
Master of Computer Application

Block-1 An Overview and Process Management
3-76

UNIT-1 Introduction 7

UNIT-2 Process and thread 21

UNIT-3 Process Scheduling 35

UNIT-4 Concurrent Process 53

Block-2 Memory Management and UNIX Case
Study 77-184

UNIT-5 Deadlock 81

UNIT-6 Memory Management 99

UNIT-7 Secondary Memory Management 143

UNIT-8 Case Study of UNIX 161

Uttar Pradesh Rajarshi Tandon
Open University

MCA-114/ MCS-116/
DCECS-106/BCA-112

 Operating System

MCA-114/1

MCA-114/2

BLOCK

1
AN OVERVIEW AND PROCESS MANAGEMENT

UNIT-1

Introduction

UNIT-2

Process and Thread

UNIT-3

Process Scheduling

UNIT-4

Concurrent Process

Uttar Pradesh Rajarshi Tandon
Open University

Master of Computer Application

MCA-114/MCS-116/
DCECS-106/BCA-112

 Operating System

MCA-114/3

Course Design Committee

Prof. Ashutosh Gupta
Director (In-charge)
School of Computer and Information Science, UPRTOU, Allahabad

Dr. Marisha
Asstt. Professor
School of Science, UPRTOU, Allahabad

Manoj Kumar Balwant
Asstt. Professor (Computer Science)
School of Science, UPRTOU, Allahabad

Dr. Ashish Khare
Dept. of CS, Allahabad University
Prayagraj

Course Preparation Committee
Manoj Kumar Balwant Author
Asstt. Professor, (Computer Science)
School of Science, UPRTOU, Allahabad

Prof. Manu Pratap Singh Editor
Professor, Department of Computer Science
and Engineering Institute of Engineering &
Technology (Khandari campus) Dr B R
Ambedkar University, Agra,Uttar Pradesh

Director (In-Charge)Dr Ashutosh Gupta
School of Computer and Information Science

©All Rights are reserved. No part of this work may be reproduced in any
form, by mimeograph or any other means, without permission in writing
from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2020.
Printed By: Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

Coordinator Dr. Marisha
Asstt. Professor, (Computer Science)
School of Science, UPRTOU, Allahabad

©: UPRTOU, Prayagraj.
ISBN : 978-93-83328-97-0

MCA-114/4

BLOCK INTRODUCTION

In this block, we will learn basic concepts of an operating system and its
functions. We will discuss here the evolution of operating systems from
early batch systems to modern computer systems. In second unit, we will
understand what is a process and relationship between the process and its
process control block. This unit includes discussion about a process state
and various state transitions a process undergoes. Here, we will also learn
distinction between processes and threads along with user level threads
and kernel level threads. The third unit will explain us various CPU-
scheduling algorithms on which a CPU scheduler is designed. In forth
unit, we will understand about the critical-section problem, whose
solutions are used to ensure the consistency of concurrent execution of
multiple processes. Here, we will be explained mutual exclusion
requirements and hardware approaches to support mutual exclusion. In the
end of this unit, you will learn a high-level programming language
construct called monitor to achieve process synchronization.

MCA-114/5

MCA-114/6

UNIT-I INTRODUCTION

Structure

1.1 Introduction

1.2 Objective

1.3 Overview

1.4 Different Types of Operating Systems

1.5 Structure operating system

1.6 Function of operating system

1.7 Summary

1.8 Terminal Questions

1.1 INTRODUCTION

A Modern computer system consists of processor, main memory,

disks, printers, a keyboard, a mouse, a monitor, and various other devices

which makes it a complex system as a whole. Managing all these

components to use them optimally is a very challenging job. So,

computers are equipped with a program called operating system, which

acts as an intermediary between a computer user and these computer

hardwares to use them efficiently. Most readers have already heard about

some of operating systems such as Windows, Linux, FreeBSD, and Mac

OS X. A program that provides an interface to users, usually called as the

shell (when it is text based) or the Graphical User Interface (when it uses

icons). The Shell bypasses user's commands to the operating system to do

user’s work. Fig. 1.1 shows an abstract overview of the main components

under discussion. Here, the hardware present at the bottom layer on top of

which software is present. The hardware consist of: a keyboard, a monitor,

disks and other physical devices. Most operating systems have two modes

of operation: kernel mode and user mode. The operating system is the

most fundamental piece of software which runs in kernel mode (also

called supervisor mode). In this mode, it has complete access to all the

hardwares, can execute any CPU instructions and can reference any

memory address. Kernel mode is generally reserved for the most trusted

functions of the operating system. Rest of the software runs in user mode,

in which only some parts of machine instructions are available. In

particular, those instructions which directly access hardwares, reference

memory and control input/ output operation are restricted to user mode

programs. The shell or GUI runs in user mode which allows users to start

other programs like a Web browser, e-mail reader, or music player. The

MCA-114/7

operating system runs directly on the bare hardware to provide services to

all the other software.

Figure 1.1: Logical view of operating system [3].

1.2 OBJECTIVES

After studying this chapter, you should be able to:

 Explain what operating system is and what it does.

 Describe the evolution of operating systems from early simple

batch systems to modern computer systems.

 Summarize the key functions of an Operating System (OS).

1.3 OVERVIEW

A computer system roughly consist of four components: hardware,

operating system, application programs and users as shown in Figure 1.2.

Figure 1.2 - Abstract view of the components of a computer system [1].

The hardware consists of central processing unit (CPU), main memory,

input/output devices etc. It provides basic computing resources for the

computer system. The Application programs/software like word

processors, Web browsers spreadsheets, compilers etc. determine how to

utilize these resources to solve user’s computation. The operating system

controls and co-ordinates the use of hardware among these application

programs. Mainly there are two goal of any operating system:

1. Convenient : Operating systems should be designed to provide an

environment where a user can easily interact (like GUIs) with the

computer to execute programs. It should also give fast response to

a user request. MCA-114/8

2. Efficient : Operating system must ensure efficient use of the

system resources such as memory, CPU, and I/O devices. System

resources will be poorly utilized, if memory or I/0 devices

allocated to a program remain idle, while other programs which

actually need them are denied access.

1.4 DIFFERENT TYPES OF OPERATING

SYSTEMS

Operating systems exists from very first generation of computer

and they keep evolving with time. Some important types of operating

systems starting from Batch Processing to Multiprocessing system are:

1. Batch Operating system : Batch Operating system serves a

collection of jobs called as a batch by sequentially reading and

executing each job. A job is predefined sequence of commands,

programs and data into single unit. The computation in Batch

processing is non-interactive because during execution of the batch

of jobs, user cannot interact with the system. You present input as

a batch of jobs to the system and sometime later you get the output.

In batch operating system, the CPU is often idle because the speeds

of mechanical I/O devices are slower than CPU.

2. Multi-programming OS : One of the important aspect of a

modern operating system is to keep the CPU busy all the time. In

general a single program cannot makes CPU as well as I/O devices

busy all the time. The multiprogramming operating system keeps

several jobs in the memory simultaneously as shown in figure 1.3.

Every time OS picks one job from the memory and executes it.

Meanwhile, a running job may need to wait due to an I/O request.

In this situation, any non-multiprogramming OS CPU will sit ideal.

But, in multiprogramming OS, the CPU switches and executes

another job present in the memory. When the first job finishes its

I/O operations, it gets back the CPU. So, the CPU always has one

job to execute and it never sits ideal. This way there is good CPU

utilization in multiprogramming OS.

Figure 1.3 : Memory layout for a multiprogramming system [1]. MCA-114/9

3. Time-sharing OS: Time sharing OS is a logical extension of

multiprogramming OS which allows multiple users to use the CPU

simultaneously. Each user’s action or command in time sharing OS

is small that needs only a small CPU time. As the result, the

response time is also shorter typically less than one second. The

CPU rapidly switches from one user to another (as shown in figure

1.4) giving impression to each user that the entire CPU is

dedicated to his/her use, even though it is shared among many

users. Both time sharing and multitasking systems require that

multiple jobs should be kept in the memory simultaneously. Since,

the main memory has limited storage, other jobs are usually kept

on hard disk in a job pool. If several jobs are ready to be brought

into the memory from the job pool and there is no room to

accommodate all of them, a decision is made by the job scheduler

to bring among the jobs from the job pool.

Figure 1.4: In above figure the user 5 is active but user 1, user 2, user 3,

and user 4 are in waiting state whereas user 6 is in ready status [3].

4. Multiprocessing OS : The main motive of a multiprocessing

system is to increase speed of execution in computer system. A

multiprocessor system consists of two or more processors operate

simultaneously in close communication with one another sharing

system bus, sometime clocks, memory and peripheral devices.

Multiprocessing systems are of two types: symmetric

multiprocessing and asymmetric multiprocessing. In asymmetric

multiprocessing, each processor is assigned a specific task by a

boss processor. The boss processor schedules and allocates works

to other processors. While other processors looks to the boss for

instructions. Today, most multiprocessor systems use symmetric

multiprocessing (SMP) architecture where two or more identical

processors are connected to a single shared main memory each

having its own set of registers and local cache, but has full access

to all I/O devices. Each processors are controlled by single

operating system that treats all processors equally and reserve none

for special purposes. The benefit of this model is that it can

execute N processes simultaneously with N CPUs. This type of

symmetric multiprocessor systems allow processes and resources

to be shared among the processors dynamically and can lower the

variance among the processors. A recent trend in CPU design
MCA-114/10

results in a new type of multiprocessing system called a multicore

system which contains multiple computing cores on a single chip.

Such systems are more efficient than multiple chips each with

single processor because on chip communication is faster than

between chips communication and also uses less power. As an

example, a dual core design with two cores is shown in Figure 1.5.

Figure 1.5: A dual-core design with two cores placed on the same chip [1]

These systems increase system reliability by isolating the component

which fails and redistribute the computing tasks accordingly.

Check your progress

1. What is the difference between a multiprocessor and a time

sharing system?

2. What are the two goals of an OS design?

3. What is the kernel of an OS?

1.5 OPERATING SYSTEM STRUCTURE

Operating system should be designed carefully so that it functions

properly and can be easily modified. Generally, OS is partitioned into

smaller relatively independent components rather than one individual

component. Each of these components has a well-defined function. This

makes complexity of the design manageable. In this section, we will

discuss typical approaches to design architecture of operating systems. We

will see how these components are interconnected and combined into a

kernel. MCA-114/11

1.5.1 MONOLITHIC SYSTEMS

A Monolithic system implements entries services of OS in kernel

mode. Since, both user services and kernel services are implemented in

kernel address space, Monolithic system becomes bulky and heavy.

Monolithic kernel implements CPU scheduling, memory management, file

systems, and all other OS services into a single big unit. Since, all services

exist in the kernel address space which can be invoked directly, it is faster

than microkernels system. A typical structure of a monolithic kernel is

shown in figure 1.6.

Figure 1.6 Monolithic Kernel [1].

Adding a new feature to a monolithic system requires recompiling of

whole kernel, whereas with microkernels you can add new features or

patches without recompiling the whole kernel. Earlier, UNIX and Linux

are based on Monolithic system and later on at the end of the 1980's the

idea of Microkernel was conceived.

Advantages :

1. Since all user and kernel services are invoked through kernel

mode, monolithic system is faster than microkernel system.

Disadvantages :

1. The size of these systems are larger than microkernel system.

2. Adding of a new service or feature requires recompiling of the

whole system.

3. If any services fails, this lead to failure of the entire system.

MCA-114/12

1.5.2 MICROKERNEL SYSTEMS

This structure of operating system removes all non-essential

services from the kernel, and implement these services as applications

services. This system design makes the kernel as small and as efficient as

possible. It implements basic process management, memory management,

message passing, and other important services in kernel address space.

While, other user services are implemented in user address space as shown

in figure 1.7. This design enhances security and protection of the system

because most services are performed in user mode. The system expansion

in Microkernel is easier which requires only adding more services in user

address space as application services rather than modifying the kernel.

Windows NT was originally microkernel and later on Windows NT 4.0

was introduced with improved performance by moving more services into

the kernel.

Advantages :

1. The size of the kernel is small because it contains only core

services.

2. System expansion only requires adding new services as application

programs instead of rebuilding of a new kernel.

Figure 1.7: Architecture of a typical microkernel [1].

1.5.3 LAYERED SYSTEMS

In Layered approach the OS consists of a number of smaller layers.

The bottom layer (Layer 0) is the hardware and the highest layer (N) is the

user interface. This layered structure is shown in Figure 1.8. Each layer

resides on the layer below it, and depends only on the services provided by

just previous lower layer. For example, a particular layer M consists of

data structures and a set of routines that is invoked by higher-level layer.

The main advantage of the layered approach is simplicity of construction

and debugging. Each layer can be developed and debugged independently MCA-114/13

since all lower layers have already been debugged to deliver proper

services. The major challenge with layered design is deciding in what

order to arrange these layers because any lower layer cannot call the

services of any higher layer.

Figure 1.8 : A layered operating system [1].

Advantages :

1. Maintenance of a layer is easy to do without affecting layer

interface.

2. It provides modularity and clear interface.

Disadvantage :

1. The performance of layered system is not so good because any

request for service from a higher layer has to go through all

subsequent lower layers.

2. It is difficult to assign functionalities to appropriate and correct

layer.

1.5.4 MODULAR SYSTEMS

The idea of designing this type of system is to provide the kernel a

relatively small core services and as the kernel need to run other services,

they are dynamically linked through loadable modules. New services can

be dynamically added through loadable modules which do not compile or

rebuild the kernel every time. This approach to OS design is somewhat

similar to layered system where modules are similar to layers which have
MCA-114/14

well defined tasks and interfaces. Here, the modules can directly

communicate among each other and thus, this eliminates the problem of

going through multiple intermediary layers. It is more flexible than

layered approach because the kernel has knowledge of how to load

modules. Figure 1.5 shows Solaris operating system which consists of core

Solaris kernel organised around 7 loadable modules.

Advantages:

1. The size of the kernel is small because it contains only core

services.

2. It has the advantages of microkernel system without message

passing overhead because the modules do not require message

passing in order to communicate each other.

3. New services can be added through loadable modules which do not

require rebuilding the kernel.

Figure 1.5 : Solaris loadable modules [1].

1.5.5 HYBRID SYSTEM

Most of the modern operating systems actually combines several

approaches, rather than one pure model. A Hybrid System combines

multiple approaches of OS design to address performance, security and

usability needs. Linux and Solaris are monolithic because both user and

kernel services are present in single address space (or kernel mode). They

are also modular because new services can be added through dynamically

loadable modules. Windows are mostly monolithic due to performance

reasons and they are microkernel because some of users functionalities are MCA-114/15

available is user mode. Apple Mac OS X consists of Mac microkernel and

BDS kernel. The Mac kernel provides services such as memory

management, inter-process communication, message passing and threads

scheduling. The BDS kernel provides additionally services including

command line interface, networking and file system. The kernel

environment also I/O kits for development of device drivers and loadable

modules (for kernel extension). Figure 1.6 shows structure of Mac OS X

system.

Figure 1.6 : The Mac OS X structure [1].

Check your progress

1. What are the advantages and disadvantages of Monolithic and

Microkernel structure of Operating system?

2. Why does the layered system structure suffers from performed

issue?

3. How does the modular system provide extension of services?

1.6 FUNCTIONS OF OPERATING SYSTEM

The major functions of operating system are following:

1. Process management : A program in execution is called process.

For example, a word processing program running by a user on

computer is a process. The operating system is responsible for

allocating various processes to CPU in a efficient way. OS will

block a process which requests for an I/O event and resume its
MCA-114/16

execution when its I/O event is completed. OS will terminate a

process, if its execution is completed. OS provides of inter-process

communication that allows a process to share data and information

with other processes. The OS also provides a synchronization

mechanism to maintain data consistencies caused due to concurrent

execution of processes. OS is responsible for management of all

these services related to processes.

2. Memory management : A process cannot be executed unless it is

brought into main memory. In multiprogramming environment,

multiple processes reside into the main memory. The memory

management responsibility of an OS includes allocating a portion

of memory to a new process, deallocating portions of memory

when they are freed, keeping track of parts of memory that are in

use, swapping processes between main memory and disk when

main memory is not enough to hold all the processes.

3. Storage management : The OS is responsible for storage of files

on different types of storage media such as optical disk and

magnetic disk. Each type of storage media has different

characteristics and physical organisation which are controlled by

their respective devices such as disk drive and tap drive. Each

drive has unique characteristics such as transfer speed, access

speed, access method and storage capacity. The operating system

hides these physical details from users and implements the abstract

concept of a file by managing the mass-storage media and the

devices that control them. OS organises files into secondary

storage by providing various operations such as creating and

deleting files and directories.

4. Disk management : Operating system is responsible for efficient

use of peripheral devices with minimum access time and with large

disk bandwidth. This can be achieved by servicing the disk I/O

requests in effective order. Generally, the OS serves a request

immediately, when the desired disk drive and disk controller is

available. But, if the drive or controller is busy, further requests are

placed in a disk queue for that drive. In a multiprogramming

system, the disk queue often have several pending requests. The

OS serves these pending requests in the queue in effective order

which would result minimum access time and large disk

bandwidth.

5. Protection and security : If a computer system has multiple users

and allows the concurrent execution of multiple processes, then

access to files, memory segments, CPU, and other resources must

be controlled. The OS provides protection and security which

ensures that OS resources can only be used by the processes after

their proper authorization by the OS. Each user in an OS is

distinguished by its user ID. Each user is authenticated at the time

of system log-in. After their authentication, all associated MCA-114/17

processes and threads are accessible that user. OS also implements

group ID to distinguish among sets of users rather than individual

users. For example, one set of users may be allowed to perform all

operations on a particular file, whereas another set of users may

only be allowed to only read the file. Each group ID has a set of

users belonging to that group.

1.7 SUMMARY

In summary,

 You are introduced to an operating system, which is software that

provides interface to user to manage the computer hardware as

well as provides an environment for application programs to run.

 You have learnt some of the important types of operating systems

starting from Batch Processing to Multiprogramming, Time

sharing and Multiprocessing.

 You observed that OS tasks are partitioned into small components

rather than have one individual component. Each of these

components have well-defined functions, with carefully defined

inputs and outputs.

 Finally, you learnt that Process management, Memory

Management, Storage Management, Disk Management and

Protection and Security are the key functionalities of any

Operating System.

1.8 TERMINAL QUESTIONS

 Discuss the essential properties of the following types of operating

systems:

 Batch

 Interactive

 Time sharing

 What are the various problems that can arises in a

multiprogramming and time-sharing environment, where several

users share the system simultaneously?

 Can we ensure the same degree of security in a time-shared

machine as in a dedicated machine? Explain your answer.

MCA-114/18

 Under what circumstances it would be better for a timesharing

system rather than a PC that support only one program or a single-

user workstation?

 Illustrate the advantages and disadvantage of multiprocessor

systems?

 Explain the key differences between symmetric and asymmetric

multiprocessing system.

 Discuss the main advantage of the layered approach to system

design. How it is different from modular approach?

 Briefly explain the major functionalities offered by an OS.

 MCA-114/19

MCA-114/20

UNIT-II PROCESS AND THREAD

Structure

2.1 Introduction

2.2 Process Concept

2.3 Process states

2.4 Process Control Block

2.5 Short term scheduler, Dispatcher and Context switching

2.6 Thread

2.7 Multithreading models

2.8 Summary

2.9 Terminal Questions

2.1 INTRODUCTION

Computers in earlier time only execute one program at a time. The

program takes entire control of computer system and its resources. Today,

computers are able to execute multiple programs at a time by bringing

multiple program into the main memory as process. A process is the basic

unit of work in a modern computer system. A modern computer system

has multiple process which can be broadly divided into two types:

operating system processes and users’ processes. The operating system

executes system code while user processes executes user code. Operating

system executes all these processes concurrently by switching among

these processes to make better utilization of CPU.

2.2 OBJECTIVES

In this Unit,

 You will learn a basic concept of a process and its various features.

 You will understand how operating system executes processes

 We will discuss about the concept of a thread which is the

fundamental unit is CPU utilization.

2.3 PROCESS CONCEPT

When computer is busy in execution, it performs CPU activities.

These activities are sometimes called as jobs in batch system. While, a MCA-114/21

time sharing system calls these activities as a user program or tasks. In a

multitasking system with single user, he/she can access multiple programs

at one time such as an e mail, word processor and web browser.

Informally, many times we refer a programs as a process, but a

process is more than a program/program code. The process consists of: a

program code, the value of program counter, content of processor’s

registers, process stack, a data section and a heap. The content of the

process is also shown in Figure 2.1. The program code of a program is

called as text section. The process during execution of the program code

contains temporary data such as local variables, function parameters and

return addresses. These temporary data are stored in

Figure 2.1: Process in memory [1].

The process's stack. The global variables of the program code are stored in

data section. The heap is the memory that is dynamically allocated to the

process during its execution.

So, we can now say that a program is not a process. It is a passive

entity which is just a list of instructions stored on an executable file.

While, a process is an active entity which contains a program counter

along with several data to represent its current activity. A process is

generally executed either by double click or name of the executable file in

the command line.

2.4 PROCESS STATES

When a process executes, it undergo a sequence of activities which

is divided in parts or states. A process undergoes following states during

its execution:

 New : A newly created process first enters in New state.

MCA-114/22

 Ready : A process is ready to be allocated to the CPU to start its

execution it enters in Ready state.

 Running : When the instructions of the program code is executed,

it enters in Running state.

 Waiting : During execution of the program code, the process

requires several events such as I/O operations or computer

resources. When these resources is/are not available, the process

goes to waiting state.

 Terminated : When a process finishes its execution, it reaches to

terminate state.

Figure 2.2 : Diagram of process state [1].

The process switches among these states during lifetime of its execution as

shown in figure 2.2. A process may undergo through following possible

transitions :

 New – Ready : When OS wants to increase degree of

multiprogramming, it brings several processes from New state to

Ready state. The OS set some limit on number of processes in

ready queue so that it will not degrade system performance.

 Ready – Running : OS must selects a process from the ready

queue and allocates it to the CPU to keep the CPU busy all time.

When the process gets CPU for its execution it changes its state

from Ready to Running state.

 Running – Terminate : When the CPU executes a process and

finally the process finishes its execution, it changes its state from

Running to Terminate state.

 Running – Ready : This transition of state happens when a

running process has reached the maximum allowable time (time

slice) for uninterrupted execution. This transition may also MCA-114/23

happens when some high priority process has completed its I/O

operations and become available in ready queue for its execution.

 Running – Blocked : A currently running process is put in the

Blocked state from Running state, if it requests an I/O operation in

middle of its execution. At this time, OS must select another

process from ready queue and assign it to CPU.

 Blocked – Ready : When a process is in the Blocked state

completes its I/O operation, it is moved to the Ready state.

Check your progress

 Describe the purpose of a Process Control Block (PCB)?

 What are the differences between Ready queue and the Blocked

queue?

 What do you mean by context switch?

2.5 PROCESS CONTROL B LOCK

Operating system recognises each process by their Process Control

Block (PCB). A PCB contains many piece of information of a process

which is essential for its execution. A typical structure of a process control

block is shown in figure 2.3. Generally, a PCB consists of following

information:

 Process Number (Process ID) : Each process in an operating

system is uniquely identified by its process ID. This field contains

process ID is the process.

 Process state : It indicates the current state of a process. This may

be one of the states: new, ready, running, waiting, terminated.

 Program Counter : The value of this field is the address of next

instruction in the program code to be executed. The value of the

program counter changes every time when a new instruction is

executed by CPU.

 CPU registers : CPU often communicates with registers while

executing any instruction. Generally, CPU has multiple registers

depending on computer architecture which communicate directly

with the CPU. This includes accumulators, index registers, general

purpose registers and stack registers. The values of these registers

are stored in this field.

MCA-114/24

 CPU scheduling information : The value of this field includes

information such as priority of the process and pointer to

scheduling queue.

 Memory- management information : This field contain

information related to memory management such as value of base

and limit registers of the page table or segment table.

 I/O status information : During execution of a program code, it

may require several I/O devices, files etc. This field contains

information including list of I/O devices allocated to a process and

list of open files during the process execution.

 Accounting Information : This includes information like amount

of CPU used for a process execution, time limits, process numbers

etc.

Figure 2.3 : Simplified Process Control Block [4].

2.6 SHORT TERM SCHEDULER, DISPATCHER

AND CONTEXT SWITCHING

Short term scheduler : When a process is newly created, it enters to a

ready queue. This queue holds all the processes of a system that are ready

to execute. But, only one process is selected from the ready queue for

execution by CPU. This decision is made by a CPU scheduler or a short

term Scheduler which is designed on the based on various scheduling

algorithms which we will see in next chapter.

Context Switch : During the execution of the process, it may execute for

a while and then it may be interrupted, terminated or waited for some I/O

events. As the result, the process will undergo through various states. MCA-114/25

When the process is either interrupted or waiting for an I/O event, it must

be suspended and some other process from the ready queue must be

selected for execution. This requires saving context of the suspended

process to resume its execution later and restoring context of the new

process to start its execution. The context information of a process are

represented by entries in its PCB such as process state, CPU registers and

memory management information. So, when a CPU switches from one

process to another, it requires saving context of old process in its PCB and

restoring context of new process from its PCB. This task is known as

context switching. This is purely overhead to a system because during

context switching the system does not perform any useful work.

Dispatcher : When a process from ready queue is selected by the short

term scheduler, a module called Dispatcher gives a control of a CPU to the

process. So, the dispatcher comes into the picture just after the short term

scheduler finishes its job. The dispatcher is invoked for every process

switch. The time taken by the dispatcher to stop one process from its

execution and start another process for execution is called dispatch

latency. The dispatcher involves following functions :

1. Switching context

2. Switching to user mode

3. Jumping to the proper location in the user program to restart that

program

2.7 THREAD

Threads are very useful in modern operating systems where a

process consists of multiple threads to perform multiple independent tasks.

If a process consists on multiple threads, then several threads of a process

may run at the same time and they can perform different tasks

simultaneously. For example, consider a word processor like MS word

where one thread checks for grammar and spelling check, second thread

takes user input from keyboard and third thread makes periodic backup of

current file on disk. Consider another example of a web browser which

consists of multiple threads. Here, one thread may be responsible for

scrolling of the web page while second thread loads images into the web

page. The third thread may play animation and videos.

Process vs. Threads : Processes and threads are similar in many ways.

They operate in same way with some differences.

Similarities :

1. Similar to processes, threads also shares CPU and only one thread

of a process runs at any time.

MCA-114/26

2. Like processes, if one thread is blocked, another thread can

execute.

3. Like processes, threads can also create child.

Differences :

1. Each process is independent from another, while each thread

within a process are not independent from other threads within the

same process.

2. Threads within a process are not independent from each other

because they share code section, data section and OS resources.

While, processes are different from each other since they originate

from different users.

2.8 THREAD MODELS

A process is heavyweight which is also known as single threaded

process. A thread has some properties of a process, so it is also called as

light weight process. A Thread is a basic unit of CPU utilization which

contains its own thread ID, program counter, registers and a stack. A

thread shares code section, data section and operating system resources

like files of other threads in the same process as shown in figure 2.4.

Figure 2.4 - Single-threaded and multithreaded processes [1].

Running multiple threads in a process is similar to running multiple

processes in a computer system. The term multithreading is used to

describe a situation when a process consists of multiple threads. For

example, figure 2.5 (a) shows three traditional processes, each has its own

address space and a single thread of control. In figure 2.5 (b), three threads

of control are present in a single process. In both cases, three threads are

present, but, in figure. 2.5 (a) each thread executes in different address MCA-114/27

space. Whereas, in Fig. 2.5 (b) all three threads execute in same address

space.

Figure 2.5 : (a) Three processes each with one thread. (b) One process

with three threads [3].

The situation shown in figure 2.5 (a) is relevant where these three process

are completely unrelated to each other. The organisation shown in figure

2.5 (b) is appropriate where each of these threads are the part of same job

and are in close communication with each other. Each thread in a

multithreaded process gets CPU one by one and executes. The CPU

switches among these threads rapidly and gives illusion that all threads are

running simultaneously in parallel. Similar to a process, a thread may go

to one of the states: ready, running, blocked, or terminated. A thread in

running state is currently active and executed by the CPU. A blocked

thread waits for some I/O event to complete. A ready thread is ready to

execute but wait for its turn to get the CPU. The transitions between thread

states are also same as the transitions between process states.

It is important to note that each thread maintains its own stack, as

shown in Figure 2.6. The stack contains one frame for every procedure

call called but not yet returned. The frame holds local variables and return

address, when a procedure call is finished. For example, consider a thread

calls a procedure X which calls another procedure Y. The procedure Y

also calls another procedure Z. While the procedure Z is executing, the

frames for all three procedure X, Y and Z is stored in the stack. Each

thread within a process may call different procedures which results in

different execution history. So every thread maintains its own stack.

MCA-114/28

Figure 2.6 : Each thread has its own stack [3].

2.9 THREAD USAGE

The various reasons for using threads over process for different

applications are:

 Responsiveness : If a process consists of multiple threads, when

any thread finishes its execution, its output can be immediately

returned to the user. While, a heavyweight process (single threaded

process) may take longer time to finish its execution and the user

will get late response.

 Efficient : Threads take less time to create and terminate. Also, the

context switching between two threads are faster than two

processes since threads within a process share memory and files

without invoking the kernel.

 Effective utilisation of multiprocessor system : A multithreaded

process consists of multiple threads. Each can be scheduled to run

on different processors. This makes faster execution of the process.

 Increased throughput : In a multithreaded process, each thread

performs a separate job. Due to faster context switching time and

more resource sharing, more number of jobs can be completed per

unit time. This increases system throughput.

Check your progress

1. How many threads does a traditional, heavyweight process

have?

2. Provide at least three benefits of multithreaded programming.
MCA-114/29

3. What are some real world examples of multithreading in

computer?

4. How does a thread is similar and different from a process?

5. Compare and contrast the resources shared by processes and

threads.

2.10 IMPLEMENTING THREAD IN USER AND

KERNEL SPACE

There are two kinds of threads in modern operating systems: user

level threads and kernel level threads. User level threads are implemented

by programmers while developing their application or software. This type

of threads does not requires any support from operating system. Kernel

level threads are implemented within kernel of an operating system. When

an operating system supports kernel level threads, it can perform several

tasks at the same time like multiple system calls simultaneously.

2.10.1 IMPLEMENTING THREADS IN USER SPACE

In User level thread implementation, entire threads package is

placed into the user space and the kernel knows nothing about them. The

kernel treats them as an ordinary single threaded processes. A user-level

threads can be implemented in an operating system even when it does not

support threads. The general structure of threads implementation in User

Space

is illustrated in Fig. 2.7(a).

Figure 2.7: (a) A user-level threads package. (b) A threads package

managed by the kernel [3].

MCA-114/30

The threads run on the top of run-time application program, which is a

collection of procedures such as thread_create, thread_exit, thread_wait,

and thread_yield. All the threads operations such as creating a new thread,

switching between threads and synchronization of threads are performed

by procedural call without any involvement of the kernel. So, the user

level threads are much faster than kernel level threads. When threads are

managed in user space, each process maintains a thread table to keep track

of its threads. The thread table keeps track of each thread’s program

counter, stack pointer, registers, state, etc. The thread table is managed by

the run-time system. When a thread is moved to blocked state, the current

state information is saved in the thread table so that it can be restart again

in future. When a waiting thread finishes its I/O event it calls a run-time

system procedure to reload the thread’s registers, PC, SP from the thread

table. As soon as machine registers, stack pointer and program counter

have been reloaded with new values, the waiting thread enters into running

state.

Advantages :

1. User level threads can be implemented in any operating systems

even if they do not support threads.

2. Fast and efficient: Threads switching in User level threads do not

take much time than the procedural call. So they are faster than

kernel level threads.

Disadvantages :

1. Since, the user level threads are invisible to kernel, operating

system can make poor scheduling decision such as blocking a

process even it had other runnable threads, scheduling a process

having idle threads.

2. Operating system allocates one time slice to each process whether

it contains one threads or 100 threads.

3. If one thread within a process is blocked, the entire process is

blocked even the process has all other threads runnable.

2.10.2 IMPLEMENTING THREADS IN KERNEL

SPACE

Kernel Level Threads Implementation: In this method, operating

system knows about the threads. So, all the thread operations are

implemented in kernel and operating system schedules and manages

threads through system calls. There is no thread table for each process and

run-time system are needed as shown in Fig. 2.7(b). Instead, the kernel

maintains its own thread table that keeps track of all the threads in the

system. The thread table holds thread’s registers, state, and other

information for each thread in the system. A thread can create a new

thread or destroy an existing thread through a kernel call. The creation or

destruction of a thread requires updating the kernel thread table. All calls MCA-114/31

which block a thread are implemented as system calls, at considerably

greater cost than a call to a run-time system procedure in case of user level

threads. When a thread is blocked, the kernel can schedule to run another

thread either from same process or from different process. While, in case

of user-level threads, the run-time application keeps running threads from

its own process until the time slice expires or there are no runnable threads

left to run.

Advantages :

1. Since the kernel has full knowledge of all threads in the system, it

may allocate more CPU time to a process having more number of

threads than other processes.

2. If one thread in a process is blocked, then other threads in the

process may continue to run and the whole process will not be

blocked.

Disadvantages :

1. Because the kernel is responsible for managing both threads and

processes, there is significant overhead to the kernel.

2. Kernel threads are slower than user level threads.

2.11 SUMMARY

In summary

 We learnt that a process is a program in execution. As a process

executes, it changes state.

Each process may be in one of the following states: new, ready,

running, waiting, or terminated. Each process is represented in the

operating system by its process-control block (PCB).

 We saw that there are two major classes of queues in an operating

system: Blocked queues and the ready queue. The ready queue

contains all the processes that are ready to execute and are waiting

for the CPU. Blocked Queue holds all the processes in blocked

state.

 We learnt that a context switch requires the kernel to saves the

context or state of the running process into its PCB and loads the

saved context of the new process scheduled to run.

 We saw that a multithreaded process contains multiple threads

within the same address space, each having their own program

counter, stack and set of registers, but sharing common code, data,

and certain structures such as open files. If a process has multiple

threads of control, it can perform more than one task at a time.

MCA-114/32

 Finally we learned that there are two main ways to implement a

threads package: in user space and in the kernel. User-level threads

are managed by the run-time system, which is a collection of

procedures. While kernel-level threads are managed by kernel

system calls.

2.12 TERMINAL QUESTIONS

1. Describe the actions taken by a kernel to context-switch between

processes.

2. Describe the purpose of a Process Control Block (PCB)?

3. What is the role of the process scheduler?

4. What are the possible transitions that a process may undergo?

5. Illustrate the differences between Ready queue and the Blocked

queue.

6. Discuss the two approaches for implementing a thread library.

7. What are the advantages and disadvantages of user-level threads

over kernel-level threads?

8. How the User level and kernel level threads are implemented?

 MCA-114/33

MCA-114/34

UNIT-III PROCESS SCHEDULING

Structure

3. 1 Introduction

3. 2 Objectives

3. 3 Scheduling Criteria

3. 4 Preemptive and Non Preemptive Scheduling

3. 5 Scheduling Algorithms

3. 6 Summary

3. 7 Terminal Questions

3.1 INTRODUCTION

In a multiprogramming environment, there are multiple processes

in a ready queue competing for CPU for their execution. So, a decision

must be made to select a process from the ready queue. The part of the

operating system which makes such decision is called short term scheduler

or CPU scheduler. When a new process enters the system, a scheduling

decision must be made whether to continue the execution on currently

running process or starts the execution of newly created process if it has

high priority. When a process finishes its execution and exits from the

system, a scheduling decision again must be made to select some other

process from ready queue for its execution. When a process is blocked on

an I/O event, a scheduling decision is made to pick some other process for

its execution. Also, when a process completes its I/O event, the CPU

scheduler must make a scheduling decision whether to start the execution

of the process or schedule some other process. The CPU scheduler is

designed on the basis of various scheduling criteria such as CPU

utilisation, system throughput, response time and waiting time. There are

various types of scheduling algorithms exist based on these scheduling

criteria which we will discuss in this chapter.

3.2 OBJECTIVES

After studying this chapter, you should be able to:

 Describe the need and criteria of CPU scheduler.

 Understand various CPU-scheduling algorithms.

3.3 CPU-I/O BURST CYCLE

Nearly all processes execute by alternating between CPU-burst and

I/O request as shown in Figure 3.1. Typically, a process runs for a while MCA-114/35

without stopping and then request I/O event such as read or write from a

file. When the I/O event is completed, the process executes again until it

need more I/O operations. Some processes run similar to as shown in

figure 3.1 (a) are CPU-bound processes which spend most of their time in

computing. While other type of processes run similar to Figure 3.1-(b) are

I/O-bound process which spend most of their time waiting for the I/O

events. The CPU-bound processes have long CPU bursts and infrequent

I/O waits. While on other hand, I/O- bound processes have short CPU

bursts and frequent I/O waits.

Figure 3.1: Bursts of CPU usage alternate with periods of waiting for I/O

(a) CPU-bound process (b) I/O-bound Process [1].

An extensive study shows that, generally any process during its execution

has a large number of short CPU bursts and a small number of long CPU

bursts (as shown in figure 3.2). An I/O-bound process typically has many

short CPU bursts, while a CPU-bound process might have a few long CPU

bursts. This distribution can be important in the selection of an appropriate

CPU-scheduling algorithm.

Figure 3.2 : Histogram of CPU-burst [1].

MCA-114/36

3.4 SCHEDULING CRITERIA

There are several criteria that must be considered, when we compare

different CPU scheduling algorithms and select best algorithm for a

particular situation.

1. CPU utilization – It is the percentage of time that the CPU is busy

in execution. Ideally, we want CPU to be busy 100% of the time so

that there is 0 wastage of CPU cycles.

2. Throughput – It is the number of processes completed per unit

time. The throughput may range from 10 processes per second to 1

process per hour depending on the process and specific situation.

3. Turnaround time – It is the time from submission of a process to

its completion. In other words, it is the total amount of time taken

by a process to finish execution which includes amount of time

waiting in the ready queue, executing

on the CPU, and doing I/O.

Turnaround Time=Completion Time – Arrival Time

Or, TAT = CT - AT

4. Waiting time – It is the amount of time spent by a process in the

ready queue for waiting its turn to get the CPU. It is a difference of

turnaround time and burst time (actual CPU time required to

execute) of a process.

Waiting Time = Turnaround Time- Burst Time

Or, WT=TAT - BT

5. Response time – A process arrived in the ready queue will give its

first response to us when it will be scheduled to run. In other

words, when a process arrived in the ready queue, after how much

time it is allocated CPU to run for the first time is a response time.

Response Time = First Response – Arrival Time

Or, RT= FR - AT

In general, we want to maximize CPU utilization and throughput while,

we want to minimize turnaround time, waiting time, and response

time. From a user’s point of view, response time is generally most

important, while from a system point of view, throughput or processor

utilization is important.

3.5 PRE-EMPTIVE AND NON-PRE-EMPTIVE

SCHEDULING

There are two general category of CPU scheduling algorithms:

Nonpreemptive : Under nonpreemptive scheduling, once a process is

allocated to the CPU, it continue to run until it does not complete its burst MCA-114/37

time. This scheduling method was used earlier by Microsoft Windows 3.x.

Later, in Windows 95 and all subsequent versions of Windows operating

systems, preemptive scheduling is used.

Preemptive : Under preemptive scheduling, a running process may be

also forced to release the CPU even though it is neither completed nor

blocked. In other words a process in running

state may be interrupted and moved to the Ready state. The decision to

preempt may be performed when clock interrupt occurs i.e. time quantum

or time slice expires; a new process arrives or when an interrupt occurs

that places a blocked process to the Ready state.

Preemptive Scheduling policies causes greater overhead to OS than

nonpreemptive ones. But, the preemptive scheduling provide fair

opportunity of execution to all system processes by preventing any one

process to hold CPU for long time.

Check your progress

1. Why is it important for the scheduler to distinguish I/O-bound

programs from CPU-bound programs?

2. A CPU-scheduling algorithm determines an order for the

execution of the processes in ready queue. Given n processes to

be scheduled on one processor, how many different schedules

are possible?

3. What is the difference between turnaround time and response

time?

4. What is the difference between preemptive and nonpreemptive

scheduling?

3.6 SCHEDULING ALGORITHMS

3.6.1 FIRST-COME, FIRST-SERVED SCHEDULING

In this Scheduling scheme, a process which arrives first in the

ready queue is allocated first to the CPU. This scheduling policy allocates

CPU to different processes on the “first come first serve” basis. It is a non

preemptive scheduling algorithm. The FCFS policy can be easily

implemented by FIFO queue. When a process enters into the ready queue,

its PCB is linked at the end of the queue and a process at the head of the

ready queue is allocated first to the CPU.

Disadvantages :

1. Starvation is possible in FCFS scheduling because processes at the

tail of the ready queue are unlikely to get CPU for its execution.

MCA-114/38

2. It may cause low CPU and I/O device utilization because a set of

processes which requires a I/O device for short time may wait until

one process that holds the I/O device for long time finishes its

execution. During this time all other process will be blocked.

Explanatory Question : Consider the following table of arrival time and

burst time for three processes P1, P2 and P3.

Process Arrival time Burst Time

P1 0 ms 24 ms

P2 0 ms 3 ms

P3 0 ms 4 ms

The pre-emptive shortest job first scheduling algorithm is used.

Scheduling is carried out only at arrival or completion of processes. What

is the average waiting time for the three processes if the processes are

arrived in the order P1, P2, P3?

Answer: If the processes are arrived in the order P1, P2, P3 in the ready

queue, and are served in FCFS order, we get following Gantt chart, which

is a bar chart that illustrates a particular schedule, including the start and

finish times of each participating process:

Gantt Chart :

P1 P2 P3

0 24 27 31

Process P0 is allocated processor at 0ms and run for 24ms. At 24ms P0

finish its execution and P2 is allocated to CPU. P2 runs for 3ms and finish

its execution at 27ms. At this time P3 allocated to CPU and run for 4ms.

Turn Around Time(TAT) = Completion Time(CT) – Arrival Time(AT)

TAT for P1 = 24 – 0 = 24

TAT for P2 = 27 – 0 = 27

TAT for P3 = 31- 0 = 31

Waiting time = Turn Around Time(TAT)- Burst time

Waiting time for P1 = 24 – 24 = 0

Waiting time P2= 27 – 3 = 24

Waiting time P3= 31- 4 = 27

Average waiting time = (0+24+27)/3 = 17ms

MCA-114/39

3.6.2 SHORTEST-JOB-FIRST SCHEDULING

This Scheduling algorithm selects the process for execution from

the ready queue which has the shortest CPU burst time (CPU time). This

algorithm is also called as “Next Shortest CPU Burst Time First” because

it allocates CPU to processes by examining the length of next CPU burst

(or remaining burst time) of processes rather than its total length burst

time. If two processes have same CPU burst time then the process which

arrives first in the ready queue is served to CPU. SJF algorithm is of two

types: preemptive or non-preemptive SJF. When a new process arrives

into the ready queue with a short CPU burst time than the currently

executing process, then the preemptive SJF algorithm will preempt the

currently executing process and allocates the CPU to the newly arrived

process. While on other hand, a non-preemptive SJF algorithm will allow

the current running process to finish till its total CPU burst. The

preemptive SJF algorithm follows a greedy approach to schedule

processes in optimal way. Preemptive SJF scheduling is also known as

Shortest Remaining Time first (SRTF) scheduling.

Disadvantage :

1. The algorithm may cause starvation, if shorter processes keep

coming. However, this problem can be solved using the concept of

aging where the priorities of waiting processes are gradually

increased.

Explanatory Question : Consider the following processes, with the

arrival time and the CPU burst time given in milliseconds.

Process Arrival Time Burst Time

 P1 0 6

 P2 0 8

 P3 0 7

 P4 0 3

What is the average turnaround time for these processes with the non pre-

emptive shortest remaining processing time first algorithm?

Answer : If the processes are scheduled with non pre-emptive shortest

remaining processing time first algorithm, we get following Gantt chart

showing the start and finish times of each participating process:

Gantt Chart:

MCA-114/40

P4 P1 P3 P2

0 3 9 16 24

At 0ms all Processes P1,P2,P3,P4 are arrived in the ready queue but

Process P4 is allocated CPU since it has less CPU burst than P1,P2,P3.

Process P4 runs for 3ms and finishes at 3ms. At 3ms Process P1 is

allocated CPU as it has next shortest CPU burst than remaining processes

P3, P2 in ready queue. P1 runs for 6ms and finishes at 9ms at which P3 is

scheduled to run. P3 runs for 7ms and finishes at 16ms. Finally at 16ms P2

is scheduled to CPU and runs for 8ms and finishes at 24ms.

Turn Around Time(TAT) = Completion Time(CT) – Arrival Time(AT)

TAT for P1 = 9 – 0 = 9

TAT for P2 = 24 – 0 = 24

TAT for P3 = 16- 0 = 16

TAT for P4 = 3 – 0 = 3

Hence, Average TAT = Total TAT of all the processes / no of processes =

(9 + 24 + 16 + 3) / 4 = 52/ 4 = 13ms

Explanatory Question : Consider the following processes, with the

arrival time and the length of the CPU burst given in milliseconds. The

scheduling algorithm used is pre-emptive shortest remaining-time first.

Process Arrival Time Burst Time

 P1 0 5

 P2 1 3

 P3 2 3

 P4 4 1

What is the average turnaround time and individual response time of these

processes in milliseconds?

Answer : Pre-emptive Shortest Remaining time first scheduling, i.e. that

processes will be scheduled on the CPU which will be having least

remaining burst time (required time at the CPU). The processes are

scheduled and executed as given in the below Gantt chart.

MCA-114/41

0 1 4 5 8 12

In above Gantt chart Process P1 is allocated CPU at 0ms as there is no

other process in ready queue. P1 is pre-empted after 1ms as P2 arrives at

1ms and burst time for P2 is less than remaining burst time of P1. P2 runs

for 3ms. P3 arrived at 2ms but P2 continued as burst time of P3 is longer

than remaining burst time of P2. After P2 completes at 4ms, other

remaining processes P3, P4 are arrived in ready queue. So at 4ms P4 is

scheduled as the remaining burst time of P4 is less than the remaining

burst time of P1 and p3. At 5ms P4 finishes and P3 is scheduled to run as

the burst time of P3 is less than remaining burst time of P1. The Process

P3 run for 3ms and finishes as it continue to have shortest remaining burst

time than P1. At 8ms, only P1 remains in ready queue, so it is scheduled to

run for 4ms after which it finishes its execution.

Turn Around Time(TAT) = Completion Time(CT) – Arrival Time(AT)

TAT for P1 = 12 – 0 = 12

TAT for P2 = 4 – 1 = 3

TAT for P3 = 8- 2 = 6

TAT for P4 = 5 – 4 = 1

Hence, Average TAT = Total TAT of all the processes / no of processes =

(12 + 3 + 6 + 1) / 4 = 22/ 4 = 5.5ms

Response Time = First scheduled time – arrival time

Response time for P1=8-0=8ms

Response time for P2=1-1=0ms

Response time for P3=5-2=3ms

Response time for P4=4-4=0ms

3.6.3 PRIORITY SCHEDULING

Priority scheduling is a general case of SJF scheduling where each

job is assigned a priority based on burst time and the job with shortest

burst time gets a highest priority. Priority scheduling can be either

preemptive or non-preemptive. Priorities are implemented using positive

integers within a fixed range. The low numbers are used for high priorities

P1 P2 P4 P3 P1

MCA-114/42

and 0 for the highest priority. A Process with the highest priority is

executed first and so on. Processes with same priorities are executed on

first come first served basis. Priorities of the processes can be decided on

the basis of importance of the processes such as average burst time, ratio

of CPU to I/O activity and system resource.

Disadvantage : Priority scheduling can suffer from indefinite blocking or

starvation of processes, where a low-priority process waits forever because

there are always some high priority processes. A common solution to this

problem is aging, in which priorities of the low priority processes increase

as they wait longer in the ready queue and eventually get their priorities

high enough that they can run.

Explanatory Question : Let us consider a set of processes P1, P2, P3

having priorities ranging from 1 to 3. Let us assume that 1 is the highest

priority whereas 3 is the least priority. What is the average waiting time in

non-preemptive scheduling scheme?

process CPU Burst Time Priority Arrival

P1 10 3 0

P2 5 2 1

P3 2 1 2

The Gantt chart is shown below:

P1 P2 P3 P2 P1

0 1 2 4 8 17

Waiting time = Completion Time(CT) – Arrival Time(AT) – Burst time

Waiting time for P1= 17- 0-10 =7

Waiting time for P2= 8- 1-5 =2

Waiting time for P3 = 4-2-2=0

Average Waiting Time = (7+2+0) / 3 = 3 Millisecond

Here, the preemption is based on the priority when P1 executes, P2 arrive

at 1ms with priority 2, which is higher than priority of P1, and thus P1 is

pre-empted and P2 get executed. Similarly when P2 execute, P3 arrives at

2ms with Priority 1 which is higher than priority of P2 and thus P2 is

preempted and P3 get executed for 2ms and finishes its execution. At 4 ms MCA-114/43

remaining process P2 have has higher priority than P1 and thus P2

executed for its remaining burst time. And lastly at 8ms P1 get executed

for its remaining burst time.

3.6.4 ROUND-ROBIN SCHEDULING

This algorithm can be thought as preempted FCFS scheduling

where each processes is given access to the CPU for a fixed CPU time

(time quantum) on first come first serve basis. For example, the time

quantum may be 20 milliseconds. After this time quantum expired, a

running process is preempted and added to tail of the ready queue. The

ready queue is managed as a FIFO queue and treated as a circular. A

currently running process may also block itself before its time slice

expires. If, there are n processes on the ready queue and the time quantum

is q, then each process gets 1/n time on the CPU with at most q time units

as a whole. And no process waits for more than (n-1)q time units. The

choice of the time quantum (q) is extremely important because:

1. If q is very large, Round Robin converts into FCFS.

2. If q is very small, it leads to more the context switch overhead.

Disadvantage : The disadvantage of this scheduling scheme is the

overhead of context switching since there are more context switches in

this scheduling.

Explanatory Question : Calculate the average Turnaround time and

average waiting time of the processes on the basis of round robin

scheduling algorithm. Assume Time Quantum is set to 2 units.

Process Arrival Time Burst Time

 P1 0 4

 P2 1 5

 P3 2 2

 P4 3 1

Answer : The result of R-R schedule is as depicted in the following Gantt

chart:

Ready State : P1 P2 P3 P1 P4 P2P2

P1 P2 P3 P1 P4 P2 P2

0 2 4 6 8 9 12 13
MCA-114/44

According to R-R scheduling we keep the ready queue as a FIFO queue

where processes are executed in FCFS. So, firstly P1 arrived in ready

queue and is executed first for the time quantum or time slice of 2ms, after

which it is pre-empted as new processes P2, P3 is arrived in the ready

queue. P1 is added at the tail of ready queue i.e. after P2, P3. Now P2

which is at the head of ready queue is scheduled for execution for the time

quantum. At 4ms in Gantt chart P4 is already arrived and added at the tail

of ready queue. At this time P2 is pre-empted and added at the tail of

ready queue i.e. after P4. Now P3 which is at the head of ready queue

allocated CPU and executed for time quantum of 2ms and finishes its

execution. At the time of 6ms in Gantt chart, P1 which is at the head of

ready queue is scheduled to run for time quantum, after which it finishes

its execution. At this time P4 is at the head of ready queue, so it is

scheduled to run but its execution completes before the time quantum. So,

P4 will execute only for remaining 1 unit of burst time. At this time only

P2 is left in ready queue. So again P2 starts its execution for remaining

part of burst time and gets executed for time quantum of 2ms and then it is

again pre-empts and scheduled again for remaining burst time of 1ms.

Waiting time = Turn Around Time(TAT)- Burst time

Or

Waiting time = Completion Time(CT) – Arrival Time(AT) – Burst time

Waiting time for P1 = 8 – 0- 4 = 4

Waiting time P2= 13 – 1-5 = 7

Waiting time P3= 6- 2-2 = 2

Waiting time P4= 9-3-1 = 5

Average waiting time = (4+7+2+5)/4 = 4.5ms

Check your progress

1. How the round-robin scheduling does differs from FCFS

scheduling.

2. Consider three CPU-intensive processes, which require 10, 20

and 30 time units and arrive at times 0, 2 and 6, respectively.

How many context switches are needed if the operating system

implements a shortest remaining time first scheduling

algorithm? Do not count the context switches at time zero and

at the end.

3.6.5 MULTILEVEL QUEUE SCHEDULING

A Multilevel Queue Scheduling algorithm partitions the ready

queue into multiple separate queues. Each queue holds different types of

processes, for instance, one queue may be for foreground (or interactive)

processes and another for background (batch) processes as shown in

Figure 3.3 MCA-114/45

Figure 3.3 : Multilevel Queue [1].

Each queue has its own scheduling algorithm which may be either Round

Robin, FCFS, SJF etc. In addition, queues are scheduled via a priority

scheduling which serves the first queue with highest priority and so on.

Processes in a lower priority queue do not run until all higher priority

queues are get emptied. Each queue gets a varying amount of CPU time to

schedule its processes. For example, 50% of CPU time may be assigned to

the highest priority queue, 20% of CPU time to the second queue, and so

on. They may be different time quantum for different queues. When a new

process arrives in the system, there is need to specify which queue the

process will be put. Note that under this scheduling scheme, processes are

permanently assigned to a certain queue and they cannot switch from one

queue to another during their execution.

Disadvantage :

It suffers from starvation problem, where a low-priority process waits

forever because there are always some high priority processes to execute.

Explanatory Question : Consider a system with Multilevel queue

scheduling having four processes: P1, P2, P3, P4. The arrival, burst time

and the queue of each process is shown in below table of four processes

under Multilevel queue scheduling.

Process Arrival Time Burst time Queue Number

P1 0 4 1

P2 0 3 1

P3 0 8 2

P4 10 5 1

The queue numbers also denote Priority of queues. For example priority of

queue 1 is greater than queue 2. The queue 1 uses Round Robin with Time

Quantum = 2 and queue 2 uses FCFS scheduling. Calculate the average

Turnaround time and average waiting time of the processes under above

scheduling scheme. MCA-114/46

Solution :

Gantt chart :

P1 P2 P1 P2 P3 P4 P3

0 2 4 6 7 10 15 20

Initial at time 0, queue 1 has processes P1, P2 and queue 2 has process P3.

Since, queue 1 has higher priority than queue 2, the processes P1, P2 in

queue 1 will execute first. These processes will execute for 7 units of time

in a round robin fashion with time quantum of 2 units. After 7 unit of time

they finish their execution and queue 1 will become empty. Then, process

P3 in queue 2 will execute for only 3 units of time, after which a newly

arrived process P4 in queue 1 will start its execution. The process P4 will

execute for its entire burst of 5 units and then queue 1 will get emptied.

After that, process P3 will execute for its remaining burst time of 5 units.

3.6.5 MULTILEVEL FEEDBACK QUEUE

SCHEDULING

In a multi-level queue-scheduling algorithm, we have seen that

processes are permanently assigned to various queues. Multilevel

Feedback Queue Scheduling allows processes to move among different

queues. In this scheduling scheme, If a process in a high priority queue

consumes too much CPU time, it is moved to a lower priority queue. And,

if a process waits too long in a lower-priority queue, it is moved to a

higher-priority queue. For example, consider a Multilevel Feedback Queue

with three queues: Q0 –Round Robin Scheduling with time quantum of 8

milliseconds, Q1 – Round Robin Scheduling with time quantum of 16

milliseconds and Q2 with First Come First Serve Scheduling is shown in

Figure 3.4.

Figure - 3.4 Multilevel Feedback Queue Scheduling [1].

MCA-114/47

A queue Qi has higher priority than Qi+1. A newly created process enters

the queue Q0 where it gets 8 milliseconds to finish its execution. If, the

process does not finish its execution in 8 milliseconds, it is moved to the

queue Q1 where it gets 16 additional milliseconds to complete its

execution. If, it still does not complete its execution, it is moved to the

queue Q2 where it is served in FCFS order and finish its execution.

The working of a Multilevel feedback queue scheduler depends on the

following parameters:

1. Number of queues.

2. Scheduling algorithms for each queue.

3. Method used to determine when to upgrade priority of a process.

4. Method used to determine when to demote priority of a process.

5. Method used to determine which queue a process will enter

initially.

Explanatory Question : Consider a system using multilevel Feed Back

Queue scheduling algorithm has a CPU bound process P0 which require

the burst time of 40 seconds. The scheduling algorithm is using a time

quantum of '2' seconds which is incremented by '5' seconds at each queue.

How many times the process will be interrupted during its execution and

on which queue the process will terminate?

Solution :

Initially the process P0 enters the queue 1 with burst time 40.

P0

Queue 2, time quantum=2+5=7ms

Remaining burst time=38-7=31s

Queue 3, time quantum=7+5=12ms

Remaining burst time=38-12=26s

Queue 4, time quantum=12+5=17ms

Remaining burst time=26-17=9s

Queue 5, time quantum=17+5=12ms

Remaining burst time=9-9=0s

Queue 1, time quantum=2s

Remaining burst time=40-2=38s

MCA-114/48

3.7 SUMMARY

In summary,

 We learns various criteria for designing the short-term scheduler.

From a user’s point of view, response time is generally the most

important characteristic of a system, while from a system point of

view, throughput or processor utilization is important.

 Finally we learnt variety of CPU Scheduling algorithms for

making scheduling decision among processes in ready queue.

First-come-first-served : Select the process for execution that

arrives first in the ready queue.

Round robin : Use a time quantum to limit any running process

for a short CPU time, and rotate short CPU time execution among

all processes in ready queue.

Shortest remaining time : Select the process with the shortest

remaining CPU time. A process may be preempted when another

process with the shortest CPU time arrives in ready queue.

Priority scheduling : Each process is assigned a priority where a

process with the highest priority is executed first and so on.

Multilevel Queue Scheduling : Partitioned the Ready queue into

multiple separate queues and allocate processes to these queues

based on execution history and other criteria. Each queue has its

own scheduling algorithm.

Multilevel Feedback Queue Scheduling : Similar to Multilevel

Queue Scheduling but now the processes are allowed to move

among various queues

3.7 TERMINAL QUESTIONS

1. Discuss the key differences between Multilevel Queue Scheduling

and Multilevel Feedback Queue Scheduling.

2. If the quantum time of round robin algorithm is very large, then it

is equivalent to scheduling algorithm?

3. Consider the 3 processes, P1, P2 and P3 shown in the table.

Process Arrival time Burst Time

P1 0 5

P2 1 7 MCA-114/49

P3 3 4

The completion order of the 3 processes under the policies FCFS

and RR2 (round robin scheduling with CPU quantum of 2 time

units)

4. Which scheduling algorithms may lead to starvation and why?

5. Consider the following set of processes, with the arrival times and

the CPU-burst times given in milliseconds.

Process Arrival Time Burst Time

 P1 0 5

 P2 1 3

 P3 2 3

 P4 4 1

What is the average turnaround time for these processes with the

preemptive shortest remaining processing time first (SRPT)

algorithm?

6. For the processes listed in the following table, which of the

following scheduling schemes will give the lowest average

turnaround time?

Process
 Arrival

 Time

 Processing

 Time

 A 0 3

 B 1 6

 C 4 4

 D 6 2

a) First Come First Serve b) Non – preemptive Shortest Job First c)

Shortest Remaining Time d) Round Robin with Quantum value two.

7. What are the disadvantages of FCFS, SJF and round robin

scheduling algorithms?

MCA-114/50

8. How does starvation possible in preemptive SJF algorithm. What is

its solution?

9. What are the differences between multilevel queue and multilevel

feedback queue scheduling algorithm?

10. How does the round robin scheduling is better than FCFS and SJF

scheduling?

MCA-114/51

MCA-114/52

UNIT-IV CONCURRENT PROCESS

Structure

4.1 Introduction

4.2 Objectives

4.3 Race Conditions

4.4 Shared Data and Critical Section

4.5 Mutual Exclusion

4.6 Synchronization

4.7 Classical problem of Synchronization

4.8 Semaphore

4.9 Monitor

4.10 Summary

4.11 Terminal Questions

4.1 INTRODUCTION

Processes are designed for two purposes: first is to allow multiple

processes to work together for a single task and second is to allow more

than one process to execute parallely and communicate to each other in

order to access common resources.

Thus, when processes compete for each other and cooperate on a

task, they must communicate to each other to share data. Any process that

share data with other processes is called as cooperating process. Otherwise

it is an independent process. A pattern of communication among

cooperating processes to access shared data or resources is known as

interprocess communication. However, concurrent accesses by multiple

cooperating processes to a shared data cause data inconsistency. In this

chapter, we will discuss orderly execution of concurrent processes that

share common data or resources to ensure data consistency. More

precisely, we will discuss mutual exclusion way of interprocess

communication.

4.2 OBJECTIVES

After studying this chapter, you should be able to:

 Understand the basic concepts of concurrency. MCA-114/53

 Discuss the critical-section problem, whose solutions can be used

to ensure the consistency of shared data.

 Understand the race conditions and mutual exclusion requirements.

 Understand hardware approaches to support mutual exclusion.

 Explain semaphores and monitors.

4.3 RACE CONDITIONS

When multiple cooperating processes try to access common shared

data for reading and writing, this causes several issues. To illustrate this,

let us consider a common example of a print-spooler. Whenever any

process want to print a file, it adds the file name in a special spooler

directory. Another process called printer daemon periodically checks the

spooler directory. If it finds any file name in the directory, it prints them

immediately and remove the file entry from the directory. The spooler

directory contains a large number of slots which are numbered as 0,1,2…

and each slot is capable of holding a file name. Consider that there are two

variables: out and in. The ‘out’ variable holds a pointer to next file to be

pointed. While, ‘in ‘ variable holds a pointer to next free slot in the spooler

directory. These two variables are present in a file which is available for

all processes. At some point of time, imagine that slots 0 to 3 are emptied

because associated files are printed. While, slots 4 to 6 are full because

associated files are queued for printing. Consider that there are two

process A and B, each one is queueing files for printing as shown in figure

4.1.

Figure 4.1: Two processes want to access shared memory at the same

time [3].

The process A reads the 'in’ variable and stores 7 in its local variable

next_free_slot. Other process B also reads the ’in’ variable and stores 7 in

its local variable next_free_slot. Now, both process think that the next free

slot is 7. The process B continue to run and reads the 'in’ variable. It stores

a new file name to be printed in slot 7 and update the 'in’ variable as 8.

Eventually, the process B gets interrupted and the process A continue to
MCA-114/54

run again where it left off last time. The process A reads its variable

next_free_slot which is 7. It stores the new file name to be printed in slot 7

which replaces the file name that process B just put there. After that, it

updates the 'in’ variable as 8. The process B hopes for the output for ever

that will never come. The situation like this where multiple processes

running concurrently try to manipulate a common shared data and their

outcome depend on particular order in which the accesses takes place is

called as race condition. The race condition can be avoided by ensuring

only one process at a time to access a shared data. This guarantee can be

achieved by synchronizing these processes in some way. This unit

concerns with various ways of achieving process synchronization in

cooperating processes.

4.4 SHARED DATA AND CRITICAL

SECTION

In previous section, we have seen the race condition which

happens because the process B starts using one of the shared variable

before the process A has finished using it. The key to avoid this problem is

to only allow one process at a time to read/write a shared variable or file

while, preventing other process to do the same thing. A race condition do

not occur during internal computation and other things by a process. But,

when the process accesses a shared data for other important things, a race

condition may arise. The part of the program of a process where access to

shared data take place is called as critical section or critical region. A race

condition can be avoided by allowing only one cooperating process to

execute its critical section at a time, while preventing other cooperating

processes to execute their critical section.

For Example, consider a system consisting of n processes {P0, P1... Pn}

implemented a

protocol to avoid race condition. A general structure of any process Pi

implemented the protocol is shown in figure 4.2.

Figure 4.2 : General structure of a typical process Pi[1] MCA-114/55

Each process contains a section of code called as critical section where the

process changes the shared variables or a file. The entry section in the

code of a process controls entry to its critical section. Once the process

enters into its critical section, the other processes critical section are

locked and they cannot enter into their critical section. Just after the

critical section, there is an exit section which releases the lock to enter into

their critical section. This indicates other interested process that it can now

enter into its critical section. The rest of code other than critical section,

entry section and exit section is known as remainder section. The above

execution sequences is illustrated in figure 4.3.

Figure 4.3 : mutual exclusion in critical section [3].

Here at time T1, a process A enters into its critical section. After some

time, at time T2, another process B tries to enter into its critical section.

But it is stopped to enter its critical section until time T3 because the

process A is already in its critical section. At time T3 when the process A

exits from its critical section, the process B enters into its critical section.

At time T4 the process B also exits from its critical section and now no

processes are in their critical section.

A critical section problem is to design a protocol for cooperating processes

to ensure the execution sequence governed by process structure shown in

figure 4.2. In general, any solution to the critical section problem must

satisfy the following three conditions:

1. Mutual Exclusion : Only one process at a time can be executing in

their critical section.

2. Progress : No process running outside its critical region may block

other interested processes to enter their critical section.

3. Bounded Waiting : No process should wait forever to enter its

critical region.

Illustrative question : The following two functions P1 and P2 that share a

variable B with an initial value of 2 execute concurrently. MCA-114/56

P1()

{

 C = B – 1;

 B = 2*C;

}

P2()

{

 D = 2 * B;

 B = D - 1;

}

What is the number of distinct values that B can possibly take after the

execution?

Solution : Both P1 and P2 process can concurrently executes their

statements in following ways:

First possibility :

 C = B – 1; // C = 1

 B = 2*C; // B = 2

 D = 2 * B; // D = 4

 B = D - 1; // B = 3

Second possibility :

 C = B – 1; // C = 1

 D = 2 * B; // D = 4

 B = D - 1; // B = 3

 B = 2*C; // B = 2

Third possibility :

 C = B – 1; // C = 1

 D = 2 * B; // D = 4

 B = 2*C; // B = 2

 B = D - 1; // B = 3

Forth possibility : MCA-114/57

 D = 2 * B; // D = 4

 C = B – 1; // C = 1

 B = 2*C; // B = 2

 B = D - 1; // B = 3

Fifth possibility :

 D = 2 * B; // D = 4

 B = D - 1; // B = 3

 C = B – 1; // C = 2

 B = 2*C; // B = 4

We can notice that there are 3 different values of B: 2, 3 and 4.

Check your progress

1. A critical section is a program segment

a) Which should run in a certain specified amount of time

b) Which avoids deadlocks

c) Where shared resources are accessed

d) Which must be enclosed by a pair of semaphore

operations, P and V

2. What do you mean by race condition?

3. What do you mean by critical section?

4. What are the conditions that must be satisfied by any solution to

a critical section problem?

4.5 SOLUTIONS TO CRITICAL SECTION

PROBLEM

In this section, we will discuss various solutions to critical section

problem. The key idea in these solutions is that when a process is busy in

updating shared memory in its critical section, no other process could

enter their critical section.

Disabling Interrupts (Hardware Solution) : This is a simplest solution

which disable all interrupts when a process enters its critical section and

enables all the interrupts just after leaving the critical section. A general

structure of processes under this scheme is shown in Figure 4.4. MCA-114/58

Figure 4.4 : General structure of a typical process

Once a process disable all the interrupts, the CPU cannot switch to other

processes when the shared memory is updated. This restricts other

processes to enter in their critical section. Disabling interrupts is a good

technique which is useful within an Operating system, but it cannot be

used for user processes.

Disadvantages :

1. It is not a good decision to give user processes all the power to turn

off interrupts. This is because, if a user process turns off all

interrupts and it never turn on again, then the other processes will

never get CPU for their execution.

2. This solution is not feasible in a multiprocessor system because

when a process enters into its critical section and turns off all

interrupts, a message should be passed to all processors about the

disabling of interrupts which will cause delay in entering into its

critical section.

Lock Variables (software solution) : This solution uses a single, shared

lock variable which is initially set to 0. When a process wants to enter into

its critical section, it first checks the lock variable. If the lock variable is 0,

the process enters into its critical section. Otherwise, the process waits

until the lock variable become 0. Thus, a 0 value of the lock indicates that

there is no processes in their critical section. A value of 1 of the lock

variable means one of the processes is into its critical section.

Drawback : This solution suffers from exactly same flaw that we saw in

spooler directory case. To illustrate this, suppose a process A sees the lock

variable is 0. Before it sets the lock variable to 1, another process B is

scheduled to run and it sets the lock variable to 1 and enters into its critical

section. When the process A runs again, since it already read the lock

variable with 0 value, it also sets the lock variable to 1. Now, there are two

processes simultaneously into their critical section.

Strict Alternation (software solution) : In this solution, an integer

variable turn is used to allow which process to enter in its critical section.

For example, if turn is 0, process A can enter into its critical section MCA-114/59

otherwise process B can enter into its critical section. The structure of two

processes using this solution is shown in figure 4.5. Initially a process A

checks a turn variable and finds that it is 0, so it enters into its critical

section. At the same time, process B tries to enter into its critical section

but it finds the value of turn variable is 0, so it waits. Process B

continuously checks turn variable for 1 value in a tight loop. This

continuous checking of a lock value till some other value appears is called

as busy waiting and the lock being used is called as spin lock. Eventually,

process A leaves its critical section and changes turn variable to 1. It

quickly finishes its non-critical section and then goes to top of its while

loop. Now both processes are outside their critical section. When process

A again tries to enter its critical section, it is stopped because the turn

variable is 1 in its while loop. But process B finds turn variable to be 1 in

its while loop, so it enters into its critical section. When it is done with its

critical section, it changes turn variable to 0 and exit from its critical

section. Now, if process B again wants to enter its critical section, it

cannot enter because turn variable is 0 in its while loop.

Figure 4.5 : A proposed solution to the critical region problem. (a)

code for Process A (b) code for Process B

Disadvantage : This solution violate progress (condition 2) requirement

of solution to critical section problem because process B is blocked to

enter into its critical section, even other process A is outside of its critical

section. This solution allows processes strictly in an alternate way to enter

their critical section. However the solution ensures a race condition will

never happen.

Peterson’s Solution (software solution) : Peterson's solution is a

software based classical solution to critical section problem which work

for only two processes. Unfortunately, this solution does not work on

modern computer system due to machine language instructions like load

and store. Peterson's solution requires two shared data items:

int turn;

Boolean flag [2];
MCA-114/60

The turn variable is used to indicate which process’s turn it is to enter its

critical section. For example, if turn==i, then process Pi is allowed to enter

its critical section. The boolean variable flag is used to indicate desire of a

process to enter its critical section. For example, if flag[i] is true, then

process Pi want to enter its critical section. A general structure of any

process in Peterson's solution is shown in figure 4.6.The while loop

without body followed by ; is busy loop which terminate the loop when

the loop condition is true. The loop causes the process Pi to wait as long as

process Pj has the turn and it want to enter its critical section. Just after its

critical section, process Pi reset the flag variable to false so that process Pj

can enter its critical section, if it is waiting. We can show that this solution

satisfy all the requirements of solution to critical section problem.

1. Mutual exclusion is preserved:

2. The progress is satisfied:

3. Bounded waiting requirement is met:

Figure 4.6 : The structure of process Pi, in Peterson's solution

In the above diagram, the entry and exit sections are enclosed in boxes. In

the entry section, process Pi first raise flag[i] to true indicating a desire to

enter the critical section. Then turn is set to j to allow the process Pj to

enter its critical section if it desires. The variable turn

indicates whose turn it is to enter its critical section. The value of turn

variable can be either 0 or 1. i.e., if turn = = i, then process Pi is allowed to

execute in its critical section. The while loop is for a busy waiting (notice

the semicolon at the end), which makes process Pi wait as long as process

Pj has the turn and process Pj wants to enter its critical section. In the exit

section, process Pi lowers the flag[i] to false, allowing process j to

continue if it has been waiting.

This solution satisfy all the requirements of any solution to critical section

problem:

1. Mutual exclusion is preserved : Any process say Pi can enter its

critical-section only if its while statement is false. In its while

statement, if other process Pj is interested (i.e flag[j]= true) and it

is Pj turn to enter its critical section (i.e turn= j), then the Pi will

wait because Pj is already in its critical section. Even if, both

processes are executing their code simultaneously and reached to MCA-114/61

their while statement, the last process which will execute turn==j

statement will enter into its critical section. As the result, only one

process at a time can enter its critical section.

2. Process requirement is satisfied: Any process Pi can only be

prevented to enter its critical section, if other process Pj is already

in its critical section (i.e in Pi’s while statement, flag [j]== true

and turn== j). As soon as the process Pj exits from its critical

section, it changes flag to false. At that time, the process Pi while

statement becomes false and it enters its critical section.

3. In point 2 of progress requirement, we saw that the process Pi will

wait for almost after one entry by Pj to its critical section. Soon

after that, the flag changes to false and process Pi them can enter

its critical section.

Illustrative question : Two processes P1 and P2, need to access a critical

section of code. Consider the following synchronization construct used by

the processes as shown below. Here, wants1 and wants2 are shared

variables, which are initialized to false. Which one of the following

statements is TRUE about the above construct?

(A) It does not ensure mutual exclusion.

(B) It does not ensure bounded waiting.

(C) It requires that processes enter the critical section in strict

alternation.

(D) It does not prevent deadlocks, but ensures mutual exclusion.

 /* P1 */

while (true) {

 wants1 = true;

 while (wants2 == true);

 /* Critical

 Section */

 wants1=false;

}

/* Remainder section */

/* P2 */

while (true) {

 wants2 = true;

 while (wants1==true);

 /* Critical

 Section */

 wants2 = false;

}

/* Remainder section */

Solution :

Deadlock : Assume processes P1 and P2 execute their code

simultaneously. Imagine both processes now execute their while loop

concurrently. At this point both wants1 and wants2 are true. They will

enter their critical section only when their while statement become false.

But, the wants1 and wants2 will never become false because either of the

MCA-114/62

process cannot proceed further. So both processes P1 and P2 stuck into

their while loop in busy waiting. This will cause a deadlock in the system.

Mutual exclusion : we have already seen that both processes cannot enter

into their critical section together. Now, assume that process P1 already

entered into its critical section which means wants1=true. Now when P2

also try to enter into its critical section, it stuck into its while loop in busy

waiting since want 1 is still true. This ensures P2 cannot enter its critical

section simultaneously with P1 and vice versa. So, this satisfies mutual

exclusion property.

Bounded waiting : Consider the same situation as described in mutual

exclusion where process P2 stuck into its busy waiting. So P2 already

requested to enter into its critical section. As soon as process P1 exits from

its critical section, the wants1 becomes false. Now, P2 process can

immediately enter its critical section. So, bounded waiting condition is

also satisfied because P1 process is restricted to access its critical section

only one time after P2 has requested to enter its critical section.

So, option D is correct.

Check your progress

1. What is the meaning of the term busy waiting? Can busy

waiting be avoided altogether? Explain your answer.

2. What is the drawback of strict alternation solution to critical

section?

3. What is the major shortcoming of lock variable based solution

to critical section?

4.6 SEMAPHORE

All the algorithms discussed above suffers from a major problem

of busy waiting which wastes much of CPU time. It does not seem wise

for a process to spend entire time quantum in busy waiting for a shared

variable to change its value. This has inspired the development of a

solution based on semaphore.

Basic overview : semaphore is an integer variable with two atomic

operations: wait() and signal(). Below are the implementation of these two

operations.

wait(S):

 while (S <= 0); /* wait */

 S--;

signal(S):

 S++;

MCA-114/63

Processes can change the semaphore value only through wait () and

signal() operations. Only one process at a time is allowed to change a

semaphore value i.e when a process modifies a semaphore value, no other

processes is allowed to simultaneous modify its value. Wait() and signal()

operations are sometimes also called as P and V respectively.

The semaphore can be either Counting Semaphore or Binary Semaphore.

The value of a counting semaphore can be any integer, while the value of

a binary semaphore can be either 0 or 1. The binary semaphore is

sometimes also called as mutex lock because it provides mutual exclusion.

Binary semaphore usage :

1. The binary semaphore can be used to solve critical section problem

involving n processes. The general structure of program

implementing this solution is shown in figure 4.7.

Figure : 4.7 Binary semaphore based solution to critical section problem

The binary semaphore mutex variable is initiated to 1. This

implementation of semaphore provides mutual exclusion and

satisfy progress. However, depending on the different

implementation of semaphores, it may or may not provide bounded

waiting.

2. We can also use binary semaphore to solve synchronization

problems. For example, consider a system with two concurrent

process P1 and P2. Assume that process P1 contains S1 statement

and P2 contains S2 statement. We have to ensure that, process P2

only executes after execution of process P1. This can be achieved

by using a binary semaphore variable synch which is initialized to

0. The code structure of process P1 and P2 should be as follow:

Code structure of process P1:

S1;

signal(synch);

MCA-114/64

Code structure of process P2 :

wait (synch);

S2;

Counting semaphore usage : Counting semaphore can be used to grant

access to a finite number of resources (for example, 10 printers). This can

be achieved by initializing a Counting semaphore variable count to the

number of resource. Whenever any process want to use the resource, it

performs wait () operation on the count variable which decrements its

value. And whenever, any process releases the resource, it performs

signal() operation which increments the count value. When the count

variable value becomes 0, this means that all the resources has been used

up. After that when any process wants to use the resource, it must wait

until the count value becomes greater than 0 i.e. some other process has

performed signal () operation.

Avoiding busy waiting : The main drawback of the semaphore discussed

above is busy waiting. In the multiprogramming system, where one

process is busy in its critical section, while other process wish to enter its

critical section will continuously loop in its entry code. This causes

wastage of CPU cycles which could be used productively for other

processes. The problem of busy waiting can be overcome by modifying

the definition of wait () and signal() operations as shown below in figure

4.8:

Figure : 4.8 Modified wait () and signal () operations to avoid busy

waiting

Now when a process executes the wait () operation and finds that

semaphore value is not positive, the process will call a block () system call

to move to waiting state instead of doing busy waiting. Each semaphores

variable is associated with a list of waiting processes. The block () system

call moves the process to a waiting queue associated with the semaphore

variable S. The CPU scheduler now schedules another process to execute.
MCA-114/65

The blocked process waiting on semaphore S will be restarted when some

other process executes signal() operation. The signal () operation calls a

wakeup() system call which moves the blocked process to ready queue

and changes its state to ready state. A negative value of semaphore

variable represents number of processes waiting for a semaphore variable.

The wait () and signal() system call are atomic that cannot execute

simultaneously on the same semaphore variable.

Deadlock and starvation: A deadlock situation is possible in the solution

based upon wait () and signal() operation discussed above. To illustrate

this, consider two processes P0 and P1 with two semaphore variable S and

Q, initially both set to 1 as shown below.

Imagine that process P0 executes wait (S) and process P1 executes wait

(Q) operation. Now, when process P0 executes wait (Q) operation, it must

wait until P1 executes signal(Q) operation. Similarly, when P1 executes

wait (S), or must wait until process P0 executes signal (S) operation. But

the signal () operation cannot be executed because both process cannot

proceed its further execution. This leads to a deadlock situation. A

situation where processes wait indefinitely within the semaphore is called

starvation.

Check your progress

1. What is the difference between binary semaphore and counting

semaphore?

2. Give one usage of each of following :

a) Binary semaphore

b) Counting semaphore

4.7 CLASSICAL PROBLEM OF

SYNCHRONIZATION

In this section, we will discuss how semaphores can be used to

solve some classical synchronization problems. These problems are used

to test any newly proposed synchronization scheme.

Bounded buffer using semaphores :

MCA-114/66

A Bounded Buffer problem is generalization of producer and consumer

problem where a shared buffer of n slots is accessed in a mutual exclusion

way. You can also think this as a producer which is producing full buffer

and a consumer as producing an empty buffer. In this semaphore based

solution, two counting semaphore variables are used: full and empty. The

full variable is initialized to 0 which keep track of currently occupied slots

in the buffer. The empty variable is initialized to N which keeps track of

currently available slots in the buffer. The figure 4.9 shows the general

code structure for any producer and consumer process.

Figure 4.9 : The code structure of producer and consumer process

The Readers-Writers Problem

In this problem, there are multiple reader processes and multiple writer

processes, each try to access a shared data or dataset, for example a

railway reservation dataset. The reader processes can access a shared data

concurrently with writer processes. But a writer process can access the MCA-114/67

shared data in a mutual exclusive way. The goal here is too maximize

concurrency while avoiding data inconsistency. A reader process can see

the shared data or dataset but cannot make any changes in it just like a

person watching available seats during railway reservation. A writer

process can change the shared data. For example, a person is booking a

seat in railway reservation. But we must ensure that two writer process

cannot simultaneously access the shared data or dataset for example, two

person cannot book a same available seat (remember counter++ and

counter--!). However, multiple readers are allowed to view the shared

data as long as no writer is updating the shared data. In other words, when

a writer process already gets permission to access the shared data, no

readers are allowed to read the shared data. For example we can allow

multiple customers to view the available seats just to avoid delay. A general

code structure for a reader and writer process are shown in figure 4.10.

Figure 4.10 : The code structure of a reader and writer process

MCA-114/68

In the code, a readcount variable is initialized to 0 which keeps track of

number of readers processes reading the shared data. The semaphore

mutex is initialized to 1 which ensures mutual exclusion when the

readcount variable is updating. The semaphore wrt is initialized to 1 which

allows multiple reader to access the shared variable in a mutual exclusive

way.

Note that in this solution a reader may wait(wrt) while inside mutual

exclusion of mutex. Is

this OK? This solution based on semaphore is a reader-preference solution

where writers may starve!. We don't want any reader to keep waiting

unless a writer is in critical section.

The Dining-Philosophers Problem

Dining Philosophers problem is another classical synchronization problem

for allocating a set of limited resources among a group of processes in a

deadlock free and starvation free way. In this problem there are 5

philosophers sitting around a round table with a bowl of endless rice. The

table is laid with 5 chopsticks as shown in figure 4.11.

Figure 4.11: The situation of the dining philosophers [1].

Each philosopher spends their time in interacting, thinking and eating.

When a philosopher feels hungry, he picks up one chopstick from his left

and another from his right and starts eating. When a philosopher is

finished with eating, he puts down both the chopsticks to its original place

and starts thinking again. A solution to this problem based on semaphore

is shown in figure 4.12.

MCA-114/69

Figure 4.12 : The structure of philosopher i.

In the code structure, a set of 5 chopsticks is shown with a semaphore

variable chopsticks [5]. Each hungry philosopher first picks his left

chopstick chopstick[i] and then his right chopstick chopstick[(i+1)%5].

But, the main problem will arise when all philosopher get hungry at same

time. In this case, each philosopher first picks their left chopstick. The

time when they start picking their right chopstick, it becomes unavailable

and they all will wait forever. This lead to a deadlock situation.

Some possible solution to the deadlock problem are:

1. Allow only 4 philosophers for eating at the same time.

2. Allow any hungry philosopher to pick up chopsticks only when

both are available.

Allow odd philosophers to pick up their left chopsticks first and even

philosophers to pick up their right chopsticks first.

4.8 MONITOR

Semaphores can solve various synchronization problems very

effectively. But it should be used very carefully because even a single

improper use by a process can break an implementation. Monitor which is

a high level programming language construct in another way for achieving

synchronization of process. Similar to C++, Java, Monitor provides

abstract data type, shared variables, and methods to implement process

synchronization. A monitor is essentially a class with following properties:

MCA-114/70

1. It is the collection of four components: initialization, private data,

monitor procedures, and monitor entry queue bind into a single

class as shown in Figure 4.13.

2. The initialization component contains the code that is used exactly

once when the monitor is created.

3. The processes running outside the monitor can’t access the internal

variable of monitor. The private data are not visible from outside

of the monitor.

4. The monitor procedures can be called from outside of the monitor.

5. Only one process at a time can execute code inside monitors.

6. The monitor entry queue contains all threads that call monitor

procedures but have not been granted permissions.

Figure 4.13 : Syntax of a monitor

Monitor consists of one or more data type which is called as condition.

Any variable of condition type supports only two operations: wait and

signal. For example, if X is a condition variable, then it can perform the

legal operations: X.wait() and X.signal(). The wait operation blocks one

process and adds it to a list associated with that condition variable. The

signal operation wakes up exactly one process from the condition's list of

waiting processes. For illustration, figure 4.14 shows a monitor with an

entry queue of processes that are waiting for their turn to execute monitor

methods/procedure.

MCA-114/71

Figure 4.11: The situation of the dining philosophers [1].

There is a potential problem with this method. If any process P within the

monitor issues a signal operation, then it would wake up any process Q

that would also within the monitor. This cause two processes running

simultaneously within the monitor which violates the exclusion

requirement. There are two possible solutions to this problem:

 Signal and wait – If any process P executes a signal operation

which wakes up another process Q, then P should wait either for Q

to leave the monitor or for some other condition.

 Signal and continue - When P executes the signal operation, Q

should wait either for P to exit the monitor or for some other

condition.

Concurrent Pascal offers a third alternative where signal call causes the

signaling process to immediately exit the monitor, so that the waiting

process can then wake up and proceed. Many programming languages

including concurrent Pascal, Mesa, C# (pronounced C-sharp), and Java

have already incorporated the idea of the monitor as described in this

section.

Dining-Philosophers Solution Using Monitors :

Now we will discuss a solution to the dining philosophers’ problem based

on monitors. In this solution, we impose a restriction that a philosopher

may pick up chopsticks only when both are available. There are two key

data structures used in this solution:

1. enum { THINKING, HUNGRY,EATING } state[5]

By using this data structure, a philosopher can be set to eating state

only when neither of his/her adjacent neighbours are eating. This

MCA-114/72

can be ensure by checking this condition: state[(i + 1) % 5] !=

EATING && state[(i + 4) % 5] != EATING .

2. condition self[5]

This condition is used to delay any hungry philosopher who is

unable to acquire chopsticks.

Figure : 4.15 Dining-Philosophers Solution Using Monitors MCA-114/73

The distribution of the chopsticks is controlled by the monitor

DiningPhilosophers, whose definition is shown in Figure 4.15. Before start

eating, each philosopher must invoke following sequence of operations.

1. DiningPhilosophers.pickup() - Acquires chopsticks, which may

block the process.

2. eat

3. DiningPhilosophers.putdown() - Releases the chopsticks

This solution ensures that no two neighbours are eating simultaneously

and thus no deadlocks will occur.

4.9 SUMMARY

In Summary,

 We saw that the processes must communicate with each other to

share data. However, concurrent access to shared data by multiple

processes may result in data inconsistency. So OS must provide

mutual exclusion way of achieving process communication.

 We learnt that computer hardware provides several operations to

ensure mutual exclusion. But for most developer these hardware-

based solutions are too complicated for them to use. To overcome

this problem, semaphores can be used efficiently to solve data

inconsistency problem and provide mutual exclusion way of

achieving process communication.

 We have discussed various synchronization problems such as the

bounded-buffer problem, the readers-writers problem, and the

dining-philosophers problem because they are examples of a large

class of concurrency-control problems. Almost every newly

proposed synchronization scheme is test using these classical

problems.

 Lastly, we saw that Monitors are a high-level programming

language construct with shared data and methods to achieve

Process synchronization.

4.10 TERMINAL QUESTIONS

1. Explain why interrupts are not appropriate for implementing

synchronization primitives in multiprocessor systems.

2. Illustrates how the Peterson solution satisfies all three

requirements of any solution to critical section problem.

3. The Bounded buffer problem is also known as __________.

MCA-114/74

4. Explain three classical synchronization problem with their

solutions.

5. What is the main disadvantage of semaphore based solution to

critical section problem? How does it is removed?

6. How does deadlock is possible in semaphore based solution to

critical section problem?

7. Explain strict alternation solution to a critical section problem.

8. How does the lock variable provide solution to critical section

problem?

9. How do cooperating processes differ from independent processes?

10. Illustrates how race condition occurs.

11. What is a general solution to a race condition?

BIBLIOGRAPHY

1. Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.

Operating System Concepts (8th. ed.) : Wiley Publishing, 2008

2. Crowley, Charles. Operating systems: a design-oriented approach.

McGraw-Hill Professional, 1996.

3. Modern Operating Systems Second Edition by Andrew S.

Tanenbaum Publisher: Prentice Hall Ptr

4. Stallings, William. Operating systems: internals and design

principles. Boston: Prentice Hall, 2012.

5. Ritchie, O. M., and Ken Thompson. "The UNIX time-sharing

system." The Bell System Technical Journal 57.6 (1978): 1905-

1929.

6. Deitel, Harvey M., Paul J. Deitel, and David R. Choffnes.

Operating systems. Pearson/Prentice Hall, 2004.

 MCA-114/75

MCA-114/76

Master of Computer

Application

M.C.A.-114

 Operating System

BLOCK

2
MEMORY MANAGEMENT AND UNIX CASE STUDY

UNIT-5

Deadlock

UNIT-6

Memory Management

UNIT-7

Secondary Memory Management

UNIT-8

Case Study of UNIX

Uttar Pradesh Rajarshi Tandon

Open University

MCA-114/77

Course Design Committee

Prof. Ashutosh Gupta

Director (In-charge)

School of Computer and Information Science, UPRTOU, Allahabad

Dr. Marisha

Asstt. Professor

School of Science, UPRTOU, Allahabad

Manoj Kumar Balwant

Asstt. Professor

School of Science, UPRTOU, Allahabad

Dr. Ashish Khare

Dept. of CS, Allahabad University

Prayagraj

Course Preparation Committee

Manoj Kumar Balwant Author

Asstt. Professor

School of Science, UPRTOU, Allahabad

Prof. Manu Pratap Singh Editor

Professor, Department of Computer Science and Engineering

Institute of Engineering & Technology (Khandari campus)

Dr B R Ambedkar University

Agra,Uttar Pradesh

©All Rights are reserved. No part of this work may be reproduced in any

form, by mimeograph or any other means, without permission in writing

from the Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh

Rajarshi Tandon Open University, 2021.

Printed By: Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road,

Prayagraj.
MCA-114/78

COURSE INTRODUCTION

This Block consists of 4 units: 5,6,7,8. In fifth unit, deadlock problem is

explained along with different methods of avoiding and preventing the

deadlock. This unit also covers the various methods to recover from the

deadlock. In sixth unit, various memory management concepts are

described. It includes paging, segmentation, virtual memory, demand

paging, page-replacement algorithms, and thrashing. The seventh unit

explains about the working of magnetic disk and data organization on

disks. In this unit, different Disk Scheduling Algorithms are described and

the concept of swap space in virtual memory system is explained. The last

unit of this block explores the history of the UNIX operating system and

the principles on which Linux is designed. This unit also explains process

scheduling and inter-process communication in UNIX. This unit is

providing the learning about how memory management and file systems

are implemented in UNIX.

 MCA-114/79

MCA-114/80

UNIT-V DEADLOCK

Structure

5.1 Introduction

5.2 Objective

5.3 The Deadlock Problem

5.4 System Model

5.5 Deadlock Characterization

5.6 Methods for Handling Deadlocks

5.7 Deadlock Prevention

5.8 Deadlock Avoidance

5.9 Deadlock Detection and Recovery from Deadlock

5.10 Summary

5.11 Terminal Questions

5.1 INTRODUCTION

In a multiprogramming environment, multiple processes execute

concurrently and requires several resources from a finite set of resources.

If an executing process needs a resource which is not currently available,

it enters into waiting state. Sometime a waiting process never gets the

resources because it may be held by another waiting process. This lead to

a deadlock situation where processes wait for resources forever and none

of them proceed their execution. For example, consider a system with two

process A, B each try to print files on compact disk (CD). So the system

has two resources: CD and printer. Imagine a sequence of operations

where a process A first obtains ownership of the printer for printing a file.

At the same time, process B obtains ownership on CD for reading a file.

Now, process A tries to get ownership on CD but, it is told to wait for

process B. Process B also tries to get ownership on printer but it is told to

wait for process A. This situation leads to deadlock and neither of them

can proceed further. In this chapter, we will discuss the deadlock problem

in detail and various methods of handling the deadlock.

5.2 OBJECTIVES

After reading this unit

 You will able to explain deadlock problem. MCA-114/81

 You will understand various ways to handle deadlock situation.

5.3 THE DEADLOCK PROBLEM

In Multiprogramming system, several processes compete for a

finite set of resources. These processes enters in waiting state, if the

resources are not currently available. Sometimes processes wait for ever

because the resources they have requested is already held by theses

waiting processes. This situation is called Deadlock.

Examples : In the automotive world a deadlocks happens when a situation

arises as shown in Figure below. Here the cars can be thought of the

processes and the spaces occupied by the cars can be thought of the

resources.

Illustrative Example : A system contains three programs and each

requires three tape units for its operation. What is the minimum number of

tape units which the system must have such that deadlocks never arise?

Solution : If all three processes will hold 2 resources each and waiting for

1 more resource to complete its execution. Therefore, if there are 7

resources in the system, then at least one program must have 3 resources

so that it will complete and free up all its resources which can be used by

other program to complete their task and so deadlock can never occur.

Thus we have:

Minimum number of resources= Number of Program * (maximum need-1)

+1.
MCA-114/82

 = 3*(3-1) + 1=7.

5.4 SYSTEM MODEL

For the sake of understanding deadlock problem, several

assumptions and terminologies are made regarding a system. A system

consists of a finite set of resources which are allocated to several processes

as per their needs. For example, the resources can be printers, DVD, CPU

cycles etc. These are physical resources. Resources can be logical also

such as semaphores, locks, files and drivers. System resources can be

divided into several classes or types and each class may have multiple

identical resources (or instances of that resource). For example, when

system has two CPUs then it has two instances of CPU type resource.

If a process requests for an instance of a resource type, then its

request can be satisfied by allocating any one of the instances of that

resource type. The process may request any number of resources but, it

should not exceeds the total number of resources available in the system.

Any process must request a resource before using it and must release the

resource after using it. Thus a process uses resources in following order:

Request : The process must request the resource before using it. If the

resource is currently available, it is granted immediately. Otherwise, it

goes to waiting state and waits for the resource.

Use : The process utilizes the resource for its execution.

Release : After the resource has been used, it is released.

The request and release operations can be system calls. For example,

allocate() and free memory(), open() and close() files, wait () and signal()

operation. A deadlock may involve with either same resource types or

different resource types. For example consider a system with one printer

and one DVD drive. Suppose, a process pi is holding printer and another

process pj is holding DVD drive. Now if, the process pi further requests

for DVD drive and the process pj request for printer, then a deadlock will

occur.

5.4.1 (NECESSARY) CONDITIONS FOR DEADLOCK

A deadlock can occur if following conditions hold simultaneously.

1. Mutual exclusion : Only one process at a time can use a resource.

If another process requests the same resource, it must wait until the

resource held by previous process is released.

2. Hold and Wait : A process is holding one resource and waiting

for another resource which is held by another process.

3. No Preemption : Resources held by a process can only be

released by the process itself after finishing their executions.

4. Circular wait : a sequence of waiting processes {

p0,p1,p2…...pn} must exist such that process p0 is waiting for a MCA-114/83

resource currently held by p1, p1 is waiting for a resource

currently held by p2 and so on pn is waiting for a resource

currently held by p0.

5.4.2 DEADLOCK MODELLING

In some cases the deadlock can be better understood by the

resources-allocation graph. The resource-allocation graph can be described

by the following properties.

1. A set of process {P1, P2, P3...Pn} represented as circles in the

graph.

2. A set of resource categories {R1, R2, R3 ... Rn} represented as

squares in the graph. The dot inside the resource indicates specific

instances of the resource. (For example two dots may represent

two instances of the resource type).

3. Request Edges – A directed arc from Pi to Rj indicates that process

Pi has requested resource Rj, and is currently waiting for that

resource to become available.

4. Assignment Edges – A directed arc from resource Ri to process Pj

indicats that the resource Ri is currently held by the process Pj.

When the request is granted, a request edge can be converted into

assignment edge by reversing the direction of the arc. The request edge is

pointed toward the category box while assignment edge originates from

particular dot inside the category box as shown in Figure 5.1

Figure 5.1 : Resource allocation graph [1].

If a resource allocation graph contains no cycles, then there is no deadlock

present in the system. If the resource allocation graph contains cycles, and

if there is single instances of each resource category then deadlock is

present. If the resource allocation graph contains more than one instance
MCA-114/84

of the resource categories, then the presence of cycle does not guarantee a

deadlock. Thus, cycle in a multi instances resource allocation graph is a

necessary condition but it is not a sufficient condition. For example, in

Figure 5.2 the process P4 will release the resource type R2. Now, this

resource can be used by P3 process to break the cycle.

Figure 5.2 : Resource allocation graph with a cycle but no deadlock [1].

Check your progress

1. What does a cycle in a Resource Allocation Graph indicate?

2. Justify your answer : Whether a cycle in a resource allocation

graph is sufficient condition for existence of deadlock in a

system.

3. Describe necessary conditions for occurrence of a deadlock in a

system.

4. Explain a deadlock with a real word example.

5.5 METHODS FOR HANDLING DEADLOCKS

We can deal with the deadlock in one of following ways

1. Prevention or Avoidance : In this approach, a protocol can be

designed to ensure that a system will never enter into a deadlock

state. This can be ensured by using either Deadlock Prevention or

Deadlock Avoidance. Deadlock prevention consists of a set of

methods to ensure that at least one of the necessary conditions of MCA-114/85

deadlock cannot satisfy while allocating requests for resources. On

other hand, Deadlock avoidance uses additional information in

advance regarding a process requests to resources for its entire

execution. This additional information includes available

resources, allocated resources and future requests and release of

each process. A decision for a current request of any process to be

granted or delayed is made on the basis of this additional

information. We will discuss Deadlock prevention and Deadlock

avoidance in detail in next section.

2. Detect and Recover Deadlock : If the deadlock prevention or

deadlock avoidance methods failed, then deadlock may occur in

the system. In this method, we examine state of the system to

detect whether a deadlock has happened or not. If there is deadlock

in the system, we recover the system from deadlock states using

the deadlock recovery methods.

3. Ignore the deadlock : In this method, if large number of processes

enter in the deadlock state and more number of resources are held

up for these waiting processes then system performances degrades.

In the last, system stop working and we do not have any other

option except to restart the system.

In general these methods are combined together to allocate resources to

processes in an optimal manner to deal with the deadlock.

5.6 DEADLOCK PREVENTION

Deadlock can be prevented by not allowing the system any one of

the four conditions to occur.

Avoid Mutual Exclusion : If we ensure that no resource will assigned

exclusive to single process, then there will be no deadlock. Shared

resources such as read-only files, read/write locks, memories etc. do not

lead to deadlock. Unfortunately some resources like printers, tapes, CD-

ROM Drive are not sharable and require exclusive access by the single

process.

Avoid hold and wait : If we prevent a process that already holds

resources to further request other resources, then we can prevent deadlock.

This can be achieved by allowing all the processes to request for the

resources before starting execution. So, if all the requested resources are

available then they are allocated to processes, otherwise none of the

resources will allocate to the process.

Attacking No Preemption : This can be achieved by ensuring that the

scheduler should preempt a process, if it is holding some resources and

requesting more resources that are not currently available. After pre-

empting the process, resources become available for other processes.

Alternatively, Scheduler should only schedule a process, if all its

requested resources are available. MCA-114/86

Avoid Circular wait : Circular wait can be avoided by numbering all the

resources and strictly allowing the processes to request the resources in

ascending order. So, if a process initially requested instances of resources

type Ri, then another requests for instances of another resource type Rj

can only be requested if Rj>Ri. For example, consider a process is holding

resource number #11 and #15, it can only request resource number #16 or

higher. In order to request a resource number #8, it must have to first

release the resources number #11 and #15. Hence, with this rule the

resource allocation graph will never construct the cycle.

5.7 DEADLOCK AVOIDANCE

The possible drawbacks with deadlock prevention algorithm are

low device utilisation and low system throughputs. Deadlock avoidance is

an alternative way of preventing deadlock in the system. This algorithm

requires prior information such as number of available resources, number

of allocated resources and maximum demands of each process. In this

section we will discuss two deadlock avoidance algorithm. But, first we

will discuss safe state and safe sequences which are important to

understand these two algorithm.

Safe State : A safe state is a state where deadlock never occures. But,

when a state is unsafe, a deadlock may or may not occur as shown in

Figure 5.3. A system is said to be in safe state if, it could allocate the

available resources to processes in some order such that the maximum

needs of each process can be fulfilled without occurring a indefinite

waiting. More formally, a safe state exists if, there is a safe sequence

<p1,p2,p3…….pn> such that, the resource requests of any process pi can

be satisfied by the currently available resources plus resources held by its

preceding pj process in the safe sequence with all j<i. For example,

consider a system with 12 printers attached and the processes p0, p1, p2

are currently executing. The maximum needs and current allocation of

each process at any time is shown below:

Process Maximum needs Current allocation

P0 10 5

P1 4 2

P2 9 2

The total available printers are 3=12-5-2-2.

The system is in safe state because there exists a safe sequence <p1, p0,

p2>. The current needs of 2 printers (2=4-2) for p1 is satisfied because

there are 3 available printers. When the need of p1 is fulfilled, it releases MCA-114/87

all the printers it holds (2 printers) and added to the currently available

printers (5 printers). Next, needs of process p0 for 5 (5 = 10-5) printers

satisfied with 5 (5=3+2) available printers. After satisfying the needs of

p0, it releases its holding printers (5) and added to currently available

printers (5). Finally, needs of p2 for 7 printers satisfied with 10 printers

(10= 5+5) currently available printers.

Figure 5.3 : Safe, unsafe and deadlock state [1].

Resource Allocation Graph Algorithm :

We can use the resource allocation graph with single instance of each

resource discussed earlier for deadlock avoidance. But this time, in

addition to the request and assignment edges, we will use claim edges for

deadlock avoidance. A claim edge Pi-->Rj represents that the Pi process

requests the Rj resource in near future. This edge is similar to request

edge, but represented by dotted edge. The claim edge is converted to

request edge when Pi process requests the Rj resource.

Figure 5.4 : Resource-allocation graph for deadlock avoidance [1].

MCA-114/88

Now consider a system as shown in Figure 5.4. Assume that the process

P1 requests R2 resource. This request can be granted only if, converting

the request edge P1---> R2 to an assignment edge R2--->P1 will not lead

to formation of a cycle in the resource allocation graph. Because the cycle

will indicate a deadlock in the system. If no cycle exists, the system is in

safe state and the request can be granted immediately. But, if the cycle

exists, the system is in unsafe state and the P1 process should wait for its

request to be satisfied. This is also illustrated in Figure 5.5.

Figure 5.5 : An unsafe state in a resource-allocation graph [1].

Banker's Algorithm : The resource allocation graph algorithm which we

have discussed in previous section does not applicable to a system having

multiple instances of each resource type. The deadlock avoidance

algorithm which is known as Banker's Algorithm is applicable to this type

of the system. In this algorithm, a process prior to its execution, revels its

maximum resources needed during execution. The algorithm checks this

number of resources needed should not exceeds the total number of

resources in the system. The algorithm grants a process access to a set of

resources only if the allocation of these resources will lead the system to a

safe state. Otherwise, these resources are not allocated to the process and it

has to wait until the system gets enough resources when other processes

release their resources.

Implementation of banker algorithm requires several data structures:

Available : It is a vector of length m which indicates number of instances

of each resource type. For example, Available[j] equal to k represents k

instances of resource type Rj.

Max : It is a matrix of size n*m which represents the maximum demands

of each process. For example, Max[i][j] equal to k indicates the process Pi

has k instances of resource type Rj.

Allocation : It is a matrix of size n*m which represents number of

instances of each resource type currently allocated to each process. For
MCA-114/89

example, Allocation[i][j] equal to k represents k instances of resource type

Rj are currently allocated to a process Pi.

Need : It is also a matrix of size n*m which indicates the remaining need

of each instances of each resource type for a process to finish its

execution. For example, Need[i][j] equal to k represents there are k

Instances of resource type Rj needed to process Pi to complete its

execution.

Safety Algorithm :

This algorithm determines whether the current state of a system is safe or

not, according to the following steps:

1. Let Work and Finish be vectors of length m and n respectively.

a) Work is a working copy of the available resources, which

will be modified during the analysis.

b) Finish is a vector of booleans indicating whether a particular

process can finish. (or has finished so far in the analysis.)

c) Initialize Work to Available, and Finish to false for all

process.

2. Find an i such that both (A) Finish[i] == false, and (B) Need[i] <

Work. (This process has not finished, but could with the given

available working set.) If no such i exists, go to step 4.

3. Set Work = Work + Allocation[i], and set Finish[i] to true. This

corresponds to process i finishing up and releasing its resources

back into the work pool. Then loop back to step 2.

4. If finish[i] == true for all i, then the state is a safe state, because a

safe sequence has been found.

Illustrative Example 5.1 : Considering a system with five processes P0

through P4 and three resources types A, B, C. Resource type A has 10

instances, B has 5 instances and type C has 7 instances. Suppose at time t0

following snapshot of the system has been taken:

MCA-114/90

Now, the need matrix and the safety sequence as:

Need = Max – Allocation

So, the content of Need Matrix is :

We can find a safe sequence by checking the safety condition for each

process in order of their process IDs.

Step 1 : Checking of Safety condition for process P0

Need of process P0= need0 = (7, 4, 3)

If need0 ≤ Available => [(7, 4, 3) ≤ (3, 3, 2)] =>false

So, the process P0 should wait for the resources.

Step 2 :

Checking safety condition for process P1

Need of process P1=need1 = (1, 2, 2)

if needi≤ Available =>[(1, 2, 2) ≤ (3, 3, 2)]=> true

So, process P1 will execute and it is added to safe sequence list {P1}.

Available = Available + Allocation

= (3, 3, 2) + (2, 0, 0)

= (5, 3, 2)

Step 3: Checking safety condition for process P2

Need of process P2= need2 = (6, 0, 0)

if need2 ≤ Available => [(6, 0, 0) ≤ (5, 3, 2)] =>false

So, P2 will wait and it is not added to safe sequence list.

Step 4 : Checking safety condition for process P3

Need of process P3=need3 = (0,1,1)

If need3 ≤ Available =>[(0,1,1) ≤ (5,3,2)]=> true

So, process P3 will execute and it is added to safe sequence list {P1,P3}.

Available = Available + Allocation

= (5, 3, 2) + (2, 1, 1)

= (7, 4, 3)

Step 5 : Checking safety condition for process P4

Need for process P4=need0 = (4,3,1) MCA-114/91

if need4 ≤ Available=>[(4,3,1) ≤ (7, 4, 3)]=>True

So, process P0 will execute and it is added to safe sequence list {P1,P3,P4

}

Available = Available + Allocation

= (7,4,3) + (0, 0,2)

= (7, 4, 5)

Step 6 : Checking safety condition for process P0

Need of process P0= need0 = (7,4,3)

if need0≤ Available =>[(7,4,3) ≤ (7, 4, 5)]=>True

So, P0 will execute and it is added to safe sequence list {P1, P3, P4, P0,

P2 }.

Available = Available + Allocation

= (7, 4, 5) + (0, 1, 0)

= (7,5,5)

Step 7 : Checking Safety condition for process P2

Need of process P2= need2 = (6, 0, 0)

if need2 ≤ Available =>[(6, 0, 0) ≤ (7, 5, 5)]=>True

So, P2 will execute and it is added to safe sequence list {P1,P3,P4,P2 }.

Available = Available + Allocation

= (7, 5, 5) + (3, 0, 2)

= (10, 5, 7)

Safety Sequence = <P1, P3, P4, P0, P2>

Thus, the requests of the processes will be fulfilled by the obtained safe

sequence <P1, P3, P4, P0, P2>.

The Bankers Algorithm :

Now, we have tool for determining whether a particular state is safe or

not. When a new request is come, algorithm pretends it is granted and

checks whether the resulting state is safe or not. If the resulting state is

safe then the request is granted otherwise t is denied as specified in the

following steps.

Let Request[i] be the request vector for process Pi.

1. If Request[i] < Need[i], go to step 2. Otherwise, raise an error

condition, since the process has exceeded its maximum claim.

2. If Request[i] < Available, go to step 3. Otherwise, process pi must

wait, since the resources are not available.

3. Check if the request can be granted safely, by pretending it can

allocate the requested resources and then check whether state will

be safe or not. If it finds the safe state then the request is granted

and if not, then the process must wait till its requested resources

can be granted to maintain the safe state. The procedure for

MCA-114/92

granting the request or pretending to be granted (for testing

purpose) is as follows:

Available = Available - Request[i]

Allocation = Allocation + Request[i]

Need[i] = Need[i] - Request[i]

Illustrative Example 5.2 : In the above question 5.1 what will happen if

process P1 requests one additional instance of resource type A and two

instances of resource type C? Explain whether the request can be safely

granted or not.

Solution :

In order to decide whether the request of process P1 can be granted or not,

we will use Banker's Algorithm. Initially we assume the request can be

granted and try to find a safe sequence. If the safe sequence is found, then

resulting system is in safe state and the request of process P1 can be

granted.

Request of process P1=request1=1, 0, 2

After granting the requests, we make following changes in the system as

discussed above.

Available= Available-request1

Current allocation of process P1= Allocation1=Allocation+request1

Current need of process P1= need1=need1-request1

Process Allocation Need Available

ABC ABC

P0 010 743 230

P1 302 020

P2 302 600

P3 211 011

P4 002 431

Now, we will use safety algorithm to check whether the current system is

in safe state or not.

Step 1 : Check the Safety condition for process P0

Need of process P0= need0 = (7, 4, 3)

If need0 ≤ Available => [(7, 4, 3) ≤ (2, 3, 0)] =>false

so, the process P0 should wait for the resources.

 MCA-114/93

Step 2 :

Check the safety condition for process P1

Need of process P1=need1 = (1, 2, 2)

if need1 ≤ Available =>[(0, 2, 0) ≤(2, 3,0)]=> true

So, process P1 will execute and it is added to safe sequence list {P1}.

Available = Available + Allocation

= (2, 3, 0) + (3, 0, 2)

= (5, 3, 2)

Step 3 : Check the safety condition for process P2

Need of process P2= need2 = (6, 0, 0)

if need2 ≤ Available => [(6, 0, 0) ≤(5,3,2)] =>false

So, P2 will wait and it will not be added to safe sequence list.

Step 4 : Check the safety condition for process P3

Need of process P3=need3 = (0,1,1)

If need3 ≤ Available =>[(0,1,1) ≤ (5,3,2)]=> true

So, process P3 will execute and it is added to safe sequence list {P1,P3}.

Available = Available + Allocation

= (5, 3, 2) + (2, 1, 1)

= (7, 4, 3)

Step 5 : Check the safety condition for process P4

Need for process P4=need0 = (4, 3,1)

if need4 ≤ Available=>[(4, 3,1) ≤ (7, 4, 3)]=>True

So, process P0 will execute and it is added to safe sequence list {P1,P3,P4

}

Available = Available + Allocation

= (7,4,3) + (0, 0,2)

= (7, 4, 5)

Step 6 : Check the safety condition for process P0

Need of process P0= need0 = (7,4,3)

if need0≤ Available =>[(7,4,3) ≤ (7, 4, 5)]=>True

So, P0 will execute and it is added to safe sequence list {P1, P3, P4, P0,

P2 }.

Available = Available + Allocation

= (7, 4, 5) + (0, 1, 0)

= (7,5,5)

Step 7 : Check the Safety condition for process P2

Need of process P2= need2 = (6, 0, 0)

if need2 ≤ Available =>[(6, 0, 0) ≤ (7, 5, 5)]=>True

So, P2 will execute and it is added to safe sequence list {P1,P3,P4,P2 }.

Available = Available + Allocation

= (7, 5, 5) + (3, 0, 2)

= (10, 5, 7)

Safety Sequence = <P1, P3, P4, P0, P2>

So the new request is safe and we can immediately grant resource requests

of p1.
 MCA-114/94

Check your progress

1. What is a safe state? When does a state is said to be in safe

state?

2. What do you mean by a safe sequence?

3. How does the deadlock prevention algorithm works?

4. Explain various methods of handling deadlock.

5.8 DEADLOCK DETECTION AND RECOVER

The method of handling deadlock is employed when, both

deadlock prevention and deadlock avoidance algorithm are failed to

prevent / avoid a deadlock. This approach detects a deadlock when it is

happened and recovers from the deadlock. The disadvantage of this

approach is the performance loss due to constant checking for deadlock

condition. Also, there is a potential loss of work when a process is aborted

or preempted in order to recover the system from the deadlock.

Single Instance of Each Resource Type: If each resource category has

single instance, we can use a variation of resource allocation graph called

as wait for graph. A wait for graph can be constructed by removing the

resources and collapsing the associated edges in the resource allocation

graph as shown in Figure 5.6. An arc from process Pi to Pj indicates the

process Pi is waiting for a resource which is held by process pj. A cycle in

wait for graph indicates the deadlock situation in the system. This

algorithm must maintain wait for graph and periodically detects cycle in

the graph.

Figure 5.6 - (a) Resource allocation graph. (b) Corresponding wait-for

graph [1].

Several Instances of a Resource Type :

When a system has several instances of each resource type, deadlock is

detected by the banker’s algorithm. In step 1, the Banker's Algorithm sets

Finish[i] to false for all i. The algorithm presented here sets Finish[i] to MCA-114/95

false only if Allocation[i] is not zero. If the currently allocated resources

for this process are zero, the algorithm sets Finish[i] to true. This is

essentially assuming that if all of the other processes can finish, then this

process can finish also. Furthermore, this algorithm is specifically looking

for which processes are involved in a deadlock situation, and a process

that does not have any resources allocated cannot be involved in a

deadlock, and it can be removed from any further consideration.

 Steps 2 and 3 are unchanged

 In step 4, the basic Banker's Algorithm says that if Finish[i] ==

true for all i, then there is no deadlock. This algorithm is more

specific, by saying that if Finish[i] == false for any process Pi,

then that process is specifically involved in the deadlock which has

been detected.

Recovery from Deadlock :

When the detection algorithm detects presence of a deadlock in a system,

there are two options to break the deadlock:

1. Process Preemption : In this method, we can terminate processes

involved in the deadlock. We can either terminate all the processes

that involved in deadlock or terminate processes one by one till the

deadlock is removed. Terminating all processes result in loss of

partial computations. While, terminating process one by one does

not degrades system performance. But, process termination one by

one till the deadlock is removed depends on many factors such as

priority of process, how long process is running, how many and

what type of resources the process is holding.

2. Resource Preemption : In this approach, resources are preempted

from the processes those are involved in a deadlock. The

preempted resources are then allocated to other waiting processes

so that, the system cannot be recovered from the deadlock.

5.9 SUMMARY

In summary :

 We discussed the Deadlock problem in detail.

 You learned the four necessary conditions for occurrence of a

deadlock.

 You are explained about the Resource Allocation Graph which is

very useful for understanding and modelling an algorithm to

prevent the deadlock.

 You have understood deadlock prevention algorithm which

prevents the system to enter in deadlock condition.

MCA-114/96

 We discussed deadlock avoidance algorithm in detail.

 At the end, we discussed deadlock detection and Recovery from

the deadlock when deadlock prevention or deadlock Avoidance

algorithm could not be employed in a system.

5.10 TERMINAL QUESTIONS

1. What are various methods to recover a system from deadlock?

2. What is the usage of Banker's algorithm?

3. How does the deadlock is avoided in a system with single instance

of each resource types and multiple instances of each resource

types.

4. How does deadlock is avoided through Resource Allocation Graph

Algorithm?

5. An operating system uses the Banker’s algorithm for deadlock

avoidance when managing the allocation of three resource types X,

Y, and Z to three processes P0, P1, and P2. The table given below

presents the current system state. Here, the Allocation matrix

shows the current number of resources of each type allocated to

each process and the Max matrix shows the maximum number of

resources of each type required by each process during its

execution.

There are 3 units of type X, 2 units of type Y and 2 units of type Z

still available. The system is currently in a safe state. Consider the

following independent requests for additional resources in the

current state:

REQ1 : P0 requests 0 units of X,

0 units of Y and 2 units of Z

REQ2 : P1 requests 2 units of X,

0 units of Y and 0 units of Z

MCA-114/97

Whether the REQ1 can be permitted or Only REQ2 can be

permitted or Both REQ1 and REQ2 can be permitted?

6. A computer has six tape drives, with n processes competing for

them. Each process may need two drives. What is the maximum

value of n for the system to be deadlock free?

7. Can a resource allocation graph have cycles without a deadlock

existing? If so state why and draw a sample graph; if no state why

not?

8. One method of recovering from deadlock is to kill the processes

with the lowest costs of deletion. These processes could then be

restarted and once again allowed to compete for resources. What

potential problem might develop in a system using such an

algorithm? How would you solve this problem?

9. Demonstrate the truth and falsity of each of the following

statements.

a) The four conditions for a deadlock to exist are also sufficient

if there is only one resource of each resources type involved

in the circular wait

b) The four conditions for a deadlock to exist are also sufficient

if there are multiple resources of each resource type involved

in the circular wait.

10. In a system in which it is possible for a deadlock to occur, under

what circumstances would you use a deadlock detection

algorithm?

11. Which of the following is NOT true of deadlock prevention and

deadlock avoidance schemes?

A. In deadlock prevention, the request for resources is always

granted if the resulting state is safe

B. In deadlock avoidance, the request for resources is always

granted if the result state is safe

C. Deadlock avoidance is less restrictive than deadlock

prevention

D. Deadlock avoidance requires knowledge of resource

requirements a priori.

MCA-114/98

UNIT-VI MEMORY MANAGEMENT

Structure

6. 1 Introduction

6. 2 Objectives

6. 3 Background

6. 4 Address Binding

6. 5 Memory Management Techniques

6. 6 Contiguous Memory Allocation

6. 7 Paging

6. 8 Structure of the Page Table

6. 9 Segmentation

6. 10 Virtual Memory

6. 11 Demand Paging

6. 12 Page Replacements

6. 13 Allocation of frames

6. 14 Thrashing

6. 15 Summary

6. 16 Terminal Questions

6.1 INTRODUCTION

The main motive of a computer system is to execute programs or

processes. These programs must be brought into the physical memory for

their execution. In order to maximize CPU utilization and their response

time, OS must bring several processes in physical memory. The

effectiveness of a memory management depends on many factors

including hardware design of the computer system. In this chapter, we will

discuss various memory management schemes from bare hardware

approach to paging and segmentation.

6.2 OBJECTIVES

In this unit you will learn following concepts.
MCA-114/99

 Binding of Instructions and Data to Memory.

 To discuss various memory-management techniques, including

paging and segmentation.

 Understands the benefits of a virtual memory system.

 The concepts of demand paging, page-replacement algorithms, and

allocation of page frames

 Thrashing - Working Set Window, Page-Fault Frequency

6.3 BACKGROUND

The physical memory which is also known as main memory or

RAM is a large array of blocks and each of these blocks is accessed with

an address. When going to low level details, the CPU fetches instructions

from the main memory based on the value of the program counter. After

fetching an instruction from the main memory, the instruction is decoded

and operands are fetched from memory for its execution. After execution

of the instruction, the results are stored in the memory.

Basic Hardware :

CPU has direct access to only registers and main memory. Any data stored

in secondary memory must be first transferred to main memory before its

execution. Generally, CPU executes more than one instruction on one

clock tick. CPU can access registers very fast usually one clock tick.

While, CPU accesses the main memory comparatively slow and takes a

number of clock ticks. This can make CPU long waiting if there would be

no intermediately memory. Fortunately modern computers are built with

very fast cache memory. This cache memory act as an intermediary

memory between CPU and main memory. During process execution, the

process is first transferred from main memory to cache and then CPU

accesses the process directly from cache memory.

Each process has a separate memory space which prevent other process to

access its memory space. This is the basis to have multiple processes

inside the main memory for concurrent execution. To separate memory

spaces of processes, we need to determine legal range of addresses a

process can access while other processes can be restricted to access these

memory addresses. This scheme can be implemented by using two

registers: a base and a limit register. The base register holds starting

address of a currently running process while, the limit register holds the

size of the range.

MCA-114/100

Figure 6.1 : A base and a limit register define a logical address space

For example in Figure 6.1, of the base register holds an address 300040

and the limit register hold a range of 120900, the associated process can

access all addresses between 300040 to 420940. During the course of

execution of a process, every address generated in user mode is compared

with base and limit register addresses by CPU hardware support as shown

in Figure 6.2.

Figure 6.2: Hardware address protection with base and limit registers

[1].

An invalid address or any attempt by a process executing in user mode to

access OS memory address or they process address would generate trap to

the operating system as shown in Figure 6.2. The base and limit register

can only be loaded and changed by the OS via privileged instruction that

run only in kernel mode.

6.4 ADDRESS BINDING

Logical and physical address space: During the execution of a

process, CPU generates logical address. This logical address is mapped to MCA-114/101

a physical address which is the actual address in the main memory the

process would be loaded. This translation of a logical address to a physical

address is done by memory management unit of OS. The logical address is

also known as a virtual address. A set of all logical addresses used by a

process is known as logical address space of the process. And, a set of all

corresponding physical addresses known physical address space of the

process. A user process never sees physical addresses. A user process

works entirely in logical address space, and any memory references or

manipulations are done using purely logical addresses.

Address Binding : is a process of binding logical address space to

physical address space. This address binding can be done in three ways as

shown in Figure 6.3. The compile time and load time address binding

generate identical logical and physical addresses. While the execution time

address binding scheme, have different logical and physical addresses.

Figure 6.3 : Multistep processing of a user program [1].

Compile time : If at compile time, compiler knows where a program

reside on physical memory then absolute address is generated which is the

actual physical memory location. For example, at compile time, compiler

knows that the user program will reside at location L, then generated

compiler code starts from location L in the physical memory and extends

from there. But if the generated absolute address is already occupied by

another process then we need to recompile the program.

Load Time : If at compile time you do not know where to load the user's

program then compiler generate relocatable addresses relative to start of MCA-114/102

program (such as "20 bytes from the beginning of this program''). At load

time, loader translates relocatable addresses to absolute addresses. Loader

adds the base address of the program to all logical addresses of the

program to generate relocatable addresses. If the base address of the

program changes, we need to reload the program.

Execution Time : If a program moves from one memory location to

another during its execution then binding is delayed until execution time.

This method is used by most modern operating systems.

Dynamic Loading : Instead of loading an entire program into physical

memory, dynamic loader loads each routines or a part of program when it

is required. So unused routines are never loaded into the physical memory

unless they are required. Dynamic loading saves memory usage and also

makes faster program start-up.

Dynamic Linking : In static linking, all the library modules are fully

included in executable modules. This wastes both disk space and main

memory usage because, executable modules include copy of all the

required routines from the library. Figure 6.4, 6.5 briefly describe how

load module is created and how does static linking and loading take place.

However in dynamic linking, a stub is included in executable module.

Stub is a small program that indicate how to locate a library routine or

how to load library routine when it is not present in the memory. Next

time, when that particular library routine are encountered, there is no need

for dynamic linking again since the library routine is already present in the

memory. One more advantage is that a library can be replaced with new

version and all the program that reference the library can use the new

version of the library.

Figure 6.4: Creating a load module [1]. Figure 6.5 Normal linking

and loading [1]. MCA-114/103

Check your progress

1. What do you mean by address binding?

2. Briefly explain the types of address bindings.

3. Discuss the basic hardware supports requires for memory

management?

4. What do you mean by dynamic loading and dynamic linking?

6.5 MEMORY MANAGEMENT TECHNIQUES

Broadly, we can divide memory management techniques into two

categories: contiguous memory allocation and non-contiguous memory

allocation. In contiguous memory allocation, each user process is allocated

to single contiguous section of memory. While in non-contiguous memory

allocation each process can be allocated to different section of memory.

The ultimate goal of the memory management unit is an efficient

utilization of memory which lead to minimum internal and external

fragmentation which we will discuss in next section.

6.6 CONTIGUOUS MEMORY ALLOCATION

This is an early method of memory Management. The main memory holds

both operating system and user processes. Usually, memory is divided into

two party t. One part of the memory holds operating system, while other

part holds users processes. Generally, the OS resides at lower memory

section of the main memory and user processes reside at high memory

section. In contiguous memory allocation, a process is loaded to single

contiguous memory section.
MCA-114/104

Figure 6.6: Hardware address protection with base and limit registers

[1].

Before discussing the allocation of main memory to different processes,

we should first discuss how we prevent one process from accessing

memory of another processes. This is achieved by using two registers: a

relocation register and a limit register (as shown in figure 6.6). The

relocation register holds starting address of a process in main memory

while, the limit register specify the limit or size of memory from starting

address. Each logical address of a process generated by CPU must falls

within the specified range given by limit register. When the CPU

scheduler selects a process from the ready queue, the dispatcher loads

valid values in these registers as a part of context switch. Every address

generates by the CPU is checked against the values in the registers. The

memory management unit dynamically maps logical addresses to physical

addresses by adding the value of relocation register to the logical address.

Memory allocation :

Fixed partitioning scheme: Now, we are ready to discuss memory

allocation to processes. One of the simplest memory allocation scheme is

fixed sized partition where the memory is divided into several equal sized

partitions. Here, the degree of multiprogramming is fixed by the number

of partitions. CPU scheduler selects one process from ready queue and

places it into one of the available partition. When the process terminates,

the partition is freed and it becomes available for other processes. This

scheme is used in IBM OS/360 and no more used now.

Variable partitioning scheme: Another contiguous memory allocation

scheme is variable partitioning scheme which is more efficient than fixed

partitioning scheme. In this scheme, OS maintains a table that keep track

of available and occupied sections of memory. Initially, a large block of

memory also called as a large hole is available. As the processes execute,

and memory is allocated and deallocated, several holes of variable sizes

are created. These holes are scattered throughout the main memory. At MCA-114/105

any time, CPU scheduler selects a process from the ready queue and OS

searches for a sufficient large hole. If a hole is available to accommodate

this process, then it is loaded into that hole. Otherwise, it waits till a large

hole in the memory becomes available to satisfy its memory requirement.

Meanwhile, some other process is selected from the ready queue and

loaded into a hole which is large enough to accommodate it.

For example, Figure 6.7 shows effect of process allocation in variable

partitioning in 64 Mbytes of main memory. Initially, main memory is

empty, except for the OS (a). Then three processes 1,2,3 are loaded in,

starting where the operating system ends and occupying as much space as

required by each process (b, c, d). This results a “hole” at the end of

memory which is too small for a fourth process. At some point, the

process 2 in memory is not ready. The operating system swaps out process

2 (e), and makes sufficient space to load a new process 4 (f). This creates

another small hole as the process 4 is smaller than process 2. Later, a point

is reached at which process 1 in main memory is not ready (or in blocked

state), but process 2 (wakeup from blocked state) is available. Since there

is insufficient space in main memory for process 2, the operating system

swaps out process 1(g) and swaps in process 2 (h) back into main memory.

Figure 6.7 : Effect of Variable Partitioning[4]
MCA-114/106

There exists name strategies to search for a sufficiently large hole for a

process. The most commonly used strategies are: first fit, best fit and

worse fit.

First fit : It searches for a suitable hole for a process from beginning of a

list of holes and stops as soon as it finds the first hole that is large enough

to accommodate this process. This way it allocates the first available hole

from the set of holes to a process.

Best fit : It searches the entire list of available holes to select a smallest

hole that can accommodate a process. It allocates a smallest hole to a

process.

Worse fit : It also searches entire list of holes to pick up a largest hole for

a process which can accommodate a process. It allocates a largest hole to a

process.

The first fit and best fit are faster and storage efficient compared to worse

fit. Generally, the first fit does faster allocation of hole to a process than

best fit.

Illustrative Example: Given five memory partitions of 100Kb, 500Kb,

200Kb, 300Kb, 600Kb (in order), how would the first-fit, best-fit, and

worst-fit algorithms place processes of 212 Kb, 417 Kb, 112 Kb, and 426

Kb (in order)? Which algorithm makes the most efficient use of memory?

 First-fit :

 212K is put in 500K partition

 417K is put in 600K partition

 112K is put in 288K partition (new partition 288K = 500K - 212K)

 426K must wait

 Best-fit :

 212K is put in 300K partition

 417K is put in 500K partition

 112K is put in 200K partition

 426K is put in 600K partition

 Worst-fit :

 212K is put in 600K partition MCA-114/107

 417K is put in 500K partition

 112K is put in 388K partition

 426K must wait

 In this example, best-fit turns out to be the best.

Fragmentation : Fragmentation is a situation in which memory space is

not utilized efficiently which lead to wastage of space and degradation in

system performance. This is a weakness of any memory allocation

strategies. Fragmentation is of two types: internal and external

fragmentation. Both the first fit and best fit strategies suffers from external

fragmentation. The first fit can perform better in some systems while best

fit could be better for other systems.

External fragmentation : When processes are allocated and deallocated

during their executing, a large memory hole is broken down into small

many small holes. External fragmentation exist when these holes are not

sufficient individually to satisfy memory request of a process. In worse

case of the external fragmentation exist when there will be a hole or a

waste block of memory between every two processes.

Internal fragmentation : Consider the fixed partitioning scheme where

the main memory is divided into several equal sized partition. Suppose, a

process require memory less than the size of the partition. When the

process is allocated memory into any of available partition, a small

amount of memory space will be wasted. For example, if the partition size

is 1024 bytes and the process requires 1022 bytes, then a hole of 2 bytes

will get wasted. This extra 2 bytes of memory space is internal

fragmentation.

Solution of External fragmentation : One solution of external

fragmentation is compaction. In compaction, the contents of the memory

are shuffled so that all free block of memory or holes comes together at

one end to form a big hole. While on other end of memory, all occupied

blocks of memory are shifted. Compaction is a costly scheme and it is not

always possible. Another solution to external fragmentation is to allow

logical address space of a process to be non-contiguous. Thus, a process

can be allocated in multiple parts to anywhere in the available memory.

This technique is implemented through segmentation and paging which

we will discuss next.

Check your progress

1. How does external fragmentation different from internal

fragmentation?

MCA-114/108

2. What is compaction?

3. Describe the three strategies of memory allocation to a process.

4. How does the contiguous memory management is

implemented?

5. Explain the following terms:

a) First fit

b) Best fit

c) Worse fit

6. How does the fixed sized partition differs from variable

position scheme?

6.7 PAGING

Paging is another memory management scheme which offers non-

contiguous memory allocation. The major problem with the segmentation

is external fragmentation. This problem of external fragmentation also

there in backing store (swap space inside secondary storage) secondary

storage due to the result of swapping. However, the Paging does not

suffers from this problem and there is no need for compaction. Due to its

advantages over earlier methods, paging is used in modern operating

system in various form.

Basic method: In paging, a process is broken into several pages, each of

same size. The main memory is also broken into equal sized blocks called

frames. Each of these frames is of same size as that of pages. When a

process starts its execution, its pages are loaded into any available frames

of main memory. With this scheme, a process having logical address space

of 2^32 can be executed even though the system has less than 2^32

physical address space or memory (memory is bytes addressable).

When CPU generates a virtual address for a process, it consists of two

parts: a page number p, and offset d.

The page number is used to locate associated frame number from its page

table as shown in Figure 6.8.

MCA-114/109

Figure 6.8 : Paging hardware [1].

The page table contains entries for each page of the process along with its

associated frame number. The offset specifies the address of a word within

the page. Mappings of logical memory pages of a process to frames in

physical memory are shown in Figure 6.9.

Figure 6.9: Paging model of logical and physical memory [1].

The page size is in the power of 2 which typically range from 512 words

(or bytes in byte addressable system) to 1G words. The page size as the

power of 2 makes the address translation easier. If a logical address space
MCA-114/110

of a process is 2^m words and page size is 2^n words, m-n bits of the

logical address would be used to find the page number in the page table

and n bits would be used to locate the word in its frame. Thus a logical

address has following format. Here, p is used to index into a page table

and offset d is displacement within the page. For example, consider a

system with 32 word memory and 4 words page size as shown in Figure

6.10.

Figure 6.10 Paging example for a 32-byte memory with 4-byte pages [1].

Here, logical addresses are n=2 bits and number of bits to address pages

are m=4 bits. The Figure shows mappings of logical addresses containing

page numbers and offsets to corresponding memory frames. The logical

address 0 is page number 0 and offset 0. By Looking into the page table,

we find that page 0 resides at memory frame number 5 and the logical

address 0 is mapped to physical address 20 = 5*4+0. Similarly, the logical

address 11 is page 2 and offset 3 which is mapped to memory frame 1 at

physical address 7 = 1*4+3. Please note that the page and frame

numbering starts with 0.

A 32 bit CPU, generally contains the page table entries of 32 bits (for each

frame). The 32 bit frame number in the page table can point to 2^32 or 4 G

memory frames. If the page and frame size is 4k or 2^12 words, the MCA-114/111

system can point to 16 TB or 2^44 words. Thus, a 32 bit CPU uses 32 bit

address for every process which can point to 2^32 words or 4GB process

size. When CPU scheduler selects a process from ready queue, its size is

expressed by the number of pages it contains. Each page requires one

memory frame. So, if a process consists of n pages, n memory frames

should be available to execute it. The first page is loaded into one of the

available memory frames and the frame number is put into page table.

Similarity the second page is also loaded into one of the available memory

frame and this mapping is put into page table as an entry. This will

continue for all n pages as shown in Figure 6.11.

Figure 6.11 Free frames (a) before allocation and (b) after allocation [1].

OS maintains a copy of page table in memory for a process it want to

execute. This copy of page table is used for translation of logical addresses

to physical addresses during its execution. CPU dispatcher also uses this

copy to define hardware page table when it allocates process to CPU. OS

should be aware of which memory frames are allocated, which are

available, number of memory frames etc. For this, it maintains a frame

table which contains details for every memory frame. The frame table

indicates whether a frame is occupied or available, which page and which

process has occupied the frame.

The paging scheme suffers does not suffer from external fragmentation.

However, there is an internal fragmentation due to the last page of a

process, if memory requirement of the last page does not exactly equal to

frame size. For example, if a process size is 16400 words and page size is

1024 words, the process will require 16 pages + 16 words. Thus, the

MCA-114/112

process will requires total-17 pages, however the last 17th page will only

contain 16 words data and remaining will be unoccupied. When this last

page will be allocated a frame, a space of 1024-16=1008 words in the

frame will be unoccupied which will cause internal fragmentation. In

worse case a process could contain n pages + 1 word which would require

total n+1 frames. This suggests that smaller page size is desirable. But,

this would result in too many pages which would require too much

overhead to maintain page table entries. This overhead reduces as we

increase page size. Also, disk I/O will be more efficient when the data size

to be transferred is larger. Page size has grown over the time as size of

processes, main memory, and data sets increases. In modern operating

systems, usually page sizes are 4 k words and 8 k words while, some

operating systems have even larger than that.

Hardware Support :

OS maintains separate page table for each process. A page table is brought

into the memory during execution of a process and a page table base

register (PTBR) points to this page table. The value of the PTBR is stored

in PCB on the process and its value changes by CPU dispatcher. The

major problem with this scheme is that, it requires two memory access to

access a desired memory location (or translation of a logical address to

physical address). Thus, the memory access is slowed by the factor of 2

for access to each physical address. One memory access requires to access

the page table in memory based on PTBR value. The page table gives

corresponding frame number. The frame number is used to access desired

memory location which requires this another memory access. This

problem can be addressed by using a set of dedicated registers to maintain

a page table. These registers are built with high speed logic. Each mapping

of logical to physical address must go through these registers. The values

of these registers are loaded by CPU dispatcher during execution of a

process. However, this method works satisfactory only if the page table

contains small entries such as 256 entries. But the size of page table

growing continuously and the modern operating systems contain around

millions of entries in a page table. So it is not feasible to maintain the page

table using these fast registers.

Avoiding extra memory access: A standard solution to above problem is to

use a small high speed associative memory called TLB (translation look-

aside buffer) as shown in figure 6.12. It consists of two parts: a key and a

value. All comparison are done on keys simultaneously. The TLB contains

only few page table entries. When a logical address of a process is

presented to TLB, the page number is compared with entries in the TLB.

If the match is found, its frame number is accessed and used to get its

physical memory location. If the page number is not found in the TLB, OS

looks into the page table in the memory. The frame number associated

with the page is then accessed to get its actual physical memory location.

We then add this frame entry in the TLB, so that next time when the page

is again referenced, the corresponding frame number is quickly accessed.

 MCA-114/113

Figure 6.12 : Paging hardware with TLB [1].

If the TLB is full of entries, then one of its entries must be removed to add

above entry in TLB. Existing entries are replaced with new entries using a

Replacement strategy that may vary from LRU (least recently used) to

random. Every time when a new process is executed, the TLB must be

cleared to accommodate new entries of the page table. This ensures that

the new executing process could not access old entries in the TLB that

could lead to wrong address translation. The flushing of TLB every time

when a new process is executed can be avoided by storing an address

space identify (ASIDs) along with key and value in each entry of TLB.

The ASID uniquely identifies each process in a system. So, if a new

process executes, its ASID is matched with the one stored in the TLB. If it

matches, the page number is then matched and its frame number is

retrieved.

Illustrative Example: Consider a paging hardware with a TLB. Assume

that the entire page table and all the pages are in the physical memory. It

takes 10 milliseconds to search the TLB and 80 milliseconds to access the

physical memory. If the TLB hit ratio is 0.6, what is the effective memory

access time (in milliseconds) if there is no page-fault?

Solution: As both page table and page are in physical memory

Effective memory access time

 = hit ratio * (TLB access time + Main memory access time) + (1 - hit

ratio) * (TLB access time + 2 * main memory time)

= 0.6*(10+80) + (1-0.6)*(10+2*80)

MCA-114/114

= 0.6 * (90) + 0.4 * (170) = 122 ms.

Protection: In paging environment, a memory protection is achieved by

using a valid-invalid bit in each entry in a page table. If this bit in the page

table entry is set to valid, the page is in the logical address space of the

process. And if, it is set to invalid, the associated page is not in the logical

address space of the process. For example, consider a system with 14 bit

address space and a page size of 1024 words as shown in Figure 6.13.

Figure 6.13: Valid (v) or invalid (i) bit in page table [1].

Suppose a process is of size 10468 words. The process will require total 6

pages =ceiling (10468/1024). While the number of entries or pages in page

table is 8 = 2^14/1024. The pages 0,1,2,3,4,5 contain valid frame number

since these pages belong to the process. So the corresponding valid-invalid

bits are set to valid. While, the pages 6,7 does not belong to the process, so

their valid-invalid bit entries are set to invalid.

Rarely, a process uses all the pages in a page table. Many of entries in the

page table are invalid. But they still occupies valuable space in memory.

This can be avoided by using page table length register (PTLR) that points

to the length of the page table. Every logical address of a process is

checked against this register value to verify the address is in valid range of

the process

Shared pages : Another advantage of paging is sharing of a common code

among more than two processes. The common read only code that never

changes during execution can be shared by multiple processes. The pages

containing common code that belong to several processes have same

entries in their page table and thus they are all mapped to same memory MCA-114/115

frames. For example, consider a system with 40 user are using text editor

as shown in Figure 6.14.

Figure 6.14: Sharing of code in a paging environment [1].

The text editor requires 150 KB for code and 50 KB for data. Thus, to

support 40 user, the system will requires total 8000 KB memory space.

But, with page sharing scheme, the system will require only 2150 KB

memory space. Assume that the page size is also 50 KB. Now, each user

process contains 4 pages (200/50) of which 3 are for common code and 1

page for their data. So, the pages containing common code needs only

three memory frames while the page containing data specific to each

process require one frame each.

Illustrative Example : computer system implements 8 kilobyte pages and

a 32-bit physical address space. Each page table entry contains a valid bit,

a dirty bit, three permission bits, and the translation. If the maximum size

of the page table of a process is 24 megabytes, what is the length of the

virtual address supported by the system?

Solution :

210 = 1K

MCA-114/116

220 = 1M

230 = 1G

240 = 1T

Page Size= 8KB=23 * 210 =213 words or byte

Number of bits for offset= 13 bits

For 32 bit physical address, 32 - 13 = 19 page frame bits must be there in

each PTE (Page Table Entry).

We also have 1 valid bit, 1 dirty bit and 3 permission bits.

So, Page Table Entry Size = 19 + 5 = 24 bits = 3 bytes.

Given in question, maximum page table size = 24 MB

Page table entry size = Total number of pages in page table * size of an

entry

Total number of pages in page table= No. of PTEs = 24 MB / 3 B = 223 =

8 M

Number of bits required to address pages in page table (P) = 23 bits

So, length of virtual address =23+13= 36 bits (assuming byte addressing)

Check your progress

1. Consider a paging hardware with a TLB. Assume that the entire

page table and all the pages are in the physical memory. It takes

10 milliseconds to search the TLB and 80 milliseconds to

access the physical memory. If thse TLB hit ratio is 0.6, what is

the effective memory access time (in milliseconds).

2. Consider a system with byte-addressable memory, 32 bit logical

addresses, 4 kilobyte page size and page table entries of 4 bytes

each. What is the size of the page table in the system in

megabytes?

3. Does paging scheme suffers from external fragmentation?

4. Paging suffers from ___________ _______________ and

Segmentation

suffers from __________ ____________.

MCA-114/117

6.8 STRUCTURE OF THE PAGE TABLE

The modern computer systems support a large logical address spaces

which typically vary from 2^32 to 2^64 words. This results increase in

size of the page table and it will take more main memory space. For

example, consider a system with 32 bit logical address (2^32 logical

address space) and it supports the page size of 4k or 2^12 words. This

system will require total 2^20 =2^32/2^12 entries (around 1 million

entries) in the page table. If a page entry is 4 byte, then the page table will

take 4 M words = 2^20*4 bytes or 4 MB (if the memory is byte

addressable) space. But, we do not want to allocate this much block of

memory contiguously. One solution to this problem is to divide the page

table into several page tables which we will see next.

Hierarchical paging : A two level paging is most basic structure in

hierarchical paging scheme. In this structure, a page table is divided into

two page tables: outer and inner page table as shown in Figure 6.15.

Figure 6.15 : A two-level page-table scheme [1].

In this scheme, a logical address generated by CPU is divided into three

parts. One part of the logical address is used to look into the outer page

table is used to each entry in outer page table is used to access entries in

inner page table. For example, consider again the system that supports 32

bit logical address and the page size of 4 K words. Under two level paging

MCA-114/118

scheme, a logical address generated by CPU is divided into three parts as

shown below.

The first part p1 is 10 bit page number which is used to index into pages of

outer page table. The second part p2 is also 10 bit page number which

gives displacement within a page in inner page table. The third part d is 12

bit page offset which is added to the address of the frame to get the desired

memory location.

For a 64 bit system, the two level paging scheme will not be suitable. To

illustrate this, consider a 64 bit system with page size of 4 K words. Under

2 level paging, the outer page table will contain 2^42 entries and the inner

page table will contain 2^10 entries. If each entry in outer page table is 4

bytes, then the outer page table will require 14 GB= 2^42*4. This is

significant large page table size. To overcome this problem, we can further

divide the outer page table giving the level paging as shown below.

Under three level paging scheme, the outer page will contain 2^32 entries

which will result in 16 GB= 2^32*4 bytes size.

Disadvantage : The major problem with hierarchical paging scheme is

that the number of memory access increases with increase in number of

page tables. So, the hierarchical paging scheme is not suitable for such

architectures.

Illustrative Example : Consider a system using 2 level paging applicable

page table is divided into 2K pages each of size 4KB. If size of physical

memory is 64 MB which is divided into 16K frames. Calculate the length

of logical and physical address assuming memory is byte addressable.

Solution :

Number of pages or entries in outer page table size= 2K=2*210= 211.

So the number of bits required to address each pages of outer page table =

11 bits

Inner page table size=4KB=22*210=212 words. (Since memory is byte

addressable, 1 byte is equivalent to 1 word)

MCA-114/119

So the number of bits required to address each pages of inner page table =

12 bits

Size of physical memory = 64 MB= 26*220 = 226 words. (Since memory

is byte addressable, 1 byte is equivalent to 1 word)

Total number of physical memory frames= 16K=24*210= 214

 So, the number of bits required to address each frame in physical

memory= 14 bits

Physical memory frame size = Size of physical memory/total number of

physical memory frame

= 226/214 = 212 words

So, number of bits required for page offset = number of bits required for

frame offset= 12 bits

Inverted page table : Generally, each process has its own page table for

logical to physical address mapping. The modern computer system usually

have around millions of entries in a page table. We have seen earlier that

as number of entries in a page table increases, the size of page table also

increases. The large page table consumes more space in main memory.

This problem can be solved by using inverted paging as shown in figure

6.16.

In inverted paging, the OS maintains a single page table for all process.

So, all process are using a same page table. The number of entries in the

inverted page table are equal to the number of frames in main memory.

Since, each process uses the same page table, an address space identifier is

required to uniquely identify each process's page. Each entry in the

inverted page table also contains a process ID as an address space

identifier.

<process id, page number, offset>

MCA-114/120

Figure 6.16 : Inverted page table [1].

When CPU generates a logical address, the part of the logical address

containing process ID and page number are used to search against process

IDs and page numbers in inverted page table. If a match found, associated

frame number is retrieved. The frame number along with the offset are

then mapped to actual physical memory location.

Disadvantage : The major disadvantage with inverted are long search

time into the page table and implementation of shared memory. Since, in

the inverted page table there is a single entry for each memory frame, but

for implementing shared memory multiple entries of a memory frame for

other process must be present. Inverted page table and its variations are

used in 64 bit PowerPC, UltraSPARC and the IBM RT.

Illustrative Example : In a 64 bit machine, with 2GB RAM and 8KB

page size, how many entries will be there in the page table if it is inverted

page table?

The number of entries in page table of an inverted page table is equal to

number of frames in the main memory.Number of frames in RAM= Size

of RAM/page size = 2 ∗ 230/(23 ∗ 210) = 218=256 K

6.9 SEGMENTATION

Segmentation is a memory management scheme which supports non-

contiguous memory allocation. In this scheme, a process could be

allocated in different parts and each part may reside at different part of the

memory. In other words a process is divided into several segments and

each segment may vary in size. For example, segments of a process may

correspond to stack, sqrt function, main program, variables etc. Each

segment of a process can be allocated to different memory segments.

Thus, a logical address space of the process is a collection of all segments MCA-114/121

associated with the process. Each segment is identified by its segment

number. A logical address generated by CPU in this scheme consists of

two parts: segment number and offset.

<Segment number, offset>

Figure 6.17 : Segmentation hardware [1].

This logical address must be mapped to actual main memory address. This

mapping is a provided by a segment table. Each process has its own

segment table as shown in Figure 6.17. Every entry in the segment table

consists of two fields: a segment base and a segment limit. The segment

base specify the starting address of a segment in main memory. While, the

segment limit specifies length of the segment. When CPU generates a

logical address for a process, it consists of a segment number s and a

segment offset d. The segment number is used to index into its segment

table. The segment offset must be between 0 and segment limit. If, the

segment offset is outside of this range, OS will generates trap. But when

the segment offset is legal, it is added to the segment base address to

generate the required address in the memory.

As an example, consider a situation given in Figure 6.18. The physical

memory contains fives segments numbered from 0 through 4 as shown.

The segment table has one entry for each segment containing base address

(the beginning address of the segment in physical memory) and limit (the

length of that segment). For example, segment 3 is 1100 bytes (or words)

long and begins at location 3200. Thus, a reference to word 44 of segment

2 is mapped onto location 3200 +44= 3244. A reference to word 107 of

segment 2, is mapped to 4300 (the base of segment 2) + 107 = 4407.

MCA-114/122

Figure 6.18 - Example of segmentation [1].

Advantage: In segmentation, there is no internal fragmentation. Also, a

segments can be shared between processes, and each segment can have

some protection info; for example, the code section could be read-only.

Disadvantage : There is an external fragmentation in segmentation.

Illustrative Question : For each of the four processes P1, P2, P3 and P4.

The total size in kilobytes (KB) and the number of segments are given

below.

Process Total size (in KB) Number of segments

P1 195 4

P2 254 5

P3 45 3

P4 364 8

The size of an entry in the segment table is 8 bytes. The maximum size of

a segment is 256 KB. What is the size of segment table?

Solution :

Number of segments= 4+5+3+8= 20

Number of bits required to address each segment= 5 bits (since 2^5 = 32

and 2^4=16)

MCA-114/123

Maximum segment size= Max (195/4,254/5, 45/3,364/8) = Max

(49,51,15,46)= 51 bytes.

Number of bits required for segment size or segment offset= 6 bits (since

2^6 = 64 and 2^5=32)

Size of segment table=number of segment× segment table entry size=

2^5×8= 256 bytes

Check your progress

1. What is the major problem with segmentation?

2. What are the advantages and disadvantages of inverted page

table?

3. What are the advantages of using hierarchical page table over

traditional page table?

4. How two level page table is different from inverted page table?

6.10 VIRTUAL MEMORY

Earlier, we have seen that an entire process (all its pages) must be

brought into the main memory for its execution. Virtual memory is a

technique which facilitate execution of a process which is not completely

brought into the memory. With this technique, we can execute a process

whose pages are not completely loaded into the main memory. Thus, a

process which is even larger than main memory can be executed with this

scheme as shown in figure 6.19.

Figure 6.19: Diagram showing virtual memory that is larger than

physical memory [1].
MCA-114/124

It has been shown that an entire process is not needed to load into the main

memory for its execution because certain features and part of a process is

rarely required. Even if, the entire process or pages of the process are

required, but all pages are not required at the same time during its

execution. There are many benefits of bringing only required pages during

execution:

1. A process or program larger than the main Memory can be

executed. So, programmers need not worried about the size of the

program. They can write a program even much larger main

Memory.

2. Since, the user program could take less physical memory, more

programs can be loaded into the memory and it will increase

degree of multiprogramming of the system. Thus, the CPU

utilization and throughput also get increased.

3. Less I/Os (only for some pages) will be required to swap in or

swap out a process.

The virtual memory is generally implemented through demand paging

which we will discuss now.

6.11 DEMAND PAGING

Demand paging is commonly used technique to implement virtual

memory. In this technique, pages are loaded into the main memory only

when they are required during execution. Thus, Pages which are never

needed, will never be loaded into the main Memory. Demand paging is

similar to paging system with swapping where processes are reside on

secondary memory. But in demand paging instead of swapping entire

pages of a process, it swaps only those pages into the memory that are

currently needed. A demand paging never brings a page into the memory,

if it will not be required.

Implementation : When a process needs execution, the system guesses

which pages it will be using. Only these pages are brought into the

memory. This decreases the swap time and main Memory space. This

scheme requires some sort of hardware support to differentiate between

those pages that are on memory and those pages that are on the disk. The

valid -invalid bit that we have discussed earlier can be used here with little

modification. Here, if the bit is set to valid, then the associated page is

legal (the page is in logical address space of the process) and is present in

the memory. But if this bit is set to invalid, the associated page is either

not legal (the page is not in logical address space of a process) or currently

on the disk as shown in Figure 6.20.

 MCA-114/125

Figure 6.20 : Page table when some pages are not in main memory [1].

If we guess right pages and brings into the memory these pages, the

process will execute normally like all pages are brought into the memory.

But when OS try to access a page that is not in the memory i.e marked

invalid in page table entry, a page fault will be generated. The page fault

situation is handled as follow (as shown in Figure 6.21):

1. The requested memory address is first checked, to make sure it

was a valid memory request.

2. If there is request for invalid page, the process is terminated.

Otherwise, the page must be bring into the physical memory.

3. A disk operation is scheduled to bring in the required page from

disk. (This will usually block the process to waiting state and CPU

busy with some other process)

4. When the I/O operation is completed, the process's page table is

now updated with the new frame number (one of free frame from a

free-frame list), and the invalid bit is changed to valid to indicate

that the requested page is brought into the memory.

5. The instruction that caused the page fault is restarted from the

beginning when this process gets CPU.

MCA-114/126

Figure 6.21 : Steps in handling a page fault [1].

In extreme case, a process starts execution with a page fault i.e. no pages

loaded into the memory. After the page fault, the page is loaded into the

memory. The process continue to fault until all needed pages are brought

into the memory. After that, the process continue to run normally with no

more page fault. This scheme is pure demand paging. For example,

consider a system with 5 process and total 40 frames in memory. The size

of each process is 10 pages, however each process is using its only 5 pages

and rest 5 pages are unused throughout execution of each process. Under

this scenario, the system could run all the processes without any page

fault. Demand paging has saved 50% of I/O for each process by not

bringing the remaining 5 pages into memory. This way, it increases degree

of multiprogramming along with CPU utilization and system throughput.

Illustrative Example : Let the page fault service time be 10ms in a

computer with average memory access time being 20ns. If one page fault

is generated for every 106 memory accesses, what is the effective access

time for the memory?

Let P be the page fault rate

Effective Memory Access Time = p * (page fault service time) +

 (1 - p) * (Memory access time)

 = (1/106)* 10 * (106) ns +

 (1 - 1/106) * 20 ns

 = 30 ns (approx)
MCA-114/127

6.12 PAGE REPLACEMENT

When a user process is executing and at some point of time, it

generates a page fault. The OS will then find a free frame. But, OS notices

that there is no fee frame available in free frame list and all frame are

already occupied. Then, a memory frame must be freed and allocated to

the process which fault for the page. This operation is performed by a

Page Replacement Algorithm. During a page fault service routine

following activities are performed:

1. Find the location of the page on the disk.

2. Find a free memory frame.

a) If a free memory frame is present in the free frame list, use it.

b) If there is no free frame in free frame list, use a page

replacement algorithm to select a victim frame.

c) Write the victim frame to the disk and change related values

in its page table.

3. Transfer the desired page stored on the disk into the free frame.

Change associated values in page table and frame table.

4. Restart the process.

Demand paging requires Page Replacement Algorithm and Frame

Allocation Algorithm. Multiprogramming systems have multiple

processes in the main memory. We must allocate a certain numbers of

frames to each process. This is done by a Frame Allocation Algorithm.

While, a Page Replacement Algorithm selects a victim frame during a

page fault.

Reducing page fault service time : In above page fault service routine,

you have noticed that of there is no free frame, two page transfer (one for

swap out and one for swap in) have occurred. This doubles page fault

service routine which ultimately increases effective access time. This can

be avoided by using a modify (or a dirty bit) in the page take entries which

requires a hardware support. When a page is modified during execution of

the associated process it’s modify bit is set to 1. Whenever a page

replacement algorithm selects a page for replacement. Before writing its

content on disk, OS checks it’s modify bit. If its modify bit is set to 0, then

the page has not been modified and there is no need to write it on the disk.

But when its modify bit is set to 1, this indicates that the page has been

modified. Under this situation, the page must be written to disk before it is

replaced by the new page. This technique only applies to read only pages

(like binary executables) that could not be modified.

Evaluation criteria : There are many Page Replacement Algorithm, but

we generally selects the one which gives minimum page faults. The page

replacement algorithms are evaluated on this parameter by running them
MCA-114/128

on a particular string of memory references. This string of memory

references also known as reference string. This reference string can be

generated artificially with any random references of memory. This can

also be generated by tracing a system and records the addresses of

memory references. For example, consider the following reference string.

0100,0432,0101,0612,0102,0103,0104,0101,0611,0102,0103,0104,0101,0

610,0102,0103,0104,0101,0609,0102,0105

If, pages are 100 bytes per page, above sequence can be reduced to

following reference string :

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1

To determine the number of page fault associated with a particulate page

replacement algorithm, we need to know the number of frames available

to it. Generally, as the number of frames available increases the number of

page fault also decreases as shown in Figure 6.22.

Figure 6.22: Graph of page faults versus number of frames [1].

For the earlier reference string and with 3 available memory frames, we

will have three page faults. Now, we will discuss various types of page

MCA-114/129

replacement algorithms along with their evaluation on a particular

reference string.

FIFO Page Replacement :

First in First out is simplest page replacement algorithm where the oldest

frame is always selected for replacement. FIFO algorithm maintains

arrival time for each page and when a page is to be replaced, the oldest

page is selected based on the arrival times of pages. The algorithm can be

easily implemented through FIFO queue. When a new page enters the

memory, it is inserted at the tail of queue. A victim page to be replaced is

selected from the head of the queue.

For example, consider the reference string discussed earlier and there are

three memory frames available. Initially, the first three references (7, 0, 1)

cause page fault and these pages are brought into the available frames.

Next, the page reference of 2 causes page fault. Since, the page 7 is

brought first into the memory, it is replaced with page 2. The reference for

page 0 does not cause any page fault as it is already present in memory.

Now, the reference for page 3 replaces page 0 because it is brought first

after page 7. Similarly, at any time if a page fault occurs, it is replaced

with the page brought first into the memory as compared with other two

pages into the memory frame. This process continue for reference to

remaining pages and total 15 page fault occurs. The process is shown in

figure 6.23 where every time when a page fault occurs the replaced page is

shown in one of the three frames.

Figure 6.23 : FIFO page-replacement algorithm. [1]

In this page replacement algorithm, everything works perfectly fine until

the heavily referenced or the active page is available in memory. But when

the active page is replaced with some other pages, a page fault occurs

immediately or in near future to bring back the active page into the

memory. This happens because of bad page replacement algorithm choice.

It is generally obvious that there will be less page fault as we increase the MCA-114/130

available memory frames. But, this assumption is not always true because

of Belady anomaly. It states that for some page replacement algorithm, the

number of page fault may increase as we increase the number of memory

frames available. This is also shown in figure 6.24.

Figure 6.24: Page-fault curve for FIFO replacement on a reference string

[1].

Optimal Page Replacement

The optimal page replacement algorithm guarantees minimum page faults

and never suffers from Belady anomaly. However, this algorithm

practically don't exists and generally used for performance comparison

with other algorithms. The optimal page replacement algorithm replaces

the page that will not be used for longest period of time.

For example, consider the same reference strings discussed earlier. This

algorithm will give a total 9 page faults. As usual the first three references

(7, 0, 1) initially don't exist in memory and this causes three page fault.

The next reference of page 2 will replace the page 7 since, it will not be

used for longest period of time as compared to pages 0 and 1. Now, the

reference for page 2 causes page fault and it replaces the page 1. In other

words, we can find a victim page 1 by marking in the reference strings, the

first reference of the pages (2,0,1) currently available in memory frames

after the current reference page and select the page which is marked near

the end of the reference strings. As we continue further till the last

reference of the page, this algorithm will give total 9 page faults (as shown

in figure 6.25) which is twice as good as FIFO replacement algorithm.

MCA-114/131

Figure 6.25 : Optimal page-replacement algorithm[1]

LRU Page Replacement

LRU page replacement algorithm selects a page for replacement which has

not been used for longest period of time. LRU algorithm maintains last

used time of each page. When a page fault occurs, LRU selects the page

which has not been used recently. This algorithm is similar to optimal

page replacement where we look backward in time for selecting a page for

replacement. One strange property of both OPT and LRU replacement

algorithm is that the number of page faults on a given reference strings S

is same as the number of page faults in reverse of the reference studying

Sr.

For example, consider the same earlier reference string. The first five page

faults for LRU is same as the optimal page replacement algorithm which is

shown in figure 6.26.

Figure 6.26 : LRU page-replacement algorithm[1]

The 6th page fault occurs when reference for page 4 in the reference string

occurs. At this time, LRU algorithm will select page 2 for replacement. MCA-114/132

We can find the page to be replaced by marking last reference of each

pages (2, 0, 3) present in memory frame before the current reference string

(page 4). The page which is marked near the beginning in reference string

is then selected for replacement. When the algorithm is run on whole

reference string, it will give total 12 page faults. The result is much better

than FIFO replacement algorithm. The LRU page replacement algorithm

is considered as a good replacement algorithm and often used in operating

systems. Like optimal page replacement, LRU also never suffers from

Belady anomaly. LRU is implemented in two ways:

Counter : In counter implementation of LRU page replacement, a page

table consists an extra entry which contain time-of-use field. A logical

clock or counter is added to CPU which is incremented for every page

reference. Whenever a reference for a page occurs, the content of the

logical clock is copied to the time-of-use field of the page in the page

table. This way, the page table maintains the last references of each pages.

Wherever a page fault occurs and a page need to be selected for

replacement, entire entries in the page table is searched to find the page

with smallest time value. So, this implementation requires search of entire

page table.

Stack : In this implementation of LRU, a stack of page numbers is

maintained. Whenever a reference for a page occurs, the page number is

pushed into the stack. If the page number is not present in the stack, it is

simply pushed at the top of the stack. Otherwise if the page number

already exists in the stack, it is first removed from the stack and pushed at

the top of the stack (as shown in figure 6.27).

Figure 6.27 : Use of a stack to record the most recent page references[1]

The stack update operation is a little expensive but it do not requires any

search like the counter implementation. The stack is generally

implemented through doubly linked list with a head and tail pointer.

Illustrative Questions: Given page reference string : MCA-114/133

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6

Assume that there are 4 page frames which are initially empty. Compare

the number of page faults for LRU, FIFO and Optimal page replacement

algorithm.

Solution :

First In First Out : The arrow pointing to the memory frame is first came

(among others currently in memory) which is to be replaced in case of

page fault at particular page request.

Total page faults = 14

Least Recently Used: The arrow pointing to the memory frame is Least

Recently Used frame which is to be replaced in case of page fault at a

particular page request.

MCA-114/134

Total page faults = 10

Optimal Page replacement : The arrow pointing to the memory frame is

the page that will not be used for longest time as compared to other pages

currently in memory frame and it is to be replaced in case of page fault at

a particular page request.

Total page faults = 8

Check your progress

1. Assume that there are 3 page frames which are initially empty.

If the page reference string is 1, 2, 3, 4, 2, 1, 5, 3, 2, 4, 6, what

is the number of page faults using the optimal replacement

policy?

2. Consider a main memory with five page frames and the

following sequence of page references: 3, 8, 2, 3, 9, 1, 6, 3, 8, 9,

3, 6, 2, 1, 3. Which one of the following is true with respect to

page replacement policies First-In-First Out (FIFO) and Least

Recently Used (LRU)?

(A) Both incur the same number of page faults

(B) FIFO incurs 2 more page faults than LRU

(C) LRU incurs 2 more page faults than FIFO

(D) FIFO incurs 1 more page faults than LRU

6.13 ALLOCATION OF FRAMES

One of the major concern in virtual memory environment is how

do we allocate a fixed available memory to various processes. For MCA-114/135

example, if we have 100 free frames and the system has only two

processes, how many frames each process will get? One basic strategy is

to consider a single user system. Assume the system supports 128K

memory with page size of 1K. If the OS needs 28 memory frames, we will

left with 100 free frames for use processes. Under pure demand paging,

when processes starts their execution, they generate page faults. After 100

page faults, all free frames will be allocated to these processes. When the

free frame list will be exhausted, a page replacement algorithm will

replace one of the page on the existing frames with new page to handle

101 page fault. This continue to further page faults. At the end when all

process finish their execution, all free frames are added back to free frame

list.

The above basic strategy requires some considerations. We cannot

allocates more than available free frames to process. Also, a process must

get minimum number of frames to hold different pages of any instruction.

For example, one level indirect addressing like load instruction on page 15

may reference to an indirect address on page 11 which may reference page

9. So this instruction requires at least 3 pages to support paging. So the

minimum number of frames to be allocated to each process depends on

system architecture. While the maximum number of frames to be allocated

for each process depends on available physical memory. As the number of

frames allocated to each processes decreases, the number of page faults

increases.

Allocation Algorithms :

Equal Allocation - The simplest way to allocate free frames among user

processes is to distribute m/n frames to each process. Here, m is the total

number of free frames and n is the total number of processes. This scheme

is known as equal allocation.

Minimum number of frames per process= total number of free frames (m)/

total number of processes (n)

Proportional Allocation – Since, each process requires different memory

needs, it is not a good choice to allocate same number of frames to each

process. For example, consider a system with 1K words page size. The

system has a student process of 20K words and a printer process of 150K

words. So the student process requires 20 frames while printer process

requires 150 frames. If the system currently has 200 free frames, it do not

make sense to allocate 100 frames to each process because the student

process requires only 20 frames. This problem is solved by Proportional

Allocation where each process are allocated frames according to their

sizes. Each process of size si and m free frames will be allocated si/S * m

frames. Where S is total size of all processes.

Number of frames to be allocated (ai)= size of process (si)/ total process

size (S) * number of free frames (m)

MCA-114/136

With Proportional Allocation the student process will get 24 frames

=20/170 * 200. While the printer process will get 177

frames=150/170*200. This way, frames requirements of each process can

be satisfied.

Global versus Local Allocation

Another important factor in allocation of frames is Global and Local page

replacement. The number of frames allocated to a process changes

dynamically during its execution as page faults occur. This depends on

Global and Local Page Replacement.

Global Replacement : Global Replacement allows a process during page

faults to take frames from list of all frames even the frames are currently

allocated to other process. In other words, when page faults occurs, a

process can take frames from other processes along with frames allocated

to itself.

Advantage : It does not hinder a process because the process can take

frames containing less used pages of other process. This increases the

system throughput.

Disadvantage : A process cannot control its own page fault rate because

its paging behaviour is also depend on execution of other processes.

Local Replacement : With local Page Replacement, the number of frames

allocated to a process is fixed and does not changes during its execution.

Local Replacement allows a process to take frames only from its own set

of allocated frames. The process cannot take frames allocated to other

process.

Advantage : The paging behaviour of a process only dependant on only

its own execution.

Disadvantage : A low priority process might hinder the performance of a

high priority process by not allowing a high priority process to take frames

allocated to the low priority process.

6.14 THRASHING

When a process does not get minimum number of frames allocated

to it as defined by computer architecture, it cannot continue its execution.

If, the process does not has sufficient frames to support its pages in active

use, it will immediately cause page fault. Since all the pages are in active

use, one of the active pages that may be needed next must be replaced to

serve the page fault. As the result, the process will quickly fault again and

again. In this scenario, the process spends more time in doing swap in and

swap out rather than its execution. This high paging activity where a

process spends more time in doing swapping and there is no progress in

the process's execution is called Thrashing. Thrashing results in serious MCA-114/137

performance degradation of a system. It causes no progress in processes

execution and the system throughout decreases significantly.

Causes of thrashing : Consider a situation where Operating System

continuously monitors a system performance. If, the CPU utilisation

decreases, OS increases degree of multiprogramming by introducing new

processes. Since, a global page replacement is used, when the new

processes needs more frames, it starts page faults. So the process will take

away the frames from other processes. But other processes need these

frames, so they also starts page faults. These processes will need paging

device for swap in and swap out. So, they queue up long for paging

device. The CPU utilisation decreases and the ready queue becomes

empty. When OS (more precisely CPU scheduler) sees decrease in CPU

utilisation, it increases the degree of multiprogramming and the same

process continue as described above. As the result, thrashing occurs and

page fault rate increases significantly. Ultimately, the system throughput

drops tremendously. This phenomenon is shown in figure 6.28.

Figure 6.28: Thrashing [1].

As the degree of multiprogramming increases, the CPU utilisation also

increases slowly until a maximum is reached. If the degree of

multiprogramming is further increased beyond this point thrashing

occurred and CPU utilisation stars decreasing.

We can limit the thrashing by using local page replacement. The thrashing

process will not take frames from other processes to cause these processes

to thrash as well. But, this will not solve the problem completely. Because

the thrashing processes increase average page fault service time (since the

waiting queue for paging device has increased). Next we will discuss the

Working Set Model and Page fault frequency to prevent thrashing.
MCA-114/138

Prevention from thrashing :

Working-Set Model :

The Working Set Model to prevent thrashing is based on locality of

reference. Locality of reference states that a same set of memory location

or pages will be repeatedly used again in near future. This model uses a ∆

parameter (Working set window size) to define a working set (set of most

recently used pages in ∆ page references) for each process. For example, if

∆ =10, then a working set of a process at time t1 is {1, 2, 5, 6, 7} and its

working size at time t2 is {3, 4} as shown in figure 6.29.

Figure 6.29 : Working-set model [1].

While considering a working set of a process at any time, we only takes

unique page references in window size of 10 page references. After

knowing the working set window and working set for each process, we

will compute total demands of frames D. This can be computed by

calculating working set size WSSi for each process.

D=sum (WSSi)

Here D is total demands for frames and WSSi is number of frames needed

by process i. If the total demands for frames D is greater than total number

of available frames m, then thrashing will occur. The OS continuously

monitors working set of a process and allocates frames according to its

working set size. If there are enough extra frames left, a new process can

be initiated. Otherwise, if total demands of frames exceeds total number of

available frames in free frame list, OS selects one process to suspend. The

frames allocated to the terminated process are then allocated among other

processes. The suspended process will be restarted later.

Page Fault Frequency : Another way to prevent thrashing is Page Fault

Frequency which is more direct way. We have seen earlier that during

thrashing page fault rate increases significantly. So if we can control the

page fault rate, we can ultimately control thrashing. The page fault

frequency does the same thing. When the page fault rate increases this

means a process need more frames and when the page fault rate decreases

a process has too many useless frames. Page fault frequency method set an

upper bound and lower bound on page fault rate as shown in figure 6.30. If

the page fault rate exceeds the upper bound, frames are allocated to the
MCA-114/139

processes. Otherwise, if the page fault rate drops below the lower bound,

frames are removed from processes.

Figure 6.30 : Page-fault frequency [1].

6.15 SUMMARY

In summary, we discussed:

 You understand the concept of virtual memory which is commonly

implemented through the demand paging.

 We discussed various types of page replacement algorithm to serve

page faults when frames in free frame list are exhausted.

 We discussed equal and proportional allocation of frames to

processes. We have also seen Global and Local Page replacement

which control allocation of frames to different processes.

 You understand what is thrashing and how does it occurs. We have

seen how do we prevent thrashing.

6.16 TERMINAL QUESTIONS

1. What are Techniques to prevent thrashing.

2. How does thrashing occurs?

3. How does Working at model prevent thrashing?

4. How does Page Fault Frequency control thrashing?

5. What are the consequences of Thrashing?

MCA-114/140

6. What is the benefit of Proportional Allocation over equal

Allocation?

7. What are the advantages and disadvantages of Global Page

replacement over Local Page Replacement?

8. What is hierarchical paging?

9. Explain how does internal fragmentation is possible in paging.

10. Describe how does the mapping of logical address space to

physical address space happens.

11. Explain following:

a) Page table

b) Frame table

c) Segment table

12. Explain how does logical addresses of a process is translated to

physical addresses in segmentation.

13. Which page replacement policy sometimes leads to more page

faults when size of memory is increased?

14. Whether following statements are true or false:

a) The amount of virtual memory available is limited by the

availability of the secondary memory.

b) The best fit techniques for memory allocation ensures that

memory will never be fragmented.

 MCA-114/141

MCA-114/142

UNIT-VII SECONDARY MEMORY

MANAGEMENT

Structure

7.1 Introduction

7.2 Objectives

7.3 Magnetic Disk Structure

7.4 Disk Formatting

7.5 Disk Scheduling

7.6 Free Space Management

7.7 Swap Space Management

7.8 Summary

7.9 Terminal Questions

7.1 INTRODUCTION

Secondary and tertiary storage structures are the lowest level of the

file system. Magnet disks like hard disks, floppy disks are most common

type of disks. Optical disks (like CD-ROM, DVD) are common for

distribution of movies, music, data and programs. In this chapter, we will

first look into the physical structure of magnetic disks and various

parameters on which their performance depends. Next, we will see how

data are stored on disks. Then we will discuss how disk I/Os requests are

served to improve its performance and uses it efficiently. Later we will

discuss free space management to keep track of free disk space. Finally,

we will explain how the kernel manage swap space located on disk.

7.2 OBJECTIVES

After studying this chapter, you should be able to understand:

 Brief review of how Magnetic disks work and how data are

organized on to disks.

 How to schedule the order of disk I/Os requests to improve

performance.

 How OS keeps track of free disk space.

MCA-114/143

 How does the swap space work in the virtual memory system?

7.3 MAGNETIC DISK STRUCTURE

Magnetic disk offers a huge amount of secondary storage to

modern computer systems. Magnetic disk consists of one or more platters

(a flat circular shape, like a CD) coated with magnetic material. Each

platter has two working surfaces where we store data. Data are recorded

magnetically on each platters. Each surface contains a number of

concentric rings called tracks. All tracks immediately above one another

(as shown in figure 7.1) form a cylinder. A typical magnetic disk has

thousands of concentric cylinders. Each track further contains sectors

which can store traditionally 512 bytes of data each. There are read-write

heads that read data stored on sectors. The standard configuration have

one head for each surface. There is a common arm assembly that controls

all heads and move them simultaneously from one cylinder to another.

Figure 7.1 : Moving-head disk mechanism [1].

When we are using the disk, a drive motor attached to the spindle spins

each platter simultaneously with high speed at around 60 to 200 rotation

per second. Transfer of data between disk and computer happens as the

disk rotates. A rate at which data flows between the magnetic disk and the

computer is called transfer rate. The transfer rate depends on two factors:

rotating speed of the disk and number of bytes to be transferred. The

positioning time which is also called as random access time is the time

required to move the disk head to desired sector. This positioning time

depends on two parameters: seek time and rotational latency. The seek

time is the time taken by the disk arm to move to the desired track. While,

rotational latency is the time taken to rotate the desired sector to reach

over the disk head. The disk arm moves the disk head to correct track and

waits for the disk to rotate so that the head comes over desired sector.
MCA-114/144

Transfer of data stored in the sector happens as the disk spins. Generally, a

disk transfers data at several megabytes per second. The seek time and

rotational latency of a disk are several milliseconds. The heads that read

data from the disk drive are essentially coils of wire. The disk head flies at

a small very distance (measured in micron) over the disk platter to read or

write data. Even the disk platters are coated with protective later, the head

may damage the platters which lead to head crash. In this case many

times, we have to replace the entire disk. The heads sense a change in the

magnetic field, when they pass through the platters coated with magnetic

material. As the result, a current flows through the coils in the disk heads.

The 1 and 0 are encoded as north or south pole. The heads sense

transitions from one pole to another pole which cause current to flow

inside the heads. Areas encoded with multiple 1s and 0s do not cause

current to flow through the heads and so these bits are not sensed by the

heads.

A magnetic disk may be removable like floppy disk which allows different

disks to be inserted onto the disk drive. A Removable magnetic disk

consists of only one platter covered with a plastic case to protect the

platter when it is not in the disk drive.

Disk Structure : In modern disk drives, a logical block (usually 512

bytes) is the smallest unit of transfer of data. A one dimensional array of

logical blocks is mapped on sectors of disk sequentially. The mapping

starts with sector 0 located at the first track of the outermost cylinder.

Then it proceeds from rest sectors on the rest of the tracks on the same

cylinder. The mapping proceeds from outermost cylinder to innermost

cylinder. This way, we can convert a logical block number to a disk

address containing three fields: a cylinder number, a track number in that

cylinder, and a sector number in that track.

Illustrative Example : Consider a disk with the following characteristics:

sector size B=512 bytes, number of sectors per track=20, number of tracks

per surface=400. number of double sided surface= 15.

(a) What is the total capacity of a track and how many cylinders are

there?

(b) What is the total capacity a cylinder and the total capacity of a disk

pack?

(c) Suppose the disk drive rotates the disk pack at a speed of 2400 rpm

(revolutions per minute); what is the transfer rate in bytes/msec, a

block transfer time btt in msec and average rotational delay?

(d) Suppose the average seek time is 30 msec. How much time does it

take (on the average) in msec to locate and transfer a single block

given its block address? (e) Calculate the average time it would

take to transfer 20 random blocks and compare it with the time it

would take to transfer 20 consecutive blocks.
MCA-114/145

Solutions :

(a) Total track size = 20 * (512) = 10240 bytes = 10.24 Kbytes

Number of cylinders = number of tracks = 400

(b) Total cylinder capacity of a cylinder = 15 * 2 * 20 * 512 = 307200

bytes = 307.2 Kbytes

 Total capacity of the disk = 15 * 2 * 20 * 512*400 = 122.88

Mbytes

(c) Transfer rate (tr) = (size of a track in bytes)/(time for one disk

revolution in msec)

 = (10240) /((60 * 1000) / (2400))= (10240) / (25) = 409.6

bytes/msec

block transfer time (btt) = B / tr = 512 / 409.6 = 1.25 msec

average rotational delay (rd) = (time for one disk revolution in

msec) / 2 = 25 / 2 = 12.5 msec

(d) Average time to locate and transfer a block = s+rd+btt =

30+12.5+1.25 = 43.75 msec

(e) Disk Access Time = Seek Time + Rotational Latency + Transfer

Time

Time to transfer 20 random blocks = 20 * (s + rd + btt) = 20 *

43.75 = 875 msec

 Time to transfer 20 consecutive blocks using double buffering = s

+ rd + 20*btt = 30 + 12.5 + (20*1.25) = 67.5 msec.

7.4 DISK FORMATTING

Before a new magnetic disk can be used to store data, its platter

should be divided into sectors to indicate beginning and ending of each

sector. This is called low level formatting or physical formatting. During

this process, a small data structure is stored on each sector. This data

structure consists of a header, a trailer and a data area (usually 512 bytes).

The header and trailer contain sector number and Error Correcting Code

(ECC). These information allow disk controller to not only detect errors in

a sector but also allow it to fix the errors in many cases. When the

controller writes data on a sector, it also writes ECC code that was

calculated based on all bytes of the data. In future, when this sector is read

by the disk controller, it recalculate ECC code and compared with the one

stored on the sector. If the calculated value of ECC is different from stored

one, then the sector is corrupted. The ECC code contains enough

information to recover the data, if only few bits are corrupted.

After the low level formatting of a disk, operating system must put its data

structure on the disk before the disk can be used to store files. Storing the

data structure require two steps: partitioning of the disk and creation of file

system on the disk. Partitioning of a disk is making groups of one or more MCA-114/146

disk cylinders. For example, one portion can be used to store OS

executable files while other partition can be used to store user’s files. The

operating system treats each partition as a separate disk. After the disk

partitioning, OS need to put an initial file system on the disk. The file

system maps free spaces, allocated spaces and the root directory of the file

system.

Check your progress

1. How does the disk seek time different from rotational latency?

2. How data is organised on the disk?

3. What are tracks and sectors in a disk?

7.5 DISK SCHEDULING

The time taken to read or write disk blocks depends on three factors:

1. Seek time : It is the time for the disk arm to move the heads to the

desired cylinder.

2. Rotational latency : It is the time required to rotate the disk heads

to the desired sector.

3. Disk bandwidth : It is the total number of bytes transferred,

divided by the total time between the first request of transfer to the

completion of the last transfer request.

Operating system is responsible for minimizing all above factors to reduce

the overall disk blocks read/write time. OS improves seek time, rotational

latency and the bandwidth by servicing the disk I/O requests in effective

order. A request for disk block is serviced immediately, when the desired

disk drive and disk controller are available. If the drive or controller is

busy, further new requests are placed in the queue of pending requests for

that drive. In a multiprogramming environment with multiple processes,

the disk queue often has several pending requests. OS uses a disk

scheduling algorithm to process these pending requests in an effective

order which minimizes seek time, rotational latency and maximize the

disk bandwidth. There are several algorithm exist to service disk I/O block

requests which you will see now.

FCFS : First Come First Serve Disk Scheduling algorithm is simplest to

all other Disk Scheduling algorithms. FCFS serves disk requests in

sequential order i.e in the order they arrive in the disk queue. Consider an

imaginary disk with 200 cylinders and a disk queue with requests for I/0

blocks on cylinders: 95, 180, 34, 119, 11, 123, 62, 64. Assume that the

Read-write head is initially at cylinder 50 and the tail cylinder is199.

Queue : 98, 183, 37, 122, 14, 124, 65, 67 MCA-114/147

Head starts at 53

Figure 7.2 : FCFS disk scheduling.

The disk head will starts with cylinder 53 and will move towards 98 to

serve it. After serving cylinder 98, it will then serves

183,37,122,14,124,65 and finally it will serves cylinder 67 as shown in

figure 7.2. This will cause a total head movement of 640 cylinders.

Total head movement= (98-53)+(183-98)+(183-37)+(122-37)+(122-

14)+(124-14)+(124-65)+(67-65)

If you will see a closer look in above example, you will notice that while

servicing cylinder 122 from 14 and then back to cylinder 124, causes head

movement of 218 cylinders (122-14 + 124-14). This number of head

movement could be reduced if cylinders 37 and 14 could be serviced

together before or after servicing the requests for cylinders 122 and 124.

So, the total head movement could further be reduced which could

improve the disk performance.

SSTF Scheduling

In FCFSs you see that it is reasonable to service a request close to current

disk head position compared to one which far away from current position.

The SSTF services requests that are closest to current disk head position at

any time. In other words we can say that SSTF always selects a request

which has shortest seek time from current head position compared to all

other requests.

Let us consider the same above example. The disk head is initially at

cylinder 53. This algorithm will first service the cylinder 65 which is

closest to current head position 53. Once the disk head is at cylinder 65,

the closest cylinder is now 67. So it is served. This way continuing further,

it will service cylinder 37 and then 14, 98,122,124 and finally 183 will be

serviced as shown in figure 7.3. In this case there is a total number of head
MCA-114/148

movement of 236 cylinders which is significantly lower than the one in

fcfs (640).

Total disk head movement=(65-53)+(67-65)+(67-37)+(37-14)+(98-

14)+(122-98)+(124-122)

=236 cylinders

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Head starts at 53

Figure 7.3 : SSTF disk scheduling

Although SSTF algorithm substantial improves the disk performance, it

suffers from starvation of some requests. In a multiprogramming

environment, requests may arrive at any time. Assume that we have two

requests for cylinders 37 and 122 in disk queue. While servicing the

request 37, another request for cylinder 14 arrives. So request 14 is now

serviced. While servicing the request 14, a new request for cylinder 67

arrives. This causes the request 122 to wait further. If the new requests

will always be lower than 122, this would cause the request for cylinder

122 to wait forever indefinitely.

An improvement can be further added to SSTF algorithm to reduce the

disk head movement. In the example, we can do better by moving the head

from 53 to 37 instead of moving to its closest cylinder 65. After that

cylinder 14 should be serviced and moving towards the end of the disk

while servicing the coming requests in the way. This strategy would lead

to total head movement of 208 cylinders, which we will see next.

Illustrative Example : Consider a disk system with 100 cylinders. The

requests to access the cylinders occur in following sequence: 4, 34, 10, 7,

19, 73, 2, 15, 6, 20.
MCA-114/149

Assuming that the head is currently at cylinder 50, what is the time taken

to satisfy all requests if it takes 1ms to move from one cylinder to adjacent

one and shortest seek time first policy is used?

Answer :

Since the cylinders are accessed using shortest seek time first scheduling

algorithm, the head will first move to 34 from its current position 50. This

would takes (50-34)*1 ms. After serving 34, head will move to 20 which

would take another (34-20)*1 ms. The head will proceed further so on.

So cylinders will be accessed in following order:

34, 20, 19, 15, 10, 7, 6, 4, 2, 73.

total time taken=(50-34)*1+(34-20)*1+(20-19)*1+(19-15)*1+(15-

0)*1+(10-7)*1+(7-6)*1+(6-4)*1+(4-2)*1+(73-2)*1

 = 119 ms.

Illustrative Example : A disk has 200 tracks (numbered 0 through 199).

At a given time, it was servicing the request of reading data from track

120, and at the previous request, service was for track 90. The pending

requests (in order of their arrival) are for track numbers: 30, 70, 115, 130,

110, 80, 20, 25.

How many times will the head change its direction for the disk scheduling

policies SSTF (Shortest Seek Time First) and FCFS (First Come Fist

Serve)

Answer :

SSTF :

order of servicing tracks: 90, 120, 115, 110, 130, 80, 70, 30, 25, 20

MCA-114/150

Change of direction are : 120–>115; 110–>130; 130–>80

total direction change=3

First Come First Serve : order of servicing tracks : 90, 120, 30, 70, 115,

130, 110, 80, 20, 25

Change of direction are : 120->30; 30->70; 130->110;20->25

Total direction change=4

SCAN Scheduling SCAN algorithm moves disk head from current

position to one end of disk while servicing the coming requests for

cylinder in the way. At arriving end of the disk, the head movement

direction reversed and continue servicing the upcoming requests in that

direction. In this way the head continuously moving towards end of disk

while serving the requests in the way just like an elevator in a building. So

the algorithm is also called as elevator algorithm.

Considering the above example, SCAN algorithm first finds the direction

of disk head movement in addition to its current position. Assume that the

head is moving towards cylinder request 0. The disk head would first

services the request 37 from its current position 53 as shown in figure 7.4.

After that request for the cylinder 14 is serviced and then the head arrives

at cylinder 0 which is the one end of disk. At this point, the direction of

the heart movement is reversed and then it services the requests 65, 67,

98,122, and finally 183 (as shown in figure) while moving the other end of

the disk. This results in total head movement of cylinders 236. We saw

that a request arrives in front of the head would be served immediately.

MCA-114/151

While a request arrives behind the disk head would have to wait until the

head reaches the end of disk and reverses the head movement direction.

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Head starts at 53

Figure 7.4 : SCAN disk scheduling

Total head movement= (53-37)+(37-14)+(14-0)+(65-0)+(67-65)+(98-

67)+(122-98)+(124-122)+(183-124)=236

In SCAN algorithm, when the disk head reaches at the end of the disk and

changes its movement direction, at this point there are relatively fewer

number of requests in front on the disk head since these requests are

already served recently. While there are heavy density of requests near

other end of the disk. But these heavy density requests have to wait for

longer time than the requests in front of the disk. So, it would be wise to

first service the heavy density requests than the requests in front of the

head. This strategy is used in the next algorithm.

C-SCAN Circular SCAN disk scheduling algorithm is a variant of SCAN

algorithm. Like SCAN algorithm, Circular SCAN algorithm moves the

disk head from one end of the disk to other end while servicing the coming

requests for cylinder in the way. But, when the disk head arrives at end of
MCA-114/152

the disk, it reverses the direction of head movement and immediately

moves to other end of the disk without servicing any requests in the way

as shown in figure 7.5. After reaching other end of the disk, it starts

servicing the requests.

Queue : 98, 183, 37, 122, 14, 124, 65, 67

Head starts at 53

Figure 7.5 : C-SCAN disk scheduling

The total head movement (or cylinders it passes through) for this

algorithm is only 183 cylinders, but still this isn't the most sufficient.

C LOOK scheduling :

Both SCAN and C SCAN algorithm moves to the end of the disk while

servicing the requests. But, why do the disk head needs to go to end of the

disk? Why not the disk head moves till the last request for the cylinder in

each direction? In LOOK algorithm, the disk head only goes till the last

request in each direction and then it reverses the head movement direction

immediately without going to the end of the disk. Versions of SCAN and

C SCAN which are based on this pattern of servicing requests are known

as C SCAN and C LOOK scheduling respectively. Practically, the SCAN

and C SCAN are often implemented as C SCAN and C LOOK algorithm.

Queue : 98, 183, 37, 122, 14, 124, 65, 67
MCA-114/153

Head starts at 53

Figure 7.6 - C-LOOK disk scheduling

C LOOK prevents the extra delay which occurred at unnecessary traversal

to the end of the disk having no request to further process as shown in

figure 7.6. Hence C-SCAN had a total movement of 183 cylinders but C-

LOOK reduced it down to 153 cylinders.

Check your progress

1. Disk requests come to a disk driver for cylinders in the order

10, 22, 20, 2, 40, 6, and 38 at a time when the disk drive is

reading from cylinder 20. The seek time is 6 ms/cylinder. What

would be the total seek time, if the disk arm scheduling

algorithms is first-come-first-served.

2. Consider a disk queue with requests for I/O to blocks on

cylinders 47, 38, 121, 191, 87, 11, 92, 10. The C-LOOK

scheduling algorithm is used. The head is initially at cylinder

number 63, moving towards larger cylinder numbers on its

servicing pass. The cylinders are numbered from 0 to 199. What

is the total head movement (in number of cylinders) incurred

while servicing these requests?

MCA-114/154

7.6 FREE SPACE MANAGEMENT

Since disk space is limited, it is necessary to reuse the space freed

from deleted files. Operating system maintains a free space lists to keep

track of free disk blocks. These free blocks are not allocated to any file or

directory. When a new file is created, the required amount of blocks is

searched from the free-space list and allocated to the new file. These

blocks are then removed from the free-space list. When a file is deleted, its

disk blocks are added to the free-space list. Now, we will discuss the

various implementation of the free-space list.

Bit-Vector

This implementation consists of an array of disk blocks entries each of 1

bit. The bit is set to 1 if a block is free or 0 if allocated. For example,

consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26,

and 27 are free and the rest of the blocks are allocated. The free-space bit

vector would be 001111001111110001100000011100000 ... as shown in

figure 7.7.

Figure 7.7 : Bit - Vector free-space list on disk. [1]

Bit-vector is useful when it can be kept in main memory but as the disk

sizes get larger, it takes more space in main memory. So Bit vector

requires extra space to track free blocks of the disk. For example, a 1-GB

(230 bytes) disk with 4-KB (212 bytes) blocks requires 32 KB (230/212 =

218 bits) to track its free blocks.

Linked-List

Another approach to free-space management is to link together all the free

disk blocks as a linked-list. Each block contains a pointer to the next free

block. A pointer to the first free block is kept in a special location on the

disk and caching it in memory when needed. Considering our earlier

example, in which blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and

27 are free and the rest of the blocks are allocated. In this approach, we

keep a pointer to block 2 as the first free block. Block 2 would contain a

pointer to block 3, which would point to block 4 and so on (Figure 7.8).

MCA-114/155

Problem arises when multiple free blocks are needed. Then we should

follow multiple links all over the disk which results in poor performance.

Figure 7.8: Linked free-space list on disk [1].

Grouped Linked List

Grouping is a modification of the linked-list approach. A single free block

hold the addresses of a group of free blocks. The last entry in a group

points to a free block which contains addresses to another group of free

blocks. For example, the following free blocks-2, 5, 13, 14, 15, 23, 24, 29,

31, 37, 38, 41, whose grouped Linked List implementation shown in

figure 7.9

Figure 7.9 : Grouped Linked List. [1]

MCA-114/156

This approach require no disk space for implementation. It only need to

store location of first pointer block.

Counting

In this approach the free space list keeps the addresses of the first free

blocks and the number of free contiguous blocks that follow the first

block. So each entry in the free-space list then consists of a disk address

and a count. This approach is useful where, several contiguous blocks may

be allocated or freed simultaneously.

7.7 SWAP-SPACE MANAGEMENT

In virtual memory management, you have learnt about swapping

concept where processes are moved between main memory and disk when

amount of main memory space gets critically low. In modem operating

system, instead of swapping entire processes, OS swaps unused pages of

processes. Virtual memory utilizes disk space as an extension to main

memory and disk access time is significantly slower than main memory

access time. So, use of swap space decreases system performance. In this

section, we will discuss how swap space is used, where on the disk it is

located, and how it is managed.

Swap space use : Different operating systems uses swap space in different

ways that depend on how they implements their virtual memory. For

example, swapping system uses swap space to hold entire process while

paging system uses swap space to hold individual pages of processes. The

swap space generally varies from few megabytes to several gigabytes.

This depends on physical memory size, amount of virtual memory it

supports and how virtual memory is implemented. It always good to

overestimates the required swap space size for safer side. Because, if a

system runs out of swap space, it may abort the process or crash the

system. Earlier Linux recommended swap space size double to the

physical memory size. But now, most Linux system uses considerably low

swap space size. Some operating system like Linux uses multiple swap

spaces. These swap spaces usually reside on separate disks.

Swap space location : A swap space of an OS may resides at any one of

the two location: inside a normal file system as a file and a separate disk

partition. When the swap space resides inside the normal file system as a

file, normal file system routines can be used to create it, name it and

allocate its space. Although, this approach is easy to implement, but it is

inefficient. Because during swapping, it requires navigating directory

structure and then disk allocation data structure. Also, external

fragmentation may increase swapping time as it requires multiple search

during swapping a process.

When the swap space resides in a separate raw partition, no file system or

directory structure is placed in that partition. Instead, a separate swap

space manager is used to allocate and deallocate disk blocks to a process

during swapping. The swap space manager is optimized for speed rather MCA-114/157

than storage. Because, swap space is accessed more frequently than a

normal file system. Although it may result in internal fragmentation but,

life of data on the swap space is shorter. Also the swap space is reinitiated

at every boot of the system. Some operating systems like Linux allow the

swap space to reside at both raw partition and normal file system.

Swap space Management : An Example: Earlier UNIX system

implements swapping in swap space management which swap-out and

swap-in an entire process from physical memory and disk. Later when

UNIX system evolved and paging hardwares became available, it started

using combination of both swapping and paging. For example, Solaris 1

stores text segment pages in the file system. While the pages associated

with stack, heap and uninitialized data of a process are stored in swap

space. During an execution of a process, text segments pages are brought

into physical memory from the file system. Later, when these pages are

thrown away from the memory, it is more efficient to reread the pages

from the file system compared to first write them to swap space and reread

from there. The pages associated with stack, heap and initialized data

would be written to swap space when these pages are flushed out of the

memory during execution. In later version of Solaris, swap space is only

allocated to a page when it is to be thrown away from memory. So, swap

space is not allocated when the virtual memory page is first created. This

approach gives better performance on modern computers having larger

physical memory since they tend to page out less.

Figure 7.10 : The data structures for swap area on Linux system [1].

Linux system is similar to Solaris that allows swap space only to stores

pages associated with stack, heap and uninitialized data of a process.

Linux maintains one or more swap areas that reside either in a raw-swap-

space partition or swap file on a regular file system. Each swap area is

divided into 4-KB page-slots that holds swapped pages as shown in figure

7.10. Each swap area is associated with a swap map which is an array of

integer counters. The swap map is used to map to its corresponding page

slot in the swap area. A counter value of 0 indicates availability of the

MCA-114/158

page slot. A counter value greater than 0 indicates that the page slot is

currently occupied by a swapped page. The counter value tells how many

processes are mapped to a swapped page. For example, a counter value 3

indicates that a swapped page is mapped to three different processes. In

other words we can say the page is shared by three processes.

7.8 SUMMARY

In this unit we discussed

 A logical structure of a magnetic disk that consists of multiple

double sided platters coated with magnetic recording material.

Each platter is divided into a number of tracks and each track is

further divided into multiple sectors. Data is stored on these

sectors in form of blocks.

 Before a disk can store data, disk must be low- level-formatted to

create the sectors on the raw hardware. Then, the disk is

partitioned and an initial file-system data structures are stored on

the disk. These data structures maps free space, allocated space

and the root directory.

 The queue of requests for I/O blocks are serviced by a disk

scheduling algorithm. The disk scheduling algorithms such as

SSTF, SCAN, C-SCAN, LOOK, and C-LOOK service theses

requests in to minimize the mechanical seek time of the disk and

improve disk performance.

 OS maintains a free space lists to keep track of free disk space.

Virtual memory uses swap

 Space located on the disk as an extension of main memory which

resides either on a raw disk partition or a file within the file

system.

7.9 TERMINAL QUESTIONS

1. What is the major drawback with fcfs disk scheduling algorithm?

2. Does the fcfs causes starvation of some requests?

3. Suppose a disk has 201 cylinders, numbered from 0 to 200. At

some time the disk arm is at cylinder 100, and there is a queue of

disk access requests for cylinders 30, 85, 90, 100, 105, 110, 135

and 145. If Shortest-Seek Time First (SSTF) is being used for

scheduling the disk access, the request for cylinder 90 is serviced

after servicing ____________ number of requests.

4. What is the disadvantage of the SSTF disk scheduling algorithm?

5. How does starvation of requests possible in SSTF disk scheduling

algorithm.
MCA-114/159

6. Discuss the disadvantage of SCAN disk scheduling algorithm.

7. How the SCAN does differs from C SCAN disk scheduling

algorithm.

8. How the LOOK algorithm does handles the problem with C SCAN

algorithm.

9. What are the purposes of swap space in OS?

MCA-114/160

UNIT-VIII CASE STUDY OF UNIX

Structure

8.1 Introduction

8.2 Objective

8.3 UNIX Features

8.4 Structure of UNIX OS

8.5 Process Management

8.6 Memory Management

8.7 File System

8.8 Summary

8.9 Terminal Questions:

8.1 INTRODUCTION

UNIX has a very special place in the history of operating system.

The first implementation of UNIX was developed at Bell Telephone

Laboratories in early 1970 by Ken Thompson and Dennis Ritchie. It was

first used inside the BELL lab and soon it was licenced to use in

universities and various research purpose at low cost. UNIX was written in

c language that was the first widely used operating system portable to

various computer architecture. So, during 1970s, UNIX became most

common operating system used in universities by students and faculty for

class work, project and operating system research. Since, UNIX source

code was made available for modification, many improvements and

variations of UNIX came that time. The most well-known variation of

UNIX was developed at Berkeley Software Distribution (BSD), which

provide many technical improvements in UNIX, including a faster file

system, virtual memory, TCP/IP support, and more. AT & T (owner of

BELL labs) also developed a version of UNIX called System V and its

latest version is release 4 which is usually known as SVR4. Many

commercial vendors have developed their own version of UNIX (for

example, SUN Solaris, HP UNIX, Digital UNIX, IBM AIX) but these are

either derived from BSD version or System V version. For a number of

years, UNIX is the basis for operating system research and also for the

technical developments in operating systems originated from UNIX.

UNIX system call interface and implementation is so influential that most MCA-114/161

of operating systems developed in last 25 years have borrowed to some

degree from UNIX.

8.2 OBJECTIVE

After going through this unit you should be able to

 Explore the history of the UNIX operating system and the

designing principle of Linux.

 Explain scheduling of processes and inter-process communication

in UNIX.

 Describe how does memory management is performed in UNIX.

 Understand how file systems are implemented in UNIX.

8.3 UNIX FEATURES

UNIX operating system supports following features.

1. Multi-user system - UNIX allows multiple users to use a same

computer. A single powerful UNIX server is connected to different

terminals, Keyboards, Monitors etc. and each user works with

his/her own terminal.

2. Multi-tasking system –UNIX support Multitasking that allow you

to perform various task at the same time by switching among these

task so fast that cannot be noticed any delay.

3. Programming Facility—UNIX provides you a UNIX shell that

contains all necessary programming elements like operators, many

built in functions, conditional and control structures etc. to deliver

you a better programming environment.

4. Security—UNIX provides read, write, execute etc. permission to

each file. It encrypts the files into unreadable format. UNIX offers

a login name and password to every user to protect each user files.

It is impossible for a user to access another user’s data.

5. Portability—UNIX is portable to different hardware platforms or

hardware architecture.

8.4 STRUCTURE OF UNIX OS

UNIX OS functionalities are organized into three levels :

MCA-114/162

Figure 8.1 : Different Layers in a UNIX system.

Kernel : It is the part of operating system that implements most basic

functions. All kernels are operating system but not all operating systems

are kernels. UNIX kernel directly interacts with the hardware. The kernel

provides the desired service as requested by user programs. User programs

interact with the kernel through system calls. These system calls request

the kernel for various services including creating, suspending, or killing a

process; opening, closing, reading, writing or executing a file; changing

ownership of a file or directory; accessing hardware devices.

Shell : The shell provides you an interface to the kernel. Shell

communicates with a user through terminal and it communicates with

kernel through system call. UNIX OS offers you multiple shells including

the Bourne shell (sh), the Bourne Again shell (bash), the Korn shell (ksh)

and the C shell (csh). Each of the shells has different shell commands, but

OS commands are same in all the shells. You can type commands directly

into the terminal, or can create a text file that contains a series of

commands to be executed by the shell. When a series of commands are

written in a text file, it is called a shell script. These commands are also a

type of programs. A command typed in shell is forwarded to the kernel.

Once the command is executed, control is returned to the shell. The shell

then displays another prompt ($ on our systems) waiting for another

command to be entered. When you type a command in the shell, it extracts

the first word and assumes it to be the program name to be run. It searches

for this program and run it, if it finds the program. The shell suspends

itself until the program terminates. After that, the shell is back to running

state and it tries to read next command. This way, shell is an ordinary user

program that has ability to execute other programs by reading commands

from terminal and writing results to the terminal. Commands may contain

arguments that are passed to the called program. For example, following

command invokes the cp program with two arguments: src and dest.
MCA-114/163

cp src dest

The program takessrc as the first argument which is a name of an existing

file and copies it to dest folder.

System Utilities and Application: System utilities are specialized software

(commands) which are designed for a specific task. The ls command is

used to see a list of the files present in a directory. The cat command is

used to ‘display content of several files to a standard output, one after

another. You can use rm command to removed files. Access permissions

of files can be changed by the file‘s owner through chmod command. The

mkdir and rmdir command are used to create and remove directories

respectively. Table 8.1 shows some UNIX utility programs along with a

short description of each one.

Program Typical use

cp Copy one or more files

cut Cut the columns of a text files

Make Compile a file to build a binary

paste Paste columns of text into a file

pr

sort Sort the content of a file line by line alphabetically

head Extract the first line of a text file

tail Extract the last line of a file

tr Translate between a character sets

pr Format a file for printing

grep Search a file for some pattern

Table 8.1 : Few of the common UNIX utility programs

MCA-114/164

Some commonly used application programs include viand emacs (text

editors), gcc (a C compiler), g++ (a C++compiler), latex (a powerful

typesetting language), xfig (a drawing package).

8.5 PROCESS MANAGEMENT

i. Scheduling : System V, Release 4 of UNIX is considered to be

standard UNIX. It uses a priority scheduler with 160 priority

levels. Processes at levels 0-59 are interactive processes that

belongto time-sharing classes. Processes at level 60-99 are for

system priorities which run in kernel mode. Processes at level 100-

159 belongs to real time classes. Processor always runs the highest

priority process, while processes with same priorities are scheduled

in round-robin fashion. The priority of a time sharing process goes

down, if it uses up its time quantum and its priority goes up, if it

waits for an I/O event. This time quantum varies from 100 ms (for

priority 0) to 10 ms (for priority 59) as shown in Figure 8.2.

Figure 8.2 - SVR4 Priority Classes[4]

MCA-114/165

ii. Inter-process Communication and Synchronization : In UNIX,

one process notifies another process about an occurrence of an

event through signal. A signal is an event notification that one

process send to another process. UNIX defines approx. 30 different

events that can be signalled. Some signals are sent to a process

when it gets an interrupt such as arithmetic error, instruction error

and addressing error. Some signals are external events such as

interrupt (when user type ctrl+c on keyboard), kill(one process

destroy another process), child (status of a child process has

changed), alarm(timer set by a process has expired) and I/O (I/O

possible on open file). Some signals are for other errors like syscall

(invalid argument to system call). When an event occurs, the

currently running process is stopped and control is passed to a

signal handler. The signal handler tells the system to call the

procedure when a signal arrives.

Signal Number Description

1 SIGHUP If a process is being run from terminal and

that terminal suddenly goes away then the

process receives this signal.

2 SIGINT It is generated by the terminal when we press

the interrupt key (Control-C) on the

keyboard. This signal is often used to

terminate a process that produces lot of

unwanted output on the screen.

3 SIGQUIT Quit from keyboard

4 SIGILL This signal indicates that a process has

executed an illegal hardware instruction that

the CPU cannot understand.

5 SIGTRAP This signal is used mainly within the

debuggers and program tracers.

6 SIGABRT The program called the abort 0 function. This

is an emergency stop.

MCA-114/166

6 SIGIOT Input/output transfer

7 SIGBUS Bus error. An attempt was made to access

memory incorrectly. This can be caused by

alignment errors in memory access etc.

8 SIGFPE Floating-point error.

9 SIGKILL Kill signal from system. The process was

explicitly killed by somebody wielding the

kill program.

10 SIGUSR1 User defined. It is upto the programmer what

they want to do.

11 SIGSEGV An attempt was made to access a memory

that is not allocated to the process.

12 SIGUSR2 Left for the programmers to do whatever

they want.

13 SIGPIPE Pipe fault (broken pipe). This signal is sent to

inform a producer process when the

consumer process died and not available to

consume the output that would be fed via a

pipe.

14 SIGALRM A process can request a "wake up call" from

the operating system at some time in the

future by calling the alarm() function. When

that time comes round the wakeup call

consists of this signal.

15 SIGTERM The SIGTERM signal terminates a process.

Unlike SIGKILL, this signal can be blocked,

handled, and ignored. It is the normal way to

MCA-114/167

politely ask a program to terminate.

16 SIGSTKFLT Stack fault

17 SIGCHLD When a child process terminates or stops,

SIGCHLD signal is sent to the parent process

to know the status of the chid process.

18 SIGCONT Sending SIGCONT to a process, resume its

execution that is previously paused by

SIGSTOP.

19 SIGSTOP It is used to pause a process.

Table 8.2 UNIX Signals

Some of the UNIX signals are listed in Table 8.2. Signals in UNIX allow

one process to signal an asynchronous event to another process, while

pipes allow one process to send data to other process. SVR4, also

implements message queues and message sending where message can be

of any length. SVR4 implements shared memory which allows two

processes to set up a part of their address spaces to be shared between two

processes. Shared memory is a fast way of transferring a large quantity of

data. Solaris provides “system V semaphores” to control access to shared

resources. A semaphore is used to lock shared resources prior to its use. It

releases the resources when a process completes the use of the resources.

iii. Booting in Linux : OS loads programs into the main memory for

its execution. But, how does OS get loaded into the memory. The

process of loading OS into memory is given as follow. When you

turn on your computer, a small program stored on ROM called

BIOS is executed which perform POST (power on self-test) i.e.

devices discovery and their initialization. This initial devices

check-up is required because the loading of OS depends on these

devices. This BIOS program performs reading and writing

operation. The BIOS loads the first sector of the boot disk called

MBR (master boot record) into the memory and transfers its

control to it. The MBR contains bootstrap program or bootloader

(GRUB). This program searches OS kernel into the root directory

of the boot disk. The boot program loads the OS kernel into the

memory and gives control to it. This whole process is called

bootstrapping or booting. MCA-114/168

Check your progress

1. What are the important features of UNIX operating system?

2. What do you mean by kernel in UNIX system?

3. How the kernel is differ from shell and system utilities?

4. How does UNIX system perform interprocess communication

and Synchronization?

8.6 MEMORY MANAGEMENT

Memory management is responsible for allocating a free portion of

memory for a new process, deallocating parts of memory when they are

freed, keeping track of parts of memory that are in use, demand paging

where main memory is not sufficient to hold all the processes and process

swapping between main memory and disk. Many memory management

schemes were proposed, but the swapping and paging were two of the

most important ones that still significant to modern operating systems. The

swapping mechanism was first adopted in AT&T Bell Lab (Ritchie et al

1974) version of UNIX System. The paging technique was added to UNIX

BSD variants (University of California at Berkeley). In this section, we

will discuss in detail about the UNIX memory management schemes

including process swapping and demand paging.

Physical vs. Virtual Memory :

Swap space is designed where physical memory is insufficient for the

current process. UNIX allows you to use some portion of disk space along

with the physical memory installed in your system along with as a swap

space. The Virtual memory is the sum of the physical memory (RAM) and

the total swap space assigned by the system administrator at the time of

system installation.

Virtual Memory (VM) = Physical RAM + Swap space

The size of swap space is usually two or three times of the main memory

that is solely reserved for swapping. A new process cannot start if there is

no available swap space for it. That is why sometime virtual memory

system gives “out of memory” message which means the system is

currently out of swap space. Thus, a complete image of the memory of

every process is kept in swap area.

Demand Paging : UNIX divides physical memory into equal sized blocks

called frames. Each process is also divided into blocks of the same size

called pages. The virtual memory address space consists of logical page

number and displacement within the page. The virtual page number is

translated into real page frame and the displacement indicates the byte MCA-114/169

offset into that page. When a page of a process is put in a frame, this page

is really allocated in physical memory. UNIX kernel uses four major data

structures to support demand paging: page table, frame table, and swap

table, Disk Block Descriptor.

Page Table : Each entry of a page table is indexed by a page number of

the process. The page table consists of many entries and each entry has

several fields as shown in Figure 8.3

Figure 8.3 : Fields of entry in the page table

Page frame number : It is the physical address of a page in the main

memory.

Age : These bits indicate how long the page has been in memory without

being referenced. This information is used for page replacement.

Copy on write : This bit is set when a page is shared by more than one

process. When more than one process shares a page and one of the process

tries to write into the page, a new copy of the page must be made first for

all other processes that share the page.

Modify : This bit tells whether the page has been recently modified or not

by the processes.

Reference : This bit indicates whether a page has been referenced or not,

either for reading or writing. When a page is first loaded into the memory,

this bit is set to 0. The bit periodically changes as it is referenced. This

information is used by the page replacement algorithm.

Valid : It shows a page is present in the main memory or not.

Protect : These bits indicate what kinds of access (read, write or execute)

is permitted to the page. For example, if it consists of 3 bits, each of the

one bit indicates access permission for reading, writing or executing the

page.

Frame Table

Frame table is used to free some frames from physical memory to make it

available for other process. Each frame in the physical memory has an

entry in the frame table. So, the table is indexed by frame number as

shown in Figure 8.4.

MCA-114/170

Figure 8.4 : Fields of entry in the frame table

 Page state : It tells whether this frame is available for reallocation

or its associated page is stored on swap device. If the frame has an

associated page, the status of the page is specified i.e. whether it is

on swap device or executable file, or DMA in progress.

 Reference count : it is the total number of processes that refer the

page.

 Logical device : It references the logical device where the page is

stored.

 Block number : It contains block number where the page is stored

on the logical device.

 Pfdata pointer : Pointer to other pfdata table entries on a list of

free pages and on a hash queue of pages.

Swap Table

The swap table contains an entry for each page on the Swap Device. The

swap table (shown in Figure 8.5) is used by page replacement and

swapping.

Figure 8.5 : Fields of entry in the frame table

 Reference count : This refers to number of page table entries that

corresponds to a same page on a swap device.

 Page/storage unit number: Page identifier on storage unit.

 Disk Block Descriptor : Each page of a process is associated with

an entry in Disk Block Descriptor that tells location of disk copy of

the page. Processes that share common pages have same entries in

their Disk Block Descriptors.

 MCA-114/171

 Swap device number: It is a Logical device number of the

secondary device which holds the page. More than one device to

be used for swapping.

 Device block number: Location of the block containing the page

on swap device.

 Type of storage: This may be a swap device or executable file.

Page Replacement :

In virtual memory management, the demand paging cooperates with page

replacement. To keep executing a progress, its pages in memory are

replaced by its new pages. So, the working pages of a process change

dynamically. The Frame table is used for page replacement when no frame

is available for new pages of a process. The kernel maintains a list of free

frames available to bring these pages. The kernel takes out frames from

this free frame list, when number of frames in physical memory drops

certain threshold. SVR4 version of UNIX uses a two-handed clock

algorithm as shown in Figure 8.6. The algorithm works by using the

reference bit of the page table entries whose corresponding pages are in

memory. When a page is first time loaded into the memory, its reference

bit is set to 0. Later, it is set to 1 if it is referred for either reading or

writing. The fronthand of the clock algorithm, sweeps through a list of

eligible pages for swapping out and set their corresponding reference bit to

0. After Sometime, the backhand scans through the same list of eligible

pages and checks their reference bits. If their reference bits are set to 1,

these pages have been referenced recently since they are swept by the

fronthand. So, these pages are then ignored. If their reference bits are still

set to 0, then they are placed on a list to be paged out.

Figure 8.6 : Two-Handed Clock Page Replacement Algorithm[4] MCA-114/172

The algorithm has two parameters to controls its operation:

 Scanrate : It is the rate at which the two hands scan through the

list of eligible pages. It is measured in pages per second

 Handspread : The gap between fronthand and backhand of the

clock algorithm.

These parameters have default values at boot time based on the

availability of physical memory. The scanrate varies linearly between slow

scan and fast scan as the amount of free memory vary. The clock hands

move more rapidly to free up more pages, if the free memory shrinks. The

handspread along with scan rate give opportunity to a page to be used

again before it is swapped out due to its lack of use.

Check your progress

1. Briefly explain how UNIX system performs memory

management.

2. Explain various data structures used during demand paging in

UNIX system.

8.7 FILE SYSTEM

A file system is an abstraction that provides support for creation,

deletion, modification of files, and organization of files into directories. It

also provides support for access control to files and directories and

efficiently manages the disk space. A UNIX file system is a data structure

resident on disk. It contains a super block that defines the file system, an

array of inodes that define the files in the file system, the actual file data

blocks, and a collection of free blocks. All allocation is performed in

fixed-size blocks. File names are appeared in directories. Each directory

contains names of its files and their pointer to corresponding Inode. An

Inode of a file contains pointer to all disk blocks of the file. The detailed

structure of the Inode will be discussed later in this section. UNIX systems

use a hierarchical file system with the root node as its origin. This

hierarchical tree like structure has a single parent directory and its sub

ordinate directories can have many child directories as illustrated Fig. 8.7.

 MCA-114/173

Figure 8.7: A typical UNIX filesystem tree.

Directory Typical Contents

/ The "root" of the file system.

/bin This directory contains system binary files for most

commonly used executable commands like cp (file

copy), rm (file delete), ls (list files in directory), etc.

generally needed by all users.

/usr/bin It contains higher-level system utilities and application

programs for users

/sbin This directory contains system utilities for performing

system administration tasks by user administration.

/lib Contains system libraries files such as kernel modules or

device drivers.

/usr/lib It stores the required libraries and data files for programs

stored within /usr or elsewhere.

/tmp It is a place for temporary files that are periodically removed

from the file system. For example, many systems clear this

directory upon startup.

/home or

/homes

It is user home directories containing personal file space for

each user. Each directory is named after the login of the user.

MCA-114/174

/etc Contains UNIX system configuration files and databases.

/dev Contains device specific files for every peripheral device

attached to the system.

/proc A pseudo-filesystem which is used as an interface to the

kernel. Includes a sub-directory for each active program (or

process).

Table 8.3 : Some common directories on UNIX systems.

File names appear in directories and a pointer to the file's inode that

contains pointers to all disk blocks of the file. The detailed structure of an

inode will be discussed in the next section. In UNIX, there are three kinds

of files: ordinary disk files, directories, and special files.

i. Ordinary files : Ordinary files can be symbolic or binary files.

You can place any information in a file and the system is not

expecting any particular structuring. A text file consists a sequence

of characters with new lines. Binary programs or files contain non-

numeric text which is mostly numeric data as sequences of word.

These sequences of words appear in main memory, when the

program starts executing. A few user programs manipulate files

and control its structure. For example, the assembler generates, and

the loader expects, an object file in a particular format. A file name

is suffixed with an extension to indicate the nature of the file's

contents (such as .jpeg for image, .txt for text file, .p for Pascal

code and .c for C source code). Extensions are the set of

conventions established by users and programs whose use is not

required by the operating system. It provides an easy way for users

to see type of a file at a glance and group similar files together so

that they can be copied, moved or deleted as a group.

ii. Directories : Directories provide the mapping between the names

of files and the files themselves. A directory is similar to an

ordinary file and implemented in same way except a restriction that

it cannot be written on by unprivileged programs. However, users

can read from directories. There is a login directory for each user

and the user may also create sub-directories to group some files

together. The system maintains several directories for its own use.

One of these is a root directory. All files in the system can be

found by tracing a path through a chain of directories with the

"root" directory as its origin. Other system directories contain all

the programs or commands for general use.

MCA-114/175

Figure - 8.8 UNIX file system hierarchy[6]

A file name is specified to the system in a form of a path name, which is a

sequence of directory names each one is separated by slash, ‘‘/’’, and ends

with the file name. If the sequence starts with a slash, the file search starts

from the root directory. For example, a name /usr/terry/notes/apr22.txt

(see figure 8.8) causes the system to start search the root for directory usr,

then to search usr for terry, and then to search terry for notes and finally to

search notes for apr22.txt. The name ‘‘/’’ refers to the root itself. A path

name not starting with ‘‘/’’ causes the system to start a search with current

working directory of user. At any time, the system knows user’s current

directory or working directory. Thus, a path name notes/apr22.txt specifies

the file apr22.txt in a subdirectory notes that appears in the current

directory. A file name itself, for example, apr22.txt, refers to a file that can

be found in the current directory. A null file name refers to the current

directory. Directory entries for files are called links. The links in directory

entries point to inodes which, in turn, point to the actual physical files. A

file will disappear when the last link to it is deleted. Each directory always

has at least two entries i.e‘‘ . ’’ and ‘‘ .. ’’ . The name ‘‘ . ’’ in each

directory refers to the directory itself. The name ‘‘ . . ’’ refers to the

parent to a directory in which it appears or it was created.

iii. Special files : There exist special files for each disk, tape drive,

magnetic tape, physical memory etc. These special files usually

reside in /dev directory and they are associated with each system

supported device. Read and write to these special files is done

similar to the ordinary disk files, but these actions also cause

activation of the associated devices. For example, to write on a

magnetic tape drive, the kernel writes on the file located at
MCA-114/176

/dev/mt. Special files exist for each disk, each tape drive, and for

physical main memory. The file directory structure shown above

appears as a single file system, but it may be viewed as many

separate file systems under the root directory and subordinate to it.

These file systems may reside on either the same disk as the root of

the file system or on separate disks, but any file system must reside

on only one disk.

Removable file systems : UNIX systems have a single directory tree with

the root of the file system is always stored on the same device. So it is not

necessary that the entire file system hierarchy reside on this device. All

accessible storage must be associated to this single directory tree, before

they are used. This is unlike Windows where there is one directory tree for

each storage component (drive). If you have a directory in a file system,

you can mount another file system into that directory. Mounting is an act

where a storage device is associated to a particular location in the

directory tree. For example, during the system initialization, the user file

sytem on the device /dev/userdisk is mounted on /user directory of the root

file system as shown in figure 8.9.

Figure-8.9- Typical structure of UNIX file system.

Mounting a file system in UNIX requires calling a mount system call. The

mount system call takes two arguments: name of the existing ordinary file,

and name of the special file associated to a storage volume (e.g., a disk MCA-114/177

pack). The special file may have independent file system which may

contains its own directory hierarchy. After mount, reference to the file

system on removable volume requires referring to the ordinary file. Mount

replaces the leaf containing the ordinary file in the hierarchy tree by a

whole new subtree (or the hierarchy) stored on the removable volume.

After the mount, there is virtually no difference between the files on the

removable volume and those on the permanent file system.

UNIX Inode : UNIX Inode is a data structure that describes a file or

directory in UNIX system. It contains important information related to a

file within a file system. The UNIX Inode contains 13 block addresses as

shown in figure 8.10. The first 10 (0-9 block address) are direct block

address of first 10 data blocks of a file. The 11th field contains a one level

index block address which points to a block containing a group of block

addresses. This block normally contains 256 block addresses (block

size/block address size). The 12th field contains a two- level index block

address. This block points to a block containing one level index block

addresses which, in turn, points to blocks containing direct block

addresses. 13th field contains a three-level index block address which

points to a block containing two level index block addresses. Each entry in

this block, points to a block of one level index block addresses. Each entry

in these blocks point to a block of direct block addresses. Each entry in

these blocks ultimately points to a block of the file.

Figure 8.10 : UNIX Inode to allocate every block in a file[2]

MCA-114/178

File and Directory Permissions:

UNIX offers three types of permission to each file or a directory on a

UNIX system. These permissions describe what operations could be

formed on these files and directories by various categories of users. The

permissions assigned to Files and directories differ slightly as both entities

are different from each other. The interpretation of the permissions

assigned to files and directories are shown in the Table 8.4.

Permission File Directory

Read You can see the content of

file

You can list the files in the

directory

Write You can modify the

content of the file

You can create or remove

files in the directory.

Execute You can execute the file

as a program

You can enter into the

directory and access other

files and directory in them.

Table 8.4 : Permissions for files and directories

A UID (User ID) is an integer that describes the owner of a file. Each files

and directories are marked with the UID that is the owner of the file. User

can be organised into groups called GID (group IDs). Users are assigned

to different groups manually by the system administrator. Each file carries

the UID and GID of its owner. When a new file is created, it gets a set of

permissions by the creating process. Theses permission describes the type

of accesses by the owner, other member of the owner’s group and rest of

the users on the files. Since there are three categories of users and three

types of operations (read, write and execute) for each type of user, 9 bits

required to specify access permission. So, permissions are a set of

characters that describe access rights. There are 9 permission characters

that describe three access types to each of three user type. The three access

types are read ('r'), write ('w') and execute ('x'). The three user categories

include: the user who owns the file, other users in the owner’s group and

rest of the users (the general public). The 'r', 'w' or 'x' character in a

permission corresponds to the present of its respective access right while '-

' corresponds to absence of any access right. For example, some set of a 9

permission characters and their meaning are shown in Table a file with

write permissions for the owner, read and write for the group and execute

for others will show as Table 8.5. MCA-114/179

Table 8.5 : Some example of file permissions

The permission of a file or directory can only be modified by its owners,

or by the superuser (root) using the chmod system call.

Syntax :

$ chmod options files

The options for Chmod command can be specified in two ways. Firstly,

permissions may be specified as a sequence of 3 octal digits (octal number

system has the digit range 0 to 7) as shown in table 8.6. Each octal digit

represents the access permissions for the user/owner, group and others

respectively. The mappings of permissions to corresponding octal digits

are shown in Table 8.6.

Permissions Mapping

--- 0

--x 1

-w- 2

-wx 3

r-- 4

r-x 5

rw- 6

rwx 7

Table 8.6 : Mappings of permissions to their octal digits

File permissions Allowed file accesses

rwxrwxrwx All users have read, write, and execute permissions.

r-------- The owner has read permission and no permission

for other users.

rw------- The file’s owner has read and writes permissions and

no permission for other users.

rwx------ The file’s owner has Read, write, and execute

permissions while, all others have no access.

rw-rw-rw- All users have read and write permission while, no

execute permissions for anybody.

rwxr-xr-x All users have read and execute permission while,

the file's owner also has write permission.

MCA-114/180

For example, the following command sets rw------- permission on file

account.txt:

 $ chmod 600 account.txt

Secondly, the options for the file can also be specified symbolically. The

general syntax is:

$ chmod X@Y file

In above syntax, X represents any combination of the letters: ‘u’ (for

owner), ‘g’ (for group), ‘o’ (for others), ‘a’ (for all; that is, for ‘ugo’). @

symbol represents either ‘+’ to add permissions, ‘-’ to remove

permissions, or ‘=’ to assign permissions absolutely. The Y here

represents any combination of ‘r’, ‘w’, ‘x’ access rights. For example, the

table 8.7 shows some typical chmod commands and their descriptions:

Commands Descriptions

chmod u=rx file Grant read and executes but not writes permissions

of file to the owner.

chmod go-rwx

file

Remove read, write and execute permission of

group, others users.

Chmod g+w file Grant writes permission to the group.

Chmod a+x file Grant executes permission to everybody.

Table 8.7 : Some examples of chmod commands.

8.8 SUMMARY

 In this unit, we discussed the history of the UNIX operating system

and the principles upon which Linux is designed.

 We explained how UNIX schedules processes and provides

interprocess communication. We have seen, SVR4 uses a priority

scheduler with 160 priority levels. The process with highest

priority is always running and processes with same priorities are

scheduled in round-robin fashion.

 We discussed, in SVR4, one process signal an asynchronous event

to another process through Signal and one process send data to

other process through pipes and message queues. SVR4

implements shared memory that allows two processes to set up a

part of their address spaces as shared between these two processes.

 We looked at memory management in UNIX. The Virtual memory

is the sum of the physical memory (RAM) and the total swap space MCA-114/181

assigned by the system administrator at the time of system

installation. Virtual memory is commonly implemented by demand

paging. Demand paging in SVR4 version of UNIX uses three data

structures - page table, frame table, and swap table. The page

replacement algorithm used in SVR4 is a refinement of the Least

Recently Used (LRU) which is also known as the two-handed

clock algorithm. In two-handed clock algorithm, the backhand

follows the first hand by some distance and allows pages to be

reclaimed sooner than waiting for a full revolution of the

fronthand.

 We explored that, the UNIX organises the file system as a

hierarchical tree like structure with a single root directory at the

top and every non-leaf node of the file system structure is a

directory of files. Files at the leaf nodes of the tree are directories,

regular files or special device files. Every file has one inode, but it

may have several names called links, all of which map into the

inode. Inode list is stored in the file system on the disk and the

kernel reads them into main memory when accessing files.

 UNIX provides protection and security of files and directory by

controlling read, write and execute access. File and directory

permissions can only be modified by their owners or by the

superuser (root) using the chmod system call.

8.9 TERMINAL QUESTIONS

1. What are the purposes of system call in UNIX system?

2. Explain following terms:

a) Inter process Communication

b) Synchronization

c) Two handed clock algorithm

3. Explain utility programs and application program with examples.

4. How the process scheduling takes place in UNIX system.

5. Describe the types of files in UNIX system.

6. What is the purpose of Unix Inode? Describe the structure of Unix

Inode.

7. What are the various file and directory permissions in UNIX

system?

BIBLIOGRAPHY

1. Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.

Operating System Concepts (8th. ed.) : Wiley Publishing, 2008.

MCA-114/182

2. Crowley, Charles. Operating systems: a design-oriented approach.

McGraw-Hill Professional, 1996.

3. Modern Operating Systems Second Edition by Andrew S.

Tanenbaum Publisher: Prentice Hall Ptr

4. Stallings, William. Operating systems: internals and design

principles. Boston: Prentice Hall, 2012.

5. Ritchie, O. M., and Ken Thompson. "The UNIX time-sharing

system." The Bell System Technical Journal 57.6 (1978): 1905-

1929.

6. Deitel, Harvey M., Paul J. Deitel, and David R. Choffnes.

Operating systems. Pearson/Prentice Hall, 2004.

MCA-114/183

ROUGH WORK

MCA-114/184

