinguishable due to their spatial separation: we 

can label them ―1‖ and ―2‖. But when they interact with each other (when they 

collide), we lose track of which is which, so, looking at figure 3, we are not sure 

which particle hits the detector (labeled ―D‖). Nothing in the theory of quantum 

mechanics enables us to determine which particle hits the detector. The 

Symmetrization Postulate We add a new postulate to the theory of quantum 

mechanics to deal with this. Statement of the Postulate When a system includes 

several identical particles, only certain wavefunctions can describe its physical 

states. Physical wavefunctions are, depending of the nature of the indentical 

particles, either completely symmetric or completely antisymmetric with respect 

to permutation of these particles. Those particles for which the physical 

wavefunctions are symmetric are called bosons, and those for which they are 

antisymmetric, fermions. The symmetrization postulate thus limits the possible 

wavefunctions for a system of identical particles. From the point of view of this 

postulate, particles existing in nature are divided into two categories. All currently 

known particles obey the following empirical rule: particles of half-integral spin 

(electrons, positrons, protons, neutrons, muons, etc) are fermions, and particles of 

integral spin (photons, mesons, etc) are bosons. Once this rule has been verified 

for all the particles which are called ―elementary‖, it holds for all other particles 

as well, inasmuch as they are composed of these elementary particles. 

Consequently, nuclei whose mass number (the total number of nucleons) is even 2 

are bosons, and those whose mass number is odd are fermions. Thus, the nucleus 

of the 3He isotope of helium is a fermion, and that of the 4He isotope, a boson. 

Predictions based on this principle, which are often spectacular, have always been 

confirmed experimentally. 
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Collision between two identical particles in the center of msss frame : 

Schematic representation of the probability density of the two particles. 

Before the collision(fig. a), the two wave packets are clearly and can be 

labeled. During the collision (fig. b) the two packets overlap. After the collision 

(fig.c), the probability density is non-zero in a region shaped like a spherical shell 

whose radius increases over time. Because the two particles are identical, it is 

impossible, when a particle is detected at D, to know with which wave packet, (1) 

or (2), it was associated before the collision. 

Schematic representation of two types of "paths" which the system could 

have followed in going from the initial state to the state found in the 

measurement. Because the two particles are identical, we cannont determine the 

path that was actually followed. Understand the concept of Assignment problem 

6.2 OBJECTIVES 

After studying this unit, student should able to: 

 Know about Distinguishable and Indistinguishable Particles.

 Explain the concept of Spin.

 Discuss Pauli Spin Matrices.

 Define Exchange Operator

 Explain the Concept of Pauli Exclusion Principle

6.3 DISTINGUISHABLE AND INDISTINGUISHABLE 

PARTICLES 

Distinguishable Particles: 

It is also known as classical particles. They follow classical statistics. 

MB Statistics. Large distance and energy Barrier  
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Indistinguishable Particles: 

It is also known as Quantum particles. They follow Quantum Statistics. 

Small distance and Barrier. 

6.4 SYMMETRIC AND ANTI-SYMMETRIC WAVE 

FUNCTION 

Let us consider a system of n identical indistinguishable particles. The wave 

function of the system consisting of n particles is Ψ(1,2,3,4……….n, t). The 

Schrödinger equation for the above system of particles is written as  

 where each of the numbers represents all the position and spin coordinates of one 

of the particles. As the particles are identical, Hamiltonian  of the system is 

symmetrical in its arguments. Two types of solutions of equation (1) are possible 

for the wave function of Ψ; namely  

(i) Symmetric wave function 

 (ii) anti-symmetric wave function. 

Symmetric wave function (ΨS): A wave function is said to be symmetric if the 

interchange between any pair of particles among its arguments do not change the 
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sign of the wave function. 

Anti-symmetric wave function (ΨA): A wave function is said to be anti-

symmetric if the interchange between any pair of particles among its arguments 

change the sign of the wave function. This may be seen as follows: 
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6.5 CONCEPT OF SPIN 

S.A. Goudsmit and G.E. Uhlenbeck, in 1925, recommended that an 

electron has an inherent angular momentum that is a magnetic moment that is 

recognized as spin. In atomic physics, the inherent angular momentum of a 

particular particle is parametrized by spin quantum numbers. The spin quantum 

number is the fourth number. The rest three are a principal quantum number, 

azimuthal, and magnetic quantum number. The spin quantum number explains the 

unique quantum state of an electron. This is nominated as ‗s‘. 

The spins play a noteworthy role in quantum mechanics in computing the 

characteristics of elementary units like electrons. The spin direction of the particle 

regulates several things like the spin quantum number, angular momentum, the 

degree of freedom, etc.  
DCEPHS-108/152
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What is Electron Spin? 

The electron spin is one of the three inherent properties of the electrons; 

the others are the mass and charge of the electron. The electron spin is described 

as the electron spinning around its axis. 

It is articulated as: 

Where, 

 s is equivalent to a quantized spin vector.

 The spin vector is articulated as ||s||.

 The spin quantum number (s) is associated with the spin angular

momentum and h is Planck‘s constant.

The spin quantum number can be articulated as: 

Any non-negative integer can be n. 

The permitted values of the spins are 0, 1/2, 1, 3/2, 2, etc. 

The intrinsic angular momentum of the Electron is signified by quantum 

number 1/2 

The total angular momentum s is articulated by: 

Where, 

the reduced Planck‘s constant is ℏ 

ℏ = h/2π. 

Electron Spin Theory 

As in classical theory, the electron spin theory describes the electron as a quantum 

particle instead of a simple sphere. 

The theory says that ―the electron spin direction and its influence on certain 

properties like the atom‘s magnetic properties‖. 
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The electron can spin in two directions: 

1. Spin up

2. Spin down

The spin up and spin down directions correspond to the spinning in

the “+z” or “–z” direction. These spins (spin up and spin down) are the 

particles that have spin ―s‖ equal to 1/2, i.e. for electrons. 

In quantum theory, the electron is thought of as the minute magnetic bar, 

and its spin points to the north pole of the minute bar. If two proximate electrons 

have a similar spin direction, the magnetic field formed by them strengthens each 

other, and therefore a strong magnetic field is gained. If the proximate electrons 

have an opposite spin direction, the magnetic field formed by them cancels each 

other, and no magnetic field is existent. 

6.6 PAULI SPIN MATRICES 

The Pauli spin matrices (named after physicist Wolfgang Ernst Pauli) are 

a set of unitary Hermitian matrices which form an orthogonal basis (along with 

the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for 

the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted: 
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6.7 EXCHANGE OPERATOR 

In quantum mechanics, the exchange operator , also known 

as permutation operator, is a quantum mechanical operator that acts on states 

in Fock space. The exchange operator acts by switching the labels on any 

two identical particles described by the joint position quantum state 

 Since the particles are identical, the notion of exchange 

symmetry requires that the exchange operator be unitary. 

In three or higher dimensions, the exchange operator can represent a literal 

exchange of the positions of the pair of particles by motion of the particles in 

an adiabatic process, with all other particles held fixed. Such motion is often not 

carried out in practice. Rather, the operation is treated as a "what if" similar to 

a parity inversion or time reversal operation. Consider two repeated operations of 

such a particle exchange: 
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Both signs are realized in nature. Particles satisfying the case of +1 are 

called bosons, and particles satisfying the case of −1 are called fermions. 

The spin–statistics theorem dictates that all particles with integer spin are bosons 

whereas all particles with half-integer spin are fermions.  

6.8 PAULI EXCLUSION PRINCIPLE 

Pauli‘s Exclusion principle is one of the important principles along with 

Aufbau‘s Principle and Hund‘s Rule in chemistry. Learning about it is crucial for 

students especially when they are studying about electrons. Pauli‘s Exclusion 

principle basically helps us to understand the electron arrangements in atoms and 

molecules and it also gives an explanation for the classification of elements in the 

periodic table. In this section, we shall study the Pauli exclusion principle in detail 

and learn about all the underlying concepts. 

What is Pauli Exclusion Principle? 

The Pauli exclusion principle states that in a single atom no two electrons 

will have an identical set or the same quantum numbers (n, l, ml, and ms). To put 

it in simple terms, every electron should have or be in its own unique state (singlet 

state). There are two salient rules that the Pauli Exclusion Principle follows: 

 Only two electrons can occupy the same orbital.

 The two electrons that are present in the same orbital must have opposite

spins or they should be antiparallel.

However, Pauli‘s Exclusion Principle does not only apply to electrons. It

applies to other particles of half-integer spin such as fermions. It is not relevant 

for particles with an integer spin such as bosons which have symmetric wave 

functions. Moreover, bosons can share or have the same quantum states, unlike 

fermions. As far as the nomenclature goes, fermions are named after the Fermi–

Dirac statistical distribution that they follow. Bosons, on the other hand, get their 

name from the Bose-Einstein distribution function. 

Formulation of the Principle 

An Austrian physicist named Wolfgang Pauli formulated the principle in 

the year 1925. With this principle, he basically described the behaviour of the 

electrons. Later in the year 1940, he expanded on the principle to cover all 

fermions under his spin-statistics theorem. Meanwhile, fermions that are 

described by the principle include elementary particles such as quarks, electrons, 

neutrinos, and baryons. 
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Wolfgang Pauli was also awarded the Nobel prize in the year 1945 for the 

discovery of the Pauli Exclusion principle and his overall contribution to the field 

of quantum mechanics. He was even nominated by Albert Einstein for the award. 

Nuclear Stability and Pauli Exclusion Principle 

The nuclei in an atom consist of neutrons and protons which are held 

together by the nuclear force. However, protons tend to repel each other via 

electromagnetic force as a result of their positive charge. Basically, these two 

forces are working against (competing) each other thereby leading to the stability 

of nuclei. Meanwhile, you will find only certain sets or combinations of protons 

and neutrons that form stable nuclei. The nucleus is mostly stabilized by the 

neutrons as attract each other and protons. This further helps counterbalance the 

electrical repulsion between protons. When this happens, the number of protons 

goes up. In essence, an increasing ratio of neutrons to protons is needed to form a 

stable nucleus. 

In case if there are a larger number of (neutrons also obey the Pauli 

exclusion principle) or too few neutrons for a given number of protons, the 

nucleus of the atom is not stable. This will lead to radioactive decay. Meanwhile, 

Pauli‘s exclusion principle also has an effect on the critical energy of fissile and 

fissionable nuclei. For example, if we look at actinides that have an odd neutron 

number they are usually fissile or in other words fissionable with slow neutrons. 

On the other hand, actinides that have even neutron number they are usually not 

fissile or we can say that are fissionable with fast neutrons. Similarly, due to the 

Pauli exclusion principle, heavy nuclei with an even number of protons and 

neutrons are very stable due to the presence of ‗paired spin‘. Alternatively, nuclei 

with an odd number are unstable. DCEPHS-108/157
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Importance And Applications of Pauli Exclusion Principle 

 The Pauli exclusion principle helps to explain a wide variety of physical

phenomena such as the electron shell structure of atoms and the way

atoms share electrons.

 It helps in describing the various chemical elements and how they

participate in forming chemical bonds.

 The periodic table can also be defined with the help of this principle.

 Solid-state Properties: Many electrical, optical, magnetic, mechanical and

chemical properties of solids are the direct consequence of Pauli

exclusion.

 The principle helps in describing the stability of large systems with many

electrons and many nucleons.

 Apart from chemistry, the principle is a fundamental principle in quantum

mechanics which is mainly studied in physics.

 It is also used in astrophysis

6.9 SUMMARY 

The four sets of quantum numbers are: 

Principal quantum number (n) – Signifies the size of the atomic orbital 

Azimuthal quantum number (l) – signifies the shape of the atomic orbital 

Magnetic quantum number (ml) – signifies the orientation of atomic orbitals in 

space. 

Spin quantum number (ms) – signifies the electron‘s spin in the atomic orbital. 

1. Electrons are part of subatomic particles called fermions.

2. Fermions are particles with half-integer spin.

3. All fermions including neutrons and protons (derived particles) obey the

Pauli exclusion principle.

4. Pauli exclusion principle states that no two identical electrons (fermions)

can have the same quantum state.

5. Bosons, which have integer values of spin do not obey the Pauli exclusion

principle. Photons, gravitons, gluons are an example of bosons.

6.10 TERMINAL QUESTIONS 

1. Explain Distinguishable and Indistinguishable Particles.

2. Expalin Symmetric and Anti-symmetric Wave Function.

3. Discuss Pauli Exclusion Principle.DCEPHS-108/158
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6.11 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 6.3

2. Section 6.4

3. Section 6.8

6.12 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-7 APPROXIMATION METHODS 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Stationary Perturbation Theory (Non-Degenerate Case) 

7.4 The Variation (Rayleigh-Ritz) Method 

7.5 Physical Application of Variation Method 

7.6 Time Dependent Perturbation Theory 

7.7 Summary 

7.8 Terminal Questions 

7.9 Answer and Solution of Terminal Question 

7.10 Suggested Readings 

7.1 INTRODUCTION 

There are three major approximation schemes: perturbation theory, 

variational methods and WKB approximation. Our interest is primarily in 

obtaining bound state energy and eigenstates. In perturbation theory, we deal with 

systems whose Hamiltonians are slightly different from systems which can be 

exactly solved. There are two distinct cases depending on whether the solution of 

the solvable Hamiltonian has degenerate eigenvalues. We will first consider the 

case where the exactly solvable problem has non-degenerate eigenvalues. 

Examples of systems where we employ non-degenerate perturbation theory are 

free particles in weak electric or magnetic field. The formalism is also known as 

Rayleigh Schrödinger perturbation theory 

7.2 OBJECTIVES 

After studying this unit, student should able to: 

 Know about Perturbation Theory

 Discuss about Time Independent Perturbation Theory

 Explain the concept of Variation Method.

 Discuss about Time Dependent Perturbation Theory DCEPHS-108/161



7.3 STATIONARY PERTURBATION THEORY (NON-

DEGENERATE CASE) 

The stationary perturbation theory is concerned with finding the changes 

in the energy levels and eigen functions of a system when a shall disturbance is 

applied. In such cases, the Hamiltonian can be broken up into two parts, one of 

which is large and represents a system for which the Schroedinger equation can 

be solved exactly, while other part is small and can be treated as perturbation 

term. If the potential energy is disturbed by the influence of additional forces, the 

energy levels are shifted and for a weak perturbation, the amount of shift can be 

estimated if the original unperturbed states are known. 

Consider a physical system subjected to a perturbation which shifts the 

energy levels slightly : of course the arrangement remains this same : 

Mathematically the effect of perturbation is to introduce additional terms in the 

Hamiltonian of the unperturbed system (or unchanged system). This additional 

term may be constant or it may be a function of both the space and momentum co-

ordinates. 

In other words, the Hamiltonian H in the Schroedinger equation can be 

written as the sum of two parts ; one of these parts H
0
 corresponds to unperturbed

system and other part H’ corresponds to perturbation effect. Let us write 

Schroedinger wave equation 

………………………………1 

in which Hamiltonian  ̂ represents the operator

Let E be the eigen value and ψ is eigen function of operator  ̂.  ̂ is the sum of

two H
0
 and H

’
 already defined

where H
’
 is small perturbation term.

Let   
  and   

 . be a particular orthonormal eigen function eigen value of 

unperturbed Hamiltonian H
0
, i.e.,

If we consider non-degenerate system that is the system for which there is one 

eigen function corresponding to each eigen value. In the stationary system, the 

Hamiltonian H  does not depend upon time and it is possible to expand H in 

terms of some parameter λ yielding the expression 
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in which λ has been chosen in such a way that equation (1) for λ = 0 reduces to 

the form 

...…………………………2 

It is to be remembered that there is one eigen function ψ and energy level E
0

corresponding to operator H
0
. Equation (2) can be directly solved. This equation

is said to be the ―wave equation of unperturbed system‖ while the terms 

              are called the perturbation terms. 

The unperturbed equation (2) has solutions 

called the unperturbed eigen function and corresponding eigen values are 

The function   
   forma complete orthonormal set, i.e., they satisfy the 

condition 

.……………………………3 

where     is Kronecker delta symbol defined as 

Now let us consider the effect of perturbation. The application of perturbation 

doe not cause large changes : hence the energy values and wave function for the 

perturbed system will be near to those for the unperturbed system. We can 

expand the energy E and the wave function ψ for the perturbed system in terms 

of λ, so 

…………………………4 

…………………………..5 

If the perturbation is small, then terms of the series (4)  and (5) will become 

rapidly smaller i.e., the series will be convergent. 

Now substituting (3), (4) and (5) in equation  (1), we get 

On collecting the coefficients of like power of λ. 
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If this series is properly convergent i.e., equal to zero for all possible values of 

λ, then coefficients of various powers of λ must vanish separately. This equation 

will have successively higher orders of the perturbation. The coefficient of λ
0

gives 

…………………….6a 

The coefficient of λ gives the equation 

or …………….6b 

……………………..6c 

Similarly, the coefficient of λ
3
 yield

………………6d 

But is we limit the total Hamiltonian H upto     , i.e., if we put          , 
then equations (7) will be modified as 

………………………..7 

First order perturbation : Equation (7b) is 

To solve this equation we use expansion theorem. As perturbation is very small, 

the deviations form unperturbed state are small, therefore the first order 

perturbation correction function   
  can be expanded in terms of unperturbed 

functions   
      

      
      since   

  form a normalized orthonormal  set.  

Hence we write 

……………………….8 
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Substituting   
   from (8) in (7b), we get 

i.e. 

Using            , we get 

Multiplying above equation by   
    and integrating over configuration space, 

we get 

Using the condition of orthonormalization of     , 

i.e. 

we get 

Using the notations 

we get 

……………….9 

Evaluation of first order energy   
 : Setting m = k in eqn. (9), we observe that 
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or

This expression gives first order perturbation energy correction. 

Accordingly the ―first order perturbation energy correction for a non-degenerate 

system is just the expectation value of first order perturbed Hamiltonian (H‘) over 

the unperturbed state of the system‖. 

Evaluation of first order correction to wave function: 

Equation (9) may be expressed as 

………………10 

For m   k, equation (10) gives 

or 

Setting ………………..11 

If we retain only first order correction terms, then 

.……………….12 

⸫ Keeping in view equation (8) and (11), we get from (12b), 

……………….13 

where prime (or dash) on summation indicates that the term l = m has been 

omitted from the summation (or it reminds that l   k). 

The value of constant ak may be evaluated by requiring that ψk is normalized, 

i.e.,

Substituting ψk from (13) and retaining only first order terms in λ we get DCEPHS-108/166



or 

This equation indicates that the real part of ak is zero and still it leaves an 

arbitrary choice for the imaginary part. 

Let us take ak = i y. 

The wave function ψk can then be expressed as 

…………………14 

The term containing y merely gives a phase shift in the unperturbed 

function    
    and for normalization, this shift can be put equal to zero, so that 

equation (14) gives. 

The arbitrary λ can be put equal to 1 and it may be included in symbols, 

i.e. λ H‘→ H‘ ; then eigen values and eigen functions of the system upto first 

order perturbation correction terms are expressible as  

Second Order Perturbation : The  second order perturbation equation (7c) is 

Expanding second order wave functions   
   as a linear combination of 

unperturbed  orthonormal wave functions   
    by expansion theorem, i.e., 
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Using unperturbed Schroedinger equation 

Multiplying by   
  and integrating  over all space, we get 

Using orthonormal property of unperturbed wave function ψ
0
‘s, we get

…………………15 

Evaluation of second order energy correction : 

Setting n = k in (15), we get 

…………………16 

………………17 

Considering the second term in equation (17), we note that term is zero  

since ---- for all values of l except for l = k and this term is not included in the 

summation. Then equation (17) gives 
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This equation gives second order energy correction term   
 . The prime on 

summation reminds the omissional of the term l = k in the summation. 

Evaluation of second order correction to wave function : 

For m   n, equation (15) gives. 

This gives 

Setting n = m, we get 

This equation determines all coefficients bm‘s but not bk. The coeffimient  bk is 

determined by the normalization condition for ψk retaining only terms upto 

second order in λ. 

…………18 

The normalization condition for ψk gives 

Substituting ψk from (18); we get 
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As λ
2
   0, therefore, we have

or 

The real part of bk is fixed by this equation but the imaginary part is 

arbitrary. The choice  of imaginary part simply affects the phase of the 

unperturbed wave function and it does not affect the energy of the system. Hence 

the imaginary part of bk may be equal to zero. Thus, we have 

Then 

Thus the complete eigen values and eigen function corrected upto second order 

perturbation terms are given by  

and 
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If we choose arbitrary λ = 1 or include λ in symbols, i.e. λH’ → H’ ; the above 

equations take the conventional form 

7.4 THE VARIATION (RAYLEIGH-RITZ) METHOD 

There are many problems of Quantum Mechanics which cannot be 

conveniently solved either by direct solution of wave equation or by the use of 

perturbation theory. The Helium atom is such a system. No direct method of 

solving the wave-equation has been found for this atom and the application of 

perturbation theory is unsatisfactory because the first order approximation is not 

accurate enough while it is troublesome to calculate the higher order 

approximations. An approximation method, which is conveniently used for such 

system is variation method. The variation method is specially applicable for the 

interest in chemical problems. In special cases variation method can be extended 

to the state of the system other than lowest one. The variation method may also be 

applied to the lowest to the lowest state of the given resultant angular momentum 

and of given electron spin multiplicity. 

The expectation value of energy innormalised state ψ is given by 

…………………………….19 

If we choose the wave function ψ as variable function, then the integral 

(19) is known as variation integral and gives an upper limit to the energy E0 of the 

lowest state of the system. The function ψ is the variation function and its choice 

may be quite arbitrary, but more wisely, it is chosen such that E approaches more  

closely to E0. 

If the variation function ψ equals the function ψ0 of the lowest state, then energy 

E will be equal to E0, i.e., 
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If ψ   ψ0, then by expansion  theorem ψ may be expanded in terms of a 

complete set of orthonormal functions ϕ0, ϕ1, ϕ2 …. obtaining 

………………..20 

Substituting this in equation (1), we get 

But 

we have 

………………………21 

Subtracting ground state E0 from both sides, we get  

As |an|
2 

 is positive and En   E0 (always) for all values of n; therefore right hand

side is positive or zero. Thus we have proved that < E > is always an upper limit 

to E0, i.e. 

This theorem is the basis of the variation method for the calculation of the 

approximate eigen value of the system. If we choose a number of wave functions 

ψ1, ψ2, ψ3, ……. and calculate the values E1, E2, E3, …. corresponding to them, 

then each of these values of E is greater than the energy E0, so that the lowest one DCEPHS-108/172



is the nearest to E0. Often the functions ψ1, ψ2, ψ3, ……. are only distinguished by 

having different values of some parameter λ the process of minimizing E with 

respect to this parameter may then be carried out in order to obtain the best 

approximation to E0, which from the trial function ψ will follow. If the trial 

function ψ is so chosen that it involves the variation parameter which may vary 

considerably, E0 e.g. in the case of helium atom this been applied with great 

success. 

If function ψ is not normalized, equation (19) can be written as 

………………..22 

Evaluating the integral on R.H.S. of equation (19) or (22) with a trial 

function ψ that depends on the number of parameters and varying these 

parameters until the expectation value of the energy is minimum so that 

These parameters are such that the expectation value of the energy takes a value 

Application to the Excited State : The variation method can also be used to 

calculate an upper limit for one of the higher energy level if the trial function is 

orthogonal to the eigen function of all the lower states. Taking the energy levels 

in ascending series E0, E1, E2, …., then if ψ is orthogonal to ϕi for i = 0; 1, ….. , n, 

it is easily seen from (20) that the corresponding coefficient‘s ai are all zero and 

an inequality can be obtained from (21). 

The technique of choosing the trial function for evaluation of energy for 

any excited is that this function must be orthogonal to the eigen functions of all 

the lower states (arranged in ascending order of energy). For nth excited state the 

trial function is chosen of the form 

where  X is an arbitrary function and ϕn‘s (i.e. ϕ0, ϕ1, ϕ2, …. ϕn -1) represent the 

eigen function of lowest n-states. If we expand ψ in the complete of ϕn‘s we find 

that 

Then we have 
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This equation gives an upper limit to the energy of the nth state. 

There are several cases in which such a situation may arise. The simplest 

example is a one-dimensional problem in which independent variable x goes from 

          and the potential function is an even function of x, i.e. 

The wave function belonging to the lowest level of such a system is always an 

even function of x i.e.  

while the ϕ1 odd function, i.e. 

Therefore if we choose an even function for ψ we can only say that En   

E0 ; but if it is an odd function a0 will be zero and the relation E   E1 will hold. 

For such a problem the variation method may be used to obtain the lowest energy 

levels. 

7.5 PHYSICAL APPLICATIONS OF VARIATIN 

METHOD 

Ground State of Helium: We use the variation method with a simple trial 

function to obtain an upper limit for the energy of the ground state of the helium 

atom. The helium atom consists of a nucleus of charge +2e and two electrons each 

of charge ‗-e‘. If we consider the nuc leus at rest the Hamiltonian will be 

where   
  and   

  and Laplacian operators for the first and second electrons at a 

distance r1 and r2 from the nucleus, r12 = |r2 – r1| is the distance between two 

electrons. 

If the interaction energy 
  

   
 between two electrons were not present, the ground 

state eigen function of he would be product of two normalized hydrogen like 

wave functions u100 (r1) u100 (r2) given by 

with 
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We shall use ψ(r1, r2) as a trial function and treat z to be the variation parameter, 

so that it is not necessarily equal to 2. 

The expectation value of Hemitonian H is the sum expectation values of kinetic 

energy and potential energy individually. 

H = K.E. + P.E. 

then 

Now the expectation values of hydrogen like atoms (having one electron) with z 

atomic number in general are 

But helium atom in ground state has two electrons, so will be twice of hydrogen 

like atom i.e. 

and 

Hence DCEPHS-108/175



Electron Interaction Energy : The expectation value of the interaction energy 

between the electrons is  

Substituting, 

we get

Solving the spherically symmetric integral by knowledge of electrostatics as in 

perturbation theory, we get 

⸫ 

=
    

   

(i) By solving we get z=1.69 

7.6 TIME DEPENDENT PERTURBATION THEORY 

It is generally impossible to obtain exact solution of the Schrodinger 

equation when the Hamiltonian depends upon time. Therefore, such an equation is 

solved by time-dependent perturbation theory also called the method of variation 

of constants. 

The total Hamiltonian is written as 

……………23 

where the unperturbed Hamiltonian H0 can be solved for its normalized eigen 

function  ϕn and its eigen value En i.e., we have 

Time dependent perturbation term H‘ is small. Since H‘ depends upon 

time, the stationary solution of the actual Schroedinger equation does not exist. 

The time dependent Schroedinger equation is  DCEPHS-108/176



…………………..24 

The energy eigen states of such a system are stationary; the time enters only in 

the phases according to  

……………25 

where an‘s are time dependent constants and ϕ (r) is time independent. 

This equation represents solution of (24), therefore substituting value of ψ and 

H from (23) and (25) in (24), we get 

Multiplying both sides by ϕk* and integrating over configuration space, we get 

Now using orthonormality condition of ϕ‘s i.e. 

we get 

Because in L.H.S. all terms will be zero excepted kth term due to the properties 

of Keonecker delta    , we have  
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⸫ Time dependent constants an‘s are given by 

……….26 

If we replace in equation (23) H‘ by λH‘ where λ is the parameter, then 

coefficient a‘s can be expressed in parameter λ as follows : 

Substituting the value of an in equation (26) we get 

Comparing coefficients of different power of λ on both sides 

where  S = 0, 1, 2, …… …………….. (27) 

So we can get desired order in the perturbation. 

Zeroth order calculation : from (27),  we have 

Integrating, we obtain 

  
( )
                   

For convenience without loss of generality, we may put DCEPHS-108/178



according as the initial state m is one of a discrete or continuous set. 

Accordingly 

and 

Thus in the sum we have only one term and equation (26) may be expressed as 

….…………….28 

Ist order perturbation. 

Integration of (28), gives 

…………………29 

The constant of integration is taken to be zero in order that   
( )

be zero at 

     (before the perturbation is applied). 

Perturbation constant in time : Let us consider a perturbation that is constant in 

time and that it operates only during the time o to t, i.e. 

……….30 

Substituting (30) in (29), we get 

Thus, to first order, the probability of the system from mth state kth state is 

given by 

………….31 DCEPHS-108/179



Using the relation 

or 

i.e. 

equation (31) takes the form 

Physical Interpretation: In order to interpret equation (32) physically, we plot 
    (      )

   
  as a function of     and find the curve as shown is fig. 

The major maxima of probability curve occur at       i.e. for Ek = Em if we 

substitute       in  
    

    

 

   
   we note that  

 
  
(
  

 
)
 

 if higher powers of (
  

 
) are neglected due to their smaller values 

 
  

 
. 
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7.7 SUMMARY 

Though some simple problems in quantum mechanics can be solved 

analytically, those problems that most accurately represent the physical world 

almost invariably rely on approximation methods. For example, one can 

analytically solve for the eigenvalues and the eigenstates corresponding to the 

Hamiltonian of the finite square well potential, but this is not a very physically 

relevant problem. Instead, consider a system, like a hydrogen atom, and then 

expose this system to some outside force, like an electric field. The electric field 

alters the Hamiltonian of the initial system, which in turn alters the corresponding 

eigenenergies and eigenstates. To illustrate how this works, consider the 

simplified example of a finite square well potential in which there is a slight 

deviation (or perturbation) to the potential somewhere within the well. This 

perturbation alters the Hamiltonian and therefore the corresponding eigenvalues 

and eigenstates from what they were in the simple case of the unperturbed square 

well potential. Perturbation theory allows one to find approximate solutions to the 

perturbed eigenvalue problem by beginning with the known exact solutions of the 

unperturbed problem and then making small corrections to it based on the new 

perturbing potential. The limit of the infinite summation of corrections to the 

unperturbed solution is the exact solution to the perturbed problem. Of course, 

this infinite sum can never be calculated; the summation must be truncated at 

some point--hence the approximate nature of the solutions produced by 

perturbation theory. Luckily, subsequent corrections to the Hamiltonian become 

smaller and smaller, so the series can usually be truncated after only a few 

corrections. 

One must be careful when using perturbation theory that the perturbing 

potential does not change the number of bound states in the system. As will be 

shown, perturbation theory relies on the assumption that the unperturbed states 

form a complete set, so the corrected states may be expressed as linear 

combinations of the unperturbed states. For example, if the perturbing potential 

changes the Hamiltonian of the system such that the number of bound states is 

increased by one, this new state must have come from the unbounded region.  

Degeneracy in quantum mechanics refers to the situation when more than 

one eigenstate corresponds to the same energy. Conversely, non-degeneracy 

occurs when each eigenstate corresponds to a unique energy. 

7.8 TERMINAL QUESTIONS 

1. What do you mean by Perturbation Theory?

2. Discuss the Perturbation theory for non-degenerate levels in first and

second orders.

3. Give the first order Perturbation theory for a non-degenerate case.

4. State and Prove the Variational Principle for Obtaining approximation

energies.
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5. Discuss the first order time independent perturbation theory for non-

degenerate stationary state.

6. Discuss Time Dependent Perturbation theory.

7.9 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 7.3

2. Section 7.3

3. Section 7.3

4. Section 7.4

5. Section 7.3

6. Section 7.6

7.10 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-8 ATOMIC SPECTRA 

Structure 

8.1 Introduction 

8.2 Objectives 

8.3 Lande-g Factor 

8.4 Shift in Energy of Atom 

8.5 Zeeman Effect 

8.6 Paschen Back Effect 

8.7 Zeeman Pattern for Sodium Lines 

8.8 Stark Effect 

8.9 Summary 

8.10 Terminal Questions 

8.11 Answer and Solution of Terminal Question 

8.12 Suggested Readings 

8.1 INTRODUCTION 

We know that in an atom, electrons have discrete and specific energies. 

There are more energy states in an atom than there are electrons. When an 

electron transitions from one energy level to another, it emits light or photon with 

a specific wavelength. In any given set of conditions, the collection of all these 

specific wavelengths is what constitutes the atomic spectrum. Hence, atomic 

spectra are the spectra of atoms. Here, in this short piece of article, we will be 

looking at atomic spectra more in detail along with the Rydberg formula and the 

spectral series of the hydrogen atom. 

What are Atomic Spectra? 

Atomic spectra are defined as 

The spectrum of the electromagnetic radiation emitted or absorbed by an 

electron during transitions between different energy levels within an atom. 

When an electron gets excited from one energy level to another, it either 

emits or absorbs light of a specific wavelength. The collection of all these specific 

wavelengths of the atom in a given set of conditions like pressure, temperature, 

etc is the atomic spectra of atoms. There are three types of atomic spectra and 

they are emission spectra, absorption spectra, and continuous spectra. 
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From the image above, it is evident that the atomic hydrogen emission 

spectrum is divided into a number of spectral lines with wavelengths given by the 

Rydberg formula. The observed spectral lines in the hydrogen emission 

spectrum are due to the atomic transitions between different energy levels. The 

spectral series are important in astronomical spectroscopy. 

Atomic Spectroscopy 

Atomic spectroscopy is the study of the electromagnetic radiation absorbed or 

emitted by atoms. There are three types of atomic spectroscopy and they are: 

 Atomic emission spectroscopy: This involves the transfer of energy from

the ground state to an excited state. The electronic transition can be

explained in atomic emission.

 Atomic absorption spectroscopy: For absorption to take place there should

be identical energy differences between the lower and higher energy

levels. The atomic absorption spectroscopy principle uses the fact that the

free electrons generated in an atomizer can absorb radiation at a specific

frequency. It quantifies the absorption of ground-state atoms in the

gaseous state.

 Atomic fluorescence spectroscopy: This is a combination of atomic

emission and atomic absorption as it involves radiation of both excitation

and de-excitation.

Uses of Atomic Spectroscopy 

 It is used for identifying the spectral lines of materials used in metallurgy.

 It is used in pharmaceutical industries to find the traces of materials used.

 It can be used to study multidimensional elements.

Characteristics of Atomic Spectra 

There are various characteristics of atomic spectra, such as: 

1. The atomic spectra should be a pure line spectrum.

2. It should be an emission band spectrum.

3. It should be an absorption line spectrum.

4. Also, it should be the absorption band spectrum. DCEPHS-108/184
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8.2 OBJECTIVES 

After studying this unit student should able to: 

 Know about Atomic Spectra.

 State and derive Lande -G factor.

 Explain about Zeeman Effect.

 Define Stark Effect

8.3 LANDE-G-FACTOR 

In physics, the Landé g-factor is a particular example of a g-factor, 

namely for an electron with both spin and orbital angular momenta. It is named 

after Alfred Landé, who first described it in 1921.
[1]

In atomic physics, the Landé g-factor is a multiplicative term appearing in 

the expression for the energy levels of an atom in a weak magnetic field. 

The quantum states of electrons in atomic orbitals are normally degenerate in 

energy, with these degenerate states all sharing the same angular momentum. 

When the atom is placed in a weak magnetic field, however, the degeneracy is 

lifted. 

In the weak field limit, we assume that the magnetic dipole moment due to 

the electron in an atom is proportional to the total angular momentum J: 
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8.4 SHIFT IN ENERGY OF ATOM 

In physics, the Lamb shift, named after Willis Lamb, is a difference 

in energy between two energy levels 
2
S1/2 and 

2
P1/2 (in term symbol notation) of

the hydrogen atom which was not predicted by the Dirac equation, according to 

which these states should have the same energy. 

Interaction between vacuum energy fluctuations and the hydrogen electron 

in these different orbitals is the cause of the Lamb shift, as was shown subsequent 

to its discovery. The Lamb shift has since played a significant role through DCEPHS-108/186
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vacuum energy fluctuations in theoretical prediction of Hawking 

radiation from black holes. 

This effect was first measured in 1947 in the Lamb–Retherford 

experiment on the hydrogen microwave spectrum
[1]

 and this measurement

provided the stimulus for renormalization theory to handle the divergences. It was 

the harbinger of modern quantum electrodynamics developed by Julian 

Schwinger, Richard Feynman, Ernst Stueckelberg, Sin-Itiro 

Tomonaga and Freeman Dyson. Lamb won the Nobel Prize in Physics in 1955 for 

his discoveries related to the Lamb shift. 

8.5 ZEEMAN EFFECT 

The atomic energy levels, the transitions between these levels, and the 

associated spectral lines discussed to this point have implicitly assumed that there 

are no magnetic fields influencing the atom. If there are magnetic fields present, 

the atomic energy levels are split into a larger number of levels and the spectral 

lines are also split. This splitting is called the Zeeman Effect. 

Zeeman Spectral Splitting: 
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The pattern and amount of splitting are a signature that a magnetic field is 

present, and of its strength. The splitting is associated with what is called 

the orbital angular momentum quantum number L of the atomic level. This 

quantum number can take non-negative integer values. The number of split levels 

in the magnetic field is 2 * L + 1. The following figure illustrates the Zeeman 

effect. 

Atomic physicists use the abbreviation "s" for a level with L=0, "p" for 

L=1, and "d" for L=2, and so on (the reasons for these designations are of 

historical interest only). It is also common to precede this designation with the 

integer principal quantum number n. Thus, the designation "2p" means a level that 

has n=2 and L=1. 

In the preceding example the lowest level is an "s" level, so it has L=0 and 

2L + 1 = 1, so it isn't split in the magnetic field, while the first excited state has 

L=1 ("p" level), so it is split into 2L + 1 = 3 levels by the magnetic field. Thus, a 

single transition is split into 3 transitions by the magnetic field in this example. 

The Zeeman effect can be interpreted in terms of the precession of the 

orbital angular momentum vector in the magnetic field, similar to the precession 

of the axis of a spinning top in a gravitational field. 
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Polarization of Spectral Lines : 

The lines corresponding to Zeeman splitting also exhibit polarization 

effects. Polarization has to do with the direction in which the electromagnetic 

fields are vibrating. This in turn, can have an effect on whether the spectral light 

can be observed. For example, polarizing sunglasses are often effective in 

suppressing ambiant glare because light reflected from surfaces has a particular 

polarization and polarizing sunglasses are designed to not pass that polarization of 

light. 

One practical example in astronomy of such polarization effects is that in 

the preceding example the middle transition is polarized such that it cannot be 

easily be obverved from directly over a surface perpendicular to the magnetic 

field. As a consequence, when looking directly down on a sunspot (which have 

strong magnetic fields) typically only two of the three transitions shown above 

can be seen and the line is observed to split into two rather than three lines (the 

missing transition could be observed from a different angle where its light would 

not be suppressed by the polarization effect, but it is very weak when observed 

from directly overhead). 

Types of Zeeman Effect 

1. Normal Zeeman Effect- If the net spin of the optically active electron of an

atom is equal to zero, then it exhibits a normal Zeeman effect. The normal

Zeeman effect splits the spectral line of an atom into three major component

lines. The explanation of the normal Zeeman effect is available in both

Classical and quantum mechanics. In other words, when the splitting of a

single spectral line of an atom into three component lines due to the action

of the magnetic field is observed, then such a phenomenon is known as the

normal Zeeman effect. For instance, if you consider the spectrum of a

hydrogen atom, it consists of certain five spectral lines, namely, Lyman,

Balmer, Paschen, Bracket, and Pfound. The Balmar line of the hydrogen

spectrum lies in the visible range and can be observed when the electron

jumps from n=3 to n=2 state. When the Balmar line of hydrogen atoms is

placed under the influence of a magnetic field, it gets split into three

component lines. The middle line is known as the pi component, while the

other two lines, located on either side of the pi component line, denote the

sigma components. The sigma components are equidistant from the pi

component line. The vibration of the electric vector of the pi component of a

spectral line is parallel to the applied magnetic field, while the vibration of

the electric vector of the sigma component is perpendicular to the external

magnetic field.

2. Anomalous Zeeman Effect- The net spin of the optically active electron of

an atom exhibiting anomalous Zeeman effect is not equal to zero. The

anomalous Zeeman effect causes the atomic spectral lines to get split into

more than three component lines. This effect can be explained only with the

help of quantum mechanics. The concept of spinning of electrons was not

known when the Zeeman effect was discovered, which is why there was no

perfect explanation available for the splitting of atomic spectral lines into

multiple component lines at that time. Hence, the new elaborated theory DCEPHS-108/189
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given by Thomas Preston in 1897 was named the anomalous Zeeman effect. 

In other words, the phenomenon of splitting the fine structure of an atom 

into its components by placing it under the influence of an external magnetic 

field is known as the anomalous Zeeman effect. For instance, if you observe 

the fine structure of a sodium atom, it consists of two spectral lines, namely 

D1 and D2 lines. The wavelengths corresponding to both the spectral lines 

are 5896 A° and 5890 A° respectively. When such a fine structure of sodium 

atom is placed under a magnetic field, the D1 spectral line gets split into 

four component lines, two of which are the pi component lines, and the 

other two are sigma component lines. In a similar manner, the D2 spectral 

line splits into six component lines out of which two are pi component lines, 

while four are sigma component lines. In the case of the anomalous Zeeman 

effect, the distance between the component lines may or may not be the 

same, i.e., the component lines are not necessarily equidistant. 

Applications of Zeeman Effect 

1. Zeeman effect helps the physicists to determine the energy levels of an

atom and to study their angular momenta.

2. It also expands the scope of studying atomic nuclei and phenomena like

electron paramagnetic resonance.

3. Zeeman effect is also used in the field of astronomy to study the magnetic

field of the sun and other stars.

4. Zeeman effect finds its prime application in various spectroscopy

techniques such as nuclear magnetic resonance spectroscopy, electron spin

resonance spectroscopy, Mössbauer spectroscopy, etc.

5. Some medical imaging techniques such as magnetic resonance imaging

(MRI) also make use of the Zeeman effect.DCEPHS-108/190
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6. Zeeman effect is also known to exhibit polarization effects. One of the

best real-life examples of which are polarized sunglasses. The purpose of

polarized sunglasses is to suppress ambient glare.

8.6 PASCHEN BACK EFFECT 

In the presence of an external magnetic field, the energy levels of atoms are split. 

This splitting is described well by the Zeeman effect if the splitting is small 

compared to the energy difference between the unperturbed levels, i.e., for 

sufficiently weak magnetic fields. This can be visualized with the help of a vector 

model of total angular momentum. If the magnetic field is large enough, it 

disrupts the coupling between the orbital and spin angular momenta, resulting in a 

different pattern of splitting. This effect is called the Paschen-Back effect. 
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In the weak field case the vector model at left implies that the coupling of the 

orbital angular momentum L to the spin angular momentum S is stronger than 

their coupling to the external field. In this case where spin-orbit coupling is 

dominant, they can be visualized as combining to form a total angular momentum 

J which then precesses about the magnetic field direction. 

In the strong-field case, S and L couple more strongly to the external magnetic 

field than to each other, and can be visualized as independently precessing about 

the external field direction. 

8.7 ZEEMAN PATTERN FOR SODIUM LINES 
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8.8 STARK EFFECT 

The Stark effect is the shifting and splitting of spectral lines of atoms and 

molecules due to the presence of an external electric field. It is the electric-field 

analogue of the Zeeman effect, where a spectral line is split into several 

components due to the presence of the magnetic field. Although initially coined 

for the static case, it is also used in the wider context to describe the effect of 

time-dependent electric fields. In particular, the Stark effect is responsible for 

the pressure broadening (Stark broadening) of spectral lines by charged particles 

in plasmas. For most spectral lines, the Stark effect is either linear (proportional to 

the applied electric field) or quadratic with a high accuracy. 

The Stark effect can be observed both for emission and absorption lines. 

The latter is sometimes called the inverse Stark effect, but this term is no longer 

used in the modern literature. 

The effect is named after the German physicist Johannes Stark, who 

discovered it in 1913. It was independently discovered in the same year by the 

Italian physicist Antonino Lo Surdo, and in Italy it is thus sometimes called 

the Stark–Lo Surdo effect. The discovery of this effect contributed importantly 

to the development of quantum theory and Stark was awarded with the Nobel 

Prize in Physics in the year 1919. 

An electric field pointing from left to right, for example, tends to pull 

nuclei to the right and electrons to the left. In another way of viewing it, if an 

electronic state has its electron disproportionately to the left, its energy is lowered, 

while if it has the electron disproportionately to the right, its energy is raised. 

Other things being equal, the effect of the electric field is greater for 

outer electron shells, because the electron is more distant from the nucleus, so it 

travels farther left and farther right. 

The Stark effect can lead to splitting of degenerate energy levels. For 

example, in the Bohr model, an electron has the same energy whether it is in 

the 2s state or any of the 2p states. However, in an electric field, there will 

be hybrid orbitals (also called quantum superpositions) of the 2s and 2p states 

where the electron tends to be to the left, which will acquire a lower energy, and 

other hybrid orbitals where the electron tends to be to the right, which will acquire DCEPHS-108/194
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a higher energy. Therefore, the formerly degenerate energy levels will split into 

slightly lower and slightly higher energy levels 

The stark effect is the shifting and splitting (reduction of 

degeneracy) of spectral lines in atomic or molecular species under the 

influence of an externally applied electric field. It is sometimes considered 

the electric analog to the reduction of degeneracy in atomic and molecular 

species due to an externally applied magnetic field, the Zeeman effect. I'm 

not fond of that characterization since the two phenomena are quite 

different, but it is a reasonable viewpoint. 

There are actually two types of stark effect: the linear stark effect and the 

quadratic version of the stark effect. As expected, the linear stark effect is linearly 

dependant on the applied electric field while the quadratic stark effect is smaller 

in the value of splitting and varies as the square of the applied electric field. 

The  splitting  of  spectral  lines  in  an  electric field is known as Stark effect. 

The number of stark lines and the total width of the pattern increases with n. 

The  π  components  show  greater  shift  than the Sigma component. 

8.9 SUMMARY 

In this unit we discussed about different atomic spectra in brief. 

This splitting of the p-orbital (and of higher orbitals) within an atom in the 

presence of an external magnetic field is known as Zeeman effect. 

The splitting of atomic spectral lines as a result of an externally applied electric DCEPHS-108/195



field was discovered by Stark, and is called the Stark effect. 

8.10 TERMINAL QUESTIONS 

1. State and prove Lande-g Factor.

2. Explain about Lamb Shift.
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3. Discuss briefly about Zeeman Effect

4. What is Paschen Back Effect?

5. Explain Zeeman Pattern for Sodium Lines.

6. Discuss briefly about Stark Effect.

8.11 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 8.3

2. Section 8.4

3. Section 8.5

4. Section 8.6

5. Section 8.7

6. Section 8.8

8.12 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-9 TYPES OF SPECTROSCOPY 

Structure 

9.1 Introduction 

9.2 Objectives 

9.3 Electronic Spectroscopy 

9.4 Rotational Spectroscopy 

9.5 Vibrational Spectroscopy 

9.6 Selection Rules of Vibrational Spectra 

9.7 Energy and Frequency of Vibrational Spectra 

9.8 Selection Rules of Rotational Spectro  

9.9 Raman Effect  

9.10 Stokes and Anti Stokes Lines 

9.11 Infrared Spectroscopy 

9.12 Fluorescence Spectroscopy 

9.13 Phosphorescence Spectroscopy 

9.14 Summary 

9.15 Terminal Questions 

9.16 Answer and Solution of Terminal Question 

9.17 Suggested Readings 

9.1 INTRODUCTION

 Spectroscopy is the study of the interaction between light and matter

where the absorption and emission of light or other radiation by the matter

are studied and measured.

 Spectroscopy mainly deals with the dispersion of light and other radiations

that is caused by an object which allows the study of various properties of

the object.

 The measurement in spectroscopy is a function of the wavelength of the

radiation being observed.

 Spectroscopy has been widely exploited as it allows the determination of

composition, physical and electronic structure to be determined of various

particles of molecular or atomic levels.
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What is a spectrometer? 

 The spectrometer is a scientific instrument that is used to measure the

variation or differences in various properties caused by an object over a

particular range.

 The property observed by a spectrometer varies with the type of

spectrometer being used.

 NMR spectrometer measures the variation in nuclear resonance

frequencies, mass spectrometer measure the difference in mass to charge

ratio whereas an optical spectrometer measures the variation in the

electromagnetic radiation.

 Based on the measurement of these variations, different properties of

particles can be measured and observed.

What is a spectrophotometer? 

 The spectrophotometer is a particular type of spectrometer that measures

the interaction (absorption, reflection, scattering) of electromagnetic

radiation from a sample or the emission (fluorescence, phosphorescence,

electroluminescence) of electromagnetic radiation by various sample.

 It is also termed electromagnetic spectrometer as it deals with the

measurement of different properties of light and its interaction with

matter.

 These are commonly used in laboratories to measure the concentration of

various samples on the basis of total light absorbed by the sample.

What is a spectroscope? 

 A spectroscope or optical spectrometer is a device that measures different

properties of light over a specific range in the spectrum used for the

analysis of various objects.

 The property measured is mostly the intensity of light, although

polarization of light is also measured under some conditions.

 Spectroscopes are commonly used in studies regarding astronomy and

chemistry for the analysis of various samples.

 Traditionally, prisms were used as spectroscopes, however, nowadays,

diffraction gratings, mobile slit, and photodetectors are used.

 These are mostly used to deduce the chemical composition of objects

based on the radiation produced by different objects.

What is a spectrograph? 

 The spectrograph is a scientific instrument that detects different light and

separates them by their wavelength or frequencies which are recorded by

multi detectors.

 These are mostly used for obtaining and recording the astronomical

spectrum.

 Spectrographs are used for astronomical studies as telescopes.
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 In a spectrograph, the light rays transfer into the spectrograph through the

telescope which is provided with a mirror that functions to makes all light

rays parallel to each other.

 The rays then reach the diffraction grating that disperses the light into

different wavelengths which are passed to the detectors for the analysis of

the individual wavelengths.

 These are highly useful to analyze the incoming light from various

astronomical objects for the analysis of the chemical composition of those

objects.

What are spectra? 

 Spectra, singular spectrum, in optics, are the colors observed when white

light is dispersed through a prism.

 Spectrum refers to the range of various variables associated with light and

other waves.

 In light, the electromagnetic spectrum is the most commonly used. The

electromagnetic spectrum includes the range of frequencies of

electromagnetic radiation that are used to characterize the distribution of

electromagnetic radiation absorbed or emitted by an object.

 Besides, the mass spectrum is also used in spectroscopy based on the ion

abundance as a function of the mass to charge ratio.

 Electron spectrum is another spectrum used in physics that is the number

or intensity of particle beam depending on the particle energy.

9.2 OBJECTIVES 

After studying this unit student should able to: 

 Know about Spectroscopy.

 Different types of Spectroscopies.

 Discuss Raman effect.

 Explain Stokes and Anti stokes lines.

 Know about selection Rules

9.3 ELECTRONIC SPECTRO 

Electron spectroscopy refers to a group formed by techniques based on the 

analysis of the energies of emitted electrons such as photoelectrons and Auger 

electrons. This group includes X-ray photoelectron spectroscopy (XPS), which 

also known as Electron Spectroscopy for Chemical Analysis (ESCA), Electron 

energy loss spectroscopy (EELS), Ultraviolet photoelectron spectroscopy (UPS), 

and Auger electron spectroscopy (AES). These analytical techniques are used to 

identify and determine the elements and their electronic structures from the 

surface of a test sample. Samples can be solids, gases or liquids. DCEPHS-108/203

https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Auger_electrons
https://en.wikipedia.org/wiki/Auger_electrons
https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
https://en.wikipedia.org/wiki/Electron_energy_loss_spectroscopy
https://en.wikipedia.org/wiki/Electron_energy_loss_spectroscopy
https://en.wikipedia.org/wiki/Ultraviolet_photoelectron_spectroscopy
https://en.wikipedia.org/wiki/Auger_electron_spectroscopy


Electronic Spectroscopy: 

Transition energies between electronic states fall in the range of UV/vis photons. 

UV/vis or optical or electronic absorption spectroscopy determines the electronic 

energy levels and, therefore, electronic excited state structure and dynamics. 

Vibrational energy levels and structures of electronic excited states can be 

obtained from the Franck-Condon progression. We will also consider cases where 

the Franck- Condon principle breaks down and vibronic coupling must be taken 

into account. 

ORIGIN OF ELECTRONIC SPECTRA 
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9.4 ROTATIONAL SPECTRO SCOPY 

Rotational spectroscopy is concerned with the measurement of the energies of 

transitions between quantized rotational states of molecules in the gas phase. The 

spectra of polar molecules can be measured 

in absorption or emission by microwave spectroscopy or by far 

infrared spectroscopy. The rotational spectra of non-polar molecules cannot be 

observed by those methods, but can be observed and measured by Raman 

spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational 

spectroscopy to distinguish it from rotational-vibrational spectroscopy where 

changes in rotational energy occur together with changes in vibrational energy, 

and also from ro-vibronic spectroscopy (or just vibronic spectroscopy) where 

rotational, vibrational and electronic energy changes occur simultaneously. 

For rotational spectroscopy, molecules are classified according to 

symmetry into spherical top, linear and symmetric top; analytical expressions can 

be derived for the rotational energy terms of these molecules. Analytical 

expressions can be derived for the fourth category, asymmetric top, for rotational 

levels up to J=3, but higher energy levels need to be determined using numerical 

methods. The rotational energies are derived theoretically by considering the 

molecules to be rigid rotors and then applying extra terms to account 

for centrifugal distortion, fine structure, hyperfine structure and Coriolis coupling. 

Fitting the spectra to the theoretical expressions gives numerical values of the 

angular moments of inertia from which very precise values of molecular bond 

lengths and angles can be derived in favorable cases. In the presence of an 

electrostatic field there is Stark splitting which allows molecular electric dipole 

moments to be determined. 
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9.5 VIBRATIONAL SPECTROSCOPY 

Vibrational spectroscopy is the measurement of the interaction of IR 

radiation with matter through absorption, emission, or reflection. This 

spectroscopic technique is useful in studying and identifying chemical substances 

or functional groups in solid, gas or liquid compounds.  Vibrational spectroscopy 

is governed by vibrational transitions. 

The vibrational transition of a molecule refers to the movement of the 

molecule from one vibrational energy level to another. We can also name it a 

vibronic transition. This type of transition occurs in between different vibrational 

levels of the same electronic state. In order to evaluate the vibrational transition of 

a particular molecule, we should know the dependence of the molecule-fixed 

components of the electric dipole moment on the molecular deformations. 

Generally, Raman spectroscopy is based on vibrational transitions. 

What is the Difference Between Rotational and Vibrational Spectroscopy? 

Rotational spectroscopy and vibrational spectroscopy are governed by electron 

transitions. The key difference between rotational and vibrational spectroscopy is 

that rotational spectroscopy is useful to measure the energy of the transitions that 

take place between quantized rotational states of molecules in the gas phase, 

whereas vibrational spectroscopy is useful in measuring the interaction of IR 

radiation with matter through absorption, emission, or reflection. 
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9.6 SELECTION RULES OF VIBRATIONAL SPECTRA 

9.7 ENERGY AND FREQUENCY OF VIBRATIONAL 

SPECTRA 

VIBRATION FREQUENCY IN     
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9.8 SELECTION RULES OF ROTATIONAL 

SPECTRA 
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9.9 RAMAN EFFECT 

Raman spectroscopy is named after its discoverer ‗Sir C.V. Raman‘, who 

discovered it in 1928. It is a Chemical analysis technique that provides detailed 

information about the molecular structure without causing any physical and 

chemical changes. It studies the vibrational modes along with translational and 

rotational modes of the molecule. In 1930, ‗Sir C.V. Raman‘ received the Nobel 

prize in Physics for his work on the scattering of light and the discovery of the 

Raman effect. 

Raman scattering produces scattered photons with a different frequency 

depending on the source and the vibrational and rotational properties of the 

scattered molecules. Raman spectroscopy works on the principle of Raman 

scattering. It is used to study materials by chemists and physicists. In the olden 

days, to record spectra, a mercury lamp and photographic plates were used; in 

modern days, lasers are used. Sir CV Raman was awarded the Nobel Prize for 

Physics in the year 1930. C V Raman, along with his student K S Krishnan, 

discovered Raman‘s scattering. 

What is Raman Scattering? 

Raman scattering is defined as the scattering of photons by excited 

molecules at higher energy levels. It is also known as the Raman effect. The 

photons are inelastically scattered, which means that the kinetic energy of an 

incident particle is either lost or increased and is composed of Stokes and anti-

Stokes portions. 

Inelastic scattering of photons is similar to the concept of an inelastic 

collision, which states that the total microscopic kinetic energy is not conserved. 

In an elastic collision, the transfer of kinetic energy occurs, but the scattering will 

still be inelastic like in Compton scattering. 
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Types of Raman Spectroscopy 

Following are the types: 

1. Resonance Raman Spectroscopy (RRS)

2. Surface-enhanced Raman Spectroscopy (SERS)

3. Micro-Raman Spectroscopy

4. Non-linear Raman Spectroscopic Techniques

Applications of Raman Effect 

 Raman amplification: this is based on the Raman scattering where the

lower frequency photons are pumped to a high-frequency regime with a

surplus amount of energy. This method is applicable to

telecommunications.

 Supercontinuum generation: In optics, supercontinuum is formed using the

Raman spectra, which results in smooth spectra as the initial spectra are

built spontaneously which is later amplified to higher energy.

 Raman spectroscopy works on the basis of Raman effect and finds

applications in various fields like in nanotechnology to understand the

structure of nanowires, in biology and medicine where the low-frequency

DNAs and proteins are studied and chemistry to understand the structure

of molecules and their bonds.

 Raman scattering is used in remote sensing and planetary exploration.

 Raman scattering is used to sense the minerals in Mars.

9.10 STOKES AND ANTI STOKES LINES 

The lines having frequencies lower than the incident frequency is called 

stokes lines and the lines having frequencies higher than the incident frequency 

are called Anti stokes lines. 

What are Stokes Lines? 

Stokes lines represent radiation of particular wavelengths present in the 

line spectra associated with fluorescence (emission of light from a substance that 

has absorbed energy previously) and the Raman effect (change in the wavelength 

of light that happens when a light beam is deflected by molecules). This was DCEPHS-108/211



named after the 19
th

-century British physicist Sir George Gabriel Stokes. These

stokes lines are typically longer wavelengths than the wavelength of the exciting 

radiation responsible for fluorescence or the Raman effect. 

Stokes lines can be described as scattered photons that are reduced in 

energy relative to the incident photons that can interact with the molecule. 

Moreover, the reduction of energy of the scattered photons is usually proportional 

to the energy of vibrational levels of the molecule. 

What are Anti-Stokes Lines? 

Anti-stokes lines represent the radiation of particular wavelengths present 

in fluorescence and in Raman spectra when the atoms or molecules of the material 

exist in an excited state. Therefore, it is the opposite of stokes lines. Here, the 

radiated line energy gives the sum of the pre-excitation energy and the energy 

absorbed from the exciting radiation. Therefore, anti-stoke lines typically have a 

shorter wavelength compared to the light that produces them. Moreover, the 

difference between the frequency of the emitted light and absorbed light can be 

named the Stokes shift. 

Raman spectroscopy works on the principle of Raman scattering. When a 

monochromatic radiation incident on the sample, the radiation gets reflected, 

absorbed, or scattered. The scattered light photons have a different frequency 

from the incident photon because of the change in the vibrational and rotational 

properties of the molecules, which results in the change of wavelength of the 

incident and the scattered light. This change in the frequencies of the incident 

photon and the scattered photon is known as the Raman shift. When the scattered 

photon has less energy, hence a longer wavelength than the incident photon, it is 

called Stokes scattering. When the scattered photon has more energy, hence a 

shorter wavelength than the incident photon, it is called anti-stokes scattering. 
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What is the Difference Between Stokes and Anti-Stokes Lines? 

The terms Stokes lines and anti-stokes lines are important in spectroscopic 

detections. The key difference between stokes and anti-stokes lines is that stokes 

lines have a longer wavelength than the wavelength of exciting radiation that is 

responsible for the fluorescence or Raman effect, whereas Anti-stokes lines occur 

in fluorescence or Raman spectra when atoms or molecules are already in an 

excited state. While stokes lines are not in the excited state, anti-stokes lines are 

already in the excited state. DCEPHS-108/213



9.11 INFRARED SPECROSCOPY 

Infrared spectroscopy, also termed vibrational spectroscopy, is a technique 

that utilizes the interaction between infrared and the sample. 

An IR spectrum is essentially a graph plotted with the infrared light 

absorbed on the Y-axis against. frequency or wavelength on the X-axis. An 

illustration highlighting the different regions that light can be classified into is 

given below. 

IR Spectroscopy detects frequencies of infrared light that are absorbed by 

a molecule. Molecules tend to absorb these specific frequencies of light since they 

correspond to the frequency of the vibration of bonds in the molecule. 

The energy required to excite the bonds belonging to a molecule, and to 

make them vibrate with more amplitude, occurs in the Infrared region. A bond 

will only interact with the electromagnetic infrared radiation, however, if it is 

polar. 
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The presence of separate areas of partial positive and negative charge in a 

molecule allows the electric field component of the electromagnetic wave to 

excite the vibrational energy of the molecule. 

The change in the vibrational energy leads to another corresponding 

change in the dipole moment of the given molecule. The intensity of the 

absorption depends on the polarity of the bond. Symmetrical non-polar bonds in 

N≡N and O=O do not absorb radiation, as they cannot interact with an electric 

field. 

Regions of the Infrared spectrum 

Most of the bands that indicate what functional group is present are found 

in the region from 4000 cm
-1

 to 1300 cm
-1

. Their bands can be identified and used 

to determine the functional group of an unknown compound. 

Bands that are unique to each molecule, similar to a fingerprint, are found 

in the fingerprint region, from 1300 cm
-1

 to 400 cm
-1

. These bands are only used 

to compare the spectra of one compound to another. 

IR Spectroscopy Instrumentation 

The instrumentation of infrared spectroscopy is illustrated below. First, a 

beam of IR light from the source is split into two and passed through the reference 

and the sample respectively. 

Now, both of these beams are reflected to pass through a splitter and then through 

a detector. Finally, the required reading is printed out after the processor 

deciphers the data passed through the detector. 

Graph of the IR spectrum 

Given below is a sample of typical Infrared Absorption Frequencies. 
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Thus, IR spectroscopy involves the collection of absorption information and its 

analysis in the form of a spectrum. 

Principle of IR spectroscopy/ Vibrational spectroscopy 

 The wavelength utilized for the analysis of organic compounds ranges

from 2,500 to 16,000 nm, with a corresponding frequency range from

1.9×10
13

 to 1.2×10
14

 Hz.

 These rays don‘t have enough energy to excite the electrons, but they do,

however, cause the vibrational excitation of covalently bonded atoms or

groups.

 The vibration observed in the atoms is characteristic of these atoms and

thus helps in the detection of the molecules.

 The infrared spectrum is the fundamental measurement obtained in

infrared spectroscopy.

 The spectrum is a plot of measured infrared intensity versus wavelength

(or frequency) of light.

 IR Spectroscopy measures the vibrations of atoms, and based on this; it is

possible to determine the functional groups.

Steps of IR spectroscopy/ Vibrational spectroscopy 
 The IR spectrometer is turned on and allowed to warm up for 30 minutes.

 The unknown sample is taken, and its appearance is recorded.

 The background spectrum is collected to remove the spectrum obtained

from natural reasons.

 A small amount of sample is placed under the probe by using a metal

spatula.

 The probe is set in place by twisting it.

 The IR spectrum of the unknown sample is obtained. The process is

repeated, if necessary, to get a good quality spectrum.

 The absorption frequencies that indicate the functional groups present are

recorded.

 The obtained spectrum is analyzed to determine the probable identification

of the unknown sample.

Uses of IR spectroscopy/ Vibrational spectroscopy 
 Infrared spectroscopy has been widely used for the characterization of

proteins and the analysis of various solid, liquid, and gaseous samples.DCEPHS-108/216



 IR spectroscopy can be used for the detection of functional groups which

helps in the identification of molecules and their composition.

 Applications of IR spectroscopic techniques allow identifying molecular

changes due to bodily changes, understanding of the molecular mechanism

of various diseases, and identifying specific spectral biomarkers that can

be used in diagnosis.

9.12 FLUORESCENCE SPECTRO SCOPY 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy that 

utilizes the fluorescence produced by objects in a sample which is not necessarily 

in the visible range of the spectrum. 

Principle of Fluorescence spectroscopy 

 The principle of fluorescence spectroscopy is similar to emission

spectroscopy, where the transition of electrons from one state to another

causes the emission spectrum.

 Fluorescence is an emission phenomenon where a transition from a higher

to a lower energy state is accompanied by radiation.

 Only molecules in their excited forms can emit fluorescence; thus, they

have to be brought into a higher energy state prior to the emission

phenomenon.

 The emitted radiation appears as a band spectrum because there are many

closely related wavelength values dependent on the vibrational and

rotational energy levels attained.

 The fluorescence spectrum of a molecule is independent of the wavelength

of the exciting radiation and has a mirror image relationship with the

absorption spectrum.

 The probability of the transition from the electronic excited to the ground

state is proportional to the intensity of the emitted light.

 The fluorescence properties of a molecule are determined by features of

the molecule itself and thus help in the determination of the composition

of the molecules.

Steps of Fluorescence spectroscopy 
 Two samples of known and unknown concentrations are taken in a

transport vessel, also termed as a cuvette.

 The vessels are then placed, one after the other, in the spectrofluorometers

that is provided with light source and detectors.

 The spectrofluorometers is operated that passes light of a particular

wavelength through the sample.

 The photosensitive detectors present in the spectrophotometer detect the

light passing through the sample, which is then converted into digital

values.

 A graph of the fluorescence measured against the concentration of the

sample is plotted, which can then be used for the determination of the

unknown concentration of the sample.

Uses of Fluorescence spectroscopy 
 Fluorescence spectroscopy is used in biomedical, medical, and chemical

research for the analysis of organic compounds. DCEPHS-108/217



 This has also been used to differentiating malignant tumors from benign

tumors.

 Atomic fluorescence spectroscopy can also be used for the detection of

metals in various environmental samples like air, water, and soil.

 In analytical chemistry, fluorescence detectors are used along with HPLC.

The probability by which excitation and emission events occur at different 

wavelengths (depicted by arrow width) define the fluorescence spectra of a 

molecule. 

9.13 PHOSPHORESCENCE SPECTRO SCOPY 

What is Phosphorescence? 

When molecules absorb light and go to the excited state, they have two 

options. They can either release energy and come back to the ground state 

immediately or undergo other non-radiative processes. If the excited molecule 

undergoes a non-radiative process, it emits some energy and come to a triplet state 

where the energy is somewhat lesser than the energy of the exited state, but it is 

higher than the ground state energy. Molecules can stay a bit longer in this less 

energy triplet state. 

Unlike fluorescence, after excitation of a molecule, the excited electron 

first undergoes an intersystem crossing into a triplet state.  In some cases an 

electron in a singlet excited state is transformed to a triplet excited state (the 

initial spin of the electron in its ground state is flipped in the opposite direction) in 

which its spin is no longer paired with the ground state. This means that the DCEPHS-108/218
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release of light from this excited state will now require a ―spin-forbidden‖ 

transition from this triplet state to the singlet state. Emission between a triplet 

excited state and a singlet ground state—or between any two energy levels that 

differ in their respective spin states–is called phosphorescence. This type of 

emission process is much less likely to occur and is slower than the singlet-to-

singlet transitions that led to light emission in fluorescence. Because the average 

lifetime for phosphorescence ranges from 10
−4

 – 10
4
 s (in the range of

microseconds to minutes), phosphorescence may continue for some time after 

removing the excitation source. A spectroscopic technique that utilizes 

phosphorescence to characterize or measure chemicals is 

called phosphorescence spectroscopy. 

As the measurement of phosphorescence requires low-temperature 

condition, which is usually maintained by liquid nitrogen, it is much more 

difficult to measure than fluorescence. The reason for the requirement of low 

temperature is that the lifetime of an excited triplet state (typically, 10
−4

 – 1 s or

longer) is much greater than an excited singlet state (10
−9

 – 10
−8

 s). This longer

lifetime means the probability of energy loss through collisions and heat loss is 

also much greater in phosphorescence than in fluorescence. Maintaining low 

temperatures for this measurement will minimize the molecular motion around the 

analyte and make its collisions with the solvent or other sample components less 

likely to occur. 

During intersystem crossing into excited triplet state (T1) the spin of the 

involved electron is flipped. Triplet states are metastable and relaxation by 

phosphorescence is delayed. The chance of alternative relaxation by non-

radiative events defines the quantum yield for both fluorescence and 

phosphorescence DCEPHS-108/219
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What is the Difference Between Fluorescence and Phosphorescence? 

Fluorescence is the emission of light by a substance that has absorbed light 

or other electromagnetic radiation while phosphorescence refers to the light 

emitted by a substance without combustion or perceptible heat. When we supply 

light to a sample of molecules, we immediately see the fluorescence. 

Fluorescence stops as soon as we take away the light source. But 

phosphorescence tends to stay little longer even after we remove the irradiating 

light source. 

DCEPHS-108/220



9.14 SUMMARY 

In this unit we studied about spectroscopy and its different types. 

Stokes lines and anti-stokes lines are also described in this unit.  The key 

difference between stokes and anti-stokes lines is that stokes lines have a longer 

wavelength than the wavelength of exciting radiation that is responsible for the 

fluorescence or Raman effect, whereas Anti-stokes lines occur in fluorescence or 

Raman spectra when atoms or molecules are already in an excited state. 
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9.15 TERMINAL QUESTIONS 

1. Define Rotational Spectroscopy.

2. Explain Raman Effect

3. Discuss Stokes and Anti Stokes Lines
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4. Explain Infrared Spectroscopy

5. What is Fluorescence Spectroscopy?

9.16 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. Section 9.4

2. Section 9.9

3. Section 9.10

4. Section 9.11

5. Section 9.12

9.17 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths.

2. Quantum Mechanics: Noureddine Zettili.

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh

4. Quantum Mechanics: Chatwal and Anand
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UNIT-10 TECGNIQUES OF SPECTRO 

SCOPY 

Structure 

10.1 Introduction 

10.2 Objectives 

10.3 Electronic Spectro 

10.3.1 Electronic Spectra 

10.4 Electronic Transitions 

10.5 Frank-Condon Principles 

10.6 Singlet and Triplet States 

10.7 Tine Structure and Hyper Fine Structure 

10.8 NMR 

10.9 ESR 

10.10 Summary 

10.11 Terminal Questions 

10.12 Answer and Solution of Terminal Question 

10.13 Suggested Readings 

10.1 INTRODUCTION

Spectroscopic techniques employ light to interact with matter and thus 

probe certain features of a sample to learn about its consistency or structure. Light 

is electromagnetic radiation, a phenomenon exhibiting different energies, and 

dependent on that energy, different molecular features can be probed. The basic 

principles of interaction of electromagnetic radiation with matter are treated in 

this chapter. There is no obvious logical dividing point to split the applications of 

electromagnetic radiation into parts treated separately. The justification for the 

split presented in this text is purely pragmatic and based on ‗common practice‘. 

The applications considered in this chapter use visible or UV light to probe 

consistency and conformational structure of biological molecules. Usually, these 

methods are the first analytical procedures used by a biochemical scientist. 

An understanding of the properties of electromagnetic radiation and its 

interaction with matter leads to an appreciation of the variety of types of spectra 

and, consequently, different spectroscopic techniques and their applications to the 

solution of biological problems. 

The spectrum of electromagnetic radiation organized by increasing 

wavelength, and thus decreasing energy, from left to right. Also annotated are the 

types of radiation and the various interactions with matter and the resulting 

spectroscopic applications, as well as the interdependent parameters of frequency 

and wavenumber. Electromagnetic phenomena are explained in terms of quantum 

mechanics. The photon is the elementary particle responsible for electromagnetic DCEPHS-108/225



phenomena. It carries the electromagnetic radiation and has properties of a wave, 

as well as of a particle, albeit having a mass of zero. As a particle, it interacts with 

matter by transferring its energy E: 

In this unit we will discuss about spectroscopy, Study of the absorption 

and emission of light and other radiation by matter, as related to the dependence 

of these processes on the wavelength of the radiation. Usually, spectroscopy is 

devoted to identifying elements and compounds and elucidating atomic and 

molecular structure by measuring the radiant energy absorbed or emitted by a 

substance at characteristic wavelengths of the electromagnetic spectrum on 

excitation by an external energy source. However, spectroscopy also includes the 

study of particles (e.g., electrons, ions) that have been sorted or otherwise 

differentiated into a spectrum as a function of some property (such as energy or 

mass). The instruments used are spectrometers. Experiments involve a light 

source, a disperser to form the spectrum, detectors (visual, photoelectric, 

radiometric, or photographic) for observing or recording its details, devices for 

measuring wavelengths and intensities, and interpretation of the measured 

quantities to identify chemicals or give clues to the structure of atoms and 

molecules. Specialized techniques include Raman spectroscopy 

(see Chandrasekhara Venkata Raman), nuclear magnetic resonance (NMR), 

nuclear quadrupole resonance (NQR), microwave and gamma-ray spectroscopy, 

and electron spin resonance (ESR).  
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10.2 OBJECTIVES 

After studying this unit, student should able to: 

 Know about Electronic Spectra and Electronic Transitions

 Explain Frank-Condon Principles.

 Discuss about NMR.

 Define ESR. DCEPHS-108/227



10.3 WHAT IS SPECTROSCOPY? 

Spectroscopy is the investigation and measurement of spectra produced by 

matter interacting with or emitting electromagnetic radiation. Originally, 

spectroscopy was defined as the study of the interaction between radiation and 

matter as a function of wavelength. Now, spectroscopy is defined as any 

measurement of a quantity as a function of wavelength or frequency. During a 

spectroscopy experiment, electromagnetic radiation of a specified wavelength 

range passes from a source through a sample containing compounds of interest, 

resulting in absorption or emission. During absorption, the sample absorbs energy 

from the light source. During emission, the sample emits light of a different 

wavelength than the source‘s wavelength. 

In absorption spectroscopy, the sample‘s compounds are excited by the 

electromagnetic radiation provided by a light source. Their molecules absorb 

energy from the electromagnetic radiation, become excited, and jump from a low 

energy ground state to a higher energy state of excitation. A detector, usually a 

photodiode, on the opposite side of the sample records the sample‘s absorption of 

wavelengths, and determines the extent of their absorption. The spectrum of a 

sample‘s absorbed wavelengths is known as its absorption spectrum, and the 

quantity of light absorbed by a sample is its absorbance. 

Each molecule within a sample will only absorb wavelengths with 

energies corresponding to the energy difference of the present transition. In 

simpler terms, this means that a molecule that jumps from ground state 1 to 

excited state 2, with an energy difference of ΔE, will allow other wavelengths to 

pass through until it can absorb radiation from a wavelength that corresponds to 

ΔE. Light that passes through to the photodiode without any absorption is called 

Stray Radiant Energy, or stray light. Absorption that occurs due to an energy 

difference between the two states is called an absorption line, and a collection of 

absorption lines creates an absorption spectra. The frequency of each absorption 

line in an absorption spectra tells us about the sample‘s molecular structure, and 

can be influenced by factors such as stray light, environmental temperature, and 

electromagnetic fields. 

Types of Spectroscopies 

Since spectroscopy deals with the estimation of interaction between 

electromagnetic radiation and samples; hence, either absorption, emission, or the 

scattering process is observed, classifying spectroscopy into three types. 
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Absorption spectroscopy 

Absorption spectroscopy is a spectroscopic method of absorbing 

electromagnetic radiation when the sample and the radiation display interaction. 

The wavelength or frequency is used as a function. The spectrum obtained from 

absorption is called an absorption spectrum. 

The examples of absorption spectroscopy are as follows: 

 Atomic Absorption (AA) Spectroscopy.

 Ultraviolet (UV)/ Visible Spectroscopy.

 Infrared (IR) Spectroscopy.

 Nuclear Magnetic Resonance (NMR) spectroscopy.

Emission spectroscopy 

Emission spectroscopy is a spectroscopic method in which 

atoms/molecules emit photons while undergoing an electronic transition, that is, 

from a lower to a higher energy state. The photon‘s wavelength can be captured 

and examined to discover the sample‘s composition. The emission and absorption 

spectra differ from one another as the emission spectra consist of colored lines 

while the absorption spectra consist of dark lines. 

The examples of emission spectroscopy are as follows: 

 Atomic Emission (AE) spectroscopy.

 Flame photometry.

 Fluorimetry.

Scattering spectroscopy 

Scattering spectroscopy is a spectroscopic method by which a molecule‘s 

vibrational and rotational states are attained when light scattering occurs, leading 

to the excitement of the atoms. It rectifies the groups in the sample, which further 

helps to detect its composition. This process is the fastest compared to absorption 

and emission processes. 

The example of scattering spectroscopy is as follows: 

 Raman Spectroscopy.
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What is Spectroscopy Used For? 

Spectroscopy is used in physical and analytical chemistry to detect, 

determine, or quantify the molecular and/or structural composition of a sample. 

Each type of molecule and atom will reflect, absorb, or emit electromagnetic 

radiation in its own characteristic way. Spectroscopy uses these characteristics to 

deduce and analyze the composition of a sample. 

Examples of Spectroscopy Applications 

 Determining the atomic structure of a sample

 Determining the metabolic structure of a muscle

 Monitoring dissolved oxygen content in freshwater and marine ecosystems

 Studying spectral emission lines of distant galaxies

 Altering the structure of drugs to improve effectiveness

 Characterization of proteins

 Space exploration

 Respiratory gas analysis in hospitals

10.3.1 ELECTRONIC SPECTRA 

Electron spectroscopy is an analytical technique to study the electronic 

structure and its dynamics in atoms and molecules. In general, an excitation 

source such as x-rays, electrons or synchrotron radiation will eject an electron 

from an inner-shell orbital of an atom. 
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Electronic spectra of molecules 

When the molecules possess sufficiently large amount of energy, the electronic 

states of the molecule can be excited. This gives rise to the most general type of 

transitions, rotation-vibration-electronic transitions. These produce photons of 

frequency 

It is the outermost electrons of the atoms composing the molecule that are 

involved. These transitions are energetic enough that they produce electronic 

bands in the visible and ultraviolet regions. All molecules exhibit electronic 

spectra, since a dipole moment change always accompanies a change in the 

electronic configuration of a molecule. 

Scattering of light 

The phenomenon in which the particles of the medium deviate light in a lateral 

direction is called scattering of light. The particles of the medium absorb light and 

then emit light in all directions. Types of scattering  

1. Coherent scattering or elastic scattering

2. Incoherent scattering or inelastic scattering

Coherent scattering - The phenomenon of scattering in which the scattered light 

has the same wavelength as that of incident light is called coherent scattering. In 

coherent scattering, the incident light does not suffer any change in its energy. 

Hence it is also called as elastic scattering. Eg. Rayleigh scattering and Tyndall 

scattering.  DCEPHS-108/233



Rayleigh scattering -  When the dimensions of the scattering particles is very 

small compared to the wavelength of the incident radiation, the scattering is called 

Raleigh scattering. According to Raleigh, the intensity of the scattered radiation is 

inversely proportional to the fourth power of the wavelength of the incident light. 

i.e,

Let a be the size of the particle scattering light and  the wavelength of the 

incident light. If a << , Rayleigh‘s scattering takes place and light of shorter 

wavelengths get scattered to greater extent.  

If a >> , Tyndall scattering takes place and light of all wavelengths get scattered 

nearly equal  

Blue colour of sky: 

The blue colour of the sky is due to Rayleigh scattering of sunlight by the air 

molecules in the atmosphere. Sunlight contains all colours, from violet to red. 

According to Raleigh, the intensity of the scattered radiation is inversely 

proportional to the fourth power of the wavelength of the incident light. Thus, in 

the daytime when sun light enters earth‘s atmosphere, violet and blue colours are 

the most scattered since wavelength is small. Red and orange are the least 

scattered since wavelength is large. When we look at the sky far away from the 

sun, the sky appears blue because we receive the most scattered colours, namely, 

violet and blue. 

Note : 

1. Near the sun it appears white because we get direct light from the sun.

2. The blue colour of the sea is due to reflection of light from the sky. Raman

proved that the blue colour of sea water is due to the scattering of incident

sunlight by water molecules.

3. In the absence of the atmosphere, the sky would appear black.

Red colour at sunrise and sunset - The orange red colour of the sky at sunrise 

and at sunset is due to Rayleigh scattering of light by air molecules in the 

atmosphere. According to Raleigh, the intensity of the scattered radiation is 

inversely proportional to the fourth power of the wavelength of the incident light. 

At sunrise and sunset, the light from the sun travels a longer distance through the 

earth‘s atmosphere before reaching the observer. Therefore, much of the blue is 

taken away by scattering. The light that reaches the earth ‗s surface is orange red 

colour. Thus, sky appears orange red colour.  

Incoherent scattering: The phenomenon of scattering in which the scattered light 

has different wavelength compared to that of incident light is called incoherent 

scattering. In incoherent scattering, the incident light suffers a change in its 

energy. Hence it is also called as inelastic scattering. Eg. Raman scattering and 

Compton scattering.  
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Raman effect - The phenomenon in which there is a change in wavelength of the 

incident light due to scattering by particles of material medium is called Raman 

effect. Raman in the year 1928 observed that when a beam of monochromatic 

light is passed through organic liquids such as benzene, toluene etc, the scattered 

light was found to consist of lines corresponding to the higher wavelengths as 

well as lower wavelengths in addition to the incident wavelength. These lines are 

called Raman lines. When photons are scattered from an atom or molecule, most 

photons are elastically scattered (Rayleigh scattering), such that the scattered 

photons have the same energy (frequency and wavelength) as the incident 

photons. A small fraction of the scattered photons (approximately 1 in 10 million) 

are scattered by an excitation, with the scattered photons having a frequency 

different from, and usually lower than, that of the incident photons. In a gas, 

Raman scattering can occur with a change in energy of a molecule due to a 

transition to another (usually higher) energy level. The spectrum of the scattered 

light is called Raman spectrum as shown 

Experimental study of Raman Effect - The apparatus used for the study of 

Raman effect in liquids was first developed by Wood. It consists of a glass tube 

AB containing the pure liquid under study. The tube is closed at one end by an 

optically plane glass plate Wand at the other end end it is drawn into a horn Hand 

blackened on the outside.Light from a Mercury arc S is passed through a filter 

Fwhich allows only monochromatic radiation of   = 4358 Å to pass through it. 

The tube is surrounded by a water jacket J through which water is circulated to 

prevent overheating of the liquid. A semi cylindrical aluminium reflector R is 

used to increase the intensity of illumination. The scattered light coming out of W 

is condensed on the slit of a spectrograph. A short focus camera is used to 

photograph the spectrum. The spectrum appears as shown 
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Features of Raman lines 

1. The spectrum consists of intense central line of wavelength 0 same as

that of incident light called Raleigh line.

2. It consists of a number of low intensity lines of linger wavelength called

stokes lines.

3. It also consists of very faint lines of lower wavelengths called anti stokes

line.

4. The Raman lines are almost symmetrically placed wavelengths both above

and below the incident light wavelengths.

5. Stokes lines were found to be more intense than the anti-stokes lines.

6. Raman lines are polarized.

7. The change in wavelength are characteristic of the scattering material and

does not depend on the wavelength of incident light.

Quantum theory of Raman Effect 

Raman effect is due to the interaction between a light photon and a 

molecule of the scatterer. Quantum theory is applied to explain Raman effect. 

Suppose a photon of frequency 𝜈1 is incident on a molecule and there is a 

collision between the two. Let m be the mass of the molecule, 𝜐1 and 𝜐2 its 

velocities before and after impact,  1 and  2 the intrinsic energies of the 

molecule before and after collision. Let 𝜈2 be the frequency of the scattered 

photon. Applying the principle of conservation of energy,  

Assuming that the kinetic energy of the molecule is unaltered during the process, 

the above equation becomes 

Three cases arise 

1. When the incident photons undergo elastic scattering with the molecules

of the medium, the scattered photons have the same energy as that of the

incident photons. This results in unmodified line of same wavelength as

that of the incident light. Here

2. Some photons are absorbed by molecules in the lower energy state. When

the photons are reemitted, their energy will be less than that of the incident

photons. This gives rise to lines having longer wavelength or shorter

frequency called stokes lines. Here  2 >  1. The molecule gains energy

from the photon and jumps to higher state so that  2 −  1 is positive.DCEPHS-108/236



Thus equation ( ) 

Thus, the frequency of the scattered photon is 

. 

The collision is inelastic. 

3. Some photons are absorbed by molecules which are already in the excited

state. When the photons are reemitted, their energy will be more than that

of the incident photons. This gives rise to lines having shorter wavelength

or higher frequency called anti stokes lines.

The molecule loses energy to the photon and jumps to a lower energy state 

so that  2 −  1 is negative from equation (), we have  

Applications of Raman effect 

1. Raman effect is used in the study of molecular structure.

2. The geometrical configuration of a molecule of the substance can be

determined using Raman spectra and infrared spectra of a substance,
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3. The study of Raman spectra gives information about the nature of the

chemical bond existing between the atoms.

4. Raman spectrum gives information about the structure of water (H2O)

molecule which is nonlinear or bent having angle of bend as 120

5. Raman effect gives information about the binding forces in crystals.

10.4 ELECTRONIC TRANSITIONS 

Electronic transitions occur in atoms and molecules due to the 

absorption or emission of electromagnetic radiation (typically UV or visible). 

The energy change associated with a transition is related to the frequency of the 

electromagnetic wave by Planck's equation,  

E = h𝜈 

The term ―electronic‖ connotes electron, and the term ―transition‖ implies 

transformation. In a molecule, the electrons move from a lower to a higher energy 

state due to excitation. The two energy states, the ground state and the excited 

state are the lowest and the highest energy states, respectively. An energy change 

is observed with this transition, which depicts the various data related to the 

molecule. 

What are the types of electronic transitions? 

The three kinds of electrons responsible for electronic transitions are: 

 Sigma (σ) electrons in saturated molecules

 Pi (π) electrons in unsaturated molecules

 Nonbonding (n) electrons in nonbonded elements

These electrons absorb ultraviolet radiation, which causes excitation. The

movement from the ground state to a higher energy state is categorized into four 

types of electronic transitions. They are as follows: 

σ→σ* transition 

In this transition, the electrons in a molecule move from a bonding (σ) orbital to 

its comparable anti-bonding (σ*) orbital. This transition takes place due to the 

electromagnetic radiation that gets absorbed. The highest quantity of energy is 

needed to undergo this transition. It can be observed in the methane molecule due 

to the presence of only C-H bonds. 

n→σ* transition 

In this transition, the electrons from a nonbonding orbital (n) move to an anti-

bonding (σ*) orbital. The lowest quantity of energy is needed to undergo this 

transition. Halogens and elements like sulfur, oxygen, and nitrogen display this 

transition. 
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n→π* transition 

In this transition, the electrons from a non-bonding orbital (n) move to an anti-

bonding (π*) orbital. The lowest quantity of energy is needed to undergo this 

transition. Halogens and elements like sulfur, oxygen, or nitrogen display this 

transition. 

π→π* transition 

In this transition, the electrons move from a bonding orbital (π) to an anti-bonding 

(π*). Its energy requirement ranges in between the energies required for (n→π*) 

and (n→σ*). Organic compounds like the aromatic ones, alkenes, alkynes, 

nitriles, and carbonyl compounds display this transition. 

Some transitions between energy levels are radiative, and some are nonradiative. 

The photon absorption involved between two energy levels is a radiative 

transition, whereas a transition involving no photons between two energy levels is 

a nonradiative transition. 

.
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The following selection rules are predicted for electronic transition in electron 

absorption spectroscopy.  

1. Simultaneous excitation of more than one electron is forbidden.

2. Spin selection rule: Transition between states of different spin

multiplicity (S.M. = 2S +1) is forbidden. That is, electronic transition in

which the spin of an electron changes are forbidden. The selection rule is

S=0 i.e., only states of same multiplicity combines with each other.

3. Laporte rule: In a molecule which has centre of symmetry, transition

between two grade or two ungraded state (i.e. g  g or u  u ) are

Laporte forbidden.

The allowed transition is g  u and u  g. That for allowed electronic

transition there must be change in parity. The allowed transition gives intense 

band where forbidden transition results in weak band. Thus, the conclusion may DCEPHS-108/242



be drawn as table 1 
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10.5 FRANK-CONDON PRINCIPLES 

STATEMENT OF FRANK-CONDON PRINCIPLES 

The Franck-Condon principle is a rule in spectroscopy and quantum 

chemistry or Physics  that explains the intensity of vibronic transitions. Vibronic 

transitions are the simultaneous changes in electronic and vibrational energy 

levels of a molecule due to the absorption or emission of a photon of the 

appropriate energy. The principle states that during an electronic transition, a 

change from one vibrational energy level to another will be more likely to happen 

if the two vibrational wave functions overlap more significantly. 

The Franck-Condon principle has a well-established semiclassical 

interpretation based on the original contributions of James Franck [Franck DCEPHS-108/245
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1927]. Electronic transitions are essentially instantaneous compared with the time 

scale of nuclear motions, therefore if the molecule is to move to a new vibrational 

level during the electronic transition, this new vibrational level must be 

instantaneously compatible with the nuclear positions and momenta of the 

vibrational level of the molecule in the originating electronic state. In the 

semiclassical picture of vibrations (oscillations) of a simple harmonic oscillator, 

the necessary conditions can occur at the turning points, where the momentum is 

zero. 

Classically, the Franck–Condon principle is the approximation that an 

electronic transition is most likely to occur without changes in the positions of the 

nuclei in the molecular entity and its environment. The resulting state is called a 

Franck–Condon state, and the transition involved, a vertical transition. The 

quantum mechanical formulation of this principle is that the intensity of a 

vibronic transition is proportional to the square of the overlap integral between the 

vibrational wavefunctions of the two states that are involved in the transition. 

What is Franck Condon Principle? 

The electronic transitions occur so quickly that a vibrating molecule does not 

change its internuclear distance appreciably during the transition. 

It can be explained as below- 

Consider a potential energy diagram where E0 is the energy of the ground 

state and E1 of the excited electronic state. The two curves show the variation in 

electronic energy with internuclear separation in the two states. The vibrational 

energy levels are shown as horizontal lines. 

If a molecule absorbs quantum in the ground state E0, then its transition to excited 

state must occur along a straight line. 

This is because nuclei are heavy and sluggish as compared to electrons. 

An electron undergoes a transition in about 10-16 sec, which is very short as 

compared to the period of vibration of atomic nuclei (i.e., 10-13 sec). So, the DCEPHS-108/246
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internuclear distance in the excited electronic state remains the same as it was in 

the initial ground state before the time of electronic transition. So the transition is 

shown by a vertical line. An upward arrow is drawn for absorption of energy and 

a downward arrow for emission of energy. 
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In general transitions to upper levels depend upon the difference between 

equilibrium separations in the lower and upper states. 

(3) Third Possibility- In this case, the upper excited state has a slightly larger 

internuclear separation than the ground state. The resulting transitions and 

spectrum are similar as above. 

(4) Fourth Possibility- In this case, the upper excited electronic state has 

considerably greater separation than that in the lower electronic state. In 

such a case transition will occur to a higher vibrational level (V‘) of the 

upper electronic state (E1) from the lower electronic state (E0). DCEPHS-108/248
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10.6 SINGLET AND TRIPLET STATES 

The terms singlet and triplet states are discussed under quantum 
mechanics. We can describe these terms regarding the spin of the system, i.e., 

atom. In quantum mechanics, spin is not a mechanical rotation. It is a concept that 

characterizes a particle‘s angular momentum. 

The electronic states of most organic molecules can be divided into singlet states 

and triplet states. 

Singlet state: All electrons in the molecule are spin paired. It is called a singlet 

because there is only one possible orientation in space. 

Triplet state: One set of electron spins is unpaired. It is called a triplet because 

there are three possible orientations in space with respect to the axis 

What is Singlet State? 

A singlet state is a system in which all the electrons are paired. The net 

angular momentum of the particles in this type of system is zero. Therefore, we 

can say that the overall spin quantum number, s is zero (s=0). Furthermore, if we 

take the spectrum of this system, it shows one spectral line, and thus, got the name 

―singlet state‖. Moreover, almost all the molecules that we know exist in the 

singlet state, but molecular oxygen is an exception. 

As an example, the simplest possible bound particle pair having singlet 

state is positronium, which has an electron and positron. These two particles are 

bound by their opposite electrical charge. Moreover, the paired electrons of a 

system having a singlet state have parallel spin orientations. DCEPHS-108/250
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What is Triplet State? 

Triplet state of a system describes that the system has two unpaired electrons. The 

net angular momentum of the particles in this type of system is 1. Therefore, the 

spin quantum number is 1. Moreover, this allows three values of the angular 

momentum as -1, 0 and +1. Hence, the spectral lines that we obtain for this type 

of system split into three lines, and thus, got the name triplet state. 

 Difference Between Singlet and Triplet State 

A singlet state refers to a system in which all the electrons are paired. 

Whereas, the triplet state of a system describes that the system has two unpaired 

electrons. The key difference between singlet and triplet state is that singlet state 

shows only one spectral line whereas triplet state shows the threefold splitting of 

spectral lines. 

Moreover, a further difference between singlet and triplet state is that the 

spin quantum number of a singlet state is s=0 while it is s=1 for a triplet state. 

Besides, almost all the molecules that we know exist in singlet state except for the 

molecular oxygen. Whereas, molecular oxygen occurs at triplet state. 
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10.7 FINE STRUCTURE AND HYPER FINE 

STRUCTURE 

Fine structure describes the splitting of the spectral lines of atoms due to 

electron spin and relativistic corrections to the non-relativistic Schrödinger 

equation. Hyperfine structure, with energy shifts typically orders of magnitudes 

smaller than those of a fine-structure shift, results from the interactions of the 

nucleus (or nuclei, in molecules) with internally generated electric and magnetic 

fields. 

Spin–orbit coupling is an interaction of a particle's spin with its motion. 

This interaction leading to shifts in an electron's atomic energy levels, due to 

electromagnetic interaction between the electron's spin and the magnetic field 

generated by the electron's orbit around the nucleus. This is detectable as a 

splitting of spectral lines, which can be thought of as a Zeeman effect due to the 

internal field. 

The hyperfine structure is caused by interaction between magnetic field 

(from electron movement) and nuclear spin 

Fine structure: 

1 Spin orbit interaction 

2 Relativistic kinetic energy correction 

Hyperfine structure: 

1 The lamb Shift 

2 Nuclear Moments 
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Fine structure, in spectroscopy, the splitting of the main spectral lines of 

an atom into two or more components, each representing a slightly different 

wavelength. Fine structure is produced when an atom emits light in making the 

transition from one energy state to another. The split lines, which are called the 

fine structure of the main lines, arise from the interaction of the orbital motion of 

an electron with the quantum mechanical ―spin‖ of that electron. An electron can 

be thought of as an electrically charged spinning top, and hence it behaves as a 

tiny bar magnet. The spinning electron interacts with the magnetic field produced 

by the electron‘s rotation about the atomic nucleus to generate the fine structure. 

The amount of splitting is characterized by a dimensionless constant called 

the fine-structure constant. This constant is given by the equation α 

= ke
2
/hc, where k is Coulomb‘s constant, e is the charge of the

electron, h is Planck‘s constant, and c is the speed of light. The value of the 

constant α is 7.29735254 × 10
−3

, which is nearly equal to 1/137. 

In the atoms of alkali metals such as sodium and potassium, there are two 

components of fine structure (called doublets), while in atoms of alkaline 

earths there are three components (triplets). This arises because the atoms of 

alkali metals have only one electron outside a closed core, or shell, of electrons, 

while the atoms of alkaline earths have two such electrons. Doublet separation for 

corresponding lines increases with atomic number; thus, with lithium (atomic 

number 3), a doublet may not be resolved by an ordinary spectroscope, whereas 

with rubidium (atomic number 37), a doublet may be widely separated. 
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Hyperfine structure (HFS), in spectroscopy, the splitting of a spectral line into a 

number of components. The splitting is caused by nuclear effects and cannot be 

observed in an ordinary spectroscope without the aid of an optical device called 

an interferometer. In fine structure (q.v.), line splitting is the result of energy 

changes produced by electron spin–orbit coupling (i.e., interaction of forces from 

orbital and spin motion of electrons); but in hyperfine structure, line splitting is 

attributed to the fact that in addition to electron spin in an atom, the atomic 

nucleus itself spins about its own axis. Energy states of the atom will be split into 

levels corresponding to slightly different energies. Each of these energy levels 

may be assigned a quantum number, and they are then called quantized levels. 

Thus, when the atoms of an element radiate energy, transitions are made between 

these quantized energy levels, giving rise to hyperfine structure. 

The spin quantum number is zero for nuclei of even atomic number and 

even mass number, and therefore no HFS is found in their spectral lines. The 

spectra of other nuclei do exhibit hyperfine structure. By observing HFS, it is 

possible to calculate nuclear spin. 

A similar effect of line splitting is caused by mass differences (isotopes) of atoms 

in an element and is called isotope structure, or isotope shift. These spectral lines 

are sometimes referred to as hyperfine structure but may be observed in an 

element with spin-zero isotopes (even atomic and mass numbers). Isotope 

structure is seldom observed without true HFS accompanying it. DCEPHS-108/254
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10.8 NMR 

NMR Spectroscopy is abbreviated as Nuclear Magnetic Resonance spectroscopy. 

Nuclear magnetic resonance (NMR) spectroscopy is the study of 

molecules by recording the interaction of radiofrequency (Rf) electromagnetic 

radiations with the nuclei of molecules placed in a strong magnetic field. 

Zeeman first observed the strange behaviour of certain nuclei when 

subjected to a strong magnetic field at the end of the nineteenth century, but the 

practical use of the so-called “Zeeman effect” was only made in the 1950s when 

NMR spectrometers became commercially available. 

It is a research technique that exploits the magnetic properties of certain 

atomic nuclei. The NMR spectroscopy determines the physical and chemical 

properties of atoms or molecules. 

Basis of NMR Spectroscopy 

Nuclear Magnetic Resonance (NMR) was first detected experimentally at 

the end of 1945, nearly concurrently with the work groups Felix Bloch, Stanford 

University and Edward Purcell, Harvard University. The first NMR spectrum was 

first published in the same issue of the Physical Review in January 1946. Bloch 

and Purcell were jointly awarded the 1952 Nobel Prize in Physics for their 

research of Nuclear Magnetic Resonance Spectroscopy. 

Nuclear magnetic resonance (NMR) spectroscopy is a crucial analytical 

tool for organic chemists. The research in the organic lab has been significantly 

improved with the aid of the NMR. Not only can it provide information on the 

structure of the molecule, it can also determine the content and purity of the 

sample. Proton (1H) NMR is one of the most widely used NMR methods by 

organic chemists. The protons present in the molecule will behave differently 

depending on the surrounding chemical environment, making it possible to 

elucidate their structure. DCEPHS-108/256
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NMR Spectroscopy Principle 

Many nuclei have spin, and all nuclei are electrically charged, according 

to the NMR principle. An energy transfer from the base energy to a higher energy 

level is achievable when an external magnetic field is supplied. 

 All nuclei are electrically charged, and many have spin.

 Transfer of energy is possible from base energy to higher energy levels

when an external magnetic field is applied.

 The transfer of energy occurs at a wavelength that coincides with the radio

frequency.

 Also, energy is emitted at the same frequency when the spin comes back

to its base level.

 Therefore, by measuring the signal which matches this transfer the

processing of the NMR spectrum for the concerned nucleus is yield.

NMR Spectroscopy Working 

 Place the sample in a magnetic field.

 Excite the nuclei sample into nuclear magnetic resonance with the help of

radio waves to produce NMR signals.

 These NMR signals are detected with sensitive radio receivers.

 The resonance frequency of an atom in a molecule is changed by the

intramolecular magnetic field surrounding it.

 This gives details of a molecule‘s individual functional groups and its

electronic structure.

 Nuclear magnetic resonance spectroscopy is a conclusive method of

identifying monomolecular organic compounds.

 This method provides details of the reaction state, structure, chemical

environment and dynamics of a molecule.

Chemical Shift in NMR Spectroscopy 

A spinning charge generates a magnetic field that results in a magnetic 

moment proportional to the spin. In the presence of an external magnetic field, 

two spin states exist; one spin up and one spin down, where one aligns with the 

magnetic field and the other opposes it. 

Chemical shift is characterized as the difference between the resonant 

frequency of the spinning protons and the signal of the reference molecule. 

Nuclear magnetic resonance chemical change is one of the most important 

properties usable for molecular structure determination. There are also different 

nuclei that can be detected by NMR spectroscopy, 1H (proton), 13C (carbon 13), 

15N (nitrogen 15), 19F (fluorine 19), among many more. 1H and 13C are the 

most widely used. The definition of 1H as it is very descriptive of the 

spectroscopy of the NMR. Both the nuts have a good charge and are constantly DCEPHS-108/257
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revolving like a cloud. Through mechanics, we learn that a charge in motion 

produces a magnetic field. In NMR, when we reach the radio frequency (Rf) 

radiation nucleus, it causes the nucleus and its magnetic field to turn (or it causes 

the nuclear magnet to pulse, thus the term NMR). 

NMR Spectroscopy Instrumentation 

This instrument consists of nine major parts. They are discussed below: 

 Sample holder – It is a glass tube which is 8.5 cm long and 0.3 cm in

diameter.

 Magnetic coils – Magnetic coil generates magnetic field whenever current

flows through it

 Permanent magnet – It helps in providing a homogenous magnetic field

at 60 – 100 MHZ

 Sweep generator – Modifies the strength of the magnetic field which is

already applied.

 Radiofrequency transmitter – It produces a powerful but short pulse of

the radio waves.

 Radiofrequency – It helps in detecting receiver radio frequencies.

 RF detector – It helps in determining unabsorbed radio frequencies.

 Recorder – It records the NMR signals which are received by the RF

detector.

 Readout system – A computer that records the data.

NMR Spectroscopy Techniques 

1. Resonant Frequency -It refers to the energy of the absorption, and the

intensity of the signal that is proportional to the strength of the magnetic

field. NMR active nuclei absorb electromagnetic radiation at a frequency

characteristic of the isotope when placed in a magnetic field.

2. Acquisition of Spectra - Upon excitation of the sample with a

radiofrequency pulse, a nuclear magnetic resonance response is obtained.

It is a very weak signal and requires sensitive radio receivers to pick up.

NMR Spectroscopy Applications 

1. NMR spectroscopy is a Spectroscopy technique used by chemists and

biochemists to investigate the properties of organic molecules, although it

is applicable to any kind of sample that contains nuclei possessing spin.

2. For example, the NMR can quantitatively analyze mixtures containing

known compounds. NMR can either be used to match against spectral

libraries or to infer the basic structure directly for unknown compounds.

3. Once the basic structure is known, NMR can be used to determine

molecular conformation in solutions as well as in studying physical

properties at the molecular level such as conformational exchange, phase

changes, solubility, and diffusion.DCEPHS-108/258
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10.9 ESR 

ESR Full Form: Electron spin resonance (ESR) is a spectroscopic technique that 

is used to detect the transitions induced by electromagnetic radiation between the 

different energy levels of electron spins in the presence of а static magnetic field. 

 Also called EPR Spectroscopy or Electron Paramagnetic Resonance

Spectroscopy.

 Non-destructive technique

 Extensively used in transition metal complexes

 Deviated geometries in crystals

The full form of ESR is Electron Spin Resonance Spectroscopy. It is a 

branch of absorption spectroscopy in which radiation having a frequency in the 

microwave region is absorbed by the paramagnetic substances to induce a 

transition between the magnetic energy levels of electrons with unpaired spins. 

Mаgnetiс energy sрlitting is dоne by аррlying а stаtiс mаgnetiс field. Absorption 

spectroscopies operate at microwave frequency 10
4
-10

6 
MHz.

PRINCIPLE OF ESR 

ESR spectroscopy is based upon the absorption of microwave radiation by an 

unpaired electron when exposed to a strong magnetic field.  

 The electronic energy levels of the atom or molecules will split into

different levels. Such excitation is called magnetic resonance absorption.

 With an ESR instrument, a static/magnetic field and microwave are used

to observe the behavior of unpaired electrons in the material being studied.

 In principle, ESR finds paramagnetic centers (e.g., radicals) that may or

may not be radiation-induced. DCEPHS-108/259



 A solid external magnetic field generates a difference between the energy

levels of the electron spins, ms = +½, and ms = –½, which results in

resonance absorption of an applied microwave energy figure below.

Fig. Showing a Strong external magnetic field generates a difference between 

the energy levels of the electron spins, ms = +½, and ms = –½ 

 The study of the behavior of electrons in a condition of the sample.

 ESR is used to observe and measure the absorption of microwave energy

by unpaired electrons in a magnetic field as an electron's energy levels.

Working Principle of ESR 

Electron Spin Resonance Spectroscopy working principle is explained in the 

points given below. For more understanding, check the points given here. 

 The gap between the energy states is widened until it matches the energy

of the microwaves. This is done by increasing an external magnetic

field.DCEPHS-108/260



 At this роint, the unраired eleсtrоns саn mоve between their twо sрin

stаtes.

 Absorption lines are detected when the separation energy level is equal to

the energy of the incident light.

 It is this absorption that is monitored and соnverted into а spectrum.

ESR is Shown by the Following: 

 An atom has an odd number of electrons.

 Ions have partly filled inner electron shells.

 Free radicals have unpaired electrons etc.

APPLICATIONS OF ESR SPECTROSCOPY 

STUDY OF FREE RADICALS 

 With the help of this, we can study free radicals. Even in low

concentrations, we can check free radicals using ESR SPECTROSCOPY.

 The structure of organic and inorganic free radicals can be identified.

 We can also investigate molecules in the triplet state.

 The spin label gives information about the polarity of its environment.

 With the help of ESR Spectroscopy, several types of irradiated food can

be identified.

 It can detect paramagnetic ions and free radicals in a variety of materials.

STRUCTURAL DETERMINATION 

 In сertаin саses, ESR provides information аbоut the shарe оf the rаdiсаls.

10.10 SUMMARY 

In this unit we discussed about different techniques Spectroscopy. 
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Spectroscopy is the science of studying materials by measuring their response 

to different frequencies of radiation. It should be noted that while a few forms of 

spectroscopy use other forms of radiative energy, such as acoustic or matter waves, 

spectroscopy is virtually always understood to use electromagnetic radiation to probe 

matter. 

Spectroscopy is a fundamental tool of scientific study, with applications 

ranging from materials characterization to astronomy and medicine. Spectroscopy 

techniques are commonly categorized according to the wavelength region used, the 

nature of the interaction involved, or the type of material studied.  

10.11 TERMINAL QUESTIONS 

Q1: Which type of electronic transition do aromatic compounds undergo? 

(a) (σ→σ*) 

(b) (n→σ*) 

(c) (n→π*) 

(d) (π→π*) 

Q2: On which of the following factors does absorbance depend? 

(a) Molar concentration of the sample 

(b) Path length 

(c) Molar absorption coefficient 

(d) All of the above 

Q3: Nuclear Magnetic Resonance (NMR) spectroscopy is an example of which 

type of spectroscopy? 

(a) Absorption spectroscopy 

(b) Emission spectroscopy 

(c) Scattering spectroscopy 

(d) None of the above 

Q4: Which type of spectra display colored lines? 

(a) Absorption spectra 

(b) Emission spectra 

(c) Scattering spectra 

(d) All of the above 
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Q5: What is the unit of absorbance? 

(a) Liters per mole per cm (L/mol.cm) 

(b) Moles per liter (mol/L) 

(c) Unitless 

(d) Centimeters (cm) 

10.12 ANSWER AND SOLUTION OF TERMINAL 

QUESTION 

1. d

2. d

3. a

4. b

5. c
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