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ELEMENTARY ANALYSIS

BLOCK-1

Language of Mathematics, Relation and Mapping

This First unit is most basic unit of this block as it introduces the concept of
statements, statement variables. the five elementary operations and associated
logical connectives. We introduce the well formed statement formulae, tautologies
and equivalence of formulae. The law of duality is explained and established. It has
got tremendous application in almost every field, social, economy, engineering,
technology etc. In computer science concept of logic is a major tool to learn to
understand it more clearly. Mathematics has a language of its own like most other
sciences, which is very precise and communicates just what is required-neither
more nor less. Language basically consists of words and their combinations called
‘expression’ or ‘sentences’. However in Mathematics any expression or statement
will not be called a ‘sentence’.

In the Second unit of this block we introduce relations which have got a
tremendous number of applications in almost every field, viz. sociology,
economics, engineering, technology etc. Order relation has got tremendous
application in almost every field, social, economy, engineering, technology etc. In
computer science concept of order relation is a major tool to learn to understand it
more clearly.

IN the Third unit of this block we know the notion of a map which is one of the
most fundamental concepts in mathematics and is used knowingly or unknowingly
to our day to day life at every moment. Computer Science is an area where a
number of applications of maps can be seen. We thought it would be a good idea to
acquaint with some basic results about maps. Perhaps, we are already familiar with
these results. But, a quick look through the pages will help us in refreshing our
memory, and we will be ready to tackle the course. We will find a number of
examples of bijective maps, direct and inverse image, Inverse map, composition of
maps and various types of maps.



ELEMENTARY ANALYSIS
Block--01
Unit-01
Language of Mathematics
Structure
1.1. Introduction
1.2. Objectives
1.3. Statements
1.4. Logical connectives
1.5. Truth functional rules
1.6. Elementary Logical Operations
(1) Conjunction
(2) Disjunction
(3) Negation
(4) Implication
(5) Double implication
1.7. Tautology
1.8. Tautological equivalence
1.9. Law of Duality
1.10. Sentential form

1.11.Quantifiers

(1) Universal quantifier
(2) Existential quantifier

1.12. Negation of a quantifier



1.13. Summary

1.14. Terminal Questions

1.1. Introduction

This is most basic unit of this block as it introduces the concept of statements,
statements, statement variables and the five elementary operations and associated
logical connectives. We introduce the well formed statement formulae, tautologies
and equivalence of formulae. The law of duality is explained and established. It has
got tremendous application in almost every field, social, economy, engineering,
technology etc. In computer science concept of logic is a major tool to learn to
understand it more clearly. Mathematics has a language of its own like most other
sciences, which is very precise and communicates just what is required-neither
more nor less. Language basically consists of words and their combinations called
‘expression’ or ‘sentences’. However in Mathematics any expression or statement
will not be called a ‘sentence’.

1.2. Objectives
After reading this unit we should be able to
1. Understand the concept of statement and statement variables

2. Use elementary operations like Conjunction, Disjunction, Negation,
Implication, Double implication

3. Understand statement formulae, tautologies to equivalence of formulae
4. Use law of duality and functionally complete set of connectives

Logic is a field of study that deals with the method of reasoning Logic provides

rules by which we can determine whether a given argument or reasoning is valid
(correct) or not. Logical reasoning is used in Mathematics to prove theorems. In
computer science logic is used to verify the correctness of programs.

1.3. Statements

Definitions: A statement (or proposition) is a sentence which is either true or false
but not both.

Examplel.1. Which of the following are statements?

(@) Indira Gandhi was one of the Prime Ministers of India.
(b) 8 is greater than 10.



(c)2+4=6

(d)Blood is green.

(e) It is raining

() The sun will come out tomorrow.
Solution:

(a) is a statement because it is true.
(b) is a statement because it is false.
(c) is a statement because it is true.
(d) is a statement because it is false.
(e)is a statement because the sentence “ it is raining” is either true of false
but not both a given time.
(f) is a statement since it is either true or false but not both. Although, we
would have to wait until tomorrow whether it is true or false.
If a sentence is a question (interrogative type) or a command or not free of
ambiguity then the sentence cannot be answered as true or false and therefore such
sentences are not statements.

Examplel.2: The following are not statements.

(@) Is the number 6 a prime?

(b)2-x=6

(c) What are you studying?

(d) Open the door.

(e) This statement is false.
Explanation:

(a) is not a statement because it is a question
(b) is not a statement because it is true or false depending on the value of x.

(c) is not a statement because it is a question.

(d)is a command and therefore it is not a statement.

(e) is not a statement because it is not possible to assign a definite true or
false value to it. If we assume that sentence (e) is true then it says that
statement (e) is false. On the other hand if we assume that sentence (e) is
false then it implies that statement (e) is true. Hence it is not a statement.

1.4. Logical connectives:

There are some key words and phrases which are used to form new sentences from
given sentences, as for example ‘and’ ‘or’, ‘not’, ‘if.... then ...., if and only if’ etc.
They are called sentential or logical connectives. A Sentence with some logical

connective is called a ‘Compound sentence’ and a sentence without logical



connective is called an ‘atomic sentence. As for example: A triangle is a plane
figure. Water is cold, are atomic sentences. But the followings are the compound
sentences.

(a) A triangle is a plane figure and is bounded by three straight lines.
(b) A real number is rational or irrational.

(c) 2013 is not a leap year.

(d)If a triangle is equilateral then it’s all angles are equal.

(e) If a triangle is isosceles then two of its angles are equal.

A part of a compound sentence that itself is a sentence is called a component of the
sentence — thus the components of the sentence are also sentence.

1.5. Truth functional rules or truth tables:

The rules by which the truth or falsity of a compound sentence is determined from
the truth or falsity of its components are called truth functional rules. The table
giving the truth or falsity of the compound sentence depending upon the truth or
falsity of its components is called its truth table. We shall say that T or F according
as the sentence is true or false respectively.

1.6. Elementary Logical Operations:

The formation of compound sentence from given sentences by using the logical
connectives are called elementary logical operations which are five in number in
accordance with the five logical connectives used. They are: (1) Conjunction (2)
Disjunction (3) Negation (4) Implication (5) Double implication.

Note: When we form compound sentence by using any of the five logical
connectives, it is not necessary that the components of compound sentence should
be related. As for example consider the compound sentence ‘Ram is a player and
the earth revolves about the Sun. Here the components of the compound sentence
are not related in the usual sense of conversation.

1.Conjunction: A sentence obtained by conjoining two sentences P,Q by using the
connective ‘and’ is called the conjunction of the two sentences and will be denoted
by P A Q (read as P and Q).



Example: Let P= U.S.A. sent Apollo 11 to the moon, Q = Russia sent Luna 15 to
the moon. Then PAQ= U.S.A. sent Apollo 11 and Russia sent Luna 15 to the
moon.

Truth functional rule for conjunction: PAQ is true if and only if both the
sentences P, Q are true. How this truth functional rule is obtained is a matter of
sophisticated logical reasoning and is beyond the purview of the present
discussion.

Truth-Table for Conjunction: The following table gives the truth-values of PAQ
for all possible truth values of P and Q:

P Q PAQ
T T T
T | F| F
F | T | F
F F F

2. Disjunction: A sentence obtained by joining two sentences P, Q, by the
connective ‘or’ is called the disjunction of the two sentences and will be denoted
by P v Q (read as P or Q). For example: P = Ram is intelligent, Q = Ram is hard
working, P vQ = Ram is intelligent or hard working.

Truth functional rule for disjunction: P v Q is true if at least one of P, Q is true,
that is, P v Q is false only when both P and Q are false. Truth Table for
disjunction:

P Q PvQ
T T T
T F T
F T T
F | F | F




3. Negation: A sentence which has a truth value opposite to that of a sentence P is
called the negation of P and is denoted by — P or ~ P. Negation of an atomic
sentence 1s obtained by using the connective ‘not’ at proper place.

As for example: If P=The water is cold, Then — P =The water is not cold.
Negation of PAQ is (- P) v (- Q), that is, - (PAQ) =(- P) v (- Q). Thus the
negation of ‘Ram is poor and honest’ is ‘Ram is not poor or not honest. This can be
verified by the following Truth Table:

P | Q|PAQ| -P -Q ~(PvQ) -Pv-Q
T|T| T | F | F F F
T F F F T T T
F | T F T F T T
F | F | F T T T T

The above table shows that the truth-values of PAQ (as given in the third column)
are exactly opposite to those of (— P) v(- Q) as given in the last column.

Note: that truth value of ~(PvQ) and -Pv-Q are same.
The negation of PvQ is (- P)A (- Q), thatis, —(Pv Q)=(-P) A (- Q)

The negation of ‘Mohan or Sohan has failed’ is ‘neither Mohan nor Sohan has
failed’ that is, ‘Mohan has not failed and Sohan has not failed’.

4. Implication or a conditional sentence: A conditional sentence obtained by
using the connective ‘If ....then..." is called an implication. As for example: P =
you read, Q = you will pass, By using the connective ‘if ......... then’ we get ‘If
you read then you will pass’ which can be denoted by ‘If P then Q. It is also
written as P=Q (read as P implies Q). In the implication P=Q, P is called the
hypothesis or antecedent and Q is called the Summary or consequent.

The Truth functional rule for implication:



P=Q is false if P is true and Q is false;” otherwise it is true. The Negation of P=Q
IS PA(— Q) that is,

~(P=Q)=PA(-Q). This is proved by the following Truth Table:

P | Q |P=Q] -Q | ~(P=Q) pA -Q
T[T T F F F
T|F| F | T T T
F|T| T | F F F
FIF| T | T F F

Truth values of P=Q as given in third column are exactly opposite to those of

PA(- Q) as given in the last column or truth values of ~(P=Q)and pA - Qare same.
Thus the Negation of the sentence ‘If you read then you will pass’ is “You read and
you will not pass. Note that ‘If you do not read then you will not pass’ is not the
negation of the given sentence.

5. Double Implication:

A bi-conditional sentence obtained by using the connective ‘If and only if’(briefly
written as iff) between two sentences P, Q is called a double implication and is
written a ‘P iff Q’. It is also written as P<Q (read as P implies and implied by Q).
Thus we find that P&Q is precisely the conjunction of P=0Q, Q=P, thatis P&Q =
(P=Q) A(Q=P). The double implication P& Q is true only when both P and Q are
true or both are false. This is proved by the following table:

P Q |P=Q | Q=P | P=Qi.. (P=Q)A(Q=P)
T T T T T
T F F T F
F | T T F F
F F T T T




Note: If P=the Sun revolves about the earth, Q= The year consists of 400 days.
Then ‘P iff Q’ or P& Q = the Sun revolves about the earth iff the year consists of
400 days — which is true though P and Q are both false. The Negation of P&Q is
(PA - Q) v (QA - P). Thus the Negation of the sentence ‘One is good teacher iff
one 1s a good scholar’ is ‘One is a good teacher and a bad scholar or one is a good
scholar and a bad teacher’.

Note: -(P=Q) = —(P = QAQ=P)= (p1-Q)v(QA1-P)
Example 1: Construct the truth table for ~pvq. We must consider all possible

combination of truth values of p and g. All possible combinations of the truth
values of the statements p and q are listed in the first two columns of the table. The
truth values of ~p are entered in the third column and the truth values of ~p v g are
entered in the fourth column.

P q ~p ~pvq
T T F T
T F F F
F T T T
F F T T

Truth table for ~pvq
Example 2: Construct the truth table for pA~p.

Since the statement pA~p has only one distinct atomic statement. We have to
consider 2 possible combinations of truth values. The truth table for pA~p is given
below.

p ~p pA~p
T F F
T F

Truth table for p A~p

Example3: Construct the truth-table for ~(pA~Q).



In the first two columns, we list all the variable and the combinations of their
truth values. In the third column, we write truth values for ~ g. The truth values of
p A~ q are listed in the next column. Finally we obtain the truth values of the
proposition ~( p A~ q). Thus we have the following truth table:

p q ~q pA~q | ~(pA~Q)
T T F F T
T F T T F
F T F F T
F F T F T

Example4: Construct the truth-table for (p v q) A (pv r).

Here, we have three atomic statements. Therefore we shall require eight rows to
list all possible combinations of the truth values of statements p, g and r. Rest of
the procedure will be the same as above. We shall proceed in steps and in the final
column we will have the truth values of the given statements.

p q r Pv g pvr | (pvaa(p
V)

T T T T T T

T T F T T T

T F T T T T

T F F T T T

F T T T T T

F T F T F F

F F T F T F

F F F F F F

Truth table for (pv gQ)A (p v 1)

Example 5: Prove that the truth values of the following pairs of sentences are the

Same.




@PA(QvR)and (P AQ) v (PAR)
Pv(QAR)and (Pv Q) A (PVR)
C)PA(QAR)and (PAQ) AR
(DPv(@QvR)and (Pv Q) vR

P| Q| R |QuR|PAQVR)| PAQ | PAR | (PAQ)V(PAR)
T T | T | T T T | T T
T | T | F | T T F | F T
T F | T | T T T | T T
T|F| F | T F F | F F
Fl T | T | T F F | F F
F| T | F | T F F | F F
FIF| T | T F F | F F
F|F| F | F F F | F F

from columns fifth and eight we find that the truth values of PA (QvR) ad (PAQ) v

(P A R) are the same in all cases. Solutions of other parts have been left as
exercise.

Check your progress
1. Which of the following are statements?

(@) Is 3 apositive number?

(b) x*5x+6=0

(c) There will be snow in December.

(d) Give me ten rupees.

() Ramesh is poor but honest

(f)  No triangles are squares.
2. Let p be the proposition “Mathematics is easy” and let ¢ be the proposition “five
is greater than four.” Write in English the proposition, which corresponds to each
of the following: (a) pAQ (b) pvq



(€ ~(pA0) (d) ~pA~q
€ (PA~a)v(~p~q)
3. Write the negation of each of the following statements:
(@) 2+7<13
(b) 3isan odd integer and 8 is an even integer.

(c) No nice people are dangerous.

b

4. Let p be the statement “Ravi is rich” and let q be the statement “Ravi is happy.’
Write the following statements in symbolic form:

(a) Ravi is poor but happy.
(b) Ravi is rich or unhappy.
(c) Ravi is neither rich nor unhappy.
(d)Ravi is poor or he is both rich and unhappy.
5. Construct the truth-table for the following functions:

(@ (p'+q) (b) ('Y
()  p(p+q) (d) pgr+pqr

(€) (p'+ar)(pa+q'r)

6. Given the truth values of p and g as true and those of r and s as false; find the
truth values of the following:

(@ pv(gan)
Eb)) (PA@AN)NV~((pvaAa(rvs))
C

Answers

=

(c),(e) and (f) are statements.
2. (a) Mathematics is easy and five is greater than four.
(b) Mathematics is easy or five is greater than four.

(c) Either Mathematics is not easy or five is not greater than four.
(d) Mathematics is not easy and five is not greater than four.

(e) Either Mathematics is easy and five is not greater than four or
Mathematics is not easy and five is greater than four.



3. (@) ltisfalsethat2 +7<13
(b) Either 3 is not an odd integer or 8 is not an even integer.

(c) Some nice people are dangerous.

4. (a) ~pArq (b) pv ~q
(c) ~pAq (d) ~pv(pAr~q)
5. (a) True (b) True

Note: The symbols v, A, ~, > and <> defined above are called connectives.

Converse, Inverse and Contra-positive of p—q
Definition: Let p—q be any conditional statement. Then,

(a) the converse of p—q is statement g—p.

(b) the inverse of p—q is the statement ~ p—~q.

(c) the contra-positive of p—q is the statement ~g—~p.
Examplel.15. Write the converse, inverse and contra-positive of the conditional
statement “if 2 + 2 = 4 then I am not the Prime Minister of India.”

Let p: 2+2 =4 and g: | am not the Prime Minister of India.

Then the given statement can be written as p—q. Therefore, the converse is g—p.
That is, if I am not the Prime Minister of India then 2+2 = 4. The inverse of p—q is
the statement ~p—~q. That is, if 2+2#4 then | am Prime Minister of India.

The contra-positive of p—q is the statement ~g—~p. That is, contra-positive of the
given statement is “if [ am Prime Minister of India then 2+2 # 4.”

1.1.7 Tautology

Definition 1: A compound sentence is called a tautology if it is always true
irrespective of the truth values of its component parts. i.e. A statement (or
propositional function) which is true for all possible truth values of its
propositional variables is called a tautology.

Definition 2: A statement which is always false is called a contradiction. A simple
method to determine whether a given statement is a tautology is to construct its
truth table. If the statement is tautology then the column corresponding to the
statement in the truth table contains only T. Similarly a statement is contradiction if
the column corresponding to the statement contains only F.



For example P v — P is a tautology, since one of P and —P must be true and so Pv —
P is always true. Similarly (- P = Q) A —Q =P is a tautology as proved by the
following table.

Pl Q| -P| -Q [-P=Q|(P=QnQ | (P=Q)1—Q=P
T T F F T F T
T F F T T T T
F T T F T F T
F F T T F F T

If P = Q is a tautology then we also say P= Q tautologically. Thus in the
preceding example we can say that (- P Q) A — Q = P tautologically.

Note: P = Q cannot be a tautology if both P and Q are atomic sentence.

1.8. Tautological equivalence

Two sentence P and Q are said to be tautologically equivalent if P=Q
tautologically. And also Q = P tautological equivalence if P= Q tautologically,
and also Q = P tautologically. P and Q are tautologically equivalent may be
written as P=Q. It is clear that two compound sentence P and Q are tautologically
equivalent if they have the same truth values in all the cases. i.e. Two statement p
and g are said to be logically equivalent or equal if they have identical truth values.

One method to determine whether any two statements are equal is to
construct a column for each statement in a truth table and compare these to see if
they are identical.

For example P = Q is tautologically equivalent to — Q = — P as proved by the
following table:

P Q |[P=Q | Q —P —Q=>-P
T | T T F F T
T F F T F F
F | T T F T T




R T
We find that the truth values of P=Q and — Q = — P are the same in all the cases.
Hence [P= Q] =>[-Q = -P]and [- Q = -P = [P = Q] are both tautologies.

The sentence —Q= —P is called the contra-positive of the sentence P =Q. Hence
very often to prove P=Q we prove —-Q=-P.

Note: If P =Q is a tautology, hen if P is true then Q must be true, since the
implication is always true except when P is true and Q false.

Examplel. Show that each of the following is a tautology

@) [PA(p—>a)] >0
(b)[(p—>a)A@—>N]—>(p—>T)
(a) We shall construct truth-table for the function pA( p—q) —q

p q p—d pA(P=a) | [PA (P00
T T T T T
T F F F T
F T T F T
F F T F T

Truth table for p A(p—q)]—q
Since the column for [p A p — q)]—q contains only T, it is a tautology

(d)  Here we construct the truth-table for [(p >g)A(@—T1)]—> p—T)]

Pla|r|p—=>q | g—=>r|p=>r|(p>ra(@—r) | [ponA[gor)]—>p—r)

TIT|T] T T | 7T T T
TIT|F] T F F F T
TIF|[T| F T | 7T F T




n T T -
Tl 4 4 ™
— m| — ™
— 4| 4] ™
— M| 4] -

—H| 4| 4| ™
— 4| M 4| ™
—H | 4 4] 4

FIFIF| T | T | 7

Truth table for [(p—>r)A(@—=r1)]=>(p—T)

Since the last column corresponding to [(p—>g)A(q—r)]—(p—r) contains only
T, it is a tautology.

Example2: Show that the statement pA~p is a contradiction. Consider the truth
table for pA~p.

P ~ pPA~p
T F F
F T F

Truth table for pa~p
It follows from the table that pA~p is a contradiction.

Example3. Prove that p —>q=~p v Q.

We shall construct truth table for statement p —»gqgand ~p v q.

p q p—q ~P ~pvq
T T T F T
T F F F F
F T T T T
F F T T T

Truth table for p>q and ~p v q

We observe that the truth values in the columns for p — qand ~p v q are identical.
Hencep -q=~p Vv Q.



Example4: Show that the statement (pA~p) v g and g are equal.

Consider the truth table for given statement.

p q ~p pA~p (PA~p) v
T T F F T
T F F F F
F T T F T
F F T F F

Truth table for (pA~p) v gand q

From the truth table we see that columns for (pA~p) v q and g are identical. Hence
they are equal.

Example5: Show that two statements p and q are equivalent if bi-conditional
statement p<>q is a tautology. From the definition of bi-conditional statement we
know that p<>q is true whenever both p and q have the same truth values. Thus p =
q if p<>q is a tautology.

Note. (1) Some authors have used the symbol ‘<’ to denote equivalent or equal
statements and symbol <> is used for bi-conditional statement. From Example
1.20, we have p < q if p © g is tautology.

(2) Two equivalent statements may contain different variables as is clear from
Example 1.19 above.

Example6: Show that p—>(q—r)=(paqg) —>r

Consider the following truth table.

plg|r|a—=r|pag|p>(@->r) | (pag)—or
TIT|T| T T T T
TITIF] F | T F F
TIF|T| T F T T
TIFIF| T F T T




— M| -
— M| 4
— 4| -

M M M M
n T - -
M M M M
—H 4] 4| -

FI T T

Truth table for p—>(q—r)&(pAg) —>r

We see that columns for p—(q—r) and (pAg)—r are identical hence given
statement are equal.

Check your progress
(1) By constructing truth tables, show that the following are tautologies:

(@) (P AQ)=P
(b) (P=0Q) A (Q =R) =(P=R)
(€) (P=QA(QAR)=(P=R)
d)(PvQ) A-Q =P
(e) [P=Q] =[-PvQ]
(2) Show that the following are tautological equivalences:
(@) (P=Q)=(P=Q)A(-P=-Q)
b)) Pv(QAR)=(PVvQ)A(PVR)
) PAQVR)=(PAQ)V(PAR)
d) -(PAQ)=(-P) v (Q)

) -(PvQ)=(-P)A(Q)
H PAQAR)=(P AQ)A (PAR)

@) PAQAR) =(PAQ) AR

The following theorem contains various laws satisfied by propositions. We shall
use these laws for simplification of propositions.

Theorem 1: The following laws are satisfied by statements:
1. Commutative laws:
(@) pva=qvp. (b) pra=qgnap.

2. Associative laws:



@) pv(@vr=(pvavr (b) pa(@@ar)=(prg)ar
3. Distributive laws:

@) pv@an)=(pva)a(pvr) (b) pa(@vr)=(pra)v(pAr)
4. ldempotent laws:

@) pva=p (b) pap=p

5. Laws of absorption:

(@) pv(pra)=p (b) pA(pva)=p

6. Involution laws:

@ ~C-p=p

7. Complement laws:

@ pv~p=T  (b) pr~p=F

8.De Morgan’s laws:

@) ~(pva)==pa~q  (b) ~(prg)=-pv~q

9. Operationwith T

(@) pvT=T (b) pAT=p

10. Operation with F

@ Fvp=p (bD)FAp=F

Here T and F denote statements, which are tautology and contradiction
respectively.

Proof: We shall prove 3(a) and 8(a). The remaining laws can be proved exactly in
the same way by constructing truth tables.

To prove 3(a), consider the following truth-table

plq|r|pval| pvr|agar | pv(gar) | (pva)a(pvr)
TITIT| T T T T T




TIT[F[ T [ T [ F T T
TIF[T] T | T |F T T
TIFIF[ T | T | F T T
FIT(T| T [ T [T T T
FITIF| T | F | F F F
FIF[T| F | T | F F F
FIFIF| F | F | F F F

Since columns for pv (qar) and (pvg) A (pvr) are identical they are equal.

To prove 8(a), consider the following truth table:

Plg|~p|~a|pva|~(pvd) | ~pr~q
TITIF|[F [ T F F
TIFIF [ T[] T F F
FIT|TIF] T F F
FIF| T | T F T T

It follows from the table that ~(pvqg)=~ pr~q.

Theorem 2: Show that (a) p »>q=~pvq, (D) p<g=(p—>gr=(q—p)

Proof: Using the definitions of — and <> we have,

p q ~p p—q —->p | peq | ~pva | (p>9A=(0—>p)
T T F T T T T T
T F F F T F F F
F T T T F F T F
F F T T T T T T




Since the truth values in columns (4) and (7) are identical, we have (a), Similarly,
since the truth values in columns (6) and (8) are identical, we have (b).

Theorem 3: Show that (a) ~(p—>q)=par~q, (b) ~(p<q)=p<~q

Proof: Using the definitions of — and <>, we construct the truth table

plg|~p|~a|p—>qg|~(P—>0) | pA~q | peqg | ~(P<Q) | pe~q
TIT| F | F T F F T F F
TIFI F | T F T T F T T
FIT| T | F T F F F T T
FIF| T | T T F F T F F

~(p <> q) = p<>~q have identical truth values, so ~(p<>q)=p<>~q
Check your progress
1. Prove that each of the following is a tautology:
@ p—>p (b) prg—p
(c) p—>(pva) (d) (pA(p—a)—q
(€) (p—>a)~>[(pv(@an)<aa(pvr]

2. Write in words the converse, inverse, contra positive and negation of the
implication “if she works then she will earn money.”

3. Construct truth tables to determine whether each of the following is tautology or
a contradiction:

@) pr~p (b) p—(a—p)

() p—>anp (d) av(~qap)
4. Prove the following:

(@) pva=avp (b) pA(aar)=(pva)ar
(©) pa@vn=(pAg)v(par (d) pvp=p

€ ~(prg)=—pv~a  (f) ~(poa)=-peq



5. Write in English the negation of each of the following:
(@) The weather is bad and I will not go to work.
(b) I grow fat only if | eat too much.

6. Show the following equivalences:

@ p—>@—>a)e~p—>(p—0a)

(b) ~(pea) = (pr~a)v(~pAaa)

7. We define p=q if and only if p — qis tautology. Prove the following:

@ p—>a=p—>(pra)

(b) (p—>a)—>q=pvy

7. Prove that ~(pAq) —(~ pv(~ pvQ)) =~ pvq, without constructing truth table.

Answers

2. The converse of the statement is “if she earns money then she works.” The
inverse is “if she does not work then she will not earn money.” The contra-positive
1s “if she does not earn money then she does not work™ The negation of the
statement is “she works and she will not earn money.”

3. (a)Contradiction (b) Tautology
(c) Neither tautology nor contradiction
(d) Neither tautology nor contradiction
5.(a) The weather is bad but I will go to work.

(b) I grow fat and (although) I don’t eat too much.

1.9. Law of Duality

In this section, we consider only those statements which contain the
connectivesa,v and ~ only.

Definition: Two statement p and p* are said to be duals of each other if either one
can be obtained from the other by replacing A by v, vby A, Tby Fand F by T.



It is obvious from the definition that dual of a statement is the statement itself. We
now state (without proof) the principle of duality.

Principle of Duality

It states that if any two statements are equal then their duals are also equal.
Example.8: Prove the following:

(@) ~(pAg)=~pv~q (b) ~(pva)=~pr~q

Solution: We shall only prove (a). The result stated in (b) will follow by principle
of duality.

To prove (a), consider the following table:

PIA|~P|~q|pAqg|[~(PArT)|~PV~Qq
TITIF|F| T F F
TIFIF|T| F T T
FITIT|F| F T T
FIFIT[T] F T T

From the table, it follows that ~(p A Q)=~p v ~q

1.10. Sentential form
Consider the following expressions or statements: (1) x is mortal (2) x is a fraction

They are not sentences, since we do not know their truth values. If we take x to be
a number in (1) and x to be a man in (2), then these two statements (1), (2) become
meaningless and hence they are not sentences. But if we restrict x in (1) to men and
in (2) to numbers, then these statements will be sentences either true or false. Here
x will be called a variable. Such statements which contain variables like x which
are not specified are called open sentences or sentential from. Similarly
expressions containing pronouns, as for example ‘He is prime minister of India’,
‘It is a prime number’ are open sentences, Since we do not know their truth value
without additional information specifying the unknown pronouns which behave
like variables. The open sentence ‘X is mortal’ will be denoted by P(x).



1.11. Quantifiers

In the discussion of logic, some very important statements contain quantifiers. The
following are examples of statements which contain quantifiers:

(1) Some people are honest.

(2)No woman is a player.

(3) All Americans are crazy.
The words some, no and all are known as quantifiers. From quantifiers, we know
“how many” of a certain set of things is being considered.

1.11 (a) Universal Quantifier

Let p be a statement. We define the symbol Vxp to mean that for every value of x
in the given set, the statement p is true. The symbol vis called the universal
quantifier. v can also be read as ‘for all’, © for every’ or ‘for any.’

Illustration: The statement “for all natural numbers, n + 4 >3 can be expressed as

Vxp, where x belongs to the set N of natural numbers and p is the statement ‘n + 4
>3,

1.11 (b) Existential Quantifier

Let p be a statement. We define the symbol Jxp to mean that for one or more
elements x of a certain set, the proposition p is true. The symbol 3is called
existential quantifier and is usually read as “these exists” or “for at least one “for
some”.

Illustration: (1) The statement “there exists a number x such that x*—4x=16" may
be written as Ixp(x? — 4x = 16)

(2) The statement3, (n +4<7), where n is in the set of natural numbers is true since
there exists a natural number, namely I, such that n +4<7 is true.

1.12 Negation of Quantifiers

It is important to know how the negations of statements having quantifiers are
formed. Consider the statement “All Americans are crazy”

The negation of this statement would be
“It 1s false that all Americans are crazy” or equivalently,

“There exists at least one American who is not crazy.”



Example: The function f is said to approach the limit | near a if (1) Ve>0,356>0
suchthat Vx,0<|x—a|<d=|f(x)-l|< e.

Putting P(X): 0<|x—a| < o= | f(X) I |< €. It can be written as Ve>036>0
such that V(x) P(x). Hence the negation of the above definition will be:

The function f does not approach I at a if 3 € >0 Such that Vo > 0, 3 x (~P (x)).

That is, if there exists some e > 0, such that for every & > 0, there exists some x for
which O0<|x—a|]<dand|f(x)—1| <« €.

Example: Write the negation of ‘“No teachers are wise’. Putting P(X): X is wise (X is
a teacher), the symbolic form of the above sentence is Vx (x is a teacher) x is not
wise or Vx (~ P(x)) (x is a teacher). Hence its negation will be 3 x P(x) that is, there
exists a teacher x who is wise or’ Some teachers are wise’.

Check your progress

(1). Given P is true, Q is false and R is true, find, find the truth values of:

@) (P vQ) A (Q VR).
(b)(P=Q)=(PA-Q)
©[PAQ)A-RI=(Q=P) [Ans. (&) T, (0) T, (c) T]

(2). Write the Negations of the following

@) (P vQ)AR,

(b) PA(Q=-R),

(c)P= (Q=R).

(d PA-QeR,

(€) VX(x#1, x£2),

(f) Ix(x*<0)

(9) VX(x£0) = (x> 0),

(h) 3x(x*=1 and x*~2x+3= 0)

(i) Every Indian is honest. (j)If there is a will then there is a way.

(3). State if the following are sentence, giving reasons of your answer.

(@) Do you think you will pass in the examination?
(b) Mathematics is black .

(c) Walk right in.

(d)He is a President of India.



(e) 2/5 is a integer .
(f) If you pass in the examination, then the sun will revolve about the earth.
(g) Oh! How sand he is.

(4). By constructing Truth-tables shows that the following are tautologies:

@PAQ)=>P
O)(PvQAr-Q=P

©IP=Q) A (Q=R)]=(P=R),
@EP=>QA-Q)=P

(5). Prove the following tautological equivalences:
@P=Qv(P>R)=P=>QVR.
bB)(P>RIA(Q=>R)=PvQ=R
C©OP=2QA(P=>R)=P=QAR,
d(P=>R)v(Q=>R)=PAQ=R.

(6). Prove that the following are tautologies

@[P=QAR=9]=FPAR=>QAYS).
L) [P=QAR=>S)=PVvR=QVvS).

(7) Find the dual of the following:
(@). (pva)ar (b). (paa)vr (c). ~(pva)A(pv~(pAs))
(8) Form the negation of each of the following:

(@) “For all positive integers X, we have x+2>8"

(b) “All men are honest or some man is a thief.”

(c) “There is at least one person who is happy all the time.”

(d)“The sum of any two integers is an even integer.”

(e) At least one student does not live in the dormitories.
Solution: (7) (a) Interchanging v and A, we have, dual as (pAq)vr.

(b) Dual is (pva)Aar
(8) Write the Negation of the following statement are:

(a) There exists a positive integer x such thatx+2>8.

(b) There exists a man who is not honest and all men are not thief.

(c) No person is happy all the time.

(d) There exists two integers such that their sum is not an even integer.



(e) All students live in the dormitories.

1.13. Summary: After reading this unit we should be able to understand the
concept of statement and statement variables, use elementary operations like
Conjunction, Disjunction, Negation, Implication, Double implication, understand
statement formulae, tautologies to equivalence of formulae, use law of duality and
functionally complete set of connectives. We now that

Logic is a field of study that deals with the method of reasoning Logic provides

rules by which we can determine whether a given argument or reasoning is valid
(correct) or not. Logical reasoning is used in Mathematics to prove theorems. In
computer science logic is used to verify the correctness of programs.

2.14. Terminal Questions

1.

By contructing truth tables, Show that the following are tautologics.
(@) PAQ)=>P

b)) P=>QAQ@=>R)=>(P=>R)

(c) [p= Q] & [-PVQ]

. Show that the following are tautological equi valences :

(@ Pe=P>DAP=>-0)
(b)) PA(QAR)=(PAQ)A(PAR)

(©)-(PAQ) =(=P)V(=0Q)

. If P= Q and Q = R are tautologics, Show that P =

R is also a tautology.

Given P is true, Q is False and R is True. Find the truth values of (PVQ) A
(QVR).

. Write the Negations of the following :

(@) (PVQ)AR)
(b) PA(Q=R)



. By contructing truth table, Show that the following are tautologics.
(@) (PAQ)=>P

(b) PVQ)A-Q=>P

. Write truth tables fo the sentence P = P and

P = —P.Is the First sentence a tautology.
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2.1. Introduction



Relations have got a tremendous number of applications in almost every field, viz.
sociology, economics, engineering, technology etc. In computer science the
concept of a relation is a major tool to learn and understand it clearly. Order
relation has got tremendous application in almost every field, social, economy,
engineering, technology etc. In computer science concept of order relation is a
major tool to learn to understand it more clearly.

2.2. Objectives

After reading this unit we should be able to

e Recall the basic properties of relations

e Derive other properties with the help of the basic ones

e |dentify various types of relations

e Understand the relationship between equivalence classes and partition.
e Recall the basic properties of order relations

e Derive other properties with the help of the basic ones

e [dentify infimum and supremum

e Totally ordered set

2.3. Relation

Let X and Y be two sets, then a relation R from X to Y is defined to be a subset R of
XxY, thatis Rc X x Y.

If (X, y)e R, we say that x does stand in relation R to y or briefly as xRy. In case (X,
y)¢R we say (that is x is not R -related to y). Similarly we may define a relation R
between two elements of the same set X or a relation R in X by RcXxX.

If (Xl, X2)€ R, then, X1RX5.

Let X be the set of all women and Y the set of all men. Then the relation ‘is wife of”
between women (element of X) and men (element of Y) will give us a set of
ordered pairs R={(Xx, y): xeX, yeY, and x is wife of y}.



The ordered pairs (Kamla Nehru, Jawahar Lal Nehru), (Kasturba Gandhi, Mahatma
Gandhi) are elements of R. Itis clear that RS X x Y,

A relation is binary if it 1s between two elements. Thus ‘is wife of” is a binary
relation involving two persons, viz Kamla Nehru is the wife of Jawahar Lal
Nehru). Conversely if we are given the set R of ordered pairs (x, y) which
correspond to the relation ‘is wife of” then even if we forget the meaning of ‘is
wife of” we can tell when a woman x is wife of a man y and when not, we are only
to find if (x, y) does or does not belong to R. Hence we find that if we know the
relation we know the set R and if we know the set R we know the relation.

Example: Let S be a set. Let R be a relation in P(S), P(S) is the power set of S, R
P(S)xP(S) given by

R={(A, B) : A, BeP(S) and AcB}, Now (A, B)eR&ACB. Or ARB <ACB.

Example: Let X be a set and let A denote the relation of equality or diagonal
relation in X and we write X Ay iff x =y.

Example: If R =X x X - A. Then (X, Y)eR=>(X, y)eXxX, (X, y)gAi.e. xRy iff x#y

R is called the relation of inequality in X. Thus we can say that the relation R of
inequality in a set X is the complement of the diagonal relation A in XxX.

Example: Let R be a relation in the set Z of integers given by R={Xx, y): x<v, X,
ye Z} where ‘<’ has the usual meaning in Z. Since 3< 4, therefore (3,4) eR or
3R4. But (4, 3)¢R, since 4> 3.

Example: Let A and B be two finite sets having m and n elements respectively.
Find the number of distinct relations that can be defined from A to B.

The number of distinct relations from A to B is the total number of subsets of AxB.
Since AxB has mn elements so total number of subsets of AxB is 2™ . Hence
total number of possible distinct relations from A to B is 2™".

2. 4. Domain and Range of a Relation



The domain D of the relation R from set A to set B is defined as the set of elements
of first element of the ordered pairs which belongsto R, i.e., D = {xe A: (X, y) €R,
for some yeB}.

The range E of the relation R is defined as the set of all elements of the second
element of the ordered pairs which belong to R, i.e., E={ye B: (x,y)e R, for x
A}. Obviously, D € A and E € B.

Example: et A = {1, 2, 3, 4} and B = {a, b, c}. Every subset of AxB is a relation
from A to B. So, if R = {(2, a), (4, @), (4, ¢)}, then the domain of R is the set {2,4}
and the range of R is the set {a, c}

2.5. Types of Relation in a set
We consider some special types of relations in a set A.

Inverse Relation: Let R be a relation from the set A to the set B, then the inverse
relation R™* from the set B to the set A is defined by r -1={(b, a) : (a, b)<R}.

In other words, the inverse relation R™ consists of those ordered pairs which when
reversed, belong to R. Thus every relation R from the set A to the set B has an
inverse relation R™ from B to A.

Example: et A = {1,2,3}, B={a, b} and R={(1,3), (1, b), (3,a), (2, b) }be a
relation from A to B.The inverse relation of R is R™* = {(a,1), (b, 1), (a, 3), (b,2)}

Example: | et A= {2,3,4}, B={2,3,4} and R={x,y) : [x —y| = 1} be a relation from A
to B. That is, R = {3,2), (2,3), (4,3), (3, 4)}.

The inverse relation of R is R™= {(3,2), (2, 3), (4, 3), (3, 4)}. It may be noted that
R=R™.

Note: every relation has an inverse relation. If R be a relation from A to B, then
R is a relation from B to A and (R)'=R.

Theorem: If R be a relation from A to B, then the domain of R is the range of R™
and the range of R is the domain of R™.



Proof: Lety edomain of R™. Then there exist xe A such that (y, x)eR™. But (y,
x)eR'=(x, y)eR. = ye range of R.

Therefore, ye domain R = ye range of R. Hence domain of R € range of R. In a
similar way we can prove that range of RS domain of R™.

Therefore, domain of R™ = range of R. In a similar manner it can be shown that
domain of R =range of p_1.

2. Universal Relation: A relation AxA in a set A is said to be the universal
relation in A.

Example: | et A= {1, 2, 3} then R =AxA = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3,1), (3,2),(3,3) }is a universal relation in A.

3. Void (empty) Relation: A relation R in a set A is said to be a void relation if R
isanull set, i.e., if R=¢.

Example: | et A= {2, 3, 7} and let R be defined as ‘aRb if and only if 2a =b * then
we observe that R = ¢ < A x Ais a void relation.

Example: et A = {1, 2, 3}. We consider several relations on A.

(i)  Let R;be the relation defined by m <n, that is, mR;n if and only if m <n.
(i)  Let R, be the relation defined by mR,n if and only if |m —n| < 1.

Define Rz by 1 — n (mod 3), so that mRsn if and only if 1, — (mod 3y, 1.e.3
divides ; _ n_

(iii)  Let E be the ‘equality relation’ on A, that is, mEn if and only if m =n.
2.6. Composition of Relations

Let R; be a relation from the set X to the set Y and R, a relation from the set Y to
the set Z. That is Ry cXXY and R, cYxZ. The composite of the two relations R; and
R, denoted by R,0R; is a relation from the set X to Z, that is R, 0R;cX%Z defined
by : R,0R1= {(X, ) € XxZ : for some yeY, (x,y) eRiand (y, z) € R,}. l.e.
X(R20R;) z & for some yeY, xRyy and yR,z.



Example: Let X =Set of all women, Y=Set of all men, Z=Set of all human beings.

Let R, be a relation from X to Y given by R; = {(X, y) : xe X, yeY and x is wife of
y}

And let R, be a relation from Y to Z given by R,={(y, 2): yeY, zeZ and y is the
father of z}. Therefore

R,0R= {(X, z) eXxZ: for some yeY (X, y)eR; and (y, 2)eR,}.

Here (R,0R;) is the relation ‘is the mother of,” provided a man can have only one
wife.

Example: if R, be a relation from the set X to the set Y, R, a relation from the set Y
to the set Z and R; a relation from the set Z to the set W. Then R;0 (R,0R;) =
(R30R»)0Ry, that is composition of relation is associative.

Now R,0R;c X xZand R, — Z xW. Therefore R;0 (R, O R;) € XxXW, that is, a
relation from X to W. Similarly (R;0R,) 0 R; < XxW; that is, a relation from X to
W. Now (X, W) €R30 (RzORl)

& JzeZ|(x,y)eRand (y, z2)eR, & (z, w)eRs for some yeY and zeZ
& FzeZ,yeY (X, ¥)eRand (y, 2) eRy, & (z, w) eR3
(Since (P A Q) A R=PA (QAR))
<3y €Y | (X, y) eRyand (y, w) eR30R,.
& (X, w)e(R30R,)0R;.
Therefore R30(R,0R;)=(R30R,)0R;.
Check your progress
(3.1) Prove that (R™) '=R.
(3.2) Prove that (R,0R;) "=R;"0R,™.

Reversal Rule: From the above we get the inverse of the composite of two
relations is the composite of their inverses in the reverse order.



2.7. Equivalence relation in a set

A relation R in a set S is called an equivalence relation if

(o) R is reflexive, that is VxeS, xRxor (x,X)eR thatis, A € R;

(B) R is symmetric, that is, xRy = yRx or (x, y)eR &(y, x)eR i.e. R'=R.
(y) R is transitive, that is, [XRy, yRz]=xRz

Or (x,y)eR, (y,2)eR =(x, 2)eR., i.e. ROR c R.

Example: The diagonal or the equality relation A in a set S is an equivalence
relation in S. For if x, yeS the XAy iff x=y. Thus

(o) xAXx VxeS (reflexivity)

(B) XAy = x =y =y=x=>y AX (Symmetry)

(y) for x,y, €S, [XAy, YAZ] =[x=y, y=z i.e. X = 2] = XAz.
Hence [ XAy, and yAz ] = xAz (transitivity).

Example: Let N be the set of natural numbers. Consider the relation R in NxN
given by (a, b) R(c, d) if a+d=b+c, where a, b, c deN and + denotes addition of
natural numbers, R is an equivalence relation in NxN.

(o) (a, b)R(a, b) since a+b=b+a (Reflexivity) V(a,b)e N x N.
(B) (a, b)R(c, d)= a+d=b+c
=c+b=d+a=(c,d)R(a, b) (Symmetry)
(v) [(a, b)R(c, d)and (c, d)R(e, f)]
=[a+d=b+c and c+f=d+e]
=(at+d+c+f=b+c+d+e)
=a+f=b+e (By cancellation laws in N)

= (@, b)R(e, ) (transitivity)



Example: Let a relation R in the set N of natural numbers be defined by: If m,
neN, then mRn if m and n are both odd.Then R is not reflexive, since 2 is not

related to 2.Thus xR x does not hold VxeN. But R is symmetric and transitive as
can be verified.

Example: Let X be a set. Consider the relation R in P(X) given by: for A, BeP(X).
ARB if A c B. Now R is reflexive, since A cA, VAeP(X) R is transitive, since
[AcB, BcC] =AcC where A, B, CeP(X). But R is not symmetric, since AcB
»BCA.

Example: Let S be the set of all lines L in three dimensional space. Consider the
relation R in S given by; for Ly, L,eS, LiRL, if L, is coplanar with L,. Now R is
reflexive, since L; is coplanar with L;, R is symmetric, since L; coplanar with
L,=L, coplanar with L;. But R is not transitive, since (L, coplanar with L, and L,
coplanar with L3) # L, coplanar with L.

Example: (a) Let X ={X, Xy, X3, X4}. Define the following relations in X:

Ri= {(X1, X1), (X2, X2), (X3, X3), (X2, X3), (X3, X2) }

Ro= { X1, X1), (X2, X2), (X3, X3), (Xa, Xa), (X2, X3), (X2, Xa), (X3, X2)}

Ra= {( X1, X1), (X2, X2), (X3, X3),( Xa, Xa), (X2, X3), (X3, X2), (X3, Xa), (X4, X3)}

R; is symmetric, transitive but not reflexive since( x4, X4) €R;

R, is reflexive, transitive but not symmetric since XsRx, but (X4, X3) € R»

Rs is reflexive, symmetric but not transitive since X,Rxzand x3Rx,4 but(X, X4 ) € Rs.

Note: Examples prove that the three properties of an equivalence relation viz.
reflexive, symmetric and transitive are independent of each other, i.e. no one of
them can be deduced from the other two.

Example: [ et A be the set of all people on the earth. Let us define a relation R in
A, such that xRy if and only if ‘x is father of y’, Examine if R is (i) reflexive, (ii)
symmetric, and (iii) transitive. We have



(i)  For xeA, xRx does not hold, because, x is not the father of x. That is R is
not reflexive.

(i)  Let xRy, i.e., x is father of y, which does not imply that y is father of x.
Thus yRx does not hold. Hence R is not symmetric.

(ili) Let xRy and yRz hold. i.e., x is father of y and y is father of z, but x is not
father of z, i.e., xRz does not hold. Hence R is not transitive.

Example: |_et A be the set of all people on the earth. A relation R is defined on the
set A by aRb if and only if a loves b’ for a, b € A. Examine if R is (i) reflexive, (ii)
symmetric, and (iii) transitive. Here,

(i)  Risreflexive, because, every person loves himself. That is, aRa holds.
(i) R is not symmetric, because, if a loves b then b not necessarily loves a,
I.e., aRb does not always imply bRa. Thus, R is not symmetric.

(ili) R is not transitive, because, if a loves b and b loves ¢ then a not
necessarily loves c, i.e., if aRb and bRc but not necessarily aRc. Thus R is
not transitive. Hence R is reflexive but not symmetric nor transitive.

Example: et N be the set of all natural numbers. Define a relation R in N by ‘xRy
if and only if x + y = 10’. Examine R is (i) reflexive, (ii) symmetric, and (iii)
transitive. Here,

(i) Since 3 +3 # 10 i.e., 3R3 does not hold. Therefore R is not reflexive.

(i) Ifa+ b =10 then b + a = 10, i.e., if aRb hold then bRa holds. Hence R is
symmetric.

(ili) We have, 2+8=10 and 8+2=10 but 2+2#10, i.e. 2R8 and 8R2 holds but
2R2 does not hold. Hence R is not transitive therefore R is not reflexive and
transitive but symmetric.

Example: |et | be the set of all integers and R be a relation defined on I such that
‘XRy if and only if x > y’. Examine R is (i) reflexive, (ii) symmetric and (iii)
transitive. Here,

(i) R is not reflexive, because, x > x is not true, i.e., XRX is not true.
(i1)R is not symmetric also, because, if x >y then y* x. i.e., R is not symmetric



(ili) R is transitive because if xRy and yRz holds then xRz hold. Therefore R is
not reflexive and symmetric but transitive.

Example: A relation R is defined on the set [«the set of all nonzero integers, by

‘aRb if and only if ab > 0 for a#0, b# Oe,.Examine R is (i) reflexive, (ii)
symmetric and (iii) transitive. Here,

(i) Leta € . Then a.a.>0 holds. Therefore aRa holds for all ae ;, Thus R is
reflexive.

(iLeta, b € j,and aRb holds. If ab > 0 then ba > 0. Therefore, aRb = bRa.
Thus R is symmetric.

(iii) Leta, b, ¢ € j,and aRb, bRc hold. Then ab > 0 and bc > 0. Therefore,
(ab) (bc)>0. This implies ac > 0 since b®>>0. So aRb and bRc = aRc.
Thus R is transitive. Hence R is reflexive, symmetric and transitive;
hence R is an equivalence relation.

Example: Let R be a relation in a set S which is symmetric and transitive. Then
consider the argument aRb = bRa (by symmetry) [aRb and bRa] = aRa (by
Transitivity)

From this it may not be concluded that reflexivity follows from symmetry and
transitivity. The fallacy involved in the above argument is:

for aeS, to prove aRa, we have started with aRb = bRa.
Now it might happen that 3 no element beS such that aRb.

Example: Examine whether each of the following relations is an equivalence
relation in the accompanying set —

(i) The geometric notion of similarity in the set of all triangles in the Euclidean
plane.

Hint: It is an equivalence relation

(if) The relation of divisibility of a positive integer by another, the relation being
defined in the set of all positive integers as follows:



a is divisible by b if 3 a positive integer ¢ such that a=bc.

Hint: The relation is reflexive, transitive but not symmetric.

(iii) The relation R, in the set R of all real numbers defined as follows:
aR.b if 3 a non-negative number c such that a+c=b.

Hint: The relation is reflexive, since a+0=a VaeR.

But the relation is not symmetric for a R, b # bR, a (prove)

The relation is transitive for aR,b and bR,c =a R,c (Prove)

(iv) The relation < in the set of natural Numbers N is defined as follows:
(a). a <« a since a + x = a has no solution in N. Hence < is non-reflexive
(b) . a < b does not imply b <a. Hence < is not symmetric

(c). a<bandb<c= a<cHence <is transitive.

Example: R is a relation in Z defined by: if X, y, €Z, then xRy if 10+xy > 0.
Prove that R is reflexive, symmetric but not transitive.

Hint: -2R3 and 3R6 but —2 not related 6

2.8. Partition of a Set

Let X be a set. A collection C of disjoint non-empty subsets of X whose union is X
Is called a partition of X.

Example: Let X={a, b, c, d, e, f}. Then a partition of X is [{a}, {b, c, d}, {e, f}],
since intersection of any two subsets of this collection is ¢and their union is X.
There may be other partitions of X. An equivalence relation in a set S is usually
denoted by ~. Then ‘x~a’ will be read as ‘x is equivalent to a’.

2.9. Equivalence Class

If ~ is an equivalence relation in a set S and a€S, the set {xeS: x ~ a} is called an
equivalence class of S determined by ‘a’ and will be denoted by a. If the



equivalence relation ~ is denoted by R, then the equivalence class of S determined
by ‘a’ may be denoted by Ra.

Note: @ = R, = {x € S:xR,}.

Theorem: If ~ is an equivalence relationinasetS, and a, b €S, then
(i) @, b are not empty.

(i) b ~ a, if and only if a= b.

Proof: Since a ~ a by reflexive property, aca, hence a is a not empty. Similarly
b is not empty.

(i) Now xea = x~a. b~a= a~b (by symmetry). Hence we get x~a, and a~b.
Therefore x ~ b (by transitivity)

Consequently xe b thus xea=xe b.Therefore ac b. Similarly bca. Hence a = b.
Conversely @ = b = beb (since b~b), therefore bea (a = b). Therefore b~a

Theorem (3.2) Any equivalence relation in a set S partitiones S into equivalence
classes. Conversely any partition of S into non empty subsets, induces an
equivalence relation in S, for which these subsets are the equivalence classes.

(i) Given an equivalence relation ~ in S. We are to prove that the collection of
equivalence classes is a partition of S. Let x; X, X;, etc. be the equivalence classes
where x;€S. We are to prove U x;=S. We have U x; S,

XeS i

since x; =S V x;eS. Again xieS = x;eX; = x; € Ux; Therefore U x; =S.

xe$

Now we prove that any two equivalence class i, y where X, yeS are disjoint or
identical.

Letx Ny = ¢andzex Ny, thenzex and zey.
Now zex= z ~ X =X ~ z (by symmetry) zey

=z ~Yy.Hencezex N y =[x ~z,z~y] =>x~Yy (by transitivity) =x = y.



ThusxNy#¢=x=y.Hence xzy = x Ny =¢.

This completes the proof of the first part of the theorem.

(i1) Let the collection C = {Ai} be a partition of S.

Then S =uU A; and A;’s are mutually disjoint non-empty subsets of S.
Now xeS =xe A, for exactly one i.

We define a relation R in S by: for x, yeS. xRy if x and y are element of the same
subset A; It can be proved that R is an equivalence relation is S and the subsets A;
are the corresponding equivalence classes.

2.10. Quotient set of a set S

The set of all equivalence classes obtained from an equivalence relation in a set S
is called the quotient set of S which is denoted by S or by S/~, or by S/R when the
equivalence relation is denoted by R.

Example: Let S be the set of all points in the x-y plane. We define a relation R in
S by: For a, beS, aRb if the line through the point a parallel to the X-axis passes
through the point b. It can easily be proved that R is an equivalence relation in S.
Now the equivalence class a determined by the point ‘a’ is the line through the
point ‘a’ parallel to the X- axis and the quotient set S= set of all straight lines in the
X-Y plane parallel to the X-axis.

Example: The diagonal relation or the relation of equality in a set S is an
equivalence relation). If aeS, then a= {a}. l.e. each equivalence class is a
singleton and S= set of all singletons.

Example: If S is a set, then R=SxS is an equivalence relation in S and the only
equivalence class is the set S. S = {S}.

Example: If X be the set of points in a plane and R is a relation on X defined by A,
BeX, ARB if A and B are equidistant from the origin. prove that R is an
equivalence relation. Describe the equivalence classes.



Hint: The equivalence class Ry=Set of points on the circle with centre as origin O
and radius OA. Hence the quotient set X/R is the set of circles on the plane with
centre as O.

2.11. Order relation:
Definition: A relation R in a set is called a partial order (or order) relation if

(DR is reflexive i.e. XRx Vxe$S

(2)R is anti symmetric i.e. xRy and yRx =x=y, where x, y, €S

(3)Ris transitive i.e. for x, y, zeS. [XRy, yRz] = xRz. If in addition VX, yeS,
Either xRy or yRx, then R is called a linear order or total order relation. A set
with a partial order relation is called a partially ordered set and a set with a
total order relation is called a totally ordered set or a chain.

Note: Generally the partial order relation is denoted by the symbol < and is read as
‘less than or equal to’.

Example: In the set Z., of positive integers, the relation given by for m, neZ,, m <
n if mdivides n, is a partial order relation but not a total order relation.

For (1) m<m Vm €Z, since m divides m.
(2) m<nandn<m= mdivides n and n dividesm = m =n.

(3) [m < n, n < K] = m divides n, n divides k= m divides k= m < k. Thus the
relation is a partial order relation.

But it is not a total order relation, since for m, neZ. it may happen that neither m
divides n nor n divides m i.e. neither m <n norn <m.

Example:In the set R of real numbers, the relation < having its usual meaning in R
Is a total order relation. The proof is left as an exercise.

Example:If S be a set, then the relation in P(S) given by: for A, BeP(S). A<B

if AC B is a partial order relation but not a total order relation. The proof is left as
an exercise.



Definition: Let (S, <) be a partially ordered set. If x<y and x=y, then x is said to be
strictly smaller than or a strict predecessor of y. We also say that y is strictly
greater than or a strict successor of y, then we denote it by x <\.

An element a<S is said to be a least or first (respectively greatest or last) element
of S if a<x (respectively x <a)VvxeS.

An element a<S is called minimal (respectively maximal) element of S is x<a
(respectively a < x) implies a=x where xeS.

A least (greatest) element if it exists, unique and also the unique minimal
(maximal) element in this case.

Example: (N, <), (the relation < having its usual meaning) is a partially ordered
set.

2 is strictly smaller than 5 or 2 < 5. 1 is the least or first element of N.

since, 1<m YV meN, There is no greatest or last element of N. 1 is the only minimal
element since if xeN, Then x < 1=x=1.

Example:Consider the set S = {1, 2, 3, 4, 12}. Let < be defined by a<b if a divides
b. Then 2 is strictly smaller than 4 or 2 < 4. 12 is strictly greater than 4 or 4 < 12.
Since | divides each of the number 1,2,3,4,12 so 1<x VxeS, hence 1 is the least
element of S. Again since x<12VxeS i.e. each element of S divides 12, so 12 is the
greatest or last element of S. Here also | is the only minimal element, since xS,
then x<1 i.e. x divides 1 implies x=1.

Example:Let S be a set. Then (p (S), <) where <'is the set inclusion relation c, is a
partially ordered set. Then ¢ is the least element, since ¢ < AVAe p (S),and S is
the greatest element since A S V Ae p (S), phi is the minimal element.

2.12. Infimum and Supremum

Let (S, <) be a partially ordered set and A a subset of S. An element aeS is said to
be a lower bound (respectively upper bound) of A if a <x (respectively x <a)
VxeA.



In case A has a lower bound, we say that A is bounded below or bounded on the
left. When A has an upper bound we say that A is bounded above or bounded on
the right. Let L(#¢) be the set of all lower bounds of A, then greatest element of L,
If it exists is called the greatest lower bound (g | b) or infimum of A. Similarly if
U(=¢) be the set of all upper bounds of A, then the least element of U, if it exists, is
called the least upper bounded (l.u.b.) or supremum of A

Example:Consider the partially ordered set (N, <), where m < n if m divides n.
Consider the subset A={12, 18}. 2 is a lower bound of A since 2 divides both 12
and 18. i.e. 2 <12 and 2 < 18. The set of al lower bounds of A viz L={1,2,3,6} and
6 is the greatest element of L. Hence (g.l.b. or infimum of A)=6. It is called the
greatest common divisor (g.c.d) of A. Now 36, 72, 108 etc. are upper bounds of A
since x divides 36, 72, 108 Vx €A thus x < 36, 72, 108 VxeA. Now the set of upper
bounds of A viz U = {36, 72, 108, ...} has the least clement 36. Hence the l.u.b or
supremum of A= 36. It is also called the L.C.M. of 12 and 18.

Theorem: The least (respectively greatest) element of a partially set (S, <), if it
exists, is unique.

Proof: If possible let | and /’ be two least element of S. Since | is the least
element, so | <x ¥xeS hence | </’ since [’eS. Similarly taking /” as least element

[’<Il.Hencel </’and /’<|. Therefore by anti-symmetry | =1".
A similar proof can be given for the greatest element.

Remark: In contrast to the above theorem, maximal and minimal elements of a
partially ordered set X need not be unique. In example (1.3) we can show that
every singleton is a minimal element. Sometimes minimal element can also be a
maximal element. For example consider the partially ordered set (X A) where A is
the diagonal relation. Every element of X is a minimal as well as a maximal
element of X. For let aeX. Then xAa=X=a, aAx=>x=a.

2.13. Partially ordered set

A partially ordered set (S, <) is said to be well ordered if every non empty subset of
S has a least element.



Theorem: A well ordered set (S, <) is always totally ordered or linearly ordered or
a chain,

Proof: Let x, y be any two element of S. Consider the subset {x, y} of S, which is
non empty and hence has a least element which is either x or y, then x <y ory <x.
Hence every two element of S are comparable and so S is totally ordered. We now
state two important statements without proof.

Well ordering principle: Every set can be well ordered.

Zorn’s Lemma: Let S be a non empty partially ordered set in which every chain
I.e. every totally ordered subset has an upper bound, then S contains a maximal
element.

2.14. Totally Ordered Sets
Two elements a and b are said to be not comparable

ifa<£bandb <« a, that is, if neither element precedes the other. A total order in a
set A is a partial order in A with the additional property thata<b,a=borb<a

for any two elements a and b belonging to A. A set A together with a specific total
order in A is called a totally ordered set.

Example:|et R be a relation in the set of natural numbers N defined by ‘X is a
multiple of y’, then R is a partial order in N. 6 and 2, 15 and 3, 20 and 20 are all
comparable but 3 and 5, 7 and 10 are not comparable. So N is not a totally ordered
set, under this order relation.

Example:|_et A and B be totally ordered sets. Then Cartesian product A xB can be
totally ordered as follows: (a, b) < (a’,b’)ifa<a orifa=a andb <5’ This
order is called the lexicographical order of Ax B, since it is similar to the way
words are arranged in a dictionary.

Theorem: Every subset of a well-ordered set is well-ordered.

Check your progress



(1) Let R be the relation in A= {1, 2, 3, 4, 5} which is defined by ‘x and y are
relative prime’. Find the solution set of R and draw R on a coordinate
diagram of A xA.

(2) Let R be the relation in the natural numbers N defined by ‘x — y is divisible
8’. Prove that R is an equivalence relation.

(3) Let L be the set of lines in the Euclidean plane and let
a. R be the relation in L defined by X is parallel to y’.
b. R’ be the relation in L defined by ‘x is perpendicular to y’. State

whether or not R and R’ are equivalence relations.

(4) For each of the following relations in the natural number N:
a. “x>y”
b. “xisamultiple of y”
C. “X+3y=12"
d. “x<y”

e

. “X2:y2”

find whether or not each of the relations are (i) reflexive (ii) symmetric
(iii) anti-symmetric (iv) transitive.

(5) Let Z be the set of all integers. Define a relation R on Z in the following way.
R={(a, b)e Zx Z: (a—Db) is divisible by 7}.
Show that R is an equivalence relation.
Find all the distinct equivalence classes of the relation R.

(6) Show that if R and S be transitive relations on a set A,
then RUS need not be transitive on A in general.

(7) Prove that a relation R on a set A is symmetric if and only if R =R.

(8) Find the equivalence classes determined by the equivalence relation R on Z
defined by ‘aRb if and only if a — b is divisible by 5’ for a, b € Z, the set of
integer.

(9) Prove that an equivalence relation R on a set S determines partitions of S.
Conversely, each partitions of S yields an equivalence relation on S.

(10) Find all of the partitions of S = {p, q, r, s}.

2.15. Summary:



After reading this unit we should be able to recall the basic properties of relations,
to derive other properties with the help of the basic ones, identify various types of
relations, to understand the relationship between equivalence classes and partition,
recall the basic properties of order relations, derive other properties with the help
of the basic ones, identify infimum and supremum and totally ordered set.

2.16. Terminal Questions

Let A={a,b,c}, B={c,a,b},A=B

Prove that basic facts about union of sets A€ B & AUB =B
Provethat A—B=ANB’

Prove that (R™)"1 =R

AR

The diagonal or the equality relation & in a set S is an equivalence
relationinS.Foritx,y € Sthexyiff x =y.

6. LetarelationR inthe set N of natural numbers be defined by :

if m,n € N.thenmRn if m and n are both odd.

7. Letx be aset.Consider the relation R in (e(x)), given by :
for A,B € (e(n))ARB if A € B.
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3. 1. INTRODUCTION

As we know the notion of a map is one of the most fundamental concepts in
mathematics and is used knowingly or unknowingly to our day to day life at every
moment. Computer Science is an area where a number of applications of maps can
be seen. We thought it would be a good idea to acquaint with some basic results
about maps. Perhaps, we are already familiar with these results. But, a quick look
through the pages will help us in refreshing our memory, and we will be ready to



tackle the course. We will find a number of examples of bijective maps, direct and
inverse image, Inverse map, composition of maps and various types of maps.

3. 2. Objectives
After reading this unit you should be able to:

e Describe a map in its different forms
e Derive other properties with the help of the basic ones
e Define a map and examine whether a given map is

one —one/onto
3.3. Mapping

Here we shall present some basic facts about functions which will help us refresh
our knowledge. We shall look at various examples of maps and shall also define
inverse maps.

Definition: If X and Y are two sets, a map f from X to Y, is a rule or a
correspondence which connects every member of X to a unique member of Y. We
write f: X —> Y (read as “f is a map from X to Y) X is called the domain and Y is
called the co-domain of f. We shall denote by f(x) that unique element of Y which
Is associated to X.

Note (1. 1). The map f from X to Y is writtenasf: X > Y
Note (1. 2). To find if f: X — Y is a map, we check that

(1) Every element of X must have an image in Y.
(2) If X1, X2 €X, then x;=X, =>f(xy) =f(xy).

Note (1.3): Mapping of set X to a set Y, when X and Y are sets of numbers are also
called functions.

Example: Let Z, be the set of positive integers and E the set of even positive
integers. Let map f: Z.—E be defined by f (m) =2m V meZ.. Hence range

f=f(z,)=E.

Example: Let R be the set of the real numbers. Let function f: R— R be given by
f(x) =e*, xeR, since €*> 0 for VxeR, therefore



range f = R, (set of positive real numbers), since for every xeR,, X = f(log, X).

Example: Let X = set of all students of Allahabad University, Y = Set of ages in
years. Since every student has some unique age, so we can define a map

f: X > Y by f(x) =y. Where x is student and y is his age in years.
Example: f: R— R defined by f(x) = log x, xeR is not a map or function, since

f(-3) =log (- 3) is not a real number. But f: R, >R where R, is the set of positive
real numbers defined by f(x) =log x is a map.

Example: f: R, = R defined by f (x) =Vx is not a map, since f (4) = V4 = +2. Thus
4 has two f-images. But f(x) = + Vx (positive value of the square root of x) will be
a map or function from R, to R.

Example: The rule f(x) = x/2 does not define a function f: N — Z as odd natural
numbers like 1,3,5 ....... From N cannot be connected to any member of Z.

Example: Every natural number can be written as a product of some prime
numbers. Consider rule f(x) = a prime factor of x, which connects elements of N.
Here since 6 = 2 x 3. f(6) has two values : f(6) = 2 and f(6) = 3. This rule does not
associate a unique number with 6 and hence does not give a function from N to N.

Example: f: N —> R, defined by f(x) = - x. is a map since the rule f(x) = - x
associates a unique member (- x) of R to every member x of N. The domain here is
N and the co-domain is R. To describe a map completely we have to specify
completely we have to specify the following three things:

a. the domain

b. the co-domain, and

c. the rule which associates a unique member of the co-domain to each member of
the domain.

The rule which defines a map need not always be in the form of a formula. But it
should clearly specify (perhaps by actual listing) the correspondence between X
and Y.



If f: X > Y, then y = f(x) is called the image of x under f or the f-image of x. The
set of f-image of all members of X, i.e., {f(x): x € X} is called the range of f and is
denoted by f(X). We see that f(X) € Y.

Remark (a): We shall consider maps for each of which whose domain and co-
domain are both subsets of R. Such maps are called real map or real-valued maps
of a real variable. We shall, use the word ‘map’ to mean a real map.

(b) The variable x used in describing a map is often called a dummy variable
because it can be replaced by any other letter. Thus, for example, the rule f(x) = -
X, X € N can as well be written in the form f(t) = -t, t € N or as f(f) = -u, ueN. The
variable x (or t or u) is also called an independent variable, and f(x) is dependent
on this independent variable.

Graph of a map We draw the graph of a map f: X — Y, we choose a system of
coordinate axes in the plane. For each x €X, the ordered pair (X, f (X)) determines a
point in the plane (see fig. 1). The set of all the points obtained by considering all
possible values of x is the graph of the map f. Let us consider some more examples
of maps and their graphs.

Yk

(x£(x)=(x,y)

0 X {.

Fig.1
3.4. Type of maps:

Definition: A map f: X — Y is said to be injective or one-one if for xy, XX, f(xy)
= f (X2) = X1=x, or equivalently x; # X, = f (x1) = f (x2).

It is clear that if the mapping f is injective, then distinct elements of X have distinct
images in Y.



Definition: A map f: X — Y is said to be surjective or onto if range f =Y i.e. f(X)
=Y. Itis clear that if f is surjective, then V yeY 3 x e X such that f(x) = .

Definition: A map f: X — Y is said to be bijective if it is both injective and
surjective. X is said to be equipotent to Y, we write X =~ Y. A bijective map f is also
called a one-one correspondence.

Example: The map f: Z,— E given in example (6.1) is injective, because for m,
neZ,, f(m)=f(n) = 2m =2n = m=n. fis surjective also, since for VyeE,

3 y/2 €Z, such that f(y/2) =y. Thus f is a bijection or one-one correspondence
from Z, to E.

Example: The map f: R — R given by f (X) =¢*, xeR is injective but not surjective
for if x, y eR then f(x) = f(y) =e* = ¢’= x =y therefore f is injective.

Again ¢ > 0 VYxeR, hence 0 or any negative real number is not the f-image of any
real number of the domain set, and so f is not surjective.

Example: Let C be the set of complex numbers and R the set of real numbers. The
map f: C — R given by f(x + iy) = vV (x*+ y?) is neither injective nor surjective for
f(x+iy) = f(x — iy) = V(*+y?) and range (f) = {reR, >0} # R.but x + iy # x — iy

Example: The map f: R — R given by f(x)=sin x is neither injective nor
surjective for f(x) =f(r - X)=sin x but x # ™ — xand there does not exist xeR such
that f(x)=sin x = 2.

Example: If A and B are two finite sets having the same number of elements, then
f: A>B is injective (one-one) if and only if it is surjective (onto). For, let A and B
both have n elements, if f: A — B is injective then the n elements of A will have n
distinct images in B which will be the n elements of B and hence every element of
B is the image of some element of A and so f is surjective.

Again if f is surjective, then each of the n element of B will be the image of at least
one element of A, but any element of B cannot be the image of more than one
element of A, for in that case A must have more than n elements. Hence each
element of B is the image of exactly one element of A. So f is injective.



Example: Show that there exists a bijection between the set N of natural numbers
and the set Z of integers. Define f: N — Z as follows:

f (m) =m/2 when m is an even natural number,
f (m) =- (m—1)/2 when m is an odd natural number.
This map is one-one correspondence (bijective).

Inclusion and Identity Maps: Let Xc Y and let f: X—Y be given by f(x) =x.
VxeX. Then fis called inclusion map of X into Y. An inclusion map is generally
denoted by i, in place of f. the inclusion map of X into X is called the identity map
on X and is denoted by I, , Thus I,: X — Xisgiven by I, (x) =x V xeX.

Equality of Mapping: Let f and g be two maps from X to Y, that is both f and g
map the set X to the set Y. We define f = g if f(x) =g (x) VxeX.

x*—4

If f; R— is defined as f(x)= o

when x=2 and f (2) = 4

and g: R—>R is defined as g(x) =x+2 VxeR. Then f =g.
3.5. Direct and Inverse image of sets

Letf: X—>Y beamap and let Ac X, B Y, then the direct image of A under f
denoted by f (A) and is given by f (A) ={yeY | 3 xeA with f (x) =y},

elma

that is f (A) is the set of images of all the elements of A. the above diagram
illustrates it. Thus xeA = f (x) ef (A) the reserve implication viz

f (X)ef (A) = xeA is only true when f is injective. If xeX, then f ({x}) = {f X)}
and f(X) = range f and f (¢) =¢.



The inverse image of B under f denoted by f*(B) is given by f *(B) = {xeX: f(x)eB
} thus xef *(B) =3 xe X such that f(x)eB.

The reverse implication viz f(x) eB = xef * (B) is also true.
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In case there is no element xe X such that f(x) B

(which may happen when f is not surjective), then f *(B) =¢.

Example: Let f: R—>R be given by f(x) =X, xeR.

Let A= {xeR: 1<x<2} =[1,2] cR.

Then f (A) = {yeR: 1 <y<4} =[1, 4]. [Since 1< x<2= 1< x* <4]

Let B={yeR: 4<y<9}=[4,9]. Thenf*(B)=[-3,- 2] U [2, 3].

If C=[- 4, -1], then f (C) =¢, since xeR such that f(x) =x* €[4, -1],

does not exist.

Example: (a) Let A= {n=x: nis an integer} and R be the set of real numbers.
Let f: A — R be defined by f (@) = cos a VaeA. Find f (A) and f *({0}).

Now f (nz) =cosnz=+1or-1, Hencef (A) ={- 1, 1}.

If f () =0 or cos o =0 or o = (2n + 1} %
Hence f ({0})= {(2n+1) g| n ez}

Now (2n+1)g ¢ {nn}, So, f*0)=¢.



Example: Let f: X — Y be a map and let A and B be subsets of X, then
(i) ACB = f(A) cf(B)

(i) f(AUB)=f(A) Uf(B)

(iii) f (ANB) <f (A)N f (B). Equality holds when f is injective.
Proof: (i) If A € B, then xe A =xeB. Now ye f (A)

= I xeAs.t.f(x)=y.

= I xeBs.t.y=f(X). 2y =f(x)e f (B) since xeB, = f(x)ef (B)
Therefore yef (A) = yef (B) hence f (A)< f (B).

(i) yef (AU B)=3 xe(AUB)s.t. y =1 (x)
=3IxeAorxeBs.t.y=1(x)

=y =1(x) ef (A) ory =f (x) €f(B). (since xeA =f (x) f (A)
and xeB= f (x)e f (B)).

Hence, y € f (AUB) =y e f (A) Uf (B).

Therefore f (AU B) < f (A) U f (B).

Again ACA U B, BSA U B therefore by (i) f (A) < f (A U B),
f (B) < f (AUB) therefore, f (A)U f (B)< f (A UB).

From the above we get f (AU B) =f (A) U f (B).

(ili) AN BEA, AN B < B, therefore by (i) f (AN B) < f (A),

f (ANB) < f (B). Hence, f(ANB) < f (A) N f (B).

Note: f (A) Nf (B) <f (ANB) is not true. Since ye f (A) Nf (B)
=yef (A) and yef (B) =3x;,€A | f(x;) =y and

3 x,€B such that f(x,) =y # 3 x €A NB such that f(x) = y.



Since x; € A but x; may not be an element of B, similarly x,eB but x, may not be
an element of A, so there may not exist a common element x of A and B such that

f()=y.

But if f is injective, then f(A)Nf(B) =f(ANB) will be true and
Hence, in that case f(ANB)=f(A)Nf(B).

Example: When f (A) Nf (B) € f (ANB).

Consider map f: R—>R given by f(x) = x?, It is clear f is not injective.
Let A={-1, -2, -3, 4} and B={1, 2, -3} be subsets of Dom f.

Then ANB = {-3}. So, f (A N B) = {(-3)*}.

Now f(A)={(-1)°, (-2), (-3)%, (4}, f (B)={1", 2, (-3)°}, (x*= (%))
So, f(A) Nf(B)={1% 2% (-3} ¢ {(-3)*}.

So, f(A) N f(B) £ f (AN B).

Example: Let f: X — Y be a map and let A and B be subsets of Y.
Then () A< B=f*A)=fB)

(i) f (A U B) =f *(A) U f "'(B)

(i) f (AN B)=f*(A) NTf(B).

Proof: (i) xef *(A) =f(x) €A =f (x) B (since ACB)

So, xef *(B). Therefore, f (A) < f'(B).

(i) Xef' (AUB) = f(x) cAUB

&f (x) eAor f(x) eB exef 1(A)

or xef'(B) & xe f (A) U f * (B).

Therefore f*(A U B) = f'(A)U f(B).

(iii) xef (A N B) = f(x) e AN B



& f(x) eAand f (x) eB < xef! (A)
and xef*(B) &xef(A) N f* (B).
Therefore f* (AN B) = f1(A) N f*(B).

Thus (i) and (iii) show that union and intersection are preserved under inverse
image.

Check your progress

(1.1) Prove that f: X — Y is injective iff f'({y}) = {x} Vy ef (X), and some xeX
(1.2) Prove that f: X — Y is sujrective iff '(B)# ¢ V BS Y and B # ¢.
(1.3) Prove that f: X — Y is bijective iff VyeY, f}({y}) = {x}, xe X.
(1.4) if: X>Yand Ac X, B C Y, prove that
(a). f(f'(B)) CB.
(b). f* (f(A)) 2 A.
(©). 1Y) = X.
(d) letf: X — Y and let A € Y, then prove f'(Y —A) =X —f" (A).
(1.5) Give examples when
(i) f (F* (B)) is a proper subset of B
(i) A is a proper subset of f*(f (A)).

3.1.6. Answer/solution

1.5 (i) Consider map f: R—R given by f (x) = x. So f is not surjective
Let B={-1,-2,3,4} cco-dom f. Then f*(B) = {#,/3, 2},

hence f (f'(B)) = {(+ V3 )%, (£2)°} = {3, 4}.
Thus f (f*(B)) is a proper subset of B.



(if) Consider the above map. Let A= {- 1, -2, 3, 4} dom (f).
Then f (A) = {17, 22, 3%, 4°}.

Hence f* {f (A)} = { 1, +2, +3, +4} (Prove).

Thus A is a proper subset of f*((f (A)).

3.6. Inverse map

Let f: X — Y be a map. Let us try to define a map

¢:Y — X given by : if yeY, then ¢y) = x where f(x) =Y.

iIf @is to be map, then every yeY must be the f image of some xeX, that is f must
be surjective. Further two different elements x; and x, of X must not have the same
f-image yeY, for in that case ¢ (y) =x; also x,, S0 ¢ cannot be a map. Hence f must
be injective. Thus when f is bijective we can define the above map ¢ which is
called inverse of f and will be denoted by f*. Thus the inverse of a bijective map f
is defined as: f*: Y — X given by VyeY, f'(y) = xeX such that f(x) = y.

As we will notice, the map g is also one-one and onto and therefore it will also
have an inverse. You must have already guessed that the inverse of g is the map f.
From this discussion we have the following:

If f is one-one and onto map from X to Y, then there exists a unique map

g: Y — Xsuch that for eachy € Y, g(y) = x < y = f(x). The function g so defined
Is called the inverse of f. Further, if g is the inverse of f, then f is the inverse of g,
and the two map f and g are said to be the inverse of each other. The inverse of a
function f is usually denoted by f*.

Solve the equation f(x) = y for x. The resulting expression for x (in terms of y)
defined the inverse map. Thus, if f (X) = x€5+ 2, we solve XES+ 2=y for x. This
gives us X = {5 (y — 2)}°. Hence f'is the map defined by f*(y) = {5(y-2)}*°.
Graphs of Inverse map

Let f; X — Y be a one-one and onto map, and let g: Y — X be the inverse of f. A
point (p, q) lies on the graph of f < q. = f(p) < p =g (q) < (q, p) lies on the



graph of g. Now the points (p, q) and (q, p) are reflections of each of the with
respect to (w.r.t.) the line y = x. Therefore, we can say that the graphs of f and g
are reflections of each other w.r.t. the line y = x.

Therefore, it follow that, if the graph of one of the map f and g is given, that of the
other can be obtained y reflecting it w.r.t. the line y = x. As an illustration, the
graphs of the maps y = x* and y = x*® are given in Fig. 8. Do you agree that these
two maps are inverse of each other? If the sheet of paper on which the graphs have
been drawn is folded along the line y = X, the two graphs will exactly coincide.
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Y

Fig. 8

Since we know that sin (x + 2r) = sin X, obviously this map is not one-one on R.
But if we restrict it to the interval [ - © + 2], we find that it is one-one. Thus, if
f(x)=sin x V¥ x € [x/2], n/2], then we can define ' (x) =sin™(x) =y if siny = x.

Similarly, we can define cos™ and tan™ maps as inverse of cosine and tangent maps
if we restrict the co-domain to [0, =] and |- ©/2, ©/2[, respectively.

Remarks: Inverse map of f should not be confused with the inverse image of a
subset under f, denoted by the same symbol viz ™.

Notel: Inverse of the map f: X — Y only exists when f is bijective that is the
inverse map f*: X — Y only exists when f is bijective and the inverse map f*: Y —
X is such that f((y) = x & f(x) = y.

Note2: Let X =[-n/2, n/2], Y =[- 1, 1]. Letf: X — Y be given by f (x) = sin x,
xeX. It can be easily proved that f is a bijection. So f*: Y — X given by

f-l (y) = Sin-l y = xEX. SUCh that sin x =y ThUS Sl-n_l YV =X & sin x =y



Note3: Iff: X — Y is a bijection, then the inverse map f: Y — X is also a
bijection. For let f*(y;) = x;, where y; €Y and x;eX. Then f(x,) =y, and f'(y,) = Xa,
Y, €Y and x, eX. Then f (Xp) = yo. Now fi(y)= fl(yo)=x= % = f(x) = (%)

[since f is map] =y:= y,. Therefore f* IS injective.

Again since f is bijective, every element yeY is the f-image of a unique element
x eX. Hence every xe X is the ' image of an element yeY. Therefore, f*is
surjective.

3.7. Composition of Maps

Letf: X —> Y and g: Y — Z be two maps. Their composite denoted by (gof) is the
map gof: X — Z given by (gof)(x) =z such that for some yeY, f(x) =yand g (y) =
z. Thus we get (gof) (X) =z =g(y) =g (f (X)).

Let f: X >Y and g: Y — Z be two maps. We define a function h: X — Z by setting
h(x) = g(f(x)). To obtain h(x), we first take the f-image, f(x), of an element x of X.
This f(x) € Y, which is the domain of g. We then take the g image of f(x), that is,
g(f(x)), which is an element of Z. This scheme has been shown in Fig. 11 .

Z

Fig. 11

The function h, defined above, is called the composite of and g and is written as
gof. Note the order. We first find the f-image and then is g-image. Try to
distinguish it form (fog), which will be defined only when Z is a subset of X.
Also, in that case, fog is a function fromY to Y.

Example: Consider the function f (x) = x? Vx eR and
g(x)= 8x + 1 Vx eR.
(fog) is a function from R to itself defined by (fog)(x) = f(g(x))



= f(8x + 1) = (8x + 1) Thus (gof) are both define, but are different from
each other.

The concept of composite map is used not only to combine map, but also to look
upon a given map as made up of two simpler maps.

For example, consider the function. h(x) = sin (3x + 7). We can think of it as
the composite (gof) of the function f(x) = 3x + 7 Vx eRand g(u) =
sinu Yu € R.Now let us try to find the composites fog and gof of the functions:

f(x) = 2x + 3VxeR,andg(x) = (1/2)x- 3/2 ¥x € R.Note that f and

g are inverse of each other now gof (x) = g(f(x)) = g2x+3) = %(Zx +

3)—% = x. Similarly fog(x) = f(g(x)) = f(x/2 —3/2) = 2(x/2 —

3/2) +3 = x. Thus, we see that gof(x) = x and fog(x) = x for all xeR. In
other words, each of gof and fog is the identity map on R. We have observed
here is true for any two maps f and g which are inverse of each other. Thus, if
f:X ->Yandg:Y — X are inverses of each other, then gof and fog are identity
functions. Since the domain of gof is X and of fog isY, we can write this as:

gof = ix,fog = iy
Note: Ingeneral gof # fog.

Note: The maps being particular types of relations, composite of maps has been
defined exactly in the same way as composite of relations.

Example: let f: R— R be given by f(x) = e*,xeR and

g: R - R begiven g (y) = siny,yeR. Then (gof): R — R given by
(gof) (x) = g(f ) = g (e*) = sin(e”).

Here Range f = f (R) = R" (the set of positive real numbers) € R.

Here(fog) is also defined, viz. (fog): R— R given by

(fog) @ = f(g(y) = f(siny) = 5™, VyeR.

Hence (fog) (x) = f(g(x)) = e5™*.

Thus (gof) # ( fog).



(Since (gof)(0) = sinl # 1 = (fog)(0))

Example: Letf: R — R be given by f(x) =x° + 3

and g: R — R be given by g(x) =x*—7.

Then (gof): R — R given by (gof) (x) = g (f (X)) = g(x*+3) = (x*+3)*— 7.
Now (fog): R — R given by (fog) (x) =f (g (x))

= f(x* — 7) = (x* — 7)*+3. Thus (gof) # (fog).

Remarks: If (gof) is defied, then (fog) need not be defined.

Theorem: Let f: X =Y, g:Y - Z,h: Z - W be three maps.

Then (ho(gof)) = ((hog) of), that is composition of maps is associative just
like the composition of relations, as shown below.

Both (ho (gof)) and ((hog) of) maps from X - WW.

Now (ho (gof)) (x) = h ((gof)(x)) = h(g (f (x)) and

((hog) of ) x = (hog) (f (x)) =h (g (f (x))) Vx €X.

Hence (ho (gof)) = ((hog) of).

Theorem: Let f: X — Y be a bijection, prove that f* o f = Iy and fof '= Iy.
Solution: Let f(x) = y,xeX. Thenx =f* (y). Now f* o f : X — X, given by
(Flof) (x) = F1(f(x)) = F(y) =x=1x(x).

Therefore (f* of) (x) = Ix(x) VxeX.

Hence f of = Ix. The other part can similarly be proved.

Example: Let f: X — Y and g: Y — Z be both bijection.

Prove that go f is bijection and (go f) '=f ' og " (reversal rule)

Solution: If Xy, XoX, then (go ) (x1) = (go f) (x2)



= g (f(x1) =g (f (x2))

=f (x1) = f(xp) (since g is injective) = x;= X, (since f is injective).

Hence go f is injective.

Now we prove go f is surjective.

Since gof: X— Z. and (gof) (X) =g (f (X)) = g(Y)

(since f (X) =Y, f being surjective) =Z (since g (Y) = Z, g being surjective)

Therefore, gof is sujrective. Hence gof is bijective.

Now both (gof) *and f* og™* map from Z —X.

Let (gof) * (z) = x where zeZ, xez. Then (gof) (x) =z.

Let f(x) =y. Then g(y) =z. Now (f*og™) (2) = f* (9 7'(2))

=f* (y)[since g(y) =z= g (2) = y]=x. [since f (x) =y = f* (y) =x].

Hence (gof) * (z) = (F'og™) (z) VzeZ. Consequently, (gof) *=f'og™.
Check your progress

(2.1) Letf: X —> Y and g: Y — X be both bijection such that gof = Iy

and fog = ly. Prove that g = f*and f = g*. Also prove that

(i) gof injective = fis injective and

(ii) gof surjective = g is surjective.

(2.2) Let Z be the set of integers. Define f: Z — Z x Z by

f(m)=(m-1,1), me Z.

g:ZxZ—>Zbyg(m,n)=m+n,mneZ

Prove that gof = I,. Discuss the mapping fog.

3.8. Different useful maps



(1) A constant map: The simplest example of a map is a constant map. A
constant map sends all the elements of the domain to just one element of the co-
domain. For example, lef f: R — R be defined by f(x) = 1. V x €R. The graph of
Is as shows in fig. itisthey =1
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In general, the graph of a constant map f: R — R be defined by f(xX) =c. V x eRis
straight line which is parallel to the x-axis at a distance of |c| units from it.

(2) Absolute Value function: Another interesting function is the absolute value
map (or modulus function) which can be defined by using the concept of the
X, if x>0

absolute value of a real number as : f(x) = x|= .
—X, If x<0

The graph of this map is shown in fig. 3. It consists of two rays, both starting at the
origin and making angles /4 and 3n/4, respectively, with the positive direction of
the x-axis.

Y A

Fig. 3



(3) The identity Map: Another important example of a map is a map which sends
every element of the domain to itself. Let X be any non empty set, and let f be the

map on X defined by setting f(x) = x V x € X. this map is known as the identity
map on X and is denoted by iy. The graph of ir is the line y = x.
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(4) The Exponential Map: If a is a positive real number other than 1, we can
defineamap fasf: R - R, f (x) =a" {a >0, a=}. This map is known as the
exponential map. A special case of this map, where a = e, is often found useful.
Fig. 5 shows the graph of the map f: R — R such that f (x) = *. This map is also
called the natural exponential map. Its range is the set R™ of positive real numbers.
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(5) The natural logarithmic Map: This map is defined on the set R™ of positive

real numbers, with f: R*— R such that f(x) = 1n (x). The range of this map is R. Its
graph is shown in Fig. 6.
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Fig. 6

(6) The Greatest Integer Map: Take a real number x. Either it is an integer, say n
(so that x = n) or it is not an integer. If it is not an integer, we can find (by the
Archimedean property of real numbers) an integer n, such that n < x < n + 1.
Therefore, for each real number x we can find an integer n, suchthatn <x<n+ 1.
Further, for a given real number x, we can find only one such integer n. We say
that n is the greatest integer not exceeding x, and denote it by [x].

For example, [3] = 3 and [3.5] = 3, [- 3.5] = -4. Let us consider the function the
map defined on R by setting f(x) = [x]. This map is called the greatest integer map.
The graph of the map is a shown in Fig. 7. Notice that the graph consists of
infinitely many line segments of unit length, all parallel to the x-axis.
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(7) Other Maps: The following are some important classes of functions.

a. Polynomial Maps: f (x) = ax" + a;x"*+ ......... a, where ag, ay,.....,ap are
given real numbers (constants) and n is a positive integer.

b. Rational Map: f(x) = g (x) / k(x), where g (x) and k(x) are polynomial
function of degree n and m. this is defined for all real, for which k (x) # 0.

c. Trigonometric or Circular Map: f(x) = sin x, f(x) = cos X, f(x) = tan x, f()
= cos X, f(x) = sec x, f(x) = cosec x.

d. Hyperbolic Map: f(x) = coshx = @’ f(x) =sinh x = (e_—ze_)

Check your progress

(6) given below are the graphs of four map depending on the notion of absolute
value. The map sare X — - [x|, x > |x| + 1, x = |x + 1|, X = | x — 1], though not
necessarily in this order. (The domain in each case is R). Can you identify them?
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(7) Compare the graphs of 1n x and €* given in Fig. 6 and 7 and verify that they are
inverses of each other. If a given map is not one-one on its domain, we can choose
a subset of the domain on which it is one-one, and then define its inverse map. For
example, consider the map f(x) = x.

(8) Which of the following maps are one-one?

(@) f: R — R defined by f(x) = ||
(b)f: R —> R defined by f(x) =3x -1
(c) f: R —> R defined by f(x) =x
(d)f: R > R defined by f(x) = 1

(9) Which of the following maps are onto?

(@) f: R — R defined by f(x) =3x + 7

(b)f: R — R defined by f(x) = Vx

(c)f: R — R defined by f(x) = x* + 1

(d)f: R - R defined by f(x) = 1/x
(10) Show that the map f: X — X such that f (x) = >;_+1 where X is the set of al
real numbers expect 1, is one-one and onto. Find its inverse.

(11) Give one example of each of the following:

(a) a one-one map which is not onto.
(b) Onto map which is not one-one
(c) A map which is neither one-one nor onto.

3.9. Operation on Maps
1. Scalar Multiple of a Map



Consider themapf:x > 3x+ 1V x e R.themapg:x —> 2 (3x*+1) V xxe R is
such that g (x) = 2f(x) V x € R. We say that g = 2f, and that g is a scalar multiple
of by 2. In the above example there is nothing special about the number 2. We
could have taken any real number to construct a new map from f. Also, there is
nothing special about the particular map that we have considered. We could as well
have taken any other map. This suggests the following definition:

Let f be a map with domain D and let k be any real number. The scalar multiple of
f by k is a map with domain D. It is denoted by kf and is defined by setting (kf) (x)
= kf(x). Two special cases of the above definition are important.

(i) Given any map f, if k = 0, the map kf turns out to be the zero map. That
i5,0.0=0.

(i) Ifk=-1, the map kf is called the negative of f and is denoted simply by
—f instead of the clumsy —f.

2. Absolute Value Map(or modulus map) of a given map

Let f be a map with domain D. The absolute value map of f, denoted by |f| and read
as mod f is defined by setting (| f|) (x) =] f(x) |, for all x € D.

Since | f(x) | = f(x), if f(x) > 0, find f and |f| have the same graph for those value of
x for which f (x) > 0.Now let us consider those values of x for which f(x) < 0.

Here | f(x) | = - f(x). Therefore, the graphs of f and |f| are reflections of each other
w.r.t. the x-axis for those value of x for which f(x) < 0.
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As an example, consider the graph in Fig. 10(a). The portion of the graph below
the x-axis (that is the portion for which f(x) < 0) has been shown by a dotted line.



To draw the graph of [f| we retain the undotted portion in Fig. 10 (a) as it is and
replace the dotted portion by its reflection w.r.t the x-axis (see fig. 10b)

3. Sum, difference, Product and Quotient of two Maps

If we are given two map s with a common domain, we can form several, new maps
by applying the four fundamental operations of addition, substraction,
multiplication and division on them.

(i)  Define amap s on D by setting s(x) = f(x) + g(x).
The maps is called the sum of the maps f and g, and is denoted by
f+g.Thus, (f + g)(x) = f(x) + g(x)

(i) Defineamap d on D by setting d(x) = f(x) - g(x).
The map d is the map obtained by subtracting g from f, and it denoted by
f-g.-Thus, forallx eD.(f - g) (x) = f(x)- g(x).

(iii) Define a map p on D by setting p(x) = f(x) g(x).
The function p, called the product of the function f and g, is denoted by
fg.Thus, forall x e D.(fg) (x) = f(x) g(x)

(iv) Defined a function g on D by setting g (x) = f(x)/g (x), provided
g(x) =0 for x € D. The function q is called the quotient of f by g and is

denoted by £/g. thus,(f/g) (x) = f(x)/ g(x) (g (x) =0 for any
x €D).

Remark: In case g(x) = 0 for some x € D. We can consider the set, say D, of all
those values of x for which g(x) =0, and define f/g on D by setting (f/g) (x) =

f(x)/g(x) VxeD.

Example: Consider the function f(x) = x* and g(x) = x*. Then the function f + g, f
— g, fg are defined as (f + g) () = x* + X,

(f—g) (x) =x" ~x and (fg) (x) = x°

Now, g(x) = 0 < x> = 0 < x = 0. Therefore, in order to define the function f/g, we
shall consider only non-zero values of x, If x = 0, f(x)/g (x) = x*/x*=1/x. Therefore
f/g is the function. f/g(x) = 1/x whenever x = 0.

All the operations defined on functions till now, were similar to the corresponding
operatios on real numbers. In the next subsection we are going to introduce an
operation which has no parallel in R. Composite functions play a very important
role in calculus.



(a) Even Function: A function f, defined on R is even, if for each x € R, f(- X) =
f(x). A function f defined on R by f(x) = x* ¥ x e R. Notice that f(- X) = (- x)*= X*=
f(x) V¥ xe R. This is an example of an even function. We find that the graph (a
parabola) is symmetrical about the y-axis. If we fold the paper along the y-axis, we
shall see that the parts of the graph on both sides of the y-axis completely coincide
with each other. Such functions are called even functions.

AY
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O

Fig. 12

(b). Odd Map: A map f defined on R is said to be an odd map if

f(—x) = -f(x) ¥ x e R. Now let us consider the map f defined by f(x) = x* ¥ xe R.
We observe that f(—x) = (- x) = (-x )= -x? = -f(x) V¥ x e R. If we consider another
map g given by g(x) = sinx we shall be able to note again the g(—X) =sin x =—
g(x). Such maps are called odd maps. The graph of an odd map is symmetric with
respect to the origin. In other words, if we turn the graph of an odd map through
180° about the origin we will find that we get the original graph again. Conversely,
if the graph of a map is symmetric with respect to the origin, the map must be an
odd map. The above facts are often useful while handling odd maps.

Check your progress

(12) Given below are two examples of even maps, along with their graphs. Try to
convince yourself, by calculations as well as by looking at the graphs, that both the
maps are, indeed, even maps.

The absolute value map on R f (x)= |x|.The graph is shown alongside.



Y A

(a)
Fig.13(a)
The map g defined on the set on non-zero real numbers by setting g(x) = 1/x%,

x#0.The graph of g is shown alongside

32-9 12 3x
(Fig. 13b)
(13) There are two maps along with their graphs. By calculation as well as by
looking at the graphs, find out for each whether it is even or odd.

(@) The identity mapon R ; f(X)= x
Y A

bl

F
fig.14 (a)
(b) The map g defined on the set of non-zero real numbers of setting g(x) =

1/x, x=£0
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(14) Which of the following maps are even, which are odd, and which are neither
even nor odd?

(@)x > x*+1,VxeR
(b)x > x*+1,Vx eR
(c)x >cosx+1,VxeR
(d)x > x|x,+1, VxeR

0 if xis rational
, If X is irrational

€)1 (0= {1

Note: There are many map which are neither even nor odd.

Consider, for example, the map f (x) = (x + 1)* Here f(-x) = (- x + 1)% Is f(x) =
f(—x) V x € R? Here f is not an even map. Is f(x) = —f (-x) V xe R? fis not an odd
map.

3.10. Monotonic Maps
We consider two types of maps: (i) Increasing and (ii) Decreasing

Any map which conforms to any one of these types is called a monotone map.
Does the profit of a company increase with production? Does the volume of gas
decrease with increase in pressure? Problems like these require the use of
increasing or decreasing maps. Now let us see what we mean by an increasing
-X, If xX<0

map. Consider the map g defined by  g(x) ={ Lif x >0

Note that whenever x, > X3, implies g(Xz) > g(X1).
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In other words, as x increases, g(x) also increases. In this case we see that if x,>X;,
Equivalently, we can say that g(x) increase (or does not decreases) as x increases.
Map like g is called increasing or non-decreasing map.

Thus, a map f defined on a domain D is said to be increasing (or non-decreasing)
if, for every pair of elements x; X,e D, X, > X;= f(X,) > f(x;). Further, we say that
f is strictly increasing if X, > x;= f(x2) > f(x1) (strict inequality).

Clearly, the map g (x) = x° discussed above, is a strictly increasing map We shall
now study another concept which is, in some sense, complementary to that of an
increasing map. Consider the map f; defined on R by setting.

1if x<-1
f.(x) ={—x,if —1<x <1 The graph of f; is as shown in
-1,if x>1
YA
: X
1 1 "
-1
Fig.(16)

From the graph we can easily see that as x increases f; does not increase.

That is, X, > X; = f1(X,) < fi(x1). Now consider the map f, (x) = - X (xe R)



The graph of f, is shown in

\ 4

Graph of ;
fig. (17).

Since X, > X2 X°> X°=2 (X)) < fo(xq), we find that as x increases, f,(x)
decreases. Maps like f; and f, are called decreasing or non-increasing maps. A map
f defined on a domain D is said to be decreasing (or non-increasing) if for every
pair of elements X, X, X, > X;= f(X,) < f(x1). Further, f is said to be strictly
decreasing if x, > x;= f(x,) < f(x1).

We have seen that, f, is strictly decreasing, while f; is not strictly decreasing.

A map f defined on a domain D is said to be a monotone map if it is either
increasing or decreasing on D. The maps (g, f;, f,) discussed above are monotone
maps. The word ‘monotonically increasing’ and ‘monotonically decreasing’ are
used for ‘increasing’ and ‘decreasing’, respectively.

There are many other maps which are not monotonic. f (x)=x*(x € R).

This map is neither increasing nor decreasing in R. If we find that a given map is
not monotonic, we can still determine some subsets of the domain on which the
map is increasing or decreasing. The map f(x) = x* is strictly decreasing on ] - o,
0] and is strictly increasing in [0, oo [.

3.11. Periodic Maps

A map f defined on a domain D is said to be a periodic map if there exists a
positive real number p such that f(x+p) = f(x) for all x € D. The smallest positive
integer p with the property described above is called the period of f.



Periodic maps occur very frequently in application of mathematics to various
branches of science. Many phenomena in nature such as propagation of water
waves, sound waves, light waves, electromagnetic waves etc. are periodic and we
need periodic maps to describe them. Similarly, weather conditions and prices can
also be described in the term of periodic maps. We must have a similar situation
occurs in the graphs of geriodic maps. Look at the graphs in Fig. 18.

6 5 <5 B 2 44 0 1 2 3 4 5 6 x
YA
1
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Fig. 18

In each of figures shown above the graph consists of a certain pattern repeated
infinitely many times. Both these graphs represent periodic maps. Consider the
graph in Fig. 18(a). Te partition of the graph lying between x = -1 and x = 1 is the
graph of the map x — |x| on the domain — 1 <x < 1.

This portion is being repeated both to the left as well as to the right, by translating
(pushing) the graph through two units along the x-axis. That is to say, if x is any
point of [-1, 1], then the ordinates at x, X £2, x+4, X £ 6, ....... are all equal. The
map f defined by f(x) = |x|, if -1 <x<1

The graph in Fig. 18(b) is the graph of the since map, x — sin X, V x € R. You will
notice that the portion of the graph between 0 and 27 is repeated both to the right
and to the left. You now already that sin (x + 27) =sin x, V x € R.

We know, tan (X + nt) =tan x ¥ n € N. This means that nt, n € N are all periods
of the tangent map. The smallest of nm, is the period of the tangent map.

Remark: Monotoncity and periodicity are two properties of maps which cannot
exist together, a monotonic map can never be periodic, and a periodic map can
never be monotonic.



In general, it may not be easy to decide whether a given map is periodic or not. But
sometimes it can be done in a straight forward manner. Suppose we want to find
whether the map f: x & x* V x e R is periodic or not. We start by assuming that it
Is periodic with period p.Then we must havep>0and f(x + p) = f(x) Vx =
(x + p)?=x* vx = 2xp + p°= 0Vx = p2x + p) = 0 x

Considering x = -p/2 we find that 2x + p # 0. Thus, p = 0. This is a contradiction.

Therefore, there does not exist a positive number p such that f(x + p) = f(x), VX eR
and, consequently, f is not periodic. As another example of a periodic map,
consider the map f defined on R by setting f(x) = x — [x]. Let us recall that [X]
stands for the greatest integer not exceeding x. The graph of this map is as shown
in Fig. 19. From the graph we can easily see that f(x+n) = f(x) V x € R. and for
each positive integer n.

LY

The given map is therefore periodic, the numbers 1, 2, 3 4 being all periods. The
smallest of these, namely 1, is the period. Thus the given map is periodic and has
the period 1.

Check your progress

(15) Given below are the graphs of some maps. Classify them as non-decreasing,
strictly decreasing, neither increasing nor decreasing.

Y Y A Y A

CTN

(a) (b) (©)

3 /
®)

Fig. 20



(16) (a) What is period each of the maps given in Fig. 17(a) and (b)?
(b) Can you give one other period of each of these maps?

(17) Examine whether the following maps are periodic or not. Write the periods of
the periodic maps.

(@) X = cos x (b)x >x+2
() X > sin 2x (d) x — tan 3x
(e) x — cos (2x + 5) (f) X — sin x + sin 2x

(18) The graphs of three map are given below: classify the function as periodic and
non-periodic. Is sum of two periodic maps, a periodic map?

(a) » X

=<

w /N /1N /[ N\,

(©) Y Z o x
N 0 -

Fig. (21).

3.12. Summary:

After reading this unit we should be able to describe a map in its different forms,
derive other properties with the help of the basic ones, define a map and examine



whether a given map is one —one/onto and its related concepts, monotonic and
periodic maps.

3.13. Terminal Questions

1.
2.

Let A ={nm : nis an integer}and R be the set of real numbers.

Let f: X = Y be amap and let A and B subsets of X,then A S B =
f) < f(B)

. When f(A) N f(B) ¢ f(ANn B)Considermap f:R — R given by f(x) =

x?2,It is clear f is not injective.

Let f: X = Y be amap and let A and B be subsets of Y. Then A S B =
frA) s f(B)

. Prove that f: X - Y is injective if f  f~'({y}) = {x}DVvy €

fX),xeX

. Prove that f:X - Y is surjective iff  f~1(B) # @ where B €

Yand B # @

. Let X = [—E,E],y =[-1,1]

2°2

Let f: X - Y given by f(x) = sinx,x € X.
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BLOCK-2

Real number system and Division in Integers

First unit of this block is the basic part of calculus. We thought it would be a good
idea to acquaint with some basic results about the real number system and related
concepts, before start our study of calculus, perhaps we are already familiar with
these results. In this section of this unit, we shall present some results about the
real number system.

In the second unit of this block we thought it would be a good idea to acquaint the
reader with some basic results about the set of integers. A quick look through the
pages will help us in refreshing our memory. We shall illustrate with a number of
examples also.



Unit -1V
REAL NUMBER SYSTEM

Structure

4.1. Introduction

4.2. Objectives

4.3. Basic Properties of R

4.4. Archimedian Property (Principle)
4.5. Rational Density theorem

4.6. Absolute value

4.7. Interval on the real line

4.8. Summary

4.9. Terminal Questions

4.1. INTRODUCTION

This is the first unit of the course on calculus. We thought it would be a good idea
to acquaint with some basic results about the real number system and related
concepts, before start our study of Calculus, perhaps we are already familiar with
these results. In this section of this unit, we shall present some results about the
real number system.

4.2. Objectives
After reading this unit you should be able to:

recall the basic properties of real numbers

derive other properties with the help of the basic ones
Derive Archimedian property

Derive Rational density theorem

Define absolute value of a number

identify various types of bounded and unbounded intervals



4.3. Basic Properties of R

The real number system is the foundation on which a large part of mathematics,
including calculus, rests. Thus, before we actually start learning calculus, it is
necessary to understand the structure of the real number system.

We are already familiar with the operations of addition, subtraction, multiplication
and division of real numbers, and also with inequalities. Here we shall quickly
recall some of their properties. We start with the operation of addition.

Al: R is closed under addition: If x and y are real number, then x + y is unique
real number.

A2: Addition is associative: x + (y +z) = (X +y) + z holds for all X, y, z Iin R.
A3: Zero exists: There is real number O suchthatx+0=0+x=xforall x in R.

A4: Negatives exist: For each real number X, there exists a real number y (called a
negative o an additive inverse of x, and denoted by — x) such that

X+y+x=0.

A5: Addition Commutative: X +y =y + x holds for all x, y in R. Similar to these
properties of addition, we can also list some properties of the operation of
multiplication.

M1: R is closed under multiplication: If x and y are real numbers, then x, y is a
unique real number.

M2: Multiplication is associative: x (y, z) = (X, ¥), z holds for all x, y, z in R.

M 3: Unit element exists: There exists a real number 1 such that x.1 = 1.x = x for
every X in R.

M4: Inverse exists: For each real number x other than 0, there exists a real
number y (called a multiplicative inverse of x and denoted by x* or by 1/x)
such that x.y=y.x=1

M 5: Multiplication is commutative: x.y = y.x holds for all x,y in R. The next
property involves addition as well as multiplication.

D: Multiplication is distributive over addition: x.(y + z) = x.y + x.z holds for all
X, ¥,ZInR,



Remark(a): The fact that the above eleven properties are satisfied is often
expressed by say that the real numbers form a field with respect to the usual
addition and multiplication operations.

Remark (b): Usually the operator ‘.’ Is dropped in expression, i.e x.y may be
denoted as xy. In addition to the above mentioned properties, we can also define
an order relation on R with the help of which we can compare any two real
numbers. We write X > y to mean that x is greater than y. The order relation >’
has the following properties:

Order axiom:

01 Law of Trichotomy holds: For any two real numbers a, b, one and only
one of the following holds: a>b,ora=b,or b >a.

02  Transitivity: > is transitive: Ifa>band b >c,thena>c, Va, b, c e
R

03  Addition is monotone: If a, b, c in R are such that a > b,
thena+c>b +c.

04  Multiplication is monotone in the following sense: If a, b, c in R are
such thata > b and ¢ > 0, then ac > bc.
Caution : a>band c <0 =ac<hbc.

Example: (i). (R, +,.) is an ordered field.

(if). (Q,+,.) is an ordered field.
(iii). (C,+,.) isnot an ordered field.
Note: That if z; &z, are complex number thenz; > z, or z; < z, is not defined.

4.4. Archimedian Property(Principle): If x and y are any two real numbers with
x > 0, then there exists a positive integer n such that nx >y .

Proof: We prove this by contradiction. If it possible then suppose that nx < y for
alln € N. We defineasetS = {nx : n € N}.

The set is non empty and bounded above. Therefore, by completeness axiom the
set S must have its supremum. Let sup(S)=a, then nx < avn €N, or, (n+
Dx<aVneNonx< a—x Vn €N.

This shows that (¢ — x) is less than a. This contradicts the assumption that « is
supremum of S. Hence, nx <« y. So, nx >y.



Corollaryl: For every real number y, there exists a natural number n such that
n>y.

Proof: By Archimedian Property we have nx >y Put x =1 then we getn.1 >y
orhbn>y

Corollary2: For every real number y # 0, there exists a natural number n such
that 1|n < y.

Proof: Since y # 0 be a real number then 1]y is also a real number. So, n > 1|y
Multiplying both sides by n~1y, we have

n(n~ty) > (n7'y)1ly,
Oor,( mn™ Dy >n"1(y.1]y), or,y >n"tie 1|ln < y.
Corollary3: Let xeR , then there exists an integer K such that (x — 1) < K < x.

Proof: By Archimedian Property we have n > (—=1)x = —x or, —n < x. Put
-n=m thenm < x,So, m< x <n.

Let K = max{m,m+1,m+2,....,n}suchthat K < xthenx — 1 <K.
Hence by combining these above statements we have (x —1) < K < x.

Corollary4: For any real number x, there exists one and only one integer n such
thatn < x <n+ 1.

Proof: From the corollary(3) we have two integers m and n such that m < x < n.
Let be two integers such thatm; < x < m,.

Letn = max{m;,m; + 1,m; + 2, .....,m,} suchthatn <xso,n+1 >x
Hence, there exists an unique integer n such thatn < x <n + 1.

4.5. Rational Density theorem: Between any two different real numbers, there
exists at least one rational number.

Proof: Let a and b be two real numberswitha <b,b—a > 0.
By corollary (2), 1|ln <ysothatljn <b —a,puty=»b—a >0

Or, a < b — 1|n., again there exists an integer K suchthatx — 1 < K < x



Put nb=x, then nb—1<K<nb, or b—1n<K|n<b, or a<K|n <b,
since,(@a=b—1n)or,a<r <b;r =K|n

Remark: Any field together with a relation > satisfying order axioms 01 to 04 is
called an ordered field. Thus R with the usual > is an example of an ordered field.

Notations: We write x <y (and read x is less than y) to mean y > x. We write x <
(and read x less than or equal to y) to mean either x <y or X =y. We write X >y
(and read x is greater than or equal to y) if either x >y orx = .

A number x is said to be positive or negative accordingas x >0or x < 0. If x >0,
we say that X non-negative.

Now, we know that given any number x € R. We can always find a numbery € R
such that y > x. (in fact, there are infinitely many such real numbers y). Let us see
what happens when we take any sub set of R instead of a single real number x. Do
you think that, given a set S € R, it is possible to find u € R such that u > x for all
X € S? Discuss the special case when S is empty.

Definition: Let S be a subst of R. An element u in R is said to be an upper bound
of S if u > x holds for every x in S. We say that S is bounded above, if there is an
upper bound of S. Now we can reword our earlier questions as follows : Is it
possible to find an upper bound for a given set?

Let us consider theset Z ={ -1, -2,-3, 4, .....}

Now, each x € Z is negative. Or, in other words, x < 0 for all x € Z. It is easily
seen that, in this case, we are able to find an upper bound, namely zero, for our set
Z.

On the other hand, if we consider the set of natural numbers, N = {1, 2, 3.....},
obviously we will not be to find an upper bound. Thus N is not bounded above.

We will, of course, realize that if u is an upper bound foraset Sthenu+ 1, u+2,u
+ 3...., (in fact, u + r, where r is any positive number) are all upper bounds of S.
For example, we have seen that O is an upper bound for Z". Check that 1,2,3,8,....
Are all upper bounds of Z. From among all the upper bounds of a set, which is
bounded above, we can choose an upper bound u such that u is less than or equal to
every upper bound of S. It is easily seen that, if such a u exists, then it is unique.
We call this u the least upper bound or the supremum of S. For example, consider
theset T={xeR:xX*<4}={xe R:-2<2}



Now 2, 3, 4,5, 4, 4 + w are all upper bounds for this set. But we will see that 2 is
less than any other upper bound. Hence 2 is the supremum or the least upper bound
of T. We will agree that -1 is the l.u.b (least upper bound) of Z".

Note: Both the sets T and Z, the l.u.b. belongs to the set. This may not be true in
general. Consider the set of all negative real number R™ = {x : x < 0}. The l.u.b. of
this set 0. But 0 ¢ R". Working on similar lines we can also define a lower bound
for a given set S to be a real number v such that v <x for all x € S. We shall say
that a set is bounded below, if we can find a lower bound for it. Further, form
among all the lower bounds of a set S, which is bounded below, we can choose a
lower bound v such that v is greater than or equal to every lower bound of S. It is
easily seen that, if such a v exists, then it is unique. We call this v the greatest
lower bound or the infimum of S.

Note: As in the case of l.u.b, remember that the g.l.b of a set may or may not
belong to the set. We shall say that a set S — R is bounded if it has both and upper
bound and a lower bound. Based on this discussion you will be able to solve the
following exercise.

4.6. Absolute Value

Definition: If x is a real number, its absolute value, denoted by |x| (read as
modulus of X, or mod x), is defined by the following rules.

X, if x>0
| X|= .
—X, if x<0

For example, we get |5/ =5, |-5|=5,|1.7|=1.7,]-2| =2,|0| =0

It is obvious that |x| is defined for all xe R. The following theorem gives some of
the important properties of |X|.

Theorem: If x and y be any real numbes, then

a. [x| =max {—x, x}

b. |x| = x|

- IxPP=x=fx)?

- Xy X+ ) (the triangle inequality)
- X=yl = | X[yl

Proof.

DO O O



a. By the law of trichotomy (01) applied to the real numbes x and 0, exactly
one of the following holds : (i) x>0, (ii)) x =0 or (iii)) x <0

Let us consider these one by one.

(i) Ifx>0,then x| =xand x> —x, so that Max { —x, x} = x and hence |x| =
max {-X, x}

(i)  Ifx =0, then x =0 =—x, and therefore,
Max {—, x } =0, Also |x| =0, so that |x| = max {-x, X}.

(ili) If x <0, then [x| = —x, and —x > X, so that Max {—, x} = —x. Thus, again |X|

= max {-X, X| From this it follows that x < x|

b. [-X| = max { — (—x), = max {X, —x} = max {-x, x} = |x|.

c. If x>0, then |x| = x, so that [x|*=x% If x < 0, then |x| = —x, so that [x|*= (-x)?
= x* .Therefore, for all xeR, |x|* = x*. Also |-x|* = |x|?, because |-x| = |x| by
(b). Thus, we have |x[>=x*

d. We shall consider two different cases according as (i) x +y >0or (i) X +y
<0.Letx+y>0.Then |[x +y|=x+y. Now x < |x| and y < |y| by (a).

Therefore [x +y|=x+y <[X| + |y =[x +y|=X+y < [X] +y]|

Letx+y<0.Then—(x +y) >0, thatis, (—x) + (-) > 0 and we can use the result of
(i) for -x and —y. Now |x+y| = [-(x + y) | by (b)

Thus [x +y| = (=x) + (-y) + (=) | <| x [+ -y|, by (i) = [x| + |y|, by (b) Therefore,
we get [x +y| < |x| + |y|]. Thuswe find that forall X,y e R, [x +y|<x|+]|Y]|.

e. By writing x = (x — y) + y and applying the triangle inequality to the
numbersx —yandy, we have [x| = | (X—y) +y | <|Xx-Yy|+|VY]

so that |x| — |y| £ x —y| . since (10 holds for all x and y in R,
Therefore, by interchanging x and y in (1) we have
- X[ <ly-xI=]-(x=y)|=|x-y|.Sothat— (x| - [y ) <| x—l.

From (1) and (2) we find that |x| - | y | and its negative — (x| - |y|) are bothe less
than or at the most equal to | x — y|. Therefore, max {|x| - |y|, - YD} < [x - y|. But
the left hand side of the above inequality is simply ||X| - |y||. Therefore, we have ||X|
-y || £x—y|. Thatis, [x-y|>||x|-|y|l forall X,y € R.

Now you should be able to prove some easy consequence of this theorem. The
following exercise will also give you some practice in manipulating absolute
values. This practice will come in handy when you study unit 2.



Check your progress
(1). Give example to illustrate the following:

a. A set of real numbers having a lower bound.
b. A set of real numbers without any lower bound,
c. A set of real numbers whose g.l.b. does not belongs to it

(2). prove the following:

x=0<|x|=c

- Ixyl = 1x] . Iyl

x| =1/x], if x #0
X =yl < x|+ 1yl

Xty +z[<[x|+]y[+]Z]
Ixyz| = [x] . Iyl . [z]

(e) and (f) can be extended to any number of reals. Now if a R and & > 0, then
X-a<d=Xx—-a<d,and—(x—a)<d.x—a<9y,thismeansthatx <a+ 5
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- (x —a) < §, this means that a - & Thus, we getthat|x-a|<d=a -5d<x<a+2d.
This means that the difference between x and a is not more than 9.
4.7. Intervals on the Real line

The real numbers in the set R can be put into one-to-one correspondence with the
points on a straight line L. That is we shall associate a unique point on L to each
real number and vice versa. Consider a straight line L. Mark a point O on it. We
shall use the part to the left of O for representing negative real number and the part
to the right of O for representing positive real numbers. We choose a point A on L
which is to the right of O. OA can now serve as a unit. To each positive real
number X we can associate exactly one point plying to the right of O on |, so that
OP = |x| units. A negative real number y will be represented by a point Q lying to
the left of O on the straight line L, so that OQ = |y| = - y units. We find that to each
real number we can associate a point on the line. Also, each point S on the line
represent unique real number z, such that |z| = OS. Further, z is positive if S is to
the right of O, and z is negative if S is to the left of O.

This representation of real number by points on a straight line is often very useful.
Because of this one-to-one correspondence between real number and the points of
a straight line, we often call a real number “a point of R”. Similarly L is called a



“number line”. Note that the absolute value or the modulus of any number x is
nothing but is distance from the point O or the number line. In the same way,

| X — y| denotes the distance between the two numbers x and y (see. Fig. 1(b).

—_—_  y>
X< |X-y|>y
e | <
Y& | X~ >3
Figure 1 : (a) Number line (b) Distance between x and y is | X —y |

Now let us consider the set of the real numbers which is between two given real
numbers a and b, where a < b. Actually, there will be four different sets satisfying
this loose condition. These are:

(D)]a,b[={x:a < x < b}
(id)[a,b] = {x:a < x < b}
(iii)]a, b] = {x:a < x < b}

(iv)[a, b[= {x:a < x < b}

m. mo m. mo
0O c® @0

Note: we also write]a, b[= (a, b), ]a, b[&[a, b[= [a, b)

The representation of each of these sets is given alongside. Each of these sets is
called an interval, and a and b are called the end points of the interval. The interval
[a, b[, in which the end points are not included, is called an open interval.

Note: In this case we have drawn a hollow circle around a and b to indicate that
they are not included in the graph. The set [a, b] contains both its end points and is
called a closed interval. In the representation of this closed interval, we have put
thick black dots at a and b to indicate that they are included in the set.

The sets [a, b [ and ] a, b] are called half-open (or half — closed) intervals or
semi-open (or semi closed) intervals, as they contains only one end points. This
fact is also indicated in their geometrical representation.

Ifa=b,]a,a[=]a,a]=[a a[ =¢and [a, a] =a.

Each of these intervals is bounded above by b and bounded below by a.



Can we represent the set | = {x: | x —a | < 3 } on the number line? We know that | x
— a| can be thought of as the distance between x and a. this means 1 is the set of all
numbers X, whose distance from a is less than &. Thus,

O O
1={x:|x-a|<d6} a-d a atd

Is the open interval Ja - 5, a + & [. Similarly, I,= {Xx: [x —a | < J } is the closed
interval [a - 9, a + 3]. Sometimes we also come across sets like I,={x :0<|x—a|
< 0}. The means if x € I, then the distance between x and a is less than 8, but is
not zero. We can also say that the distance between x and a is less than 8, but x = a.
Thus,

|2:]a-8,a+6[\{a} a-o d at+d
=]a-%,a[u]a,a+d]l.

Apart from the four types of intervals listed above, there are few more types.
These are :

Ja, o[={x:a<x} (open right ray) g ¥
[a, 0 [={x:a<x} (closed right ray) ? -
]-o0,b[={x:x<b} (open left ray) < 5
]-00,b]={x:x<b} (closed left ray) < v
]-o,o[=R (open interval) < >

As we can see easily, none of these sets are bounded. For instance, ]Ja, o [ is
bounded below, but is not bounded above, ] - o, b] is bounded above, but is not
bounded below. Note that o and - oo does not denote a real number, it merely
indicates that in interval extend without limits.

We note further that if S is any interval (bounded or umbounded) and if c and d are
two elements of S, then all numbers lying between ¢ and d are also elements of S.

4.8. Summary:

After reading this unit you should be able to recall the basic properties of real
numbers, derive other properties with the help of the basic ones, derive
Archimedian property, derive Rational density theorem. define absolute value of a
number and to identify various types of bounded and unbounded intervals.



4.9. Terminal Questions

1. Prove That the following:
9. |xyl=x]. |yl, if x #0
h. [x+y+z[<[x]|+]y[+]Z]

2. (R,+,.) isan ordered field.
(i1). (Q, +,.) is an ordered field.
(iii). (C,+,.) isnot an ordered field.

3. Show that the let xeR , then there exists an integer K such that (x — 1) <
K < x.

Give example to illustrate the following:

A set of real numbers having a lower bound.

A set of real numbers without any lower bound,

Show that

(@ |n| = Oforeveryn €Z
(b) In| = nforeveryneZ

o oM
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5.1. INTRODUCTION

We thought it would be a good idea to acquaint the reader with some basic results
about the set of integers. A quick look through the pages will help us in refreshing
our memory. We shall illustrate with a number of examples also.

5.2.0Dbjectives



After reading this unit you should be able to:

¢ Recall the basic properties of set of integers

e Derive other properties with the help of the basic ones

e Describe a division algorithm and the Euclidean algorithm for the set
of all integers.

e Define a Prime number and the concepts related to it

o Define the greatest common divisor and least common multiple and
calculate them.

e State Fundamental Theorem of Arithmetic

e Define the least common multiple of two integers

5.3. Basic Properties of Z
1. Order and Inequalities: We start with the set of integers

Z ={-——————— —~2,-1,0,1,23 —————1}as being given as a
subset of the set R of all real numbers which may be identified with the set of

all points in a line (extending arbitrarily on both the sides). There is a natural
i | 4 ‘ | ' |

ordering ... -3 2 A 0 1 2 8 o

on the real numbers given by a < b (a is less than b) if a lies to the left of b.
N= {123 —————}C ZcC Q = {%Hn,n,ez,n;fo}

We know that sum and product of any two elements in N are again in N, sum,
difference and product of any two elements of Zare again in Z and a similar
statement holds in Q and R also. In Q and R, quotient of any element by any
nonzero element is also there. This property does not always hold in Z (and N) as
may be easily seen (take 5 ad 3 for example). When it does, (say for 6 and 3) itis a
special situation called divisibility.

The order relation < and its inverse relation > in R (consequently in Q,Z, N too)
satisfies:

(1) 0 < 1.



(2) Givenany a,b in R, exactlyoneofa < b,a = b,b < a holds.

3)a<b=>a+c<b+ cforeveryc eR
4)a < bo<c=>a.c<b.c
B5)a<bb<c=>ac<c.

As remarked above, these properties hold in Z also.
Proposition:

(a) a < bc<o=bc<acinZ
(b) for every m =0 in Z, m*> 0.

(cda+b =a+c=>b>b=c

(d) ab = ac,a=0 = b = c.

(e) ab = 0= a = 0orb = 0.

5.4. Absolute Value

With every integer n (respectively rational number, real number x) we associate an

integer |n| (respectively rational, or real |x|) as follows:

Ik nif n>0(.e. if nis nonegative)
" |=nif n<O0 (ie.if nis negative)

Properties:
(1) In| = Oforeveryn €Z
(2) In|] = nforeveryn €Z

(3) In] = | — n|foreveryn €Z

(4) Im + n| £ |m| + |n| for everym,n, € Z.
Here a < bmeansa < bora = b.

Example: form = 2,n = -3.

Im +n| =]-1 =1<5=2+3=|m| + |n|.

Butform =-6,n =-09,

Im +n| =]-15| =-(-15) = 15 = 6 + 9

= |[m| + [n]



=~ both possibilities m + n| < m| + |[n|lor|m + n| = m|+ |n|
actually may occur for different sets of values for m and n.
Check your progress
1.Provethat|m + n| = |m| + | n|occursifand only if
m and n have same sign (positive or negative) or one of them at
least is zero and that |m + n| < |m| + |n|

if and only if they are of opposite signs.
2. Prove that |a|—|b|<|a- b|forany a,b € Z, Q or R.

5.5. Mathematical Induction

The principle of Mathematical induction is of great help in proving results
involving a natural member for every n or for every n >some positive integer m.

Principle of Mathematical Induction: If P(n) is a statement involving a positive
integer n for which

(1). P(m) is true for some integer m.
(2). Truth of P(l) = Truthof P(1+ 1) VI >m.

Then P(n) is true for every n >m. The particular case of this result for m = 1 is
usually referred to as the principle of mathematical induction and in fact the
general version stated above can be obtained from this particular case. The above
principle is popularly stated as if a statement holds for n = 1 and whenever it is
true forn = k, itholds forn = k + 1, then it holds for all natural numbers n.

Example: 2" > n? for all n>5. Clearly the statement does not hold forn = 2,3, 4.

2°=32 > 25 =5%& soifholds forn = 5.

Take any [ >5 and assume that 2' > I.
Then 2"'=2.2'= 2"+ 2'. > 12 + I (by hypothesis)

>°+5]  (+ 12>5)



=PP+20+31>1P+21+3x5 (v [ >5)
>PP+21+1(+ 15>1)
=(1+1)? ie.2">(+1)? vi>5.

~ Assumption of truth of the statement for [ >5 implies its truth for [ + 1. .. the
above statement is true for every [ >5 by the above result.

Sometimes the statements P(n) do not imply P(n + 1) and in this case the above
principle cannot be used. For such situations we have the stronger.

Second Principle of Induction: If P(n) is a statement involving a natural number
n and Truth of P(l) VI < m = Truth of P(m), then the statement is true for all
natural numbers n. We shall illustrate its uses later in this unit.The second
principle of induction is a consequence of the well ordering property of the set N of
natural number or of N U {0}.

5.6. Well ordering property

Every non empty subset A of N (or of N U {0} has a least element i.e. there is an
element | € A for whichl < a forevery a € A.

We are omitting the proof but the reader may satisfy himself by considering
various subsets of N and obtain least elements of them.

This result does not hold for Z, Q or R.
Check your progress

1. Prove that 3" > 2"+ 1 for all n > 2.

2 2
_n (n4+1) y

2. Prove that 1°+2%+..... n® n>1.

3. Prove that for any real number x > -1, (1 +x)" >(1 + nx) vn=>1.
4. Prove thatn! > 2" vn >4,

5. Prove thatn! > 4" vn >9.



6. Leta; =1and a, = ,/3a_, +1 vn >2. Prove that a,< g v integern > 1.

7. Prove that 2" > n®foralln >10
5.7. Division Algorithm in Z

Recall that we call by the same name, ‘division’ two different kind of notions: real
or rational division of one real or rational number, by another non zero such
number to get again such a number: For r, s e RorQ with s=o,r +s (=
r/s) e Ror Q respectively. Similarly for m,n € Z,n #0, we have m/n € Q . Also
we have the notion of ‘integer division” where in upon division of an integer ‘a’ by
a non zero integer ‘b’ we get an integer g(quotient) and a remainder r which is non
negative and numerically smaller than the dividend‘b’.

Theorem: If a, b are integers with b =0, we can find unique integers ‘q’ and v’
suchthata = bq + r,with0 < r < |b|

Proof: Consider the set
S={a-bqlqeZ}={..........,a-2b,a- b,a,a + b,a + 2b,........ }.
or, {...... ... a + 2b,a + b,a,a- b,a- 2b,..........}

This set must have some nonnegative elements because b #0 and so by adding or
subtracting sufficiently many multiples of b according as b > 0orb < 0, we
may prove that S N (N U {0}) = @. As it is a nonempty subset of N U {0}, by the
well ordering property of (NU{0}), we can get a least element in

SN(NU{0}Hsayr,then0 < randr = a- b q forsome q €Z.

~a=bq+r Also r < |b|] for if b < 0 then r>|b| = r> — b. then
n=r +b<r and nn=r+b20 ~rn=r+b=a-bqg+ b=
a-b(g-1) €SN (NU{0}) andr; < r contradicting the fact that r is the least
element of S N (NU{0}).

Similarly if b > 0 andr >|b| = b then r, = r - b contradicts minimality of r
in (S N (NU{0}).

Exercise: Show that if a =bqg;+ r;=bg,+r, with 0 <ry, rp, < |b]



then ;=g and ry=r,.
Hint: Use properties of absolute values.

Example:

1. Fora =-73,b =-10
- 73 = (-10)8 + 7i.e. q = 8andr = 7.

2. Fora = 60,b =-8
60 = (-8)(-7) + 4 i.e.q =-7,r = 4

3. Fora =-81,b =7
-81 = 7(-12) + 3i.e.q =-12,r = 3

4. For Observe that the above procedure is same what is taught in schools for
positive values of a and b. We term q as the quotient and r is the remainder,
also note that

a=bq+rincaseb > 0 = % = q + r/b where Og£<1
Q= E} where [x] means the integral part of x i.e. the greatest integer < x

: : : : a .
=~ the integer quotient q is the integral part of b incase b > 0.

Check your progress

10. Find gand r if

1. a = 100,b =-13
2. a = 20,b =-5.
3.a =-121,b = 12.

Divisibility in Z: Given any integers a and b, we say that ‘b’ divides a’ or that ‘a
is a multiple of b’ or that a is divisible by b if a = bc, holds for some ¢ €Z. Here b
may be 0 also. In case b = 0, divisibility of a by b means that the remainder



(when ‘@’ is divided by ‘b’, using division algorithm) is 0. We write b|a to denote
‘b divides a’.

Example:

1.
2.

11 divides 132 as 132 = 11 x 12.
5 does not 127 as 127 =5 x 25 + 2.

Properties of divisibility: For any integers a, b, c etc.

10.
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(#a) |a Va €Z
#1la Va €Z
al|0 Va eZ
alb,alc = a|(mb + nc) VYm,n €Z.In particulara | (b £c¢)
alb = a|mb VYm eZ
a|b,bla = b = #a.
a|lb,b|c = alc.
a|b,a > 0,b > 0 = ac<bh.
Ifm =0thena|b & ma|mb
alb,cld = ac|bd.

Remark: a|b is a statement to be read as ‘a divides b’ and is not to be confused
with the fraction a/b.

Proof:

P wn e

a=al=(-a)(—1) ~ £ala
a=1l.a=(C1((a) ~ £1a

0 =a0 - a|0asOeZ

b =aa; & ¢ =aa,=mb + nc = a (ma;+ nay), for some a, a,Z
~ a|l (mb + nc) Vm,n L.

Takingm = 1,n = 1,wegetal (b +¢)

andtakingm = 1,n = —1,wegetal| (b-c)

b = ac > mb = a (mc)

~ a|lmb asmc L.

a|b,bla = b = aasand a = bb;, for some a; b,eZ
~a=bb;=b=a (az b]),

If a=0then a.1 = a(a: bz).



>arbi=1if az0
war=1= bjora;=-1=b;

Accordinglya = bora = —b.
Ifa = 0, again,a = b (= 0) holds.
~a = zb.

7. alb,b]c=b=aa;and c =bb,
~ Cc =bb; = (aay)b; =a(a; by) - alc.
8. alb = b =aa;for some a;cZ.Asa>0b>0
s a;>0also - a; > 1as aie
~b=aar>a.lasa;>1~a<b
9. Ifalband m #0isinZthen b = ac
= mb = (ma)c -~ ma|mb.
If ma |mb then mb = (m a)c, for some ce Z
~ b =acasm=0 ~ alb
~ a|b iff ma|mb.
10. If a|b and c|d then b = aa; and d= cc; for some a;, C;,€Z
~ bd = (ac)(al,cl) - ac|bd.
Whenever ‘a’ divides b, (—a) clearly also divides b. In such cases ‘—a’ is also
said to be a divisor of ‘b. For any integer n, the set of all positive divisors of n will
be denoted by D(n).Thus D (n) = {d€Z | d|n and d>1}

Clearly D (0) = N,D(1) = {1},D(5) = {1,5}.D (12) = {1,2,3,4,6,12}.
5.8. Greatest common Divisor

Given any two non zero integers a and b, we say that an integer ‘g’ is a greatest
common divisor (g.c.d) of a and b if

1. gla, g|b (i.e. g is a common divisor of a and b)
2. dla,d|b = d|g (i.e. g is a multiple of every common divisor of a and b).

Itis clear that if g isa g.c.d. of a and b, then so also is - g.
Exercise: If gisag.c.d of a and b, the only otherg.c.dofa and b is - g.
Solution: gla,g|lb = a = gai,andb = g by, for some a;, by Z

~a=(—g)(—a)andb = (—g) (—by)



& —glaand-g | b

Further if d|a and d|b thend|g i.e. g = dg, for some g, €Z

“(=9) = d(-gD

~ d|(—=g) ~ (—g) isalso a greatest common divisor.

If g ’is any other g.c.d of a and b, then ga, g1b as g’is a common divisor
~ glgasgisag.cd. Similarly g| g'.

~glg’and g1g

~ g’ = #g as proved earlier in the properties of divisibility. The following result
shows the existence of a g.c.d for any pair of integers a and b.

Theorem: Given any non zero integers a and b, the set {ma + nb | m,n € Z} has
some (actually infinitely many) positive integers. The least positive member g of
this set is a g.c.d of a and b and in fact g is a divisor of every element of this set.

The symbol (a, b) will denote the unique positive g.c.d of a and b.

Example:

1. (24,36) = (—24,36) = 12
2. (5,11) = 1
3. (28,105) = 7

5.9. Properties of greatest common divisor

(1,a) = 1 V0 #a €Z

(a,a) = (-a,a) = (a,-a) = |a| V0 =za Z.

(a,b) = (-a,b) = (b,a). V0 #a,b €Z

(a,b) = (a,b+ma) VYm €Z,if b + ma #0

(a,b) = 1ifandonlyif ma + nb = 1 for some m,n €Z.
If m (> 0) €Z then (ma,mb) = m (a,b).

if (a,m) = (bym) = 1then(ab,m) = 1 V0 #zméeZ.
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8. c|lab,(b,c) =1 = cl|a.
9. Ifa|b then (a,b) = |a]

Proof: Most of the proofs are straight forward e.g.

(4). Put(a,b) = gand (a,b + ma) = g’

then gla, g|b = glm.a+ 1.bi.e.g|(b+ ma)
~glg’asg’ = (a,b +ma)&g|a,g|b + ma.

Similarly g1a.g’|(b + ma) = g1[(—m)a+ 1.(b + ma)]

4

i.e.g1b ~ g’lg. ~g = %g.

~ g’ = g asboth are positive . (a,b + ma) = (a,b)
(8)As(b,c) =1 ~ mb + nc = 1forsomem,n €Z

~ mab + nac = a.

Now, c|ab (given) and c|ac

= c|m(ab) + n(ac). i.e.cla

Proofs of the other parts are left as exercise.

The following result gives an equivalent characterization for prime numbers.

5.10. Prime Integers: We have seen that for any integer n, 1 and #n are always

divisors of n. It may or may not have other divisors.

Definition: An integer p (0, = #1) is said to be a prime if the only divisors of p
are #1 and #p. It may be checked that whenever p is a prime, so also is - p. It may

be checked that

2,3,5,7,11,13,17,19, 23,29, 31,37,41,43,47,53,59,61,67,71,73,79, 83,89,97
are all the positive primes between 1 and 100. This list continues indefinitely and
there are infinitely many positive primes. We shall derive other properties of

primes only after studying some other concepts.



Theorem: An integer p # 0, #1, is a prime if and only if p|lab =
pla or p|b (i.e. whenever p is a divisor of a product of two integers, it divides at
least one of them).

Remark: 6 | 3 x4 but6 f 3,6 t 4. (because 6 is not a prime).

Proof: Suppose that p is a prime and p | ab. If p | a, the proof of this part is
finished.

.. Suppose that p does not divide a.

Butg.cd(p,a) |pAspis aprime, and (p,a) > 0.
.~ (p,a) = lor|p|.But(p,a)|aalso.If (p,a) = |p| = £p
we would get p|a, which is not true by supposition.
S (pa) =1..1 = mp + naforsome m,n €Z
..b = mpb + nab.Sincep |pb&p|abwegetp|b.
Conversely letp |ab = p|aorp]|b.
Letd|p .-p = dqforsomeq €Z .- p| dq
.. by hypothesisp |dorp | q. Ifd |p,fromd | pandp |dwegetd = #p
If p|g, we get p|qg and g|p (since p = dq)

=>q=2 ..p =d(p) > d = flasp + 0.

.~ d = £1or #p for every divisor of p i.e. p is a prime.

The following result gives a method to calculate the g.c.d. (a, b) and also shows
how to write it as ma + nb for some m,ne Z.

Theorem: (Euclid) The set of positive primes is infinite.

Proof. If possible, let p1, pz,....... pm be the set of all positive distinct primes.



Put n = pip2.......... pm+1. Then any prime factor of n can not be any of the
above p;, for then piwith divide n - py, p2....price.pil 1 ..pi =1 or pi = -1
(contradiction) ... there are primes other than p1 p2 ........ Pm.

.. The set of primes is infinite.

5.10.Euclidean Algorithm: Any two integers a and b with a # 0 have a greatest
common divisor.

Proof: Let S be the set of integers of the form ax + by. Let d be the least positive
integer such that d = am + bn in the set S. Now by division algorithm

a=dq+r, with 0 < r < |d so, r=a-dg=a—-(am+bn)g =
a(l —mgq)+ b(—nq). Hence, r €S. Since, r <d which contradicts the
assumption that d is the least positive integer in the set S. Hence, r = 0 and so
a=dqi.e.d|a.

Similarly, we can show that d|b. Suppose that c|a and c|bthen c|(am + bn) or,
c|d. Thus d is the greatest common divisor of a and b.

If d’ be an another greatest common divisor of a and b then d|d’ and d'|d, then
d = +d.

Remark: This is the good old ‘repeated division’ method for finding g.c.d’s.
working back upwards starting from the obtained g.c.d., expresses it in the form
ma + nb where m,n €Z.

Example: Find the g.c.d of 4235 and 854 and express it as 4235 m + 854n.
Solution: We have 4235 = 4 x 854 + 819
854 =1 x 819 + 35
819 = 23 x 35 + 14
35 =2x%x 14 + 7
14 = 2 x 7.

.+ (4235,854) = 7 = 35- 2 x 14



= 35-2(819- 23 x 35)
= 47 x 35-2 x 819
= 47 (854 - 819)- 2 x 819
= 47 X 854 - 49 x 819
= 47 X 854 - 49 x 819
= 47 X 854 - 49 X (4235 — 4 x 854)
= 4235 (—49) + 854 x 243
This is not the only way to write gcd 7 as 4235 m + 854n.
In fact7 = 4235(—49) + 854 x 243
= 4235 (—49) + 4235 x 854 - 854 X 4235 + 854 x 243
= 4235 x 805 + 854 (—3992) etc.
Check your progress
11. Find the set of all positive divisors of 3,16,36,105,107,121 and 141.
12. Find the gcd of a and b and express it as ma + nb in more than one ways:

(i) a= 196,b = 192

(ii) a = 1024,b = 384

(iii)) If(a,4) = 2 = (b,4) prove (a+b,4) = 4.

(iv) Ifnisodd, prove that 8|(n® - 1)
5.11.Unique factorization theorem for integers: Every integer a(|a| > 1) can
be expressed as a unit times a product of positive primes.
Proof: If a is prime then it can be expressed as a unit times a product of positive
primes. But if a is not a prime means it is a composite number then
|a| = |m||n| where [m| and |n| are positive integers less than |al.
Let |m|= pip2ps........0r a0d [n| = 192 q3 ... ... ....qs Where p; sand g; s
are positive primes. So,

la| = |m|In| = pip, P3 v cev oo . D119 G3 wev v oo . G, O,



la| = k.p1py D3 eov oo e Prq1G2 Q3 wov e e qs, Wherek =1or —1
If one of the p; s or q; s are not positive primes then we repeat this process

again and again tills each factors are not prime. So. |a| can be expressed as a
unit times a product of positive primes.
Uniqueness: If it possible then suppose that there are two such factorization of
|a|. Suppose another factorization of |a| is |a| = wyw, Wy ... oo Wy,
Then, |a| = WiWy Ws v e ce e Wi, = D1P2 D3 evr v eee e Prq1G2 3 woe we wee - s
This shows that w; must divide one of the primes of another side say p;.
This shows that w; = p;., because both p; and w; are primes, so we replace
these from the expression. Hence, we have w;w, Wy .. Wi W11 we oo . Wy
= DP1P2 P3 --Pj-1Pj+1 =+ - Prq192 43 -+ v - - (s
We proceed this process in the same way to these equal products a finite
number of times, we get k = r + s.
So, the factorization of |a| is unique except for the order of primes.
5.12. Fundamental Theorem of Arithmetic: This theorem states that the primes
are the building blocks of the integers in the sense that almost (i.e. except

0,1,- 1) every integer is a product of primes.
Example: 357= 3'x7'x17", 196 = + 2°x 7%, 47 = 47"

Theorem: If a (¥ 0,#1) is any integer then it can be uniquely expressed as

a=p;™p,™2 p3™s ... ... p T Where py, P2, ... pr are distinct positive primes
and my, ...... m, are integers > 1. (This representation is unique except for the
order of appearance of p, ..... py)

Proof: Suppose that a > 1 and the result holds for all integers 1 < b < a.If ‘@’
Is itself a prime, the proof is finished as it is then a singleton product of primes
with

r = 1 in the statement. If ‘a’ s not a prime, a = bc with1 < b,c < a.

By the induction hypothesis b and ¢ can be written as a product of primes (not
necessarily distinct)

. a = b.c is also a product of primes contained in both the lists along with
repetitions if any.



The uniqueness part of the proof can be proved using the property of primes :
p|lab = p|aorp|bandisbeing omitted.

The above prime factorization gives alternative formulas for g.c.d’s and l.c.m’s and
throws light on their relationship.

Note that a least common multiple (or l.c.m) of nonzero integers in defined as

Definition: A least common multiple ‘I’ of non zero integers ‘a’ and ‘b’ is defined
by the properties:m,

(i) a|lLb]|l(ie. lisacommon multiple)
(i) a|m,b|m = l|m(i.e.lisadivisor of every common multiple)

The set M of all common multiples of aand b is nonempty as ab e M and
M NN # ¢as negative of an element of M is again an element of M. The least
positive element of M (which exists by well ordering property of N) may be
seen to satisfy the above defining properties. As in the case of g.c.d’.s it is

unique upto a ‘ - ‘sign and [a, b] denotes the positive l.c.m. of a and b.

Theorem: let a=p™......... p™, b=pM......p™ (0O<m,m)) and lets;=min (m;, m;"),
ti = max (m;, m;’). Then (a,b) = p....... py", [a,b]l=p.....prand (a,b).[a,b] =
a.b, where a, b are positive, and p1 pz2....ccee.. pr are distinct positive primes.
Here the powers are allowed to be zero in order to able to write unrelated
integers a, b as a product of primes from the same set {pj, .......... , pr}-

Check your progress

1. fa== p™...p" and d|a, show thatd = £ p....p}* with 0 <n; < m; for
eachi=1, ... r. Hence derive the total number of positive divisors of
‘@. (Ans: (m1 +1) (mz2+1) ....... (m; +1))

Prove by induction that 11r+24-122n+1 g divisible by 133.

Prove by induction that 6n+24-72n+1s always divisible by 43.

Prove that induction that 15 |(3n°+ 5n*+ 7n) V n > 1.

Prove by induction that n (n*— 1) (3n — 2) is a multiple of 24.

O wN

5.13. Congruence Relation



Let n be a fixed integer > 1. We define a relation = in the set Z of all integers by
a = b(mod n) if (b — a) is a multiple of n.

Example: 78 =104(mod 13) - 104 - 78 = 26 is a multiple of 13.
Similarly 196 =42(mod 14)

w42 —196 = — 154 and 14 |(- 154).

But 196 = 40 (mod 14) -+ 14 }(- 156)

The statement a = b (mod n) is read as a is congruent to b module n’.
Theorem: For any integern>1

a=a(modn)VacZ

a=b(modn)=b=a(modn)

a=b (modn),b=c(modn) = a=c(modn)

a =0 (mod n), ifand only if n|a

a=b (modn), c=d (modn) = (ax + cy) = (bx + dy) (mod n) in
particular (a + ¢) = (b +d) (mod n) and (a-c¢) = (b-d) (mod n)

a =b (mod n), c =d (mod n) = ac = bd (mod n)
a=b(modn)=>a+c=b+c(modn) V ceZ

a=b (modn) = ac=bc(modn) VceZ
a=b(modn)=>a=b(modd) Vd|n.

a ks b

© 00N O

10.ax=ay(modn) > x =y (mod %J In particularif (a,n) =1
a,n

then x = y(mod n) if and only if ax = ay (mod n)
11. if x =y (mod n) then (X, n) = (y, n).

Remark: It follows from (1), (2) and (3) above that the relation a=b (mod n) is
reflexive, symmetric and transitive and hence partition Z into equivalence classes.
For example if a is divided by n using division algorithm, : a =nq + r . Then re{0,
L, ...... ,n-1} as a - r = nq (@ multiple of n) .. a=r (mod n) for a unique r
determined by a. The class of r = [r] ={a€Z|r =a(mod n)} ={r +tn | n €Z}



={. ... r-2n,r—-n,r,r+nr+2n........... }
Z=[0]U[1]U ... U [n - 1] (mutually disjoint blocks )
The set of all classes is denoted by

Z,=1{[0], [1], «ee-... [n-1]}.

Just as the equation ax = b for a, b €Z may or may not have an integer solution for
the unknown x, we may consider the congruence equation ax = b (mod n) for any

given integer a and b and integer n > 1. (called a linear congruence equation).
5.14. Summary:

We are able to understand the basic properties of set of integers. And to derive
other properties with the help of the basic ones, describe a division algorithm
and the Euclidean algorithm for the set of all integers, define a Prime number
and the concepts related to it, define the greatest common divisor and least
common multiple and calculate them, the Fundamental Theorem of Arithmetic
and to define the least common multiple of two integers.

5.15. Terminal Questions

_ n’(n+1)? y
4

Prove that 2" > n® foralln >10

Find the set of all positive divisors of 36,105,121 and 141.

Prove by induction that 11r+24122n+1js divisible by 133.

Prove that 13+2°+..... n® n>1.

A A

Find the gcd of a and b and express it as ma + nb in more than one ways:
a= 196,b = 192

a = 1024,b = 384
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BLOCK -03

Sequence, and Infinite Series

First unit of this block is most basic unit of this block as it introduces the concept
of sequence of real numbers, convergent and divergent sequence, subsequence,
Cauchy sequence, their applications and interrelationship between convergence of
a sequence and a Cauchy sequence. Sequence has an important role in the field of
Analysis. It has many important applications in analysis like as application in
almost every field, social, economy, engineering, technology etc.

In the second unit of this block we introduce the concept of Partial sum of series,
convergent and divergent series of non- negative terms and use of different tests
for convergence of series of non- negative terms. use of different tests for
convergence of series of non- negative terms. The theory of Absolutely
convergence and conditionally convergence.

Series of non negative terms has an important role in the field of Analysis-



Unit:6 SEQUENCE OF REAL NUMBER

Structure

6.1. Introduction

6.2. Objectives

6.3. Sequence of real numbers

6.4. convergence of a real sequence
6.5. Divergent and Oscillatory Sequence
6.6. Subsequences

6.7. Cauchy Sequence

6.8. Cauchy’s criterion for convergence
6.9. Monotonic sequence

6.10. Summary

6.11. Terminal Questions

6. 1. Introduction

This is most basic unit of this block as it introduces the concept of sequence of
real numbers, convergent and divergent sequence , subsequence, Cauchy sequence,
their applications and interrelationship between convergence of a sequence and a
Cauchy sequence.

Sequence has an important role in the field of Analysis

It has many important applications in analysis like as application in almost every
field, social, economy, engineering, technology etc.

6. 2. Objectives
After reading this unit we should be able to
1. Understand the concept of Sequence of real numbers.

2. Concept of convergence of a real sequence.



3. Understand the Concept of divergence and Oscillatory sequences of a real
numbers

4. Understand the concept of subsequences, Cauchy sequence and its uses.

Sequences has an important role in the field of Analysis-

It has many important applications in Analysis.

6.3. Sequence of real numbers

Definition: A mapa: N — R, where N and R are the sets of natural numbers and real numbers
respectively, is called a sequence in R.

Since we shall be dealing with real sequences only, we shall use the term sequenceto denote a
real sequence.

Notation: As we know a map a: N — Ris of the form,

a={(n, a(n)| neN}

or, a={(1, (1)),(2, a(2)), (3,a(3)), ... ... , (n, a(n)), ... ... }

or, ingeneralitcanbeexpressedastheorderedset,

a=1{a(1),a(2),a(3), ...a(n), ... jor,a ={ai, az, as, ..., an, ... } ; where a, denotes
a(n), when the domain is N.

Since the domain of a sequence a: N — Rin always N, a sequence is specified by the values , n
€ N. Thus a sequence may be denoted as,

{an}vio:l or {an}nEN or {alr aZJ a3) ey an! }
Remarks:

1. The values a1, az ,3 ... ... are called the first, second, third,...... terms of the sequence
{arl}‘.rc;o:l.
2. The mth and nth terms am and an for m # nare treated as distinct terms of the sequence
even if am= an.
3. A sequence is an ordered set. i.e. the terms of a sequence are arranged in a definite order

as first, second, third,... terms and the terms occurring at different positions are treated as
distinct terms even if they have the same value.

4. The number of terms in a sequence (4nJin=1 is always infinite.




Examples:
1
1 The sequence {a,}>*_, given by,a, = — ;Vn € N.
n
1 1
Here, a;=1,a, = E yAg = g , «« - . The graph of the sequence is as follows:

(o]
Now, observe that the terms of the sequence {an}n=1 approaches to the real number 0O as n

approaches to infinity.
n—1
2 The sequence {a,}>_, given by,a, = ;Vn eN.
n
1 2 3 4
Here ,a, = 0,a, = — ,a,=—,a, = —,Qc = —, ce wev wut
1 e e I
The graph of the sequence is as follows:
aq a; as ay as ag
L
€ 0 1/2 2/3 3/4 4/55/6

[eo]
Observe that the terms of the sequence {an}n:1 approaches to the real number 1 as n

approaches to infinity.

3 The sequence {a,}>_, given by,a, =
Here ,a; = =1,a,=1,a3=-1,a,=1a;=—-1,.. ...
The graph of the sequence is as follows:
A2n+1 Aoy,
neN n eN
as a
6
as a,
aq a,
o

E -2 1 0 1

(o8]
Observe that the terms of the sequence {an}n:1 doesn’t approaches to the any one real

number as n approaches to infinity.

{a, }>_, given by,a =

4 T he sequence . i

Here ,ay = 1,a2 = 4,a3 = 9,a4= 16,a5

The graph of the sequence is as follows:



- a a; as ay as 3
0 4 8 12 16 20 24 28 32
Observe that the terms of the sequence {an}?fﬂ approaches to infinity (o) as n approaches
to infinity.

6.4 The convergence of a real sequence:

Now, as we see in examples 3.3.1 and 3.3.2, the sequence {an}?:;l approaches to a real
number (sayl), as n approaches to infinity. “What does it actually mean?” It means, whatever
positive real number (&) we choose, however small, the distance between the terms of the
sequence and the real number [ must be less than ¢, after some finite number of terms (N).

al a2 a3 a4 as a6 a7 a8 ...... an ...... I

‘*-'----'----‘---'----'--'-‘--'-‘---- .

Let us consider an example to understand this concept:

Tl—l}oo
Consider the sequence, then { n Jn=1 we observe that the terms of the sequence

n—1}oo
[ n Jn=1approaches to the real number 1 as n approaches to infinity.

aq a, as ay as ag
2 ﬁ
€ 0 1/2 2/3 3/4 4/55/6 1
£=— 0)
So, choose ~ ~ 10 , we will show that after finite number of terms (say N), the distance

between the terms of the sequence and the real number [ is less than &.

1
e=—(>0),3NeN

X nleﬁ |lan—!| <&
. n—
|an —'l|‘< & lf‘|—;—'—']1 <:IE

i.e. in Mathematical notation, for such that

Here,
. n—-1-n 1
orif - =
. 1
orip [ <2
orif —-< o
orifn>10.

i.e. if we choose N =11, thenn > N= |a,—I| <e.



Does such N exists for any €> 0 for this sequence ?

Yes. Let us take € = 0.002 (>0),

n>N=|a,-1|l<c¢ then we will try to find
- n

.~ |n—1 NEeEN, such that
la, —l| <& if T_1| < 0.002

For,

or if |”‘;‘"| < 0.002
orif |=|<0.002
orif ~<0.002
orifn> 500.

i.e. if we choose N =501, thenn > N= |an,—!| <e.

lima, =1

n—00

Definition: A sequence {an}?le is said to be convergent and converges to a
real number [l if and only if Ve> 0, 3 N € N, depending on ¢, such that n > N= |a,—!| <e.

co
Note: If a sequence {antn=1 converges to a real number [, then we write,

lllustrative Examples

—1.%®
Prove that the limit of the sequence {n—} is 1.
n n=1
_n—1
a, = —
Solution: Here, and [ = 1. Choose any > 0, We have to find a natural number N,

depending on g, such that n>N= |an,—1| <e.

Now la, —l| <& if |nT_1—1|<e

or if |n_1_n| <eg

n
. -1
orif |1?|<€
orif ~<e



orif n>§

1 1
If we choose the first natural number N just after E, i.e. choose N —max {1’ [ e ] + 1},

1
> Z —
then for, nzN> g’ Ian l< g.

. (o]
Showing that the sequence {an}n=1 converges to [.

ie. rllgalo (nT_l) - 1. #

(54,

Prove that the limit of the sequence ' " Jn=1 is zero.
a. = -n"

Solution: Here, ™~ n andl=0.

Choose any > 0, We have to find a natural number N, depending on ¢, such that n>N=
lan—1]| <e.

_ G |
Now,la” [|<e lf|n Ol <e
orif |(_:L) <e¢

|
orif ~-<e

orif n> i
If we choose the first natural number N just after%

1 1
i.e. choose N= max[l, [;] + 1}, then for, n>N> 2’ la, — 1| < €

_an
, . i (52 = o
Showing that the sequence {an}n=1 convergesto l.i.e. no»o \ n . #

Prove that, lim (/&

Solution: Here, Choose any €> 0, We have to find a natural number N, depending on &, such
that n>N= |an—[| <e.



3n+1
2n

Now, la, — | <e if

13,

+2)—-(6n+12)
2(2n+4)

or f |2@n+4)
or if

orif

orif |(6n | <e&

2n+4 1

&

orif n>%(§—4)

1(5
If we choose the first natural number N just after 2 ( )

1/5 1
= === > z -
i.e. choose N max{l, [ 2 (e 4) ]} then for, nzN> e la, — 1| < £

. (0]
Showing that the sequence {an}n=1 converges to [.

3n+1 3
. m = -
j.e. n—oo \2n+4 2. #

Check your progress
o
1. Define convergence of a real sequence {an}n=1. Prove that:
1

(i)  The sequence {E}converges to zero.
1

(i) The sequence {n_P}converges to zero, where p is a fixed positive real number.
. 6n—5 6
(111) lim ( ) ==
5145 5.

n—co

gruosne )
(iv) The sequence 2 "5’ 8 "11"14" " ) is a convergent sequence and
4
converges to the limit 3
2. Find a natural number N, such that
- N | -3 | < 21
n=>N= - —
4n+9 1000.

lim (Vn + —\/_)—0

3. Prove that n—w

Proposition: Let x € R. Then,

(i) =x<&;Ve>0=x<0.
(ii) |x| <& ;vVe>0=x=0.



Proof: (i) Let x € R and x<; V&> 0.

X
If possible suppose, x> 0 then choose €= 2 > 0), then

x>g =X >E€ (CLS?J:;)

which contradicts the fact that x<e ; Ve> 0.

Hence, x » 0 or x < 0 (by Trichotomy Principle). #

(ii) Let x € R and |x| <; V&> 0. Choose |x| =y, theny >0
Also, y< ;Ve>0

So, by (i),y <0

Hence,y=0 (asy=0andy<0)

=|x| =0

=x=0. #

Theorem: A sequence {a,} cannot converge to more than one point.

Proof: If possible, suppose lim a, =1 gnd lim a, =1’

n—-oo n—oo
Then, for any given €> 0,3 N1, N2 € N, depending on ¢, such that
n>Ni=|a—1l| <¢/2 ... (1)
n>N,=|a—1l'| <¢/2 .. (2)
Choose, = Max. (N1, N2) , then (1) and (2) reduces to,
n>N=|a,—l| <e/2 ... (3)
n>N=|a.—l'| <¢/2 .. (4)
Now,n=>N= |l - [l'| = |l — ant+ an—1|
S |l - anl + |an_l’|
S |an_l| + |an_lll
<egf2 +¢g/2
=¢.
Thus,n > N= |l — ['| < ; for any given €> 0.
Hence, | — [
=0 or,l=1.
6.5. Divergent and Oscillatory Sequence
A sequence {an} is said to be divergent and diverges to +oo

(by Triangle inequality)
(as |—x| = |x| Vx € R)

(From (3) and (4))

(in symbols, Lim a, = +)if for any positive real number k, however large, there



exists a natural number N, such that

n>N=a,>k
lima, =+ if Vk € R*

I.e. now , however large, 3N € N, such that n > N=a»>k.
Example: The sequences {n}, {n*} and {-37*}are divergent sequences and diverges to
+00,

A sequence {ax} is said to be divergent and diverges to —o

(m symbols, il_,n; In = _OO) if for any positive real number k, however large, there

exists a natural number N, such that

- —_ * +
e TIL% ap = -0 yVikeR , however large, 3N € N, such that n > N=an< —k.

Example: The sequences {-n}, {~n’} and {372} are divergent sequences and
diverges to —o.

A real sequence {ax} is said to be oscillatory sequence if it is neither convergent
nor divergent.

Example: The sequences {(-1) }, {(—2)"} are oscillatory sequence. [

Hint: The sequence {(—1)"} oscillates finitely between —1 and 1.
The sequence {(—2)" } oscillates infinitely between —oo and +oo. ]

Theorems on Limits:

Let {a»} and {bn}are two sequences such that rlal—>rrolo =1 and 111590 b = m, then:

(1) irlli_)rglo(a:n+bn)=l+m and

lim(a, —b,) =1l—m
n—oco
(i)Let (K 0) € R, then 1% Kan = Kl
(iii) lim(a,.b,) =L m
n—00
: lim — =~
(iv) Ifbu#0;VneNandm#0,then nooby m,
. an __ i
(v) Ifbu#0;VvneNandm#0,then rllll?oa_m.
Proof: (i) Given that, Alﬂo ay = L and ALHQO bn = mn
Let &' > 0 be arbitrarily chosen. Then 3 N, € Nand N, € N such that
n>Ni= |an—I| <¢... (1)

n>Ny=> |bn—m| <e... (2)



Now, choose N = max. {N1, N}, then above equations can be expressed as,
n>N= |a—l| <¢... (3)
n>N= |bpr—m| <¢...(4)

To show: J llm(an+b )—l+m

If n> N, consider, |(ant bn) — (I + m)| = |(an—1) + (bn—1)|
<lan=l| + |bn—1| (by Triangle inequality)
<g+¢ (From (3) and (4))
= 2¢'
Hence, n > N=|(an+ by) — (Il + m)| < 2¢’
So, if we choose € = /2 , then > 0 is arbitrarily chosen and then 3N € N such that

n> N=|(ant+ bn) — (Il + m)| <¢
llm(a +b )—l+m

Hence, n #
Note: ,llmc;lo(a” +b,) = llm a, i llm b,,
(i1) Given that, 71113.30 n and (#0) e R.

Let &' > 0 be arbitrarily chosen. Then 3 N € N such that
n>Ni= |a—I| <¢... (1)

To show: ?’lllllc;lo kay = ki

If n> N, consider, |(kaxr) — (k)| = |k(ar—1)|
= |k|. |an—|
<|k|. € (From (1))
Hence, n > N=|(kax) — (kl)| < |k|. €
So, if we choose € = ¢/|k| , then &> 0 is arbitrarily chosen and then 3N € N such that

n> N=|(kan) — (kl)| <¢
lim ka,, = kl

Hence, n-ew #

Note: 1 llm (kan) =k llm a,

(iii) Given that, n % = Lang N bn =

First we will show that if 11122 tn =0 an rlzl—g}a Bn = Othen ,l,gg . Brn =0

Let &' > 0 be arbitrarily chosen. Then 3 N; € N and N, € N such that
n>Ni= |ay| <e... (1)
n>No= |Ba] <€ ... (2)



Now, choose N = max. {N1, N}, then above equations can be expressed as,
n>N= |ay| <c... (3)

n2N= |Bx| <e... (4)

To show: rlll_r,?o“ B = 0

If n> N, consider, |an. Bn| = |atn]. | B
<€. ¢ (From (3) and (4))
= (&)°

Hence, n > N=>|an. Bl < (¢)?

So, if we choose €' = Ve | then &> 0 is arbitrarily chosen and then 3N € N such that

n> N=|an. fn| <e

lim «,,. =0
Hence, nswo " Pr

To show: 111330 Q- by = lm.

Let an= an—1 and ,Bn: bn—m, then &Ln; a, = ig?o(an — l) =1l—-1=0

llmBn— lim(b, —m)=m—-m=20
and n n—co .

Hence, from above,

lima,.f3, =0
n—co

lim (a - D.(by—m)=0

llm a,.b, — liml.b, — limm.a, + liml.m =10

—n-—oco n—oo n—oo n—-oo
lim a,.b, — L. limb, —m.lima, + liml. m=20
n—Cco n—co n—co n—oo
lima,.b,—lm—ml+lm=0
n—co
TlLl_ILloa .b,, = lm. 4

Note: AT, b = lim a, . lim by

(iv) First we will prove the following Lemma:

|m|
>N b | <—
Ifrllﬁr?ob andm;ﬁo,then AN €N, suchthat nzN=|b,| 2
Proof: Since, 7’112.{3101) then for € > 0,3N € Nsuch that
|m|
n = N=|b, —m|<7 . (1)

lm|=|m—b, +b,| <|m-— b|+|b|< +|b|



Thus, ™ >N=|m|<— lml + |b,,|

. 1
) lim — =—
Now, we will show, n-w by m,

If n> N, consider,
1 1| _ by —m|

b, ml Ian- Im|
< ﬁ (from above lemma & equation (1))
——-m|
2 !
= il E
Hence,
n=N :>:——| < ImIZ '
ImI

So, if we choose , then &> 0 is arbitrarily chosen and then 3N € N such

that

lim — = i
Hence, nowbp  m.
(V). Easy to prove and is left for the exercise.
6.6. Subsequences: Let {un } be a given sequence. If {n,} is a strictly
increasing sequence of natural numbers i.e.(n; < n, <nz < --),
then{u,, } is called a subsequence of {un }.
Example: 1. The sequences
{1,3,5,....,2n — 1}, {2,4,6,.....2n.....}and {1,4,9,..n?%,....} are all
subsequences of the sequence {n}.
Remark: The terms of a sequence occur in the same order in which
they occur in the original sequence.
Theorem: If a sequence {u,} converges to [, then every subsequence of
{u,} converge to L.
Proof: Let {u,, } be a subsequence of the sequence {u,} and this
sequence {u,} converges to L.
That is for choosen any € > 0,3 a positive integer N depending on ¢,
such that for all positive integer n

lu, — l|<e Vvn>N

= |u,, — l| <& Yne >N



= the subsequence {u,, } converges to L.
Remark:1. All subsequences of a convergent sequence converges to
the same limit point.
2.The converse of the above theorem need not be true.
Example: The subsequence {1,1,1,....}and {—1,—1,—1, .....} of the
sequence {(—1)"} are convergent where as the sequence {(—1)"} is not
convergent.
3.In the order to prove that a sequence is not convergent, it is
sufficient to show that any two of its subsequence converge to
different limits.
Example: The subsequence {1,1,1,....}and {—1,—-1,—1,.....} of the
sequence {(—1)"} are convergent and converge to 1 and — 1 respectively
so the limits of two subsequence of this sequence are different so the
sequence {(—1)"} is not convergent.
Theorem: If the subsequences {u,,_;}and {u,,} of a sequence {u,}
converges to the same limit [, then sequence {u,} converges to L.
Proof: Since the subsequences {u,,_;}and {u,,} converge to [, so for
each € > 0,3a positive integer N; and N, depending on ¢, such that
|luyp—1 — Il <e ¥Vn>N; and

U,y — Il <€ Yn>N,

Let N = max {N;, N,} then both of them reduces to

|lUsn_1 — Il <& ¥Yn>N and

U,y — l|<e Yn>N

Hence,|lu,— l| <& Vvn>N

So, the sequence {un } converges to .
Note: 1.If a sequence {un } diverges to o, then every subsequence of
sequence {un } also diverges to .

2. If a sequence {un } diverges to —oo, then every subsequence of
sequence {un } also diverges to —co.
6.7. Cauchy Sequence: A sequence {un } is said to be a Cauchy
Sequence if for each € > 0, 3a positive integer N depending on ¢, such
that for all positive integers m,n

mn>N = |u, — u,| <e¢

In particular takingm =N +1> N,

We have

n>N = |u, — uysyq| <€

Or, p>0n>N = |u, — Up,p| <€
Example: show that the sequence {un } is a Cauchy sequence where



n

n+1

U, =
. n 1

Proof: Since u, =—=1——

n+1 n+1

Choosen any € > 0. Let m,n be any positive integers such that m > n.

Now,
1 1 1 1 1

n+1_m+1 =n+1_m+1<n+1

mn>N = |u, — um|=|
1 . 1
Now,—<c¢ifn>-—-1
n+1 &
. n 1 .
Hence, the given sequence u, = —=1— —isa Cauchy sequence.

n+1
Example: show that the sequence {un } is not a Cauchy sequence

where u, =1+ 1/3 + 1/5 T

2n—1 "
Proof: We have u, =1+ 1/3 + 1/5 + - +ﬁ and
Upp = 1+ /g + 1+ ....+2n1_ -+ 2n1+ -+ ...+4n1_ -
Now, Uz —un = |1+ 1/3 + 1/5 te ""+T1—1+ 2n1+1 + '"+4n1—1 -
1+ 1/3 + 1/5 to ""+2n1—1 - 2n1+1 2n1+3 4n1—1

= Uy — Uy = L >nl/, =1/
M T on+1 2n+3 4n —1 4n 4

Since, — > 1/ 4 and so on also there are n terms.
2n+1 n
= Uy, — Uy > 1/4 VneN
= 3 a positive integer k such that |u, —u;| > 1/ 4 Whenever n = k

=This sequence is not a Cauchy sequence

Theorem: Every Cauchy sequence is bounded.

Proof: Let {un } be a Cauchy sequence, choosen any € > 0,3 a positive
integer N depending on ¢, such that for all positive integer n.

n>N = |u, — uyyq| <€

Or,n>N D uyy—e<u, < Uyyp + €

Thus uy,q1, N+ 2,N + 3,.... that is all the terms after uy are less than
uy4+1 + €. Hence, K = Max{u,,u,, us,.... Uy, Uysq + €}



Then uy < K for all positive integers n. Hence, the given sequence is
bounded above.

Again we see that each term of the sequence after uy is greater than
Uyt — & so if H = Min{uy,u,, ug, ... Uy, Uysq — €}, then H < uy for all n.
Hence the given sequence is bounded below.

Hence the given sequence is bounded.

Remark: Converse of this theorem need not be true.

Example: The sequence {(—1)"} is bounded but it is not a Cauchy
sequence. That is every bounded sequence need not be a Cauchy
sequence.

6.8. Theorem (Cauchy’s criterion for convergence): A sequence
converges if and only if it is a Cauchy sequence.

Proof: Suppose that the sequence {un} be a convergent sequence and
lim,_ . u, = 1. Now we want to show it is a Cauchy sequence. For each
¢ > 0,3a positive integer N depending on ¢, such that for all positive
integer n we have

n>N = |u, — | <&/puiiiiiin, (1)
In particular for n = m, equation (1) reduces to
Mm>N = |y — | <E/piinnn, (2)

Now,m=n>N = |u, — Uy, =(u, — ) — Uy — DIS |(u, — DI +

lum = U< /5 +5/;

Thusm>n>N = |u, — u,| <e.

Hence, the sequence {un} is a Cauchy sequence.

Conversely, Suppose that the sequence {un} be a Cauchy sequence.
Now we want to show it is a convergent sequence. Since every Cauchy
sequence is bounded. Also we know that every bounded sequence has
a limit point, so, {un } has a limit point sayl be the limit point of {un }.
Now we want to show that lim,,_,,, u, = 1. The sequence {un} is a Cauchy
sequence then for each € > 0,3a positive integer N depending on ¢,
such that for all positive integers m,n

mn>N = |u, — Up| <E/3...... (1)

Since [ be the limit point of {un }, every nbd of | contains infinitely
many terms of {un} = u, € (I —¢ /3. 1+ € /3 ) for infinitely many values
of n so, we find a positive integer k > m such that u, € (1 —¢/3,1+¢/3)
or, k>m = |, — I <&/g.iiiiin, (2)

Also from equation (1) we have m,k > N = |uy — u,| < 5/3 ...... (3)

Now, |un_ ll = |(un_um)+ (um_ uk)+(uk_l)|



< @Un —un| + [ — w)l + [(we =D < ¥/3+¢/3+%/3 Vn=m.
Thus we have for each € > 0,3 a positive integer N depending on ¢,
such that for all positive integer n we have

n>N =|u,—l|<c¢
Hence, the sequence {un} is a convergent sequence.
For each € > 0,3 a positive integer N depending on ¢, such that for all
positive integer n we have

n>N = |u, — | <&/gein, (1)
In particular for n = m, equation (1) reduces to
m>N = |up — | <[z (2)

Also, the sequence {un} is a Cauchy sequence then for each ¢ > 0,3a
positive integer N depending on ¢, such that for all positive integers
mn

mn>N = |u, — u,| <e...... (3)

Theorem (Cauchy’s general principle of convergence): A necessary
and sufficient condition for a sequence {un } to be convergent is that to
each ¢ > 0, there corresponds a positive integer N such that

VP ZLVN>N = |uy, — Upyp| <&

Proof: Let us suppose that the sequence {un } be convergent and this
sequence converges to [, then for a given € > 0,3 a positive integer N
depending on ¢, such that for all positive integer n we have

n>N = u, - Il| </,

Since,Vp=>1,n+p =n = N. Then

VpZ1Ln+p2n>N = |ug, — | </

Now we consider,

Uiy = tn| = [ty = L+ 1= ] < [y — 1] + |1 = g
<ptf2=c¢

= The sequence {un } be a Cauchy sequence.

Conversely, suppose the sequence {un } be a Cauchy sequence

= The sequence {un } be a bounded sequence.

Suppose m and M be the lower and upper bounds of u,., respectively,
thenm <u,, <M = M —m| = [(Upyp + &) — (Unyp T )| < 2¢

Hence, M—m=0 = M=m

Thatis M — e <upp, <M+ cie. |upyy — M| <e



Thus, the sequence {un } be a convergent sequence.

Theorem(Cauchy’s first theorem on limits): If lim,_, u, =1, then

.U +uyteeatuy
lim =1
n—oo n

Proof: Suppose thatu, = v, +1then,u; = v; +1,u, = v, +1soon
We haveu, — 1 = v,

= lim v, = lim (u, —1) =limu, —1=1-1=0
n—oo

n—oo

n—>0o
Now,
outuyt+eeatu, 0 vit+ltvp 14 v+
lim = lim
. Vi tvyt e atvp+nl o vy vy e vy
lim = lim +1
n—oo n n—oo n

Vit+Va ety

Now we want to show that lim =0

n—->0o
Since the sequence {un } be a convergent sequence so, the sequence {vi» } be a
convergent sequence, hence, it is bounded. There exists a positive
integer k such that |v,| <kVneN. Also, {v,} is convergent and
converges to 0 then for a given ¢ > 0,3 a positive integer N depending on
g, such that for all positive integer n we have

n>N = |y, — 0<%/,

. V1+vo+- v Vi+Vo+dvVvm+Vv otV
Now consider, [#] — [ 17V2 m+Vm+1 n]

n n

Vil + |V + o0 |V \% + -4V mk n—m
S|1| |2| |m|+(m+1 n)< +( )

eEvVvnz=zm
n n n 2

2mk

&

<ilifn>
n 2
. . . 2mk .
Again, let « be any positive integer, a > ——lLenza
So, we have X < £
n 2
Let 8 = max{m, a}, then for every n = 8, we have
Vi +Vy A+ vy £ &

n Sty TE




) Vit vy + - vy
= lim =0
n—-oo n

Hence, lim,,_, ”?" =1
Remark: Converse of this theorem need not be true.

Example: Let u,, = {(—1)"}, then

u;+uz+---.+u . . u;+uz+---.+u 1. .
=218 —0,ifniseven and —*——2 = — - ifnis odd
n n n

ug+uz+tup

Therefore, lim,,_,, = 0.While the sequence u,, = {(—1)"} is not

convergent.

Theorem (Cauchy’s Second theorem on limits): If {u,} is a sequence
of positive terms and lim,,_,,, u, =1, then lim,_, (u; uy. U3 ... u,. )l/n =L

Proof: Let {v,} is a sequence defined by v, = logu,, Vn €N

Therefore, lim,,_,, u, =1 = lim,_,, v, = lim,_, (logu,) = logl

Now, by Cauchy’s first theorem on limit lim oo [w] = lim,,_,, v, = logl

logu,; + logu, + ---. +logu,

1
i ] = lim —(logu, +logu, + ---.+loguy,) = logl

n—-oo

n

lim E(loguluz ..uy) = logl = lim (logu; u, ...un)l/n = logl
n—oo n—oo

Or, lim,,_, o, (uq u,. ug ...un.)l/n = l.
Remark: Converse of this theorem need not be true

Check your progress

1.Show that the sequence {

(_rll) } is convergent.
2. Show that the sequence {3%} IS convergent.
3. Show that the sequence {Vn + 1 — vn} ¥ n € N is convergent.

4. Show that the sequence {pin} ,p > 0 is convergent.



6. Show that the sequence {log %} diverges to —oo.
7. show that lim,,_,, — (1 + - + + Wt ) = 0.

8. show that lim,,_,,, = (1+ + Ly +ﬁ)=0.

. 1 1 1 !
9. show that lim,,_, o, (; + 12 + nt1)3 T ot (Zn)z) =0.

10. Show that lim,,_,.o{ ((3"1))3)}1/71 =27

@ _ o,

n!

11. show that for any number x, lim,,_,, ——

(OLE

12. If |x| > O0and k > 0 show that llmn_,oo( ==

13. Using Cauchy’s general principle of convergence, show that the sequence {u,,},

Where u, =1+ % + §+ et % is not convergent.

14. Show that the sequence {u,}, Where u, =1+ § + §+ wes F Zn-1)

not a Cauchy sequence. Is it convergent?

15. Using Cauchy’s general principle of convergence, to show that the
sequence {u,}, where u, =1 + % + %+ . is not convergent.

3n—-2

=Dt
(n)

16. Show that the sequence {u,}, Where u, =1 — % + %— i + ...+

is a Cauchy sequence.

18. If {u,} is a sequence such that lim,,_,, uZ“ = | where |l| < 1 then
lim,_ ., u, = 0.

19. If {u,} is a sequence of positive real numbers such that
limy,oo “22 = [ then (u,)/n = 1.

20. Prove that lim,,_,.(n)/n = 1.



21. Prove that [1+(2)2 + (3)"3 + .+ | = Yy,

2 n
22. Show that lim,,_,, (1 + ;) = e2.

23. Show that the sequence {n} is not a Cauchy sequence.

24. Show that the sequence {n?} is not a Cauchy sequence.

25. If If {u,} is a sequence of positive real numbers and{(un)z} is
convergent. Find whether {u,} is convergent or not.

6.9. Monotonic sequence: A sequence {u,} is said to be
monotonically increasing if u, <u,,, Vn € N.

A sequence {u,} is said to be monotonically decreasing if u, >
U1 VN EN.

A sequence {u,} is said to be strictly increasing if u, < u,,; Vn € N
A sequence {u,} is said to be strictly decreasing if u, > u,,; Vn € N

Remark: 1. A sequence {u,} is a monotonic sequence if it is either
monotonic increasing or monotonic decreasing sequence.

2.A strictly monotonic sequence may be monotonic after a certain number of
(m —1) terms.

3. A monotonic sequence can not oscillate, as it is bounded below or bounded
above according as it is increasing or decreasing.

Example: 1. Sequence {2, 2,2,4,4,6, ...} is monotonically increasing.

2.Sequence {1, 1/2 , 1/4, 1/6 ... } is monotonically decreasing.

3. Sequence {2,3,4,5,6,7, ...} is strictly increasing.

4. Sequence {1/n} IS monotonically decreasing.

5. Sequence {0, 2,0, 2,0, 2, ... } is not monotonically sequence

Theorem: A monotonic increasing sequence is convergent (converges to least
upper bound) if and only if it is bounded.



Proof: Suppose that a sequence {u,}be a monotonic increasing sequence.
Let S = {u,:n € N} which is a non empty set also it is bounded above.
Therefore, there exists a number [ which is least upper bound of S.

Claim: [ is the limit point of the sequence {u,}. Let € > 0, since [ — e < [.

So [ — ¢ is not an upper bound of §, so, there exists a positive integer m
such thatu,, > [ — &. Since, the sequence {u,}be a monotonic increasing
sequence, therefore, u, > u,, > l—e¢VvVn=>m.

Since, lub(S) =1l = u, <l<l+eVneN

From these two results we conclude thatl —e<u, <l+eVn=m
= |lu,—l|<eVnz=m

= lim,,_,, u,, = L. Hence the sequence {u,} is convergent and converges to L.

Theorem: A monotonic decreasing sequence is convergent (converges to greatest
lower bound) if and only if it is bounded.

Proof: Suppose that a sequence {u, }be a monotonic decreasing sequence.

Since every convergent sequence is bounded, therefore, A monotonic
decreasing convergent sequence will be bounded.

Let S = {v, = —u,,;:n € N} which is a non empty set also it is bounded
monotonic increasing sequence, so, it must be convergent. Therefore,
there exists a number [ which is greatest lower bound of S.

Claim: [ is the limit point of the sequence {v,}.
Let lim, ., u, =1 =lim,_, —v,

= lim,,_,, v, = —L which is a finite quantity. Hence the sequence {v, } is
convergent and converges to —L. So, the sequence {u,,} is convergent and
converges to L.

Remark: 1. A monotonic sequence is convergent if and only if it is bounded.

2. A monotonic decreasing sequence, which is not bounded below, diverges to
—00,

3. A monotonic increasing sequence, which is not bounded above, diverges to co.



4. Every monotonic decreasing sequence, is either convergent or divergent and
diverges to —oo.

5. Every monotonic increasing sequence, is either convergent or divergent and
diverges to co.

Example: Show that the sequence {%} Is monotonically decreasing.

1

. _ 1 _
Proof: Letu,, = — and u,, = P—
Now, u, —u =4~ =_—1 _S0vnen

T 1 7 on 2n+2 0 nn+l)

> U,— U1 >0VNEN=u, >u, 1 Vn€eN.

1, . . .
Hence, the sequence {E} Is monotonically decreasing.

Example: Show that the sequence {u,} defined by u,, = g::g Is convergent. Find
its limit.
o _ (2n-7) __ (2n-5)
Proof: Since, u,, = Gniz) ndu,,, = 1)
(2n— 7 (2n—5) 25

<0VneN

Now, u, —up4q = (3n+2)  (3n+5)  (3n+2)(3n+5)

= U, ~ U1 <OVNEN=u, <u, . Yn€eN.

Hence, the sequence { )} Is monotonically increasing sequence.

Since, u,, = g";i —1VneN.

Also, u, = &0 1 -9 ~qypen.
~ (3n+2) (3n+2)

Thus, -1 < u, = g:g <1VneEN.

Hence, the sequence { gz;;;} is bounded so, it is convergent.

. (@n=7) 2-7/) 5
rlll—r>¥>l0un _rlll—r>1;lo(3n+2) 11_)00(3-'_2/71) /3

Check your progress



1.Prove that the sequence {(1+ 1/,)"} v n € N is convergent.

2. Prove that the sequence {u,,} defined by u; = 1 and u,,,; = /3u, Iis
monotonic increasing and converges to 3.

3. Prove that the sequence {u,} defined by u, = 1 andu,,,; = Ja +u, is
converges to the positive root of the equation x? —x — a = 0.

4. Prove that the sequence {u,,} defined by u; = V7 andu,.1 = /7 + u, is
converges to the positive root of the equation x? —x — 7 = 0.

5. Prove that the sequence {u,,} defined by u; = V2 and u,,,; = +/2u, is
monotonic increasing and converges to 2.

6. Show that the sequence {1/n!} IS convergent.

7. Show that the sequence {n?} is a monotonically increasing sequence.
8. Show that the sequence {2"} is a monotonically increasing sequence.

9. Show that the sequence {—n?} is a monotonically decreasing sequence.

10. Prove that the sequence {u,,} defined by u; = V2 and u,,.; = /2 +u,, is
converges to the positive root of the equation x? — x — 2 = 0.

6.10. Summary:

We are able to understand the concept of Sequence of real numbers, concept of
convergence of a real sequence, understand the Concept of divergence and
Oscillatory sequences of a real numbers, and understand the concept of
subsequences, Cauchy sequence and its uses.

6.11. Terminal Questions
1. Show that the limit of the sequence {"—_1} is one.
n Jn=1

. o
2. Define convergence of a real sequence {an}n=1. Prove that:
1

The sequence {F}converges to zero.

3. Find a natural number N, such that
8n -3 21

an+9_ “l <Tooo

n2N=>‘




4. show that the sequence {u, } is a Cauchy sequence where
n

u, = )
n o n+1

5. Show that the sequence {

1 .
Sw—3) Is convergent.



UNIT-7

Infinite Series
Structure
7.1. Introduction
7.2. Objectives
7.3. Partial sum of series
7.4. Convergence and divergence of non negative series
7.5. Necessary condition for the convergence of an infinite series
7.6. Cauchy’s General principle of Convergence for series
7.7. Convergence of positive term series
7.8. Comparison test of the first type
7.9. Comparison test of the second type
7.10. D’ Alembert’s ratio test
7.11. Cauchy’s n" root test
7.12. Raabe’s test
7.13. Logarithmic Test
7.14. Cauchy’s condensation test

7.15. Alternating series

7.16 Absolute convergence and conditional convergence
7.17. Summary

7.18. Terminal Questions

7. 1 Introduction

This is most basic unit of this block as it introduces the concept of Partial sum of
series, convergent and divergent series of non- negative terms and use of different



tests for convergence of series of non- negative terms.We introduce use of different
tests for convergence of series of non- negative terms. The theory of Absolutely
convergence and conditionally convergence.

Series of non negative terms has an important role in the field of Analysis-

It has many important applications in analysis like as application in almost every
field, social, economy, engineering, technology etc.

7. 2 Objectives
After reading this unit we should be able to

1. Understand the concept of Partial sum of series, convergent and divergent series
of non- negative terms.

2. Use of different tests for convergence of series of non- negative terms.

3. Understand Use of different tests for convergence of series of non- negative
terms.

4. Understand absolutely convergence and conditionally convergence.

Series of non negative terms has an important role in the field of Analysis-
It has many important applications in Analysis.
7.3 Partial sum of series

Let {u, } be a given series then the form u; +u, + us + ...+ u, + - = Yo U,
or ), u,, is called an infinite series. We define an another sequence {S,,} as

Sp = wtu, +us + ot u,.

Thus S,, denotes the sum of the first n terms of the infinite series )., u,. This
sequence {S, } is said to be sequence of partial sums of the series )7 u,,.

7.4 Convergence and divergence of non negative series

Definition: 1. The infinite series .,>-; u,, is said to be convergent if the sequence
{S,,} of partial sums of the series },5—; u,, is convergent. If lim,_,,, S, = S, then S
is called the sum of the series ),,—; u,, and written as Y.;—; u,, = S.

2. The infinite series ).;—, u,, is said to be divergent if the sequence {S,,} of partial
sums of the series Y.;°-; u,, is divergent.



3. The infinite series )., u,, is said to be Oscillate if the sequence {S,,} of partial
sums of the series )., u,, is oscillate.

Note: 1.The replacement, addition or omission of finite number of terms of a
series ).,— U, has no effect on its convergence.

2. The convergence of a series remains unchanged if each of its term is multiplied
by a non-zero constant.

: ' gy 1 -ttt
Example: Consider the series Y., = ettt
. _ 1 . l _ 1
Proof: u,, = D= 7T oD
S Uy +uz + .t 1 -
= UyTu u wtu, =1-—
" L ° " n+1)
. . 1
oo S = Jim (1 =) = 1

= The sequence {S,,} of partial sums of the series },,—, u,, is convergent and
converges to 1.

= the series ), u, is convergent.
Example: Consider the series Yo, n?
Proof: u, =n%and S,, = wy+u, +uz + ...+ u, =1+ 2%+3%+ - +n

nn+1)2n+1)
ne 6

Thus, lim S, = lim nt)@Entl) _
) n

n—oo n—-oo 6

= The sequence {S,,} of partial sums of the series )5, u,, is divergent and
diverges to co.

= the series },; u, is divergent.

Consider the series Y.o>—,(—1)"

WehaveS, =1, S, =1-1=0,S3=1-1+1=1,..
Therefore, {S,,} = {1,0,1,0, ... } which oscillate between 0 and 1



(0¢]

= the series z u, is oscillatory.

n=1

7.5 Theorem (Necessary condition for the convergence of an infinite series): If
the infinite series ),»—; u,, is convergent then lim,,_,,, u,, = 0.

Proof: Let S,, = u;+u, + u; + ...+ u, and letlim,,_,, S,, = S so that
lim, ,, S,—1 =S.Wehaveu,, =5, — S,_;
= limy, e Uy = 1My 00 (S, — Sp1) = limy00 Sy —limy, 6, S,y =5 -5 =0.
Hence, lim,,_,,, u,, = 0.
Note: The converse of this theorem need not be true.
Example: Consider the series 1 + 1 + 1 +oe 1 +..
P /\/7 /\/g /\/g

Here, u, = 1/\5 S0, lim,, 0o U, = lim,,_, 1/\/H =0

But the above series is not convergent. Since,
Sp = ytu, tus + ot u, =

1+ 1/\/§+ 1/\/§+""+1/\/ﬁ>1/\/z+ 1/\/ﬁ+ "'+1/\/E= = Vn
lim S, = lim Vn = o

n—oo n—oo

= The sequence {S,,} of partial sums of the series )5, u,, is divergent and
diverges to co.

[0.¢]

= the series 2 u, is divergent.
n=1

Note: If lim,,_,,, u,, # 0, then the series cannot converge.

Example: Consider the series\F+\P+ vt / = + .- doesnot converge.
4 6 2(n+1)
.o _ n . T n _ l
Proof: Since u,, = ’—2(n+1)’ So, lim,, o Uy, = Aggo /2(n+1) = \ﬁ * 0

(]

= the series z u, 1s not convergent.
n=1

Check your progress
1.Show that the series Y.~ ; cos (1/n2) IS not convergent.



2. Show that the series = + = + > + ...+ —— + ---is not convergent.
2 3 4 n+1

3. Show that the series\ﬁ+\/§+ . / "+ ... is not convergent.
2 3 (n+1)

4. Show that the series )., cos (1/n) IS not convergent.

5. Show that the series Yo ; (1/n)1/n IS not convergent.

6. Show that the series ¥, (Z_Z—H) is not convergent.

2_
7. Show that the series Yo Zz_+i IS not convergent.

7.6. Cauchy’s General principle of Convergence for series: A necessary and
sufficient condition for a series ).,—; u,, to be convergent is that to each ¢ > 0,
there exists a positive integer m such that (w41 + Uy + -+ . Uy | <
eVn >m.
Proof: Suppose that series ).,—; u,, is convergent. Suppose that {S,,} be a
sequence of partial sums of the series Yo — uy,.
The series Y.~ u, is convergents {S,,} to be convergent.
< each € > 0, there exists a positive integer m such that
|Sn — S| < € V> m. By Cauchy’s General principle of Convergence for
sequences
S |(utuy +uz + ot Uy F Uy Uy o uy) — (U tu, Fug +
wtuy)| <evVn >m.........(1)
S Uy FUpy2 + o+ FU, | < eV >m.

Example: Show that the series % + é + i + ...+ % + ---Is not convergent.

Proof: If it possible suppose the given series is convergent. Suppose € = i.

By Cauchy’s General principle of Convergence, we can find a positive integer m

suchthat |upq1 + Upgy + o+ FUu, | <eVn >m.
—t—— L+ <V >mo (D)

m+1 m+2 m+3

Taking n = 2m, we have L4 + ot o= + + + ...+
m+1 m+ n

1 1 1 1 1 1 1
—>—4+—4+—+4 ...+—=m—= -,
2m 2m 2m 2m 2m 2m 2



1 1 1

+ +...+l>1.‘v’n >m
m+1 m+2 m+3 n 2

This contradicts the result (1). Hence, the given series is not convergent.

7.7. Convergence of Positive term series: A necessary and sufficient condition
for a positive term series );»—; u,, to be convergent is that the sequence {S,, }of
partial sums of the series ).;—; u,, defined by S,, = u;+u, +us; + ...+ u, is
bounded above.

Proof: Since u,, = ¥ n € N, The sequence {S,,} is monotonically increasing.

A necessary and sufficient condition for a series ),,—, u,, to be convergent is that
to the sequence {S,,} of its partial sums is convergent. Again a necessary and
sufficient condition for a sequence {S,,} which is monotonic increasing sequence is
to be convergent (converges to least upper bound) is that if it is bounded above.
Hence the result.

Note:1 A positive term series is divergent if and only if the sequence of its parsial
sums is not bounded above.

2.1f a positive term series is divergent then it diverges to oo. In fact the sequence of
partial sums of positive term series being monotonically increasing, it either tend to
a finite limit or to plus infinity.

3. A positive term series Y..°-; u, to be convergent if and only if there exists a
number k such thatS,, = w;+u, +us; + ...+ u, <kvn €N.

4. A positive term series ..~ u, to be divergent if each term after a fixed stage is
greater than some fixed positive number.

5. A series Yo u,, of positive terms such that lim,,_,, u,, # 0, then >>°_; u,
diverges.

6. If each term of a series },»—, u,, of positive terms does not exceed the
corresponding term of a convergent series ).,—, v, Of positive terms, then }.7°_; u,
IS convergent.

7. If each term of a series )5, u,, of positive terms exceed or equals to the
corresponding term of a divergent series Y-, v,, of positive terms, then }'>°_; u,, is
divergent.

8. If Y>_, u, and };>°_, v, are two convergent series, then }'>°_; u,, + v,

and).; -, u,, — v, are also convergent.

9. If Y7~ u, and Yo, v, are two divergent series, then Y,;—; u,, + v, is also
divergent.




10. A series Yo, u, Whose terms are not necessarily positive may fail to be
convergent even if the sequence {S, } is bounded above.

Example: u, = (—1)"then S, = 0,if nisevenand S,, = —1,if nis odd. Here,
the sequence {S,,} is bounded but not convergent because the sequence {S,,} has
two limits points Viz. 0 and — 1.

Example: Show that the series )., (1/n)1/n IS not convergent.
Solution: Here, u,, = (1/n)1/n = logu, = 1/n log 1/n = —(logn)/n

lim,_.logu, = — lim (logn)/n, whichis of = form, then by L Hospital’s rule
n—-oo e e}

= —lim 2 Thus lim,_,logu, =0 = log (lim,_,, u,) =0

n-oo
= (lim,L0u,) =€’ =1=%0.

Hence the given series is divergent.

Theorem (Geometric series): The positive term infinite geometric series 1 + r +
r2+r3+ r*+ ...+r™ + - isconvergentifand only if 0 < r < 1.

Proof: We have S,, = % if r# 1,andequaltonif r = 1.
Casel: Let0 <r < 1,thens, = 1 Sp = S <= Vnen
1-r 1-r 1-r 1-r
So the sequence {S,,} is bounded above and as such the given series is convergent.

Since, 0 <r <1 = lim,,_,,(r™) =0, we see that in this case the sum of the

infinite geometrical series is i

Case2: Let r = 1 then S,, = n, so that the sequence {S,,} is not bounded and so the
such series is not convergent.

Case3: Letr > 1then S,, =r™ > 1,V n € N, so that the sequence {S,,} is not
bounded and so the such series is not convergent.

7.8. Comparison test of the first type:1. Let }:.°-; u,, and ).,°-; v, be two positive
term series such that (i). Y., - v, is convergent and (ii). There exists m € N such
that u,, < v,, V n = m, then the series),-; u,, is convergent.

2. Let Y7, u, and )..°_; v, be two positive term series such that (i). Yo v, iS
divergent and (ii). There exists m € N such that u,, = v,, V n = m, then the
series),»— U, is divergent.

Proof: We have S,, = u;+u, +us; + ...+ u,and T, = vi+v, + v3 + ...+ v,
Suppose thatn = m



We write u, +u, + u; + ...+ u,, = aandv,+v, +v3 + ...+ v,, = b We see
thatvn>m,S,, —a<T,—b =S, <T,+a—b...... (1)

Since, Y7, v, is convergent then the sequence {T,,} of it’s partial sums is
convergent and therefore bounded so there exists a number k such that
T,<kVneN.... (2)

From (1) and (2) weseethatS, <k+a—bVn=>m

We see that the sequence {S,,} of partial sums of the infinite series }.5—, u,, is
bounded and as such the series )5 u,, is convergent.

Note: Proof of the second part is for Exercise.

Remark: Let ¥, u,, and 3., v, be two positive term series such that lim =

n—-oo Upn

[l # 0, then the two series Y., u, and .;°-; v, have identical behaviours in
relation to convergence.
Example: Examine the convergence of the infinite series

[o) 1 [e'e) bn-a o —1 © n
- T @ Igne O X mrms @2 o

Solution: We have u, = —— take v, =

n2+a?

n2

2

= lim =1

2
N a
(]

n 1427/ ,

Also the series ). v, is convergent. Thus the series )..-; u,, is also convergent.

Now, lim L — |im

> Z.Tl
n—-o Upn n-oo n<+a

bn—a 1
(2). We have u,, = — take v, = -
. . bn— . 1
Now, lim =2 = lim ——.n = lim —p—.=1
n—oo Vn n—oo bn?+a? n-ooo 1492 /n

Also the series ).5—; v, is convergent. Thus the series Y.;°_; u,, is also convergent.
1
(3) We have U, = m

take v, =
CUp o 1 _
Now, lim % = lim ——mxs.2vn = 2

Also the series )..-; v, is divergent. Thus the series ),»—; u,, is also divergent.

n n 1
(4). We have u,, = /n4+2 take v, = \/; = \/;
Now, lim =2 = lim [—- 1 =1
n-oo Vp  nooo \| N*+2 1
A

Also the series )',-; v, is convergent. Thus the series Y..>—; u,, is also convergent.

1
2Vn




Example: Examine the convergence of the infinite series
1 1 1 1
(1).1+ 2_2+3_3+E+"'+ —+..
(e o] 1 (e o]
2)- Zn=2 7= () Ln=s 4. Zr=Vnt +1 - (n* - 1)

Solution: We have u,, = =

nn

n2logn logn

. 1 1
Since, n™* > 2" forn > 250, — < — forn > 2
n 2n
. 1 . . . . .1
Also, the series Z,‘?f_l — IS a geometric series with common ratio - < 1

So the series Y o— 150 — is convergent. Hence, by comparison test Zn 175 = —is

convergent.

(2). We have un = %

Since, = J_ < D, 1) forn > 2

Since the series )., 2(,1_—1)/2 being a geometric series with common ratio \/—15 <1
IS convergent. Hence the series )., \/% IS convergent.

(3). We have u,, = logn’

Since, nZ; ~< %forn =3

Since the series Yo % IS convergent. Hence, by comparison test )., m
convergent.

Wehaveu, = Vnt+1—,/(n* - 1) = \/n4+1+2\/(n4_1)

We take v, :\/_4+—W= %

Now, rlll_rf;lo; - 1111—>oo \/n4+1i-7?/(n4 1) - Al—{?o \/1+1/n4-|i/(1—1/n4 =1, which is finite

and non-zero.
. 1 . .
Also, the series Y o4 — Is convergent. Hence, by comparison test

Yo (Vnt+1—,/(n* — 1)) is convergent.
Check your progress

1.Examine the convergence of the infinite seriesY s, {(n> + 1)1/3 —n}.
1.2 3.4
3242 + 52.62 + 72 82 ot

2. Examine the convergence of the infinite series



3. Examine the convergence of the infinite series\/% +\E +

(n+1)

4. Examine the convergence of the infinite seriesZ;‘{;l%sin (1/n).

5. Examine the convergence of the infinite series). n—lz sin (1/n)-

6. Examine the convergence of the infinite series )54 (nzn—+3)

7. Examine the convergence of the infinite seriesy5_; (Vn3 + 1 —/(n3 — 1)) .

8. Examine the convergence of the infinite series), - %

_n_

5 +1)’

10. Examine the convergence of the infinite series Y., (n2n_+3)

9. Examine the convergence of the infinite series Y54 -

7.9. Comparison test of the second type: Let Yo, u,, and }.;°-; v, be two
positive term series such that (i). Y:5—, v, is convergent and (ii). There exists

m € N such that =22 < 21 v 5 > m, then the seriesy.*._, u,, is convergent.

Un Un

2. Let Y.o—, u, and Y7, v, be two positive term series such that (i). Y5=; v, IS
divergent and (ii). There exists m € N such that 222 > 2 vy > 1 then the

U, 2%
series),.— U, is divergent.
Proof: We have S,, = w;+u, +us; + ...+u,and T, = vi+v, + v3+ ...+,
Suppose that n = m,

Let22 <2 5B < B g,

Uu; V1 U VU2

Thus S,, = u;+u, + u; + . +un_u1(1+u 4 Us Y2

1 Uz Ug

or S, <u1[1+ +=.2 ]

V1 V2 V1

Uq
Sn Sv—(v1+v2 ...... + v,)

Or S, < (I,

Since, Zn=1 v, IS convergent then the sequence {T,,} of it’s partial sums is
bounded. Thus, the sequence {S,;} is also bounded and hence, convergent.
Note: Proof of the second part is for Exercise.



7.10. D’ Alembert’s ratio test: Let ).;°_; u,, and },,—; v,, be two positive term
series such that lim — = [, then the series is (i), convergent if [ > 1 ,(ii).

n—co Un+t1

Divergentif [ < 1 and if [ = 1 then series may converge or diverge.

Example: 1. ¥, ~ L js divergent and lim X2 = lim /1““ = 1.
n—-oco Upn n—oo /TL
Y
2. 1— is convergent and lim =X = lim 1) — g,
n—-oco Un n—oo /TLZ

3. Test the convergence of the following series

+1
(1) + + 4 +(" 2L
(2) Zn 13n+1
(3)-2%0:171—,1
2P 3P 4p
(4) 1+ g-l‘? +Z+.“
2.2 242 2,2
(5)12 +23 +34 + ..
1! 2! 3!
123 = 1234
(6) —+ —+ E+3579+
Solution:1. Here, u,, = ( 1)' and u,, .1 = %
_ U,  (n+1D! 1 _ 3
lim = lim : - = lim =0<1
n-o U, q n—oo 3n (n+2)! noocon + 2
3n+1

Hence, by Ratio test, the given series is divergent.

2 H _ ZTL—l d _ 211
. Rere, u, = 1 and u, 41 = i
y Uy, y 2n-1 1 y 131 +1 3>1
m = 11m . = 1m -—-— -
n-oU,,; now3t+1 _2" n-c 2 30+l 2
3ntlil
Hence, by Ratio test, the given series is convergent.
_ nl _ (n+1)!
3. Here, u, = —and up,q = e D@D
U . n! 1 | 1 m+1\" .
nl_r}glounﬂ—nl_)r{.lonn _(+Dr nl—r>{>lon+1< n ) (n+1)

(n+1)(M+1)

= lim (n+1) = e > 1. Hence, by Ratio test, the given series is convergent.

n—oo n



(n+1)P

4. Here, u,, = and Ups+1 = m

y _ n? 1 y n+1l |
nl—g}ounﬂ _nl—golomlw ~ oo (1+l)p -
(n+1)! n

Hence, by Ratio test, the given series is convergent.

n?(n+1)>2 _ (n+1)?(n+2)?
n! and Un+1 = (n+1)!

. i n?(n + 1)>? 1 _1 . 1 .
s Upeq s n! “(n+1)Z(n+2)2 nl_)rgj(n +1) a+ _)2 = >
(n+1)! n
Hence, by Ratio test, the given series is convergent.
1.23..n 1.2.3..n(n+1)
3.5.7.9...(2n+1) 3.5.7.9...2n+1)(2n+3)
_ 1.23....n 1
lim = lim

n
n-oUy,q n-owo3, 5.7.9 .. (Zn + 1) ) 1.2.3...n(n+1)
3.5.7.9...(2n+1)(2n+3)

5. Here, u,, =

6. Here, u, = and u, .1 =

(2n+3)
= 11m—=2>1
noe (n+ 1)

Hence, by Ratio test, the given series is convergent.

1.Examine the convergence of the infinite seriesZ;’;’:l{

o N o g A W N

9.

10. Examine the convergence of the infinite series )., (an

Check your progress

(n3+a)}
(2”+a) '

. Examine the convergence of the infinite serles T T

22 323
2 3

. Examine the convergence of the infinite serles— + ﬁ tog
. Examine the convergence of the infinite SerIeSanlﬁ, r > 0.

n
. Examine the convergence of the infinite series) -, % r>0

n

Examine the convergence of the infinite series }.7_4 n(

le

N’
Examine the convergence of the infinite series}y.s-,(Vn% + 1 — n)x?" .

n

Examine the convergence of the infinite series).;—; D’

\/_x

1/(n2+1 > 0.

Examine the convergence of the infinite series Y7 ———

)



7.11. Cauchy’s n" root test: Let Y1 Uy, be a positive term series such that
lim unl/n = [, then the series is (i), convergent if [ < 1 ,(ii). Divergentifl > 1

n—-oo

and if [ = 1 then series may converge or diverge (test fails).
Proof: Casel: suppose that [ < 1. Let p be a number such thatl < p < 1.

Then there exists m such that Yn > m, unl/n <p >u, <p"

Now p < 1, the geometric series ), p™ is convergent. Thus, by the comparison
test of the first type, it follows that the series )., u,, IS convergent.

Case2: Suppose that I > 1Let p be anumber such that 1 < p < L.

Then there exists m such that Vn > m, unl/n >p =>u, >p".
Now p > 1, the geometric series ),,—, p™ is divergent. Thus, by the comparison
test of the first type, it follows that the series ).,—; u,, is divergent.

Case3: Suppose | = 1.consider the two series (i) Yn=q 1/n and (). Yoy 1/n2

The series (i) is divergent and the series (ii) is convergent. We have
lim (1/n)1/n = 1and lim (1/n2)1/n = 1. In these cases the two series have the
n—oo n—oo

same limit [ = 1 but while one series is convergent and other is divergent.
7.12. Raabe’s test: Let Y5>, u, be a positive term series such that
“n_ _ 1] = [, then the series is (i), convergent if [ > 1 ,(ii). Divergent if

lim n[
n—-oo un+1

[ < 1andifl = 1 then series may converge or diverge (test fails).
Proof: Casel: suppose that [ > 1. Let p be a number suchthat 1 < p < L.

1]>p

Un

Then there exists m such that vn > m, [n

Un+1 B
= NUp — NUp4q > PUpyg.

= nu, — (n + 1)un+1 > (P - 1)un+1
Replacingn by m,m+ 1,m + 2, ....,n and adding, we get

My, — (M4 Dpyg > (0 — D[umyr + 0y ]

= (0 = Dumsr + -+ Fpypg] < My, = [Upyq + 00 Fipgq] < mum/(p —1)

ThusVn € N,we have S,, < [uy + . +up_1] + mu,/(p —1).
So the sequence {S, } is bounded and as series is convergent.
Case2: suppose that [ < 1. Let p be a number suchthatl < p < 1.
~1]<1

Un

Then there exists m such that vn > m, [n

Un+1



=>nun—nun+1<un+1.=>uun >14 1/n: (n+1)/n

n+1
Replacingn by m,m + 1,m + 2, ....,n — 1 and multiplying them together, we get

u k
—>m/n, Vh >2m=u, >;Wh€7'€k= mu,,

Um

Thus V n € N, we have the series % Is divergent. Hence, ).o—; u, is divergent.
7.13. Logarithmic Test: Let ¥, u,, be a positive term series such that

Un

{Eztjnloélun+1

[ < 1andifl = 1 then series may converge or diverge (test fails).
Proof: Let [ > 1 and let us choose € > Osuchthatl —e =y > 1

n | = | = there exists a positive integer m such that

| = [, then the series is (i), convergent if [ > 1 ,(ii). Divergent if

Now, lim [nlog

n—oo Unt1

[—e< nlog—2<l+evVn=m
Un+1
> nlog—>yvVn=m,=> —>e"/"vyn>m....(1)
Un+1 Un+1

We know that the sequence {(1 + 1/n)"} converges to e and hence,
e=>(1+1/n)" VneN
se¥m>{1+1/n)"VnEN ...... 2)
From equation (1) and (2), we have
> 1+ 1/n) = ((n+ D)/ =

Un+1 Un+1

Where v, = 1/n¥

Since, y > 1, so ).,—, v,converges, then using comparison test of second type it
follows that the given series )., ; u, also convergent.

Note: second part has been proved as above.

2.The above logarithmic test is alternative to Raabe’s test and should be

Un

,Vvn=>m ....(3)

used when D’Alembert’s ratio test fails and when either e occurs in —
Unp+1
Or . occurs as an exponent in—".
n+1

Example: Test the convergence of the series:
. . 2 e - n?
(O Za L+ 1/m) ™ @) 52 [ e

i) 22 2_1+ 32 3_2+ 42 4_3+
[ii .(12 1) (22 2) (32 3)



(iv). Yo (1 + nx)™/n™
Solution: (1). u,, = {(1+ 1/n)™"}"
Therefore, lim [w,, /] = lim [{(1 + 1/n)™"]

n—oo n—oo

= lim[{1/(1+1/n)"] =1/e < 1.

n—-oo

Hence, by Cauchy’s root test, the given series is convergent.
2
. _ nn _ n \nyn
()= " [y 4 e = (G

Therefore, lim [unl/n] = lim [{(ﬁ)n}] = lim[1/{(1+1/n)}"] =1/e < 1.

n—oo n—oo n—-o

Hence, by Cauchy’s root test, the given series is convergent.
(iii). The nt" term of u,, of the given series is given by

Uy, = {(COM - (EOF o = (EHM - (S}
Therefore, lim [, 7] = lim [{(—=) ™ H{(=D)" — 1}71]
= lim [{(1 + l)—1}{(1 + l)n — 1} =1x(e—1)1= <1
oo n n B C(e—-1)

Hence, by Cauchy’s root test, the given series is convergent.
(iv). u, = (1 +nx)*/n"
Therefore, lim [w,, /] = lim [{{(1 + nx)/n}"}/"]

= lim [(1 -Tliﬁno;c)/n] = limn[z;o+ 1/n)] = «x.

Hence, by Cauchy’s root test, the given series is convergent if x < 1 and divergent
if x > 1.When x = 1, the Cauchy’s root test fails. In this case

u, = (1+n)"/n"* ={1 +n)/n}".

Therefore, lim [u,] = im {{(1 +n)/n}*} =lim[(1+1/n)"] = e > 1.

n—oo n—oo n—oo

So, the given series is convergent.
Hence, the given series is convergent if x < 1 and divergentif x > 1.
Example: Examine the following infinite series for convergence:
S (1.35....2n—1) x 2"
(24.6..2n) 2n

n=1
(1.35...2n-1) x 2N
(2.4.6..2n) 2n

(1.3.5....(2n+1) x 2nt2
(2.4.6....(2n+2)) " (2n+2)

Solution: Here u,, = and u, 4, =



u, (135...2n—-1) x*" y (1.35....2n+1) x "+
Upe,  (24.6...2n) 2n (24.6....2n+2)) (2n+2)

u, (2n+2)(@2n+2) )
Uner  (2n+1) (2n)
u 1+1/n)%* 1
lim [ n]=( /m) X — = 1/x?
n—oo Un+1 (1 + 1/2n) x?
And as such by D’ Alembert’s ratio test the series converges if

1 . .
= > 1 & x% <1 & x < 1;xbeing non negative

And diverges ifxi2 <1& x?>1e x> 1;xbeing non negative

u, _ (2n+2) (2n+2)

Now we put x? = 1 In this case we have, =
Unyr  (2n+1) (2n)

S Uy, 0= 1i n(én + 4)
lﬂg [un+1 I= rllr_r,loo[Zn(Zn +1)
So, the series converges if x < 1, and diverges if x > 1.

Example: Example: Examine the following infinite series for convergence:
S 1.35.....(4n—5)(4n—3) x 2"
] 24.6...(4n—4)(4n —2) 4n
n=

135..(4n-5)(4n-3) x 2"
2.4.6...(4n—4)(4n-2) "4n

1=3/2>1

and

Solution: Here u,, =

U _ (1.3.5..(4n-3).(4n+1) x2"*2
n+1 ™ (246..(4n-2)(4n+2) " (4n+4)
Up 1.35....(4n—-5)(4n—-3) «x 2n 1

= — X
Upiq 246...4n—4)(4n—2) 4n (1.3.5...(4n—3).(4n+1) . x2n+2
(2.4.6...(4n—2)(4n+2) (4n+4)

U, (4n+2)(4n+4) 5
Uppr (An+1) (4n)
2 4
. (4+2)(4+7) 1 1
lim [u ] = " X — = —
n—oo Un41 4 (4 + —) X X
n

And as such by D’ Alembert’s ratio test the series converges if

Un

1 . .
= > 1 © x? <1 & x < 1;x being non negative



And diverges ifxi2 <1 & x*>1 & x > 1;xbeing non negative
Now we put x2 = 1 In this case we have

U, (An+2)(4n+4)
Unpr  (4n+1) (4n)

(4n + 2) (4n + 4) _ 20n+8 20

= lim n [ — 1] = lim n{

oo Uy o (dn+ 1) (4n) “4(n+1) 16

>1
So, by Raabe’s test, the series converges if x < 1, and diverges if x > 1.

Example: Examine the following infinite series for convergence:

2.46..2n
1357 .....2n+ 1)

2.4.6...2n(2n+2)
1.3.5.7.....(2n+1)(2n+3)

n
2.4.6..2n

1.3.5.7.....(2n+1)
Up 2.4.6..2n 1

Uneq  1.3.5.7...(2n+1 2.4.6..2n(2n+2)
i ( ) 1.3.5.7....(2n+1)(2n+3)

Solution: Here u,, = and u,,,; =

3
Uy, =(2n+3)=>lim[un =(2+;)=1
Unt1  (Cn+2)  pooolns 2+ %)

And as such by D’ Alembert’s ratio test fails and we apply Raabe’s test

_ Uy, . (2n+ 3) B n 1
R I T R
So, by Raabe’s test, the series diverges.

Example: Examine the following infinite series for convergence:

X 2%x?% 33x3  4%x*

1+F+ 5 + 30 + 2 + ... forx > 0.
N ot _ (n+1)ntix
Solution: Here u,, = — and u, ., = Dl
u, _ n''x 1
Upt1 ol (n+1)n"'1xn+1 ’

(n+1)!

5

4



U, (m+1! (") 1_( n )" 1
Upey (M) (m+D1'x \n+4+1/ "x
o, 1 1 1
lim [ ] = X — = —

n
n—oo Un+1 (1 + l) x ex
n

And as such by D’ Alembert’s ratio test the series converges if
1 1 . :
—~> lex< X being non negative

- 1 1 . .
And diverges —~ < lex> X being non negative

Now we put x = i In this case we shall apply logarithmic test

“n = (L)n e = lim n log(—>) = lim nlog{(ﬁ)n e}

_ n+1\" _ 1
= lim nlogje X ( ) = lim n{loge — nlog(l + —)}
n—-oo n n—-oo n

“tmnfion(E-e e )= t<n
Tl L R I A

So, by logarithmic test the series),; -, (u,) diverges. Hence the series).,—; (u,)
converges if x < i and diverges if x > i

Example: Examine the following infinite series for convergence:

a+x a+2x)? (a+3x)3 a+ 4x)*
( )+( ) +( ) +( ) + .--..forx > 0.

1! 2! 3! 4!
ion: _ (a+nx)™ _ (at+(n+1)x)™H?
Solution: Here u, = ——and uy,, = oy
up _ (a+nx)" 1
Un+1 o n! (a+(n+1)x)n+1
(n+1)!
U, (n+1)! (a+nx)" _ (n+ D@+ nx)"
Uper (M) (a+ M+ D) (a+ (n+ Dx)ntl
1 a L a n
n(;-l-l)(;ﬁ'l) n-x _1 (E'l'l) 1
- a n+1 1 omid T x’ a n+1- 1 n
((n+1)x +1) k) ((n+1)x +1) (1+;)
_ u ex 1 1
lim [ |=—X—4=—



And as such by D’ Alembert’s ratio test the series Y,;—; (u,,) converges if
i >lex< i ; X being non negative

And diverges é <lex> i ; x being non negative

Now we put = 1 , the test fails. In this case we shall apply logarithmic test

. G +1) L . = lim log(—

Un41 ( ae ) ) Soo  Un+1
T n

)

S
log(e)+nlog{ + } nlog(1+ )—(n+1)log(1+i) =1+

ea e?q? e3ad 1 1 1 e2a?
n(G-Srt ) (e tae )~ D[ - 2 1)?
e3ad 1{/1 e2a? e2a? 1 (e3a® 1
— e =21z = - —= <
3(n+1)3 ] n (2 2 ) + 2(n+1) + n2 ( 3 3) o Jun Sup =
. Uy T 1 ezaz) ne?a? 1 (e3a3 _ 1)
lim nlog(C2-) ) = limy .| (G-55)+3 (5 3)

1 e?%a? e?2 1
=-— + ==-<1.
2 2 2 2

So, by logarithmic test the series).,; -, (u,) diverges. Hence the series).,—; (u,)

. 1 . . 1
converges if x < = and diverges if x > -

7.14. Cauchy’s condensation test: If f(n) is a monotonically decreasing
function of n € N, then two infinite series Yo, f(n) and }.;-; a™f(a™) are
converge or diverge together, a being a positive integer greater than unity.
Proof: Yo i f(M) = f(D+f2)+ fBR)+ ...+ f(a)
+fla+ 1)+ fa+2)+ f(a+3)+ ...+ f(a?)
+f@*+ D+ f@*+2)+ f@*+3)+ ...+ f(a®

fla*+ D+ fl@*+2)+ f@ +3)+ ...+ f(a™*D)-—--(1)

The term in the k*group are

fla*+ D+ fl@+2)+ f@ +3)+ ...+ f(a**)--(2)

The number of terms in this group = a**! — a* = a*(a - 1)

Since, {f(n) } is a decreasing sequence, it follows that f(a**1) is the smaller term
in the kt*group. Therefore,

f@+ D+ f@*+2)+ f@+3)+ ...+ f(@**)>f(a* + 1) +

f@+ 1)+ +f(@*+ 1)



ie. f(a*+ D+ fla*+2)+ f(@*+3)+ ...+ f(a**)
>ak(a—1f(@ + 1) = @f{ak + 1) ....(3)
Putting k = 0,1, 2,3, ... ... in equation (3)

-1
FQ+ f@)+ ot (@) > ——{af (@)}
a—1
fla+ D)+ fla+2)+-...f(a%) > - {a*f(a®)}
o

—@f @)

f@+1D)+f(@+2)+-..f(>a* >

...........................................................................

We adding the above inequalities, we get
T f) = Q) > 280 af (@) —---(4)
Since, Y- a™f (a™) is divergent, then by comparison test (4) shows that
>« . f(n) is also divergent sequence. It follows that £ (a*) is the greater than each
term in the k*group (2)
f@+ D+ fa*+2)+ fl@a*+3)+ ...+ f(a**1)

< f(a*) + f(@) + . +f(a*)
i.e.

f@+ 1D+ f@*+2)+ f@+3)+ ...+ f(a**1) < (a — D{a*f(a*)}
Putting k = 0,1, 2,3, ... ... in equation (3)
f@)+ fB)+ ...+f(a) <(a—-D{ D)}
fla+ D)+ fla+2)+ - ...f(a®) < (a—-Diaf(a)}
f@®+ 1)+ f(@+2)+-...f(a® <(a—D{a?f(a?)}

...........................................................................

We adding the above inequalities, we get

D Fm - D <@=1 ) a"f(@) +(@- DFD)

Or,
dn=1f() <af(l)+(a—-1) 25 a"f(@a")-----(5)



If Yo=1 a™f(a™) is convergent, then by comparison test (5) shows that Y5, f(n)
Is also convergent sequence. Thus ),»—, f(n) and }.5—; a™f (a™) both converges or
diverges together.
Remark: The given series }.;-, 1/n(logn )P converges if p > 1 and diverges if
p <1.
Case(1). Let p > 0. then f(n)is a positive monotonically decreasing function of n
for all n > 2. Hence by Cauchy’s condensation test we have

1 1

a*(loga™ )P (nloga)?  n?(loga)?
o0 — 1 :
S0, Yn=2 a"f(a") = (loga)P (logay?

We know that ., nip converges if p > 1 and diverges if p < 1. So, it follows that

a"f(a") = a”

IS a constant.

1
Y=o — where

Yoy a™f(a™) converges if p > 1 and diverges if 0 < p < 1. Again by Cauchy’s
condensation test, the series )., f(n) and X.;—; a™f (a™) both converges or
diverges together. Hence, the series .o, 1/n(logn )P converges if p > 1 and
divergesif 0 < p <1.

Case(2): Letp < 0. Then

1
n(logn )P

>lvn>1
n

But the series Z?f’=1% Is divergent. Hence, by comparison test the series
Yo, 1/n(logn )P diverges if p < 0.
Hence, The given series Yo, 1/n(logn )P converges if p > 1 and diverges if
p <1.
Check your progress
Test the convergence of the given series whose nt" term is
(i).(1 + 1/vn) ™"
(ii). (n — logn)™/(2n)"
(iii). {logn/log (n + 1)} legn
2. Test the convergence of the series Y%, (n/™ + x)™ for all positive values of x.
3.Test the convergence of the given series
(i). Xa=1(1/n™),
(ii). Xn=2(1/(logn)™)
(i). Yoy (n 4+ 1/n+ 2)"x™),x > 0
(v). gz, T/

en



(v).%+§x+(§)x2+ (g)x3+---.,ifx>0
2

3
(Vi) Zx + 2% + x4 et

n
(n+1) n
nn+1

+ - if x>0

4.Examine the following infinite series for convergence:

. x 1 x3 13x> 135 x7
(i) 14+=4+- =+ o=+ 2 ==+
1 2 3 2 45 2 4 6 7
1x* 135 x* 1357 9 x°
2'4°6°8°10 12
5.Examine the following infinite series for convergence:
. logn
(i). 21010=1_n
.. o 1
(il). Xn=2 P
1
(). By
H (e o]
(IV)' anz (TllOng)
1
[ee]
(V)' anz (nlogn)p

6.Examine the following infinite series for convergence:

1

() 1+ Z 4000 S

' 2! 3! 4! 5!

. 22X2 33X3 4% x4 55X5

(i). 1 + + + + + -
2! 3! 4! 5!

7.Examine the foliowing infinite. series for convergence:
2 2 2 2
(logZZ) N (lo?;gz3) N (10524) P (logzn) e
7.15. Alternating series: A series whose terms are alternatively positive and
negative is referred as an alternating series. i.e. A series of the form u; — u, +
Uz — Uy + oo = 2veg (1) 1w, whereu,, >0V n€eN.
Example:1 — % + % - % + .....1s an alternating series.

Leibnitz’s theorem: Let {u,} be a sequence suchthat v n € N, (a).u,, = 0,
(b). upyq < u, (c).lim,_ u, = 0.Then the alternating series Yo, (—1)" 1u,
IS convergent.

Proof: We write S, = u; — up + u3 — uy + ...+ (—=1)"1u,So that {S,,} is the
sequence of partial sums of the given series. Firstly we want to show that the
sequence {S, } converges. Since,

Sopn =Up — Uy + Uz — Uy + oot Uyp_q — Uy



Son+z =Up — Uz Uz — Uy + ot Uppg — Upp + Uppi1 — Uzpso

Son+z —S2n = (U —Up F Uz — Uy + o Uppo1 — Upp + Uzpgr — Uzpiz)—
(g —up+us — ug + .t Uppog — Uzn) = Uppyr — Uzns2 20,

since, U1 S U, VNEN=S5,,., =5,

= {S,,} is @a monotonically increasing sequence. Also, we have

Son = (U —up) + (ug — wy) + ..+ (Uap-1 — Uzp)

Each term of this expansion being positive, so, S,,, is positive. Also,

Son = Uy — (Ug —Uz) Uy + .. — (Ugno1—Uzn—1) — Uzp

=uy — [(uy —uz) +uy + .+ (Ugpo1—Usp_1) + Upp]

Therefore, S,, < uy.since, Uy 1 <u, Vne€N.

= {S,,} is bounded above. Thus, {S,,} is a bounded monotonically increasing
sequence and is as such convergent.

Letlim,_o0 Sopp = ..o ... . (1)

Claim: To show that lim,,_,,, Spp41 =1

NOW, Sopip1 = Uy — Uy + Uz — Uy + oot Uppoq — Upp + Uspyq

= Sons1 = Soptusner = L+ 0. Since, . lim,,,,u, =0,Vn€EN

= Tllllgo Sont1 = L. ... (2)

This shows that the sequences {S,,,} and{S,,,+1} both converge to the same limit .
Now we want to show lim,,_,, S,, = [

Let € > 0 be given. Now lim,,, o, Syp41 = 1

= there exists a positive integer m" such that

|52n+1 _ll < & Van" ...... (3)
Again, lim,_,. S,, = | = there exists a positive integer m’ such that
1S, =l <eVn=m' ... (4)

From (3) and (4) If we take m = max {m",m'}, wesee that |S, — | <e Vn=m
So, we see that the sequence {S,,} converges to [, thus the given series is
convergent.

Note: Let {u,} be asequence suchthatvn € N, (a).u, = 0, either (b).u, 41 £
u, (c).lim,_ u, # 0.Then the alternating series Yo, (—1)" 1w, is not
convergent.

7.16. Absolute convergence and conditional convergence: A series
Yoo (=)™ 1y, is said to be absolutely convergent if the positive term series
=1 (=" up| = X371 |un| is convergent.



Example: Yoo (- tu, =1 — % + ziz — 213 + ... Is absolutely convergent,

1 1

because, Ny |(—1)" My = 14+ -+ 2+ o is an infinite geometric

series of positive terms with common ratio r = 5 < 1 and it is convergent.

A series Y%, (—1)" 1u,, is said to be conditionally convergent, if it is
convergent without being absolutely convergent. i.e. Y52, (—1)" 1w, is said to be
conditionally convergent if the positive term series Yoo, [(=1)" 1u,| =

>, |u,| is divergent.
1 1 1

Example: ¥, (-1 1u, =1 - St3 3 + ... Is conditionally convergent,
because, X5, |[(—D)™ tu, | =1+ % + § + % + ... Is a series of positive terms
which is divergent, but the series Yo (—1)" 1u, =1 — % + % — i + is

convergent by Leibnitz’s test.

Note: Every absolutely convergent series is convergent.

Theorem: Every absolutely convergent series is convergent.

Proof: Let the series Yoo, (—1)" 1u,, be any absolutely convergent series. We
associate with the series two positive term series Yo, v, and Y.."-; w,, defined as
follows: v, = u,, ,if u, = 0,and =0if u, <0

Also, w, = —u,,if u, <0,and =0if u, >0

From this we see that |u,| = v, + w, and u, = v, —w,

Now for V n € N, we have v, < |u,|, and w,, < |u,|

The series Yoo [(—1D)"* tu,| = Yo |u,| being to be convergent, by comparison
test, it follows that series ),,—, v, and .5, w,, are both convergent. Hence,

Yoo (=)™ 1y, is convergent.

Note: 1. Y20, (—1)™ 1u,, is convergent without being absolutely convergent, i.e. if
Yoo (=)™ 1y, is conditionally convergent, then each of the positive term series
Ym=q Uy and Y074 w,, are both divergent and diverge to co.

Since v, = %{un + |u,|Yand wy, = %{|un| — Up}.

Theorem: Every absolutely convergent series is convergent. The converse need
not be true.

Proof: We have to show that Y5, |u,, | is convergent= Yoo, (—1)" 1u,, is
convergent.



Let Y% (—1)™ 1u, be an absolutely convergent series. i.e. Yo, |u, | is
convergent. For given any € > 0, we have to show that 3 m € N such that

[Unt1 + Uppz FUpys + oo F Upyy [ <EVRZM VP =1

Since, Y..-1 |u, | is convergent, then by Cauchy’s principle of convergence, there
exists m € N such that

[Uns1) + [Ungzp + Upss| + oo+ upgp | <eVRZ2mMVp = 1., (1)
Also, we know, Yn € N,and Vp = 0
|un+1 T Upyp T Upyz + 0o F Un+p |<|un+1| + |un+2| + |un+3| + et |un+p |

From these we have, [upiq + Upyz T Upyz + ot Upyp [ < EVRZMVYp =1
Hence, by Cauchy’s general principle of convergence the given

seriesy. o, (—1)" 1u, is convergent. The converse of this theorem need not be
true.

Example: We consider the series ¥, (—1)""1 (%) = 1- % + % — i + ...
1 . 1 1 1
Here, u,, = - and lim,,_, ~= 0, also,m <= Upyg < u,vVne N.
By Leibnitz’s test Y s, (—1)" 1 (%) =1- % + % - % + .....Is convergent. But

the series Y., |(—1)""1 (%) |= 1+ % + % + i + .= Z;’{;l% is divergent.
Hence, a convergent series need not be absolutely convergent.

Theorem: In an absolutely convergent series, the series of its positive terms and
the series of negative terms are both convergent.

Proof: Suppose that S,, and T,, be the nt"* partial sums of the series

Yo (D)™ 1y, and X, |u,| respectively. Therefore,

Sp=u + uy, + ug+--..+u,and T, = |uq| + |uy| + |us| + .. +|uy,|
Suppose that P, and Q,,denote the sum of positive and negative terms in S,,. Then
we have S, = B, —Q,and T, = P, +Q,,....... (1)

Tn+Sn Tn—Sn
—, Q= —...... (2)

2
Now, it is given that }:>"_, u,, is absolutely convergent.

= Yon=q1 Uy and Y77, |u, | are both convergent.
= {S,} and {T;,} are both convergent sequences.

From this we have, P, =

Letlim, o S, =S and lim, T, =T ....... (3)
Now, imP, = lim =222 =17 4 §)andlimQ, = lim =22 =2(T - §)
n—oo n—oo 2 2 n—0o n—oo 2 2



From these we see that {S,,} and {T;,} are both convergent sequences. Hence, the
series of positive terms and the series of negative terms are separately convergent.
Theorem: In a conditionally convergent series, the series of its positive terms and
the series of negative terms are both divergent.

Proof: Suppose that ).;°_; u,, is conditionally convergent.

= Yn—q Uy IS convergent and Y. o= 1 |u,| is divergent.

= {S,} is convergent and {T},} is divergent sequence.

Letlim,,, S, =Sand lim,,,, T, =T ....... (3)

Now, limP, = lim = Inton — l(T+S) =0 (T - )
n—-oo n-—-oo
and limQ,, = Tllgr()loz%——(T S) =

n—->0oo

From these we see that {S,,} and {T,,} are both divergent sequences. Hence, the
series of positive terms and the series of negative terms are separately divergent.

Example: Test the convergence, absolute convergence and conditionally

(G i 1 1 1
np 2P 3p 4P

convergence of the series Y.,

Proof: Since, p > 0 and (n + 1)? > nP, therefore,

(n+1)P np
= Uy < Uy, VREN

1
Also, limy, o Uy, = limy e — — = 0, since,p > 0

1)n+1

Therefore, by Leibnitz test, Z;‘{’zl
(= 1)

IS convergent.

NOW Zn 1|

Hence, the glven series is absolutely convergent if p > 1 and conditionally
convergentif 0 <p < 1.

| = Y= 1— Is convergent, if p > 1, and divergent if p < 1.

R -1 n—1,,2

Example: Test for absolute convergence of the series Z;’l":l((zTy"
n2

m+1)! __ q: n? (n+2)!

n-eo ((n:lz))f T s D! (n+1)2?
n i

[Un|

= lim

Proof: We have lim,,_,

|Un+1l

(n+2)

12
n—oo (1+n)

(-1 1n? .

So, by ratio test we have X7, D

IS convergent so, the glven series is

absolutely convergent.



(-1)™'logn _ log2 log3 n

Example: Test the convergence of the series Y.,

(n)2 T2 32
log4 v (=DM™ogn
42 T —_— n=1 T .
l .
Proof: We have, u,, = —2" limu, = 0
n—-0oo
Now we want to show that unJrl <u,Vne€N
l
Letu(x)— 1jo‘gx<0‘v’x>e/

(since, x > 81/2 s logx > 5 & 1 - 2logx < 0)

= u(x) is a decreasing function vV x > e1/?
1

= Upyo SUpy VN EN, (Since,n+2>n+1>e2 VneN)
log (n + 2) - log(n+1)
(n+2)2 = (n+1)>?
So, that u,,; <u,VneN.
Hence, the both conditions of Leibnitz’s test are satisfied and so the given series 1S
convergent.

neN

( )n X2 x3
Example: Show that the series Y5, ’;! =x+o+ot o converges
absolutely for all values of x.
Solution: We have u,, = 2~ )n and u,,, = &
" n n+1 — (n+1)|
)"
. |Un| TR T (n+1)! .. (n+1) .
lim,,_, ] lim,,_, T A_)OO el rlHOo o= o, Provided

x # 0. By ratio test, Y51 |u,| is convergent for all values of x. Hence, the
given series converges absolutely for all values of x.
Check your progress
Test the convergence of the given series whose nt" term is

} (_1)n+11

(I)' 3n+2
n+1

(). - 1) L

( 1)n+11
(“) 2n(2n+1)
(-n™

2. Show that the series Yo —
0 and conditionally convergent for all values of p < 0

Is absolutely convergent for all values of p >



3.Test the convergence of the given series. Are these series absolutely or
conditionally convergent ?

(). Zr= (D™ (1/Vn),

(i)). Zn=2 (=)™ (1/log(n + 1))

(iii). Xa= (=)™ (1/log (n + 1),

(iv). Zro (D™ (A /Vn+ 1)

1 1 1 1
(V) 322+532+742+ 952+m"
(VI) —+ﬁ+m+ i

4.Examine the following infinite series for convergence where a being positive:

(). Z5a(~ D1/ G + @)
(. T (- D" (=)
(i), 2521 (~D"(1/(n + @),

owzue><wqf)

5.Examine the following infinite series for convergence:
() i S (Y + D - (- D)

(i) 2o, 2 (Jn+ D) —
(). Ziy ~sin (%), a > 0
(iv). Yo 1(—1)” (1 — cos (%))a >0

(V) ZTl =2 n(logn)p
6.Examine the following infinite series for convergence:
(WF‘F+F‘F+
(). = -+ +2 -2+ L+
3.4 5.6 7.8 9.10
(iii). ( ) (24) (246) ......
7.Examine the infinite series for convergence Y., (— 1)"*1(2n+3)

1

8.Examine the infinite series for convergence Yo ,[(n® + 1)3 —n] oon

9.Show that 1 — — + 2— ——==+ . Is convergent.
4. 445 43 7



10.Show that the series 1 + x + x% + x3 + --- ...+ x™ 1 + ... is convergent if
x < 1and divergent if x > 1.

7.17.

We are able to understand the concept of Partial sum of series, convergent and
divergent series of non- negative terms, use of different tests for convergence of
series of non- negative terms, understand the use of different tests for convergence
of series of non- negative terms and to understand absolutely convergence and

Summary: .

conditionally convergence of an alternating series .

7.18.

Terminal Questions

1 1 1
Consider the series Y57 ——— o - 2Tt a +

Show that the series f \[ / -+ IS not convergent.

Examine the convergence of the infinite series\E +\E +

(n+1)
Test the convergence of the following series

2'+3'+4'+ +(n+1)!+
3 32 33 7 3n

Examine the following infinite series for convergence:

. o 1

(). Zn=2 5w

- o 1
(”)' Zn=2 (nlogn)

. o0 1
(“I)' Zn=2 (nlogn)p
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BLOCK-4

Multiple Integral and Its Applications

This unit of this block is most useful unit of this block as it introduces the concept
of double and triple integral and its applications for area and volume for a given
curve. It has many important applications in analysis like as application in almost
every field, social, economy, engineering, technology etc. It has also many
applications in applied mathematics and physics.



UNIT-8
Double and Triple Integral

Structure

8.1. Introduction

8.2. Objectives

8.3. Evaluation of Double Integrals
8.4. Area by double integration
8.5. Volume under a surface

8.6. Change of order of integration
8.7. Triple integrals

8.8. Gamma function

8.9. Product of two single integrals
8.10. Integral of sin*™ 10cos?""10
8.11. Beta function

8.12. Dirichlet’s integral

8.13. Summary

8.14. Terminal Questions

6. 1. Introduction

This is most useful unit of this block as it introduces the concept of double and
triple integral and its applications for area and volume for a given curve.

It has many important applications in analysis like as application in almost every
field, social, economy, engineering, technology etc. It has also many applications
in applied mathematics and physics.

6. 2. Objectives

After reading this unit we should be able to



1. Understand the concept of double and triple integral.
2. Concept of applications for area and volume for a given curve.
3. Understand the concept of Gamma function and Beta function.

4. Understand the concept of relation between multiple integral and these special
functions.

8.3. Evaluation of Double Integrals: The use-fullness of double integrals would
be limited if it were necessary to take limit of sums in order to evaluate them.
Fortunately there is an alternative way of evaluating double integrals by
successive single integrations. We show that the two methods are equivalent.

If Ais a region bounded by the curvesy = f;(x),y = f,(x)x = a and x = b, then
[ feoyda= [EY feoyydydde .. (1)
where, the integration with respect to y is performed first treating x as a
constant.
To prove this, we divide the region A by a network of lines parallel to the
axes of coordinates into rectangular elements of width h and height k.Then
J[ f(x,y)dA =limy_q o0 X f (% ¥r)hK .....(2), where (x, ) denotes a point
inside the " rectangle, and the summa tion extends over all the complete
elementary rectangles. In evaluating the limit, the order in which the elements
are summed up is immaterial. We can first sum up over all the elementary
rectangles which lié one above another in a vertical column. This gives the sum
of f(x,y)hk over a particular vertical strip. We can then take the sum over A
strip by strip, from the first to the last strip. Thus, we can write the sum (2), as

pim 5 (5 f G ys) K (3).

where (x,,ys) is a point inside the st rectangle in the rt" vertical strip, p is the
total number of strips and m the number of rectangles in the rt" strip. The
summation inside the brackets is performed first.During this summation x,. can
be kept as constant.Taking the limits of the two sums in (3) successively, the

terms inside the brackets. Il{irrcl) Yoeq flxrys) k} = f;z f(x,,y) dy.Where, Y;
5 1

and Y, are the extreme values of y in the rt" strip. Since the region A is
bounded below and above by the curves y = f;(x,) and y = f,(x,-).We can
take y; = f1(x,.) and y, = f,(x,). Thus the limit of the terms inside the

brackets in (3) is ffz *r)

(
fi(

) f(x,,y)dy =F(x,), say, after integration, (3) becomes



. b b ( rf2(x)
Lim $P_, F(e ) h = [ F(x) dx = [, {1720 (e, y) dy} dx. We,

therefore, see that [[ f(x,y)dA =

f;) {féz(gcx)) f(x ) y) dy} dx ..... (4)

Generally the brackets are omitted from the integral on the right hand
side of (4) and it is written either as

b 20 _ (b g (0
Jo U Faeyydyfdx = [ dx [ f(x,y)dy .

Similarly by summing along a horizontal strip first, we can show that for a
region A bounded by the curves x = f;(y)and =f,(y) y=C,y =d,

Y

. | SRS

m

x=f2(y)

plr:2

we have [[ f(x,y)dA = fcd {féz((;))

flx,y) dx} dy.......(5)

We have thus reduced the double integration to a process of
successive single integrations. The student should note that in (4),

the first integration is along a
vertical strip. Only y is treated as
a variable in this integra tion, x
being treated as a constant. The
limits for this integration are the
values of y for the lowest and the
highest points of the strip.
Naturally, these are given by the

Y y =fa(x)

y =f1 (X)

. - ——— - —— - -

O

m----

o



equations of the curves bounding the strip below and above. The

second integration with respect to x performs a strip-wise

summation. The limits of integration are the values of x for the

points of region A at the extreme left and the extreme right.

Similar remarks apply to the integral (5). These points will help the

student in determining the limits for successive integrations the

region of integration A is given. It is seen from the above that even

when the region of integration is bounded by two curves. we can

consider it bounded by the four lines. y = f;(x), vy = f,(x),x =

ax =b.

In the proof of the above theorem we have tacitly assumed that f(x,y) is
uniformly continuous and bounded over A, and F(x) is bounded and integrable
from a to b. If f(x,y) has discontinuities within A (or on its boundary, it may
sometimes happen that the two integrals (4) and (5) are not equal.

Examplel. Evaluate (i) f03 flz xy(1+ x + y)dxdy.

(ii)-fol f\/1+x2 dxdy

1 1+x24y?

24,2 3
Solution: (i) f03 flz xy(1+ x + y)dxdy = f03 [%2 + xzy + %] dx, fory =
ltoy = 2.



3
—f[zsx —] [23x xz]atx—Otox—B—g+—=%.

- fO [Ex(4—1)+—21-x“(4—1)+§x(8—1)J dx

BRne Y 3 2
o= fO ,:(5*'3),1‘4'5.\} ax
23 1\7+§ 133 _23
-5 2y at 6
\/(lﬂ) _dxdy
(11)
1+t +v

V+x°
LR T e g ) Ve
= — | tan dx

27

2

N [\O©
+
A_?u

0V(1+x%) |. Va+2) |,
—fl-—l—[tdn 11— tam_IO]dr—l e My
0 \/(1+\') 0 \/(1+x )

=% [log {x+ (1 + x2 )}]atx=0tox=1,= Zlog(1+\/7).

Example2. Evaluate [[ xy dxdy over the region in the positive quadrant for which
x+y<1

Solution: The region of the integration is the area A bounded by the two axes and
the straight line x + y = 1.We can consider it as the area bounded by the lines
y=0y=1—x,x=0and x = 1.

Therefore, [[ xy dxdy = fl fl_x xydxdy = fllx(l —x)%dx = %fol(x —

2x2 + x3)dx = [———+—]atx =0tox =1; %(%—§+%) =i
Example3. Evaluate ff(x'*')’) dxdy over the area bounded by the ellipse x*/a’

+y*/b® = 1.For the eIIipse% = +,/(1 —x?/a?).

So the region of integration can be considered as bounded by the lines

y = —by/(1 —x?/a?),y = by/(1 —x?/a?) and x = —a to x = a.Therefore

the given double integral



by (1-x%/ by (1-x
f fb (1XX2;132 (X +2xy+y2) dXdy—2f f (1-x*/a%) (x 2 +y2) dxdy =

4f fb“(1 x2/a%) (x? +y?) dxdy = 4f [x%y + = y 3laty=0toy =
b/ (1 —x2/a?) = 4[0 {x?b,/(1 — x2/a?) + §b3(1 x?/a%)3/2) dx =
4b fon/z{azsinzecose + §b200539}ac059d9, Putting x = asinf,dx =

VI Vm
acos6dé, So,4ab fon/z{azsinzecosze + §b2c0549}d9 = 4ab {az —; 2; +

1b222\/_\/_
3 2.2.1

} 4ab{ wa? +—T[b }=%nab(a2+b2).

NOTE: In step (1) we have halved the range of integration of y. The terms x> +y°,
which are even function of y, get multiplied by 2. The term xy, which is an odd
function of y, gives a zero term. Similarly, in step (2) we halve the range of
integration of x and multiply by a factor 2. This is possible, since the integrand

and also the limit b/ (1 — x?/a?) which enters in the second integration, are even
functions of x.

Example4. Show thatf dx fl (x y) ~dy ;tf dy fl (x y) ~dx. Find the values of

the two integrals.

Sqution The integral on the left

' _.g 2
= f 2 Xty dv-f d_\f Li\
“J0 0 (x+y (\+\) (\+v 1
4 v
l l,,+ : d.\' =f -——= ,+l+—~—i dx
J0 (x+y)* x+y ; 0 (14+x)" X 1+x X

TN G L T
J 0 (14x)? '

The integral on the right
il 1

= . : 1 — ;.v = ' ——1—- ——‘X'—'_ dy
J'Odyfo{(x+y)2 (x+y)3] dx fo x+y+(x+y)




j[ T+y 'y (133/)2 ;]dy=—j;(1+y)2 2

We see that the two integrals arc not cqual.
Check your Progress

Evaluate the following double integrals.

1. an f()b(x2 + y2)dxdy
2. fol foz(x + 2)dxdy

3. 1), ”<i>dxdy

4. f fO x2 dxdy

5. 1T () dxdy
6. fon/z fn/z cos(x + y)dydx

a Jai—y?
Jy 1, (Va?—x? — y?)dydx
2 2x—x2
- fo fo (x)dxdy

© N

9. Evaluate [[ x2y? dxdy over the region x* +y* <1.10.Evaluate [[(x? + y?) dxdy
over the region in the positive quadrant for whichx + y < 1.

11. Evaluate[[ xy/y/1 — ¥2 dx dy over the positive quadrant of the circle x*
2
+y =1.

12. Evaluate [[ xy(x + ) dxdy over the area between y = x%and y = x.
13. Find the mass of a plate in the form of a quadrant of an ellipse x*/a’
+y?/b®=1, whose density per unit area is given by p = kxy.

18. Find the mass of the area between y =x3 and x = y?, ifp =
k(x? + y?).

8.4. Area by double integration: Putting f(x,y) = 1 in the definition of

the double integral, we see that the area A lying between the curves

y=fix),y=f(x),x=a,andx=bis [[dA= [ f;z((x)) dxdy.



Example: Find the area lying between the parabola y = 4x — x? and the line
y = X.

Solution: The two curves Y
intersect at points whose

abscissae are given by4x — x? =
x,i.e.x = 0o0rx = 3.The area can
be considered as lying between the
curves by

4x — x> =y, y=xx =

0 and x = 3.50 So, integrating
along a vertical strip first, we see \

that the required area A

a2
f03 f;x ¥ dXdy = f03(4x - xZ - x)dx =f03(3x - Xz)dx = %

8.5. Volume under a surface: Let A be a region in the plane XOY enclosed by
the curve @ (x,y) = 0. In three dimensions @(x, y) = 0 represents a cylinder
based on this curve and with generators parallel to z —axis. It is required to find
the volume inside the cylinder, enclosed by the surface z = f(x,y) and the
planeX0Y. Divide the region A by a network of lines parallel to OX and OY into
a number of small rectangles of area hk, and consider one of these rectangles
PQRS. Construct a vertical prism on PQRS as base, bounded at the top by the
portion P'Q'R'S’ of the surface z = f(x,y). If z; and z, are the minimum and
maximum ordinates of the surface P'Q'R’S’ the volume of the prism lies

between hkz;and hkz,.So the volume is hkz, wherez; < z < z,. Evidently
z is the ordinate of some point on P'Q'R’'S"..

The volume between the surface z = f(x,y) and the.region A is composed
of similar prisms constructed over all the elementary rectangles in A.
Therefore, the required volume, limy,_,o xo X zhk = [[ zdA. If the region A
may be considered as enclosed by the curvesy = f;(x),y = f5,(x),x =

a and x = b, we can write the volume asf; f;zg)) dxdy.
1

NOTE: When writing the integral for the volume, the student should keep in
mind that the integrand f(x,y) is taken from the surface z = f(x,y) which
covers the top of the volume while the limits a, b, f3, f, are taken from the base
area A in the xy —plane.



Example: Find the volume under the plane x +y +z =6 and above the
triangle in the xy —plane bounded by 2x = 3y,y = 0,x = 3.

Solution: The required volume Y
V= [[zdAd= [[(6—x—

y)dA.WhereA is the region shown in

the figure. Integrating along a vertical /,2}\3
strip first, we have 3

3 ,2x/3
V= j j (6 —x
0o Jo O

— y)dxdy

x=3

_134 22 22d
—O[x 3 x 9x]x

3 8
=j [4x——x2]dx=18—8=10.
0 9

2 2 2
Example: Find the volume in the positive octant of the ellipsoid x_2 +L +Z =1.
a b2 = 2

2 2
Solution: The required volume lies between the ellipsoid, z = c\/(l )
a b

And the plane XOY, and and is bounded on the sides by the planes x = 0,y = 0.
2 2

The given ellipsoid cuts XOYplane in the ellipse x_2 + y—z = 1,z = 0. Therefore,
a b

the region A above which the required volume lies, is bounded by curves

y=0y=b|(1-%)

x = 0 and x = a. Therefore, the required volume is

a rb /(1—2—2) x2 yz
= dA = ¢ |[(1—-—=—>=)dxdy
Z o Jo a2 b2
. a Yy |, vz y2 . x2, Y
=cf, J, >~ pp)dxdy, putting [(1-=) =+

cjalY2 nd _mc bbz ) x2 p 1 .
p) 273 x—4b0 —3 | dx = Zmabc.

Check your Progress




Find by double integration the area of the region enclosed by the following
curves:

1.x% + y%? = a? and x + y = a (in the first quadrant).

2.y*=x’and y = X.

39xy =4and 2x +y = 2.

4.(x* + 4a*)y = 8a3,2y = x,and x = 0.

5.Show by doublc integration that the area between the parabolas y? = 4ax and

. 16
x? = 4ay |s?a2.

6.Find the volume of the cylinderx? + y? — ax = 0 bounded by the planesz = 0
and z = x.

7.Find the volume under the plane x + z =2, abovez = 0 and within the

cylinder x* +y* =4.

8.Find the volume under the plane z = x + y and above the area cut from the
first quadrant by the ellipse 4x2 + 9y? = 36.

9.Find the volume bounded by the coordinate planes and the plane x/a +
y/b +z/c = 1.

10.Find the volume bounded by 4z = 16 — 4x% — y? and the plane z = 0.

11.Find the volume enclosed by the cylinders y? = z and x> +y* =a, and the plane
z=0.

12.Find the volume in the first octant bounded by the parabolic cylinders z=9—x?,
x =3—y?2.

13.Find the volume in the first octant bounded by z=x*+y’and y = 1— x?2.

14.Find the volume inside the paraboloid x* +4z°+8y=16 and on the positive side
of xz —plane.

15. [ [ rdodr

16. fon/z foacose rsinfdfdr



17. fon foa(1+cose)r2c059d9dr

2 r(2x—x2) X

19. J; fy Fdxdy 20. f f 7 dxdy
[(a2 —y2

Example: Transform the integral foa fo (%~ )yzw/xz + y2dxdy by changing to

polar coordinates, and hence evaluate it.

Solution: The given limits of integration show that the region of integration lies
between thecurvesy = 0,y =,/(a? —x?)x =0,x = a.

Thus the region of integration is the part of the circle x? + y? = a?in the
first quadrant. In polar coordinates, the equation of the circle is

Y

ye=4/(a%-x2)

X

n

0

0 =0

r2cos?0 + r?sin’0 = a?i.e.r = a

Hence, in polar coordinates, the region of integration is bounded by the curves:

r=0r=a6=00=".

Therefore, foa Js (@5 y2/x?% + y?dxdy = f résin®6.r.rd6dr
1 (™2 1

= gas.fo sin?6 do = %nas

8.6. Change of order of Integration: We have seen that in evaluation of a
double integration by successive integrations, we may integrate it with
respect to y first and then x, or we may integrate in the reverse order. Given



the region of the integrationA, we determine the limits of integration in the
former case by taking a strip parallel to the y — axis, and in the latter case
by taking one parallel to the x — axis. When it is required to change the
order of integration in an integral for which the limits are given, we first of
all ascertain from the given limits the region A of integration. Knowing the
region of integration, we can then put in the limits for integration in the
reverse order.

Example: Change the order of integration in the integral

Vaz—x2
LS f(xy)dady.

Solution: The given limits show that the region of integration is bounded by the
curves y = xtana,y = Va? —x?,x = 0 and x = acosa .

The first is a line through the origin and the circle x2 + y? = a?. These intersect
at the point (acosa, asina).Therefore,the region of integration is OAB in the
figure. When we integrate with respect to x first along a horizontal strip, the strip
starts from x = 0. But some of the strips end on )A while the others end on AB.
The line of demarcation is the line CA, y = asina, so the region OAB must be
subdivided in the subregions OAC and CAB. These are respectively bounded by
the curves x = 0,x = ycota,y = 0,y = asina,

And x = 0,x = ,/a? — y?, y = asina, y = a. Hence on changing of the order of
the integration, the double integral becomes

fasina J-acotaf(x’ y)dydx +f:.5ina fox/mf(x, y)dydx.

0 0



Check your Progress

2 cosa
g
_-x=a

Change the order of integration in the following integrals

LI f(xy) dxdy

2. f3 [ F e, y) dxdy

3. [ [ f(x,y) dxdy

& x-—=
4.3 [ £Gry) dxdy

a

5. [y [ f(x,y) dxdy

a

6. I3 [SVE) fx ) dydx



7. show that f:a xzsz(x,y) dxdy = f4a f(x y) dydx. Indicate the

4a
region of integration and evaluate the integral. What does it represent ?

9. [ [ —L _dxd
' mm Y

10. ffm \/W
11. ffex dxdy

x2

12. fooo fo xe v dxdy.

8.7. Triple Integrals: Let V be a region of the three dimensional space, and let
f(x,y,z) be a function of the independent variables x, y, z defined at every point
in V. Divide the region V into n elementary volumes 6V, 6V,, ..., 8V, and let
(x,, Vy, Z,) be any point inside the " subdivision 8V,.. Form the sum

;‘l=1 f(xT’ yT’ ZT)6I/7‘ et (1)

Then the limit of this sum, as n tends to infinity and the dimensions of each
subdivision tend to zero, is called the triple integral of f(x,y, z) over the region V,
and is denoted by [[[ f(x,y,2)dV .... (2)

This definition is similar to that of a double integral. For the purpose of
evaluation the triple integral also can be expressed as a repeated integral. The
triple integral can be used to evaluate a number of physical quantities. For
example, if we put f(x,y,z) = lin(2), we

find that the volume . v = [[[ f(x,y,2z)dV = [[[ 1dV .... .... (3)

Similarly, the mass of a body of density p = f(x, y, z), occupying a volume V is

M:jfff(x,y,z)dv=wpdv.... e (4)

dxdy

logy



To express the triple integral as a repeated integral, divide the region V' into
elementary cuboids by
planes parallel to the three
coordinate planes. The
volume V may then be
considered as the sum of a
number of vertical columns
extending from the lower
surface of V, say z =
Z1(x,y), toits upper
surface z = Z,(x,y) The
bases of these columns are
the elementary areas § A,
which cover a certain region
A in the xy —plane when all
the columns in V are taken.
(Only one of these columns
is shown in the figure.)

. Therefore, if we sum up
over the elementary

cuboids in the same
vertical column first, and then take the sum for all the cqumns in V, we can

write (1) as, $r_i (SR, f (6, Yy, 2)62)84,

where, (x,,y,,2,) is a point in the k' cuboid above the " element.
Taking the limit when the dimensions of §A,, and 6z tend to zero, this

becomes equal to fff Z2(x y)f(x y,z) dz}dA.....(5).

The integration with respect to z is performed first, keeping x and y
constant. The remaining integration is performed as for the double integral.
Therefore if A is bounded by the curves .y =Y, (x),y =Y,(x),x =a,x =
b, the triple integral (5) may be written as

V) (Za(xy)
f flz(;c) flz(;;/) f(x'y; Z)dXdde’

where the three integrations are performed in order from right to left. It should
be noted that

the region A is the projection on xy —plane of the bounding surface of the
volume V.




Example: Evaluate the triple integral of the function f(x,y,z) = x? over the
region V enclosed by the planesx =0,y =0,z = 0 and

X+y+z=a.
' 4
X
C
B \
I
O 3 > 4—
A O X
X

Solution: Here a vertical column is bounded by the planes z = 0,z = a—x—.
The latter plane cuts the xy —plane in the line a—x—y = 0.

So the area A above which the volume stands is the region in xy —plane bounded
by thelinesy =0,y =a—x,x =0,x = a.

Hence the triple integral = foa foa_x foa_x_yxzdxdydz = foa foa_xxz(a —x—
v)adxdy =120ax2(a—x)2dx=12(13—12+15)a5=160ab5.

Check your Progress

Evaluate the following integrals:
1 f" P _xydrdy 5 J'3fy-1dxdr
0J 0 \/(l—xz—yz) 2J 0 y

V(a’- 2 :
)t TR [iflo ad
0J 0 1+x°+y

(1+€0S6) 1 (2Vz /(4z-x2)
5. [ [ rdodr 6. [ [ [V dzdxdy



7.Eva|uatef0a fox f(iHy e**Y*2dxdydz, and state precisely what is the region of

integration.

8.Evaluate [[[ zdxdydz over the volume enclosed between the cone x* + y? =
z? and the sphere x2 + y? + z2 = 1 on the positive side of xy —plane.

9.Find by triple integration the volume cut off from the cylinder x? + y? = ax by
the planes z = mx and z = nx.

10.Find the volume in the first octant bounded by the cylinder x = 4— y?, and
the planesz =y, x =0,z = 0.

11.Find the mass of a solid in the form of the positive octant of the sphere
x? +y?% + z2 = a?, if the density at any point is kyz.

12.Find the volume bounded above by the sphere x? + y2 + z? = 2a? and below

by the paraboloid az = x? + y2.

13.Find the value of [[[ x?dxdy dz over the volume bounded by the ellipsoid
x*/a’ +y?/b® +2%/c* =1.
[Hint. Put x =aX,y =bY,z=cZ, integrate with respect to Z, and then
transform to polars.]

3x _ 2
" and 4y = x“.

14.Find by double integration the area between y = =
8.8. Gamma function: We define the gamma function, I'(x), for x > 0, by the
relation ['(x) = fooo t* e tdt

We have already seen that the integral defining I'(x) is convergent for x > 0.

The student should note that the integrand on the right is a function of both x
and t. But on integration and substitution of the limits, t gets removed. The
resulting function of x is denoted by I'(x). In actual practice, the integration is
possible only for special values of x. For other values of x, recourse must be had
to numerical methods for evaluating the integral. However, a number of
properties of the function can be derived from the definition itself.



An important property: On integrating by parts, we see that fooo t¥e tdt =
[-t¥e "] +x fooo t*~le~t dt..The integrated part vanishes at the lower limit,

since x > 0. At the upper limit, we have by L' Hospital's. lim,,. t*e ¢t =

. t* . xt*1 ) x(x—1)t¥"2
hmt—>oo;=hmt—>007= llmt—)OOTz cee
By differentiating the numerator and denominator again and again till we get a

zero or negative exponent n the numerator, we see that the limit is zero. Hence
J, tetdt=x [ t*te~tdt ieT(x+1) = xI'(x) ......(1)

This fundamental property of gamma function helps us in its evaluation.

For example, a repeated application of (1) gives

I'(5) =4I'(4) = 4.3T'(3) = 4.3.2I'(2) = 4.3.2.1T'(1) = 5.4.3.2.1 = 4!

Hence, I'(5) = 4!.We can similarly show that'(n + 1) = nI'(n) = - = n!

when n is a positive integer. We can proceed in a similar fashion for non integral

values e.gI'(5.3) =4.3I'(4.3) = 4.3 x 3.3I'(3.3) = 4.3 x 3.3 x2.3I'(2.3) =

4.3 x 3.3 x2.3x1.3I'(1.3).

We generally stop at this stage, and substitute the value of I'(1.3) from the table
of gamma functions. The relation (1) can also be used for defining the gamma
function for negative values of x. Thus the complete definition is

r'x) = jmtxe‘f dt (x > 0); @ =T'(x) (x<0).

We notice that the gamma function is undefined for x = 0 or a negative integer,
A graph showing the values of I'(x)is given in the margin.

Example: Evaluate in terms of gamma function the integral fooo e~*" dt.

1 3
Solution: Putting x* =t,x = t+'dx = %t_zdt, we have, fooo e X" dt =
3
et 2tTide =11 (3) =T(3).
0 4 4 \4 4
8.9. Product of two single integrals: We shall use in the next article the following

theorem 1 f()dx x [ gdy=[; [’ f()g(y) dx dy
To prove it, suppose that [ g(y)dy = G(y), Then f;f(x)dx X

[Lamdy=[] FIEM)]dx = [ FGIG(d) — G(c)]dx
b b d
- j FOOdx X [6(d) - G(e)] = f f 0 dx x f 9()dy



The theorem holds for improper integrals also, provided each of the integrals is
convergent.

Value of I'(1/2). To obtain the value of F(%) , we notice that
(e o] _l [0 0]
) =fy tZetdt =2 ["e™ dx (1)

on putting t = x? and dt = 2x dx.
Rewriting this result with y instead of x, we have

F(l)zzfoooe‘yzdy———— (2)

2
Multiplying (1) and (2), we get

[T G)]2 = 4]0009‘"2 dx x foooe‘y2 dy =
4" foooe‘(x2+y2) dxdy = [2 [“ e rdodr

T

: R (T o
on transforming to polars, = 2 [2[—e""] d6 = 2 [2 dO = .

Hence, T (%) =+/m.

8.10. Integral of sin*™ 1x cos 2" 1x: For this we put t = x?

in the definition of F(m)=footm‘1 e'dt we obtain I'(m) =
J, x?m=2 xZde—Zf x2m=1 =** dy .. (1)

Similarly, I'(n) = fo y2n=2 o=** 2ydy = Zf y2n=1 oY’ dy---(1)
We multiplying (1) and (2),

M(m)I(n) =2 [ x?M e dx x 2 [y~ te ™ dy

(0] (0]
— 4f f x2m-1 y2n—1e—(x +y?)dxdy
0 0

= 4j2j (rcos0)2™m-1 (rsin@)2n-1e=(r*)raédr
0 0

(ee)

_ 4f2 cos2™=10sin?"1040 Xf (r)2m+2n-1 a—(r?)ar
0 0

2 fz cos?™ 10sin?""19d0.T(m + n)
0



Hence' fOECOSZm—lesinZn—lede — I'(m)I'(n)
2I'(m+n)

This result is true for all positive values of m and n, integral as well as fractional.
An alternative form of the above result is
: (22 )r ()
f cos™Osin"0do = >
0 T (m+n+ )
2

Example: Evaluate f01\/1 —x* dx

m>—-1,n> -1

1
Solution: Put x = Vsinf ,dx = %(sinQ)_E cos 6 df; then
T 1 3
' el 11()r()
f V1—x*dx =j —(sinB) "z cos? 0 df = -—=—-—=%
0 0 2 2

7
2r ()
1\ /1 1
_1rG)Qv_ var(s)
4 3n.(3 6 3
() r(;)
8.11. Beta function: We define the beta function B(m,n), form > 0,n >
0, by the relation B(im,n) = fol x™ 11— x)" 1dx.

Putting x = sin?6, in the above integral, we find that
B(m,n) = [2(sin8)*™ ?(cosh)*"~?2sinfcosH db.
=2 [2(sin8)*™ ! (cos0)?""1dO =
r(m)r'(n)

[(m+n)

8.12. Dirichet's Integral: We shall
now show how to evaluate the triple
integral [[[ xP~1y™"1 z" ldxdydz
over the volume enclosed by the
three coordinate planes and the
planex+y+z = 1.

The triple integral may be written as

1 r1—x 1—x—yxp—1 m—1Zn—1dxd dZ
f() 0 0 Y Y




= fol fol_x xP~lym=1(1 — x — y)"dxdy.

In the first integration here, which respect to y, put y=(l—x)t,dy =
(l— x) dt, then the required integral

=-1-f(l)f(l) P (1= 1 =x—(1—x)]" (1 —x)dx dt
n
=%f;f(l)xp—l(l—x)m+n tm-—l(l_t)n dx dt
=_1.f(1)xp—-1(1_x)m+n dfo(l) tm—l(l_t)n dt

n

%B(p,m+n+1).B(m,n+1)
1 T(EIrm+n+1) Tm)I(n+1)
" n'T(p+m+n+1) T(m+n+1)

_ Irmrem) . _
= Tprminsn SNC I['(n+ 1) = nl'(n). .
. . p—1.m-1,n—-1 _ T'(e)r(m)I'(n
This gives the important result, [[[ xP~1y™~1 2" dxdydz = TS

where Vis the legion givenby x > 0,y >0,z > 0, x + y + z < 1. The above
integral is known as Dirichlet's Integral.

Example: Apply Dirichlet's integral to find the moment of inertia about the
2

. . L X y2  z2
z —axis of an octant of the eIhpsmd,; + o + == 1.---(1)
(1)
Solution: The moment of inertia [[[ (x* + y?) pdxdydz ----(2)

where p is the density of the ellipsoid and V the volume enclosed between the
coordinate planes and the surface (1). Put

xzaﬁ,yzb\/?,z:cx/z
1 1 1 1 1 2
and dxzzaX 2dX,dy=EaY 2dY,dz=§aZ 2dZ.

Then the surface (1) reduces to the surface X +Y + Z = 1-----(3)
and the integral (2) becomes

1 1 1
p [[f (X + b2Y)~abc(X2Y 2272 )dXdYdZ, -~ (4)



where now V denotes the volume enclosed between (he coordinate planes and
the surface (3).

The integral (4) is the sum of two Dirichlet's integrals
1 -1 1 1

1 1
%pabc [[[(a?XzY"2Z72 + b*(X2Y2Z"2) dXdYdZ. Hence, its value is

_1 TG | . rErerE

= s pabc{a 0) +b A }
IS bz%ﬁ\/ﬁﬁ_1 e 4 b
=3gra c(a® + b?) 531 - =397, c(a® + b*).

Since, the mass M of the Octant = %(g npabc).

: L 1
we can also write the moment of inertia as EM(a2 + b2).

Check your progress

1. When s, x > 0, prove that fooo e Stt* "l dt = sT¥T'(x).

2. Show thatT'(n) = fol(log%)n_l dy.

3. Show thatifc > 1, fooo:—xdx = (II;S;L.

4. Evaluate the following integrals:
(1) fooo x6e_2x dx, (ll) fooo \/;e_-x3 dx, (111) fooo 4x4e—_x4’ dx
(=1)™n!
(m+1)n+1'

where n is a

(iv). Prove that fol x™(log x)*dx =
positive integer and m > —1.

5. Show thatifn > —1 thenfo1 xe~k*x? gy = L nt+1

O

Hence, or otherwise, evaluate ffooo e k%% dy,
6. Show that || -——dx = VAT ()/(nT (= +2))
' 0 . /(1-x™) n n 2
1 1
7. Evaluate the integral: (i). [} (1 — x*) 72 dx; (ii). f, (1 — x®)z dx;
1 1
(iii). f) x2/(1 — x®) dx; (iv). [, 1/(1 — x*)z dx.
7.13. Summary: We are able to understand the concept of double and triple
integral, concept of applications for area and volume for a given curve, understand

the concept of Gamma function and Beta function and understand the concept of
relation between multiple integral and these special functions.




8.14. Terminal Questions

1. Evaluate f03 flz xy(1+ x + y)dxdy
2. Evaluate [[ xy dxdy over the region in the positive quadrant for which

x+y<1.
3. Evaluate the following double integrals.

b
@ [, [ + y2dxdy
b, 1

(0)(b) [ [} (;)dxdy

4. Evaluate [ [* —— dxdy

x2+y?

5. Evaluate ([ xy//1 — y2 dx dy over the positive quadrant of the circle X2 +y?
=1.

6. Find the volume inside the paraboloid x* +4z°+8y=16 and on the positive
side of xz —plane.

7. Evaluate [ [V (Y& dzdxdy




