
Bachelor of Science 

UGMM-102 
Analytical Geometry 

 
 

 

Block-1 CONIC SECTION 3-62 
UNIT-1 Conic Section 7 

UNIT-2 Curve Tracing 37 

Block-2 SPHERE AND CYLINDER 63-198 

UNIT-3 Geometry of 3 dimension 67 

UNIT-4 Sphere 109 

UNIT-5 Cylinder 167 

Block-3 CONES AND CENTRAL CONICOIDS
 199-288 

UNIT-6 Cones 203  

UNIT-7 Central Conicoids-I 233 

UNIT-8 Central Conicoids-II 261 

 

 

 

 

 

 

 

 

 

 

Uttar Pradesh Rajarshi Tandon 
Open University 

 

UGMM-102/1

D
G

B
-0

21



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
UGMM-102/2

D
G

B
-0

21



Bachelor of Science 

UGMM-102 
Analytical Geometry 

 
 

 

BLOCK 

1 
CONIC SECTION 

UNIT-1  

Conic section 

 

UNIT-2 

Curve Tracing 

 

 

 

 

 

 

 

Uttar Pradesh Rajarshi Tandon 
Open University 

 

UGMM-102/3

D
G

B
-0

21



Course Design Committee 
Prof. Ashutosh Gupta,       Chairman 
School of Computer and Information Science, UPRTOU, Prayagraj 
Prof. Sudhir Srivastav       Member 
Dept. of Mathematics, DDU Gorakhpur University, Gorakhpur 
Prof. P. K. Singh        Member 
Dept. of Mathematics, Allahabad Uiversity, Prayagraj 
Prof. Mona Khare       Member 
Dept. of Mathematics, Allahabad Uiversity, Prayagraj 
Dr. A. K. Pandey       Member 
Associate Professor, ECC Prayagraj 
Dr. Vikas Singh        Member 
Academic Consultant, UPRTOU, Prayagraj 
Dr. S. S. Tripathi       Member 
Academic Consultant, UPRTOU, Prayagraj 
Course Preparation Committee 
Dr. A. K. Pandey       Author (Unit 1, 2, 3) 
Associate Professor, ECC Prayagraj 
Dr. Jogendra Kumar       Author (Unit 4, 5) 
Assistant Professor (Mathematics) 
Govt. Degree College, Raza Nagar, Swar, Rampur 
Dr. Kamran Alam        Author (Unit 6, 7, 8) 
Assistant Professor (Mathematics)              
Ram Lubhai Sahani Govt. Girls Degree College, Pilibhit (U.P.) 
Dr. S. S. Tripathi        Editor 
Academic Consultant         
School of Science, UPRTOU, Prayagraj 
Prof. Ashutosh Gupta 
Director, School of Computer and Information Science,  
UPRTOU, Prayagraj 
Faculty Members, School of Sciences 
Prof. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj  
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU, Prayagraj  
Dr. Marisha Asst. Prof., (Computer Science), School of Science, UPRTOU, Prayagraj  
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science, UPRTOU, Prayagraj  
Dr. Dinesh K Gupta Academic Consultant (Chemistry), School of Science, UPRTOU, Prayagraj  
Dr. S. S. Tripathi, Academic Consultant (Maths), Scool of Science, UPRTOU, Prayagraj  
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of Science, UPRTOU, Prayagraj  
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of Science, UPRTOU, Prayagraj  
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science, UPRTOU, Prayagraj  
Dr. Deepa Chubey, Academic Consultant (Zoology), School of Science, UPRTOU, Prayagraj 
Dr. Arvind Kumar Mishra, Academic Consultant (Physics), School of Science, UPRTOU, Prayagraj 
 
 



BLOCK INTRODUCTION 

Unit-1 Conic Section : Homogeneous equation of second degree and 
conditions on it to represent different types of conics. Polar 
coordinates. Polar equation of a line, parabola, ellipse and 
hyperbola when focus is taken as pole. Polar equations of the 
chord joining two points. 

Unit-2 Curve Tracing : Tangent, normal polar (chord of contact),  pair 
of tangent lines, asymptotes, Tracing of a conic. 

UGMM-102/5

D
G

B
-0

21



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UGMM-102/6

D
G

B
-0

21



UNIT-I CONIC SECTIONS 
Structure 

1.1 Introduction  

1.2 Objectives 

1.3 Equation of a pair of lines 

1.4 General equation of second degree 

1.5 Homogenous equation of Pair of straight lines 

1.6 Angle between the lines ax² + by² + 2hxy = 0 

1.7 Condition for the lines to be perpendicular/parallel  

1.8 Equation of any two perpendicular lines though the 
origin 

1.9 Equation of Bisectors  

1.10 General equation of second degree 

1.11 Polar Coordinates  

1.12 Polar equation of a conic when the focus is the pole 

1.13 Directrices 

1.14 Equation of the chord when the vectorial angles of the 
extremities are given 

1.1 INTRODUCTION 

In this unit, our aim is to re-acquaint with some essential elements 
of two dimensional geometry.The French philosopher mathematician 
Rene Descartes (1596--1650) was the first to realize that geometrical 
ideas can be translated into algebraic relations. The combination of 
Algebra and Plane Geometry came to be known as Coordinate Geometry 
or Analytical Geometry. A basic necessity for the study of Coordinate 
Geometry is thus, the introduction of a coordinate system and to define 
coordinates in the concerned space. We will briefly touch upon the 
distance formula and various ways of representing a straight line 
algebraically. Then we shall look at the polar representation of a point in 
the plane. Next, we will talk about symmetry with respect to origin or a 
coordinate axis. Finally, we shall consider some ways in which a 
coordinate system can be transformed.This collection of topics may seem 
random to us . 
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We  have  read  about  lines,  angles  and  rectilinear  figures  
in  geometry.  

Recall that a line isthe join of two points ina plane continuing e
ndlesslyin both directions. We  have  also seen  that  graphs  of  
linear  equations,  

Which  came  out  to  be  straight  lines.  Interestingly,  the  
reverse  problem  Of  the  above  is  finding  the  equations  of  
straight  lines, under  different conditions in  a  plane.  The  
Analytical  Geometry,  more  commonlycalled Coordinate  geomatry,  
comes  toour  help  in  this  regard.  

In  this  unit we shall  find  equations of  a  straight  line  in  
different  forms And  try  to  solve  t h e  problem based  on  these. 

1.2 OBJECTIVES 

After studying this unit you should be able to find: 

1. Equation of a pair of lines passing through the origin 

2. Angle between pair of lines 

3. Bisectors of the angles between two lines. 

4. Pair of bisectors of angles between the pair of lines. 

5. Equation of pair of lines passing through given point and  
parallel/perpendicular to the given pair of lines. 

6. Condition for perpendicular and coincident lines 

7. Area of the triangle formed by given pair of lines and a line. 

8. Pair of lines of second degree general equation 

9. Conditions for parallel lines distance between them. 

10. Point of intersection of the pair of lines. 

11. Homogeneous equation of second degree equation w.r.t a 
1stdegree equation in x and y. 

12. Relate the polar coordinates and cartesian coordinates of a point. 

13. Equation of bisectors 

14. Obtain the polar form of an equation and  the equation of  
Directrices  

15. Equation of the chord when the vectorial angles of the extremities 
are given  
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1.3 EQUATION OF A PAIR OF STRAIGHT 
LINES 

Definition: Let L1= 0, L2= 0be the equations of two straight lines. 
If P(x1,y1) is  a point on L1 then it satisfies the equation L1=0. 
Similarly, if P(x1,y1) is a point on L2 = 0 ,then it satisfies the 
equation. If P(x1,y1) lies on L1or L2, then P(x1,y1) satisfies the 
equation L1L2 = 0. 

1 2 0L L∴ = represents the pair of straight lines L1 = 0 and L2 = 0 
and the joint equation of 

L1= 0 and L2= 0 is given by L1.L2 = 0.-----(1) 

On expanding equation (1) we get and equation of the form 
2 22 2 2 0ax hxy by gx fy c+ + + + + =  which is a second degree (non-

homogeneous) equation in x and y. 

1.4 GENERAL EQUATION OF SECOND 
DEGREE 

General equation of second degree is ax²+by²+2hxy+2gx+2fy+c = 
0, if this equation represents a pair of straight lines, suppose that general 
equation of straight lines be, l1x+m1y+n1 =0 and l2x+m2y+n2 = 0 then 
product of these two lines  

( l1x + m1y + n1)(l2x + m2y + n2) = 0 ≡ ax² + by² + 2hxy + 2gx + 2fy + c.  

Compairing the coefficients, we get 

l1l2= a, m1m2= b , n1n2 = c, l1m2 + l2m1 = 2h , m1n2 + m2n1= 2f, n1l2 + n2l1 = 
2g.  

or,  a(bc - f²) - h( hc - gf) + g( hf - bg) = 0  

�
𝑎𝑎  ℎ 𝑔𝑔
ℎ 𝑏𝑏 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐

�  = 0 

That is if abc + 2fgh - af²- bg²- ch² = 0then 

Case(1). 𝑎𝑎𝑏𝑏 − ℎ2 = 0, it represents a pair of straight lines. 

Case(2. ) 𝑎𝑎𝑏𝑏 − ℎ2 ≠ 0, it represents a pair of intersecting straight lines. 

Case(3) .𝑎𝑎𝑏𝑏 − ℎ2 < 0, it represents a pair of real or imaginary straight 
lines. 

Case(2. ) 𝑎𝑎𝑏𝑏 − ℎ2 > 0, it represents a point. 
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Note: Here a, b, c, stand for coefficients of x², y² and constant term 
respectively and f, g, h stand for half of the coefficients of y, x and xy. 

Again, If abc + 2fgh - af²- bg²- ch² ≠ 0then 

Case (1). ℎ = 0,𝑎𝑎 = 𝑏𝑏, then it represent a circle. 

Case (2).  𝑎𝑎𝑏𝑏 − ℎ2 = 0, it represents a parabola. 

Case (3). 𝑎𝑎𝑏𝑏 − ℎ2 > 0, it represents an ellipse. 

Case (4). 𝑎𝑎𝑏𝑏 − ℎ2 < 0, it represents a hyperbola. 

Case (5). 𝑎𝑎𝑏𝑏 − ℎ2 < 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 + 𝑏𝑏 = 0, it represents a rectangular   
hyperbola. 

Note (1). If abc + 2fgh - af²- bg²- ch² ≠ 0in the above equationthen it 
represents the non- degenerate conic.  

(2). If abc + 2fgh - af²- bg²- ch² = 0in the above equationthen it represents 
the degenerate conic.  

Example 1: What conic does 2 213 – 18 37 2 14 – 2 0x hxy y x y+ + + =  
represent? 

Solution: Compare the given equation with  

ax2+ 2hxy by2+ 2gx + 2fy+c = 0,  

we get that 𝑎𝑎 =  13,ℎ =  −9, 𝑏𝑏 =  37,𝑔𝑔 =  1,𝑓𝑓 =  7, 𝑐𝑐 =  −2 . 

𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓² −  𝑏𝑏𝑔𝑔² −  𝑐𝑐ℎ²
=  13 × 37 × −2 +  2 × 7 × 1 × −9 – 13 ×  7 × 7 − 37
×  1 × 1 + 2 × −9 × −9  

 =  −962 − 126 − 637 − 37 + 162 =  −1600 ≠ 0 

also, ℎ2= (−9)2 = 81 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎𝑏𝑏 = 13 × 37 = 481. 

Here, 𝑎𝑎𝑏𝑏 − ℎ2 = 400 > 0. So, it represents an ellipse. 

Example 2: What conic is represented by the equation √𝑎𝑎𝑙𝑙 +�𝑏𝑏𝑚𝑚 = 1 ? 

Solution: The given conic is √𝑎𝑎𝑙𝑙 +�𝑏𝑏𝑚𝑚 = 1. Squaring on both sides then 
𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  2�𝑎𝑎𝑙𝑙𝑏𝑏𝑚𝑚 =  1, or, 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 − 1 = − 2�𝑎𝑎𝑙𝑙𝑏𝑏𝑚𝑚  

Now squaring on both sides, we get (𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 − 1)2 = 4𝑎𝑎𝑙𝑙𝑏𝑏𝑚𝑚 

 
Therefore, 𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 

= 𝑎𝑎2𝑏𝑏2 - 2𝑎𝑎2𝑏𝑏2-𝑎𝑎2𝑏𝑏2 - 𝑎𝑎2𝑏𝑏2 - 𝑎𝑎2𝑏𝑏2 = - 4𝑎𝑎2𝑏𝑏2 ≠ 0,𝑎𝑎𝑛𝑛𝑑𝑑 ℎ2 = 𝑎𝑎2𝑏𝑏2. 

So, we have 𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 ≠ 0 

2 2 2 2– 2 – 2 – 2 1 0a x abxy b y ax by= + + =
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and ℎ2 - 𝑎𝑎2𝑏𝑏2 = 0. Hence, the given equation represents a parabola. 

Example 3: If the equation 𝑙𝑙2 − 𝑚𝑚2 − 2𝑙𝑙 + 2𝑚𝑚 + 𝜆𝜆 =  0 represents a 
degenerate conic then find the value of 𝜆𝜆. 

Solution: For degenerate conic, 

𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 = 0 

Comparing the given equation of conic with 𝑎𝑎𝑙𝑙² + 𝑏𝑏𝑚𝑚² + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑔𝑔𝑙𝑙 +
2𝑓𝑓𝑚𝑚 + 𝑐𝑐 =  0, we get,  

𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 = 1 × −1 × 𝜆𝜆 + 1 × (−1)2 − 0 =
0 ⇒ − 𝜆𝜆 − 1 + 1 = 0  So, 𝜆𝜆 = 0 

Example 4: For what value of 𝜆𝜆 the equation of conic 2𝑙𝑙𝑚𝑚 +  4𝑙𝑙 –  6𝑚𝑚 +
𝜆𝜆 = 0 represents two intersecting straight lines? if 𝜆𝜆 = 17 then this 
equation  represent ? 

Solution: Comparing the given equation of conic with 𝑎𝑎𝑙𝑙² + 𝑏𝑏𝑚𝑚² +
2ℎ𝑙𝑙𝑚𝑚 + 2𝑔𝑔𝑙𝑙 + 2𝑓𝑓𝑚𝑚 + 𝑐𝑐 =  0, since we know that for two intersecting 
lines,  𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 = 0 and 𝑎𝑎𝑏𝑏 − ℎ2 ≠ 0 

Therefore, 𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 

= 0 + 2 × −3 × 2 × 1 − 0 − 0 −  𝜆𝜆(1)2 =  −12 − 𝜆𝜆 = 0.  

So,  𝜆𝜆 =  −12. 

For 𝜆𝜆 = 17, the given equation of conic 2𝑙𝑙𝑚𝑚 +  4𝑙𝑙 –  6𝑚𝑚 + 17 = 0 

According to the above condition, here 𝑐𝑐 =  17,  

so 𝑎𝑎𝑏𝑏𝑐𝑐 +  2𝑓𝑓𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓2 −  𝑏𝑏𝑔𝑔2 −  𝑐𝑐ℎ2 =  −29 ≠ 0 

and 𝑎𝑎𝑏𝑏 − ℎ2 = 0 − 1 =  −1 < 0.  

Hence the given equation represents a Hyperbola. 

1.5 HOMOGENOUS EQUATION OF PAIR OF 
STRAIGHT LINES 

ax² + by² + 2hxy = 0 is a homogenous equation of second degree and it 
will represent a pair of straight lines or two straight lines passing through 
the origin.suppose these lines be y = m1xand y = m2x. 

Therefore (y - m1x).(y - m2x) = 0 represent a pair of straight lines  

i.e.         y² - (m1 + m2).xy + m1m2x² = 0………………………(1)   

Also,    ax² + by² + 2hxy = 0 or,    y² +𝑎
𝑏
 x² + 2h

𝑏
xy = 0  …..(2) 

We compare the coefficients of equation (1) and (2) we get 

     m1 +m2 =
−2h
𝑏

,  and         m1m2 =
a
𝑏
 ……………(3) UGMM-102/11
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1.6 ANGLE BETWEEN THE LINES ax² + by² + 
2hxy = 0 

Suppose that the two lines represented by ax² + by² + 2hxy = 0 be  

y= m1x and y= m2x. 

Suppose that angle between the lines y= m1x and y= m2x be α,  

Sinceax² + by² + 2hxy = 0 = (y - m1x).(y - m2x) 

i.e.         y² - (m1 + m2).xy + m1m2x² = 0………………………(1)   

Also,    ax² + by² + 2hxy = 0 or,    y² +𝑎
𝑏
 x² + 2h

𝑏
xy = 0  …..(2) 

We compare the coefficients of equation (1) and (2) we get 

 m1 +m2 =
−2h
𝑏

,  and         m1m2 =
a
𝑏
 ……………(3) 

then      

tanα = m1−m2
1+m1m2

= √(( m1+m2)2−4m1m2)
1+m1m2

=  
√((4h

2

b )2−(4ab ))

1+(b/a ) 
 

 Therefore, tanα = 2 √h
2−ab
a+b 

.   

Then,  α =  tan-1(2 √(h2−ab)
a+b 

)………..(4) 

The homogenous equation of second degree ax² + by² + 2hxy = 0 
represent a pair of straight lines or two straight lines passing through the 
origin. The lines are real and distinct, coincident or imaginary according 
as (h2 − ab) > 0, = 0 𝑜𝑟𝑟 < 0. 

1.7 CONDITION FOR THE LINES TO BE 
PERPENDICULAR/ PARALLEL 

Case (1): If the lines be perpendicular,then α=90˚ Therefore,  

tanα = tan90 = ∞ =2√( h2−ab) 
a+b

 ,  i.e.  a+b = 0  

 

i.e. [coefficient of x² + coefficient of y²=o] 

 

Case (2):  If  the lines be parallel ,then α=0.  Therefore,  

tanα = tan0 = 0 =2√(h²−ab)
a+b

 , then √ (h² - ab) = 0 
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then h² = ab  i.e. (½ coefficient of xy)² 

 

 = product of coefficient of x² and coefficient of y². 

1.8 EQUATION OF ANY TWO PERPENDICULAR 
LINES THOUGH THE ORIGIN 

If the lines represented by ax² + 2hxy + by² = 0 be perpendicular,  

then a + b = 0 or b = -a. Hence the equation becomes ax²+2hxy-ay² = 0. 

 i.e. x² - y² + 2hxy/a = 0 or x² - y² + pxy = 0. Where p is any constant. 

Example 5: What curve does the equation x² - 5xy + 4y² = 0 represent? 

Solution: Since,    x² - 5xy + 4y² = 0  

Or,  x² - xy - 4xy + 4y² =  x(x - y) - 4y(x - y) = 0 

 Or, ( x - 4y)(x - y) = 0  Or, x - 4y = 0 or, x - y = 0 

Which are straight lines, hence x² - 5xy + 4y²= 0 represents a pair of 
straight lines. 

Example 6: Find the angle between the pair of straight lines x² + 4y² - 7xy 
= 0. 

Solution: Suppose α be the angle between the pair of straight lines then      

 tanα = (2√(ℎ2-ab))/((a+b))= 2√ ((−7
2

)²- 1×4
1+4

)  = 2√(49−16/4)
5

 = √33
5

 

Therefore, α = tan-1(√33
5

) 

Example 7: Find the equation of the pair of straight lines through the 
orign which are perpendicular to the lines represented by 

 ax² + 2hxy + by² = 0  

Solution : If the lines represented by ax² + 2hxy + by² = 0 are 

             y - m1x = 0 and y- m2x = 0 then m1+m2 = −2h
b

, m1m2 = a
b 

 

the lines perpendicular to them  and passing through origin will be  

y = (-1)/(𝑚𝑚1x  )and y = −1
𝑚2x

.  

Their combined equation is (m1y + x) ( m2y + x) = 0  

 Or,  m1 m2 y² + (m1 + m2) xy + x² = 0  
UGMM-102/13
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Or, ( 𝑎
𝑏

)y² + (−2ℎ
𝑏

 )xy + x² = bx² - 2hxy + ay² = 0 

Example 8 : Find the equation of the pair of the straight lines through the 
origin which are perpendicular to the lines represented by  

2x² - 5xy + y² = 0  

Solution : since equation of pair of straight lines be 2x² - 5xy + y²= 0 
………….(1) 

 Suppose that equation of pair of straight lines be y - m1x = 0 

And y - m2x =0 

  then their combined equation represented by equation (1) now its 
perpendicular      

 equations be y = −1
𝑚1

x  and y = (-1/m2 )x,  therefore, combined equation is  

(m1y + x)(m2y + x) = 0   

Therefore,   m1m2y² + (m1 + m2) xy + x² = 2y² + 5xy + x² = 0  

Equation of perpendicular lines be   2y² + 5xy + x² = 0  

Example 9: Prove that the product of the perpendiculars drawn from the  

point ( x1, y1) on the lines represented by  

ax² + 2hxy + by² = 0 is (ax1² + 2hx1y1 + by1²)/[(a - b)² + 4b²]1/2. 

Proof: suppose that ax² + 2hxy + by² = (y - m1x)(y - m2x)  

i.e. m1 + m2 = -2h/b and m1m2 = a/b  

 

If p1 and p2 be the perpendiculars to them from the point  

 

(x1, y1) then p1p2 = 𝑦𝑦1−𝑚1𝑥𝑥1
√1+𝑚1²

× 𝑦𝑦1−𝑚2𝑥𝑥1
√1+𝑚2²

 

 

Therefore, p1p2 =
𝑦𝑦1²+ 𝑚1𝑚2𝑥𝑥1²− (𝑚1+ 𝑚2)𝑥𝑥1𝑦𝑦1

{1+ 𝑚1²+𝑚2²+(𝑚1𝑚2)²}½
 

 

=
𝑦𝑦1²−𝑥𝑥1𝑦𝑦1�−

2h
b �+

a
b𝑥𝑥1²

{ 1+(𝑚1+𝑚2)2−2(𝑚1𝑚2)+ 𝑚1²𝑚2²}½
 

 

=  (ax1² + 2hx1y1 + by1²)/b{1 + 4h²/b² - 2(a/b) + (a/b)²}½ 
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= (ax1² + 2hx1y1 + by1²)/{(a - b)² + 4h²}½ 

Example 10: Prove that angle between the straight lines represented by  

           (x² + y²)sin²α = (xcosθ - ysinθ)² is 2α. 

Proof: The given equation can be written as  

x²(sin²α - cos²θ) + 2xysinθcosθ + y²(sin²α - sin²θ) = 0 

This equation of the form ax² + 2hxy + by² = 0 and hence if φ be angle  

between them, then tanφ = 2√ (h² - ab)/(a + b). Therefore,  

2√(h² - ab) = 2[sin²θcos²θ - (sin²α - cos²θ)(sin²α - sin²θ)]½  = sin2α 

Since, a + b = sin²α - cos²θ + sin²α - sin²θ = 2sin²α -1 = -cos2α 

Therefore, tanφ = sin2α/-cos2α = -tan2α, 

 φ = -2α or φ=2α. 

Example 11: Find the condition that one of the lines given by the equation  

ax² + 2hxy + by² = 0 common to lines given by  

 a'x² + 2h'xy+ b'y² = 0  

Proof:  suppose that y = mx be a common line to both the pair then  

putting y = mx in the two equations, we get 

 ax² + 2hmx² + b'm²x² = 0 or, bm² + 2hm + a = 0 ………..(1)  

 a'x² + 2h'mx² + b'm²x² = 0 or , b'm² + 2h'm + a' = 0……….(2) 

m²
�a′h – a h′�

=  2m 
ab′− a′ b   

= 1 
bh′− b′h 

 

 m =2(a′h − ah′)
ab′− a′b 

, and m = ab′− a′b
2(bh′− b′h)

. So, 2(a′h − ah′)
ab′− a′b 

 =  ab′− a′b
2(bh′− b′h)

 

Therefore, (ab' - a'b) (ab' - a'b) = 4(a'h - ah') (bh'- b'h) 

Example 12: Find the condition that one of the lines given by the equation  

ax² + 2hxy + by² = 0 be perpendicular to one of those lines given by a'x² + 
2h'xy + b'y² = 0 

Proof: Suppose that one of the line given by the first pair be  

y = mx, by given condition one of the line given by the second pair should 
be y = −1

𝑚
x.  

Therefore,  bm² + 2hm + a = 0 and a'm²- 2h'm+b' = 0 
 

 m²
2(hb′+h′b) 

= m
aa′−bb′

= 1
2(ha′+h′a)
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m = 2(hb′+h′b)
 aa′−bb′

and, m = aa′− bb′
 2(ha′+h′a)

.  

 

So, 2(hb′+h′b)
 aa′−bb′

= aa′−bb′
 2(ha′+h′a)

 

Therefore, (aa'- bb')² = 4(hb + h'b) (ha'+ h'a) 

Example 13(a):  Find the angle between the lines given by the equation 
λy² + (1 - λ²)xy - λx² = 0  

Solution: Since,  a + b = λ + (-λ) = 0 hence, θ = 90 

(b): Find the angle between the pair of straight lines y²sin²θ - xysin²θ + 
x²(cos²θ -1) = 0  

Solution: Since,  a + b = sin²θ + cos²θ -1 = 1 -1=0. Therefore, θ = 90 
(lines are perpendicular) 

Note: If the represented by ax² + 2hxy + by² = 0 be perpendicular, then a + 
b = 0 or, b = -a, hence the equation becomes ax² +2hxy - ay² = 0 or x² 
+(2h

b
)xy - y² = 0   

Or, x² + pxy - y² = 0,  where p is any constant.  

1.9 EQUATION OF BISECTORS 

Equation of pair of straight lines which passes through origin is ax² + by² 
+ 2hxy = 0, if the lines represented by the given equation be y = m1x and y 
= m2x  

then m1+m2 =−2h
b 

, m1m2 = 𝑎
𝑏
 equation of their bisectors are  y −m1x

√1+m1²
= 

y –m2x
√1+m2²

 

 

( y − m1x
�(1+m1²)     

+ y – m2x
�(1+m2²) 

)( y − m1x
�(1+m1² )    

- y–m2x
√(1+m22) 

) = 0  

 

Or,     ( y −m1x)²
(1 + m12) 

-  (y – m2x)²
(1+ m22)  

= 0. By sloving this we get  

 

-y²(m1+m2)+x²( m1+m2) - 2xy(1-m1m2) = 0 
 

Or ( x²-y²)(-2h/b) = 2xy(1-a/b) 
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Or,  (x²- y²)/(a-b)  = xy/h    

Note : Since sum of the coefficients of x² and y² in the above equation is 
zero.  

i.e.  a+b=0,hence the bisectors are perpendicular. 

1.10 GENERAL EQUATION OF SECOND 
DEGREE 

General equation of second degree is ax²+by²+2hxy+2gx+2fy+c = 0, if 
this equation represents a pair of straight lines, suppose that general 
equation of straight lines be, l1x+m1y+n1 =0 and l2x+m2y+n2 = 0 then 
product of these two lines  

( l1x + m1y + n1)(l2x + m2y + n2) = 0 ≡ ax² + by² + 2hxy + 2gx + 2fy + c.  

Compairing the coefficients, we get 

l1l2= a, m1m2= b , n1n2 = c, l1m2 + l2m1 = 2h , m1n2 + m2n1= 2f, n1l2 + n2l1 = 
2g.  

or,  a(bc - f²) - h( hc - gf) + g( hf - bg) = 0  

         �
𝑎𝑎  ℎ 𝑔𝑔
ℎ 𝑏𝑏 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐

�  = 0 

 that is abc + 2fgh - af²- bg²- ch² = 0 this the required condition that ax² + 
by² + 2hxy + 2gx + 2fy + c = 0 represent a pair of general linear equations. 

Note: Here a, b, c, stand for coefficients of x², y² and constant term 
respectively and f, g, h stand for half of the coefficients of y, x and xy. 

Example14: Determine the equation of bisectors of the angle between the 
lines  

4x² - 16xy - 7y² = 0  

Solution: Since equation of angular bisector is (x² - y²)/a - b = xy/h  

Therefore, ( x² - y²)/4 - (-7) = xy/-8  

Or, 8(x² - y²) + 11xy = 0   

Example15:  If (a + b)² = 4h², prove that one of the lines given by the 
equation  

ax² + 2hxy + by² = 0 will bisect the angle between the coordinate axes.  

Proof:  The bisectors of the angle between the co-ordinate axes will make 
an angle 45 degree or 135 degree with the positive direction of x-axis and 
hence their equation are y = ±x. 

If y = x belongs to ax²+2hxy+by² = 0.Then ax² + 2hx² + bx² = 0  UGMM-102/17
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=›  a + b = -2h.  Similarly, if y= -x belongs to ax²+2hxy+by² = 0,  

then ax² - 2hx² + bx² = 0 =› a+b = 2h  

Therefore, a + b = ±2h. Squaring of these we get (a + b)² = 4h². 

Example16: Show that the line y = mx bisects the angle between the lines  

ax² + 2hxy + by² = 0 if  h(1 - m²)= -m(a - b). 

Proof: Since bisectors of the given pair of the lines is (x² - y²)/(a - b) = 
xy/-h,  

if y = mx be one of the bisector then it satisfy the above relation so,  

(x² - m²x²)/(a -b) = x.mx/-h  =› (1 - m²)/(a - b) = m/-h 

=›    h(1 - m²) + m(a - b) = 0  

Example 17:  Prove that the straight lines ax² + 2hxy + by² = 0 have the 
same pair of bisectors as those of the lines given by a²x² + 2h(a + b)xy + 
b²y² = 0  

Proof:  The bisector of the pair of the lines a²x² + 2hxy + b²y² =0 is given 
by 

𝑥𝑥²−𝑦𝑦²
𝑎²−𝑏²

 = 𝑥𝑥𝑦𝑦
ℎ(𝑎+𝑏)

or, 𝑥𝑥²−𝑦𝑦²
𝑎−𝑏

 = 𝑥𝑥𝑦𝑦
ℎ

 

but this is a equation of the bisectors of the lines given by the pair of the 
straight lines of the first equation.  

Example 18: Prove that angle between one of the lines given by ax² + 
2hxy + by² = 0  

and one of the lines ax² + hxy + by² + λ(x² + y²) = 0 is equal to the angle 
between  

the other two lines of the system. 

Proof:  Since the two pairs have the bisectors  𝑥𝑥²−𝑦𝑦²
(𝑎 + 𝜆)− (𝑏 + 𝜆)

 = 𝑥𝑥𝑦𝑦
ℎ

 

or,  𝑥𝑥²−𝑦𝑦²
𝑎 + 𝑏

 = 𝑥𝑥𝑦𝑦
ℎ

 and this is also the equation of bisector of first pair.  

Examples19: If the pair of lines x² - 2pxy - y² = 0 and x² - 2qxy - y² = 0 is 
such that  

each pair bisects the angle between the other pair, prove that pq = -1. 

Proof: Equation of the bisectors ofx² - 2pxy - y² = 0 are   𝑥𝑥²−𝑦𝑦²
1−(−1)

 = 𝑥𝑥𝑦𝑦
−𝑝

 

=›  x² - y² = −2xy
𝑝

. -------------------- (1) 
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But the bisectors of first pair of lines are given by the second pair i.e,           

  x² - y² = 2qxy   --------------------- (2) 

Compairing (1) and (2) we get − 1
𝑝
 = q  or,  pq = -1 

Example 20: For what value of λ does the equation 12x² -10xy + 2y² + 
11x - 5y + λ = 0 represents pair of straight lines. Find their equations. 

Solution: Here, a = 12, b = 2, c = λ, f =  5
2
 , g = 11

2
 , h = -5. Putting these 

values in the condition abc + 2fgh - af² - bg² - ch² = 0  

We get,  24λ + 275
2

– 75  - 121
2

  - 25λ = 0 =› λ = 2.  

Therefore, 12x²-10xy+2y²+11x-5y+2 = 0………(1)  

represents a pair of straight lines and suppose that two straight lines be  

y = m1x + c1, y = m2x + c2 then (y - m1x - c1)( y - m2x - c2) = 0  

is same as equation (1) then  

y² + m1m2x² - (m1 + m2)xy - (m1c2 + m2c1)x - ( c1 + c2)y + c1c2 = 0 ……(2) 

Compairing equation (1) and (2) we get  

m1m2  =  
12
2  ,  m1 + m2 = 5, m1c2 + m2c1 = −11

2
 , c1 + c2 = 5

2
 , c1c2 = 1. 

Therefore,  (m1 - m2)² = (m1 + m2)² - 4m1m2  

=› 25 - 24 = 1  

Therefore, m1 - m2 = ± 1, m1 + m2 = 5  

=› m1 = 3 or 2 and m2 = 2 or 3  

Similarly,  (c1 - c2)² = (c1 + c2) - 4c1c2  = 25
4
− 4 × 1 =9

4
 

=› (c1 - c2)² =  9
4
 ,  c1 - c2 = ± 3

2
 , c1 + c2 = 5

2
 

=›  c1 = 2 , or 1
2
,  and c2 = 1

2
, or 2.  

Therefore, equation of straight lines be y= 3x + 2, and y = 2x +1
2
 

=› 3x – y + 2 = 0 and 4x - 2y + 1 = 0  

Example 21: If x² - 3xy + λy² + 3x - 5y + 2 = 0 represents a pair of 
straight lines  

 then find the value of λ. 

Solution: Condition for pair of straight lines is abc + 2fgh - af² - bg² - ch² 
= 0 then  UGMM-102/19
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1× 𝜆𝜆 × 2+2×(-5
2
)×3

2
×(-3

2
) − 1 × ( - 5

2
)²-λ(3

2
)² − 2 �− 3

2
�
2

= 0  

2λ+45
4
− 25

4
− 9𝜆

4
− 9

2
= 0 

  - 𝜆
4
 +1
2
 = 0  =›  λ = 2 

Example 22: If λx² - 10xy + 12y² + 5x - 16y – 3 = 0 represents a pair of 
straight lines  

then find the value of λ . 

Solution: Conditions for pair of straight lines is  

    Abc + 2fgh - af² - bg² - ch² = 0 then   

λ×12×-3+2×(-8)×(-5)-λ×(-8)²-12×(-5
2
)² - (-3)(-5)² = 0 

or, -36λ+80-64λ-12×25
4

 – 75 = 0 

or, -100λ = -150 or, λ =  2 

Example 23: Show that the equation 12x² - 10xy + 2y² + 11x - 5y + 2= 0 
represents a pair of straight lines. Find their equations.  

Solution: Since condition for pair of straight lines is abc + 2fgh - af² - bg² 
- ch² = 0  

12×2×2 + (-5)×11
2

×(-5
2
)-12×(−5

2
)²- 2×(11

2
)²- 2×(-5)² = 0 

Suppose equation of two lines be y = m1x + c1 and y = m2x + c2 

Then (y- m1x + c1)( y - m2x + c2) = 0  

Or, y² + m1m2x² - (m1 + m2)xy - (c1 + c2)y - (m1c2 + m2c1)x + c1c2 = 0  

Therefore, m1m2 = 6, m1 + m2 = 5, c1 + c2 = 5
2
,  c1c2 = 1 

Therefore, (m1 - m2)² = (m1 + m2)² - 4m1m2  =  25 - 24 = 1  

=› m1 – m2 = ± 1 

𝑚𝑚1 = 3 or 2 and m2 = 2 or 3  

also, (c1 - c2)² = (c1 + c2) - 4c1c2  = 25
4
−  4 × 1 =  9

4
 

or, c1 - c2 = ± 3
2
 , c1 + c2 = 5

2
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or, c1 = 2 or 1 and c2 = 1
2
 or 2 

Therefore, lines be y= 3x + 2 and y = 2x + 1
2
 

Example 24: Prove that the point of intersection of the lines given by the 
equation x² - 5xy + 4y² + x + 2y - 2 = 0 is (−6

5
 ,−46

40
 ) 

Solution: Suppose that equation of two straight lines be y= m1x + c1 and y 
= m2x + c2 ,then  (y - m1x + c1)( y - m2x + c2) = 0  

y² + m1m2x² - (m1 + m2)xy - (c1 + c2)y - (m1c2 + m2c1)x + c1c2 = 0  

Therefore,   m1m2 = 1
4
 , m1 + m2 = 5

4
, c1 + c2 = -  1

2
 , c1c2 = −1

2
 

(m1 - m2)² = (m1 + m2)² - 4m1m2  =  (5
4
)² - 4×1

4
 = 25−16

4
 = 9

4
 

    m1 - m2 = ± 3
2
 , m1 + m2 = 5

4
 

m1  = 11
8

, or 1
8
 , m2 = 1

8
 or ,11

8
 

Also, (c1 - c2)² = (c1 + c2) - 4c1c2  =  (−1
2
)²- 4×−1

2
 = 1

4
+ 2 = 9

4
 

c1 - c2 = ± 3
2
 , c1 + c2 = −1

2
 , c1 = 1

2
  or -1 and c2 = -1 or 1

2
 

Therefore, equation of lines: y = 11
8
𝑙𝑙 + 1

2
 , y = 1

8
x – 1 

Or, 11x - 8y + 4 = 0 and x - 8y - 8 = 0  

Its intersection point is (−6
5

 ,−46
40

 ). 

Example 25:Prove that the equation 8x² + 8xy + 2y² + 26x + 13y + 15 = 0  

represents two parallel lines and find the distance between them. 

Proof:  Condition for parallel lines be h² - ab = 0  

Therefore, (4)² - 2×8 = 0, so lines be parallel to each other. 

Also, 8 
2
x² +8

2
xy + y² +26

2
x +13

2
y +15

2
= 0  

Therefore, y² + 4x² + 4xy +13x +13
2

y +15
2

  = 0 gives two parallel straight 
lines.  

Lines be the 2x+y+5 = 0 and 2x+y+3
2
 = 0. If p1  and p2 be their distances 

from origin, then the distance between them is  UGMM-102/21
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P = p1 ~ p2  = 5
�(4+1)

~ 3/2 
�(4+1)

 = 7
2√5

 

Check  your progress 
1. What is the condition for givenlines y = m1x + c1 

 and Ax+ By+ C = 0  

(a) to be parallel?  (b) to be perpendicular? 

2. Find the angle between  the lines 2x+ 3y = 7 and 4x + 5y = 14. 

3. (a)  Write the condition that the twolines  

𝐴𝐴1x + B1y + C1= 0and A2x + B2y + C2= 0 

(i) parallel. 

(ii) perpendicular. 

(b)  Are the straight lines x– 3y = 7and2x –6y –16= 0,parallel? 

          (c)    Are  the  straight lines x= y + 1 and x = –y+ 1 perpendicular? 

4. Prove that the straight lines ax² + 2hxy + by² +𝜆𝜆 ( x²  + y²) = 0 have 
same pair of bisectors for all values of 𝜆𝜆. Interpret the case𝜆𝜆 = -
(a+b). 

5. Show that the angle between one of the lines given by ax² + 2hxy + 
by² = 0 and one of the lines given by ax² + 2hxy + by² +𝜆𝜆 ( x²  + 
y²) = 0 is equal to the angle between the other two lines of the 
system. 

6. Show that the line 𝐴𝐴𝑙𝑙 +  𝐵𝐵𝑚𝑚 +  𝐶𝐶 =  0 and the two lines (𝐴𝐴𝑙𝑙 +
𝐵𝐵𝑚𝑚)2 −  3(𝐴𝐴𝑚𝑚 − 𝐵𝐵𝑙𝑙)2 = 0 form an equilateral triangle. 

7.  Show that the equation 3x² + 7xy + 2y² + 5x + 5y + 2 = 0 
represents a pair of straight lines. 

8.  For what values of h does the equation3x² + 2hxy -3y² -40x + 30y -       
75 = 0represents two parallel lines ? 

9. Find the equation of two straight lines passing through (1,1) and 
parallel to the straight lines 2x² + 5xy + 3y² + 2x - 1 = 0. 

10. Show that the four lines given by the equations 3x² + 8xy -3y² = 0 
and 3x² + 8xy -3y² + 2x -4y - 1 = 0 form a square. Find the 
equations of the diagonals of the square. 
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1.11 POLAR COORDINATES 

In the late 17th century the mathematician Bernoulli invented a coordinate 
system which is different from, but intimately related to, the cartesian 
system. This is the polar coordinate system, and was used extensively by 
Newton. Now, let us see what polar coordinates are.  
 

 

 

 

 

 

 

 

Fig. polar coordinate 

To define them, we first fix a pole O and polar axis OA, as shown in Fig. 
11. Then we can locate any point P in the plane, if we know the distance 
OP, say r, and the angle AOP, say θ radians. (Does this remind you of the 
geometric represent it by a pair (r, θ), where r is the “directed distance” of 
P from O and θ is ∠AOP, measured in radians in the anticlockwise 
direction. We use the term “directed distance” because r can be negative 

also. For instance, the point P in Fig. 1 can be represented by 





 π

4
5,5  or







 −−

4
,5 π . Note that by this method the point O corresponds to (r, θ), for 

any angle θ. 

 

 

 

 

 
 

Fig.1 : P’s polar coordinates are 





 π

−−
4

5  
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Thus, for any point P we have a pair of real numbers (r, θ), for any angle 
θ. Thus, for any point P, we have a pair of real numbers (r, θ) that 
corresponds to it. They are called the polar coordinates.  

Now, if we keep θ fixed, say θ = α, and let r take on all real values, we get 
the line OP (see Fig. 12), where ∠ AOP = α. Similarly, keeping r fixed, 
say r = a, and allowing θ to take all real values, the point P(r, θ) traces a 
circle to radius a, with centre at the pole (Fig. 14). Here note that a 
negative value of θ means that the angle has magnitude |θ|, but is taken in 

the clockwise direction. Thus, the point 





 π

−
2

,2  is also represented by 







 π

2
3,2 . 

 

 

 

 

 

 

 

Fig.2 : The line L is given by θ = π/3. 

As you have probably guessed, the cartesian and polar coordinates are 
very closely related 







=θ+=

θ=θ=
−

x
ytan,yxr

or,sinry,cosrx
122  

Note that the origin and the pole are coinciding here. This is usually the 
situation. We use this relationship often while dealing with equations. The 
cartesian equation of the circle x2 + y2 = 25, reduces to the simple polar 
from r = 5. So we may prefer to use this similar form rather than the 
cartesian one. As θ is not mentioned, this means θ varies from 0 to 2π to 
4π and so on.  
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Fig.: circle r = 1 

 

 

 

 

 

 

 

 

 

Fig. : Polar and Cartesian Coordinates. 

Check your progress 

1. Draw the graph of the curve r cos 





 π

−θ
4

=0, as r and θ vary. 

2. Find the cartesian forms of the equations 

(a) r2 = 3r sin θ. 

(b) r = a (1 – cos θ), where a is a constant.  

 

1.12 POLAR EQUATION OF A CONIC WHEN 
THE FOCUS IS THE POLE 

Let 𝑆𝑆 is focus and 𝑍𝑀 the directrix of the conic. Let 𝑆𝑆𝑍  be 
perpendicular from 𝑆𝑆 to the directrix, and let (𝑟𝑟, θ)  be the coordinate of a 
point 𝑃𝑃 on the conic, 𝑆𝑆 as a pole and 𝑆𝑆𝑍 as initial line. From 𝑃𝑃 draw 𝑃𝑃𝑁  UGMM-102/25
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Fig. 1 

and 𝑃𝑃𝑀 perpendiculars on 𝑆𝑆𝑍 and 𝑍𝑀, and let 𝑒 be the eccentricity 
of the conic and 𝑙𝑙 be its semi- latus rectum 𝑆𝑆𝐿. By the definition of the 
conic 𝑆𝑆𝑃𝑃|𝑃𝑃𝑀 =  𝑒 (𝑐𝑐𝑜𝑛𝑛𝑠𝑡𝑎𝑎𝑛𝑛𝑡) 

That is , 𝑟𝑟 =  𝑒.𝑁𝑍 =  𝑒 (𝑆𝑆𝑍 −  𝑆𝑆𝑁) =  𝑒�𝑆𝑆𝐿�𝑒 –  𝑆𝑆𝑃𝑃 cos θ� 

=  𝑙𝑙 −  𝑒𝑟𝑟 𝑐𝑐𝑜𝑠 θ 

𝑂𝑂𝑟𝑟, 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. Which is the required polar equation. 

 Remark:1(a). The equation of the conic when the axis SZ is 
inclined at an angle 𝛼𝛼 to the initial line is  

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 cos (θ - 𝛼𝛼), 

(b). The equation of the conic when the positive direction of the 
initial line is ZS instead of SZ, is  𝑙𝑙|𝑟𝑟 =  1 −  𝑒 𝑐𝑐𝑜𝑠 θ. 

1. If  𝑒 = 1, the conic is a parabola.  

2. If 𝑒 < 1, the conic is an ellipse. 

3.  If  𝑒 > 1, the conic is a Hyperbola. 

4.  If 𝑒 = 0, the conic is a circle.  

5. If 𝑒 =  ∞, the conic is the pair of straight lines. 

1.13 DIRECTRICES 

The equation of the directrices of the conic  

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. If (𝑟𝑟, θ)  

be the coordinates of any point on the directrix ZM corresponding to the 
focus S, 𝑟𝑟 𝑐𝑐𝑜𝑠 θ = 𝑆𝑆𝑍 = 𝑙𝑙|𝑒. 

The equation of the directrix corresponding to the focus which is the pole, 
therefore, 𝑙𝑙|𝑟𝑟 =   𝑒 𝑐𝑐𝑜𝑠 θ.  
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Fig. 2 

Now to find the equation of the other directrix, let P’ be a point (𝑟𝑟, θ) on it 
and SZ’ the perpendicular from S. Then, 

𝑆𝑆𝑍′ = 𝑆𝑆𝑃𝑃′ cos (𝜋 − θ) =  −𝑟𝑟𝑐𝑐𝑜𝑠 θ,  

Now, 𝑍𝑍′ = 2𝑎𝑎|𝑒 𝑎𝑎𝑛𝑛𝑑𝑑 𝑆𝑆𝑍 = 𝑙𝑙|𝑒.  

Hence, 𝑆𝑆𝑍′ = 𝑍𝑍′ − 𝑆𝑆𝑍 = 2𝑎𝑎|𝑒 − 𝑙𝑙|𝑒 

= 2𝑙𝑙| 𝑒(1 − 𝑒2) − 𝑙𝑙|𝑒 = 𝑙𝑙(1 + 𝑒2)|𝑒(1 − 𝑒2)  Since, 

𝑙𝑙 = 𝑏𝑏2 |𝑎𝑎 = 𝑎𝑎(1 − 𝑒2). 

Equating the two values of ′ ,  

we get – 𝑟𝑟𝑐𝑐𝑜𝑠 θ =  𝑙𝑙(1 + 𝑒2)|𝑒(1 − 𝑒2) 𝑜𝑟𝑟 𝑙𝑙|𝑟𝑟 

= − 𝑒(1 − 𝑒2)|(1 + 𝑒2)𝑐𝑐𝑜𝑠 θ 

as the equation of the other directrix. 

Example 1: Prove that the equations 𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 θ  and 𝑙𝑙|𝑟𝑟 =  −1 +
 𝑒 𝑐𝑐𝑜𝑠 θ represent the same conic.  

Solution: The given equations are 

 𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 θ ……….(1) 

 And  𝑙𝑙|𝑟𝑟 =  −1 +  𝑒 𝑐𝑐𝑜𝑠 θ. ………..(2) 

We want to show that every point on the curve (1) also lies on the curve 
(2). Let 𝑃𝑃(𝑟𝑟1,𝜃𝜃1) be any point on the curve (1) then, 

𝑙𝑙|𝑟𝑟1  = 1 +  𝑒 𝑐𝑐𝑜𝑠 θ1…….(3) 

Now also the coordinate of the point Pcan be expressed as (−𝑟𝑟1,𝜋 + 𝜃𝜃1) 
instead of (𝑟𝑟1,𝜃𝜃1). This satisfies the equation (2)  

𝑙𝑙|(−𝑟𝑟1)  = −1 +  𝑒 cos (𝜋 +  θ1) −  𝑙𝑙|𝑟𝑟1  

= −1 −  𝑒 cos θ1   ⇒ 𝑙𝑙|𝑟𝑟1  = 1 +  𝑒 𝑐𝑐𝑜𝑠 θ1.  

Which is same as (3). Thus every point on the curve (1) also lies on the 
curve (2). Similarly we can show that every point on the curve (2) also lies 
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on the curve (1). Hence the both equations (1) and (2) represent the same 
curve. 

Example 𝟐𝟐: PSP’ is the focal chord of the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. 
Prove that 1|𝑆𝑆𝑃𝑃 +  1|𝑆𝑆𝑃𝑃’ =  2|𝑙𝑙, where 𝑙𝑙 is the semi- latus rectum.That is 
the semi-latus rectum is the harmonic mean between the segments of a 
focal chord. 

Solution: Since equation of the conic is |𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ .  

Let the chord 𝑃𝑃𝑆𝑆𝑃𝑃’ make an angle 𝛼𝛼 with the initial line. Then the 
vectorial angles of P and P’ are 𝛼𝛼 and 𝜋 + 𝛼𝛼 respectively. 

 From the equation of the conic 𝑙𝑙|𝑆𝑆𝑃𝑃 =  1 +  𝑒 𝑐𝑐𝑜𝑠 𝛼𝛼  

and  𝑙𝑙|𝑆𝑆𝑃𝑃′ =  1 +  𝑒 cos ( 𝛼𝛼 + 𝜋).  

Adding these we get, 𝑙𝑙|𝑆𝑆𝑃𝑃 +  𝑙𝑙|𝑆𝑆𝑃𝑃′ =  2.  

Therefore, 1|𝑆𝑆𝑃𝑃 +  1|𝑆𝑆𝑃𝑃′ =  2|𝑙𝑙. 

Example 3: A circle is passing through the focus of a conic 𝑙𝑙|𝑟𝑟 =  1 +
 𝑒 𝑐𝑐𝑜𝑠 θ whose latus rectum is 2l meets the conic in four points whose 
distances from the foci are 𝑟𝑟1,𝑟𝑟2,𝑟𝑟3, and 𝑟𝑟4, Show that 1|𝑟𝑟1 + 1|𝑟𝑟2 +
1|𝑟𝑟3  + 1|𝑟𝑟4 = 2|𝑙𝑙. 

Solution: We take the focus as pole and the axis of the conic as the initial 
line. The equation of the conic now be taken as 

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ…………….(1)  

The equation of the circle passing through the pole may be taken as 
𝑟𝑟 = acos(𝜃𝜃 −  𝛼𝛼) … … … … . (2) 

where 𝑎𝑎 is the diameter and 𝛼𝛼 the angle which the diameter makes with 
the initial line. Eliminating θ between (1) and (2),  

{𝑟𝑟 − (𝑎𝑎𝑐𝑐𝑜𝑠𝛼𝛼)|𝑒(1|𝑟𝑟 − 1)}2 =  𝑎𝑎2(𝑠𝑖𝑛𝑛𝛼𝛼)2{1 − (1 − 𝑟𝑟)2|(𝑒𝑟𝑟)2} 

Or,𝑒2𝑟𝑟4 + 2𝑟𝑟3𝑎𝑎𝑒𝑐𝑐𝑜𝑠𝛼𝛼 +  𝑟𝑟2(𝑎𝑎2 − 2𝑎𝑎𝑒𝑙𝑙𝑐𝑐𝑜𝑠𝛼𝛼 −  𝑎𝑎2𝑒2𝑠𝑖𝑛𝑛2𝛼𝛼) − 2𝑎𝑎2𝑙𝑙𝑟𝑟 +
 𝑎𝑎2𝑙𝑙2 = 0 … … … … … … … . . (3) 

If 𝑟𝑟1,𝑟𝑟2,𝑟𝑟3, and 𝑟𝑟4, be the distances from the point of the inter-section from 
the focus, then these are the roots of the equation (3).  

Hence, 𝑟𝑟1𝑟𝑟2𝑟𝑟3 +  𝑟𝑟1𝑟𝑟3𝑟𝑟4 +  𝑟𝑟1𝑟𝑟2𝑟𝑟4 +  𝑟𝑟2𝑟𝑟3𝑟𝑟4 = 2𝑎𝑎2𝑙𝑙|𝑒2 ……….(4) 

And 𝑟𝑟1𝑟𝑟2𝑟𝑟3𝑟𝑟4 =  𝑎𝑎2𝑙𝑙2|𝑒2 … … … … . . (5) 

Dividing (4) by (5), we get 1|𝑟𝑟1 + 1|𝑟𝑟2 + 1|𝑟𝑟3  + 1|𝑟𝑟4 = 2|𝑙𝑙 

Example 4: Prove that the perpendicular chords of a rectangular 
hyperbola are equal. 
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Solution: Let 𝑃𝑃𝑆𝑆𝑃𝑃’ and 𝑄𝑆𝑆𝑄’ be two perpendicular focal chords. Hence 
the vectorial angle of 𝑃𝑃 is  𝛼𝛼, the the vectorial angle of Q is (𝜋|2 +  𝛼𝛼) 
,also vectorial angle of P’ is  (𝜋|2 +  𝛼𝛼) 

We have, 

 𝑙𝑙|𝑆𝑆𝑃𝑃 =  1 +  𝑒 𝑐𝑐𝑜𝑠 𝛼𝛼…..(1) 

and  𝑙𝑙|𝑆𝑆𝑃𝑃′ =  1 +  𝑒 cos ( 𝛼𝛼 + 𝜋)……..(2)  

We have 𝑃𝑃𝑃𝑃’ =  𝑆𝑆𝑃𝑃 +  𝑆𝑆𝑃𝑃’  

=  𝑙𝑙| 1 +  𝑒𝑐𝑐𝑜 𝑠 𝛼𝛼 +  𝑙𝑙 |1 +  𝑒𝑐𝑐𝑜 𝑠( 𝛼𝛼 + 𝜋)
=  𝑙𝑙| 1 +  𝑒𝑐𝑐𝑜 𝑠 𝛼𝛼 +  𝑙𝑙 |1 −  𝑒𝑐𝑐𝑜 𝑠 𝛼𝛼 

=  2𝑙𝑙|1 −  𝑒2(𝑐𝑐𝑜 𝑠 𝛼𝛼)2 

Therefore, 1|𝑃𝑃𝑃𝑃’ = ( 1 −  𝑒2(𝑐𝑐𝑜 𝑠 𝛼𝛼)2)|2𝑙𝑙 ………(3) 

Similarly, we have 

 1|𝑄𝑄’ = ( 1 −  𝑒2(𝑐𝑐𝑜 𝑠(𝜋|2 + 𝛼𝛼))2)|2𝑙𝑙 

i.e. 1|𝑄𝑄’ = ( 1 −  𝑒2(𝑠𝑖𝑛𝑛 𝛼𝛼)2)|2𝑙𝑙………(4) 

In the case of rectangular hyperbola ,we have 𝑒 =  √2, therefore,  

𝑃𝑃𝑃𝑃′ = 2𝑙𝑙|1 −  2(𝑐𝑐𝑜 𝑠 𝛼𝛼)2 = 2𝑙𝑙| cos 2𝛼𝛼   

and  𝑄𝑄′ =  2𝑙𝑙|1 −  2(𝑠𝑖𝑛𝑛 𝛼𝛼)2 = 2𝑙𝑙|𝑐𝑐𝑜𝑠2𝛼𝛼. Hence, 𝑃𝑃𝑃𝑃’ =  𝑄𝑄’  
Example 5: A point moves so that the sum of its distances from two fixed 
points 𝑆𝑆 and  𝑆𝑆’,  is constant and equal to 2𝑎𝑎. Show that 𝑃𝑃 lies on the 
conic𝑎𝑎(1 −  𝑒2)|𝑟𝑟 = 1 − 𝑒𝑐𝑐𝑜𝑠𝜃𝜃. 

Referred to 𝑆𝑆 as pole and 𝑆𝑆𝑆𝑆’ as the initial line, the 𝑆𝑆𝑆𝑆’ being equal to 2𝑎𝑎𝑒. 

Solution: Let the coordinates of 𝑃𝑃 referred to 𝑆𝑆 as pole and 𝑆𝑆𝑆𝑆’ as the 
initial line be (𝑟𝑟,𝜃𝜃). Then, since 𝑆𝑆𝑃𝑃 =  𝑟𝑟, 𝑆𝑆’𝑃𝑃 =  2𝑎𝑎 − 𝑟𝑟. 

From the triangle ’ , we have  

(𝑆𝑆′𝑃𝑃)2 = (𝑆𝑆𝑃𝑃)2 + 𝑆𝑆𝑆𝑆′2 − 2𝑆𝑆𝑃𝑃. 𝑆𝑆𝑆𝑆′𝑐𝑐𝑜𝑠𝜃𝜃 

 or, (2𝑎𝑎 −  𝑟𝑟)2 =  𝑟𝑟2 + (2𝑎𝑎𝑒)2 – 2𝑟𝑟. 2𝑎𝑎𝑒𝑐𝑐𝑜𝑠𝜃𝜃 

or, 𝑎𝑎 − 𝑟𝑟 =  𝑎𝑎𝑒2 − 𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃.  

This gives that 𝑎𝑎(1 − 𝑒2)|𝑟𝑟 = 1 − 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 

( , )P r θ  
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Example-6 : A straight line drawn through the common focus 𝑆𝑆 of a 
number  

of conics meets them in the points 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3…….  On it is taken a point Q 
such that the reciprocal of SQ is equal to the sum of the reciprocals of 𝑆𝑆𝑃𝑃1, 
𝑆𝑆𝑃𝑃2, 𝑆𝑆𝑃𝑃3……… Prove that the locus of 𝑄 is a conic section whose focus is 
𝑆𝑆 and the reciprocal of whose latus-rectum is equal to the sum of the 
reciprocals of the latera recta of the given conics. 

Solution: Suppose that general equation of a conic is  

𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 θ ………..(1) 

Taking the common focus  S as the pole and the common axis as the initial 
line, then the equations to the conics are  

𝑙𝑙𝑛|𝑟𝑟 = 1 +  𝑒 𝑛𝑐𝑐𝑜𝑠 θ ,  𝑛𝑛 =  1, 2, 3, … …(2) 

Suppose a straight line drawn through S make an angle 𝛽𝛽 with the 
common axis of the conics. 

Suppose this straight line meets the conic  𝑙𝑙𝑛|𝑟𝑟 = 1 +  𝑒 𝑛𝑐𝑐𝑜𝑠 θ ,  

at the point 𝑃𝑃𝑛, where n = 1, 2, 3,……..lie on the same straight line, 
therefore their vectorial angles are the same. Let (𝑟𝑟𝑛, 𝛽𝛽)  be the 
coordinates of the point 𝑃𝑃𝑛 which lie on the conic 

 𝑙𝑙𝑛|𝑟𝑟 = 1 +  𝑒 𝑛𝑐𝑐𝑜𝑠 θ  then 𝑙𝑙𝑛|𝑟𝑟 𝑛 = 1 +  𝑒 𝑛𝑐𝑐𝑜𝑠 𝛽𝛽, 𝑛𝑛 =  1, 2, 3, …. 

Suppose 𝑄 is the point (𝑅,𝛽𝛽 ) on this line. Then according to the question 
1|𝑆𝑆𝑄 =  ∑1|𝑆𝑆𝑃𝑃𝑛, or, 1|𝑅 =  ∑ 1|𝑟𝑟𝑛 

Or, 1|𝑅 = ∑((1 +  𝑒𝑛𝑐𝑐𝑜𝑠𝛽𝛽)|𝑙𝑙𝑛), 𝑛𝑛 =  1, 2, 3, … … .. 

= (1 + 𝑒1𝑐𝑐𝑜𝑠𝛽𝛽)|𝑙𝑙1 +  (1 +  𝑒2𝑐𝑐𝑜𝑠𝛽𝛽)|𝑙𝑙2  … .. 

=  (1|𝑙𝑙1 +  1|𝑙𝑙2 +  … . . ) + (𝑒1 |𝑙𝑙1 + 𝑒2|𝑙𝑙2 +  … . )𝑐𝑐𝑜𝑠𝛽𝛽 

=1|L+(1|K) cos𝛽𝛽, Where 1|𝐿 =  1|𝑙𝑙1  +  1|𝑙𝑙2 + … 

Therefore, 𝐿|𝑅 =  1 +  𝐸𝑐𝑐𝑜𝑠𝛽𝛽 where 𝐸 =  𝐿|𝐾. 

Hence, the locus of 𝑄(𝑅,𝛽𝛽) is 𝐿|𝑟𝑟 =  1 +  𝐸 𝑐𝑐𝑜𝑠𝜃𝜃 

This is the equation of a conic with focus 𝑆𝑆, semi-latus rectum 𝐿 and 
eccentricity 𝐸. 

Example 7: A chord of a conic subtends a constant angle at a focus of the 
conic. Show that the chord touches another conic. 

Solution: Suppose that the equation of the conic whose focus is the pole, 
𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 θ ………..(1) 

Suppose a chord 𝑃𝑃𝑄 of the conic (1) subtends a constant angle 2𝛽𝛽 at the 
focus 𝑆𝑆. Let 𝛼𝛼 +  𝛽𝛽 and 𝛼𝛼 −  𝛽𝛽 be the vectorial angles of the extremities of UGMM-102/30
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the chord PQ. Then the equation of the chord PQ is  𝑙𝑙|𝑟𝑟 =  𝑒 𝑐𝑐𝑜𝑠 θ +
𝑠𝑒𝑐𝑐𝛽𝛽cos (𝜃𝜃 −  𝛼𝛼), or 

𝑙𝑙𝑐𝑐𝑜𝑠𝛽𝛽|𝑟𝑟 =  𝑒 cos𝛽𝛽 𝑐𝑐𝑜𝑠 θ + 𝑐𝑐𝑜𝑠 (𝜃𝜃 −  𝛼𝛼)…….(2) 

Obviously the straight line (2)is the tangent to the conic  

𝑙𝑙𝑐𝑐𝑜𝑠𝛽𝛽|𝑟𝑟 = ( 𝑒 cos𝛽𝛽) 𝑐𝑐𝑜𝑠 θ  at the point whose vectorial angle is 𝛼𝛼. 

Example 8: Find the condition that the line 𝑙𝑙|𝑟𝑟 =  𝐴𝐴𝑐𝑐𝑜𝑠𝜃𝜃 +  𝐵𝐵𝑠𝑖𝑛𝑛𝜃𝜃 may 
be a tangent to the conic  𝑙𝑙|𝑟𝑟 =  𝑒𝑐𝑐𝑜𝑠 θ. 

Solution: Suppose that the equation of the line is 

 𝑙𝑙|𝑟𝑟 =  𝐴𝐴𝑐𝑐𝑜𝑠𝜃𝜃 +  𝐵𝐵𝑠𝑖𝑛𝑛𝜃𝜃 ……….(1) 

is a tangent to the conic 𝑙𝑙|𝑟𝑟 = 1 +  𝑒𝑐𝑐𝑜𝑠 θ……..(2) 

at the point whose vectorial angle is 𝛼𝛼. The equation of the tangent to (2) 
at the point 𝛼𝛼 is 

 𝑙𝑙|𝑟𝑟 =  𝑒 𝑐𝑐𝑜𝑠 θ + cos (𝜃𝜃 −  𝛼𝛼), 

𝑜𝑟𝑟, 𝑙𝑙|𝑟𝑟 = (𝑒 + 𝑐𝑐𝑜𝑠𝛼𝛼)𝑐𝑐𝑜𝑠 θ + sinθsinα, ……..(3) 

The equation (1)and (3) should represent the same line. So, comparing the 
coefficients of 1|𝑟𝑟, 𝑐𝑐𝑜𝑠𝜃𝜃 and 𝑠𝑖𝑛𝑛𝜃𝜃, we have  

1 = (𝑒 +  𝑐𝑐𝑜𝑠 𝜃𝜃)| 𝐴𝐴 =  𝑠𝑖𝑛𝑛𝜃𝜃|𝐵𝐵 

Or, 𝑐𝑐𝑜𝑠𝛼𝛼 = ( 𝐴𝐴 − 𝑒) and 𝑠𝑖𝑛𝑛𝛼𝛼 = 𝐵𝐵.  

Squaring them and adding, we have 

 (𝐴𝐴 −  𝑒)2  +  𝐵𝐵2  =  1 . 

 Which is the required condition.  

Note : For tengents see 2.4. 

Check your progress 
(1)    Prove that the equations 𝑙𝑙|𝑟𝑟 = 1 −  𝑒 𝑐𝑐𝑜𝑠 θ  and 

    𝑙𝑙|𝑟𝑟 =  −1 −  𝑒 𝑐𝑐𝑜𝑠 θ represent the same conic. 

(2) If 𝑃𝑃𝑆𝑆𝑄 and 𝑃𝑃𝐻𝐻𝑅 be two chords of an ellipse through the foci 𝑆𝑆 and 
𝐻𝐻, show that  𝑃𝑃𝑆𝑆|𝑆𝑆𝑄 + 𝑃𝑃𝐻𝐻|𝐻𝐻𝑅 is independent of the position of 
point 𝑃𝑃. 

(3) If PSP’ and QSQ’ are two perpendicular focal chords  of a conic; 
prove that 1|𝑆𝑆𝑃𝑃. 𝑆𝑆𝑃𝑃′ + 1|𝑆𝑆𝑄. 𝑆𝑆𝑄′𝑖𝑠 𝑐𝑐𝑜𝑛𝑛𝑠𝑡𝑎𝑎𝑛𝑛𝑡. 

(4) Show that the middle points of focal chords of a conic lie on 
another conic of the same kind. 

(5) In any conic prove that the sum of reciprocals of two perpendicular 
focal chords is constant. 
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(6) 𝑃𝑃𝑆𝑆𝑃𝑃’ is a focal chord of a conic. Prove that the locus of its middle 
point is a conic of the same kind as the original conic. 

(7) A chord 𝑃𝑃𝑄 of a conic whose eccentricity is 𝑒 and semi- latus 
rectum 𝑙𝑙 subtends a right angle at the focus 𝑆𝑆, show that 

          (1|𝑆𝑆𝑃𝑃 –  1 |𝑙𝑙)2 +  (1|𝑆𝑆𝑄 –  1 |𝑙𝑙)2  = (𝑒 | 𝑙𝑙)2  

(8) A point moves, so that the sum of its distances from two fixed 
points 𝑆𝑆 and 𝑆𝑆’ is constant and equal to 2𝑎𝑎. Show that 𝑃𝑃 lies on the 
conic 𝑎𝑎(1 −  𝑒2)|𝑟𝑟 = 1 − 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 refered to 𝑆𝑆 as pole and 𝑆𝑆𝑆𝑆’ as 
initial line, 𝑆𝑆𝑆𝑆’ being equal to 2𝑎𝑎𝑒. 

(9) A circle of given radius passing through the focus 𝑆𝑆 of a given 
conic intersects it in 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷: Show that 𝑆𝑆𝐴𝐴. 𝑆𝑆𝐵𝐵. 𝑆𝑆𝐶𝐶. 𝑆𝑆𝐷𝐷 is 
constant. 

(10) Prove that the condition that the line 𝑙𝑙|𝑟𝑟 =  𝐴𝐴𝑐𝑐𝑜𝑠𝜃𝜃 +  𝐵𝐵𝑠𝑖𝑛𝑛𝜃𝜃 may 
touch the conic 𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼)  is 𝐴𝐴2  +  𝐵𝐵2   −
2𝑒(𝐴𝐴𝑐𝑐𝑜𝑠𝛼𝛼 +  𝐵𝐵𝑠𝑖𝑛𝑛𝛼𝛼 )  +  𝑒2 –  1 =  0 

 

1.14 EQUATION OF THE CHORD WHEN THE 
VECTORIAL ANGLES OF THE 
EXTREMITIES ARE GIVEN  

Let the equation of the conic be𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ…………..(1) 

Let the vectorial angles of the extrimities of the chord be  

(𝛼𝛼 − 𝛽𝛽), (𝛼𝛼 + 𝛽𝛽). 

Since the general equation of a straight line on  

𝑙𝑙|𝑟𝑟 =  𝐴𝐴 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝐵𝐵𝑐𝑐𝑜𝑠 𝜃𝜃 ……………..(2)  

It can easily seen by converting equation (2) in Cartesian co-ordinates. 
Suppose equation (2)be the equation of the given chord. Then it must pass 
through points on (1), whose vectorial angles are(𝛼𝛼 − 𝛽𝛽),𝑎𝑎𝑛𝑛𝑑𝑑 (𝛼𝛼 +
𝛽𝛽).Putting 𝜃𝜃 = (𝛼𝛼 − 𝛽𝛽)  and 𝜃𝜃 = (𝛼𝛼 + 𝛽𝛽) in (1)and (2), and equating the 
values of 𝑟𝑟, thus we get 

1 +  𝑒 𝑐𝑐𝑜𝑠 (𝛼𝛼 − 𝛽𝛽) = 𝐴𝐴 𝑐𝑐𝑜𝑠 𝛽𝛽 + 𝐵𝐵𝑐𝑐𝑜𝑠 (𝛼𝛼 −  𝛽𝛽), 

and 1 +  𝑒 𝑐𝑐𝑜𝑠 (𝛼𝛼 + 𝛽𝛽) = 𝐴𝐴 𝑐𝑐𝑜𝑠 𝛽𝛽 + 𝐵𝐵𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽).  

From these we have 𝐴𝐴 = 𝑠𝑒𝑐𝑐𝛽𝛽,𝐵𝐵 = 𝑒. Substituting the values of A and B 
in (2), the required equation of the chord is 

𝒍𝒍|𝒓 =  𝒔𝒆𝒄𝒄𝜷𝜷 𝒄𝒄𝒐𝒔 (θ −  𝜶𝜶) + 𝒆𝒄𝒄𝒐𝒔 𝜽 

Note1: The equation of  the chord of the conic 

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛾𝛾)  UGMM-102/32
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joining the points whose vectorial angles are 

(𝛼𝛼 − 𝛽𝛽), (𝛼𝛼 + 𝛽𝛽)  is 

𝒍𝒍|𝒓 =  𝒔𝒆𝒄𝒄𝜷𝜷 𝒄𝒄𝒐𝒔 (θ −  𝜶𝜶) + 𝒆𝒄𝒄𝒐𝒔( 𝜽 −  𝜸𝜸). 

Check your progress 
(1) Show that the equation of the directrix of the  conic 𝑙𝑙|𝑟𝑟 =  1 +

 𝑒 𝑐𝑐𝑜𝑠 θ corresponding to the focus other than the pole is 𝑙𝑙|𝑟𝑟 =
{(1 −  𝑒2)|(1 +  𝑒2)}𝑒𝑐𝑐𝑜𝑠𝜃𝜃. 

(2) If the circle 𝑟𝑟 + 2𝑎𝑎𝑐𝑐𝑜𝑠𝜃𝜃 = 0 cuts the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −
 𝛼𝛼) in four points, find the equation in 𝑟𝑟 which determines the 
distances of these four points from the pole. Show that if the 
algebraic sum of these four distances is equal to 2𝑎𝑎, the 
eccentricity is equal to 2𝑐𝑐𝑜𝑠𝛼𝛼 

(3) Prove that in a conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ  the sum of the 
reciprocals of two perpendicular focal chords is constant. 

Summary 

(1)  General equation of second degree is ax²+by²+2hxy+2gx+2fy+c = 
0 

(2) General equation of second degree is ax²+by²+2hxy+2gx+2fy+c = 
0 represents a pair of straight lines if abc + 2fgh - af²- bg²- ch² = 0 
then 

Case(1). 𝑎𝑎𝑏𝑏 − ℎ2 = 0, it represents a pair of straight lines. 

Case(2. ) 𝑎𝑎𝑏𝑏 − ℎ2 ≠ 0, it represents a pair of intersecting straight 
lines. 

Case(3) .𝑎𝑎𝑏𝑏 − ℎ2 < 0, it represents a pair of real or imaginary 
straight lines. 

Case(2. ) 𝑎𝑎𝑏𝑏 − ℎ2 > 0, it represents a point. 

Note(1) : Here a, b, c, stand for coefficients of x², y² and constant 
term respectively and f, g, h stand for half of the coefficients of y, 
x and xy. 

Again, If abc + 2fgh - af²- bg²- ch² ≠ 0 then 

Case (1). ℎ = 0,𝑎𝑎 = 𝑏𝑏, then it represent a circle. 

Case (2).  𝑎𝑎𝑏𝑏 − ℎ2 = 0, it represents a parabola. 

Case (3). 𝑎𝑎𝑏𝑏 − ℎ2 > 0, it represents an ellipse. UGMM-102/33
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Case (4). 𝑎𝑎𝑏𝑏 − ℎ2 < 0, it represents a hyperbola. 

Case (5). 𝑎𝑎𝑏𝑏 − ℎ2 < 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎 + 𝑏𝑏 = 0, it represents a rectangular   
hyperbola. 

Note (2): If abc + 2fgh - af²- bg²- ch² ≠ 0in the above equation 
then it represents the non- degenerate conic.  

(3) If abc + 2fgh - af²- bg²- ch² = 0in the above equation then it 
represents the degenerate conic.  

(3) The homogenous equation of second degree ax² + by² + 2hxy = 0 
represent a pair of straight lines or two straight lines passing 
through the origin then the angle between them is α =  tan-1-
(2 √(h2−ab)

a+b 
)………..(4) 

(4) The lines are real and distinct, coincident or imaginary according 
as  (h2 − ab) > 0, = 0 𝑜𝑟𝑟 < 0. 

Case(1): If the lines be perpendicular,then α=90˚ Therefore,  

tanα = tan90 = ∞ =2√( h2−ab) 
a+b

 ,  i.e.  a+b = 0  

i.e. [coefficient of x² + coefficient of y²=o] 

Case(2):  If  the lines be parallel ,then α=0.  Therefore,  

tanα = tan0 = 0 =2√(h²−ab)
a+b

 , then √ (h² - ab) = 0 

then h² = ab  i.e. (½ coefficient of xy)² 

 = product of coefficient of x² and coefficient of y². 

(5) The required condition that ax² + by² + 2hxy + 2gx + 2fy + c = 0 
represent a pair of general linear equations is abc + 2fgh - af²- bg²- 
ch² = 0. i. e. 

 �
𝑎𝑎  ℎ 𝑔𝑔
ℎ 𝑏𝑏 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐

�  = 0 

(6) The bisector of the pair of the lines a²x² + 2hxy + b²y² =0 is given 
by 𝑥𝑥²−𝑦𝑦²

𝑎²−𝑏²
 = 𝑥𝑥𝑦𝑦

ℎ(𝑎+𝑏)
or, 𝑥𝑥²−𝑦𝑦²

𝑎−𝑏
 = 𝑥𝑥𝑦𝑦

ℎ
 

7 (a). The equation of the conic when the axis SZ is inclined at an 
angle 𝛼𝛼 to the initial line is 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 cos (θ - 𝛼𝛼), 
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 (b). The equation of the conic when the positive direction of the 
initial line is ZS instead of SZ, is  𝑙𝑙|𝑟𝑟 =  1 −  𝑒 𝑐𝑐𝑜𝑠 θ. 

 (c). If  𝑒 = 1, the conic is a parabola.  

 (d). If 𝑒 < 1, the conic is an ellipse. 

 (e). If  𝑒 > 1, the conic is a Hyperbola. 

 (f). If 𝑒 = 0, the conic is a circle.  

 (g). If 𝑒 =  ∞, the conic is the pair of straight lines. 

(8) The equation of the 𝑑𝑑𝑖𝑟𝑟𝑒𝑐𝑐𝑡𝑟𝑟𝑖𝑙𝑙 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑐𝑐𝑜𝑛𝑛𝑖𝑐𝑐  𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 is  

𝑙𝑙|𝑟𝑟 = − 𝑒(1 − 𝑒2)|(1 + 𝑒2)𝑐𝑐𝑜𝑠 θ 

(9) The equation of  the chord of the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛾𝛾)  

joining the points whose vectorial angles are (𝛼𝛼 − 𝛽𝛽), (𝛼𝛼 + 𝛽𝛽)  is 

𝑙𝑙|𝑟𝑟 =  𝑠𝑒𝑐𝑐𝛽𝛽 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠( 𝜃𝜃 −  𝛾𝛾) 
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UNIT-2 CURVE TRACING 
Structure 

2.1 Introduction  

2.2 Objectives 

2. 3 Tracing of a conic 

2. 4 Equation of the tangent at the point whose vectorial angle 
is 𝛼𝛼  

2.5 Equation of the normal at the point whose vectorial angle 
is 𝛼𝛼 

2.6 Asymptotes  

2.7 Polar 

2.8 Auxiliary circle 

2.9 The point of intersection of two tangents 

2.10 Director circle 

2.1 INTRODUCTION 

In this unit, our aim is to re-acquaint with tracing of conic and its 
different aspects of two dimensional geometry. The French philosopher 
mathematician Rene Descartes (1596--1650) was the first to realize that 
geometrical ideas can be translated into algebraic relations. The 
combination of Algebra and Plane Geometry came to be known as 
Coordinate Geometry or Analytical Geometry. A basic necessity for the 
study of Coordinate Geometry is thus, the introduction of a coordinate 
system and to define coordinates in the concerned space. We will briefly 
touch upon the equation of tangents at a point, equation of normals at a 
point of a conic. Next, we will talk about symmetry with respect to origin 
or a coordinate axis. 

We  have  read  about  lines,  angles  and  rectilinear  figures  
in  geometry.  Recall  that  a  line  is the  join  of  two  points  in a  
plane  continuing  endlessly  in both directions.  We  have  also 
seen  that  graphs  of  linear  equations,  

Which  came  out  to  be  straight lines.  Interestingly,  the  
reverse  problem  Of  the  above  is  finding  the  equations  of  
straight  lines, under  different conditions in  a  plane. The  
Analytical  Geometry,  more  commonlycalled Coordinate  
Geometry,  comes  to  our  help  in  this  regard.  
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In  this  unit we shall  find  equations asymptotes, polar, 
Auxiliary circle the point of intersection of two tangents and Director 
circle and  try  to  solve  t h e  problem based  on  these. 

2.2 OBJECTIVES 

After studying this unit you should be able to find: 

1.  Tracing of conic and its related concepts 

2.  Equation of the tangent at the point whose vectorial angle is 𝛼𝛼 

3.  Equation of the normal at the point whose vectorial angle is 𝛼𝛼. 

4.  Asymptotes for different conics. 

5.  Equation of pole and Polar  

6.  Equation of the Auxiliary circle 

7.  The point of intersection of two tangents. 

8.  Equation of Director circle 

2.3 TRACING OF A CONIC 

The curves (a pair of a straight lines, a circle, a parabola, an ellipse and  a 
hyperbola ) which comes under the category of conic sections. It is 
derived from the fact that these curves were first obtained by cutting a 
cone in various ways. 

Conic is the locus of a point which moves so that its distance from a fixed 
point (focus)  is in a constant ratio to its perpendicular distance from a 
fixed straight line (directrix). The constant ratio is called eccentricity and 
it is denoted by 𝑒 

The general equation of the second degree is is  

ax²+by²+2hxy+2gx+2fy+c = 0……..(1) 

We remove the term of 𝑙𝑙𝑚𝑚 form (1) then we have  the following cases: 

CaseI: Let 𝒂𝒂 ≠ 𝟗𝟗 and 𝒃𝒃 ≠ 𝟗𝟗, then equation (1) is written as  

 𝑎𝑎(𝑙𝑙² +  2𝑔𝑔𝑙𝑙|𝑎𝑎 + (𝑔𝑔|𝑎𝑎)2) + 𝑏𝑏(𝑚𝑚2 + 2𝑓𝑓𝑚𝑚|𝑏𝑏 + (𝑓𝑓|𝑏𝑏)2) − (𝑔𝑔|𝑎𝑎)2) −
(𝑓𝑓|𝑏𝑏)2 +  𝑐𝑐 =  0 

Or, 𝑎𝑎(𝑙𝑙 + 𝑔𝑔|𝑎𝑎)2 +  𝑏𝑏(𝑚𝑚 + 𝑓𝑓|𝑏𝑏)2  =  (𝑔𝑔|𝑎𝑎)2) + (𝑓𝑓|𝑏𝑏)2 −  𝑐𝑐 = 𝐾 (𝑠𝑎𝑎𝑚𝑚) 

Sifting the origin to (−𝑔𝑔|𝑎𝑎,−𝑓𝑓|𝑏𝑏), then this equation becomes  UGMM-102/38
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𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 𝐾……….(2) 

  

 𝑄2                               0  𝑄1 

                                                    

                                                                                                 

 

A’ A 

 

 

 

 𝑄3                                                                                    
𝑄4         

                                                                                                                                           

 

 

                                  𝑄2     𝑄1 

                                   𝑄3          𝑄4                                                    

 

 

 

 

(i) If 𝐾 =  0, the equation (2) becomes 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 0 and this 
represent a pair of straight lines. These straight lines are real if 
𝑎𝑎  and 𝑏𝑏 are of the opposite signs and these lines are imaginary if 
𝑎𝑎  and 𝑏𝑏 are of the same sign. 

(ii) If 𝐾 ≠ 0,  the equation (2) becomes 𝑙𝑙2|𝐾|𝑎𝑎 + 𝑚𝑚2|𝐾|𝑏𝑏 = 1. 
……(3)  

If 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 are both positive,  the equation (3) represents an 
ellipse which becomes a circle if in addition to being positive 𝐾|𝑎𝑎 
and 𝐾|𝑏𝑏 are both equal. 

Again the equation (3) represents a hyperbola if 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 are 
of opposite signs. If 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 are both negative, the equation 
(3) is said to represent an emaginary ellipse. 

Case II :  If one of  𝑎𝑎 or 𝑏𝑏 is zero while other is not zero. If we take 
𝑎𝑎 =  0 and 𝑏𝑏 ≠ 0 the the equation (1) will be  

                                   B 

 

 

                                         C (0,0) 

 

 

                                                                          

 A’                   

A     
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by²+2hxy+2gx+2fy+c = 0 

or, (𝑚𝑚 + 𝑓𝑓|𝑏𝑏)2 =  −(2𝑔𝑔|𝑏𝑏)𝑙𝑙 − 𝑐𝑐|𝑏𝑏 + (𝑓𝑓|𝑏𝑏)2 ………….(4) 

If  𝑔𝑔 =  0, then equation (4) represents two parallel straight lines, which 
are coincident if  𝑓𝑓2 − 𝑏𝑏𝑐𝑐 also is zero. 

If 𝑔𝑔 ≠ 0,  the equation (4) can be written as  

(𝑚𝑚 + 𝑓𝑓|𝑏𝑏)2 =  −(2𝑔𝑔|𝑏𝑏)[𝑙𝑙 + 𝑐𝑐|2𝑔𝑔 + 𝑓𝑓2 |2𝑏𝑏𝑔𝑔] 

Shifting the origin to (𝑓𝑓2 |2𝑏𝑏𝑔𝑔 − 𝑐𝑐|2𝑔𝑔,−𝑓𝑓|𝑏𝑏), this equation becomes 

 𝑚𝑚2 =  −(2𝑔𝑔|𝑏𝑏)𝑙𝑙 which represents a parabola. Hence in each case the 
general equation of second degree represents a conic section. 

Centre: The centre of a conic section is a point which bisects all those 
chords of the conic that passes through it. The general equation of the 
second degree namely 

 ax²+by²+2hxy+2gx+2fy+c = 0 will represent a conic with centre at the 
origin only if  the coefficient of 𝑙𝑙 = the coefficient of 𝑚𝑚 =  0 I.e. only if 
𝑔𝑔 =  𝑓𝑓 =  0.  That is only if the first degree terms are absent from the 
equation of the conic. If the centre of the conic is to be at the origin, then 
for each point (𝑙𝑙1,𝑚𝑚1) on the conic, the point (−𝑙𝑙1,−𝑚𝑚1) must also lie on 
the conic. 

The coordinates of the centre of the conic ax²+by²+2hxy+2gx+2fy+c = 0 
is �(ℎ𝑓𝑓 − 𝑏𝑏𝑔𝑔)�(𝑎𝑎𝑏𝑏 − ℎ2), (𝑔𝑔ℎ − 𝑎𝑎𝑓𝑓)| (𝑎𝑎𝑏𝑏 − ℎ2)) 

To find the coordinates of the centre of a conic F(x, y) = 
ax²+by²+2hxy+2gx+2fy+c = 0. We have 𝜕𝐹

𝜕𝑥𝑥
 =  2(𝑎𝑎𝑙𝑙 +  ℎ𝑚𝑚 +  𝑔𝑔),  𝜕𝐹 

𝜕𝑦𝑦
 

= 2(ℎ𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑓𝑓) , for centre of the conic 𝐹𝐹(𝑙𝑙,𝑚𝑚)  =  0 is obtained by 
solving the equations 𝑎𝑎𝑙𝑙 +  ℎ𝑚𝑚 +  𝑔𝑔 = 0 and ℎ𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑓𝑓 = 0 

That is 𝜕𝐹
𝜕𝑥𝑥

= 0 and 𝜕𝐹
𝜕𝑦𝑦

= 0 

Example 1: Find the coordinates of the centre of the conic 14𝑙𝑙2 − 4𝑙𝑙𝑚𝑚 +
11𝑚𝑚2 − 44𝑙𝑙 − 58𝑚𝑚 + 71 = 0. 

Solution: Let 𝐹𝐹(𝑙𝑙, 𝑚𝑚) =  14𝑙𝑙2 − 4𝑙𝑙𝑚𝑚 + 11𝑚𝑚2 − 44𝑙𝑙 − 58𝑚𝑚 + 71 = 0 

To find the coordinates of the centre we have 𝜕𝐹
𝜕𝑥𝑥

= 0 and 𝜕𝐹
𝜕𝑦𝑦

= 0. 

Therefore, 𝜕𝐹
𝜕𝑥𝑥

= 28𝑙𝑙 − 4𝑚𝑚 − 44 = 0 and 𝜕𝐹
𝜕𝑦𝑦

=  −4𝑙𝑙 + 22𝑚𝑚 − 58 = 0 

Solving these two equations we get𝑙𝑙|−150 = 𝑚𝑚| − 225 = 1| − 75 

So, 𝑙𝑙 = 2, 𝑚𝑚 = 3. The coordinates of the centre is (2, 3). 

Example 2: Find the equation of the asymptotes of the conic 3𝑙𝑙2 − 2𝑙𝑙𝑚𝑚 −
5𝑚𝑚2 + 7𝑙𝑙 − 9𝑚𝑚 = 0 and find  the equation of the conic which has the 
same asymptotes and which passes through the point (2, 2). 
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Solution: Since the equation of the asymptotes differs from the equation 
of the conic only by a constant term, therefore let the equation of the 
asymptotes be 3𝑙𝑙2 − 2𝑙𝑙𝑚𝑚 − 5𝑚𝑚2 + 7𝑙𝑙 − 9𝑚𝑚 + 𝜆𝜆 = 0….(1) 

Where 𝜆𝜆 be a constant term.  Equation (1) should represent a pair of 
straight lines, if 𝑎𝑎𝑏𝑏𝑐𝑐 + 2𝑓𝑓𝑔𝑔ℎ − 𝑎𝑎𝑓𝑓2 − 𝑏𝑏𝑔𝑔2 − 𝑐𝑐ℎ2 = 0 

Or, 3(−5)𝜆𝜆 + 2(−9|2)(7|2)(−1) −  3(−9|2)2  −  (−5)(7|2)2 −
𝜆𝜆(−1)2 = 0 , or, 𝜆𝜆 = 2. 

The equation of the asymptotes is  

3𝑙𝑙2 − 2𝑙𝑙𝑚𝑚 − 5𝑚𝑚2 + 7𝑙𝑙 − 9𝑚𝑚 + 2 = 0…………(2) 

Now let the equation of a conic having (2) for its asymptotes be 

3𝑙𝑙2 − 2𝑙𝑙𝑚𝑚 − 5𝑚𝑚2 + 7𝑙𝑙 − 9𝑚𝑚 + 2 +  𝜇 = 0……….(3) 

Where 𝜇 is a constant to be determined  by the fact that the conic (3) is to 
pass through the point (2, 2). 

3(4) −  2.2.2 –  5.4 +  7.2 –  9.2 +  2 +  𝜇 = 0, 𝑜𝑟𝑟 𝜇 = 18Putting the 
value of 𝜇 in (3), the required equation of the conic is  

3𝑙𝑙2 − 2𝑙𝑙𝑚𝑚 − 5𝑚𝑚2 + 7𝑙𝑙 − 9𝑚𝑚 + 20 = 0 

Example 3 (a) : Find the coordinates of its focus, axis, the vertex, the 
equation of the directrix and the length of its latus rectum of the 
parabola16𝑙𝑙2 − 24𝑙𝑙𝑚𝑚 + 9𝑚𝑚2 − 104𝑙𝑙 − 172𝑚𝑚 + 44 = 0.  

Solution: The second degree terms parabola16𝑙𝑙2 − 24𝑙𝑙𝑚𝑚 + 9𝑚𝑚2 form a 
perfect square, therefore the given equation represents a parabola. Now we 
can write it as (4𝑙𝑙 − 3𝑚𝑚)2 =  104𝑙𝑙 + 172𝑚𝑚 − 44 …(1) 

Now we introduce a new constant 𝜆𝜆 in both sides. So, we have  

(4𝑙𝑙 − 3𝑚𝑚 +  𝜆𝜆)2 = (104 + 8𝜆𝜆)𝑙𝑙 + (172 − 6𝜆𝜆)𝑚𝑚 +  𝜆𝜆2 − 44…(2) 

Now we choose 𝜆𝜆 such that the lines 4𝑙𝑙 − 3𝑚𝑚 +  𝜆𝜆 = 0 and  

(104 + 8𝜆𝜆)𝑙𝑙 + (172 − 6𝜆𝜆)𝑚𝑚 + 𝜆𝜆2 − 44 = 0 are at right angles. For this 
we have (4|3){−(104 + 8𝜆𝜆)|(172 − 6𝜆𝜆)} =  −1 

Or, −4(104 + 8𝜆𝜆) =  −3(172 − 6𝜆𝜆) 

Or, 50𝜆𝜆 = 100 

Or, 𝜆𝜆 = 2 

Putting this value of 𝜆𝜆 in (2), we have 

 (4𝑙𝑙 − 3𝑚𝑚 +  2)2 = 40(3𝑙𝑙 + 4𝑚𝑚 − 1)  

Or, {(4𝑙𝑙 − 3𝑚𝑚 + 2)|5}2 = 8{(3𝑙𝑙 + 4𝑚𝑚 − 1)|5}………(3) 

The equation (3) is of the standard form 𝑌2 = 4𝑝𝑝𝑋, where 

 𝑋 =  {(3𝑙𝑙 + 4𝑚𝑚 − 1)|5} and UGMM-102/41
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 𝑌 =  (4𝑙𝑙 − 3𝑚𝑚 + 2)|5, 4𝑝𝑝 = 8 

(i). The axis of the parabola is 𝑌 = 0 

 𝑖. 𝑒. (4𝑙𝑙 − 3𝑚𝑚 + 2) = 0 

(ii). The tangent at the vertex is 𝑋 = 0 

 𝑖. 𝑒. 3𝑙𝑙 + 4𝑚𝑚 − 1 = 0 

(iii). The vertex of the parabola is the point of the intersection of the lines 
(4𝑙𝑙 − 3𝑚𝑚 + 2) = 0 and 3𝑙𝑙 + 4𝑚𝑚 − 1 = 0.  

The coordinates of the vertex 𝐴𝐴 are (−1|5, 2|5) 

(iv). The length of the latus rectum is 4𝑝𝑝 = 8 

(v).The equation of the latus rectum is 

  𝑋 = 𝑝𝑝 𝑖. 𝑒. (3𝑙𝑙 + 4𝑚𝑚 − 1)|5 = 2 

𝑖. 𝑒. 3𝑙𝑙 + 4𝑚𝑚 − 11 = 0  

(vi). The coordinates of the focus of the parabola are (1, 2). 

(vii). The equation of the directrix is  given by 𝑋 =  −𝑝𝑝 

. (3𝑙𝑙 + 4𝑚𝑚 − 1)|5 = −2 𝑖. 𝑒. 3𝑙𝑙 + 4𝑚𝑚 + 9 = 0. 

Example 3 (b) : Trace the conic 36𝑙𝑙2 + 24𝑙𝑙𝑚𝑚 + 29𝑚𝑚2 − 72𝑙𝑙 + 126𝑚𝑚 +
81 = 0. 

Solution: The given conic is  

𝐹𝐹(𝑙𝑙,𝑚𝑚) = 36𝑙𝑙2 + 24𝑙𝑙𝑚𝑚 + 29𝑚𝑚2 − 72𝑙𝑙 + 126𝑚𝑚 + 81 = 0. 

Hence, 𝑎𝑎 = 36, ℎ =  12, 𝑏𝑏 = 29. Since ℎ2  =  𝑎𝑎𝑏𝑏. That is the second 
degree terms of the equation is not a perfect square, therefore the given 
equation represents a central conic. The coordinates of the centre are given 
by the equations  
𝜕𝐹
𝜕𝑥𝑥

 =  72𝑙𝑙 +  24𝑚𝑚 − 72 = 0, 𝑖. 𝑒.   3𝑙𝑙 + 𝑚𝑚  −  3 =  0, 

  𝜕𝐹 
𝜕𝑦𝑦

 = 24𝑙𝑙 +  58𝑚𝑚 +  126 = 0  i.e. 12𝑙𝑙 +  29𝑚𝑚 +  63 =  0 

Solving these equations, coordinates of centre is (2,−3) 

Now 𝑐𝑐 = 𝑔𝑔𝑙𝑙1 + 𝑓𝑓𝑚𝑚1 + 𝑐𝑐  =  (−36)(2)  +  (63)(−3) +  81 =  −180  

Therefore the equation of the conic referred to the centre as origin is 

 36𝑙𝑙2 + 24𝑙𝑙𝑚𝑚 + 29𝑚𝑚2 −  180 =  0 

In the standard form of this equation is 1|5 𝑙𝑙2  +  2|15 𝑙𝑙𝑚𝑚 +
 29|180 𝑚𝑚2  =  1. 

The squares of the lengths of the semi- axes are given by 
UGMM-102/42
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 (𝐴𝐴 − 1|𝑟𝑟2)(B - 1|𝑟𝑟2)= 𝐻𝐻2  

Or, (1|5 -1|𝑟𝑟2 )(29|180 − 1|𝑟𝑟2 ) = (1|15)2 

Or, 1|𝑟𝑟4 −  (13|36)1|𝑟𝑟2 +  1|36 = 0 

Or, 𝑟𝑟4  − 13 𝑟𝑟2 +  36 = 0   

Or, (𝑟𝑟12  −  9)�𝑟𝑟22 –  4� = 0 

Or, 𝑟𝑟12 = 9,  𝑟𝑟22 = 4 

The conic is an ellipse since both 𝑟𝑟12 and 𝑟𝑟22 are positive. The lengths of 
the major axis minor axis are 2𝑟𝑟1 and 2𝑟𝑟2 that is 6 and 4 respectively. 

The equation of the major axis referred to the centre as origin is  

(𝐴𝐴 − 1|𝑟𝑟12)𝑙𝑙 + 𝐻𝐻𝑚𝑚 = 0, 

Or, (1|5 − 1|9)𝑙𝑙 + 1|15 𝑚𝑚 = 0 

Or, 4𝑙𝑙 + 3𝑚𝑚 = 0. Therefore, the equation of the major axis referred to the 
old coordinate axes is 4(𝑙𝑙 − 2) +  3(𝑚𝑚 + 3) =  3 

Or, 4𝑙𝑙 + 3𝑚𝑚 + 1 = 0 

The minor axis is the straight line perpendicular to the major axis and 
passing through the centre (2,−3).So referred to the old coordinate axes 
the equation of the minor axis is 3(𝑙𝑙 − 2) −  4(𝑚𝑚 + 3) = 0  

Or, 3𝑙𝑙 − 4𝑚𝑚 − 18 = 0 

The points of intersection of the conic with the coordinate axes. 

The given conic cuts the 𝑙𝑙 − axis in the points where 𝑚𝑚 = 0 i.e. 

36𝑙𝑙2 − 72𝑙𝑙 + 81 = 0, i. e.  4𝑙𝑙2 − 8𝑙𝑙 + 9 = 0. 

This gives the imaginary values of 𝑙𝑙 because its discriminant 

𝑏𝑏 − 4𝑎𝑎𝑐𝑐 = 64 − 4.4.9 =  −𝑣𝑣𝑒.  Hence the given conic does not cut the 
𝑙𝑙 − axis. 

The given conic cuts the 𝑚𝑚 − axis in the points where 𝑙𝑙 = 0. 

Where 29𝑚𝑚2 + 126𝑚𝑚 + 81 = 0. Where 
𝑚𝑚 =  −0.8 𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚 =  −3.6(𝑛𝑛𝑒𝑎𝑎𝑟𝑟𝑙𝑙𝑚𝑚) 

Hence the shape of the given conic (which is an ellipse) is as shown in the 
figure. So, draw the major axis which passes through the centre 
(2,−3)and it cuts the x-axis at the point (−1|4, 0). UGMM-102/43
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Check your progress 
130𝑎𝑎𝑙𝑙 − 60𝑎𝑎𝑚𝑚 + 116𝑎𝑎2 = 0. 

(2) Find the lengths and the equations of the axes of the conic 5𝑙𝑙2 −
6𝑙𝑙𝑚𝑚 + 5𝑚𝑚2 + 26𝑙𝑙 − 22𝑚𝑚 + 29 = 0. 

(3) Find the equation of the hyperbola whose asymptotes are parallel 
to 2𝑙𝑙 + 3𝑚𝑚 = 0 and 3𝑙𝑙 + 2𝑚𝑚 = 0, whose centre is at (1, 2) and 
which passes through (5, 3). 

(4) Trace the curve  8𝑙𝑙2 − 4𝑙𝑙𝑚𝑚 + 5𝑚𝑚2 − 16𝑙𝑙 − 14𝑚𝑚 + 17 = 0. Find 
the coordinates of its foci and show that its axes lie along 2𝑙𝑙 −
𝑚𝑚 − 1 = 0  and 2𝑙𝑙 + 4𝑚𝑚 − 11 = 0. 

(5) Trace the curve  14𝑙𝑙2 − 4𝑙𝑙𝑚𝑚 + 11𝑚𝑚2 − 44𝑙𝑙 − 58𝑚𝑚 + 71 = 0. 
Find the coordinates of its foci and the length of its latus rectum. 

(6) Trace the curve  5𝑙𝑙2 + 4𝑙𝑙𝑚𝑚 + 8𝑚𝑚2 − 12𝑙𝑙 − 12𝑚𝑚 = 0. Find the 
coordinates of its foci and the length of its latus rectum. 

                                               2                               B     

                                                         C(2,-3) 
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(7) Trace the curve  11𝑙𝑙2 + 4𝑙𝑙𝑚𝑚 + 14𝑚𝑚2 − 26𝑙𝑙 − 32𝑚𝑚 + 23 = 0. 
Find the coordinates of its foci. 

(8) Trace the curve  41𝑙𝑙2 + 24𝑙𝑙𝑚𝑚 + 9𝑚𝑚2 − 130𝑎𝑎𝑙𝑙 − 60𝑎𝑎𝑚𝑚 +
116𝑎𝑎2 = 0.  

(9) Trace the hyperbola 𝑙𝑙2 − 3𝑙𝑙𝑚𝑚 + 𝑚𝑚2 + 10𝑙𝑙 − 10𝑚𝑚 + 21 = 0. Find 
the equations of its axes and asymptotes. 

(10) Trace the curve 17𝑙𝑙2 − 12𝑙𝑙𝑚𝑚 + 8𝑚𝑚2 + 46𝑙𝑙 − 28𝑚𝑚 + 17 = 0. 
Find its eccentricity, the equations of its axes, the coordinates of its 
foci  and the equations of its directrices. 

(11) Trace the parabola9𝑙𝑙2 − 24𝑙𝑙𝑚𝑚 + 16𝑚𝑚2 − 18𝑙𝑙 − 101𝑚𝑚 + 19 = 0. 
Find the coordinates of its focus, axis, the vertex, the equation of 
the directrix and the length of its latus rectum. 

(12) Find the equation of the hyperbola whose asymptotes are parallel 
to 2𝑙𝑙 + 3𝑚𝑚 = 0 and  3𝑙𝑙 + 2𝑚𝑚 = 0, whose centre is at (1, 2) and 
which passes through (5, 3). 

(13) Find the lengths and the equations of the axes of the conic 
5𝑙𝑙2 − 6𝑙𝑙𝑚𝑚 + 5𝑚𝑚2 + 26𝑙𝑙 − 22𝑚𝑚 + 29 = 0 

 

2.4 EQUATION OF THE TANGENT AT THE 
POINT WHOSE VECTORIAL ANGLE IS 𝜶𝜶 

Suppose that equation of the conic is𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ……(1).  

If the points on the conic (1) whose vectorial angles are 

(𝛼𝛼 − 𝛽𝛽), and (𝛼𝛼 + 𝛽𝛽). Since the general equation of a straight line on 
𝑙𝑙|𝑟𝑟 =  𝐴𝐴 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝐵𝐵𝑐𝑐𝑜𝑠 𝜃𝜃 ……………..(2)  

It can easily seen by converting equation (2) in Cartesian co-ordinates. 
Suppose equation (2)be the equation of the given chord. Then it must pass 
through points on (1), whose vectorial angles are(𝛼𝛼 − 𝛽𝛽),𝑎𝑎𝑛𝑛𝑑𝑑 (𝛼𝛼 +
𝛽𝛽).Putting 𝜃𝜃 = (𝛼𝛼 − 𝛽𝛽)  and 𝜃𝜃 = (𝛼𝛼 + 𝛽𝛽) in (1)and (2), and equating the 
values of 𝑟𝑟, thus we get 

1 +  𝑒 𝑐𝑐𝑜𝑠 (𝛼𝛼 − 𝛽𝛽) = 𝐴𝐴 𝑐𝑐𝑜𝑠 𝛽𝛽 + 𝐵𝐵𝑐𝑐𝑜𝑠 (𝛼𝛼 −  𝛽𝛽), 

and 1 +  𝑒 𝑐𝑐𝑜𝑠 (𝛼𝛼 + 𝛽𝛽) = 𝐴𝐴 𝑐𝑐𝑜𝑠 𝛽𝛽 + 𝐵𝐵𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽).  

From these we have 𝐴𝐴 = 𝑠𝑒𝑐𝑐𝛽𝛽,𝐵𝐵 = 𝑒.  

Substituting the values of A and B in (2), the required equation of the 
chord is 

𝒍𝒍|𝒓 =  𝒔𝒆𝒄𝒄𝜷𝜷 𝒄𝒄𝒐𝒔 (θ −  𝜶𝜶) + 𝒆𝒄𝒄𝒐𝒔 𝜽 
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If the angles (𝛼𝛼 − 𝛽𝛽),𝑎𝑎𝑛𝑛𝑑𝑑(𝛼𝛼 + 𝛽𝛽) coincide, 𝛽𝛽 becomes zero, and in this 
limiting position the chord becomes a tangent to the conic at the point 
whose vectorial angle is 𝛼𝛼. The equation of the tangent to the conic at the 
point whose vectorial angle is 𝛼𝛼 is, therefore,  

𝒍𝒍|𝒓 =   𝒄𝒄𝒐𝒔 (θ −  𝜶𝜶) + 𝒆𝒄𝒄𝒐𝒔 𝜽………(1) 

Note1. If the equation of the conic is 

 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ−  𝜃𝜃1),  

then the equation of the tangent at ′𝛼𝛼′ is 

𝒍𝒍|𝒓 =   𝒄𝒄𝒐𝒔 (θ −  𝜶𝜶) + 𝒆𝒄𝒄𝒐𝒔 (𝜽 − 𝜽𝟏𝟏) 

Note2: The equation of the tangent for the conic 

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛾𝛾) at the point "𝛼𝛼" is 

𝒍𝒍|𝒓 =   𝒄𝒄𝒐𝒔 (θ −  𝜶𝜶) + 𝒆𝒄𝒄𝒐𝒔( 𝜽 −  𝜸𝜸). 

Note: The slope of the tangent (1) is (𝑒 +  𝑐𝑐𝑜𝑠𝛼𝛼)|𝑠𝑖𝑛𝑛𝛼𝛼. 

2.5 EQUATION OF THE NORMAL AT THE 
POINT WHOSE VECTORIAL ANGLE IS 𝜶𝜶 

Suppose that equation of the conic is𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ……(1) 

Suppose that equation of the tangent at the point (𝑟𝑟,𝛼𝛼) on  the conic (1) is 
𝒍𝒍|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 ………..(2) 

The equation of the normal to the conic (1) which is perpendicular to 
thetangent of this conic is in the form 

𝐴𝐴|𝑟𝑟 =  cos(θ +  𝜋|2 −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 (𝜃𝜃 +  𝜋|2) ⇒ 𝐴𝐴|𝑟𝑟 =  − sin(𝜃𝜃 −  𝛼𝛼) −
𝑒 𝑠𝑖𝑛𝑛𝜃𝜃…………(3) 

Now equation of the normal at the point (𝑟𝑟’ ,𝛼𝛼) of the conic (1) which is 
perpendicular to the equation (3), that is equation (3) passes through the 
point (𝑟𝑟’ ,𝛼𝛼), therefore, we get 

𝐴𝐴|𝑟𝑟′ =  −𝑒𝑠𝑖𝑛𝑛𝛼𝛼…………(4).  

Now from the equation of the conic, 

𝒍𝒍|𝑟𝑟′ =   1 + 𝑒𝑐𝑐𝑜𝑠 𝛼𝛼 

Hence, from the equation (3), we get 𝐴𝐴 = −𝑒𝑙𝑙𝑠𝑖𝑛𝑛𝛼𝛼| (1 + 𝑒𝑐𝑐𝑜𝑠𝛼𝛼) 

Substituting it in equation (2), the equation of the normal at the point 
whose vectorial angle is 𝛼𝛼 is  

𝒆𝒍𝒍𝒔𝒊𝒏𝒏𝜶𝜶| (𝟏𝟏 + 𝒆𝒄𝒄𝒐𝒔𝜶𝜶)𝒓 =  𝐬𝐢𝐧(𝜽 −  𝜶𝜶) + 𝒆 𝒔𝒊𝒏𝒏𝜽 

Note3 : The equation of the normal for the conic 
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𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛾𝛾) at the point "𝛼𝛼" is 

𝒆𝒍𝒍𝒔𝒊𝒏𝒏𝜶𝜶| (𝟏𝟏 + 𝒆𝒄𝒄𝒐𝒔𝜶𝜶)𝒓 =  𝐬𝐢𝐧(𝜽 −  𝜶𝜶) + 𝒆 𝒔𝒊𝒏𝒏(𝜽 − 𝜸𝜸).  

Example 4: Chords of a conic subtended a constant angle 2𝛼𝛼 at the focus. 
Find the locus of the point where the chords are met by the internal 
bisector of the angle which they subtend at the focus. 

Solution: Let the equation of the conic be𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ and the 
vectorial angles of the extremities (𝛽𝛽 − 𝛼𝛼) and (𝛽𝛽 + 𝛼𝛼). This chord then 
subtends an angle 2𝛼𝛼 at the focus and its equation is  

𝑙𝑙|𝑟𝑟 =  𝑠𝑒𝑐𝑐𝛼𝛼 𝑐𝑐𝑜𝑠 (θ −  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃………..(1) 

𝐼𝑓𝑓 (𝑟𝑟′,𝜃𝜃′ ) be the coordinates of the point where the chord is met by the 
internal bisector of the angle which it subtends at the focus, then 𝜃𝜃′ =
 𝛽𝛽………………..(2).  

Since (𝑟𝑟′,𝜃𝜃′ ) lies on (1),  

𝑙𝑙|𝑟𝑟′ =  𝑠𝑒𝑐𝑐𝛼𝛼 𝑐𝑐𝑜𝑠 (θ ′ −  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃′…………(3) 

From (2) and (3), we obtain that 

𝑙𝑙|𝑟𝑟′ =  𝑠𝑒𝑐𝑐𝛼𝛼 + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃′ 

or,  𝑙𝑙𝑐𝑐𝑜𝑠𝛼𝛼|𝑟𝑟′ =  1 + 𝑒𝑐𝑐𝑜𝑠𝛼𝛼𝑐𝑐𝑜𝑠 𝜃𝜃′ 

 Hence the locus of (𝑟𝑟′,𝜃𝜃′ ) is the conic 

𝑙𝑙𝑐𝑐𝑜𝑠𝛼𝛼|𝑟𝑟 =  1 + 𝑒𝑐𝑐𝑜𝑠𝛼𝛼𝑐𝑐𝑜𝑠 𝜃𝜃.  

Example 5: If the normal at 𝐿, an extremity of the latus rectum of the 
conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ  meet the conic again at 𝑄, show that 𝑆𝑆𝑄 =
𝑙𝑙(1 + 3𝑒2 + 𝑒4)|(1 + 𝑒2 −  𝑒4). 

Solution: The polar coordinates of the point 𝐿 are (𝑙𝑙, ( 1|2) 𝜋), and the 
equation of the normal at 𝐿 is  

𝒍𝒍|𝑟𝑟(𝑒𝑠𝑖𝑛𝑛𝜋|2|(1 + 𝑒𝑐𝑐𝑜𝑠𝜋|2)) =   𝑠𝑖𝑛𝑛 (𝜃𝜃 −  𝜋|2) + 𝑒 𝑠𝑖𝑛𝑛𝜃𝜃 

Or, 𝑙𝑙𝑒|𝑟𝑟 = 𝑒𝑠𝑖𝑛𝑛𝜃𝜃 − 𝑐𝑐𝑜𝑠𝜃𝜃 ……….(1) 

 Now we eliminating 𝜃𝜃 between (1) andthe equation of the conic,  

{𝑒𝑙𝑙|𝑟𝑟 + (𝑙𝑙 − 𝑟𝑟)|𝑒𝑟𝑟}2 =  𝑒2{1 − ((𝑙𝑙 − 𝑟𝑟)|𝑒𝑟𝑟)2},  

which gives on simplification 

(𝑙𝑙 − 𝑟𝑟)[(𝑙𝑙 − 𝑟𝑟). (1 + 𝑒2) + 2𝑙𝑙𝑒2 +  𝑒4(𝑙𝑙 + 𝑟𝑟)] = 0.  

The value 𝑟𝑟 = 𝑙𝑙 corresponds to the point L. From the other factor we 
obtain 𝑆𝑆𝑄 = 𝑙𝑙(1 + 3𝑒2 +  𝑒4)|(1 + 𝑒2 −  𝑒4) 

Example 6: If the normal at the points whose vectorial angles are 𝛼𝛼,𝛽𝛽, 𝛾𝛾 
on the parabola 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ  meet in a point (𝜌,𝜙), show that 
2𝜙 =  𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾. 
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Solution: The equation of the normal at a point on the parabola whose 
vectorial angle is𝜃𝜃1is𝑙𝑙�𝑟𝑟(𝑠𝑖𝑛𝑛𝜃𝜃1|(1 + 𝑐𝑐𝑜𝑠𝜃𝜃1)� 

=  sin(𝜃𝜃 −  𝜃𝜃1) +  𝑠𝑖𝑛𝑛𝜃𝜃.  

If this passes through the point (𝜌,𝜙), 

then 𝑙𝑙|𝜌(𝑠𝑖𝑛𝑛𝜃𝜃1|(1 + 𝑐𝑐𝑜𝑠𝜃𝜃1)) =  sin(𝜙 −  𝜃𝜃1) +  𝑠𝑖𝑛𝑛𝜙,  

or, 2𝑙𝑙 �2𝜌(sin(𝜃𝜃1|2) cos(𝜃𝜃1|2)|�𝑐𝑐𝑜𝑠2(𝜃𝜃1|2)�� 

=  sin𝜙(1 + 𝑐𝑐𝑜𝑠𝜃𝜃1) −  𝑠𝑖𝑛𝑛𝜃𝜃1𝑐𝑐𝑜𝑠𝜑 

=  sin𝜙�2𝑐𝑐𝑜𝑠2(𝜃𝜃1|2)� − 2 sin(𝜃𝜃1|2) 𝑐𝑐𝑜𝑠(𝜃𝜃1|2)𝑐𝑐𝑜𝑠𝜑 or,  

 𝑙𝑙|𝜌(𝑡𝑎𝑎𝑛𝑛3(𝜃𝜃1|2) + (𝑙𝑙|𝜌 + 2𝑐𝑐𝑜𝑠𝜙)𝑡𝑎𝑎𝑛𝑛(𝜃𝜃1|2) − 2𝑠𝑖𝑛𝑛𝜙 = 0 

This is a cubic equation in 𝑡𝑎𝑎𝑛𝑛(𝜃𝜃1|2).  If tan(𝛼𝛼|2), tan (𝛽𝛽|2),  

tan (𝛾𝛾|2) be three roots of this equation, we have  

tan(𝛼𝛼|2 +  𝛽𝛽|2 +  𝛾𝛾|2) = 

(−2𝜌𝑠𝑖𝑛𝑛𝜙)𝑙𝑙|1 − [(𝑙𝑙 + 2𝜌𝑐𝑐𝑜𝑠𝜙)|𝑙𝑙] = tan𝜙.  

Hence, tan(𝛼𝛼|2 +  𝛽𝛽|2 +  𝛾𝛾|2) =  tan𝜙. 

Therefore, 2𝜙 =  𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 

2.6 A SYMPTOTES 

Suppose that equation of the conic is 

𝑙𝑙|𝑟𝑟 = 1 +   𝑒 𝑐𝑐𝑜𝑠 θ. 

The equation of the asymptotes of the hyperbola 

𝑙𝑙|𝑟𝑟 =   𝑒 𝑐𝑐𝑜𝑠 θ is 𝑐𝑐𝑜𝑠 θ =  −1|𝑒 

(Since the points at infinity on the conic 𝑙𝑙|𝑟𝑟 =   𝑒 𝑐𝑐𝑜𝑠 θ 

are given by 𝑐𝑐𝑜𝑠 θ =  −1|𝑒).  

Further we know that the asymptotes pass through the centre of the 
hyperbola. 

 Now the distance of the centre from the focus is 𝑎𝑎𝑒,  where 𝑎𝑎 is the semi- 
transverse axis of the hyperbola. 

The length of perpendicular from 𝑆𝑆 upon either asymptote is 

𝑎𝑎𝑒𝑠𝑖𝑛𝑛𝛼𝛼 = 𝑎𝑎√𝑒2 − 1, where 𝑐𝑐𝑜𝑠𝛼𝛼 =  −1|𝑒.  

The angle which this perpendicular makes with the initial line is −(𝜋|2 −
𝛼𝛼), or (𝜋|2 − 𝛼𝛼) depending upon which asymptote is taken. 
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𝑎𝑎√𝑒2 − 1 = 𝑟𝑟𝑐𝑐𝑜𝑠(𝜃𝜃 − 𝛼𝛼 + 𝜋|2 ) and  

𝑎𝑎√𝑒2 − 1 = 𝑟𝑟𝑐𝑐𝑜𝑠(𝜃𝜃 + 𝛼𝛼 − 𝜋|2 ) these can be written as  

𝑙𝑙|𝑟𝑟 =  − √𝑒2 − 1sin (𝜃𝜃 −  𝛼𝛼) and 

𝑙𝑙|𝑟𝑟 =  − √𝑒2 − 1sin (𝜃𝜃 +  𝛼𝛼),  

which is the required equation of the asymptotes of the conic, are the 
straight lines 

𝑙𝑙|𝑟𝑟 =  − 𝑙𝑙|𝑟𝑟 = (�(𝑒2 − 1)|𝑒) ( √𝑒2 − 1cos𝜃𝜃 ± sin 𝜃𝜃). 

Check your progress 
(1) Find the condition that the line 𝑙𝑙|𝑟𝑟 =  𝐴𝐴 𝑐𝑐𝑜𝑠 𝜃𝜃 + 𝐵𝐵𝑠𝑖𝑛𝑛 𝜃𝜃 may be a 

tangent  to the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. 

(2) Prove that the equation of the locus of the foot of the perpendicular 
from the focus of a conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ on any tangent to it is 
𝑟𝑟2(𝑒2 − 1) − 2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 +  𝑙𝑙2 = 0.  Discuss the particular case 
when 𝑒 = 1.  

(3) Prove that the condition that the line 𝑙𝑙|𝑟𝑟 =  𝐴𝐴𝑐𝑐𝑜𝑠𝜃𝜃 +  𝐵𝐵𝑠𝑖𝑛𝑛𝜃𝜃 may 
touch the conic 𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼)  is 𝐴𝐴2  +  𝐵𝐵2   −
2𝑒(𝐴𝐴𝑐𝑐𝑜𝑠𝛼𝛼 +  𝐵𝐵𝑠𝑖𝑛𝑛𝛼𝛼 )  +  𝑒2 –  1 =  0.  

(4) Prove that the line 𝑙𝑙|𝑟𝑟 = 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) +  cos (𝜃𝜃 −  𝛾𝛾) is tangent to 
the conic 𝑙𝑙|𝑟𝑟 = 1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛾𝛾) at the point for which 𝜃𝜃 =  𝛼𝛼. 

(5) 𝑃𝑃𝑆𝑆𝑃𝑃’ is a focal chord of a conic; prove that the angle between the 
tangents at 𝑃𝑃 and 𝑃𝑃’ is tan−1(2𝑒𝑠𝑖𝑛𝑛 𝛼𝛼| 1 − 𝑒2) where 𝛼𝛼 is the 
angle between the chord and the major axis. 

(6) Prove that the exterior angle between any two tangents to a 
hyperbola is  equal to half the difference of the vectorial angles of 
their point of contact. 

(7) A focal chord 𝑃𝑃𝑆𝑆𝑃𝑃’ of an ellipse is inclined at an angle𝛼𝛼 to the 
major axis. Show that the perpendicular from the focus on the 
tangent at 𝑃𝑃 makes an angle tan−1{sinα | (𝑒 + 𝑐𝑐𝑜𝑠𝛼𝛼)} with the 
axis. 

 
Example7: Two equal ellipses of eccentricity 𝑒, are placed with their axes 
at right angles and they have one focus 𝑆𝑆 in common. If 𝑃𝑃𝑄 be a common 
tangent, show that the angle 𝑃𝑃𝑆𝑆𝑄 is equal to 2𝑠𝑖𝑛𝑛−1 (𝑒 |√2). 

UGMM-102/49

D
G

B
-0

21



 
 

Solution: We take the common focus S as the pole and axis one ellipse as 
the initial line so that the axis of other ellipse makes an angle 𝜋|2 with the 
initial line. 

Suppose that the equations of two ellipses be  

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ……….(1) 

  𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ −  𝜋|2) 

 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑠𝑖𝑛𝑛 θ.…….(2) 

It is given that PQ is a common tangent to the two ellipses. Let the 
vectorial angles of P, a point on (1). And Q, a point on (2), be 𝛼𝛼 and 𝛽𝛽 
respectively. Therefore 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃) 

𝑙𝑙|𝑟𝑟 =   𝑠𝑖𝑛𝑛𝛼𝛼𝑠𝑖𝑛𝑛𝜃𝜃 + (𝑒 + 𝑐𝑐𝑜𝑠𝛼𝛼)𝑐𝑐𝑜𝑠 𝜃𝜃………(3) 

and tangent to (2)  at the point 𝛽𝛽  𝑖. 𝑒. 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛽𝛽) + 𝑒𝑠𝑖𝑛𝑛 𝜃𝜃 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 𝛽𝛽𝑐𝑐𝑜𝑠𝜃𝜃 + (𝑒 + 𝑠𝑖𝑛𝑛𝛽𝛽)𝑠𝑖𝑛𝑛 𝜃𝜃………(4) 

These tangents should be identical. Hence we comparing (3) and (4), we 
get 

1 = (cosα+ 𝑒)| 𝑐𝑐𝑜𝑠𝛽𝛽 = sin𝛼𝛼| (sinβ+ 𝑒) 

Therefore, cosα+ 𝑒 = 𝑐𝑐𝑜𝑠𝛽𝛽 or,  𝑐𝑐𝑜𝑠𝛽𝛽 −  cosα = e  

And sinα = sin𝛽𝛽 +  𝑒 or, sinα− sinβ = 𝑒 

Now squaring them and adding, we get 2 − 2(cosα cosβ+ sinα sin𝛽𝛽) =
 2𝑒2 

Or, cos(𝛼𝛼 −  𝛽𝛽) = 1 − 𝑒2 

Or, 1 − 2 sin2{(𝛼𝛼 −  𝛽𝛽)|2} = 1 − 𝑒2 

Or, sin2{(𝛼𝛼 −  𝛽𝛽)|2} = 𝑒2|2 

Or, sin{(𝛼𝛼 −  𝛽𝛽)|2} = 𝑒 | √2 

Therefore, (𝛼𝛼 −  𝛽𝛽) = 2 sin−1(𝑒 | √2). 

Example 8: Prove that the portion of the tangent intercepted between the 
conic and the directrix subtends a right angle at the corresponding focus. 

Solution: Let the equation of the conic referred to the focus S as the pole 
be 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ………….(1) 

The equation of the directrix corresponding to the focus 𝑆𝑆 is 

𝑙𝑙|𝑟𝑟 =   𝑒 𝑐𝑐𝑜𝑠 θ…………….(2) 
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Let the vectorial angle of any point 𝑃𝑃 on the conic be  𝛼𝛼.  The equation of 
the tangent at P is  

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃…………(3) 

Now the vectorial angle 𝜃𝜃 of the point of intersection 𝐾 of the 
tangent (3)andthe directrix (2)is is given by  

𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 =  𝑒 𝑐𝑐𝑜𝑠 θ 

or, 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) = 0 , therefore,   (θ −  𝛼𝛼) = 9 00 

the directrix subtends a right angle at the corresponding focus. 

Example 9: If 𝑃𝑃𝑆𝑆𝑃𝑃’ is a focal chord of the conic. Prove that the tangents at 
𝑃𝑃 and 𝑃𝑃’ intersect on the directrix. 

Solution: Let the equation of the conic be 

 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ………….(1) 

Suppose that the focal chord 𝑃𝑃𝑆𝑆𝑃𝑃′is inclined at an angle 𝛼𝛼 to the initial 
line so that the vectorial angles of 𝑃𝑃 and 𝑃𝑃’ are 𝛼𝛼 and 𝜋 + 𝛼𝛼 respectively. 
The equations of the tangents at 𝑃𝑃 and 𝑃𝑃’ are  

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃…………(2) 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ − ( 𝜋 +  𝛼𝛼)) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 

𝑙𝑙|𝑟𝑟 =  − 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃…………(3) 

The locus of the point of intersection of the tangents (2) and (3) is 
obtained by eliminating 𝛼𝛼 between (2) and (3). 

We adding (2) and (3),  

2𝑙𝑙|𝑟𝑟 =   2𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 i. e. 𝑙𝑙|𝑟𝑟 =   𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 

Which is the equation of the directrix. Hence tangents at 𝑃𝑃 and 𝑃𝑃’ intersect 
on the directrix. 

Example 10: Two conics have a common focus; prove that two of their 
common chords pass through the intersection of their directrices. 

Solution: Suppose that the equations of the two conics having a common 
focus be  

𝑙𝑙|𝑟𝑟 =  1 +  𝑒1 𝑐𝑐𝑜𝑠 θ………..(1) 

𝐿|𝑟𝑟 =  1 + 𝑒 2𝑐𝑐𝑜𝑠 (θ − 𝛼𝛼)……(2) 

Equation of the directrices of these two conics be  

𝑙𝑙|𝑟𝑟 =   𝑒1 𝑐𝑐𝑜𝑠 θ………..(3) 

𝐿|𝑟𝑟 =   𝑒 2𝑐𝑐𝑜𝑠 (θ − 𝛼𝛼)……(4) 

Now we changing (1)to the cartesian form, we have 
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𝑙𝑙 = �𝑙𝑙2 + 𝑚𝑚2 +𝑒1𝑙𝑙  or, (𝑙𝑙 − 𝑒1𝑙𝑙 )2 = (𝑙𝑙2 + 𝑚𝑚2) 

Now we transform it to polar form, we have  

(𝑙𝑙|𝑟𝑟 − 𝑒1 𝑐𝑐𝑜𝑠 θ)2 − 1 = 0……..(5) 

The equation (5)is thus the polar equation of the conic (1)put in the 
form which when transformed to cartesian gives rational cartesian 
equation of the conic. 

Similarly the equation (2) can be written as  

(𝐿|𝑟𝑟 − 𝑒2 𝑐𝑐𝑜𝑠 (θ − 𝛼𝛼))2 − 1 = 0……..(6) 

Now any curve passing through the point of the intersection of the two 
conics (5) and (6) is given by 

{(𝑙𝑙|𝑟𝑟 − 𝑒1 𝑐𝑐𝑜𝑠 θ)2 − 1} +  𝜆𝜆{(𝐿|𝑟𝑟 − 𝑒2 cos(θ − 𝛼𝛼))2 − 1} = 0.(7) 

Clearly if λ= -1, the equation (7)  gives two lines, namely 

(𝑙𝑙|𝑟𝑟 − 𝑒1 𝑐𝑐𝑜𝑠 θ) =  ±(𝑙𝑙|𝑟𝑟 − 𝑒1 𝑐𝑐𝑜𝑠 θ) 

which clearly pass through the point of intersection of the two directrices 

(𝑙𝑙|𝑟𝑟 − 𝑒1 𝑐𝑐𝑜𝑠 θ) = 0 and (𝑙𝑙|𝑟𝑟 − 𝑒1 𝑐𝑐𝑜𝑠 θ)) = 0  

Since the straight lines passing through the points of intersection of the 
conics (1) and (2) are their common chords, therefore the common chords 
of (1) and (2) pass through the intersection of their directrices. 

2.7 POLAR 

Let (𝑟𝑟1,𝜃𝜃1) be a given point on the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. We shall use 
the property that athe polar of a point is the chord of contact of tangents 
drawn from it to the conic 

 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. 

If (𝛼𝛼 − 𝛽𝛽), (𝛼𝛼 + 𝛽𝛽) be the vectorial angles of the points of contact, the 
equation of the chord of contact is 

𝑙𝑙|𝑟𝑟 =  𝑠𝑒𝑐𝑐𝛽𝛽 𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃…………(1) 

Now equation of the tangent at (𝛼𝛼 − 𝛽𝛽) is  

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼 +  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 

This passes through the point (𝑟𝑟1,𝜃𝜃1), therefore,  

𝑙𝑙|𝑟𝑟1  =   𝑐𝑐𝑜𝑠 (θ1  −  𝛼𝛼 +  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃1…………..(2) 

Similarly,equation of the tangent at (𝛼𝛼 + 𝛽𝛽) is 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼 −  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 
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This passes through the point (𝑟𝑟1,𝜃𝜃1), therefore,  

𝑙𝑙|𝑟𝑟1  =   𝑐𝑐𝑜𝑠 (θ1  −  𝛼𝛼 −  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃1…………..(3) 

From equation (2) and (3) we have 

𝑐𝑐𝑜𝑠 (θ1  −  𝛼𝛼 +  𝛽𝛽) = 𝑐𝑐𝑜𝑠 (θ1  −  𝛼𝛼 −  𝛽𝛽) 

That is  (θ1  −  𝛼𝛼 +  𝛽𝛽) = ±(θ1  −  𝛼𝛼 −  𝛽𝛽) 

Since 𝛽𝛽 ≠ 0, then (θ1  −  𝛼𝛼 +  𝛽𝛽) = −(θ1  −  𝛼𝛼 −  𝛽𝛽) 

That is, 𝛼𝛼 =  𝜃𝜃1. 

Substituting this value of 𝛼𝛼 in equation (2) and (3), 

we get 𝑐𝑐𝑜𝑠𝛽𝛽 = 𝑙𝑙|𝑟𝑟1 − 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃1. 

From the equation (1), the polar of the point (𝑟𝑟1,𝜃𝜃1) is  

(𝒍𝒍|𝒓 − 𝒆𝒄𝒄𝒐𝒔𝜽)(𝒍𝒍|𝒓𝟏𝟏 − 𝒆𝒄𝒄𝒐𝒔 𝜽𝟏𝟏) = 𝐜𝐜𝐨𝐬 (𝜽 − 𝜽𝟏𝟏) 

𝑹𝑹𝒆𝒎𝒎𝒂𝒂𝒓𝒌:1. The pole of a line is the point of the intersection of the 
tangents at its extremities. 

2. The polar of a point with respect to a given conic is the same as the 
chord of the contact of the tangents drawn from the point to the conic, but 
here the point must lie outside the conic.  

Example 11: Show that the director circle of the conic 

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ is 𝑟𝑟2(1 − 𝑒2) + 2𝑒𝑙𝑙𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 − 2𝑙𝑙2 = 0. 

Solution: The equations of the tangents at the points 𝛼𝛼,𝛽𝛽 of the given 
conic are  

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃  and  

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −   𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃   

If 𝜃𝜃 be the vectorial angle of the point where the tangents intersect each 
other, 

𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) =  𝑐𝑐𝑜𝑠 (θ −   𝛽𝛽) 

 that is , (θ −  𝛼𝛼) = ± (θ −   𝛽𝛽) Neglecting the positive sign,  

𝜃𝜃 = (𝛼𝛼 + 𝛽𝛽)|2 … … … … (1) 

Substituting this value of 𝜃𝜃 in the equation of either tangent the radius 
vector 𝑟𝑟 of the point of intersection can be written as 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 ( 𝛼𝛼 −  𝛽𝛽)|2 + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 + 𝛽𝛽)|2  …………..(2) 

Converting the equations of the tangents in coordinates, we see that they 
are at right angles if 

(𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑒)(𝑐𝑐𝑜𝑠𝛽𝛽 + 𝑒) + 𝑠𝑖𝑛𝑛𝛼𝛼𝑠𝑖𝑛𝑛𝛽𝛽 = 0 
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that is, if 𝑒2 + 𝑒(𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑐𝑐𝑜𝑠𝛽𝛽) + cos(𝛼𝛼 − 𝛽𝛽) = 0 

which can be written as 

𝑒2 + 𝑒(cos(𝛼𝛼 + 𝛽𝛽) |2cos (𝛼𝛼 − 𝛽𝛽)|2 + 2cos2(𝛼𝛼 − 𝛽𝛽)|2 − 1 =
0…..(3).  

Eliminating 𝛼𝛼 and 𝛽𝛽 from equation (3) with the help of equations (1) and 
(2), 

𝑒2 + 2𝑒𝑐𝑐𝑜𝑠𝜃𝜃(𝑙𝑙|𝑟𝑟 −  𝑒 𝑐𝑐𝑜𝑠 θ. ) + 2(𝑙𝑙|𝑟𝑟 −  𝑒 𝑐𝑐𝑜𝑠 θ)2 − 1 = 0 

or, 𝑟𝑟2(1 − 𝑒2) + 2𝑒𝑙𝑙𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 − 2𝑙𝑙2 = 0 

Which is the equation of the circle. 

Example 12: Prove that the two conics 𝑙𝑙1|𝑟𝑟 =  1 −  𝑒 𝑐𝑐𝑜𝑠 𝜃𝜃 

 and 𝑙𝑙2|𝑟𝑟 =  1 −  𝑒 𝑐𝑐𝑜𝑠 (𝜃𝜃 − 𝛼𝛼) will touch one another if 

 𝑙𝑙1
2(1 − 𝑒22 ) +  𝑙𝑙2

2(1 − 𝑒12 ) = 2𝑙𝑙1𝑙𝑙2(1 −  𝑒1𝑒2𝑐𝑐𝑜𝑠𝛼𝛼).  

Solution: If the vectorial angle of the point of contact be 𝜃𝜃′, the equations 
of the tangents of the given conics are respectively 

𝑙𝑙1|𝑟𝑟 =  𝑐𝑐𝑜𝑠(𝜃𝜃 − 𝜃𝜃′) −  𝑒 𝑐𝑐𝑜𝑠 𝜃𝜃 

and  𝑙𝑙2|𝑟𝑟 =  cos (𝜃𝜃 − 𝜃𝜃′) −  𝑒 𝑐𝑐𝑜𝑠 (𝜃𝜃 − 𝛼𝛼) 

that is,  𝑙𝑙1|𝑟𝑟 = (𝑐𝑐𝑜𝑠𝜃𝜃 −  𝑒1)𝑐𝑐𝑜𝑠𝜃𝜃 +  𝑠𝑖𝑛𝑛𝜃𝜃𝑠𝑖𝑛𝑛𝜃𝜃′, 

and 𝑙𝑙2|𝑟𝑟 = (cos𝜃𝜃′ − 𝑒2𝑐𝑐𝑜𝑠𝛼𝛼)𝑐𝑐𝑜𝑠𝜃𝜃 + (𝑠𝑖𝑛𝑛𝜃𝜃′ −  𝑒2𝑠𝑖𝑛𝑛𝛼𝛼) 𝑠𝑖𝑛𝑛 𝜃𝜃 

 Comparing the coefficients, 

𝑙𝑙2|𝑙𝑙1 =  (cos𝜃𝜃′ − 𝑒2𝑐𝑐𝑜𝑠𝛼𝛼)|(𝑐𝑐𝑜𝑠𝜃𝜃 −  𝑒1) 

=  (𝑠𝑖𝑛𝑛𝜃𝜃′ −  𝑒2𝑠𝑖𝑛𝑛𝛼𝛼)| 𝑠𝑖𝑛𝑛𝜃𝜃′ 

from these we get, 𝑠𝑖𝑛𝑛𝜃𝜃′(𝑙𝑙2 −  𝑙𝑙1) =  −𝑒2𝑙𝑙1𝑠𝑖𝑛𝑛𝛼𝛼 

And 𝑐𝑐𝑜𝑠𝜃𝜃′(𝑙𝑙2 −  𝑙𝑙1) =  −𝑒1𝑙𝑙2 − 𝑒2𝑙𝑙1𝑐𝑐𝑜𝑠𝛼𝛼.  

Now we squaring and adding them , we get  

𝑙𝑙1
2(1 − 𝑒22 ) +  𝑙𝑙2

2(1 − 𝑒12 ) = 2𝑙𝑙1𝑙𝑙2(1 −  𝑒1𝑒2𝑐𝑐𝑜𝑠𝛼𝛼).  

Check your progress 
(1) A conic is described having the same focus and eccentricity as the 

conic𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ, and two conics touch at the point 𝜃𝜃 = 𝛼𝛼; 
prove that the length of its latus rectum is 2𝑙𝑙(1 −  𝑒2)|(𝑒2 +
2𝑒𝑐𝑐𝑜𝑠𝛼𝛼 + 1). 

(2) 𝑃𝑃,𝑄,𝑅 are three points on the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ, the focus 
𝑆𝑆 beingthe pole; 𝑆𝑆𝑃𝑃 and 𝑆𝑆𝑅 meet the tangent at 𝑄 in 𝑀 and 𝑁 so 
that 𝑆𝑆𝑀 =  𝑆𝑆𝑁 =  𝑙𝑙. Prove that 𝑃𝑃𝑅 touches the conic𝑙𝑙|𝑟𝑟 =  1 +
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2 𝑒 𝑐𝑐𝑜𝑠 θ. 

(3) The tangents at 𝑃𝑃 and 𝑄 to a parabola meet at 𝑇𝑇. Show that 
𝑆𝑆𝑇𝑇2 = 𝑆𝑆𝑃𝑃. 𝑆𝑆𝑄 

(4) Find the equation of the chord of the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ 
joining the points whose vectorial angles are 𝜋|6 𝑎𝑎𝑛𝑛𝑑𝑑 𝜋|3. 

(5) Tangents are drawn at the extremities of perpendicular focal radii 
of a conic. Show that the locus of their point of intersection is 
another conic having the same focus. 

(6) In any conic prove that  

(a) the tangents at the ends of a focal chord meet on the directrix. 

(b) the portion of tangent intercepted between the curve and the 
directrix subtends a right angle at the corresponding focus.  

(7) Two chords 𝑄𝑃𝑃, 𝑃𝑃𝑅 of a conic subtendequal angles at the focus. 
Prove that the chord 𝑄𝑅 and the tangent at 𝑃𝑃 intersect on the 
directrix. 

(8) If the normals at three pointsof the parabola 𝑟𝑟 = 𝑎𝑎 𝑐𝑐𝑜𝑠𝑒𝑐𝑐2(𝜃𝜃|2), 
whose vectorial angles are 𝛼𝛼,𝛽𝛽, 𝛾𝛾 meet in a point whose vectorial 
angle is 𝜙, prove that 2𝜙 =  𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 − 𝜋. 

(9) Prove that, if chords a conic subtend a constant angle at a focus, 
the tangents at the ends of the chords meet on a fixed conic and 
these chords will touch another fixed conic.  

(10) 𝐴𝐴 is the vertex of a conic, and 𝐴𝐴𝑃𝑃 a chord which meets the latus 
rectum in 𝑄. A parallel chord 𝑃𝑃′𝑆𝑆𝑄’ is drawn through the focus 𝑆𝑆. 
Show that the ratio (𝐴𝐴𝑃𝑃.𝐴𝐴𝑄)|(𝑆𝑆𝑄’.𝑆𝑆𝑃𝑃’) is constant. 

(11) If tangent at any point of an ellipse makes an angle 𝛼𝛼 with its 
major axis and an angle 𝛽𝛽 with focal radius to the point of contact, 
show that 𝑒𝑐𝑐𝑜𝑠𝛼𝛼 = 𝑐𝑐𝑜𝑠𝛽𝛽.  

(12) Prove that two points on the conic 𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ, whose 
vectorial angles are 𝛼𝛼 and 𝛽𝛽 respectively will be the extrimities of 
a diameter if (𝑒 + 1)|(𝑒 − 1) = tan𝛼𝛼|2 tan𝛽𝛽|2. 

(13) Find the locus of the pole of a chord of the conic 𝑙𝑙|𝑟𝑟 =
 1 +  𝑒 𝑐𝑐𝑜𝑠 θ, which subtends a constant angle2𝛾𝛾 at the focus. 

 

2.8 AUXILIARY CIRCLE 

The locus of the foot of the perpendicular from the focus on any tangent to 
a conic (ellipse or hyperbola) is a circle, called the auxiliary circle of the 
conic.  
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Equation of the auxiliary circle of the conic 

𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 θ. …..(1) 

We take a point 𝛼𝛼 on the conic(1). Equation of the tangent at the point 𝛼𝛼 is 
𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃  ……..(2) 

We change the equation (2) in Cartesian form, we have  

𝑙𝑙 = (𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑒)𝑙𝑙 + 𝑠𝑖𝑛𝑛𝛼𝛼 𝑚𝑚…….(3) 

Equation of a line perpendicular to the (3) and passing through the focus is 

 0 = 𝑠𝑖𝑛𝑛𝛼𝛼 𝑙𝑙 − (𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑒)𝑚𝑚 

Changing it to the polar form, we have 

0 = 𝑠𝑖𝑛𝑛𝛼𝛼 𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 − (𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑒)𝑟𝑟𝑠𝑖𝑛𝑛𝜃𝜃 

Or, sin(𝜃𝜃 −  𝛼𝛼) =  −𝑒𝑠𝑖𝑛𝑛𝜃𝜃………..(4) 

Now the foot of the perpendicular from the focus 𝑠to the tangent (2) is the 
given by the intersection of (2) and (4), and hence its locus is obtained by 
eliminating the variable 𝛼𝛼  between (2) and (4). Equations (2) and (4) may 
be written as  

𝑙𝑙|𝑟𝑟 − 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼)  and sin(𝜃𝜃 −  𝛼𝛼) =  −𝑒𝑠𝑖𝑛𝑛𝜃𝜃 

Squaring  and adding these equations, we have 

  (esin(𝜃𝜃))2 +  (𝑙𝑙|𝑟𝑟 − 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃)2 =  1 

Or, (𝑙𝑙|𝑟𝑟)2 – 2(𝑙𝑙𝑒)|𝑟𝑟 𝑐𝑐𝑜𝑠θ + 𝑒2 –  1 =  0 

(𝑒2 − 1)𝑟𝑟2 −  2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 + 𝑙𝑙2 = 0. 

This is the required equation of the auxiliary circle. 

Note: In the case of parabola 𝑒 = 1, the equation of the tangent to the 
parabola 𝑙𝑙|𝑟𝑟 =  cos(𝜃𝜃 − 0) +  1. 𝑐𝑐𝑜𝑠𝜃𝜃  

at the vertex , which is the equation of the tangent to the parabola 𝑙𝑙|𝑟𝑟 =
1 + 𝑐𝑐𝑜𝑠𝜃𝜃 at the vertex(i.e. at the point 𝜃𝜃 = 0) 

2.9 THE POINT OF INTERSECTION OF TWO 
TANGENTS 

Suppose that equation of the conic is 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃………..(1) 

The equation of the tangents at the points 𝛼𝛼  and 𝛽𝛽 are 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃  ……..(2) 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃  ……..(3) 
Now we substract equation (3) from (2), for finding of the points of 
intersection 
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cos(𝜃𝜃 −  𝛼𝛼) − cos(𝜃𝜃 −  𝛽𝛽) = 0 

cos(𝜃𝜃 −  𝛼𝛼) = cos(𝜃𝜃 −  𝛽𝛽) 
(θ −  α) =  ±(𝜃𝜃 −  𝛽𝛽) 

If we take the positive sign, we get 𝛼𝛼 =  𝛽𝛽 which is inadmissible. So, we 
take negative sign, we get 
(θ −  α) =  −(𝜃𝜃 −  𝛽𝛽) or, 𝜃𝜃 = (𝛼𝛼 +  𝛽𝛽)|2 

Putting the value of 𝜃𝜃 in equation (2) or (3), we get 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 +  𝛽𝛽)|2 −  𝛼𝛼� + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2  

=  𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 −  𝛽𝛽)|2� + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2 

If the point of intersection is (𝑟𝑟′,𝜃𝜃′), then we have  

𝜃𝜃′ = (𝛼𝛼 +  𝛽𝛽)|2 

and 𝑙𝑙|𝑟𝑟′ =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 −  𝛽𝛽)|2� + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2 

Note: In the case of parabola 𝑒 = 1, the equation of the tangent to the 
parabola 

 𝑙𝑙|𝑟𝑟′ =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 −  𝛽𝛽)|2� + 𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2 

= 2𝑐𝑐𝑜𝑠𝛼𝛼|2𝑐𝑐𝑜𝑠𝛽𝛽|2 

or, 𝑟𝑟′ = 𝑙𝑙|2𝑠𝑒𝑐𝑐𝛼𝛼|2𝑠𝑒𝑐𝑐𝛽𝛽|2 and 𝜃𝜃′ = (𝛼𝛼 +  𝛽𝛽)|2 

2.10 DIRECTOR CIRCLE 
The locus of the point of the intersection of two perpendicular tangents to 
a conic, is called the director circle of the conic. 

Suppose that equation of the conic is 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃………..(1) 

The director circle of the conic (1) is the locus of the point of intersection 
of perpendicular tangents to the conic(1) 

The equation of the tangents at the points 𝛼𝛼  and 𝛽𝛽 are 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃  ……..(2) 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛽𝛽) + 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃  ……..(3) respectively 

Now we substract equation (3) from (2), for finding of the points of 
intersection 

cos(𝜃𝜃 −  𝛼𝛼) − cos(𝜃𝜃 −  𝛽𝛽) = 0 

cos(𝜃𝜃 −  𝛼𝛼) = cos(𝜃𝜃 −  𝛽𝛽) 

(θ −  α) =  ±(𝜃𝜃 −  𝛽𝛽) 

If we take the positive sign, we get 𝛼𝛼 =  𝛽𝛽 which is inadmissible. So, we 
take negative sign, we get 

(θ −  α) =  −(𝜃𝜃 −  𝛽𝛽) or, 𝜃𝜃 = (𝛼𝛼 +  𝛽𝛽)|2 UGMM-102/57
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Putting the value of 𝜃𝜃 in equation (2) or (3), we get 

𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 +  𝛽𝛽)|2 −  𝛼𝛼� + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2  

=  𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 −  𝛽𝛽)|2� + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2 

If the point of intersection is (𝑟𝑟′,𝜃𝜃′), of the tangents (2) and (3) then we 
have  

𝜃𝜃′ = (𝛼𝛼 +  𝛽𝛽)|2 

and 𝑙𝑙|𝑟𝑟′ =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 −  𝛽𝛽)|2� + 𝑒𝑐𝑐𝑜𝑠 (𝛼𝛼 +  𝛽𝛽)|2…..(4) 

Changing the equation (2) of the tangent at the point 𝛼𝛼 to Cartesian form, 
we have 𝑙𝑙 = (𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑒)𝑙𝑙 + 𝑠𝑖𝑛𝑛𝛼𝛼 𝑚𝑚 

Therefore the slope of the tangent (2) is 

 𝑚𝑚1 = −(cos𝛼𝛼 + 𝑒)| sin𝛼𝛼 

Similarly, the slope of the tangent (3) is 

 𝑚𝑚2 = −(cos𝛽𝛽 + 𝑒)| sin𝛽𝛽. 

Since the tangents are perpendicular so, 𝑚𝑚1𝑚𝑚2 =  −1 

Or, [−(cos𝛼𝛼 + 𝑒)| sin𝛼𝛼][−(cos𝛽𝛽 + 𝑒)| sin𝛽𝛽] =  −1 

Or, (cosα cosβ+ sinα sin𝛽𝛽) +  𝑒(cos𝛼𝛼 +  𝑐𝑐𝑜𝑠 𝛽𝛽) +  𝑒2  =  0 

Or,𝑐𝑐𝑜𝑠(𝛼𝛼 − 𝛽𝛽) +  2𝑒 𝑐𝑐𝑜𝑠((𝛼𝛼 + 𝛽𝛽)|2)𝑐𝑐𝑜𝑠((𝛼𝛼 − 𝛽𝛽)|2) +  𝑒2 =
 0……….(5) 

From (4), we have 
𝜃𝜃′ = (𝛼𝛼 +  𝛽𝛽)|2 

and 𝑙𝑙|𝑟𝑟′ −  𝑒𝑐𝑐𝑜𝑠𝜃𝜃′ =   𝑐𝑐𝑜𝑠 �(𝛼𝛼 −  𝛽𝛽)|2�……….(6) 

Eliminating 𝛼𝛼 and 𝛽𝛽 with the help of (5) and (6), we have 

2(𝑙𝑙|𝑟𝑟′ −  𝑒𝑐𝑐𝑜𝑠𝜃𝜃′)2 –  1 + 2𝑒𝑐𝑐𝑜𝑠𝜃𝜃′. (𝑙𝑙|𝑟𝑟′ −  𝑒𝑐𝑐𝑜𝑠𝜃𝜃′) +  𝑒2 = 0 

Or, (1 − 𝑒2)𝑟𝑟′2  + 2𝑙𝑙𝑒𝑟𝑟′𝑐𝑐𝑜𝑠𝜃𝜃′ −  2𝑙𝑙2 = 0  

Therefore, the locus of the point (𝑟𝑟’,𝜃𝜃′) is 

 (1 − 𝑒2)𝑟𝑟2  + 2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 −  2𝑙𝑙2 = 0  

which is the required equation of the director circle. 

Note: In the case of parabola 𝑒 = 1, the equation of the director circle to 
the parabola becomes 

 2𝑙𝑙𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 − 𝑙𝑙2 = 0 or, 𝑙𝑙|𝑟𝑟 = 𝑐𝑐𝑜𝑠𝜃𝜃  

which is the equation of the directrix of the parabola 

 𝑙𝑙|𝑟𝑟 = 1 + 𝑐𝑐𝑜𝑠𝜃𝜃.  
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Hence in the case of a parabola the locus of the point of intersection of 
perpendicular tangents is the directrix of the parabola. 

Example 13: Show that the locus of the feet of perpendiculars from the 
focus 𝑆𝑆 of a conic on chords subtending a constant angle 2𝛾𝛾 at 𝑆𝑆 is the 
circle whose polar equation referred to 𝑆𝑆 as pole is 𝑟𝑟2(𝑒2 − 𝑠𝑒𝑐𝑐2𝛾𝛾) −
 2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 + 𝑙𝑙2 = 0  

where 2𝑙𝑙 is the latus rectum and 𝑒 is the eccentricity of the conic. 

Solution: Suppose that equation of the conic whose focus 𝑆𝑆 as the pole be 
𝑙𝑙|𝑟𝑟 = 1 + 𝑐𝑐𝑜𝑠𝜃𝜃. ………(1) 

Let 𝑃𝑃𝑄 be the chord of (1) subtending an angle 2𝛾𝛾 at the focus 𝑆𝑆. Let 
(𝛼𝛼 −  𝛾𝛾) and (𝛼𝛼 +  𝛾𝛾) be the vectorial angle of the extremities of the  
chord 

𝑃𝑃𝑄. Then the equation of the chord 𝑃𝑃𝑄 is  

𝑙𝑙|𝑟𝑟 = 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 + 𝑠𝑒𝑐𝑐𝛾𝛾 𝑐𝑐𝑜𝑠(𝜃𝜃 −  𝛼𝛼) …… (2) 

𝑜𝑟𝑟, 𝑙𝑙|𝑟𝑟 =  𝑒𝑐𝑐𝑜𝑠𝜃𝜃 +  𝑠𝑒𝑐𝑐𝛾𝛾 𝑐𝑐𝑜𝑠𝜃𝜃 𝑐𝑐𝑜𝑠𝛼𝛼 +  𝑠𝑒𝑐𝑐𝛾𝛾 𝑠𝑖𝑛𝑛𝛼𝛼 𝑠𝑖𝑛𝑛𝜃𝜃  

Or, 𝑙𝑙 = (𝑒 + 𝑠𝑒𝑐𝑐𝛾𝛾 𝑐𝑐𝑜𝑠𝛼𝛼)𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 + (𝑠𝑒𝑐𝑐 𝛾𝛾𝑠𝑖𝑛𝑛𝛼𝛼 )𝑟𝑟𝑠𝑖𝑛𝑛𝜃𝜃…..(3) 

Equation of the perpendicular drawn from the focus 𝑆𝑆(pole  as origin) to 
the line (3) is 

 0 = (𝑒 + 𝑠𝑒𝑐𝑐𝛾𝛾 𝑐𝑐𝑜𝑠𝛼𝛼)𝑟𝑟𝑠𝑖𝑛𝑛𝜃𝜃 −  (𝑠𝑒𝑐𝑐 𝛾𝛾𝑠𝑖𝑛𝑛𝛼𝛼 )𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 

Or, −𝑒𝑠𝑖𝑛𝑛𝜃𝜃 = secγ sin (𝜃𝜃 −  𝛼𝛼)….. (4) 

The foot of the perpendicular drawn from the focus 𝑆𝑆to the chord (2) is the 
point of the intersection of the lines (2) and (4) 

The equation (2) can be written as 

 (𝑙𝑙|𝑟𝑟 − 𝑒𝑐𝑐𝑜𝑠𝜃𝜃) = sec 𝛾𝛾 cos(𝜃𝜃 −  𝛼𝛼) ……(5) 

Squaring and adding equation (4) and (5), we get 

 (𝑒𝑠𝑖𝑛𝑛𝜃𝜃)2 + (𝑙𝑙|𝑟𝑟 − 𝑒𝑐𝑐𝑜𝑠𝜃𝜃)2 = 𝑠𝑒𝑐𝑐2𝛾𝛾) 

Or,  𝑒2 + 𝑙𝑙2|𝑟𝑟2 − 2𝑙𝑙𝑒|𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 =  sec2 𝛾𝛾 

Or, 𝑟𝑟2(𝑒2 − sec2 𝛾𝛾 ) −  2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 + 𝑙𝑙2 = 0. 

 Which is the required locus.  

Check your progress 
(1) If 𝐴𝐴,𝐵𝐵,𝐶𝐶 be any three points on a parabola, and the tangents at 

these pointsform a triangle𝐴𝐴′𝐵𝐵′𝐶𝐶′. Show that 𝑆𝑆𝐴𝐴. 𝑆𝑆𝐵𝐵. 𝑆𝑆𝐶𝐶 =
𝑆𝑆𝐴𝐴′. 𝑆𝑆𝐵𝐵′. 𝑆𝑆𝐶𝐶′, 𝑆𝑆 being the focus of the parabola. 

(2) Find the equation of thwe circle circumscribing the triangle formed 
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by tangents at three given points of a parabola. 

(3) Prove that the centres of the four circles circumscribing the four 
triangles formed by the four tangents drawn to a parabola at points 
whose vectorial angles are 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿 lie on another circle which 
passes through the focus of the parabola. 

(4) 𝑃𝑃,𝑄 𝑅are three points on the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑐𝑐𝑜𝑠𝜃𝜃. The focus 𝑆𝑆 
being the pole. The tangent at 𝑄 meets 𝑆𝑆𝑃𝑃 and 𝑆𝑆𝑅 in 𝑀 and 𝑆𝑆 so 
that 𝑆𝑆𝑀 =  𝑆𝑆𝑁 =  1. Prove that the chord𝑃𝑃𝑅  touches the conic 
𝑙𝑙|𝑟𝑟 = 1 + 2𝑒𝑐𝑐𝑜𝑠𝜃𝜃. 

(5) If the tangents at any two points 𝑃𝑃 and 𝑄 of a conic meet in a point 
𝑇𝑇and if the chord 𝑃𝑃𝑄  meets the directrix corresponding to 𝑆𝑆 in a 
point 𝐾, prove that the angle 𝐾𝑆𝑆𝑇𝑇 is a right angle. 

(6) Show that three normals can be drawn from a point (𝜌,𝜙) to a 
parabola. 

(7) Find the condition that the line 𝑙𝑙|𝑟𝑟 = 𝐴𝐴𝑐𝑐𝑜𝑠𝜃𝜃 + 𝐵𝐵𝑠𝑖𝑛𝑛𝜃𝜃 may be a 
tangent to the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃. 

(8) Prove that the line 𝑙𝑙|𝑟𝑟 = cos(θ −  α) + 𝑒𝑐𝑐𝑜𝑠(𝜃𝜃 −  𝛾𝛾) is the 
thangent to the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠(𝜃𝜃 −  𝛾𝛾) at the point for which 
𝜃𝜃 =  𝛼𝛼. 

 

Summary 

(1) The general equation of the second degree is  
ax²+by²+2hxy+2gx+2fy+c = 0……..(1) 

Let 𝑎𝑎 ≠ 0 and 𝑏𝑏 ≠ 0, then equation (1) is written as  

 𝑎𝑎(𝑙𝑙² +  2𝑔𝑔𝑙𝑙|𝑎𝑎 + (𝑔𝑔|𝑎𝑎)2) + 𝑏𝑏(𝑚𝑚2 + 2𝑓𝑓𝑚𝑚|𝑏𝑏 + (𝑓𝑓|𝑏𝑏)2) −
(𝑔𝑔|𝑎𝑎)2) − (𝑓𝑓|𝑏𝑏)2 +  𝑐𝑐 =  0 

Or, 𝑎𝑎(𝑙𝑙 + 𝑔𝑔|𝑎𝑎)2 +  𝑏𝑏(𝑚𝑚 + 𝑓𝑓|𝑏𝑏)2  =  (𝑔𝑔|𝑎𝑎)2) + (𝑓𝑓|𝑏𝑏)2 −  𝑐𝑐 =
𝐾 (𝑠𝑎𝑎𝑚𝑚) 

Sifting the origin to (−𝑔𝑔|𝑎𝑎,−𝑓𝑓|𝑏𝑏), then this equation becomes  

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 𝐾……….(2) 

(i) If 𝐾 =  0, the equation (2) becomes 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 0 and this 
represent a pair of straight lines. These straight lines are real 
if 𝑎𝑎  and 𝑏𝑏 are of the opposite signs and these lines are 
imaginary if 𝑎𝑎  and 𝑏𝑏 are of the same sign. 

(ii) If 𝐾 ≠ 0,  the equation (2) becomes 𝑙𝑙2|𝐾|𝑎𝑎 + 𝑚𝑚2|𝐾|𝑏𝑏 = 1. 
……(3)  
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 If 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 are both positive,  the equation (3) represents 
an ellipse which becomes a circle if in addition to being 
positive 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 are both equal. 

Again the equation (3) represents a hyperbola if 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 
are of opposite signs. If 𝐾|𝑎𝑎 and 𝐾|𝑏𝑏 are both negative, the 
equation (3) is said to represent an emaginary ellipse. 

Case II:  If one of  𝑎𝑎 or 𝑏𝑏 is zero while other is not zero. If we take 
𝑎𝑎 =  0 and 𝑏𝑏 ≠ 0 the the equation (1) will be  

by²+2hxy+2gx+2fy+c = 0 

or, (𝑚𝑚 + 𝑓𝑓|𝑏𝑏)2 =  −(2𝑔𝑔|𝑏𝑏)𝑙𝑙 − 𝑐𝑐|𝑏𝑏 + (𝑓𝑓|𝑏𝑏)2 ………….(4) 

If  𝑔𝑔 =  0, then equation (4) represents two parallel straight lines, 
which are coincident if  𝑓𝑓2 − 𝑏𝑏𝑐𝑐 also is zero. 

If 𝑔𝑔 ≠ 0,  the equation (4) can be written as  

(𝑚𝑚 + 𝑓𝑓|𝑏𝑏)2 =  −(2𝑔𝑔|𝑏𝑏)[𝑙𝑙 + 𝑐𝑐|2𝑔𝑔 + 𝑓𝑓2 |2𝑏𝑏𝑔𝑔] 

Shifting the origin to (𝑓𝑓2 |2𝑏𝑏𝑔𝑔 − 𝑐𝑐|2𝑔𝑔,−𝑓𝑓|𝑏𝑏), this equation 
becomes  𝑚𝑚2 =  −(2𝑔𝑔|𝑏𝑏)𝑙𝑙 which represents a parabola. Hence in 
each case the general equation of second degree represents a conic 
section. 

(2) If the equation of the conic is  𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ), then the 
equation of the tangent at ′𝛼𝛼′ is 𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 (𝜃𝜃) 

(3) If the equation of the conic is  𝑙𝑙|𝑟𝑟 =  1 +  𝑒 𝑐𝑐𝑜𝑠 (θ−  𝜃𝜃1), then the 
equation of the tangent at ′𝛼𝛼′ is 𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) + 𝑒𝑐𝑐𝑜𝑠 (𝜃𝜃 −
𝜃𝜃1) 

Note 2: The equation of the tangent for the conic 𝑙𝑙|𝑟𝑟 =  1 +
 𝑒 𝑐𝑐𝑜𝑠 (θ −  𝛾𝛾) at the point "𝛼𝛼" is 𝑙𝑙|𝑟𝑟 =   𝑐𝑐𝑜𝑠 (θ −  𝛼𝛼) +
𝑒𝑐𝑐𝑜𝑠( 𝜃𝜃 −  𝛾𝛾). 

Note 3: The slope of the tangent (1) is (𝑒 +  𝑐𝑐𝑜𝑠𝛼𝛼)|𝑠𝑖𝑛𝑛𝛼𝛼. 

(4) The equation of the normal at the point whose vectorial angle is 𝛼𝛼 
is 𝑒𝑙𝑙𝑠𝑖𝑛𝑛𝛼𝛼| (1 + 𝑒𝑐𝑐𝑜𝑠𝛼𝛼)𝑟𝑟 =  sin(𝜃𝜃 −  𝛼𝛼) + 𝑒 𝑠𝑖𝑛𝑛𝜃𝜃 

(5) The equation of the asymptotes of the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃, are 
the straight lines 𝑙𝑙|𝑟𝑟 =  − 𝑙𝑙|𝑟𝑟 = (�(𝑒2 − 1)|𝑒) ( √𝑒2 − 1cos𝜃𝜃 ±
sin𝜃𝜃). 

(6) The polar of the point (𝑟𝑟1,𝜃𝜃1) of the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 is  

(𝑙𝑙|𝑟𝑟 − 𝑒𝑐𝑐𝑜𝑠𝜃𝜃)(𝑙𝑙|𝑟𝑟1 − 𝑒𝑐𝑐𝑜𝑠 𝜃𝜃1) = cos (𝜃𝜃 − 𝜃𝜃1) 

𝑹𝑹𝒆𝒎𝒎𝒂𝒂𝒓𝒌:1. The pole of a line is the point of the intersection of 
the tangents at its extremities. 

2. The polar of a point with respect to a given conic is the same 
as the chord of the contact of the tangents drawn from the UGMM-102/61
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point to the conic, but here the point must lie outside the 
conic.  

3. The locus of the foot of the perpendicular from the focus on 
any tangent to a conic (ellipse or hyperbola) is a circle, called 
the auxiliary circle of the conic. The required equation of the 
auxiliary circle of the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 is  

(𝑒2 − 1)𝑟𝑟2 −  2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 + 𝑙𝑙2 = 0. 

(7) The equation of the director circle is  the locus of the point (𝑟𝑟’,𝜃𝜃′) on 
the conic 𝑙𝑙|𝑟𝑟 = 1 + 𝑒𝑐𝑐𝑜𝑠𝜃𝜃 is  (1 − 𝑒2)𝑟𝑟2  + 2𝑙𝑙𝑒𝑟𝑟𝑐𝑐𝑜𝑠𝜃𝜃 −  2𝑙𝑙2 = 0  
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BLOCK INTRODUCTION 
 

Unit-3 Geometry of 3 Dimension : Strainght line and plane, direction 
cosines and direction numbers, distance of a point from a line, 
various form of the equation of a plane, plane passing through 
three given points, angle between two lines and two planes, 
distance of a point from a plane, equation of line of intersection 
of two planes, intersection of line and plane-coplanar lines 
shortest distance between two skew lines. 

Unit-4 Sphere : Equation of a sphere, Intersection of sphere and planes, 
Intersection of two sphere. Sphere passing through a circle, 
Inersection of a straight line and a sphere. Tangent planes, Polar 
planes, Plane of contact. Power of a point. Radical planes, 
Radical lines, Co-axel system of a sphere. Orthogonal system of 
sphere. 

Unit-5 Cylinder : Equation of a cylinder with given base, Cylinder with 
given Axis parallel to co-ordinate axes. Enveloping cylinders, 
Right circular cylinder. Ruled surfaces, generating lines of a 
hyperboloid of one sheet and their simple properties. 
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UNIT-3 GEOMETRY OF 3 DIMENSION 
Structure 
3.1.1. Introduction  

3.1.2. Objectives 

3.1.3. Coordinates of a point in space 

3.1.4. Direction cosines of a line 

3.1.5. Direction cosines of the lines joining two given points 

3.1.6. Projection of a line segment 

3.1.7. Plane 

3.1..8. General equation of a plane 

3.1.9. Equation of a plane in intercept form 

3.1.10. General equation of a plane through a given point and 
perpendicular to   a given line 

3.1.11. Equation of a plane through three points 

3.1.12. Angle between two planes 

3.1.13. Perpendicular distance of a point from the plane 

3.1.14. A plane through the intersection of two planes 

3.1.15. Equation of a straight line in general form 

3.1.16. Equation of a straight line in symmetrical form 

3.1.17. Equation of a straight line passing through two given 
points 

3.1.18. General equation of the straight line in symmetrical 
form 

3.1.19. Condition for parallelism of a line and a plane 

3.1.20. Condition for perpendicular of a line and a plane 

3.1.21. condition for a line to lie in a plane 

3.1.22. Equation of a plane through a given line (symmetrical 
form) 
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3.1.23. Equation of a plane through a given line and parallel to 
an another line. 

3.1.24. Foot of perpendicular and length of perpendicular from 
a point to a line. 

3.1.25. coplanar lines 

3.1.26. condition for the two lines to intersect(in symmetrical 
form) 

3.1.27. condition for the two lines to intersect(in general form) 

3.1.28. Equation of a straight line intersecting the two given (in 
symmetrical form) 

3.1.29. Perpendicular distance of a point from a line and the 
coordinates of the foot of perpendicular. 

3.1.30. To find the coordinates of the foot of the perpendicular 

3.1.31. The shortest distance between any two non intersecting 
lines 

3.1.32. Length and equation of the line of shortest distance 

3.1.1 INTRODUCTION 

In this unit, our aim is to re-acquaint with some essential elements 
of three dimensional geometry. The French philosopher mathematician 
Rene Descartes (1596--1650) was the first to realize that geometrical 
ideas can be translated into algebraic relations. The combination of 
Algebra and Plane Geometry came to be known as Coordinate Geometry 
or Analytical Geometry. A basic necessity for the study of Coordinate 
Geometry is thus, the introduction of a coordinate system and to define 
coordinates in the concerned space. We will briefly touch upon the 
distance formula and various ways of representing a plane and  straight 
line algebraically. Next, we will talk about symmetry with respect to 
origin or a coordinate axis. Finally, we shall consider some ways in which 
a coordinate system can be transformed. This collection of topics may 
seem random to us . 

We  have  read  about  p l a n e s  a n d  lines,  angles  and  
rectilinear  figures  in  geometry.  Recall  that  a  line  is the  join  
of  two  points  in a  plane  continuing  endlessly in both 
directions . We  have  also seen  that  graphs  of  linear  
equations, w hich  came  out  to  be  straight  lines.  Interestingly 
, the re are problems  o f  the  above  is  finding  the  equations  of  
straight  lines ,under  different  c o nditions in  a  
plane. The Analytical Geometry, more  commonly  called Coordinate  
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Geomatry,  comes  to  our  help  in  this  regard.  

In this  unit we shall  find  equations of  a  straight  Line s  a n d  
p l a n e s  in  different  forms  a nd  try  to  solve  t h e  problem 
based  on  those. 

3.1.2 OBJECTIVES 

After studying this unit you should be able to find: 

1. Direction ratios and direction cosines of a line 

2. Equation of a plane in different forms 

3. Angle between two planes and condition for parallelism and 
perpendicular 

4. Equation of a straight line in general form\ symmetrical form 

5. Condition for parallelism\perpendicular of a line and a plane. 

6. Equation of a plane through a given line (symmetrical 
form\general form) 7. Foot of perpendicular and length of 
perpendicular from a point to a line. 

8. coplanar lines 

9. condition for the two lines to intersect(in symmetrical form\general 
form). 

10. Equation of a straight line intersecting the two given (in 
symmetrical form). 

11. Perpendicular distance of a point from a line and the coordinates of 
the foot of perpendicular. 

12. To find the coordinates of the foot of the perpendicular  

13. The shortest distance between any two non intersecting lines. 

14. Length and equation of the line of shortest distance. 

15. The equation of the shortest distance. 

3.1.3 COORDINATES OF A POINT IN SPACE 

To fix the position of a point in space we required three concurrent 
lines which are not coplanar. Let 𝑋′𝑂𝑂𝑋,𝑌′𝑂𝑂𝑌 𝑎𝑎𝑛𝑛𝑑𝑑  𝑍′𝑂𝑂𝑍 be such straight 
lines whose positive directions are 𝑋′𝑂𝑂𝑋,𝑌′𝑂𝑂 𝑎𝑎𝑛𝑛𝑑𝑑 𝑍′𝑂𝑂𝑍. Let 𝑃𝑃 be a point 
in space and let planes parallel to the planes 𝑌𝑂𝑂𝑍,𝑍𝑂𝑂𝑋 𝑎𝑎𝑛𝑛𝑑𝑑 𝑋𝑂𝑂𝑌 be 
drawn through 𝑃𝑃 to meet the lines 𝑋′𝑋,𝑌′𝑌 𝑎𝑎𝑛𝑛𝑑𝑑 𝑍′𝑍in 𝐴𝐴,𝐵𝐵 𝑎𝑎𝑛𝑛𝑑𝑑 𝐶𝐶, then 
position of 𝑃𝑃 is Known when the segments 𝑂𝑂𝐴𝐴,𝑂𝑂𝐵𝐵,𝑂𝑂𝐶𝐶 are given in 
magnitude and sign. If 𝑂𝑂𝐴𝐴 = 𝑙𝑙,𝑂𝑂𝐵𝐵 = 𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 𝑂𝑂𝐶𝐶 = 𝑛𝑛 we say that (𝑙𝑙,𝑚𝑚, 𝑛𝑛) 
are the Cartesian coordinates of 𝑃𝑃.  UGMM-102/69

D
G

B
-0

21



 
 

                                     

                                           Z  

 

  

 C  

 

 

   L 

 

 

 

 

 
 
 
 

                                                                                                                
                                                                                                   B        Y 
               

                             A                                                                                     N 

 

            A 

 

     X 

 

  The lines𝑋′𝑂𝑂𝑋,𝑌′𝑂𝑂𝑌 𝑎𝑎𝑛𝑛𝑑𝑑  𝑍′𝑂𝑂𝑍 are called the coordinate axes and the 
planes 𝑌𝑂𝑂𝑍,𝑍𝑂𝑂𝑋 𝑎𝑎𝑛𝑛𝑑𝑑 𝑋𝑂𝑂𝑌 are coordinate planes. The point 𝑂𝑂 is called 
the origin. 

3.1.4 DIRECTION COSINES OF A LINE 

Let 𝐴𝐴𝐵𝐵 be a given straight line. We draw a line through 𝑂𝑂 parallel to 𝐴𝐴𝐵𝐵. 
The angles which AB makes with the coordinate axes are the same as 
those made by the parallel straight line. Denoting these angles by 
𝛼𝛼,𝛽𝛽 𝑎𝑎𝑛𝑛𝑑𝑑 𝛾𝛾 we say that 𝑐𝑐𝑜𝑠𝛼𝛼, 𝑐𝑐𝑜𝑠𝛽𝛽 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝑜𝑠𝛾𝛾 are the direction cosines of 
𝐴𝐴𝐵𝐵. The direction cosines of a line are usually denoted by the letters 
𝑙𝑙,𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛. 
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Note: Quantities proportional to direction cosines of a given line are called 
direction ratios. 

Theorem: If direction cosines of a given line are𝑙𝑙,𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 then 𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 = 1. 

Proof: Let𝑙𝑙,𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 be the direction cosines of a given line. The 
direction cosines of 𝑂𝑂𝑃𝑃 which is drawn parallel to the given line are 
𝑙𝑙,𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛. We draw 𝑃𝑃𝐴𝐴 perpendicular to 𝑂𝑂𝑋. If (𝑙𝑙,𝑚𝑚, 𝑛𝑛) be the 
coordinates of 𝑃𝑃, then 𝑂𝑂𝐴𝐴 =  𝑙𝑙. 

Let 𝑂𝑂𝑃𝑃 =  𝑟𝑟, and the angle 𝑃𝑃𝑂𝑂𝐴𝐴 be 𝛼𝛼, then from the right angled triangle 
𝐴𝐴𝑂𝑂𝑃𝑃, 

𝐴𝐴𝑂𝑂|𝑂𝑂𝑃𝑃 = 𝑐𝑐𝑜𝑠𝛼𝛼 that is 𝑙𝑙|𝑟𝑟 =  𝑙𝑙, or, 𝑙𝑙 =  𝑙𝑙𝑟𝑟. 

Similarly, 𝑚𝑚 =  𝑚𝑚𝑟𝑟, and 𝑛𝑛 =  𝑛𝑛𝑟𝑟.  

Now we squaring and adding them, 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =  𝑟𝑟2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2).  

Since, 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =  𝑟𝑟2. 

 Therefore, 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 1. 

3.1.5 DIRECTION COSINES OF THE LINES JOINING 
TWO GIVEN POINTS 

Let 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) and 𝑄(𝑙𝑙2,𝑚𝑚2, 𝑛𝑛2) be two points in the space. Let 
𝑃𝑃𝑄 =  𝑟𝑟, then 𝑟𝑟2 = (𝑙𝑙2 − 𝑙𝑙1)2 + (𝑚𝑚2 − 𝑚𝑚1)2 +   (𝑛𝑛2 − 𝑛𝑛1)2. 

Transferring the origin to 𝑃𝑃, the axes remaining parallel to original axes, 
the coordinates of 𝑄 are (𝑙𝑙2 −  𝑙𝑙1, 𝑚𝑚2 −  𝑚𝑚1, 𝑛𝑛2 −  𝑛𝑛1). If 𝑙𝑙,𝑚𝑚,𝑛𝑛 be the 
direction cosines of  𝑃𝑃𝑄, we have from the preceding, (𝑙𝑙2 −  𝑙𝑙1|𝑟𝑟 =
𝑙𝑙, (𝑚𝑚2 −  𝑚𝑚1)|𝑟𝑟 =  𝑚𝑚,𝑎𝑎𝑛𝑛𝑑𝑑 (𝑛𝑛2 −  𝑛𝑛1)|𝑟𝑟 =  𝑛𝑛. The direction cosines of the 
given line are thus proportional to the quantities 𝑙𝑙2 −  𝑙𝑙1, 𝑚𝑚2 −  𝑚𝑚1, 𝑛𝑛2 −
 𝑛𝑛1, their actual values being 

(𝑙𝑙2 −  𝑙𝑙1)|𝑟𝑟, (𝑚𝑚2 −  𝑚𝑚1)|𝑟𝑟 𝑎𝑎𝑛𝑛𝑑𝑑 (𝑛𝑛2 −  𝑛𝑛1)|𝑟𝑟. 

Example1: Show that the points (1, 2, 3), (2, 1, 3) and (3, 1, 2) are the 
vertices of an equilateral triangle. 

Solution: Let 𝐴𝐴(1, 2, 3),𝐵𝐵(2, 1, 3) and 𝐶𝐶(3, 1, 2) be the given points. 
Therefore, the distances are  

𝐴𝐴𝐵𝐵 = �(2 − 1)2 + (3 − 2)2 + (1 − 3)2 = √6 

 
𝐵𝐵𝐶𝐶 = �(3 − 2)2 + (1 − 3)2 + (2 − 1)2 = √6 
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    And      
𝐶𝐶𝐴𝐴 = �(3 − 1)2 + (2 − 3)2 + (1 − 2)2 = √6 

We can find that 𝐴𝐴𝐵𝐵 =  𝐵𝐵𝐶𝐶 =  𝐶𝐶𝐴𝐴. Hence, the triangle 𝐴𝐴𝐵𝐵𝐶𝐶 is equilateral.  

Example2: Find the ratio in which 𝐴𝐴(−2, 4, 5) and 𝐵𝐵(3,−5, 4) is divided 
by 𝑌𝑍 − plane. 

Solution: Suppose that r:1 be the ratio in which YZ- plane divides the line 
joining 𝐴𝐴(−2, 4, 5) and 𝐵𝐵(3,−5, 4), the point of division 

𝑃𝑃 =  [(3𝑟𝑟 − 2)|𝑟𝑟 + 1, (−5𝑟𝑟 + 4)|𝑟𝑟 + 1, (4𝑟𝑟 + 5)|𝑟𝑟 + 1], 

 But the point 𝑃𝑃 lies on 𝑌𝑍- plane. Therefore, the 𝑋 − co-ordinate  
(3𝑟𝑟 − 2)|𝑟𝑟 + 1 = 0. that is (3𝑟𝑟 − 2) = 0, therefore, 𝑟𝑟 =  2|3. 

Therefore, the ratio is 2: 3 internally.  

Example3: Find the direction cosines of the line joining the points 
(1, 2,−3) 𝑎𝑎𝑛𝑛𝑑𝑑 (−2, 3, 1).  

Solution: The directional cosines are proportional to −2 − 1, 3 − 2, 1 −
(−3) that is −3, 1, 4. The actual direction cosines of the given line are 

 −3|√9 + 1 + 16, 1|√9 + 1 + 16, 4|√9 + 1 + 16, 

That is,  −3|√26,  1|√26, 4|√26 . 

3.1.6 PROJECTION OF A LINE SEGMENT 

The projection of a given line 𝐴𝐴𝐵𝐵 on an another line 𝐶𝐶𝐷𝐷 is the segment 
𝐴𝐴′𝐵𝐵′ of 𝐶𝐶𝐷𝐷 where 𝐴𝐴′ and 𝐵𝐵′ are projections of 𝐴𝐴 and 𝐵𝐵 on 𝐶𝐶𝐷𝐷.  

Note : 

1. To find the projection of 𝐴𝐴𝐵𝐵 on  , we draw planes through points 𝐴𝐴 
and 𝐵𝐵 which are perpendicular to 𝐶𝐶𝐷𝐷 intersecting 𝐶𝐶𝐷𝐷 in 𝐴𝐴′and 𝐵𝐵′. 
If 𝜃𝜃 is the angle between 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷, the length 𝐴𝐴′𝐵𝐵′ of the 
projection is obviously 𝐴𝐴𝐵𝐵𝑐𝑐𝑜𝑠𝜃𝜃. 

2. In determine the projection of one line on another line we must be 
taken regarding the sense of rotation. 

3. For an actual angle of the projection is positive or negative 
according as the rotation is counter- clockwise or clockwise. 

Angle between two lines: Suppose that 𝑙𝑙,𝑚𝑚,𝑛𝑛,𝑎𝑎𝑛𝑛𝑑𝑑 𝑙𝑙′,𝑚𝑚′,𝑛𝑛′ be the 
direction cosines of two lines 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷. We want to find the 
angle between 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷 in terms of their direction cosines. 
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We draw 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 parallel to 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷 respectively. Suppose 
angle between 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 is 𝜃𝜃 which is same as the angle between 
𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷.The direction cosines of 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 are 
𝑙𝑙,𝑚𝑚, 𝑛𝑛 𝑎𝑎𝑛𝑛𝑑𝑑 𝑙𝑙′,𝑚𝑚′,𝑛𝑛′ respectively. 

Let the coordinates of 𝑃𝑃 and 𝑄 be (𝑙𝑙,𝑚𝑚, 𝑛𝑛) and (𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′). If 
𝑂𝑂𝑄 =  𝑟𝑟′, the projection of OQ on OP is 𝑟𝑟′𝑐𝑐𝑜𝑠𝜃𝜃 which is equal to 
𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′. Therefore, 

𝑟𝑟′𝑐𝑐𝑜𝑠𝜃𝜃 = 𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′  

or,  𝑐𝑐𝑜𝑠𝜃𝜃 = 𝑙𝑙(𝑙𝑙′|𝑟𝑟′) +  𝑚𝑚(𝑚𝑚′|𝑟𝑟′) + 𝑛𝑛(𝑛𝑛′|𝑟𝑟′) 

             = 𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′.  

3.1.7 PLANE 

A plane is a surface such that every straight line joining any two points on 
it lies wholly on it  

Normal to a plane: A straight line which is perpendicular to every line 
lying in a plane is called a normal to that plane. It is also called a line 
perpendicular to that plane. All the normal to a plane are parallel lines.  

Equation of a plane in general form: Equation of plane in normal form 
is 𝑙𝑙𝑐𝑐𝑜𝑠𝛼𝛼 + 𝑚𝑚𝑐𝑐𝑜𝑠𝛽𝛽 + 𝑛𝑛𝑐𝑐𝑜𝑠𝛾𝛾 = 𝑝𝑝 

Hence, if 𝑙𝑙,𝑚𝑚,𝑛𝑛 be the direction cosines of the normal to a plane directed 
from the origin to the plane and 𝑝𝑝 be the length of the perpendicular from 
the originto the plane, then the equation of the plane is 𝒍𝒍𝒂𝒂 +  𝒎𝒎𝒃𝒃 +
 𝒏𝒏𝒄𝒄 =  𝒑. 

This is known as the equation of a plane in normal form. 

3.1.8 GENERAL EQUATION OF A PLANE 

The general equation of a plane is 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0. 
That is every equation 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0 of first degree in 𝑙𝑙,𝑚𝑚, 𝑛𝑛 
always represents a plane and the coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 of 𝑙𝑙,𝑚𝑚, 𝑛𝑛 in this 
equation are direction ratios of normal to this plane. 

The number of arbitrary constants in the general equation of the plane 
𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0 or, 

 𝑎𝑎|𝑑𝑑𝑙𝑙 +  𝑏𝑏|𝑑𝑑𝑚𝑚 +  𝑐𝑐|𝑑𝑑𝑛𝑛 =  − 1. This equation show that there are three 
arbitrary constants namely 𝑎𝑎|𝑑𝑑, 𝑏𝑏|𝑑𝑑, 𝑐𝑐|𝑑𝑑 in the equation of a plane. 
Therefore, the equation of a plane can be determined to satisfy the three 
conditions, each condition giving us the value of a constant. 

𝑁𝑜𝑡𝑒: The equation of any plane passing through the origin is 

 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =  0 UGMM-102/73
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To reduce the general equation of the plane in normal form: Suppose that 
the general equation of a plane is  

𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0 … … (1) 

If 𝑙𝑙,𝑚𝑚,𝑛𝑛 are the direction cosines of the normal to the plane, then the 
equation of the plane in the normal form is 

𝑙𝑙𝑙𝑙 +  𝑚𝑚𝑚𝑚 +  𝑛𝑛𝑛𝑛 =  𝑝𝑝… … … . (2) 

If (1) and (2) represent the same plane, then  

𝑙𝑙|𝑎𝑎 =  𝑚𝑚|𝑏𝑏 =  𝑛𝑛|𝑐𝑐 =  𝑝𝑝| − 𝑑𝑑 =  ±�(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

= ±1 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

Where the same sign either positive  or negative is to be chosen 
throughout. 

𝑙𝑙 = ±𝑎𝑎 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2), 𝑚𝑚 = ±𝑏𝑏 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

 𝑛𝑛 = ±𝑐𝑐 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2), 𝑝𝑝 = ±𝑑𝑑 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

 

Substituting these  values in equation (2), the normal form of the plane (1) 
is given by 

±𝑎𝑎𝑙𝑙 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) ± 𝑏𝑏𝑚𝑚 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)  ±𝑐𝑐𝑛𝑛 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)  
= ±𝑑𝑑 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)…….(3) 

The  sign of the equation (3) is so chosen that 𝑝𝑝 is ±𝑑𝑑 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 
is always positive. 

3.1.9 EQUATION OF A PLANE IN INTERCEPT FORM 

 
 

 C 
 
 
 
                                                     O         B  
                              
 
                                      B 
 

Let 𝑂𝑂 be the origin and let the plane meet the coordinate axes at the points 
𝐴𝐴,𝐵𝐵,𝐶𝐶 respectively such that 𝑂𝑂𝐴𝐴 =  𝑎𝑎,𝑂𝑂𝐵𝐵 =  𝑏𝑏 and 𝑂𝑂𝐶𝐶 =  𝑐𝑐 with proper 
signs.  Therefore the coordinates of the points 𝐴𝐴,𝐵𝐵,𝐶𝐶 are 
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𝐴𝐴(𝑎𝑎, 0, 0),𝐵𝐵(0, 𝑏𝑏, 0) and 𝐶𝐶(0, 0, 𝑐𝑐). Let the equation of the plane be  
𝐴𝐴𝑙𝑙 +  𝐵𝐵𝑚𝑚 +  𝐶𝐶𝑛𝑛 +  𝐷𝐷 =  0 … … (1) 

𝑊ℎ𝑒𝑟𝑟𝑒 𝐷𝐷 ≠ 0  because the plane does not pass through the origin 
(0, 0, 0). Since the plane (1) passes through the points A(a, 0, 0), B(0, b, 
0) and C(0, 0, c) therefore, 𝐴𝐴 =  −𝐷𝐷|𝑎𝑎,𝐵𝐵 =  −𝐷𝐷|𝑏𝑏 and 𝐶𝐶 =  −𝐷𝐷|𝑐𝑐. 
Putting the values of 𝐴𝐴,𝐵𝐵,𝐶𝐶 in (1), then the required equation of the plane 
is 

                    (−𝐷𝐷|𝑎𝑎) 𝑙𝑙 + (−𝐷𝐷|𝑏𝑏)𝑚𝑚 + (−𝐷𝐷|𝑐𝑐)𝑛𝑛 +  𝐷𝐷 =  0 
(−1|𝑎𝑎) 𝑙𝑙 + (−1|𝑏𝑏)𝑚𝑚 + (−1|𝑐𝑐) 𝑛𝑛 +  1 =  0 

𝑙𝑙|𝑎𝑎  +  𝑚𝑚|𝑏𝑏 +  𝑛𝑛|𝑐𝑐 =  1 

This is a equation of a plane in intercept form. 

Note: The equation of 𝑙𝑙𝑚𝑚 − plane is 𝑛𝑛 =  0. The equation of 𝑙𝑙𝑛𝑛 − plane is 
𝑚𝑚 =  0. The equation of 𝑚𝑚𝑛𝑛 − plane is 𝑙𝑙 =  0. 

3.1.10 GENERAL EQUATION OF A PLANE THROUGH 
A GIVEN POINT AND PERPENDICULAR TO A 
GIVEN LINE 

Suppose the coordinates of a point 𝑃𝑃(𝑙𝑙, 𝑚𝑚, 𝑛𝑛) on the plane. If the 
plane passes through the point 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1 ), the line AP whose direction 
ratios are 

 𝑙𝑙 −  𝑙𝑙1,𝑚𝑚 –  𝑚𝑚1, 𝑛𝑛 −  𝑛𝑛1 lies in the plane. The direction ratios are 

 𝑙𝑙 −  𝑙𝑙1,𝑚𝑚 –  𝑚𝑚1, 𝑛𝑛 −  𝑛𝑛1 normal to the plane whose direction ratios are a, 
b, c. So,  𝑎𝑎(𝑙𝑙 −  𝑙𝑙1) +  𝑏𝑏� 𝑚𝑚 – 𝑚𝑚1� + 𝑐𝑐( 𝑛𝑛 −  𝑛𝑛1) =  0.which is the 
required equation of the plane. 

𝑹𝑹𝒆𝒎𝒎𝒂𝒂𝒓𝒌: The equation of any plane passing through the origin is  

𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 = 0, in which the coefficients of 𝑙𝑙,𝑚𝑚, 𝑛𝑛 i. e. 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are 
direction ratios of the normal to the plane.  

3.1.11 EQUATION OF A PLANE THROUGH THREE 
POINTS 

Suppose the general equation of the plane is 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +
 𝑑𝑑 =  0………(1) 

Since it passes through three points 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1), 

 𝐵𝐵(𝑙𝑙2,𝑚𝑚2, 𝑛𝑛2) 𝑎𝑎𝑛𝑛𝑑𝑑 𝐶𝐶(𝒂𝒂𝟑𝟑,𝒃𝒃𝟑𝟑, 𝒄𝒄𝟑𝟑). So, we have 

𝑎𝑎𝑙𝑙1 + 𝑏𝑏𝑚𝑚1 + 𝑐𝑐𝑛𝑛1 + 𝑑𝑑 = 0………..(2) 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 𝑑𝑑 = 0………..(3) 
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𝑎𝑎𝑙𝑙3 + 𝑏𝑏𝑚𝑚3 + 𝑐𝑐𝑛𝑛3 + 𝑑𝑑 = 0………. (4) 

𝐸𝑙𝑙𝑖𝑚𝑚𝑖𝑛𝑛𝑎𝑎𝑡𝑖𝑛𝑛𝑔𝑔 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and d from the above equations (1), (2), (3) and (4) 
the equation of the plane is given by 

�   
𝑙𝑙 𝑚𝑚    𝑛𝑛 1
𝑙𝑙1 𝑚𝑚1   𝑛𝑛1 1
𝑙𝑙2 𝑚𝑚2   𝑛𝑛2 1

� =  0 

    𝑙𝑙3    𝑚𝑚3    𝑛𝑛3    1 

Note : 

1. The equation 𝑚𝑚𝑛𝑛 − plane is  𝑙𝑙 =  0. 

𝟐𝟐. The equation of 𝑙𝑙𝑛𝑛 − plane is  𝑚𝑚 =  0. 

𝟑𝟑. The equation of   𝑛𝑛 − coordinate of which each point lying on the 
𝑙𝑙𝑚𝑚 − plane is  𝑛𝑛 =  0. 

𝟒. The equation of the plane parallel to the 𝑚𝑚𝑛𝑛 − plane and at a 
distance ‘𝑎𝑎’ from it. The 𝑙𝑙 − coordinate of each point on this plane 
is equal to ‘𝑎𝑎’. Hence the equation of the required plane is given by 
𝑙𝑙 =  𝑎𝑎 

5. The equation of the plane parallel to the 𝑙𝑙𝑛𝑛 − plane and at a 
distance ‘𝑏𝑏’ from it. The 𝑚𝑚 − coordinate of each point on this plane 
is equal to ‘𝑏𝑏’. Hence the equation of the required plane is given by 
𝑚𝑚 =  𝑏𝑏. 

6. The equation of the plane parallel to the 𝑙𝑙𝑚𝑚 − plane and at a 
distance ‘𝑐𝑐’ from it. The 𝑛𝑛 − coordinate of each point on this plane 
is equal to ‘𝑐𝑐’. Hence the equation of the required plane is given by 
𝑛𝑛 =  𝑐𝑐 

7. Equation of the plane parallel 𝑙𝑙 − axis will be 𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =
 0. 

8. Equation of the plane parallel 𝑚𝑚 − axis will be 𝑎𝑎𝑙𝑙 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =
 0. 

9. Equation of the plane parallel 𝑛𝑛 − axis will be 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 +  𝑑𝑑 =  0. 

3.1.12 ANGLE BETWEEN TWO PLANES 

The angle between two planes is defined as the angle between their 
normals drawn from any point to the planes. Suppose that equations of 
two planes be  

𝑎𝑎1𝑙𝑙 +  𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 +  𝑑𝑑1  =  0……….(1) 

𝑎𝑎2𝑙𝑙 +  𝑏𝑏2𝑚𝑚 +  𝑐𝑐2𝑛𝑛 +  𝑑𝑑2  =  0……….(2) 
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𝑇𝑇ℎ𝑒 𝑑𝑑𝑖𝑟𝑟𝑒𝑐𝑐𝑡𝑖𝑜𝑛𝑛 𝑟𝑟𝑎𝑎𝑡𝑖𝑜𝑠 𝑜𝑓𝑓 the normal to the plane (1) are 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1and 
𝑡ℎ𝑒 𝑑𝑑𝑖𝑟𝑟𝑒𝑐𝑐𝑡𝑖𝑜𝑛𝑛 𝑟𝑟𝑎𝑎𝑡𝑖𝑜𝑠 𝑜𝑓𝑓 the normal to the plane (2) are 𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2. If 𝜃𝜃 is 
the angle between the planes (1) and (2) then 𝜃𝜃 be the angle between the 
normals whose direction ratios are 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1 and 𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2. 

𝑐𝑐𝑜𝑠𝜃𝜃 = ( 𝑎𝑎1𝑎𝑎2 + 𝑏𝑏1𝑏𝑏2 + 𝑐𝑐1𝑐𝑐2)|�𝑎𝑎12 + 𝑏𝑏1
2 + 𝑐𝑐12  �𝑎𝑎22 + 𝑏𝑏2

2 + 𝑐𝑐22 

For the acute angle between the two planes, 𝑐𝑐𝑜𝑠𝜃𝜃 is positive and for the 
obtuse angle it is negative. The numerical value of 𝑐𝑐𝑜𝑠𝜃𝜃 in both these 
cases is the same because, cos(𝜋 −  𝜃𝜃) =  𝑐𝑐𝑜𝑠𝜃𝜃 . 

Note: 

1. If the two planes are perpendicular, means their normals are 
perpendicular then 

            𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′ = 0.  

In the case of direction ratios of the planes,  

( 𝑎𝑎1𝑎𝑎2 + 𝑏𝑏1𝑏𝑏2 + 𝑐𝑐1𝑐𝑐2) = 0. 

2. If the two planes are parallel means their normals are parallel   then  
𝑙𝑙|𝑙𝑙′ =  𝑚𝑚|𝑚𝑚′ =  𝑛𝑛|𝑛𝑛′.  

In the case of direction ratios of the planes, 

 ( 𝑎𝑎1|𝑎𝑎2 = 𝑏𝑏1|𝑏𝑏2 = 𝑐𝑐1|𝑐𝑐2) 

Remark: The equation of any plane parallel to the plane 

 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0 is 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝜆𝜆 = 0 

3.1.13 PERPENDICULAR DISTANCE OF A POINT 
FROM THE PLANE 

Suppose the equation of a plane is 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 =
0………(1). 

Suppose there is a point 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1). To find the length of the 
perpendicular from the point 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) to the plane (1) is  

±(𝑎𝑎𝑙𝑙1 + 𝑏𝑏𝑚𝑚1 + 𝑐𝑐𝑛𝑛1 + 𝑑𝑑)| �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

Since the perpendicular distance of a point from the plane is always 
positive, therefore a positive or negative sign is to be attached before the 
radical according as 𝑎𝑎𝑙𝑙1 + 𝑏𝑏𝑚𝑚1 + 𝑐𝑐𝑛𝑛1 + 𝑑𝑑 is positive or negative i. e. 
according as the point 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) lies on the same side or on the 
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opposite side of the equation of the plane and thus 𝑝𝑝 = |(𝑎𝑎𝑙𝑙1 + 𝑏𝑏𝑚𝑚1 +
𝑐𝑐𝑛𝑛1 + 𝑑𝑑)|| �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

Note1: If the equation of the plane is in the normal form 

 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 − 𝑝𝑝 = 0, the length 𝑝𝑝1 of the perpendicular from the point  
𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) to the plane is given by  

𝑝𝑝1 = 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 − 𝑝𝑝, 

 For, in the case of √𝑙𝑙 2 +  𝑚𝑚2  +  𝑛𝑛2  = 1  

Note2:  For the distance between two parallel planes we find the 
perpendicular lengths of each planes from the origin and retain their signs. 
The algebraic difference of these two perpendicular distances is the 
distance between the given parallel planes. But while applying this method 
we should be careful that the coefficients of x in the two equations of the 
planes are of the same sign.  

Example4: Find the perpendicular distance from the origin to the plane 
2𝑙𝑙 +  𝑚𝑚 +  2𝑛𝑛 =  3. Also find the direction cosines of the normal to the 
plane. 

Solution : The equation of the plane is  2𝑙𝑙 +  𝑚𝑚 +  2𝑛𝑛 =  3. 

To reduce it into normal form by dividing it by √4 +  1 +  4   = √ 9 =

 3, we get 2 1 2 1
3 3 3

x y z+ + =  Hence the perpendicular distance of the plane 

from the origin is 1and direction cosines of the normal to the plane are 
2 1 2, ,
3 3 3

. 

Example5 : The coordinates of a point 𝐴𝐴 are (2, 3,−5). Determine the 
equation to the plane through 𝐴𝐴 at right angles to the line 𝑂𝑂𝐴𝐴, where 𝑂𝑂 is 
the origin. 

Solution : Here the plane passes through the point 𝐴𝐴(2, 3,−5)𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑡 is 
perpendicular to the line OA. i.e. the line OA  is normal to the plane. 

The direction ratios of the line 𝑂𝑂𝐴𝐴 is 2 − 0, 3 − 0,−5 − 0 𝑖. 𝑒. 2, 3,−5  

The plane passes through the point (2,3,−5) so the equation of the plane 
is 2(𝑙𝑙 −  2)  +  3(𝑚𝑚 −  3)  − 5(𝑛𝑛 +  5)  =  0 

or  2𝑙𝑙 +  3𝑚𝑚 –  5𝑛𝑛 −  38 =  0. 

Example6 : Find the intercepts made on the coordinate axes by the plane 
𝑙𝑙 –  3𝑚𝑚 +  2𝑛𝑛 =  9 

UGMM-102/78

D
G

B
-0

21



Solution: The equation of the  given plane is 𝑙𝑙 –  3𝑚𝑚 +  2𝑛𝑛 =  9 we 
divide each term by 9 on both sides we have  

𝑙𝑙|9 +  𝑚𝑚|  − 3 +  𝑛𝑛| (−9|2)  =  1. So, the intercept on x-axis is 9, 

the intercept on y-axis is −3 and the intercept on z-axis is −9|2. 

Example7: Find the equation of a plane passing through three points 
𝐴𝐴(0,−1,−1),𝐵𝐵(4, 5, 1) and 𝐶𝐶(3, 9, 4). 

Solution: Equation of a plane passing through A is 

 𝑎𝑎(𝑙𝑙 −  0)  +  𝑏𝑏(𝑚𝑚 +  1)  +  𝑐𝑐(𝑛𝑛 +  1)  =  0 

ax + 𝑏𝑏(𝑚𝑚 +  1)  +  𝑐𝑐(𝑛𝑛 +  1)  =  0………(1) 

Also the plane (1) passes through the points 𝐵𝐵(4, 5, 1) and 𝐶𝐶(3, 9, 4), then 
we have 

 

𝑎𝑎4 + 𝑏𝑏(5 +  1)  +  𝑐𝑐(1 +  1)  =  0 

4𝑎𝑎 +  6𝑏𝑏 +  2𝑐𝑐 =  0……….(2) 

𝑎𝑎3 + 𝑏𝑏(9 +  1) +  𝑐𝑐(4 +  1) =  0 

3𝑎𝑎 +  10𝑏𝑏 +  5𝑐𝑐 =  0 … … … … … … (3) 

Now solving the equation (2)and (3), we get 

𝑎𝑎|(30 − 20) = 𝑏𝑏 |(6 − 20) =  𝑐𝑐 | (40 − 18) =  𝜆𝜆 

= 𝑎𝑎 =  10𝜆𝜆, 𝑏𝑏 =  −14𝜆𝜆 , 𝑐𝑐 =  22𝜆𝜆 

Putting the values of a, b, c in equation of the plane the we have  

10𝜆𝜆 x + (−14𝜆𝜆) (𝑚𝑚 +  1)  + 22𝜆𝜆(𝑛𝑛 +  1)  =  0 

10𝑙𝑙 –  14(𝑚𝑚 + 1)  +  22(𝑛𝑛 + 1)  =  0 

5𝑙𝑙 − 7𝑚𝑚 +  11𝑛𝑛 +  4 =  0. 

𝑬xample8: Find the angle between the planes 2𝑙𝑙 –  𝑚𝑚 +  𝑛𝑛 =  7 and  
𝑙𝑙 +  𝑚𝑚 +  2𝑛𝑛 =  9.  

𝑺olution: Suppose the angle between the planes be 𝜃𝜃 means 𝜃𝜃 be the 
angle between their  normals whose direction ratios are 2,−1, 1 and 1, 1, 2  

𝒄𝒄𝒐𝒔𝜃𝜃 = [(2)(1) +  (−1)(1) +  (1)(2)]| �(22 + (−1)2 + 12) 
�(12 + (1)2 +  22) =  3� √6√6  = 3�6 = 1|2. UGMM-102/79
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Or, 𝜃𝜃 =  𝜋|3.  

Hence, the acute angle between the given planes is 𝜃𝜃 =  𝜋|3. 

3.14 A PLANE THROUGH THE 
INTERSECTION OF TWO PLANES 

Suppose that equation of two planes be 

𝑃𝑃 =  𝑎𝑎1𝑙𝑙 +  𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 +  𝑑𝑑1  =  0……….(1) 

𝑄 =  𝑎𝑎2𝑙𝑙 +  𝑏𝑏2𝑚𝑚 +  𝑐𝑐2𝑛𝑛 +  𝑑𝑑2  =  0……….(2) 

Then  𝑃𝑃 +  𝜆𝜆𝑄 = 0, represents  a plane where 𝜆𝜆 is a parameter. 

𝑃𝑃 +  𝜆𝜆𝑄 = 0 means  

 𝑎𝑎1𝑙𝑙 +  𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 +  𝑑𝑑1+ 𝜆𝜆( 𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 +  𝑐𝑐2𝑛𝑛 +  𝑑𝑑2 ) =  0 

=  (𝑎𝑎1 + 𝜆𝜆 𝑎𝑎2)𝑙𝑙 +   (𝑏𝑏1 +  𝜆𝜆 𝑏𝑏2)𝑚𝑚 +  (𝑐𝑐1 +  𝜆𝜆 𝑐𝑐2)𝑛𝑛 +  

 (𝑑𝑑1 +  𝜆𝜆 𝑑𝑑2) = 0…………(3) 

Equation (3) is of first degree in 𝑙𝑙,𝑚𝑚, 𝑛𝑛 so, it is an equation of a plane. 

Remark 1: The axis of x is the line of intersection of the planes 𝑚𝑚 =  0 
and 𝑛𝑛 =  0. So, the equation of any plane passing through x-axis is 
𝑚𝑚 +  𝜆𝜆 𝑛𝑛 =  0 where 𝜆𝜆 is a parameter, similarly any plane passing through 
y-axis is 𝑛𝑛 +  𝜆𝜆 𝑙𝑙 =  0 and any plane passing through z-axis is 𝑚𝑚 +
 𝜆𝜆 𝑙𝑙 =  0 respectively. 

Remark 2: A line is parallel to the plane: If the given line (𝑙𝑙 − 𝛼𝛼 )|𝑙𝑙 =
(𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛 is parallel to the plane 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =
 0 , then the line is parallel to the normal to the plane. So, we have 
𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =  0  

Remark 3: A line is perpendicular to the plane: If the given line 
(𝑙𝑙 − 𝛼𝛼 )|𝑙𝑙 = (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛 is perpendicular to the plane 
𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0 , then the line is parallel to the normal to the 
plane. So, we have 𝑎𝑎|𝑙𝑙 =  𝑏𝑏|𝑚𝑚 =  𝑐𝑐|𝑛𝑛  

Example 9: Find the equation of the plane through the line of intersection 
of the planes 𝑙𝑙 +  2𝑚𝑚 +  3𝑛𝑛 +  5 =  0, 𝑙𝑙 –  3𝑚𝑚 +  𝑛𝑛 +  6 =  0 and 
passes through the origin. 

Solution : The equation of the plane through the line of intersection of the 
planes (𝑙𝑙 +  2𝑚𝑚 +  3𝑛𝑛 +  5) +  𝜆𝜆(𝑙𝑙 –  3𝑚𝑚 +  𝑛𝑛 +  6)  =  0. 

Since it passes through the origin (0, 0, 0) then we get 5 +  6 𝜆𝜆 =
0 𝑖. 𝑒. 𝜆𝜆 =  −5|6. Therefore the required equation of the plane is  

(𝑙𝑙 +  2𝑚𝑚 +  3𝑛𝑛 +  5) − 5|6(𝑙𝑙 –  3𝑚𝑚 +  𝑛𝑛 +  6)  =  0. 

6(𝑙𝑙 +  2𝑚𝑚 +  3𝑛𝑛 +  5) − 5(𝑙𝑙 –  3𝑚𝑚 +  𝑛𝑛 +  6)  =  0 UGMM-102/80
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𝑙𝑙 +  27𝑚𝑚 +  13𝑛𝑛 =  0.  

 

𝑪𝑪𝒉𝒆𝒄𝒄𝒌 𝒃𝒃𝒐𝒖𝒖𝒓 𝒑𝒓𝒐𝒈𝒓𝒆𝒔𝒔 
1. Reduce the equation of the plane 𝑙𝑙 +  2𝑚𝑚 –  2𝑛𝑛 –  9 =  0 to the 

normal form and hence to find the length of the perpendicular 
drawn from the origin to the given plane. 

2. 𝑂𝑂 is the origin and 𝐴𝐴(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) is the point. Find the equation of the 
plane through 𝐴𝐴 and right angle to 𝑂𝑂𝐴𝐴.   

3. 𝐹𝐹𝑖𝑛𝑛𝑑𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑖𝑜𝑛𝑛 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒 𝑝𝑝𝑒𝑟𝑟𝑝𝑝𝑒𝑛𝑛𝑑𝑑𝑖𝑐𝑐𝑢𝑢𝑙𝑙𝑎𝑎𝑟𝑟 𝑡𝑜 the line 
segment from 𝐴𝐴(−3, 3, 2) to 𝐵𝐵(9, 5, 4) at the middle point of the 
segment. 

4. 𝐹𝐹𝑖𝑛𝑛𝑑𝑑 𝑡ℎ𝑒 𝑖𝑛𝑛𝑡𝑒𝑟𝑟𝑐𝑐𝑒𝑝𝑝𝑡𝑠 𝑚𝑚𝑎𝑎𝑑𝑑𝑒 on the coordinates axes by the plane 
𝑙𝑙 − + 2𝑚𝑚 –  2𝑛𝑛 =  9.  

5. 𝐴𝐴 plane meets the coordinate axes in 𝐴𝐴,𝐵𝐵,𝐶𝐶 such that the centroid 
of the triangle 𝐴𝐴𝐵𝐵𝐶𝐶 is the point (𝑝𝑝, 𝑞, 𝑟𝑟). Show that the equation of 
the plane is 𝑙𝑙|𝑝𝑝 +  𝑚𝑚 | 𝑞 +  𝑛𝑛 | 𝑟𝑟 =  3. 

6. 𝐹𝐹𝑖𝑛𝑛𝑑𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑖𝑜𝑛𝑛  of the plane passing through the point  
(1, 2, 1) and  perpendicular to the line joining the points  (1, 4, 2) 
and (2, 3, 5). Also find the perpendicular distance of the origin 
from the plane. 

7. 𝐹𝐹𝑖𝑛𝑛𝑑𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑢𝑎𝑎𝑡𝑖𝑜𝑛𝑛  of the plane passing through the points (2, 2, -
1), (3, 4, 2) and (7, 0, 6). 

8. Show that the four points (0,−1,−1), (4, 5, 1) (3, 9, 4) and 
(−4, 4, 4) are coplanar. 

9. Find the equation of the plane which is horizontal and passes 
through the point (1,−2,−5). 

10. Find the equation of the plane through the points (1,−2, 2) and 
(−3, 1,−2) and perpendicular to the plane 𝑙𝑙 +  2𝑚𝑚 –  3𝑛𝑛 =  5. 

11. Find the equation of the plane through the point (1, 1,−1) and 
perpendicular to the planes 𝑙𝑙 +  2𝑚𝑚 +  3𝑛𝑛 –  7 =  0 and 
2𝑙𝑙 –  3𝑚𝑚 +  4𝑛𝑛 =  0. 

12. Find the equation of the plane through the point (1, 3, 2)  and 
parallel to the plane 3𝑙𝑙 −  2𝑚𝑚 +  2𝑛𝑛 +  33 =  0. 

13. Find the distance between the parallel planes 2𝑙𝑙 –  𝑚𝑚 +  3𝑛𝑛 − 4 =
 0 and 6𝑙𝑙 –  3𝑚𝑚 +  9𝑛𝑛 +  13 =  0.  

14. Find the locus of a point, the sum of the squares of whose distances 
from the planes 𝑙𝑙 +  𝑚𝑚 +  𝑛𝑛 =  0, 𝑙𝑙 –  𝑚𝑚 =  0, 𝑙𝑙 +  𝑚𝑚 –  2𝑛𝑛 =  0 UGMM-102/81
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is 7.  

15. Find the equation of the plane through the line of intersection of 
the planes 𝑙𝑙 +  2𝑚𝑚 –  3𝑛𝑛 − 6 =  0 and 4𝑙𝑙 +  3𝑚𝑚 –  2𝑛𝑛 − 2 =
 0 and passing through the origin. 

16. Find the equation of the plane through the line of intersection of 
the planes 3𝑙𝑙 −  5𝑚𝑚 + 4𝑛𝑛 + 11 =  0 and 2𝑙𝑙 − 7𝑚𝑚 + 4𝑛𝑛 − 3 =
 0 and passing through the point (-2, 1, 3). 

17. Find the equation of the plane through the line of intersection of 
the planes 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 =  0 and 𝛼𝛼𝑙𝑙 +  𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛 + 𝛿 =
 0 and parallel to 𝑙𝑙 − axis. 

18. Prove that the equation 𝑙𝑙2  +  4𝑚𝑚2  + 4𝑙𝑙𝑚𝑚 −  𝑛𝑛2  =  0 represents a 
pair of planes and find the angle between them. 

 

3.1.15 EQUATION OF A STRAIGHT LINE (GENERAL 
FORM) 

Every equation of the first degree in 𝑙𝑙,𝑚𝑚, 𝑛𝑛 represents a plane. Also, as two 
planes intersect in a line, therefore the two equations together represent 
that line. Thus 
𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0 and 𝑎𝑎′𝑙𝑙 + 𝑏𝑏′𝑚𝑚 + 𝑐𝑐′𝑛𝑛 + 𝑑𝑑′ =  0 represent a straight 
line. 

3.1.16 EQUATION OF A STRAIGHT LINE IN 
SYMMETRICAL FORM 

Equation of a straight line passing through a given point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and 
having direction cosines 𝑙𝑙,𝑚𝑚, 𝑛𝑛. Suppose 𝑃𝑃(𝑙𝑙,𝑚𝑚, 𝑛𝑛) be any point on a line 
such that 𝐴𝐴𝑃𝑃 = 𝑟𝑟. Now projection of 𝐴𝐴𝑃𝑃 𝑜𝑛𝑛 𝑡ℎ𝑒 x- axis,  
 

         𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾)                                       𝑃𝑃(𝑙𝑙,𝑚𝑚, 𝑛𝑛) 
 

 
                                 
 

 

             O             

 

 

we have 𝑙𝑙 − 𝛼𝛼 = 𝑙𝑙𝑟𝑟, 𝑜𝑟𝑟, (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 = 𝑟𝑟. Similarly projections of AP on 
𝑚𝑚 −axis and 𝑛𝑛 − axis, we have (𝑚𝑚 − 𝛽𝛽)|𝑚𝑚 = 𝑟𝑟 and (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛 = 𝑟𝑟, 
therefore 
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 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 = (𝑚𝑚 − 𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛  

This is equation of the  straight line in the symmetrical form. 

Note:  

1. Equation of a straight line passing through a given point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
and having direction cosines proportional to 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 is  

(𝑙𝑙 − 𝛼𝛼)|𝑎𝑎 = (𝑚𝑚 − 𝛽𝛽)|𝑏𝑏 = (𝑛𝑛 − 𝛾𝛾)|𝑐𝑐. 

2. If any point 𝑃𝑃(𝑙𝑙,𝑚𝑚, 𝑛𝑛) on this line then 

 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 = (𝑚𝑚 − 𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛 = 𝑟𝑟(𝑠𝑎𝑎𝑚𝑚) is  

(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟). It should be noted here that 𝑟𝑟 is not the 
actual distance of any point 𝑃𝑃(𝑙𝑙,𝑚𝑚, 𝑛𝑛) on the line from the given 
point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾). 

3.1.17 EQUATION OF A STRAIGHT LINE PASSING 
THROUGH TWO GIVEN POINTS 𝑷𝑷(𝒂𝒂𝟏𝟏,𝒃𝒃𝟏𝟏, 𝒄𝒄𝟏𝟏) 
AND 𝑸(𝒂𝒂𝟐𝟐,𝒃𝒃𝟐𝟐, 𝒄𝒄𝟐𝟐) 

The direction cosines of the line will be proportional to 𝑙𝑙1 −
𝑙𝑙2, 𝑚𝑚1 − 𝑚𝑚2, 𝑛𝑛1 − 𝑛𝑛2 and it passes through 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) will be  

         𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1)      𝐵𝐵(𝑙𝑙,2  𝑚𝑚2, 𝑛𝑛2)  𝑃𝑃(𝑙𝑙,𝑚𝑚, 𝑛𝑛) 
 

 
                                 
 
 

             O                       

 

 

 

(𝑙𝑙 − 𝑙𝑙1)|(𝑙𝑙2 − 𝑙𝑙1) =  (𝑚𝑚 − 𝑚𝑚1)|(𝑚𝑚2 − 𝑚𝑚1) =  (𝑛𝑛 − 𝑛𝑛1)|(𝑛𝑛2 − 𝑛𝑛1) 

If the equation of two lines are (𝑙𝑙 −  𝑙𝑙1)|𝑎𝑎1 = (𝑚𝑚 −  𝑚𝑚1)|𝑏𝑏1 =
 (𝑛𝑛 −  𝑛𝑛1)|𝑐𝑐1 and (𝑙𝑙 −  𝑙𝑙1)|𝑎𝑎2 = (𝑚𝑚 −  𝑚𝑚1)|𝑏𝑏2 =  (𝑛𝑛 −  𝑛𝑛1)|𝑐𝑐2. 

Here, we see that  the direction ratio of both lines are 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1  and 
𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2 respectively, therefore, 

𝑐𝑐𝑜𝑠𝜃𝜃 = ( 𝑎𝑎1𝑎𝑎2 + 𝑏𝑏1𝑏𝑏2 + 𝑐𝑐1𝑐𝑐2)|�𝑎𝑎12 + 𝑏𝑏1
2 + 𝑐𝑐12  �𝑎𝑎22 + 𝑏𝑏2

2 + 𝑐𝑐22 

Note : 
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1. If the lines are perpendicular then 

          𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′ = 0.  

In the case of direction ratio, ( 𝑎𝑎1𝑎𝑎2 + 𝑏𝑏1𝑏𝑏2 + 𝑐𝑐1𝑐𝑐2) = 0. 

2. If the lines are parallel then 𝑙𝑙|𝑙𝑙′ =  𝑚𝑚|𝑚𝑚′ =  𝑛𝑛|𝑛𝑛′.  

In the case of direction ratio, � 𝑎𝑎1|𝑎𝑎2 = 𝑏𝑏1|𝑏𝑏2 = 𝑐𝑐1|𝑐𝑐2� 

3. Equation of a line passing through a point (𝑙𝑙1, 𝑚𝑚1, 𝑛𝑛1) and 
direction ratio are 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 is  

(𝑙𝑙 −  𝑙𝑙1)|𝑎𝑎 = (𝑚𝑚 −  𝑚𝑚1)|𝑏𝑏 =  (𝑛𝑛 −  𝑛𝑛1)|𝑐𝑐 =  𝜆𝜆  

Therefore the general point on this line is 

 𝑙𝑙 =  𝑙𝑙1 +  𝜆𝜆𝑎𝑎,  𝑚𝑚 =  𝑚𝑚1 +  𝜆𝜆𝑏𝑏 and 𝑛𝑛 =  𝑛𝑛1 +  𝜆𝜆𝑐𝑐. 

4. Equation of a line passing through two points 𝐴𝐴(𝑙𝑙1, 𝑚𝑚1, 𝑛𝑛1)    and 
𝐵𝐵(𝑙𝑙2, 𝑚𝑚2, 𝑛𝑛2) is  

       (𝑙𝑙 −  𝑙𝑙1)|(𝑙𝑙2 − 𝑙𝑙1) = (𝑚𝑚 −  𝑚𝑚1)|(𝑚𝑚2 − 𝑚𝑚1) =  (𝑛𝑛 −  𝑛𝑛1)|(𝑛𝑛2 − 𝑛𝑛1). 

Example10: Find the equation of a line passing through the point (1, 2, -3) 
and its direction ratio are 2, 3, -4. 

Solution: Equation of a line is 

 (𝑙𝑙 −  𝑙𝑙1|𝑎𝑎 = (𝑚𝑚 −  𝑚𝑚1)|𝑏𝑏 =  (𝑛𝑛 −  𝑛𝑛1)|𝑐𝑐.  

So, equation is  (𝑙𝑙 − 1)|2 = (𝑚𝑚 − 2)|3 = (𝑛𝑛 + 3)| − 4. 

Example11: Find the coordinate of the point of intersection of the line 
(𝑙𝑙 + 1)|1 = (𝑚𝑚 + 3)|3 = (𝑛𝑛 − 2)|2 with the plane3𝑙𝑙 + 4𝑚𝑚 + 5𝑛𝑛 = 20.  

Solution: Since equation of the line is 

 (𝑙𝑙 + 1)|1 = (𝑚𝑚 + 3)|3 = (𝑛𝑛 − 2)|2 = 𝑟𝑟 (say)  

 that is coordinate of the point on the line is  (−1 + 𝑟𝑟,−3 + 3𝑟𝑟, 2 + 2𝑟𝑟). If 
this point lies on the plane 3𝑙𝑙 + 4𝑚𝑚 + 5𝑛𝑛 = 20, 𝑡ℎ𝑒𝑛𝑛  

3(𝑟𝑟 − 1) + 4(3𝑟𝑟 − 3) +  5(2𝑟𝑟 + 2) = 20. 

25𝑟𝑟 = 25, 𝑖. 𝑒. 𝑟𝑟 = 1 

Putting the value of 𝑟𝑟, we get the coordinate of the point is (0, 0, 4). 

Example12: Find the equation of a line passing through two points  
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A(1, -2, 1) and B(3, -2, 0). 

Solution: Equation of a line passing through two points 𝐴𝐴(𝑙𝑙1, 𝑚𝑚1, 𝑛𝑛1)    
and 𝐵𝐵(𝑙𝑙2, 𝑚𝑚2, 𝑛𝑛2) is  

       (𝑙𝑙 −  𝑙𝑙1)|(𝑙𝑙2 − 𝑙𝑙1) = (𝑚𝑚 −  𝑚𝑚1)|(𝑚𝑚2 − 𝑚𝑚1) =  (𝑛𝑛 −  𝑛𝑛1)|(𝑛𝑛2 − 𝑛𝑛1). 

So, (𝑙𝑙 − 1)|(3−  1)  =  (𝑚𝑚 + 2)|(−2 + 2)  =  (𝑛𝑛 −  1)|(0 –  1) 

       (𝑙𝑙 − 1)|2 =  (𝑚𝑚 + 2)|0 =  (𝑛𝑛 − 1)| − 1  

Example13: Find the equation of a line passing through the point 

 (15,−7,−3) and parallel to the line  

(𝑙𝑙 − 2)|3 =  (𝑚𝑚 − 1)|1 =  (𝑛𝑛 − 7)|9 

Solution: Equation of a line passing through the point (15,−7,−3)  and 
parallel to the line whose direction ratio are 3, 1, 9. So, the required 
equation is   
(𝑙𝑙 − 15)|3 =  (𝑚𝑚 + 7)|1 =  (𝑛𝑛 + 3)|9. 

Example14: Find the distance of the point (2, 3, 4) from the point where 
the line (𝑙𝑙 − 3)|1 =  (𝑚𝑚 − 4)|2 =  (𝑛𝑛 − 5)|2 meets the plane 

 𝑙𝑙 +  𝑚𝑚 +  𝑛𝑛 =  22.  

Solution: Any point on the above line is (3 +  𝑟𝑟, 4 + 2𝑟𝑟, 5 + 2𝑟𝑟). If it 
also lies on the plane 𝑙𝑙 +  𝑚𝑚 +  𝑛𝑛 =  22, then  

3 + 𝑟𝑟 + 4 + 2𝑟𝑟 + 5 + 2𝑟𝑟 =  22, or 5r = 10. Therefore, 𝑟𝑟 =  2. 

Putting the value of r we get the required coordinates of the point as  

(5, 8, 9). So, the required distance  

= �(5 − 2)2  +  (8 −  3)2  + (9 −  4)2  

=  √9 +  25 +  25 = √59. 

Example15: Show that the distance of the point of intersection of the line 

 (𝑙𝑙 − 2)|3 =  (𝑚𝑚 + 1)|4 =  (𝑛𝑛 − 2)|12.  

And the plane 𝑙𝑙 −  𝑚𝑚 +  𝑛𝑛 =  5 from the point (−1,−5,−10) is 13. 

Solution: Equation of the given line are  

 (𝑙𝑙 − 2)|3 =  (𝑚𝑚 + 1)|4 =  (𝑛𝑛 − 2)|12 = 𝑟𝑟 (say)……………(1) 
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 (3𝑟𝑟 + 2, 4𝑟𝑟 − 1, 12𝑟𝑟 + 2). If this point lies on the plane 

 x- y + z = 5, we have 

 3𝑟𝑟 + 2 – (4𝑟𝑟 − 1) +  12𝑟𝑟 + 2 =  5, 𝑜𝑟𝑟 11𝑟𝑟 =  0 , 𝑜𝑟𝑟 𝑟𝑟 =  0. 

Putting this value of r, the coordinates of the point of intersection of the 
line (1) and the given plane are (2, -1, 2). 

Thus the required distance = the distance between the points (2, -1, 2) and 
(-1, -5, -10)  

= �(2 + 1)2  +  (−1 +  5)2  + (2 +  10)2  

=  √9 +  16 +  144 = √169 = 13. 

Example16: Find the points in which the line  

 (𝑙𝑙 + 1)|−1 =  (𝑚𝑚 − 12)|5 =  (𝑛𝑛 − 7)|2 cuts the surface 11𝑙𝑙2 –  5𝑚𝑚2  +
 𝑛𝑛2  =  0 

Solution: The equations of the given line are 

(𝑙𝑙 + 1)|−1 =  (𝑚𝑚 − 12)|5 =  (𝑛𝑛 − 7)|2 = 𝑟𝑟 (say)…………..(1) 

The coordinates of any point on the line (1) are 

 (−𝑟𝑟 − 1, 5𝑟𝑟 + 12, 2𝑟𝑟 + 7). If this point lies on the given 
surface 11𝑙𝑙2 –  5𝑚𝑚2  + 𝑛𝑛2  =  0, we have  

11(−𝑟𝑟 − 1)2 –  5(5𝑟𝑟 + 12)2  +  (2𝑟𝑟 + 7)2  =  0, or 

𝑟𝑟2  +  5𝑟𝑟 +  6 =  0, 𝑜𝑟𝑟 (𝑟𝑟 + 2)(𝑟𝑟 +  3)  =  0, 𝑜𝑟𝑟 𝑟𝑟 =  −2,−3 

Putting this values of 𝑟𝑟 i𝑛𝑛 (−𝑟𝑟 − 1, 5𝑟𝑟 + 12, 2𝑟𝑟 + 7) . The required points 
are of intersection are (1, 2, 3) and (2,−3, 1), 

Example17: Find the image of the point (1, 3, 4) in the plane 2𝑙𝑙 –  𝑚𝑚 +
 𝑛𝑛 +  3 =  0. 

Solution: The given plane is 2𝑙𝑙 –  𝑚𝑚 +  𝑛𝑛 +  3 =  0. …………(1) 

The direction ratios of the line perpendicular to the  given plane  are 
2,−1, 1. 

Let 𝑄 be the image of the given point 𝑃𝑃(1, 3, 4) in the plane (1), then the 
line 𝑃𝑃𝑄 is perpendicular to the plane (1). Equation of the line 𝑃𝑃𝑄 passing 
through 𝑃𝑃(1, 3, 4) and perpendicular to the plane (1).  
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(𝑙𝑙 −  1)|2 =  (𝑚𝑚 −  3)| − 1 =  (𝑛𝑛 −  4)|1 =  𝜆𝜆 ………..      (2) 

Coordinates of the point 𝑄 which is on the line (2) be 

 (2𝜆𝜆 + 1,−𝜆𝜆 + 3, 𝜆𝜆 + 4) ……….. (3), 

 then the coordinates of the middle point N of PQ is 

 ((2𝜆𝜆 + 1 + 1)|2, ( −𝜆𝜆 + 3 + 3)|2 ,   

( 𝜆𝜆 + 4 + 4)|2) = (𝜆𝜆 + 1,−𝜆𝜆|2 + 3, 𝜆𝜆|2 + 4).  

But this point 𝑁 lies on the plane (1). 

(2(𝜆𝜆 + 1) +  (−𝜆𝜆|2 + 3) + (𝜆𝜆|2 + 4) + 3) =  0 

or, 3𝜆𝜆 + 6 = 0  𝑖. 𝑒. 𝜆𝜆 =  −2. 

Putting this value in (3), the coordinate of 𝑄 (image of 𝑃𝑃 ) is in the given 
plane is (−3, 5, 2).  

3.1.18 GENERAL EQUATION OF THE STRAIGHT 
LINE IN SYMMETRICAL FORM 

To transform the equations 

 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1  =  0 , 𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 +  𝑐𝑐2𝑛𝑛 + 𝑑𝑑2  =  0   

of a straight line to the symmetrical form. For this we are required to write 
the symmetrical form of the straight line given by the above equations (i). 
for this we must know the direction cosines or direction ratios of the line 
and (ii).The coordinates of a point on the line. To find these two we 
proceed as follows: 

Step(1): To find the direction cosines or direction ratios of the line given 
by the above equation. Suppose l, m, n be the dirction cosines or direction 
ratios of the line. Since the line common to the both planes, therefore, it is 
perpendicular to the normals of both the planes.The direction ratios of the 
normals to the planes given by 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1 and 𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2 respectively. Hence 
we have  

𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 = 0 and 𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 +  𝑐𝑐2𝑛𝑛 = 0  

So. we have, 

 𝑙𝑙|(𝑏𝑏1𝑐𝑐2 −  𝑏𝑏2𝑐𝑐1) = 𝑚𝑚|(𝑐𝑐1𝑎𝑎2 −  𝑐𝑐2𝑎𝑎1) = 𝑛𝑛|(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1) 

Therefore direction cosines of the line are 

 (𝑏𝑏1𝑐𝑐2 −  𝑏𝑏2𝑐𝑐1),   (𝑐𝑐1𝑎𝑎2 −  𝑐𝑐2𝑎𝑎1),  (𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1). 
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Step(2) : To find the coordinates of a point on the line given by the above 
equations. We choose a point as the one where the line cuts the xy- plane 
(i. e. 𝑛𝑛 =  0), provided the line is not parallel to the plane 𝑛𝑛 =  0 , 
provided (𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1) ≠ 0 . Putting 𝑛𝑛 =  0 in both equations of the 
planes we get, 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +  𝑑𝑑1  =  0 , 𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 +  𝑑𝑑2  =  0  

Solving these equations for x, y we get 

𝑙𝑙|(𝑏𝑏1𝑑𝑑2 −  𝑏𝑏2𝑑𝑑1) = 𝑚𝑚|(𝑑𝑑1𝑎𝑎2 −  𝑑𝑑2𝑎𝑎1) = 1|(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1) 

Hence, the coordinates of a point on the line, where it cuts the plane 
𝑛𝑛 =  0 are 

( (𝑏𝑏1𝑑𝑑2 −  𝑏𝑏2𝑑𝑑1)|(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1), (𝑑𝑑1𝑎𝑎2 −  𝑑𝑑2𝑎𝑎1)|(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1) ) 

Hence the equation of a lie in the symmetrical form is 
�𝑙𝑙 − (𝑏𝑏1𝑑𝑑2 −  𝑏𝑏2𝑑𝑑1)�(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1)�|(𝑏𝑏1𝑐𝑐2 −  𝑏𝑏2𝑐𝑐1) 

= ( 𝑚𝑚 −  (𝑑𝑑1𝑎𝑎2 −  𝑑𝑑2𝑎𝑎1)|(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1))|(𝑐𝑐1𝑎𝑎2 −  𝑐𝑐2𝑎𝑎1) 

= (𝑛𝑛 − 0)|(𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1). 

 Note: If (𝑎𝑎1𝑏𝑏2 −  𝑎𝑎2𝑏𝑏1) =  0 , then instead of taking 𝑛𝑛 =  0 we should 
we take the point where the line cuts 𝑙𝑙 =  0 plane or 𝑚𝑚 =  0 plane. 

Example18: Find the symmetrical form of the equations of the line 

3𝑙𝑙 +  2𝑚𝑚 –  𝑛𝑛 –  4 =  0, 4𝑙𝑙 +  𝑚𝑚 –  2𝑛𝑛  + 3 =  0. and find its direction 
cosines. 

Solution: The equations of the given line is 

 3𝑙𝑙 +  2𝑚𝑚 –  𝑛𝑛 –  4 =  0, 4𝑙𝑙 +  𝑚𝑚 –  2𝑛𝑛  + 3 =  0…………(1) 

Suppose l, m, n are the direction cosines of the line (1). Since the line is 
common th the both planes, it is perpendicular to the normals to both the 
planes. Hence we have 

 3𝑙𝑙 +  2𝑚𝑚 –  𝑛𝑛  =  0, 4𝑙𝑙 +  𝑚𝑚 –  2𝑛𝑛   =  0. 

Solving it we get, 

 𝑙𝑙|(−4 +  1) =   𝑚𝑚|(−4 +  6)  =   𝑛𝑛� �3 –  8� 𝑜𝑟𝑟, 𝑙𝑙 � − 3 =  𝑚𝑚 |2 =
 𝑛𝑛 | − 5 . 

Therefore the direction ratios of the line (1) are −3, 2,−5  

The direction cosines 𝑙𝑙,𝑚𝑚,𝑛𝑛 of the line (1) are given by 

 𝑙𝑙 =  3 | √38,𝑚𝑚 =  2 | √38 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 =  −5 | √38. UGMM-102/88
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Now to find the coordinates of  a point on the line given by (1), we find 
the point where it meets the plane 𝑛𝑛 =  0. Putting 𝑛𝑛 =  0 in the given 
equation  3𝑙𝑙 +  2𝑚𝑚 –   4 =  0, 4𝑙𝑙 +  𝑚𝑚   + 3 =  0.  

Solving these we get  

𝑙𝑙 | (6 +  4)  =  𝑚𝑚 | (−16 − 9)  =  1 | (3 −  8)   

𝑜𝑟𝑟, 𝑙𝑙 | 10 =  𝑚𝑚 |  − 25 =  1 |  − 5 

𝑙𝑙 =  −2,𝑚𝑚 =  5.  

The line meets the plane 𝑛𝑛 =  0 in the point (−2, 5, 0) and direction ratios 
as −3, 2,−5. 

Therefore the equations of the given line in symmetrical form are 

 (𝑙𝑙 +  2)| − 3 =  (𝑚𝑚 −  5)|2 =  (𝑛𝑛 −  0)|  − 5.  

Example19: Find the angle between the lines 

 𝑙𝑙 –  2𝑚𝑚 +  𝑛𝑛 =  0, 𝑙𝑙 +  2𝑚𝑚 +  2𝑛𝑛 =  0 and 

 𝑙𝑙 +  2𝑚𝑚 +  2𝑛𝑛 =  0, 3𝑙𝑙 +  9𝑚𝑚 +  5𝑛𝑛 =  0. 

Solution: suppose that 𝑎𝑎1,𝑏𝑏1, 𝑐𝑐1be the direction ratios of the line of the 
intersection of the planes  𝑙𝑙 –  2𝑚𝑚 +  𝑛𝑛 =  0, 𝑙𝑙 +  2𝑚𝑚 +  2𝑛𝑛 =  0 

Since this line lies in both planes, therefore it is perpendicular to the 
normals of both these planes 

𝑎𝑎1 –  2𝑏𝑏1  + 𝑐𝑐1  =  0 and 𝑎𝑎1  +  2𝑏𝑏1  −  2𝑐𝑐1  =  0.  

Solving these we get  𝑎𝑎1 | 2 =  𝑏𝑏1 | 3 =  𝑐𝑐1 | 4, 

 Therefore, the direction ratios of this line are 2, 3, 4.  

suppose that 𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2be the direction ratios of the line of the intersection 
of the planes  𝑙𝑙 +  2𝑚𝑚 +  2𝑛𝑛 =  0, 3𝑙𝑙 +  9𝑚𝑚 +  5𝑛𝑛 =  0 

Since this line lies in both planes, therefore it is perpendicular to the 
normals of both these planes 

𝑎𝑎2 +  2𝑏𝑏2  + 2𝑐𝑐2  =  0 and 3𝑎𝑎2  +  9𝑏𝑏2 +  5𝑐𝑐2  =  0.  

Solving these we get 𝑎𝑎2 | 1 =  𝑏𝑏2 |−2 =  𝑐𝑐2 |3,   

therefore, the direction ratios of this line are 1,−2, 3. 

 If 𝜃𝜃 be the angle between the given lines, then 
UGMM-102/89
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 𝑐𝑐𝑜𝑠𝜃𝜃 = (2.1 + 3.−2 + 4.3) |√22 + 32 + 42.�12 + (−2)2 + 32 

=  8 | √29 √14  =  8 | √406 

So, 𝜃𝜃 = 𝑐𝑐𝑜𝑠−(8 | √406)  

3.1.19 CONDITION OF PARALLELISM OF A LINE AND A 
PLANE 

Suppose equation of a line is (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 −
𝛾𝛾)|𝑛𝑛. Suppose equation of a plane is 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0. If the 
line is parallel to the plane then this line must be perpendicular to the 
normal to this plane, so, 

 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =  0. Again the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾)  should not lie on the 
plane. i.e. 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑑𝑑 ≠ 0.  

Therefore, the required condition for parallel line to the given plane is  

 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =  0 ……………..(1) 

𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑑𝑑 ≠ 0……………..(2) 

3.1.20 CONDITION FOR PERPENDICULAR OF A LINE 
AND A PLANE 

Suppose equation of a line is (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 −
𝛾𝛾)|𝑛𝑛. Suppose equation of a plane is 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0. If the 
line is perpendicular to the plane then this line must be parallel to the 
normal to this plane, so, 

𝑎𝑎|𝑙𝑙 =  𝑏𝑏|𝑚𝑚 =  𝑐𝑐|𝑛𝑛 

3.1.21 CONDITION FOR A LINE TO LIE IN A PLANE 

Suppose equation of a line is (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 −
𝛾𝛾)|𝑛𝑛. Suppose equation of a plane is 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 +  𝑑𝑑 =  0. If the 
line lies in the plane then for all values of r the point (𝛼𝛼 + 𝑟𝑟𝑙𝑙, 𝛽𝛽 +
𝑟𝑟𝑚𝑚, 𝛾𝛾 +  𝑟𝑟𝑛𝑛) will lie on the given plane. So, 𝑎𝑎(𝛼𝛼 + 𝑟𝑟𝑙𝑙)  +  𝑏𝑏(𝛽𝛽 + 𝑟𝑟𝑚𝑚)  +
 𝑐𝑐(𝛾𝛾 +  𝑟𝑟𝑛𝑛)  +  𝑑𝑑 =  0. 

𝑟𝑟(𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛) +  (𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑑𝑑) = 0 is true for all values of 𝑟𝑟. 
Therefore, the coefficient of 𝑟𝑟 =  0 and the constant term =  0. 

(𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛) = 0 and (𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑑𝑑) = 0 

3.1.22 EQUATION OF A PLANE THROUGH A GIVEN 
LINE 

Equation of the line is in the symmetrical form Equation of a plane 
through the given line  UGMM-102/90
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(𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛 is 𝑎𝑎( 𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏( 𝑚𝑚 − 𝛽𝛽) +
𝑐𝑐( 𝑛𝑛 − 𝛾𝛾) + 𝑑𝑑 = 0 where (𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛) = 0. 

The equations of the given line in symmetrical form are  

(𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛. ………….(1) 

The equation of any plane through (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 𝑎𝑎( 𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏( 𝑚𝑚 − 𝛽𝛽) +
𝑐𝑐( 𝑛𝑛 − 𝛾𝛾) = 0 ……(2) 

If it passes through the given line, its normal is perpendicular to the given 
line i. e.  (𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛) = 0…………..(3) 

From equation (2) and (3), the equation of any plane through the given 
line is 𝑎𝑎( 𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏( 𝑚𝑚 − 𝛽𝛽) + 𝑐𝑐( 𝑛𝑛 − 𝛾𝛾) = 0,  

where (𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛) = 0. 

3.1.23 Equation of a plane through a given line and parallel to an  
another line 

The equation of the plane through the line 

 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙1  =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚1  =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛1 and parallel to the line  

(𝑙𝑙)|𝑙𝑙2  =  (𝑚𝑚)|𝑚𝑚2  =  (𝑛𝑛)|𝑛𝑛2 is 

 

�
𝑙𝑙 − 𝛼𝛼 𝑚𝑚 − 𝛽𝛽 𝑛𝑛 − 𝛾𝛾
𝑙𝑙1 𝑚𝑚1 𝑛𝑛1
𝑙𝑙2 𝑚𝑚2 𝑛𝑛2

� = 0 

Example20: Find the equation of a plane through the point (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′) and 
through the  line whose equation is 

 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛. 

Solution: The equations of the given line are 

 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛………….(1) 

Equation of any plane through the line (1) is 

 𝑎𝑎( 𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏( 𝑚𝑚 − 𝛽𝛽) + 𝑐𝑐( 𝑛𝑛 − 𝛾𝛾) = 0………….(2) 

Where (𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛) = 0………………..(3) 
UGMM-102/91
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If the plane (2) passes through the point (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′) then from (2)  

𝑎𝑎( 𝛼𝛼′ − 𝛼𝛼) + 𝑏𝑏( 𝛽𝛽′ − 𝛽𝛽) + 𝑐𝑐( 𝛾𝛾′ − 𝛾𝛾) = 0……………(4) 

Eliminating a, b, c from (2), (4), (3), we get 

 

�
𝑙𝑙 − 𝛼𝛼 𝑚𝑚 − 𝛽𝛽 𝑛𝑛 − 𝛾𝛾
𝛼𝛼′ − 𝛼𝛼 𝛽𝛽′ − 𝛽𝛽 𝛾𝛾′ − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛

� = 0 which is the required equation. 

 

Example21: Find the equation of a plane which contains the two parallel 
lines (𝑙𝑙 + 1)|3 = (𝑚𝑚 − 2)|2 = (𝑛𝑛)|1 and (𝑙𝑙 − 3)|3 = (𝑚𝑚 + 4)|2 =
(𝑛𝑛 − 1)|1 

Solution: The equations two parallel lines are  

 (𝑙𝑙 + 1)|3 = (𝑚𝑚 − 2)|2 = (𝑛𝑛)|1 ………….(1) 

and (𝑙𝑙 − 3)|3 = (𝑚𝑚 + 4)|2 = (𝑛𝑛 − 1)|1………..(2) 

The equation of any plane through the line (1) is 

𝑎𝑎(𝑙𝑙 + 1) + 𝑏𝑏(𝑚𝑚 − 2) + 𝑐𝑐(𝑛𝑛) = 0……..(3) 

Where 3𝑎𝑎 +  2𝑏𝑏 +  𝑐𝑐 =  0 ……………….(4) 

The line (2) also lies on the plane (3) if the point (3, -4, 1) lying on the line 
(2) also lies on the plane (3). Hence  

𝑎𝑎(3 +  1)  +  𝑏𝑏(−4 − 2) +  𝑐𝑐. 1 =  0  

or, 4𝑎𝑎 –  6𝑏𝑏 +  𝑐𝑐 =  0 ………..(5) 

Solving (4) and (5), we get 𝑎𝑎|8 =  𝑏𝑏|1 =  𝑐𝑐| − 26  

Putting these proportional values of a, b, c in (3) the required equation of 
the  plane is 8(𝑙𝑙 +  1)  +  1. (𝑚𝑚 −  2) –  26𝑛𝑛 =  0  
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or, 8𝑙𝑙 +  𝑚𝑚 –  26𝑛𝑛 +  6 =  0. 

Example22: Find the equation of a plane through the point (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′)  
and the line (𝑙𝑙 −  𝛼𝛼)|𝑙𝑙 = (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛. 

Solution :  Equation of any plane through the given line is 𝑎𝑎(𝑙𝑙 −  𝛼𝛼) +
 𝑏𝑏(𝑚𝑚 −  𝛽𝛽) +  𝑐𝑐(𝑛𝑛 −  𝛾𝛾) = 0 ………….(1) 

Where, 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =  0………….(2) 

The plane (1) will pass through the point (𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′) if  

𝑎𝑎(𝛼𝛼′ −  𝛼𝛼) +  𝑏𝑏(𝛽𝛽′ −  𝛽𝛽) +  𝑐𝑐(𝛾𝛾′ −  𝛾𝛾) = 0 ………….(3) 

The equation of the required plane will be obtained by eliminating 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 
between the equations (1) (3) and (2). Hence eliminating the constants 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐 between the above equations, the equation of the required plane is 
given by 

�
𝑙𝑙 − 𝛼𝛼 𝑚𝑚 − 𝛽𝛽 𝑛𝑛 − 𝛾𝛾
𝛼𝛼′ − 𝛼𝛼 𝛽𝛽′ − 𝛽𝛽 𝛾𝛾′ − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛

� =  0 

 

3.1.24 Foot of perpendicular and length of perpendicular from a 
point to a line 

(a) In symmetrical form: Suppose that equation of a line in 
symmetrical form  be  

(𝑙𝑙 −  𝛼𝛼)|𝑙𝑙 = (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛 = 𝑟𝑟(say)………(1) 

The coordinate of any point 𝑁 on the line is (𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 +
𝑛𝑛𝑟𝑟). 

If 𝑁 is the foot of the perpendicular from a given point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) 
to the line (1), then the line 𝑃𝑃𝑁 is perpendicular to (1). 

The direction ratios of the line 𝑃𝑃𝑁 are 

(𝛼𝛼 + 𝑙𝑙𝑟𝑟 − 𝑙𝑙1,𝛽𝛽 + 𝑚𝑚𝑟𝑟 − 𝑚𝑚1, 𝛾𝛾 + 𝑛𝑛𝑟𝑟 − 𝑛𝑛1)……………(2)  

𝑙𝑙(𝛼𝛼 + 𝑙𝑙𝑟𝑟 − 𝑙𝑙1)𝑚𝑚(𝛽𝛽 + 𝑚𝑚𝑟𝑟 − 𝑚𝑚1) +  𝑛𝑛(𝛾𝛾 + 𝑛𝑛𝑟𝑟 − 𝑛𝑛1) =  0 

𝑟𝑟(𝑙𝑙2 +  𝑚𝑚2 +  𝑛𝑛2) = 𝑙𝑙(𝑙𝑙1 −  𝛼𝛼) +  𝑚𝑚(𝑚𝑚1 −  𝛽𝛽) +  𝑛𝑛(𝑛𝑛1 −  𝛾𝛾) 

Or, 𝑟𝑟 =  𝑙𝑙(𝑙𝑙1 −  𝛼𝛼) +  𝑚𝑚(𝑚𝑚1 −  𝛽𝛽) +  𝑛𝑛(𝑛𝑛1 −  𝛾𝛾)| (𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2) 
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Substituting the value of 𝑟𝑟 in (𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) and 
determine the coordinate of 𝑁, also, the foot of perpendicular and 
length of PN can be easily determined. 

Equation of the perpendicular line from the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) to 
the line (1) are given by 

 (𝒂𝒂 − 𝒂𝒂𝟏𝟏)| (𝜶𝜶 + 𝒍𝒍𝒓 − 𝒂𝒂𝟏𝟏) = (𝒃𝒃 − 𝒃𝒃𝟏𝟏)|(𝜷𝜷 + 𝒎𝒎𝒓 − 𝒃𝒃𝟏𝟏) = (𝒄𝒄 − 𝒄𝒄𝟏𝟏)| 
(𝜸𝜸 + 𝒏𝒏𝒓 − 𝒄𝒄𝟏𝟏) 

(b) In general form: The equations of the line in general form are  

𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 + 𝑑𝑑 =  0 ;  𝑎𝑎’𝑙𝑙 +  𝑏𝑏’𝑚𝑚 +  𝑐𝑐’𝑛𝑛 + 𝑑𝑑′ =
 0…………..(1) 

The perpendicular from a point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1)  to the given line is the 
intersection of the two planes namely (i) the plane through the 
given point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) and also through the line and (ii) the plane 
through the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) perpendicular to the given line 

Now the equation of any plane through the line (1) is given by 

 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 + 𝑑𝑑 +  𝜆𝜆(𝑎𝑎’𝑙𝑙 +  𝑏𝑏’𝑚𝑚 +  𝑐𝑐’𝑛𝑛 + 𝑑𝑑′) =  0……(2) 

If it passes through the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1), then 

𝑎𝑎𝑙𝑙 1 +  𝑏𝑏𝑚𝑚1  +  𝑐𝑐𝑛𝑛1 + 𝑑𝑑 +  𝜆𝜆(𝑎𝑎’𝑙𝑙1  +  𝑏𝑏’𝑚𝑚1  +  𝑐𝑐’𝑛𝑛1 + 𝑑𝑑′) =  0 

Or, 𝜆𝜆 =  −(𝑎𝑎𝑙𝑙 1 +  𝑏𝑏𝑚𝑚1  +  𝑐𝑐𝑛𝑛1 + 𝑑𝑑)| (𝑎𝑎’𝑙𝑙1  +  𝑏𝑏’𝑚𝑚1  +  𝑐𝑐’𝑛𝑛1 + 𝑑𝑑′) 

Putting this value in equation (2), we get  

 (𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 + 𝑑𝑑)|(𝑎𝑎𝑙𝑙 1 +  𝑏𝑏𝑚𝑚1  +  𝑐𝑐𝑛𝑛1 + 𝑑𝑑) =   (𝑎𝑎’𝑙𝑙 +  𝑏𝑏’𝑚𝑚 +
 𝑐𝑐’𝑛𝑛 + 𝑑𝑑′)|(𝑎𝑎’𝑙𝑙1  +  𝑏𝑏’𝑚𝑚1  +  𝑐𝑐’𝑛𝑛1 + 𝑑𝑑′)……(3) 

Also if l, m, n be the direction cosines of the given line (1), then we get 

𝑎𝑎𝑙𝑙 + 𝑏𝑏 𝑚𝑚 + 𝑐𝑐𝑛𝑛 =  0 and 𝑎𝑎’𝑙𝑙 +  𝑏𝑏’𝑚𝑚 + 𝑐𝑐’𝑛𝑛 =  0 Solving these we get 
𝑙𝑙| (𝑏𝑏𝑐𝑐’ –  𝑏𝑏’𝑐𝑐)  =  𝑚𝑚| (𝑐𝑐𝑎𝑎’ –  𝑎𝑎’𝑐𝑐)  =  𝑛𝑛| (𝑎𝑎𝑏𝑏’ –  𝑎𝑎’𝑏𝑏)……..(4) 

Now, we are to find the equation of the second plane which passes through 
P and is perpendicular to the line (1). 

Since the plane is perpendicular to the line (1), therefore the direction 
cosines of its normal are proportional to 𝑙𝑙,𝑚𝑚,𝑛𝑛 given by (4). Therefore 
the equation of the plane perpendicular to the line (1)and passing  through 
the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) is  

𝑙𝑙(𝑙𝑙 −  𝑙𝑙1) +  𝑚𝑚(𝑚𝑚 −  𝑚𝑚1) +  𝑛𝑛(𝑛𝑛 −  𝑛𝑛1) =  0…………(5) 
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Therefore the equations of the perpendicular line from the point 
𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) to the line (1) are given by the above equation (5). 

3.1.25 COPLANAR LINES 

Suppose that the equations of the given lines be 

(𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛………………..(1) 

And (𝑙𝑙 − 𝛼𝛼′)|𝑙𝑙′ =  (𝑚𝑚 −  𝛽𝛽′)|𝑚𝑚′ =  (𝑛𝑛 − 𝛾𝛾′)|𝑛𝑛′ ………(2) 

If they intersect,, then they lie in a plane. If the lines are coplanar then they 
intersect and they must have a common point. Any point on the line (1) is  
(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) and any point on the line (2) is (𝛼𝛼′ + 𝑙𝑙′𝑟𝑟′,𝛽𝛽′ +
𝑚𝑚′𝑟𝑟′, 𝛾𝛾′ + 𝑛𝑛′𝑟𝑟′). Therefore, 

  𝛼𝛼 + 𝑙𝑙𝑟𝑟 =  𝛼𝛼′ + 𝑙𝑙′𝑟𝑟′, 𝛽𝛽 + 𝑚𝑚𝑟𝑟 =  𝛽𝛽′ + 𝑚𝑚′𝑟𝑟′, 𝛾𝛾 + 𝑛𝑛𝑟𝑟 =  𝛾𝛾′ + 𝑛𝑛′𝑟𝑟′. So,  

𝛼𝛼 −  𝛼𝛼′ + 𝑙𝑙𝑟𝑟 − 𝑙𝑙′𝑟𝑟′ = 0, 

𝛽𝛽 −  𝛽𝛽′ + 𝑚𝑚𝑟𝑟 −  𝑚𝑚′𝑟𝑟′ =  0 and 𝛾𝛾 −  𝛾𝛾′ + 𝑛𝑛𝑟𝑟 −  𝑛𝑛′𝑟𝑟′ = 0 Now we 
eliminating 𝑟𝑟 and 𝑟𝑟’ from these equations 

�
𝛼𝛼′ − 𝛼𝛼 𝛽𝛽′ − 𝛽𝛽 𝛾𝛾′ − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛
𝑙𝑙′ 𝑚𝑚′ 𝑛𝑛′

� =  0 

3.1.26 CONDITION FOR THE TWO LINES TO 
INTERSECT ( IN SYMMETRICAL FORM) 

Suppose the equations of the given lines be 

 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛………………..(1) 

And 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 = 0;  𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2 = 0 …(2) 

Equation of any plane through the line (2) is 

 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 +  𝜆𝜆(𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2) = 0. Or, 

 (𝑎𝑎1 + 𝜆𝜆𝑎𝑎2)𝑙𝑙 + (𝑏𝑏1 + 𝜆𝜆𝑏𝑏2)𝑚𝑚 +  (𝑐𝑐1 + 𝜆𝜆𝑐𝑐2)𝑛𝑛 + (𝑑𝑑1 + 𝜆𝜆𝑑𝑑2) = 0 ….(3) 

If this plane is parallel to the line (1), then we have  

(𝑎𝑎1 + 𝜆𝜆𝑎𝑎2)𝑙𝑙 + (𝑏𝑏1 + 𝜆𝜆𝑙𝑙 )𝑚𝑚 +  (𝑐𝑐1 + 𝜆𝜆𝑐𝑐2)𝑛𝑛 = 0 

Or,  (𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 ) =  −𝜆𝜆(𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛)  

Or, 𝜆𝜆 = - (𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 )| (𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛)……..(4) 
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Putting this value of  𝜆𝜆 in equation in (3) equation of the plane through the 
line (2) and parallel to the line (1) is given by  

(𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 ) |(𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 ) 

=  (𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2)| (𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛)……(5) 

If the line (1) lies on this plane then the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) on the line (1) must 
satisfy (5) and so the condition for the lines (1) and (2) to be coplanar is 
(𝑎𝑎1𝛼𝛼 + 𝑏𝑏1𝛽𝛽 + 𝑐𝑐1𝛾𝛾 + 𝑑𝑑1 ) |(𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +  𝑐𝑐1𝑛𝑛 ) =  (𝑎𝑎2𝛼𝛼 + 𝑏𝑏2𝛽𝛽 + 𝑐𝑐2𝛾𝛾 +
𝑑𝑑2)| (𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛)……..(6) 

If the condition (6) is satisfied, the lines (1) and (2) are intersecting and 
the plane containing both the lines is given by the equation (5).  

3.1.27 CONDITION FOR THE TWO LINES TO 
INTERSECT ( IN GENERAL FORM) 

Suppose the equations of the given lines be 

 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 = 0;  𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2 = 0…..(1) 

𝑎𝑎3𝑙𝑙 + 𝑏𝑏3𝑚𝑚 + 𝑐𝑐3𝑛𝑛 + 𝑑𝑑3 = 0;  𝑎𝑎4𝑙𝑙 + 𝑏𝑏4𝑚𝑚 + 𝑐𝑐4𝑛𝑛 + 𝑑𝑑4 = 0……(2) 

If these two lines are coplanar, then they intersect and let (𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the 
point of intersection. The coordinates of this point must satisfy the 
equations of these four planes representing the two lines. Therefore we 
have, 

 𝑎𝑎1𝛼𝛼 + 𝑏𝑏1𝛽𝛽 + 𝑐𝑐1𝛾𝛾 + 𝑑𝑑1 = 0; 𝑎𝑎2𝛼𝛼 + 𝑏𝑏2𝛽𝛽 + 𝑐𝑐2𝛾𝛾 + 𝑑𝑑2 = 0 

𝑎𝑎3𝛼𝛼 + 𝑏𝑏3𝛽𝛽 + 𝑐𝑐3𝛾𝛾 + 𝑑𝑑3 = 0;  𝑎𝑎4𝛼𝛼 + 𝑏𝑏4𝛽𝛽 + 𝑐𝑐4𝛾𝛾 + 𝑑𝑑4 = 0 

Now we eliminating 𝛼𝛼,𝛽𝛽,𝑎𝑎𝑛𝑛𝑑𝑑 𝛾𝛾 from these equations we find the required 
condition as 

�
𝑎𝑎1 𝑏𝑏1    𝑐𝑐1  𝑑𝑑1
𝑎𝑎 2
𝑎3

   𝑏𝑏 2
𝑏3

    𝑐𝑐 2
𝑐3

  𝑑𝑑 2
𝑑3

𝑎𝑎4 𝑏𝑏4    𝑐𝑐4   𝑑𝑑4

�  = 0 

3.1.28 EQUATION OF A STRAIGHT LINE INTERSECTING 
TWO GIVEN STRAIGHT LINES (IN SYMMETRICAL 
FORM) 

Suppose that equation of given lines be 

 (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛 =  𝑟𝑟       …….(1) 

And (𝑙𝑙 − 𝛼𝛼′)|𝑙𝑙′ =  (𝑚𝑚 −  𝛽𝛽′)|𝑚𝑚′ =  (𝑛𝑛 − 𝛾𝛾′)|𝑛𝑛′ =  𝑟𝑟’  ….(2) 
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Any point on the line (1) is 𝑃𝑃(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) and any point on 
the line (2) is 𝑄(𝛼𝛼′ + 𝑙𝑙′𝑟𝑟′,𝛽𝛽′ + 𝑚𝑚′𝑟𝑟′, 𝛾𝛾′ + 𝑛𝑛′𝑟𝑟′). 

We are required to find the equations of a line which intersects the line 
(1)and the line (2). Suppose the required line intersect the lines (1) and 
(2) in the points 𝑃𝑃 and 𝑄 respectively. The required line is one which 
joins the points 𝑃𝑃 and 𝑄.  

Example: Find in symmetrical form the equations of the line 3𝑙𝑙 + 2𝑚𝑚 −
𝑛𝑛 − 4 = 0; 4𝑙𝑙 + 𝑚𝑚 − 2𝑛𝑛 + 3 = 0. Also,  find its direction cosines. 

Solution: The equations of the  given line in general form are  

3𝑙𝑙 + 2𝑚𝑚 − 𝑛𝑛 − 4 = 0; 4𝑙𝑙 + 𝑚𝑚 − 2𝑛𝑛 + 3 = 0…………(1) 

Let 𝑙𝑙,𝑚𝑚,𝑛𝑛 are the direction cosines of the line (1).  Since the line is 
common to the both the planes, it is perpendicular to the normals of  the 
both the planes. 

Hence we have, 3𝑙𝑙 + 2𝑚𝑚 − 𝑛𝑛 = 0, 4𝑙𝑙 + 𝑚𝑚 − 2𝑛𝑛 = 0 

Solving these, we get |−3 = 𝑚𝑚|2 = 𝑛𝑛| − 5 . Therefore, the direction 
ratios of the line (1) are given by −3, 2,−5.  

We have, �(−3)2 + 22 + (−5)2   =  √38 . 

Therefore, the direction ratios of the line (1) are given by 

 𝑙𝑙 = −3�√38, 𝑚𝑚 =  2�√38, 𝑛𝑛 =  −5|√38 

Now to find the coordinates of a point on the line given by (1), let us find 
the point where it meets the plane 𝑛𝑛 = 0, Putting 𝑛𝑛 = 0 in the equation 
given by (1), we have 3𝑙𝑙 + 2𝑚𝑚 − 4 = 0; 4𝑙𝑙 + 𝑚𝑚 + 3 = 0 

Solving these we have 𝑙𝑙|10 = 𝑚𝑚| − 25 = 1| − 5 

We get  𝑙𝑙 =  −2,𝑚𝑚 = 5. 

Therefore the line meets the plane 𝑛𝑛 = 0 in the point (−2, 5, 0) and has 
direction ratios as −3, 2,−5. Therefore the equations of the given line in 
symmetrical form are (𝑙𝑙 + 2)|−3 = (𝑚𝑚 − 5)|2 = (𝑛𝑛 − 0)| − 5. 

3.1.29 PERPENDICULAR DISTANCE OF A POINT FROM A 
LINE AND THE COORDINATES OF THE FOOT OF THE 
PERPENDICULAR 

Let 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) be a given point and let  
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𝑷𝑷(𝒂𝒂𝟏𝟏,𝒃𝒃𝟏𝟏, 𝒄𝒄𝟏𝟏) 

                                                          

 

 

 

 

 

 

 

 

𝐴𝐴𝐵𝐵 be a given line Let the equation of the line 𝐴𝐴𝐵𝐵 in the symmetrical form 
is  

(𝑙𝑙 −  𝛼𝛼)| 𝑙𝑙 = (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛…………(1) 

Where 𝑙𝑙,𝑚𝑚,𝑛𝑛 are direction cosines of (1). The line (1) is passing through 
the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) . From 𝑃𝑃 we draw 𝑃𝑃𝑁 perpendicular to 𝐴𝐴𝐵𝐵. From the 
right angled triangle 𝐴𝐴𝑃𝑃𝑁, we have  

𝑃𝑃𝑁2  =  𝐴𝐴𝑃𝑃2 – 𝐴𝐴𝑁2  

Now 𝐴𝐴𝑃𝑃 = the distance between the points 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) = 
�(𝑙𝑙1 −  𝛼𝛼)2 + (𝑚𝑚1 −  𝛽𝛽)2 +  (𝑛𝑛1 −  𝛾𝛾)2  and  

𝐴𝐴𝑁 = projection of 𝐴𝐴𝑃𝑃 on 𝐴𝐴𝐵𝐵 𝑖. 𝑒. the projection of 𝐴𝐴𝑃𝑃 on a line whose 
direction cosines are 𝑙𝑙,𝑚𝑚, 𝑛𝑛 = (𝑙𝑙1 −  𝛼𝛼)𝑙𝑙 +  (𝑚𝑚1 −  𝛽𝛽)𝑚𝑚 + (𝑛𝑛1 −  𝛾𝛾)𝑛𝑛  

𝑃𝑃𝑁2 = {(𝑙𝑙1 −  𝛼𝛼)2 + (𝑚𝑚1 −  𝛽𝛽)2 +  (𝑛𝑛1 −  𝛾𝛾)2} – {(𝑙𝑙1 −  𝛼𝛼)𝑙𝑙 +
 (𝑚𝑚1 −  𝛽𝛽)𝑚𝑚 + (𝑛𝑛1 −  𝛾𝛾)𝑛𝑛 }2 

= {(𝑙𝑙1 −  𝛼𝛼)2 + (𝑚𝑚1 −  𝛽𝛽)2 +  (𝑛𝑛1 −  𝛾𝛾)2}(𝑙𝑙2  + 𝑚𝑚2  +  𝑛𝑛2) – {(𝑙𝑙1 −
 𝛼𝛼)𝑙𝑙 + (𝑚𝑚1 −  𝛽𝛽)𝑚𝑚 + (𝑛𝑛1 −  𝛾𝛾)𝑛𝑛 }2 

=  {𝑚𝑚(𝑛𝑛1 −  𝛾𝛾) −  𝑛𝑛(𝑚𝑚1 −  𝛽𝛽)}2 +  {𝑛𝑛(𝑙𝑙1 −  𝛼𝛼) −  𝑙𝑙(𝑛𝑛1 −  𝛾𝛾)}2 +
 {𝑙𝑙(𝑚𝑚1 −  𝛽𝛽) −  𝑚𝑚(𝑙𝑙1 −  𝛼𝛼)}2 by using Lagrange’s identity. 

3.1.30 TO FIND THE COORDINATES OF THE FOOT 
OF THE PERPENDICULAR 

Since 𝑁, be the foot of the perpendicular, is a point on the line 𝐴𝐴𝐵𝐵 given 
by  (𝑙𝑙 −  𝛼𝛼)| 𝑙𝑙 = (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛…………(1). Its coordinates 
may be written as (𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟). The direction cosines of PN 
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are (𝛼𝛼 + 𝑙𝑙𝑟𝑟 − 𝑙𝑙1,𝛽𝛽 + 𝑚𝑚𝑟𝑟 − 𝑚𝑚1, 𝛾𝛾 + 𝑛𝑛𝑟𝑟 − 𝑛𝑛1), also 𝑃𝑃𝑁 is perpendicular to 
𝐴𝐴𝐵𝐵. Therefore,  

 (𝛼𝛼 + 𝑙𝑙𝑟𝑟 − 𝑙𝑙1). 𝑙𝑙 + ( 𝛽𝛽 + 𝑚𝑚𝑟𝑟 − 𝑚𝑚1)𝑚𝑚 + ( 𝛾𝛾 + 𝑛𝑛𝑟𝑟 − 𝑛𝑛1)𝑛𝑛 = 0  

Or, 𝑟𝑟(𝑙𝑙2  +  𝑚𝑚2  +  𝑛𝑛2) =  (𝑙𝑙1 − 𝛼𝛼). 𝑙𝑙 + ( 𝑚𝑚1 − 𝛽𝛽)𝑚𝑚 + ( 𝑛𝑛1 −  𝛾𝛾)𝑛𝑛 

Or, 𝑟𝑟 =  (𝑙𝑙1 − 𝛼𝛼). 𝑙𝑙 + ( 𝑚𝑚1 − 𝛽𝛽)𝑚𝑚 + ( 𝑛𝑛1 −  𝛾𝛾)𝑛𝑛. Putting the value of 𝑟𝑟 in 
(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) we get the coordinates of 𝑁. 

Example23: From the point 𝑃𝑃(1, 2, 3), 𝑃𝑃𝑁 is drawn perpendicular to the 
straight line (𝑙𝑙 −  2)|3 =  (𝑚𝑚 –  3 )| 4 =  (𝑛𝑛 −  4)|5. Find the distance 
𝑃𝑃𝑁, the equations to 𝑃𝑃𝑁 and coordinates of 𝑁. 

Solution:  The equations of the given line 𝐴𝐴𝐵𝐵 (say) are 

(𝑙𝑙 −  2)|3 =  (𝑚𝑚 –  3 )| 4 =  (𝑛𝑛 −  4)|5 = 𝑟𝑟 (say)…..(1)  

The line (1) is passing through the point 𝐴𝐴(2, 3, 4). Since 𝑁, the foot of 
the perpendicular, is a point on the line (1), the coordinates of 𝑁 may be 
written as (3𝑟𝑟 + 2, 4𝑟𝑟 + 3, 5𝑟𝑟 + 4), therefore the direction ratios of 𝑃𝑃𝑁 
are (3𝑟𝑟 + 2 − 1, 4𝑟𝑟 + 3 − 2, 5𝑟𝑟 + 4 − 3) 𝑖. 𝑒.  (3𝑟𝑟 + 1, 4𝑟𝑟 + 1, 5𝑟𝑟 + 1). 
The direction ratios of the line 𝐴𝐴𝐵𝐵 whose equations are given by (1), are 
3, 4, 5.Since 𝑃𝑃𝑁 is perpendicular to 𝐴𝐴𝐵𝐵, we have, 

3. (3𝑟𝑟 + 1) + 4. ( 4𝑟𝑟 + 1) + 5( 5𝑟𝑟 + 1) =  0, or  =  −6|25 . 

𝑃𝑃𝑢𝑢𝑡𝑡𝑖𝑛𝑛𝑔𝑔 𝑡ℎ𝑒 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑒 𝑜𝑓𝑓 𝑟𝑟 𝑖𝑛𝑛 (3𝑟𝑟 + 2, 4𝑟𝑟 + 3, 5𝑟𝑟 + 4), we get 𝑁 =
 (32|25, 51|25, 14|5), therefore, 

 𝑃𝑃𝑁 = the distance between the points 𝑃𝑃 and 𝑁 

= �{�32�25 –  1�
2

+ (51|25 − 2)2 + (14|5 − 3)2} =  √3 | 5.  

Putting the value of 𝑟𝑟 in (3𝑟𝑟 + 1, 4𝑟𝑟 + 1, 5𝑟𝑟 + 1), the direction ratios of 
𝑃𝑃𝑁 are 7|25, 1|25,−5|25 𝑖. 𝑒. 7, 1,−5. So, the equation to 𝑃𝑃𝑁.  Equation 
of a line passing through P(1, 2, 3) and having direction ratios 7, 1,−5 are 

 (𝑙𝑙 −  1)|7 =  (𝑚𝑚 −  2)| 1 =  (𝑛𝑛 −  3)| − 5. 

Definition1.𝑺𝒌𝒆𝟐𝟐 𝒍𝒍𝒊𝒏𝒏𝒆𝒔: Those lines which do not intersect or the lines 
which do not lie in a plane. 

Definition2. Shortest distance: The length of the line intercepted between 
two lines which is perpendicular to both is the shortest distance between 
them. The straight line which is perpendicular to each of the two skew 
lines is called the line of the shortest distance (S. D.). 
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3.1.31 THE SHORTEST DISTANCE BETWEEN ANY 
TWO NON- INTERSECTING LINES 

 L B 

 P 

 

A R 

 

 

C S                             Q                                                                           

 

Suppose that 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷  be two non intersecting lines and 𝐿𝑀 a 
perpendicular line to both of them. 𝑅𝑆𝑆 is the portion of 𝐿𝑀 intercepted 
between 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷. We have to prove  that 𝑅𝑆𝑆 is the shortest distance 
between 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷. 

Let 𝑃𝑃 and 𝑄 be any points on 𝐴𝐴𝐵𝐵 and 𝐶𝐶𝐷𝐷 respectively. 𝑅𝑆𝑆 is the projection 
of 𝑃𝑃𝑄 on 𝐿𝑀. If (𝜃𝜃) be the angle between 𝑃𝑃𝑄 and 𝐿𝑀, then 𝑅𝑆𝑆 =
 𝑃𝑃𝑄𝑐𝑐𝑜𝑠𝜃𝜃 or, 𝑅𝑆𝑆 |𝑃𝑃𝑄 = 𝑐𝑐𝑜𝑠𝜃𝜃, since  𝑐𝑐𝑜𝑠𝜃𝜃 < 1,  therefore,  𝑅𝑆𝑆 |𝑃𝑃𝑄 < 1, 
i.e. 𝑅𝑆𝑆 is the shortest distance between these two lines. 

3.1.32 LENGTH AND EQUATIONS OF THE LINE OF 
SHORTEST DISTANCE 

(If the equations of the skew lines are in symmetrical form) 

Suppose that the equations of two lines be  

(𝑙𝑙 −  𝛼𝛼)| 𝑙𝑙 = (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 = (𝑛𝑛 −  𝛾𝛾)|𝑛𝑛…………(1) 

𝑎𝑎𝑛𝑛𝑑𝑑 (𝑙𝑙 −  𝛼𝛼′)| 𝑙𝑙′ = (𝑚𝑚 −  𝛽𝛽′)|𝑚𝑚′ = (𝑛𝑛 −  𝛾𝛾′)|𝑛𝑛′…………(2) Suppose 
𝜆𝜆, 𝜇, 𝜈 be the direction cosines of the S. D. Since S.D. is perpendicular to 
each of the given lines, therefore,  

𝑙𝑙𝜆𝜆 + 𝑚𝑚𝜇 + 𝑛𝑛𝜈 = 0 and 𝑙𝑙′𝜆𝜆 + 𝑚𝑚′𝜇 + 𝑛𝑛′𝜈 = 0, therefore, 

𝜆𝜆|(𝑚𝑚𝑛𝑛′ −  𝑚𝑚′𝑛𝑛) =  𝜇|(𝑛𝑛𝑙𝑙′ −  𝑛𝑛′𝑙𝑙) =
 𝜈 |(𝑙𝑙𝑚𝑚′ −  𝑙𝑙′𝑚𝑚) =
 1 |�{(𝑚𝑚𝑛𝑛′ −  𝑚𝑚′𝑛𝑛)2 + (𝑛𝑛𝑙𝑙′ −  𝑛𝑛′𝑙𝑙)2 + (𝑙𝑙𝑚𝑚′ −  𝑙𝑙′𝑚𝑚)2 } = K(say) 

Therefore,  𝜆𝜆 =  (𝑚𝑚𝑛𝑛′ −  𝑚𝑚′𝑛𝑛)𝐾, 𝜇 =  (𝑛𝑛𝑙𝑙′ −  𝑛𝑛′𝑙𝑙)𝐾 and 

 𝜈 =  (𝑙𝑙𝑚𝑚′ −  𝑙𝑙′𝑚𝑚)𝐾.  

If 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be any point on the line (1) and 𝑄(𝛼𝛼′,𝛽𝛽′, 𝛾𝛾′) be any point on 
the line (2), then the shortest distance will be the projection of the line 𝑃𝑃𝑄 UGMM-102/100
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joining these points on the line whose direction cosines are 
𝜆𝜆, 𝜇, 𝜈, 𝑡ℎ𝑒𝑟𝑟𝑒𝑓𝑓𝑜𝑟𝑟𝑒,  

S.D. = (𝛼𝛼 −  𝛼𝛼′)𝜆𝜆 + (𝛽𝛽 −  𝛽𝛽′)𝜇 + (𝛾𝛾 −  𝛾𝛾′)𝜈  

 =(𝛼𝛼 −  𝛼𝛼′)(𝑚𝑚𝑛𝑛′ −  𝑚𝑚′𝑛𝑛)𝐾 + (𝛽𝛽 −  𝛽𝛽′)(𝑛𝑛𝑙𝑙′ −  𝑛𝑛′𝑙𝑙)𝐾 + (𝛾𝛾 −  𝛾𝛾′)(𝑙𝑙𝑚𝑚′ −
 𝑙𝑙′𝑚𝑚)𝐾={(𝛼𝛼 −  𝛼𝛼′)(𝑚𝑚𝑛𝑛′ −  𝑚𝑚′𝑛𝑛) + (𝛽𝛽 −  𝛽𝛽′)(𝑛𝑛𝑙𝑙′ −  𝑛𝑛′𝑙𝑙)(𝛾𝛾 −  𝛾𝛾′)(𝑙𝑙𝑚𝑚′ −
 𝑙𝑙′𝑚𝑚)}|{�{(𝑚𝑚𝑛𝑛′ −  𝑚𝑚′𝑛𝑛)2 +  (𝑛𝑛𝑙𝑙′ −  𝑛𝑛′𝑙𝑙)2 + (𝑙𝑙𝑚𝑚′ −  𝑙𝑙′𝑚𝑚)2 }} 

Equation of the plane containing the line (1) and the S.D. is  

�
𝑙𝑙 − 𝛼𝛼 𝑚𝑚 − 𝛽𝛽 𝑛𝑛 − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛
𝜆𝜆 𝜇 𝜈

� =  0…….(3) 

Equation of the plane containing the line (1) and the S.D. is  

�
𝑙𝑙 − 𝛼𝛼′ 𝑚𝑚 − 𝛽𝛽′ 𝑛𝑛 − 𝛾𝛾′
𝑙𝑙′ 𝑚𝑚′ 𝑛𝑛′
𝜆𝜆 𝜇 𝜈

� =  0……..(4) 

Equations (3) and (4) taken together will represent the equations of the 
line of the shortest distance. 

Note: If the lines are coplanar, the S. D. between them is zero, then  

�
𝛼𝛼′ − 𝛼𝛼 𝛽𝛽′ − 𝛽𝛽 𝛾𝛾′ − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛
𝑙𝑙′ 𝑚𝑚′ 𝑛𝑛′

� =  0 

 Two lines are coplanar if the shortest distance between them is zero. 

Example24: Find the shortest distance between the lines 

(𝑙𝑙 −  1)|2 =  (𝑚𝑚 –  2 )| 3 =  (𝑛𝑛 −  3)|4; 

 (𝑙𝑙 −  2)|3 =  (𝑚𝑚 –  4 )| 4 =  (𝑛𝑛 −  5)|5. 

Also show that the equations of the shortest distance are 

 11𝑙𝑙 +  2𝑚𝑚 –  7𝑛𝑛 +  6 =  0;  7𝑙𝑙 +  𝑚𝑚 –  5𝑛𝑛 +  7 =  0. 

Solution: The given lines are 

 (𝑙𝑙 −  1)|2 =  (𝑚𝑚 –  2 )| 3 =  (𝑛𝑛 −  3)|4 = 𝑟𝑟1 (𝑠𝑎𝑎𝑚𝑚)…….(1) 

 (𝑙𝑙 −  2)|3 =  (𝑚𝑚 –  4 )| 4 =  (𝑛𝑛 −  5)|5 = 𝑟𝑟2 (𝑠𝑎𝑎𝑚𝑚)……(2) 

Let 𝑙𝑙,𝑚𝑚,𝑛𝑛 be the direction cosines of the line of S. D. Since it is 
perpendicular to both the given lines (1) and (2), therefore, we have 

2𝑙𝑙 +  3𝑚𝑚 +  4𝑛𝑛 =  0;  3𝑙𝑙 +  4𝑚𝑚 +  5𝑛𝑛 =  0. 

Solving these, we get 
𝑙𝑙| − 1 =  𝑚𝑚|2 =  𝑛𝑛| − 1 =
�(𝑙𝑙 2 +  𝑚𝑚2  +  𝑛𝑛2)|�((−1)2 +  (2)2 + (−1)2) UGMM-102/101
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=  1 |√6 

Therefore, the direction cosines of S.D. are −1 |√6,   2 |√6,−1 |√6  

Now 𝐴𝐴(1, 2, 3) is a point on the line (1)and 𝐵𝐵(2, 4, 5) is a point on the 
line (2). 

The length of S. D. = the projection of join of 𝐴𝐴 and 𝐵𝐵 on the line whose 
direction cosines are −1 |√6,   2 |√6,−1 |√6 

= −1 |(2 − 1) +  2 |(4− 2) − 1 |√6(5− 3) =  1 |√6 

The equation of S.D.: The equation of the plane through the line (1) and 
S. D. is  

�
𝑙𝑙 − 1 𝑚𝑚 − 2 𝑛𝑛 − 3

2 3 4
−1 2 −1

� =  0 

Or, 11𝑙𝑙 +  2𝑚𝑚 –  7𝑛𝑛 +  6 =  0 … … … . . (3) 

And the equation of the plane through the line (2) and S. D. is  

�
𝑙𝑙 − 2 𝑚𝑚 − 4 𝑛𝑛 − 5

3 4 5
−1 2 −1

� =  0 

Or, 7𝑙𝑙 +  𝑚𝑚 –  5𝑛𝑛 +  7 =  0 … … (4) 

Therefore, from equations (3) and (4) the equations of S.D. are 

11𝑙𝑙 +  2𝑚𝑚 –  7𝑛𝑛 +  6 =  0;  

7𝑙𝑙 +  𝑚𝑚 –  5𝑛𝑛 +  7 =  0.  
 
Check your progress 

              (1)(a). The coordinates of two points 𝐴𝐴 and 𝐵𝐵 are (−2, 2, 3) and 
                       (13,−3, 13) respectively. A point P moves such that 

      3𝑃𝑃𝐴𝐴 = 2𝑃𝑃𝐵𝐵. Find the locus of 𝑃𝑃.  

1. (b). Show that the points (0, 7, 10), (−1, 6, 6) and (−4, 9, 6) form 
an isosceles right angled triangle. 

2. Find the ratio in which the coordinate planes divide the line joining 
the points (−2, 4, 7) and (3,−5, 8).  

3. If 𝛼𝛼,𝛽𝛽 𝑎𝑎𝑛𝑛𝑑𝑑 𝛾𝛾 be the angles which a line makes with the coordinate 
axes, show that 𝑠𝑖𝑛𝑛2𝛼𝛼 +  𝑠𝑖𝑛𝑛2𝛽𝛽 + 𝑠𝑖𝑛𝑛2𝛾𝛾 = 2.  

4. Show that the direction cosines of of the line which is equally 
inclined to the coordinate axes are ±1|√3, ±1|√3, ±1|√3.  

5. Find the angle between the lines whose direction cosines are 
proportional to 1, 2, 4 and – 2, 1, 5. 
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6. Find the direction cosines of the line which is perpendicular to the 
lines with direction cosines proportional to 3,−1, 1 and – 3, 2, 4.  

7. : Find the coordinate of the point I which  the line (𝑙𝑙 − 2)|3 =
(𝑚𝑚 + 1)|4 = (𝑛𝑛 − 2)|12 meets  the plane 𝑙𝑙 − 2𝑚𝑚 + 𝑛𝑛 = 20.  

8. Show that the line joining the points 𝐴𝐴(2,−3,−1) and 𝐵𝐵(8,−1, 2) 
has equations(𝑙𝑙 − 2)|6 = (𝑚𝑚 + 3)|2 = (𝑛𝑛 + 1)|3. Find two points 
on the line whose distance from 𝐴𝐴 is 14. 

9. Find the equations of the straight lines through the point (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 
which are  

10. (i). parallel to 𝑛𝑛 −axis (perpendicular to the 𝑋𝑌 − plane) and (ii). 
Perpendicular to 𝑍 − axis (parallel to 𝑋𝑌 − plane). 

11. Find the distance of the point (1, 3, 4) from the plane 2𝑙𝑙 –  𝑚𝑚 +
 𝑛𝑛 =  3 measured parallel to the line 𝑙𝑙|2 =  𝑚𝑚| − 1 =  𝑛𝑛| − 1  

12. Find the distance of the point (1,−2, 3) from the plane 𝑙𝑙 –  𝑚𝑚 +
 𝑛𝑛 =  5 measured parallel to the line 𝑙𝑙|2 =  𝑚𝑚|3 =  𝑛𝑛| − 6  

13. Find the equations of the line through the point (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) at the 
right angles to the lines 𝑙𝑙|𝑙𝑙1  =  𝑚𝑚|𝑚𝑚1  =  𝑛𝑛|𝑛𝑛1  and 𝑙𝑙|𝑙𝑙2  =
 𝑚𝑚|𝑚𝑚2   =  𝑛𝑛|𝑛𝑛2. 

14. Find the coordinates of the foot of the perpendicular from the point 
(2, 3, 7) to the plane 3𝑙𝑙 − 𝑚𝑚 − 𝑛𝑛 =  7. Also find the the length of 
the perpendicular. 

15. Find the equation of the plane through the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) and (i). 
perpendicular to the straight line (𝑙𝑙 −  𝑙𝑙1)|𝑙𝑙 = (𝑚𝑚 −  𝑚𝑚1)|𝑚𝑚 =
 (𝑛𝑛 −  𝑛𝑛1)|𝑛𝑛. (ii). Parallel to the lines 𝑙𝑙|𝑙𝑙1  =  𝑚𝑚|𝑚𝑚1  =  𝑛𝑛|𝑛𝑛1  and 
𝑙𝑙|𝑙𝑙2  =  𝑚𝑚|𝑚𝑚2   =  𝑛𝑛|𝑛𝑛2. 

16. A variable plane makes intercepts  on the coordinate axes the sum 
of whose squares is constant and equal to 𝑘2. Show that the locus 
of the foot of the perpendicular from the origin to the plane is 
(𝑙𝑙−2  +  𝑚𝑚−2  +  𝑛𝑛−2)(𝑙𝑙2  +  𝑚𝑚 2 +  𝑛𝑛2)2  =  𝑘2 

17. The planes 3𝑙𝑙 –  𝑚𝑚 +  𝑛𝑛 +  1 =  0, 5𝑙𝑙 +  𝑚𝑚 +  3𝑛𝑛 =  0 intersect 
in the line 𝑃𝑃𝑄. Find the equation of the plane through the point 
(2, 1, 4) and perpendicular to 𝑃𝑃𝑄. 

18. Find the equations of the  line through the point (1,2, 3) parallel to 
the line 𝑙𝑙 –  𝑚𝑚 + 2𝑛𝑛 − 5 =  0, 3𝑙𝑙 +  𝑚𝑚 +  𝑛𝑛 − 6 =  0. 

19. Find the equations of the  line through the point (1,2, 3) parallel to 
the line 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 = 0, 𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2 = 0. 

20. Prove that the lines 𝑙𝑙 =  𝑎𝑎𝑚𝑚 +  𝑏𝑏;  𝑛𝑛 =  𝑐𝑐𝑚𝑚 +  𝑑𝑑 and 𝑙𝑙 =  𝑎𝑎’𝑙𝑙 +
𝑏𝑏’;  𝑛𝑛 =  𝑐𝑐’𝑚𝑚 + 𝑑𝑑’ are perpendicular if 𝑎𝑎𝑎𝑎’ +  𝑐𝑐𝑐𝑐’ + 1 =  0.  

21. Find the equation of the plane through the line  (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =
 (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛 and parallel to the line (𝑙𝑙 − 𝛼𝛼′)|𝑙𝑙′ =
 (𝑚𝑚 −  𝛽𝛽′)|𝑚𝑚′ =  (𝑛𝑛 − 𝛾𝛾′)|𝑛𝑛′. UGMM-102/103
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22. Find the equation of the plane through the line  𝑃𝑃 = 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 +
𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 = 0, 𝑄 =  𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2 = 0 and parallel to the 
line  𝑙𝑙 | 𝑙𝑙 =  𝑚𝑚 | 𝑚𝑚 =  𝑛𝑛 | 𝑛𝑛. 

23. Find the equation of the plane through the line 3𝑙𝑙 –  4𝑚𝑚 +  5𝑛𝑛 =
 10, 2𝑙𝑙 +  2𝑚𝑚 –  3𝑛𝑛 =  4 and parallel to the line 𝑙𝑙 =  2𝑚𝑚 =  3𝑛𝑛. 

24. Find the equation of the plane through the points 
(2,−1, 0), (3,−4, 5) and parallel to the line 3𝑙𝑙 =  2𝑚𝑚 =  𝑛𝑛. 

25. Find the equation of the plane through the point (2, 1, 4) and    
perpendicular to the line of intersection of the planes 3𝑙𝑙 +  4𝑚𝑚 +
 7𝑛𝑛 +  4 =  0 and 𝑙𝑙 –  𝑚𝑚 +  2𝑛𝑛 +  3 =  0. 

26. Find the equations of the perpendicular from the point 

 (3, -1, 11) to the line  )|2 =  (𝑚𝑚 −  2)| 3 =  (𝑛𝑛 −  3)|4 . Find also the 
coordinates of the foot of perpendicular and the length of the 
perpendicular. 

27. Find the equation of the plane through the line(𝑙𝑙 −  2)|2 =  (𝑚𝑚 −
 3)| 3 =  (𝑛𝑛 –  4)|5 and parallel to the coordinate axes. 

28. Prove that the equation of the plane through the  line (𝑙𝑙 −  1)|3 =
 (𝑚𝑚 +  6)| 4 =  (𝑛𝑛 +  1)|2 and parallel to the line (𝑙𝑙 −  2)|2 =
 (𝑚𝑚 −  1)| − 3 =  (𝑛𝑛 +  4)|5 is 25𝑙𝑙 –  11𝑚𝑚 –  17𝑛𝑛 –  109 =  0 and 
show that the point (2, 1,−4) lies on it. 

29. Find the equation of the plane through the line 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =
 0 ;  𝑎𝑎’𝑙𝑙 +  𝑏𝑏’𝑚𝑚 +  𝑐𝑐’𝑛𝑛 =  0 and 𝛼𝛼𝑙𝑙 +  𝛽𝛽𝑚𝑚 +  𝛾𝛾𝑛𝑛 =  0 ;  𝛼𝛼’𝑙𝑙 +
 𝛽𝛽’𝑚𝑚 + 𝛾𝛾’𝑛𝑛 =  0 

30. Find the angle between the lines whose direction cosines are given 
by the equation 3𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 0 and 6𝑚𝑚𝑛𝑛 − 2𝑛𝑛𝑙𝑙 + 5𝑙𝑙𝑚𝑚 = 0.  

31. Find the angle between the lines whose direction cosines are given 
by the equation 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 0 and 2𝑛𝑛𝑙𝑙 + 2𝑙𝑙𝑚𝑚 −𝑚𝑚𝑛𝑛 = 0.  

32. Show that the acute angle between the diagonals of a cube    is 
𝑐𝑐𝑜𝑠−1(1|3). 

33. If 𝐴𝐴(3, 4, 5), 𝐵𝐵(4, 6, 3),𝐶𝐶(−1, 2, 4) and 𝐷𝐷(1, 0, 5) are the four 
points, find the projection of 𝐶𝐶𝐷𝐷 on 𝐴𝐴𝐵𝐵.  

34. Lines 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 are drawn from 𝑂𝑂 with direction cosines 
propostional to 1,−2, 1;  7,−6, 1. Find the direction cosines of the 
normal to the plane 𝑂𝑂𝑃𝑃𝑄.  

35. Find the ratio in which the line segment joining the points 
𝐴𝐴(1, 2, 3) and 𝐵𝐵(−4, 5,−2) is divided by the plane 𝑙𝑙 + 2𝑚𝑚 =
 4 + 𝑛𝑛. 

36. Find the equation of the set of the points 𝑃𝑃 such that its distance 
from the points 𝐴𝐴(3, 4,−5) and 𝐵𝐵(−2, 1, 4) are in the ratio 1: 2. 
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37. Find the equation of a line which passes through a point 
(2,−1,−1) parallel to the line 6𝑙𝑙 − 2 =  3𝑚𝑚 + 1 =  2𝑛𝑛 − 2. 

38. Find the coordinate of the point, where the through (3, 4, 1) and 
(5, 1, 6) meet the 𝑍𝑋-plane.  

39. Find the equations of the perpendicular from the origin to the line 
𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 + 𝑑𝑑 =  0 ;  𝑎𝑎’𝑙𝑙 +  𝑏𝑏’𝑚𝑚 +  𝑐𝑐’𝑛𝑛 + 𝑑𝑑′ =  0 

40. Find the distance of the point 𝑃𝑃(3, 8, 2) from the line (𝑙𝑙 −
 1)|2 =  (𝑚𝑚 −  3)| 4 =  (𝑛𝑛 –  2)|3 measured to the plane 3𝑙𝑙 +
 2𝑚𝑚 –  2𝑛𝑛 +  17 =  0 

41. Show that the lines(𝑙𝑙 +  3)|2 =  (𝑚𝑚 +  5) | 3 =  − (𝑛𝑛 –  2) | 3 
and (𝑙𝑙 +  1)|4 =  (𝑚𝑚 +  1) | 5 =  − (𝑛𝑛 +  1) | 1 are coplanar. 
Find the equation of the plane containing them.  

42. Prove that the lines(𝑙𝑙 −  1)|2 =  (𝑚𝑚 −  2) | 3 =  (𝑛𝑛 –  3) | 4 and 
(𝑙𝑙 −  2)|3 =  (𝑚𝑚 −  3) | 4 =   (𝑛𝑛 −  4) | 5 are coplanar. Find their 
point of intersection and the equation of the plane in which they 
lie.  

43. Prove that the lines 3𝑙𝑙 –  5 =  4𝑚𝑚 –  9 =  3𝑛𝑛 and 𝑙𝑙 −  1 =
 2𝑚𝑚 –  4 =  3𝑛𝑛 meet in a point and the equation of the plane in 
which they lie is 3𝑙𝑙 –  8𝑚𝑚 +  3𝑛𝑛 + 13 =  0. 

44. A line with direction cosines proportional to 2, 7,−5 is drawn to 
intersect the lines (𝑙𝑙 −  5)|3 =  (𝑚𝑚 −  7)|  − 1 =  (𝑛𝑛 +  2) | 1 
and (𝑙𝑙 +  3) |  − 3 =  (𝑚𝑚 −  3) | 2 =  (𝑛𝑛 −  6) | 4. Find the 
coordinates of the points of intersection and the length intercepted 
on it. 

45. Find the equations to the straight line drawn from the origin to 
intersect the lines 2𝑙𝑙 +  5𝑚𝑚 +  3𝑛𝑛 –  4 =  0: 𝑙𝑙 –  𝑚𝑚 –  5𝑛𝑛 −  6 =
 0. And 3𝑙𝑙 –  𝑚𝑚 +  2𝑛𝑛 –  1 =  0: 𝑙𝑙 +  2𝑚𝑚 –  𝑛𝑛 –  2 =  0. 

46. A line with direction cosines proportional to 2, 1, 2 meets each of 
the lines given by the equations 𝑙𝑙 =  𝑚𝑚 +  𝑎𝑎 =  𝑛𝑛: 𝑙𝑙 +  𝑎𝑎 =
 2𝑚𝑚 =  2𝑛𝑛.  Find the coordinates of each of the points of 
intersection. 

47. Find the equations of the straight line through the origin and 
cutting each of the lines (𝑙𝑙 −  𝑙𝑙1)|𝑙𝑙1 = (𝑚𝑚 −  𝑚𝑚1)|𝑚𝑚1 =
 (𝑛𝑛 −  𝑛𝑛1)|𝑛𝑛1 and (𝑙𝑙 −  𝑙𝑙2)|𝑙𝑙2 = (𝑚𝑚 −  𝑚𝑚2)|𝑚𝑚2 =  (𝑛𝑛 −  𝑛𝑛2)|𝑛𝑛2. 

48. Find the equations of the straight line through the origin which will 
intersect both the lines 

(𝑙𝑙 −  1)| 1 =  (𝑚𝑚 +  3)| 4 =  (𝑛𝑛 −  5)| 3 and 

(𝑙𝑙 −  4) | 2 =  (𝑚𝑚 +  3)| 3 + (𝑛𝑛 –  14 )| 4. 

49. Find the equations of the perpendicular from (1, 3, 7) on the line 
𝑙𝑙 =  3 –  5𝑡,𝑚𝑚 =  2 +  5𝑡, 𝑛𝑛 =  −7 +  2𝑡. 
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50. Find the locus of a point whose distance from X- axis is twice its 
distance from the yz- plane. 

51. Find the length of the perpendicular drawn from the origin to the 
line 𝑙𝑙 +  2𝑚𝑚 +  3𝑛𝑛 +  4 =  0;  2𝑙𝑙 +  3𝑚𝑚 +  4𝑛𝑛 + 5 =  0. 

52. Also find the equations of this perpendicular and the coordinates of 
the foot of the perpendicular. 

53. Find the shortest distance between the lines (𝑙𝑙 −  3)|1 =
 (𝑚𝑚 –  5) |  − 2 =  (𝑛𝑛 −  7)|1: (𝑙𝑙 + 1) | 7 =  (𝑚𝑚 +  1)| − 7 =
 (𝑛𝑛 + 1)|1. Find also its equations and the points in which it meets 
the given lines. 

54. Find the shortest distance between the lines (𝑙𝑙 −  3)|3 =
 (𝑚𝑚 –  8) |  − 1 =  (𝑛𝑛 −  3)|1: (𝑙𝑙 + 3) |  − 3 =  (𝑚𝑚 +  7)|2 =
 (𝑛𝑛 −  6)|4. Find also its equations and the points in which it 
meets the given lines. 

55. Find the shortest distance between the lines (𝑙𝑙 −  1)|2 =
 (𝑚𝑚 –  2) | 3 =  (𝑛𝑛 −  3)|4: (𝑙𝑙 − 2) | 3 =  (𝑚𝑚 − 3)|4 =  (𝑛𝑛 −
 4)|5. Hence show that the lines are coplanar. 

56. Show that the shortest distance between the diagonals of a 
rectangular parallelepiped and its edges not meeting it are 
𝑏𝑏𝑐𝑐| �(𝑏𝑏 2 +  𝑐𝑐2)  ,  𝑐𝑐𝑎𝑎| �(𝑎𝑎 2 +  𝑐𝑐2) , 𝑎𝑎𝑏𝑏| �(𝑏𝑏 2 + 𝑎𝑎2) where a, 
b, c are the lengths of the edges.  

57. Find the length and equations of the shortest distance between the 
lines 3𝑙𝑙 –  9𝑚𝑚 +  5𝑛𝑛 =  0;  𝑙𝑙 +  𝑚𝑚 –  𝑛𝑛 =  0 and 6𝑙𝑙 +  8𝑚𝑚 +
3𝑛𝑛 –  13 =  0;  𝑙𝑙 +  2𝑚𝑚 +  𝑛𝑛 –  3 =  0.  

Summary 

1. The general equation of the plane is  𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 + 𝑑𝑑 =  0 
2. The equation of any plane passing through the origin is 

 𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 =  0 
3. General equation of the plane in normal form:  

The general equation of the plane is  𝑎𝑎𝑙𝑙 +  𝑏𝑏𝑚𝑚 +  𝑐𝑐𝑛𝑛 + 𝑑𝑑 =
 0….(1) 
Suppose the general equation of the normal form is  

𝑙𝑙𝑙𝑙 +  𝑚𝑚𝑚𝑚 +  𝑛𝑛𝑛𝑛 =  𝑝𝑝… … … . (2) where 

𝑙𝑙|𝑎𝑎 =  𝑚𝑚|𝑏𝑏 =  𝑛𝑛|𝑐𝑐 =  𝑝𝑝| − 𝑑𝑑 
=  ±�(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

= ±1 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

Where the same sign either positive  or negative is to be chosen 
throughout. 
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𝑙𝑙 = ±𝑎𝑎 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2), 𝑚𝑚 = ±𝑏𝑏 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

 𝑛𝑛 = ±𝑐𝑐 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2), 𝑝𝑝 = ±𝑑𝑑 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) 

Substituting these values in equation (2), the normal form of the 
plane (1) is given by  

±𝑐𝑐𝑛𝑛 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)  = ±𝑑𝑑 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)…….(3) 

The sign of the equation (3) is so chosen that 𝑝𝑝 is 
±𝑑𝑑 | �(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2) is always positive. 

4. If the lines(𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 −
𝛾𝛾)|𝑛𝑛………………..(1) 

And (𝑙𝑙 − 𝛼𝛼′)|𝑙𝑙′ =  (𝑚𝑚 −  𝛽𝛽′)|𝑚𝑚′ =  (𝑛𝑛 − 𝛾𝛾′)|𝑛𝑛′ ………(2)  

(a) are perpendicular then   𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′ = 0.  

In the case of direction ratio, ( 𝑎𝑎1𝑎𝑎2 + 𝑏𝑏1𝑏𝑏2 + 𝑐𝑐1𝑐𝑐2) = 0. 

(b) If the lines are parallel then 𝑙𝑙|𝑙𝑙′ =  𝑚𝑚|𝑚𝑚′ =  𝑛𝑛|𝑛𝑛′.  

In the case of direction ratio, � 𝑎𝑎1|𝑎𝑎2 = 𝑏𝑏1|𝑏𝑏2 = 𝑐𝑐1|𝑐𝑐2� 

(c) Equation of a line passing through a point (𝑙𝑙1, 𝑚𝑚1, 𝑛𝑛1) and 
direction ratio are 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 is (𝑙𝑙 −  𝑙𝑙1)|𝑎𝑎 = (𝑚𝑚 −  𝑚𝑚1)|𝑏𝑏 =
 (𝑛𝑛 −  𝑛𝑛1)|𝑐𝑐 =  𝜆𝜆  
Therefore the general point on this line is 

 𝑙𝑙 =  𝑙𝑙1 +  𝜆𝜆𝑎𝑎,  𝑚𝑚 =  𝑚𝑚1 +  𝜆𝜆𝑏𝑏 and 𝑛𝑛 =  𝑛𝑛1 +  𝜆𝜆𝑐𝑐. 

(d) Equation of a line passing through two points 𝐴𝐴(𝑙𝑙1, 𝑚𝑚1, 𝑛𝑛1)    
and 𝐵𝐵(𝑙𝑙2, 𝑚𝑚2, 𝑛𝑛2) is  

        (𝑙𝑙 −  𝑙𝑙1)|(𝑙𝑙2 − 𝑙𝑙1) = (𝑚𝑚 −  𝑚𝑚1)|(𝑚𝑚2 − 𝑚𝑚1) =  (𝑛𝑛 −
 𝑛𝑛1)|(𝑛𝑛2 − 𝑛𝑛1). 

5. Condition for parallel of a line and a plane 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 = 0 

6. Condition for perpendicular of a line and a plane is 𝑎𝑎|𝑙𝑙 = 𝑏𝑏|𝑚𝑚 =
𝑐𝑐|𝑛𝑛 

7. Equation of a plane through a given line and parallel to an  another 
line: Suppose the equation of the plane through the line 

          (𝑙𝑙 − 𝛼𝛼)|𝑙𝑙1  =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚1  =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛1 and parallel to the line  

         (𝑙𝑙)|𝑙𝑙2  =  (𝑚𝑚)|𝑚𝑚2  =  (𝑛𝑛)|𝑛𝑛2 is 

�
𝑙𝑙 − 𝛼𝛼 𝑚𝑚 − 𝛽𝛽 𝑛𝑛 − 𝛾𝛾
𝑙𝑙1 𝑚𝑚1 𝑛𝑛1
𝑙𝑙2 𝑚𝑚2 𝑛𝑛2

� = 0 

8. Equation of the perpendicular line from the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1,𝑛𝑛1) to 
the line (1) are given by 

  (𝑙𝑙 − 𝑙𝑙1)| (𝛼𝛼 + 𝑙𝑙𝑟𝑟 − 𝑙𝑙1) = (𝑚𝑚 − 𝑚𝑚1)|(𝛽𝛽 + 𝑚𝑚𝑟𝑟 − 𝑚𝑚1) = (𝑛𝑛 − 𝑛𝑛1)| 
(𝛾𝛾 + 𝑛𝑛𝑟𝑟 − 𝑛𝑛1) UGMM-102/107
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9. Condition for the two lines to intersect ( in general form):Suppose 
the equations of the given lines be 

 𝑎𝑎1𝑙𝑙 + 𝑏𝑏1𝑚𝑚 + 𝑐𝑐1𝑛𝑛 + 𝑑𝑑1 = 0;  𝑎𝑎2𝑙𝑙 + 𝑏𝑏2𝑚𝑚 + 𝑐𝑐2𝑛𝑛 + 𝑑𝑑2 = 0…..(1) 

𝑎𝑎3𝑙𝑙 + 𝑏𝑏3𝑚𝑚 + 𝑐𝑐3𝑛𝑛 + 𝑑𝑑3 = 0;  𝑎𝑎4𝑙𝑙 + 𝑏𝑏4𝑚𝑚 + 𝑐𝑐4𝑛𝑛 + 𝑑𝑑4 = 0……(2) 

�
𝑎𝑎1 𝑏𝑏1    𝑐𝑐1  𝑑𝑑1
𝑎𝑎 2
𝑎3

   𝑏𝑏 2
𝑏3

    𝑐𝑐 2
𝑐3

  𝑑𝑑 2
𝑑3

𝑎𝑎4 𝑏𝑏4    𝑐𝑐4   𝑑𝑑4

�  = 0 

10. COPLANAR LINES: Suppose that the equations of the given lines 
be 
(𝑙𝑙 − 𝛼𝛼)|𝑙𝑙 =  (𝑚𝑚 −  𝛽𝛽)|𝑚𝑚 =  (𝑛𝑛 − 𝛾𝛾)|𝑛𝑛………………..(1) 

And (𝑙𝑙 − 𝛼𝛼′)|𝑙𝑙′ =  (𝑚𝑚 −  𝛽𝛽′)|𝑚𝑚′ =  (𝑛𝑛 − 𝛾𝛾′)|𝑛𝑛′ ………(2) 
If they intersect,, then they lie in a plane(coplanar)if  

�
𝛼𝛼′ − 𝛼𝛼 𝛽𝛽′ − 𝛽𝛽 𝛾𝛾′ − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛
𝑙𝑙′ 𝑚𝑚′ 𝑛𝑛′

� =  0 

.𝑺𝒌𝒆𝟐𝟐 𝒍𝒍𝒊𝒏𝒏𝒆𝒔: Those lines which do not intersect or the lines 
which do not lie in a plane. 
Shortest distance: The length of the line intercepted between two 
lines which is perpendicular to both is the shortest distance 
between them. The straight line which is perpendicular to each of 
the two skew lines is called the line of the shortest distance (S. D.). 

11. If the lines are coplanar, the S. D. between them is zero, then  

�
𝛼𝛼′ − 𝛼𝛼 𝛽𝛽′ − 𝛽𝛽 𝛾𝛾′ − 𝛾𝛾
𝑙𝑙 𝑚𝑚 𝑛𝑛
𝑙𝑙′ 𝑚𝑚′ 𝑛𝑛′

� =  0 

 Two lines are coplanar if the shortest distance between them is zero. 
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UNIT-4  THE SPHERE 

Structure 

4.1 Introduction 

4.2 Objectives 

4.3 Equation of a Sphere with centre at C(u, v, w) and radius 
r  

4.4 Equation of a Sphere with centre at origin O(0,0,0) and 
radius r  

4.5 General Equation of the Sphere 

4.6 Equation of the Sphere with a given diameter  

4.7 Plane Section of a Sphere 

4.8 Great Circle 

4.9 Intersection of two Sphere 

4.10 Sphere Passing through a circle 

4.11 Intersection of a Straight line and a Sphere 

4.12 Tangent Planes 

4.13 Condition of Tangency 

4.14 Plane of contact 

4.15 Pole and Polar planes 

4.16 The equation of the polar plane of a point A(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) 
with respect to the sphere       

      𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

4.17 The equation of the polar plane of a point A(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) 
with respect to the sphere       

      𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

4.18  The pole of the polar plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 with 
respect to the sphere       
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        𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is �𝑙𝑎
2

𝑝
, 𝑚𝑎2

𝑝
, 𝑛𝑎

2

𝑝
� 

4.19 Orthogonal System of Spheres 

4.20 Touching Spheres 

4.21 The Length of the Tangent and Power of a Point 

4.22 The Radical plane of two Spheres 

4.23 The Radical Axis(Radical Line) of three Spheres 

4.24 Coaxial System of Spheres 

4.25 Limiting Points of a Co-axial system of spheres 

4.26 Summary  

4.27 Terminal Questions 

4.28 Further readings 

4.1 INTRODUCTION 

Definition (Sphere) 4.1: 

In solid geometry, a sphere is the locus of all points equidistant from a 
fixed point. Fixed point is known as centre of the sphere and constant 
distance is known as the radius of the sphere.  

 

 

 

 

 

 

 

 

              Figure 4.1 
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𝐏𝐏 𝑹𝑹 

Figure 4.2 

Figure 4.3 

C is the centre of the sphere and CP = r is the radius of the sphere. 

Definition (Inside and Outside of a Sphere) 4.1: 

A point is inside, outside, or on a sphere according as its distance from the 
center is less than, greater than, or equal to the radius of the sphere. 

 

 

 

 

 

 

 

 

                                                                                          

                                                                      

C is the centre of the sphere and r is radius. 

CP = r ⟹ P lies on the sphere 

CQ < r ⟹ Q lies inside the sphere 

CR > r ⟹ R lies outside the sphere 

Definition (Circle) 4.1: 

Every section of a sphere made by a plane is a circle. 

 

 

 

 

 

 

 

 

 

Definition (A Great Circle) 4.2: 

 A great circle of a sphere is a section made by a plane which passes 
through the center of the sphere.  
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𝐫𝐫 
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Figure 4.4 

 

 

 

 

 

 

                                                                    

  

  

 
 

Definition (A Small Circle) 4.3: 

A small circle of a sphere is a section made by a plane which does not pass 
through the center of the sphere. 

4.2 OBJECTIVES 

After reading this unit, you should be able to  

  Understand the definition of sphere  
  Understand that the point lies on the boundary, inside or outside 

the sphere. 
  Understand the circle, great circle and small circle. 
 Find the equation of a Sphere with centre at C(u, v, w) and radius r  
 Find the equation of a Sphere with centre at origin O(0,0,0) and 

radius r  
 Understand the general equation of the Sphere and determine its 

centre and radius 
 Find the equation of the Sphere with a given diameter  
 Find the equation of a circle and determine its centre and radius  
 Understand great circle and find the equation of a sphere for which 

the circle is a great circle  
 Show that the intersection of two sphere is a circle 
 Find the equation of a sphere passing through a circle 
 Understand the three possibilities that the line does not intersect 

the sphere or  intersect the sphere at two point or it is tangent line 
 Find the equation of tangent planes 
 Find the condition of tangency 
 Find the equation of plane of contact 
 Find the pole and polar planes 

                  

                  

        

Sphere  

Plane 

Centre of Circle and Sphere  
Great Circle 
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X 

Z 

O 

Y 

 

 

 C   (u, v, w) 

𝐏𝐏(𝐱𝐱,𝐲𝐲, 𝐳𝐳) 

Figure 4.5 

 Show that the equation of the polar plane of a point A(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) 
with respect to the sphere  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 +
𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

 Show that the equation of the polar plane of a point A(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) 
with respect to the sphere  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 +
𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

    Show that the pole of the polar plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 with 
respect to the sphere   𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is �𝑙𝑎

2

𝑝
,𝑚𝑎2

𝑝
, 𝑛𝑎

2

𝑝
� 

 Find the condition that the two spheres are orthogonal  
 Find the angle of intersection of two spheres  
 Show that the two spheres are touch internally or externally and 

find their point of contact 
 Find the length of a tangent and power of a point 
 Find the radical plane of two spheres 
 Find the radical axis(radical line) of three spheres 
 Find the Coaxial system of spheres 
 Find the limiting points of a co-axial system of spheres. 

4.3 EQUATION OF A SPHERE WITH CENTRE 
AT C(𝐮, 𝐯,𝐰) AND RADIUS R  

 

 

 

 

 

 

 

 

 

 

  

  

 

 

Let the centre of the sphere be the point C(u, v, w) and its radius be r. 

Let P(x, y, z) be any point on the sphere 

Z 

𝐫𝐫 
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Figure 4.6 

⟹ CP = r 

⟹�(𝑙𝑙 − 𝑢𝑢)2 + (𝑚𝑚 − 𝑣𝑣)2 + (𝑛𝑛 − 𝑤𝑤)2 = r 

⟹ (𝑙𝑙 − 𝑢𝑢)2 + (𝑚𝑚 − 𝑣𝑣)2 + (𝑛𝑛 − 𝑤𝑤)2 = 𝑟𝑟2 

4.4 EQUATION O F A SPHERE WITH CENTRE 
AT ORIGIN AND RADIOUS r 

 

 

 

                                                                                         

                                                                                𝐏𝐏(𝐱𝐱,𝐲𝐲, 𝐳𝐳) 

    r  

 

 

 

 

 

 

 

Let P(x, y, z) be any point on the sphere. 

OP = r 

⟹�(𝑙𝑙 − 0)2 + (𝑚𝑚 − 0)2 + (𝑛𝑛 − 0)2 = r 

⟹�𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = r 

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑟𝑟2 

4.5 GENERAL EQUATION OF THE SPHERE 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0  

⟹ (𝑙𝑙 + 𝑢𝑢)2 + (𝑚𝑚 + 𝑣𝑣)2 + (𝑛𝑛 + 𝑤𝑤)2 = �√𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑�
2
  

⟹ {𝑙𝑙 − (−𝑢𝑢)}2 + {𝑚𝑚 − (−𝑣𝑣)}2 + {𝑛𝑛 − (−𝑤𝑤)}2 =
�√𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑�

2
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Y 

𝐁𝐁(𝐱𝐱𝟐𝟐, 𝐲𝐲𝟐𝟐, 𝐳𝐳𝟐𝟐  

𝐀𝐀(𝐱𝐱𝟏𝟏, 𝐲𝐲𝟏𝟏, 𝐳𝐳𝟏𝟏  

𝐏𝐏(𝐱𝐱,𝐲𝐲, 𝐳𝐳) 

Figure 4.7 

Centre is (−𝑢𝑢,−𝑣𝑣,−𝑤𝑤) 

Radius = �𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑 

4.6 EQUATION OF THE SPHERE WITH A 
GIVEN DIAMETER 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Direction ratios of AP are x − x1, y − y1, z − z1   

Direction ratios of BP are x − x2, y − y2, z − z2  

AP ⊥ BP (angle in a semi circle) 

⇒ (x − x1)(x− x2) + (y − y1)(y − y2) + (z − z1)(z− z2) = 0   

Example 4.1: Find the equation of the sphere with centre at (1,2,3) and 
radius 5. 

Solution: Equation of a Sphere with centre at (u, v, w) and radius r is 
given by  

(𝑙𝑙 − 𝑢𝑢)2 + (𝑚𝑚 − 𝑣𝑣)2 + (𝑛𝑛 − 𝑤𝑤)2 = 𝑟𝑟2 

The required equation of the sphere is  

(𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 25 

  𝟗𝟗𝟗𝟗° 

 

                      
                 C 
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⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2x − 4y − 6z − 11 = 0 

Example 4.2: Find the equation of the sphere with centre at (0,0,4) and 
radius 4. 

Solution: Equation of a Sphere with centre at (u, v, w) and radius r is 
given by  

(𝑙𝑙 − 𝑢𝑢)2 + (𝑚𝑚 − 𝑣𝑣)2 + (𝑛𝑛 − 𝑤𝑤)2 = 𝑟𝑟2 

The required equation of the sphere is  

(𝑙𝑙 − 0)2 + (𝑚𝑚 − 0)2 + (𝑛𝑛 − 4)2 = 16 

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 8z = 0 

Example 4.3: Find the equation of the sphere whose centre is (1,3,4) and 
which passes through the point (−3,0,4). 

Solution:Radius of the sphere = �(1 + 3)2 + (3 − 0)2 + (4 − 4)2 = 5 

                Centre of the sphere = (1,3,4)  

The required equation of the sphere is  

(𝑙𝑙 − 1)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = 25 

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2x − 6y − 8z + 1 = 0 

Example 4.4: Find the centre and radius of the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 −
2x − 6y − 8z + 1 = 0. 

Solution: Equation of the given sphere is 

 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2x − 6y − 8z + 1 = 0 

⟹ (𝑙𝑙 − 1)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = (5)2 

⟹ Radius of the sphere = 5 and Centre of the sphere = (1,3,4)  

Example 4.5: Find the equation of the sphere through the four points 
(0,0,0), (𝑎𝑎, 0,0), (0, 𝑏𝑏, 0), (0,0, 𝑐𝑐). 

Solution: Let the equation of the sphere be  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0                                                                     
……… (1) 

As the sphere (1) passes through the point 
(0,0,0), (𝑎𝑎, 0,0), (0, 𝑏𝑏, 0), (0,0, 𝑐𝑐)   
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⟹ 𝑑𝑑 = 0 

      𝑎𝑎2 + 2𝑢𝑢𝑎𝑎 + 𝑑𝑑 = 0 ⟹ 𝑢𝑢 = −𝑎
2
 

      𝑏𝑏2 + 2𝑣𝑣𝑏𝑏 + 𝑑𝑑 = 0 ⟹ 𝑣𝑣 = −𝑏
2
 

      𝑐𝑐2 + 2𝑤𝑤𝑐𝑐 + 𝑑𝑑 = 0 ⟹𝑤𝑤 = − 𝑐
2
 

The required equation of sphere is 

                                        𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑚𝑚 − 𝑐𝑐𝑛𝑛 =0     (from eq. 1) 

Example 4.6: Find the equation of the sphere which passes through the 
points (0,0,0), (𝑎𝑎, 0,0), (0, 𝑏𝑏, 0) and whose centre lies on the plane 
𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 0  

Solution: Let the equation of the sphere be  

               𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0                                                   
……… (1) 

As the sphere (1) passes through the point (0,0,0), (𝑎𝑎, 0,0) 𝑎𝑎𝑛𝑛𝑑𝑑 (0, 𝑏𝑏, 0)   

⟹ 𝑑𝑑 = 0 

      𝑎𝑎2 + 2𝑢𝑢𝑎𝑎 + 𝑑𝑑 = 0 ⟹ 𝑢𝑢 = −𝑎
2
 

      𝑏𝑏2 + 2𝑣𝑣𝑏𝑏 + 𝑑𝑑 = 0 ⟹ 𝑣𝑣 = −𝑏
2
 

As the centre of the sphere (−𝑢𝑢,−𝑣𝑣,−𝑤𝑤) lies on the plane 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 0  

⟹ −𝑢𝑢 − 𝑣𝑣 − 𝑤𝑤 = 0  

⟹ 𝑢𝑢 + 𝑣𝑣 + 𝑤𝑤 = 0  

⟹ 𝑤𝑤 = −𝑢𝑢 − 𝑣𝑣 = 𝑎
2

+ 𝑏
2
  

The required equation of sphere is given by  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑚𝑚 + (𝑎𝑎 + 𝑏𝑏)𝑛𝑛 = 0 

Example 4.7: Find the equation of the sphere circumscribing the 
tetrahedron whose faces are 

𝑙𝑙 = 0,𝑚𝑚 = 0, 𝑛𝑛 = 0 and 𝑥𝑥
𝑎

+ 𝑦𝑦
𝑏

+ 𝑧𝑧
𝑐

= 1. 

Solution:  
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X 

Z 

Y 

𝐂𝐂(𝟎𝟎,𝟎𝟎, 𝐜𝐜) 

𝐀𝐀(𝐚𝐚,𝟎𝟎,𝟎𝟎) 

𝐁𝐁(𝟎𝟎,𝐛𝐛,𝟎𝟎) 

𝐎𝐎(𝟎𝟎,𝟎𝟎,𝟎𝟎) 

Figure 4.8 

 

 

 

 

 

 

 

 

  

 

 

 

 

Equations of the given planes are 

𝑙𝑙 = 0                                                     ……...(𝐏𝐏𝟏𝟏) 

𝑚𝑚 = 0                                                    ……... (𝐏𝐏𝟐𝟐) 

𝑛𝑛 = 0                                                    ……...(𝐏𝐏𝟑𝟑) 
𝑥𝑥
𝑎

+ 𝑦𝑦
𝑏

+ 𝑧𝑧
𝑐

= 1                                        ……... (𝐏𝐏𝟒) 

By solving (𝐏𝐏𝟏𝟏), (𝐏𝐏𝟐𝟐) and (𝐏𝐏𝟑𝟑), we get the vertex O(0,0,0) 

By solving (𝐏𝐏𝟐𝟐), (𝐏𝐏𝟑𝟑) and (𝐏𝐏𝟒), we get the vertex A(a, 0,0)   

By solving (𝐏𝐏𝟑𝟑), (𝐏𝐏𝟏𝟏) and (𝐏𝐏𝟒), we get the vertex B(0, b, 0)   

By solving (𝐏𝐏𝟏𝟏), (𝐏𝐏𝟐𝟐) and (𝐏𝐏𝟒), we get the vertex C(0,0, c)   

Therefore the sphere circumscribing the tetrahedron OABC is the sphere 
passing through the four points O(0,0,0), A(a, 0,0), B(0, b, 0) and 
C(0,0, c)  is given by      

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑚𝑚 − 𝑐𝑐𝑛𝑛 =0 

Example 4.8: Find the equation of the sphere on the join of (0, b, 0) and 
(0,0, c)  as diameter. 

Solution: The equation of the sphere on the join of (0, b, 0) and (0,0, c)  
as diameter is given by 

(𝑙𝑙 − 0)(𝑙𝑙 − 0) + (𝑚𝑚 − 𝑏𝑏)(𝑚𝑚 − 0) + (𝑛𝑛 − 0)(𝑛𝑛 − 𝑐𝑐) = 0 

⟹ 𝑙𝑙2 + 𝑚𝑚2 − 𝑏𝑏𝑚𝑚 + 𝑛𝑛2 − 𝑛𝑛𝑐𝑐 = 0 
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⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑏𝑏𝑚𝑚 − 𝑛𝑛𝑐𝑐 = 0 

Example 4.9: Find the equation of the sphere with centre at (0,0,0) and 
touch the plane 

𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0. 

Solution:  

 

 

 

 

 

                                                                    

 

 

                                                            M  

 

 

 

Radius of sphere = CM =
𝑎𝑎. 0 + 𝑏𝑏. 0 + 𝑐𝑐. 0 + 𝑑𝑑

√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2
=

𝑑𝑑
√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2

 

The required equation of sphere is given by 

(𝑙𝑙 − 0)2 + (𝑚𝑚 − 0)2 + (𝑛𝑛 − 0)2 = �
𝑑𝑑

√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2
�
2

 

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =
𝑑𝑑2

𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2
 

Example 4.10: (i) Show that the point P(2,2,1) lies on the sphere 
𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9. 

(ii) Show that the point Q(5,2,2) lies inside the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 −
6𝑙𝑙 + 4𝑚𝑚 + 4𝑛𝑛 − 32 = 0. 

(iii) Show that the point R(3,3,4) lies outside the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 +
2𝑙𝑙 + 2𝑚𝑚 − 4𝑛𝑛 − 19 = 0. 

Solution: (i) Equation of the given sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9 

                  

                  
                   C(0,0,0) 

Sphere 

Plane 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄𝒄𝒄 + 𝒅𝒅 = 𝟎𝟎 

Figure 4.9 
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Radius of the given sphere = 3 and Centre = O(0,0,0) 

PO = �(2 − 0)2 + (2 − 0)2 + (1 − 0)2 = √9 = 3
= Radius of the sphere 

Hence the point the point P(2,2,1) lies on the sphere. 

 (ii) Equation of the given sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 6𝑙𝑙 + 4𝑚𝑚 + 4𝑛𝑛 − 32 = 0 

or  
(𝑙𝑙 − 3)2 + (𝑚𝑚 + 2)2 + (𝑛𝑛 + 2)2 = 49 

Radius of the given sphere = 7 and Centre = O(3,−2,−2) 

QO = �(5 − 3)2 + (2 + 2)2 + (2 + 2)2 = √36 = 6 

QO = 6 < 7(Radius of the sphere)  

Hence the point the point Q(5,2,2) lies inside the sphere. 

(iii) Equation of the given sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 − 4𝑛𝑛 − 19 = 0 

or  
(𝑙𝑙 + 1)2 + (𝑚𝑚 + 1)2 + (𝑛𝑛 − 2)2 = 25 

Radius of the given sphere = 5 and Centre = O(−1,−1,2) 

RO = �(3 + 1)2 + (3 + 1)2 + (4 − 2)2 = √36 = 6 

RO = 6 > 5(Radius of the sphere)  

Hence the point the point R(3,3,4) lies outside the sphere. 

Note: A point P(xq, y1, z1) lies on the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 +
2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0  

Or outside the sphere or inside the sphere according as 𝑙𝑙12 + 𝑚𝑚12 +
𝑛𝑛12 + 2𝑢𝑢𝑙𝑙1 + 2𝑣𝑣𝑚𝑚1 + 2𝑤𝑤𝑛𝑛1 + 𝑑𝑑 = 0 𝑜𝑟𝑟 > 0 𝑜𝑟𝑟 < 0 
 

Check Your Progress 

1. Find the equation of the sphere with centre at (0,0,0) and which 
passes through the point(𝑎𝑎, 0,0). 
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Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 

2. Find the equation of the sphere with centre at (2,−3,4) and radius 
5. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4x + 6y − 8z + 4 = 0 

3. Find the centre and radius of the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4x + 6y +
2z + 5 = 0. 

Ans. Radius = 3 and Centre = (2,−3,−1) 

4. Find the equation of the sphere on the join of (2,−3,1) and 
(3,−1,2)  as diameter. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 5x + 4y − 3z + 11 = 0 

5. Find the equation of the sphere on the join of (a, 0,0) and (0, b, 0)  
as diameter. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − ax − by = 0 

6. Find the equation of the sphere with centre at (2,3,-4) and touch the 
plane  2x + 6y − 3z + 15 = 0.  

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4x − 6y + 8z − 20 = 0 

7. Find the equation of the sphere which passes through the points 
(4,1,0),(2,-3,4),(1,0,0) and touch the plane 2x + 2y − z = 11.  

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 6x + 2y − 4z + 5 = 0 

8. Find the equation of the sphere which passes through the points 
(1,-3,4),(1,-5,2),(1,-3,0) and whose centre lies on the plane 
x + y + z = 0.  

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2x + 6y − 4z + 10 = 0 

 

4.7 PLANE SECTION OF A SPHERE 

Every section of a sphere S made by a plane P is a circle. 

S ≡ (𝑙𝑙 − 𝑢𝑢)2 + (𝑚𝑚 − 𝑣𝑣)2 + (𝑛𝑛 − 𝑤𝑤)2 = 𝑟𝑟2  

P ≡ 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 
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Circle 

Figure 4.10 

 

 

 

 

 

 

 

                                                                    A 

 

 

 

 

O(u,v,w) is the centre of the Sphere and OA = 𝑟𝑟 is the radius of the Sphere  

Let C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is the centre of the circle and CA is the radius of the circle. 

C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) must satisfied the equation of the plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 

i.e.𝑙𝑙𝛼𝛼 + 𝑚𝑚𝛽𝛽 + 𝑛𝑛𝛾𝛾 = 𝑝𝑝                                                                    …….(1) 

∴ Direction ratios of OC are 𝛼𝛼 − 𝑢𝑢,𝛽𝛽 − 𝑢𝑢, 𝛾𝛾 − 𝑤𝑤   

And Direction ratios of normal of the plane are l,m,n 

∴ OC is parallel to the normal of the plane 

Hence, 𝛼−𝑢
𝑙

= 𝛽−𝑣
𝑚

= 𝛾−𝑤
𝑛

= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) ⟹ 𝛼𝛼 = 𝑙𝑙𝜆𝜆 + 𝑢𝑢,𝛽𝛽 = 𝑚𝑚𝜆𝜆 + 𝑣𝑣 , 𝛾𝛾 =
𝑛𝑛𝜆𝜆 + 𝑤𝑤 

By putting the value of 𝛼𝛼,𝛽𝛽, 𝛾𝛾 in equation (1) 

𝑙𝑙(𝑙𝑙𝜆𝜆 + 𝑢𝑢) + 𝑚𝑚(𝑚𝑚𝜆𝜆 + 𝑣𝑣) + 𝑛𝑛(𝑛𝑛𝜆𝜆 + 𝑤𝑤) = 𝑝𝑝 ⟹ 𝜆𝜆 = 𝑝−𝑙𝑢−𝑚𝑣−𝑛𝑤
𝑙2+𝑚2+𝑛2

   

By putting the value of  𝜆𝜆 = 𝑝−𝑙𝑢−𝑚𝑣−𝑛𝑤
𝑙2+𝑚2+𝑛2

  in 𝛼𝛼 = 𝑙𝑙𝜆𝜆 + 𝑢𝑢   𝛽𝛽 = 𝑚𝑚𝜆𝜆 +
𝑣𝑣       𝛾𝛾 = 𝑛𝑛𝜆𝜆 + 𝑤𝑤 we get the coordinate of the centre of circle. 

Now, OC = �(𝛼𝛼 − 𝑢𝑢)2 + (𝛽𝛽 − 𝑢𝑢)2 + (𝛾𝛾 − 𝑤𝑤)2 

In Right Angle Triangle OCA, 

                  

                  
    O(u,v,w) 

                                  r 

C(𝜶𝜶,𝜷𝜷,𝜸𝜸) 

Plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 

Direction ratios of Normal of the plane 

are  𝒍𝒍,𝒎𝒎,𝒏𝒏 

Sphere (𝑥𝑥 − 𝑢𝑢)2 + (𝑦𝑦 − 𝑣𝑣)2 + (𝑧𝑧 − 𝑤𝑤)2 = 𝑟𝑟2 
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Sphere  𝐒𝐒𝟏𝟏 = 𝟎𝟎 Sphere  𝐒𝐒𝟐𝟐 = 𝟎𝟎 

Figure 4.11 

CA = √𝑟𝑟2 − OC2  is the radius of the circle. 

4.8 GREAT CIRCLE 

 

 

 

 

 

 

                                                                    

 

 

 

 

4.9 INTERSECTION OF TWO SPHERE 
𝑆𝑆1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0 

𝑆𝑆2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0 

The intersection of two spheres 𝑆𝑆1 = 0 and 𝑆𝑆2 = 0 is a circle given by  

𝑆𝑆1 = 0 (Sphere) 

𝑆𝑆1 − 𝑆𝑆2 = 0(Plane) 

or 

𝑆𝑆2 = 0 (Sphere) 

𝑆𝑆1 − 𝑆𝑆2 = 0(Plane) 

  

 

 

 

 

  C1                                   C2 

 

 

                  

                  

        

Sphere  
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Circle 

Figure 4.12 

Figure 4.13 

4.10 SPHERE PASSING THROUGH A CIRCLE 

S ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0
P ≡ 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0                                      �                                        

…….(1) 

Equation of a sphere through the circle (1) is given by  

S + λP = 0  

S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0  
 …… (2) 

      S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0 

Equation of a sphere through S1 = 0 and S2 = 0 is given by 

S1 + λ S2 = 0   

Example 4.11: Find the radius of the circle (𝑙𝑙 + 1)2 + (𝑚𝑚 + 2)2 +
(𝑛𝑛 − 6)2 = 49,  

3𝑙𝑙 + 5𝑚𝑚 + 4𝑛𝑛 + 9 = 0. 

Solution:  

 

 

 

 

 

 

                                                                    A 

 

 

 

 

OC = Length of the perpendicular from O(−1,−2,6) to the plane 3x
+ 5y + 4z + 9 = 0 

      =
(3 × −1) + (5 × −2) + (4 × 6) + 9

√32+52 + 42
=

20
√50

=
4
√2

= 2√2 

                  

              
O (-1, -2, 6)       

                                   
              

Plane 3𝑥𝑥 + 5𝑦𝑦 + 4𝑧𝑧 + 9 = 0 

Sphere (𝑥𝑥 + 1)2 + (𝑦𝑦 + 2)2 + (𝑧𝑧 − 6)2 = 49 
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Circle 

Figure 4.14 

A 

OA = Radius of the sphere = 7 

Now, in Right Angle Triangle OCA 

CA = �72 − �2√2�
2

= √49 − 8 = √41  is the radius of the circle. 

 

Example 4.12: Find the centre and radius of the circle (𝑙𝑙 − 1)2 +
(𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 25,  

𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 2. 

Solution:  

 

 

 

 

 

 

 

 

                                                                    A 

 

 

 

 

Radius of the given sphere = OA = 5 and Centre = O(1,2,3) 

Let C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is the centre of the circle and CA is the radius of the circle. 

C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) must satisfied the equation of the plane 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 2 

i.e.𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 2                                                                                                               
…….(1) 

Direction ratios of OC are 𝛼𝛼 − 1,𝛽𝛽 − 2, 𝛾𝛾 − 3   

Direction ratios of normal of the plane are 1,1,1 

OC is parallel to the normal of the plane 

                         
O(1,2,3)      

                             5 

  C(𝜶𝜶,𝜷𝜷,𝜸𝜸) 

Plane 𝒙𝒙 + 𝒚𝒚 + 𝒛𝒛 = 𝟐𝟐 

Direction ratios of Normal of the plane Sphere (𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 − 3)2 = 25 
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Hence, 𝛼−1
1

= 𝛽−2
1

= 𝛾−3
1

= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) ⟹ 𝛼𝛼 = 𝜆𝜆 + 1,     𝛽𝛽 = 𝜆𝜆 + 2,      𝛾𝛾 =
𝜆𝜆 + 3 

By putting the value of 𝛼𝛼,𝛽𝛽, 𝛾𝛾 in equation (1) 

⟹ 𝜆𝜆 + 1 + 𝜆𝜆 + 2 + 𝜆𝜆 + 3 = 2 ⟹ 𝜆𝜆 = −4
3
   

By putting the value of  𝜆𝜆 = −4
3
  we get the coordinate of the centre of 

circle 

𝛼𝛼 = −
4
3

  + 1 ⟹ 𝛼𝛼 = −
1
3

 

𝛽𝛽 = −
4
3

  + 2 ⟹ 𝛽𝛽 =
2
3

 

𝛽𝛽 = −
4
3

  + 3 ⟹ 𝛾𝛾 =
5
3

 

Now, 

OC = ��−
1
3
− 1�

2

+ �
2
3
− 2�

2

+ �
5
3
− 3�

2

=
4√3

3
 

Now, in Right Angle Triangle OCA 

CA = �52 − �4√3
3
�
2

= �25 − 16
3

= �59
3

  is the radius of the circle. 

Example 4.13: Find the equation of the sphere through the circle 𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 

𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 0 and the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾). 

Solution: The equation of the sphere through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 −
𝑎𝑎2 = 0, 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 0 is given by  

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎2) + 𝜆𝜆(𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛) = 0                                                                            
……..(S) 

As sphere (S) passes through the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) 

 ⟹ (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) + 𝜆𝜆(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾) = 0   

⟹ 𝜆𝜆 = −𝛼2+𝛽2+𝛾2−𝑎2

𝛼+𝛽+𝛾
  

The required equation of the sphere is  
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Circle 

Figure 4.15 

A 

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎2) − (𝛼2+𝛽2+𝛾2−𝑎2)
(𝛼+𝛽+𝛾)

 (𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛) = 0    

 

Example 4.14: Find the centre and radius of the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 −
2𝑚𝑚 − 4𝑛𝑛 − 11 = 0, 

𝑙𝑙 + 2𝑚𝑚 + 2𝑛𝑛 − 15 = 0. 

Solution:   

 

 

 

 

 

 

 

 

                                                                    A 

  

 

 

 

Radius of the given sphere = OA = 4 and Centre = O(0,1,2) 

Let C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is the centre of the circle and CA is the radius of the circle. 

C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) must satisfied the equation of the plane 𝑙𝑙 + 2𝑚𝑚 + 2𝑛𝑛 − 15 = 0 

i.e.   𝛼𝛼 + 2𝛽𝛽 + 2𝛾𝛾 = 15                                       …….(1) 

Direction ratios of OC are 𝛼𝛼 − 0,𝛽𝛽 − 1, 𝛾𝛾 − 2   

Direction ratios of normal of the plane are 1,2,2 

OC is parallel to the normal of the plane 

Hence, 𝛼
1

= 𝛽−1
2

= 𝛾−2
2

= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) ⟹ 𝛼𝛼 = 𝜆𝜆,       𝛽𝛽 = 2𝜆𝜆 + 1,       𝛾𝛾 = 2𝜆𝜆 +
2 

By putting the value of 𝛼𝛼,𝛽𝛽, 𝛾𝛾 in equation (1) 

                  

                  
 O(0,1,2) 

                                   
  C(𝜶𝜶,𝜷𝜷,𝜸𝜸) 

Plane 𝒙𝒙 + 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏 = 𝟎𝟎 

Direction ratios of Normal of the plane are  

𝟏𝟏,𝟐𝟐,𝟐𝟐 
Sphere (𝑥𝑥 − 0)2 + (𝑦𝑦 − 1)2 + (𝑧𝑧 − 2)2 = 16 

C 

UGMM-102/127

D
G

B
-0

21



 
 

𝜆𝜆 + 4𝜆𝜆 + 2 + 4𝜆𝜆 + 4 = 15 ⟹ 𝜆𝜆 = 1   

By putting the value of  𝜆𝜆 = 1  we get the coordinate of the centre of circle 

𝛼𝛼 = 1,𝛽𝛽 = 3, 𝛾𝛾 = 4 

Now, 

OC = �(0 − 1)2 + (1 − 3)2 + (2 − 4)2 = 3 

Now, in Right Angle Triangle OCA 

CA = √42 − 32 = √7  is the radius of the circle. 

 

Example 4.15: Find the equation of a sphere for which the circle 𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 = 16,               𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 6 is a great circle. 

Solution: The equation of the sphere through the circle  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 16 = 0, 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 6 = 0 is given by  

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 16) + 𝜆𝜆(𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 6) = 0   

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 𝜆𝜆𝑙𝑙 + 𝜆𝜆𝑚𝑚 + 𝜆𝜆𝑛𝑛 − 16 − 6𝜆𝜆 = 0                                                                     
……..(S) 

The centre of the sphere (S) is (−𝜆
2

,−𝜆
2

,−𝜆
2
) 

As the given circle is a great circle for the sphere (S), then the centre of 
the sphere (S) lies on the plane 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 6 

⟹−𝜆
2
− 𝜆

2
− 𝜆

2
= 6   

⟹ 𝜆𝜆 = −4  

The required equation of the sphere is given by 

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 16) − 4(𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 6) = 0    

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4𝑙𝑙 − 4𝑚𝑚 − 4𝑛𝑛 + 8 = 0    

 

Example 4.16: Show that the equation of the circle whose centre is 
(1,2,3) and which lies on the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 16 is 𝑙𝑙2 + 𝑚𝑚2 +
𝑛𝑛2 = 16,        𝑙𝑙 + 2𝑚𝑚 + 3𝑛𝑛 = 14.   
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Circle 

Figure 4.16 

A 

Solution:  

 

 

 

 

 

 

                                                                    A 

 

 

 

 

Let the equation of the circle through the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 16 is   

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 16,       𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0   

Centre of circle (1,2,3) must satisfied the equation of the plane 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 +
𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0   

⟹ 𝑎𝑎(𝑙𝑙 − 1) + 𝑏𝑏(𝑚𝑚 − 2) + 𝑐𝑐(𝑛𝑛 − 3) = 0                            …….(1)     

Direction ratios of OC are 1,2,3 

Direction ratio of normal of the plane are a,b,c 

OC is parallel to the normal of the plane 

Hence, 𝑎
1

= 𝑏
2

= 𝑐
3

= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) ⟹ 𝑎𝑎 = 𝜆𝜆,    𝑏𝑏 = 2𝜆𝜆,     𝑐𝑐 = 3𝜆𝜆 

Putting the value of a,b,c in (1) 

⟹ 𝜆𝜆(𝑙𝑙 − 1) + 2𝜆𝜆(𝑚𝑚 − 2) + 3𝜆𝜆(𝑛𝑛 − 3) = 0 

⟹ 𝑙𝑙 + 2𝑚𝑚 + 3𝑛𝑛 = 14 

Hence the required equation of circle is 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 16,       𝑙𝑙 + 2𝑚𝑚 + 3𝑛𝑛 = 14 

Example 4.17: Find the equation to the plane in which the circle of 
intersection of the spheres  

                  

                  
  O(0,0,0) 

                                
 C(𝟏𝟏,𝟐𝟐,𝟑𝟑) 

Plane 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄𝒄𝒄 + 𝒅𝒅 = 𝟎𝟎 

Direction ratios of Normal of the plane 

are  𝒂𝒂,𝒃𝒃, 𝒄𝒄 Sphere  𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 16 

C 
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Sphere  𝐒𝐒𝟏𝟏 = 𝟎𝟎 Sphere  𝐒𝐒𝟐𝟐 = 𝟎𝟎 

Figure 4.17 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 12 = 0 and  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 6𝑙𝑙 − 7𝑚𝑚 −
𝑛𝑛 − 12 = 0 lies. Find also the equation of the sphere through this circle 
and the point (1,1,1). 

Solution:  

   S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 12 = 0                                                      
…... (1) 

   S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 6𝑙𝑙 − 7𝑚𝑚 − 𝑛𝑛 − 12 = 0                                                         
…... (2) 

 

 

 

 

 

 

  C1                                   C2 

 

 

 

 

 

Equation of the plane in which the circle of intersection of the spheres lies 
is given by  

S1 − S2 = 0 

⟹ (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 12) −  (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 6𝑙𝑙 − 7𝑚𝑚
− 𝑛𝑛 − 12) = 0 

⟹−8𝑙𝑙 + 11𝑚𝑚 − 5𝑛𝑛 + 24 = 0 

⟹ 8𝑙𝑙 − 11𝑚𝑚 + 5𝑛𝑛 − 24 = 0 

Equation of the sphere through the circle of intersection of the spheres is 
given by 

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 12) + 𝜆𝜆(8𝑙𝑙 − 11𝑚𝑚 + 5𝑛𝑛 − 24) = 0                               
…….(3) 
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As the sphere (3) passes through the point (1,1,1) 

⟹ (1 + 1 + 1 − 2 + 4 − 6 + 12) + 𝜆𝜆(8 − 11 + 5 − 24) = 0  

⟹ 𝜆𝜆 = 1
2
  

The required equation of the sphere is 

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 12) +
1
2

 (8𝑙𝑙 − 11𝑚𝑚 + 5𝑛𝑛 − 24) = 0 

⟹ 2𝑙𝑙2 + 2𝑚𝑚2 + 2𝑛𝑛2 − 4𝑙𝑙 + 8𝑚𝑚 − 12𝑛𝑛 + 24 + 8𝑙𝑙 − 11𝑚𝑚 + 5𝑛𝑛 − 24 = 0 

⟹ 2𝑙𝑙2 + 2𝑚𝑚2 + 2𝑛𝑛2 + 4𝑙𝑙 − 3𝑚𝑚 − 7𝑛𝑛 = 0 

Check Your Progress 

1. Find the centre and radius of the circle 

 (𝑙𝑙 − 2)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = 36, 2𝑙𝑙 + 6𝑚𝑚 + 3𝑛𝑛 − 6 = 0. 

Ans. Centre of the circle = �6
7

,−3
7

, 16
7
�,  Radius of the circle = 2√5 

2. Find the equation of the sphere which passes through the point 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and the                circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 𝑙𝑙 = 0. 

Ans. (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎2)𝛼𝛼 − (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2)𝑙𝑙 = 0 

3. Find the equation of the sphere which passes through the point 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and the                circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 𝑚𝑚 = 0. 

Ans. (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎2)𝛽𝛽 − (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2)𝑚𝑚 = 0. 

4. Find the equation of the sphere for which the circle 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 7𝑚𝑚 − 2𝑛𝑛 + 2 = 0, 2𝑙𝑙 + 3𝑚𝑚 + 4𝑛𝑛 = 8 is a great circle. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 10 = 0 

5. Find the equation to the plane in which the circle of intersection of 
the spheres 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 + 6𝑚𝑚 + 8𝑛𝑛 + 10 = 0 and 𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 4𝑚𝑚 + 6𝑛𝑛 + 8 = 0 lies.  

Ans. 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 + 1 = 0 

6. Prove that the circle (𝑙𝑙 − 2)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = 36, 
𝑙𝑙 − 2𝑚𝑚 + 2𝑛𝑛 = 4 is a great circle.  

7. Show that the equation of the circle whose centre is �6
7

,−3
7

, 16
7
� UGMM-102/131
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and which lies on the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4𝑙𝑙 − 6𝑚𝑚 − 8𝑛𝑛 − 7 =
0 is  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4𝑙𝑙 − 6𝑚𝑚 − 8𝑛𝑛 − 7 = 0, 2𝑙𝑙 + 6𝑚𝑚 + 3𝑛𝑛 −
6 = 0   

8. Show that the equation to the circle whose centre is �− 1
3

, 2
3

, 5
3
� and 

which lies on the sphere  (𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 25 is  
(𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 25, 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 2. 

 

4.11 INTERSECTION OF A STRAIGHT LINE 
AND A SPHERE 

S ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0                …………..(S) 

 𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

= 𝑟𝑟(𝑠𝑎𝑎𝑚𝑚)                                                  …………..(L) 

Any point on line (L) is given by  (𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) 

If the line (L) intersect the sphere (𝐒𝐒) the point (𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) 
must satisfied its equation for some value of 𝑟𝑟. 

(𝛼𝛼 + 𝑙𝑙𝑟𝑟)2 + (𝛽𝛽 + 𝑚𝑚𝑟𝑟)2 + (𝛾𝛾 + 𝑛𝑛𝑟𝑟)2 + 2𝑢𝑢(𝛼𝛼 + 𝑙𝑙𝑟𝑟) + 2𝑣𝑣(𝛽𝛽 + 𝑚𝑚𝑟𝑟) +
2𝑤𝑤(𝛾𝛾 + 𝑛𝑛𝑟𝑟) + 𝑑𝑑 = 0 𝑟𝑟2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) + 2𝑟𝑟{𝑙𝑙(𝛼𝛼 + 𝑢𝑢) + 𝑚𝑚(𝛽𝛽 + 𝑣𝑣) +
𝑛𝑛(𝛾𝛾 + 𝑤𝑤)} + 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 + 2𝑢𝑢𝛼𝛼 + 2𝑣𝑣𝛽𝛽 + 2𝑤𝑤𝛾𝛾 + 𝑑𝑑 = 0 

This is quadratic equation in r .There are three possibilities  

Case (i) The two roots are real and distinct then the line intersect the 
sphere at two point. 

Case (ii) If both the roots are real and coincident then the line is a tangent 
line. 

Case (iii) If the roots are imaginary then the line does not intersect the 
sphere. 

4.12 TANGENT PLANES 

The equation of Tangent plane of the Sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 +
2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 at the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) is given by 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 +
𝑛𝑛𝑛𝑛1 + 𝑢𝑢(𝑙𝑙 + 𝑙𝑙1) + 𝑣𝑣(𝑚𝑚 + 𝑚𝑚1) + 𝑤𝑤(𝑛𝑛 + 𝑛𝑛1) + 𝑑𝑑 = 0.   
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Figure 4.18 

Figure 4.19 

 

 

 

 

 

 

 

                                                                    

 

                                                    1 1 1( , , )P x y z  

  

 

 

 

 

 

4.13 CONDITION OF TANGENCY 
 

 

 

 

 

 

                                                                    

 

                                                  M 

 

 
 

S ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 

                  

                  

                 C(-u,-v,-w) 

Sphere  

                  

                  
                  C(-u,-v,-w) 

Sphere 𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐 + 𝒛𝒛𝟐𝟐 + 𝟐𝟐𝒖𝒖𝒖𝒖 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒅𝒅 = 𝟎𝟎 

Tangent Plane 𝒙𝒙𝒙𝒙𝟏𝟏 + 𝒚𝒚𝒚𝒚𝟏𝟏 + 𝒛𝒛𝒛𝒛𝟏𝟏 + 𝒖𝒖(𝒙𝒙 + 𝒙𝒙𝟏𝟏) + 𝒗𝒗(𝒚𝒚 + 𝒚𝒚𝟏𝟏) + 𝒘𝒘(𝒛𝒛 + 𝒛𝒛𝟏𝟏) + 𝒅𝒅 = 𝟎𝟎 
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Figure 4.20 

P ≡ 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 

If the plane P is a tangent plane at the point M of the sphere S  

Then, 

Radius of the Sphere  

= Length of the Perpendicular from 𝑪𝑪(−𝒖𝒖,−𝟐𝟐,−𝟐𝟐) to the Plane 𝑙𝑙𝑙𝑙
+ 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 − 𝑝𝑝 = 0 

⟹�𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑 =
|𝑙𝑙𝑢𝑢 + 𝑚𝑚𝑣𝑣 + 𝑛𝑛𝑤𝑤 − 𝑝𝑝|
√𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2

 

⟹ (𝑙𝑙𝑢𝑢 + 𝑚𝑚𝑣𝑣 + 𝑛𝑛𝑤𝑤 − 𝑝𝑝)2 = (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑) 

 

Corollary 4.13.1: The condition that the plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 
touches the sphere  
𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is given by 𝑝𝑝2 = 𝑎𝑎2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2). 

 

 

 

 

 

 

 

                                                                    

 

M 

 

 

 

S ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2  

P ≡ 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 

If the plane P is a tangent plane at the point M of the sphere S  

Then, 

                  

                  

                 C(0,0,0) 

Sphere  
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Figure 4.21 

Radius of the Sphere
= Length of the Perpendicular from C(0,0,0)to the Plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛
− 𝑝𝑝 = 0 

⟹ 𝑎𝑎 =
|−𝑝𝑝|

√𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2
 

⟹ 𝑝𝑝2 = 𝑎𝑎2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) 

Example 4.18: Show that the plane 2𝑙𝑙 − 2𝑚𝑚 + 𝑛𝑛 + 12 = 0 touches the 
sphere  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 − 4𝑚𝑚 + 2𝑛𝑛 − 3 = 0  and find the point of contact. 

Solution:   

 

 

 

 

 

 

 

                                                                    

 

                                               M(𝜶𝜶,𝜷𝜷,𝜸𝜸) 

 

 
 

The equation of the given sphere is 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 − 4𝑚𝑚 + 2𝑛𝑛 − 3 = 0   

Centre of the sphere =  C(1,2,−1) 

Radius of the Sphere = �(1)2 + (2)2 + (−1)2 − (−3) = 3 

Length of the Perpendicular from C(1,2,−1) to the Plane 2x − 2y +
z + 12 = 0  

           =
|2 × 1 − 2 × 2 − 1 + 12|

�(2)2 + (−2)2 + (1)2
=

9
3

= 3 = Radius of the sphere 

                  

                  

                  C(1,2,-1) 

 

 

Sphere   𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 2𝑥𝑥 − 4𝑦𝑦 + 2𝑧𝑧 − 3 = 0 

Plane 2𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧 + 12 = 0 
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⟹ Plane touch the sphere 

Let M(α,β, γ) be the point of contact  

Direction ratios of CM are α − 1,     β − 2,     γ + 1    

Direction ratios of normal of the plane are 2,-2,1 

CM parallel to the normal to the plane 

⟹
α− 1   

2
=
β − 2   
−2

=
γ + 1   

1
= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) 

⟹  α = 2𝜆𝜆 + 1,    β = −2𝜆𝜆 + 2,      γ = 𝜆𝜆 − 1 

M(α,β, γ) must satisfied the equation of the plane 2x − 2y + z + 12 = 0 

⟹ 2α − 2β + γ + 12 = 0 

⟹ 2α − 2β + γ + 12 = 0                                                                                                
………..(1) 

Putting the value of α, β, γ in equation (1)   

⟹ 2(2𝜆𝜆 + 1) − 2(−2𝜆𝜆 + 2) + (𝜆𝜆 − 1) + 12 = 0  

⟹ 4𝜆𝜆 + 2 + 4𝜆𝜆 − 4 + 𝜆𝜆 − 1 + 12 = 0  

⟹ 𝜆𝜆 = −1 

The required point of contact is M(-1,4,-2) 

Example 4.19 : Find the equation of the tangent plane of the sphere  

   𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 − 4𝑚𝑚 + 2𝑛𝑛 = 0  at origin O(0,0,0). 

Solution : Since the equation of the tangent plane at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is given by 

  𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛 − (𝑙𝑙 + 𝛼𝛼) − 2(𝑚𝑚 + 𝛽𝛽) + (𝑛𝑛 + 𝛾𝛾) = 0  

Hence the equation of the tangent plane at O(0,0,0) is  

  0𝑙𝑙 + 0𝑚𝑚 + 0𝑛𝑛 − (𝑙𝑙 + 0) − 2(𝑚𝑚 + 0) + (𝑛𝑛 + 0) = 0  

⟹−𝑙𝑙 − 2𝑚𝑚 + 𝑛𝑛 = 0  
⟹ 𝑙𝑙 + 2𝑚𝑚 − 𝑛𝑛 = 0 

Example 4.20 : Find the equation of the tangent planes of the sphere  

   𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 13 = 0  which are parallel to the plane 
𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 = 0. 

UGMM-102/136

D
G

B
-0

21



Figure 4.22 

Solution:   

  

 

 

 

 

 

                                                                     

 

                                                  M 

 

 

 

The equation of the given sphere is 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 2𝑙𝑙 + 4𝑚𝑚 − 6𝑛𝑛 + 13 = 0   

Centre of the sphere =  C(1,−2,3) 

Radius of the Sphere = 3�(1)2 + (−2)2 + (3)2 − (13) = 1 

Any plane parallel to 𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 = 0 is given by 

𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 + 𝜆𝜆 = 0                                                                 ……. (1) 

If plane (1) is the tangent plane of the given sphere then 

Radius of the sphere 

= Length of the Perpendicular from C(1,−2,3)to the Plane 𝑙𝑙 − 𝑚𝑚 +
𝑛𝑛 + 𝜆𝜆 = 0  

⟹ 1 = ±
1 + 2 + 3 + 𝜆𝜆

�(1)2 + (−1)2 + (1)2
= ±

6 + 𝜆𝜆
√3

 

⟹ 𝜆𝜆 = −6 ± √3 

The required tangent planes are   

𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 − 6 ± √3 = 0 

                  

                  

                 C(1,-2,3) 

 

 

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 2𝑥𝑥 + 4𝑦𝑦 − 6𝑧𝑧 + 13 = 0 

Plane 𝑥𝑥 − 𝑦𝑦 + 𝑧𝑧 + 𝜆𝜆 = 0 
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Example 4.21: Find the equation of the tangent planes of the sphere at 
point of intersection of the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 49 and the line 
𝑥𝑥
3

= 𝑦𝑦
4

= 𝑧𝑧
6
. 

Solution:  Equation of the given line is 

𝑥𝑥
3

= 𝑦𝑦
2

= 𝑧𝑧
6

= 𝜆𝜆(say)                                                                                                                
……..(1) 

Any point on the line is given by (3𝜆𝜆, 2𝜆𝜆, 6𝜆𝜆) 

If the line (1) intersect the sphere then the point (3𝜆𝜆, 2𝜆𝜆, 6𝜆𝜆) satisfied the 
equation of the sphere for some value of 𝜆𝜆. 

⟹ 9𝜆𝜆2 + 4𝜆𝜆2 + 36𝜆𝜆2 = 49    

⟹ 𝜆𝜆 = ±1    

The point of intersection are (3, 2,6) and (−3,−2,−6) 

Equation of tangent plane at (3, 2,6) is given by 

3𝑙𝑙 + 2𝑚𝑚 + 6𝑛𝑛 = 49 

Equation of tangent plane at (−3,−2,−6)is given by 

−3𝑙𝑙 − 2𝑚𝑚 − 6𝑛𝑛 = 49 

Example 4.22: Show that the line 𝑥𝑥−1
2

= 𝑦𝑦
1

= 𝑧𝑧
2
  intersect the sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 𝑛𝑛 = 0  at points (−1,−1,−2) and 
�1
3

,−1
3

,−2
3
�.   

Solution: Equation of the given line is 

𝑥𝑥−1
2

= 𝑦𝑦
1

= 𝑧𝑧
2

= 𝜆𝜆(say)                                                                                                           
……..(1) 

Any point on the line is given by (2𝜆𝜆 + 1, 𝜆𝜆, 2𝜆𝜆) 

If the line (1) intersects the sphere then the point (2𝜆𝜆 + 1, 𝜆𝜆, 2𝜆𝜆)satisfied 
the equation of the sphere for some value of 𝜆𝜆. 

⟹ 4𝜆𝜆2 + 4𝜆𝜆 + 1 + 𝜆𝜆2 + 4𝜆𝜆2 + 4𝜆𝜆 + 2 + 2𝜆𝜆 + 2𝜆𝜆 = 0    

⟹ 9𝜆𝜆2 + 12𝜆𝜆 + 3 = 0   
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⟹ 3𝜆𝜆2 + 4𝜆𝜆 + 1 = 0   

⟹ 𝜆𝜆 = −1,−1
3
    

Hence the required point of intersection are (−1,−1,−2) and 
�1
3

,−1
3

,−2
3
�.   

Example 4.23: Find the equation of the sphere whose centre at origin and 
which touch the line  

 𝑥𝑥−1
2

= 𝑦𝑦
1

= 𝑧𝑧
2
.  

Solution :  

  

 

 

 

 

 

                                                                     

 

                                                            M 

 

 

 

The equation of the sphere with centre at origin is given by 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑟𝑟2 

The equation of the given line 
𝑥𝑥−1
2

= 𝑦𝑦
1

= 𝑧𝑧
2

= 𝜆𝜆(say)                                                                                                           
…….. (1) 

Any point on the line (1) is given by (2𝜆𝜆 + 1, 𝜆𝜆, 2𝜆𝜆) 

Let (2𝜆𝜆 + 1, 𝜆𝜆, 2𝜆𝜆) is the point of contact M then 

Direction ratios of CM are 2𝜆𝜆 + 1,     𝜆𝜆,    2𝜆𝜆  

CM is perpendicular to the given line 

⟹ 2(2𝜆𝜆 + 1) + 1( 𝜆𝜆) + 2(2𝜆𝜆) = 0 

                  

                  

                  C(0,0,0) 

 

 Line 𝑥𝑥−1
2

= 𝑦𝑦
1

= 𝑧𝑧
2
 

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑟𝑟2 

Figure 4.23 
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⟹ 4 𝜆𝜆 + 2 +  𝜆𝜆 + 4 𝜆𝜆 = 0 

⟹  𝜆𝜆 = −
2
9

 

Now the point of contact is M( 5
9

,−2
9

,−4
9
 )  

Radius of the sphere = r = CM = ��
5
9
�
2

+ �−
2
9
�
2

+ �−
4
9
�
2

=
√5
3

 

The required equation of the sphere is  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = �
√5
3
�
2

 

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =
5
9

 

 

Example 4.24: Find the equations of the tangent planes to the sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 6𝑙𝑙 − 2𝑛𝑛 + 1 = 0 which passes through the line 48−3𝑙𝑙 =
2𝑚𝑚 + 30 = 3𝑛𝑛.  

Solution:  

 

  

 

 

 

 

 

                                                                     

 
 

                                 M 

 

 
 

Equation of the given line is  

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 6𝑥𝑥 − 2𝑧𝑧 + 1 = 0  

                  

                  

                  C(-3,0,1) 

 

 Plane 48−3𝑥𝑥 − 3𝑧𝑧 = 𝜆𝜆(2𝑦𝑦 + 30 − 3𝑧𝑧)     

Figure 4.24 
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48−3𝑙𝑙 = 2𝑚𝑚 + 30 = 3𝑛𝑛                                                                                                        
…… (1) 

Equation of the plane through the line (1) is given by 

48−3𝑙𝑙 − 3𝑛𝑛 = 𝜆𝜆(2𝑚𝑚 + 30 − 3𝑛𝑛)     

⟹  −3𝑙𝑙 − 2𝜆𝜆𝑚𝑚 + (3𝜆𝜆 − 3)𝑛𝑛 − 30𝜆𝜆 + 48 = 0                                                                     
…… (P) 

If the plane (P) is a tangent plane of the sphere S  

Then, 

Radius of the Sphere  

= Length of the Perpendicular from 𝐂𝐂(−𝟑𝟑,𝟗𝟗,𝟏𝟏) to the Plane 
 

3 =
9 + 3𝜆𝜆 − 3 − 30𝜆𝜆 + 48

�(−3)2 + (−2𝜆𝜆)2 + (3𝜆𝜆 − 3)2
 

 

⟹ 3 =
54 − 27𝜆𝜆

√18 + 13𝜆𝜆2 − 18𝜆𝜆
 

 

⟹ 1 =
18 − 9𝜆𝜆

√18 + 13𝜆𝜆2 − 18𝜆𝜆
 

 

⟹ 13𝜆𝜆2 − 18𝜆𝜆 + 18 = (18 − 9𝜆𝜆)2 

⟹ 13𝜆𝜆2 − 18𝜆𝜆 + 18 = 324 + 81𝜆𝜆2 − 324 𝜆𝜆 

⟹ 306 + 68𝜆𝜆2 − 306𝜆𝜆 = 0 

⟹ 2𝜆𝜆2 − 9𝜆𝜆 + 9 = 0 

⟹ 2𝜆𝜆2 − 9𝜆𝜆 + 9 = 0 

⟹  𝜆𝜆 = 3,
3
2

 

The required equations of the tangent planes are 

−9𝑙𝑙 − 6𝑚𝑚 + 6𝑛𝑛 − 42 = 0 

 3𝑙𝑙 + 2𝑚𝑚 − 2𝑛𝑛 + 14 = 0  

Example 4.25: Find the equations of the tangent planes to the sphere 

(𝑙𝑙 − 2)2 + (𝑚𝑚 − 1)2 + (𝑛𝑛 − 1)2 = 1 which passes through the x-axis.  UGMM-102/141
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Solution:  

 

 

 

 

 

 

                                                                     

 

 

                        M 

 

 

 

The equation of the given sphere is 

S ≡ (𝑙𝑙 − 2)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = 1 

Equation of x-axis is given by   

y = 0 and z = 0                                                                                                                      
…… (1) 

Equation of the plane through the line (1) is given by 

𝑚𝑚 + 𝜆𝜆𝑛𝑛 = 0                                                                                                                              
…… (P) 

If the plane (P) is a tangent plane of the sphere S  

Then, 

Radius of the Sphere  

= Length of the Perpendicular from 𝐂𝐂(𝟐𝟐,𝟏𝟏,𝟏𝟏) to the Plane 

1 =
1 + 𝜆𝜆
√1 + 𝜆𝜆2

 

⟹ 1 + 𝜆𝜆2 = (1 + 𝜆𝜆)2 ⟹ 𝜆𝜆 = 0 

The required equations of the tangent plane is 𝑚𝑚 = 0 

In the similar way if we consider the plane through the line (1) in the form  

Sphere (𝑥𝑥 − 2)2 + (𝑦𝑦 − 1)2 + (𝑧𝑧 − 1)2 = 1  

                  

                  

                  C(2,1,1) 

 

 Plane 𝑦𝑦 + 𝜆𝜆𝜆𝜆 = 0 or 𝑧𝑧 + 𝜆𝜆𝜆𝜆 = 0        

Figure 4.25 
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𝑛𝑛 + 𝜆𝜆𝑚𝑚 = 0    

Then the equation of the tangent plane is 𝑛𝑛 = 0 

Hence the required tangents planes through the x-axis are 𝑚𝑚 = 0 and = 0 . 

Example 4.26: Find the equations of the tangent planes to the sphere 

(𝑙𝑙 − 2)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = 1 which passes through the x-axis.  

Solution:  

 

  

 

 

 

 

 

                                                                     

 

                                                  M 

 

 

 

Equation of x-axis is given by   

y = 0 and z = 0                                                                                                                      
…… (1) 

Equation of the plane through the line (1) is given by 

𝑚𝑚 + 𝜆𝜆𝑛𝑛 = 0                                                                                                                              
…… (P) 

If the plane (P) is a tangent plane of the sphere S  

Then, 

Radius of the Sphere  

= Length of the Perpendicular from 𝐂𝐂(𝟐𝟐,𝟏𝟏,𝟑𝟑) to the Plane 

Sphere (𝑥𝑥 − 2)2 + (𝑦𝑦 − 1)2 + (𝑧𝑧 − 3)2 = 1  

                  

                  

                  C(2,1,3) 

 

 Plane 𝑦𝑦 + 𝜆𝜆𝜆𝜆 = 0     

Figure 4.26 
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1 =
1 + 3𝜆𝜆
√1 + 𝜆𝜆2

 

⟹ 1 + 𝜆𝜆2 = (1 + 3𝜆𝜆)2 

⟹ 1 + 𝜆𝜆2 = 1 + 9𝜆𝜆2 + 6𝜆𝜆 

⟹ 𝜆𝜆(8𝜆𝜆 + 6) = 0 

⟹  𝜆𝜆 = 0,−
3
4

 

The required equations of the tangent planes are 

𝑚𝑚 = 0, 4𝑚𝑚 − 3𝑛𝑛 = 0  

4.14 PLANE OF CONTACT 

The plane of contact is the locus of the point of contact of the tangent 
plane which passes through a given point (not on the sphere) 

To find the equation of the plane of contact of tangent plane through the 
point 𝑄(𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the sphere 𝑆𝑆 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 +
𝑑𝑑 = 0  

 

 

 

 

 

 

 

                                                                    

 

                                     𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) 

 Q(𝛼𝛼,𝛽𝛽, 𝛾𝛾)   

 

 

 

 

                  

                  
                   C(-u,-v,-w) 

Sphere 𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐 + 𝒛𝒛𝟐𝟐 + 𝟐𝟐𝒖𝒖𝒖𝒖 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒅𝒅 = 𝟎𝟎 

Tangent Plane 𝒙𝒙𝒙𝒙𝟏𝟏 + 𝒚𝒚𝒚𝒚𝟏𝟏 + 𝒛𝒛𝒛𝒛𝟏𝟏 + 𝒖𝒖(𝒙𝒙 + 𝒙𝒙𝟏𝟏) + 𝒗𝒗(𝒚𝒚 + 𝒚𝒚𝟏𝟏) + 𝒘𝒘(𝒛𝒛 + 𝒛𝒛𝟏𝟏) + 𝒅𝒅 = 𝟎𝟎 

Figure 4.27 
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Equation of tangent plane through the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) of the sphere is 
given by 

𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 + 𝑢𝑢(𝑙𝑙 + 𝑙𝑙1) + 𝑣𝑣(𝑚𝑚 + 𝑚𝑚1) + 𝑤𝑤(𝑛𝑛 + 𝑛𝑛1) + 𝑑𝑑 = 0……(P) 

If the plane (P) passes through the point Q(𝛼𝛼,𝛽𝛽, 𝛾𝛾) external to the sphere, 
then we have 

𝛼𝛼𝑙𝑙1 + 𝛽𝛽𝑚𝑚1 + 𝛾𝛾𝑛𝑛1 + 𝑢𝑢(𝛼𝛼 + 𝑙𝑙1) + 𝑣𝑣(𝛽𝛽 + 𝑚𝑚1) + 𝑤𝑤(𝛾𝛾 + 𝑛𝑛1) + 𝑑𝑑 = 0 

Hence the locus of P (𝑙𝑙1 → 𝑙𝑙,𝑚𝑚1 → 𝑚𝑚, 𝑛𝑛1 → 𝑛𝑛)  is 

𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛 + 𝑢𝑢(𝛼𝛼 + 𝑙𝑙) + 𝑣𝑣(𝛽𝛽 + 𝑚𝑚) + 𝑤𝑤(𝛾𝛾 + 𝑛𝑛) + 𝑑𝑑 = 0 

4.15 POLE AND POLAR PLANES 
 

 

 

 

                       A P 

 R 

                                                     

                                                                                     Q 

                                                                                                                     
 

 

 

Consider a line through a fixed point A to intersect a given Sphere in the 
point P and Q. Take a point R on this line in such way that AR is harmonic 
mean of AP and AQ 

i.e. 1
AP

+ 1
AQ

= 2
AR

 

The locus of the point R is called the Polar Plane. The fixed point A is 
called the pole of the polar plane. 

4.16 THE EQUATION OF THE POLAR PLANE 
OF POINT A 1, 1 1(x y , z )  WITH RESPECT TO 
THE SPHERE 2 2 2 2 2

1 1 1x + y + z = a is xx + yy + zz = a  

Let the equation of a line passes through the point 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) with 
direction cosines l,m,n is given by  𝑥𝑥−𝑥𝑥1

𝑙
= 𝑦𝑦−𝑦𝑦1

𝑚
= 𝑧𝑧−𝑧𝑧1

𝑛
= 𝑟𝑟                                                                                         

……..(1) 

Figure 4.28 
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Any general point on the line is (𝑙𝑙1 + 𝑙𝑙𝑟𝑟,𝑚𝑚1 + 𝑚𝑚𝑟𝑟, 𝑛𝑛1 + 𝑛𝑛𝑟𝑟) 

If the line intersect the sphere then the point (𝑙𝑙1 + 𝑙𝑙𝑟𝑟, 𝑚𝑚1 + 𝑚𝑚𝑟𝑟, 𝑛𝑛1 + 𝑛𝑛𝑟𝑟) 
satisfied the equation of sphere for some value of r 

⟹ (𝑙𝑙1 + 𝑙𝑙𝑟𝑟)2 + (𝑚𝑚1 + 𝑚𝑚𝑟𝑟)2 + (𝑛𝑛1 + 𝑛𝑛𝑟𝑟)2 = 𝑎𝑎2 

⟹ 𝑟𝑟2 + 2𝑟𝑟(𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛) + 𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2 = 0 

It is a quadratic equation in r give two roots say 𝑟𝑟1 and 𝑟𝑟2 

⟹ 𝑟𝑟1 + 𝑟𝑟2 = −2(𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛) and 𝑟𝑟1𝑟𝑟2 = 𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2 

Now let the two point on sphere are P(𝑙𝑙1 + 𝑙𝑙𝑟𝑟1 ,𝑚𝑚1 + 𝑚𝑚𝑟𝑟1 , 𝑛𝑛1 + 𝑛𝑛𝑟𝑟1 ) and                               
Q(𝑙𝑙1 + 𝑙𝑙𝑟𝑟2 ,𝑚𝑚1 + 𝑚𝑚𝑟𝑟2 , 𝑛𝑛1 + 𝑛𝑛𝑟𝑟2 )  

Now, 𝐴𝐴𝑃𝑃 = 𝑟𝑟1 and 𝐴𝐴𝑄 = 𝑟𝑟2 

Now, by definition of Polar Plane 

1
𝐴𝐴𝑃𝑃

+
1
𝐴𝐴𝑄

=
2
𝐴𝐴𝑅

⟹
1
𝑟𝑟1

+
1
𝑟𝑟2

=
2
𝐴𝐴𝑅

⟹
𝑟𝑟1 + 𝑟𝑟2
𝑟𝑟1𝑟𝑟2

=
2
𝐴𝐴𝑅

 

⟹
−2(𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛)
𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2

=
2
𝐴𝐴𝑅

 

⟹ 𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2 +AR(𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛) = 0                                                             
…….(2) 

Now, let the coordinate of the point R be (x,y,z)  

Then, 𝐴𝐴𝑅 = 𝑟𝑟 (By equation (𝟏𝟏) 𝑙𝑙 − 𝑙𝑙1 = 𝑙𝑙𝑟𝑟, 𝑚𝑚 − 𝑚𝑚1 = 𝑚𝑚𝑟𝑟, 𝑛𝑛 − 𝑛𝑛1 = 𝑛𝑛𝑟𝑟  
and 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 1) 

Now, by equation (2) 

𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2 + 𝑟𝑟(𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛) = 0                                                                      
…… (3) 

By Equation (1) 

𝑙𝑙 = 𝑙𝑙1 + 𝑙𝑙𝑟𝑟 ⟹ 𝑙𝑙 =
𝑙𝑙 − 𝑙𝑙1
𝑟𝑟

 

𝑚𝑚 = 𝑚𝑚1 + 𝑚𝑚𝑟𝑟 ⟹ 𝑚𝑚 =
𝑚𝑚 − 𝑚𝑚1
𝑟𝑟

 

𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛𝑟𝑟 ⟹ 𝑛𝑛 =
𝑛𝑛 − 𝑛𝑛1
𝑟𝑟

 

Putting the value of l,m,n in equation (3) 

𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2 + 𝑟𝑟 �𝑙𝑙1 �
𝑙𝑙 − 𝑙𝑙1
𝑟𝑟

� + 𝑚𝑚1 �
𝑚𝑚 − 𝑚𝑚1
𝑟𝑟

� + 𝑛𝑛1 �
𝑛𝑛 − 𝑛𝑛1
𝑟𝑟

�� = 0 
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⟹ 𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 − 𝑎𝑎2 + {𝑙𝑙1(𝑙𝑙 − 𝑙𝑙1) + 𝑚𝑚1(𝑚𝑚 − 𝑚𝑚1) + 𝑛𝑛1(𝑛𝑛 − 𝑛𝑛1)} = 0 

⟹ 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

4.17 THE POLE OF THE POLAR lx + my + nz = p  
WITH RESPECT TO THE SPHERE  

 
 
 
 

2 2 2
2 2 2 2 la ma nax + y + z = a is , ,

p p p
 

Let 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) be the required pole. The equation of the polar plane of a 
point 𝐴𝐴(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) with respect to the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 
𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2. 

As  𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 and 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 represent same polar 
plane.  

Therefore, 

 𝑙
𝑥𝑥1

= 𝑚
𝑦𝑦1

= 𝑛
𝑧𝑧1

= 𝑝
𝑎2
⟹ 𝑙𝑙1 = 𝑙𝑎2

𝑝
,𝑚𝑚1 = 𝑚𝑎2

𝑝
, 𝑛𝑛1 = 𝑛𝑎2

𝑝
 

4.18 THE POLAR LINE OF x – α y – β z – γ= =
l m n

 

WITH RESPECT TO THE SPHERE IS 
GIVEN BY 2αx + βy + γz – a = 0 = lx + my + nz   

Any point on the line 𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

= 𝑟𝑟  is given by 𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 +
𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾  

Polar plane of the point (𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾) with respect to the 
sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2  is        

     𝑙𝑙(𝑙𝑙𝑟𝑟 + 𝛼𝛼) + 𝑚𝑚(𝑚𝑚𝑟𝑟 + 𝛽𝛽) + 𝑛𝑛(𝑛𝑛𝑟𝑟 + 𝛾𝛾) = 𝑎𝑎2 

⟹ (𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛 − 𝑎𝑎2) + 𝑟𝑟(𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛) = 0 

This plane for all values of 𝑟𝑟 passes through the line  

𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛 − 𝑎𝑎2 = 0 = 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 

4.19 ORTHOGONAL SYSTEM OF SPHERE 
Two Spheres are said to intersect orthogonally if their angle of intersection 
is right angle. 

𝑆𝑆1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0 

𝑆𝑆2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0 UGMM-102/147
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𝑟𝑟1 𝑟𝑟2 

                

𝑪𝑪𝟐𝟐 𝑪𝑪𝟏𝟏 

                                                              A  
 
 
 

   

  

                           

                         −𝑢𝑢1,−𝑣𝑣1,−𝑤𝑤1)                     −𝑢𝑢2,−𝑣𝑣2,−𝑤𝑤2) 

 

 
 

 

If the Sphere 𝑆𝑆1 and 𝑆𝑆2 intersect orthogonally then ∠𝐶𝐶1𝐴𝐴𝐶𝐶2 = 90° 

Now, in right angle triangle ∆𝐶𝐶1𝐴𝐴𝐶𝐶2 

(𝐶𝐶1𝐶𝐶2)2 = (𝐶𝐶1𝐴𝐴)2 + (𝐶𝐶2𝐴𝐴)2 

⟹ (𝐶𝐶1𝐶𝐶2)2 = (𝑟𝑟1)2 + (𝑟𝑟2)2 

⟹ (𝑢𝑢1 − 𝑢𝑢2)2 + (𝑣𝑣1 − 𝑣𝑣2)2 + (𝑤𝑤1 − 𝑤𝑤2)2

= (𝑢𝑢1
2 + 𝑣𝑣12 + 𝑤𝑤12 − 𝑑𝑑1) + (𝑢𝑢2

2 + 𝑣𝑣22 + 𝑤𝑤2
2 − 𝑑𝑑2) 

⟹ 2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 = 𝑑𝑑1 + 𝑑𝑑2 

4.20 TOUCHING SPHERES 

  

                                                                             

   

   

 

                           

                                 

 

 

 

 

 

 

 r2 

𝐂𝐂𝟐𝟐 𝐂𝐂𝟏𝟏 

r1 − r2 

r1 

Figure 4.29 

Figure 4.30 
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r1 

Touch Internally if   𝐂𝐂𝟏𝟏𝐂𝐂𝟐𝟐 = 𝐫𝐫𝟏𝟏 − 𝐫𝐫𝟐𝟐  

                                                   

                          

   

 

                           

                                 

 

 

 

 

 

 

Touch Externally if   𝐂𝐂𝟏𝟏𝐂𝐂𝟐𝟐 = 𝐫𝐫𝟏𝟏 + 𝐫𝐫𝟐𝟐 

Example 4.27: Show that the polar line of  𝑥𝑥−1
2

= 𝑦𝑦−2
3

= 𝑧𝑧−3
4

  with respect 
to the sphere 

 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9 is given by 𝑙𝑙 + 2𝑚𝑚 + 3𝑛𝑛 − 9 = 0, 2𝑙𝑙 + 3𝑚𝑚 + 4𝑛𝑛 = 0. 

Solution: Equation of the given line   

                  𝑥𝑥−1
2

= 𝑦𝑦−2
3

= 𝑧𝑧−3
4

= 𝑟𝑟   

Any point on the line is given by 2𝑟𝑟 + 1,3𝑟𝑟 + 2,4𝑟𝑟 + 3 

Polar plane of the point (2𝑟𝑟 + 1,3𝑟𝑟 + 2,4𝑟𝑟 + 3) with respect to the sphere 
𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9  is        

     𝑙𝑙(2𝑟𝑟 + 1) + 𝑚𝑚(3𝑟𝑟 + 2) + 𝑛𝑛(4𝑟𝑟 + 3) = 9 

⟹ (𝑙𝑙 + 2𝑚𝑚 + 3𝑛𝑛 − 9) + 𝑟𝑟(2𝑙𝑙 + 3𝑚𝑚 + 4𝑛𝑛) = 0 

This plane for all values of 𝑟𝑟 passes through the line  

𝑙𝑙 + 2𝑚𝑚 + 3𝑛𝑛 − 9 = 0; 2𝑙𝑙 + 3𝑚𝑚 + 4𝑛𝑛 = 0 

This is the required equation of polar line of the given line.   

Example 4.28: Show that the spheres 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 = 4; (𝑙𝑙 − 4)2 +
(𝑚𝑚 − 2)2 + (𝑛𝑛 − 4)2 = 16 touch externally and find point of contact. 

 

 r2 

𝐂𝐂𝟐𝟐 𝐂𝐂𝟏𝟏 

Figure 4.31 
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r1 

Solution :                                                                           

   

   

 

                           

                                 

  

                                                                                                                    

 

 

 

 

 

 

Equation of the first given sphere is  

S1 ≡ 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 = 4                                              

Radius of the sphere r1 = 2 

Centre of the sphere = C1(0,0,0)  

Equation of the second given sphere is   

(𝑙𝑙 − 4)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 4)2 = 16  

S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 8𝑙𝑙 − 4𝑚𝑚 − 8𝑛𝑛 + 20 = 0         

Radius of the sphere r2 = 4 

Centre of the sphere = C2(4,2,4)  

C1C2 = �(4 − 0)2 + (2 − 0)2+(4 − 0)2 = 6 

 r1 +  r2 = 2 + 4 = 6 

C1C2 =  r1 +  r2 

Hence the spheres touch externally. 

Let C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the point of contact. 

Hence,  

𝛼𝛼 − 0
4 − 0

=
𝛽𝛽 − 0
2 − 0

=
𝛾𝛾 − 0
4 − 0

= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) 

 

 
 r2 

𝐂𝐂𝟐𝟐(4,2,4)  𝐂𝐂𝟏𝟏(0,0,0)  

𝐂𝐂(𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
  

Figure 4.32 

UGMM-102/150

D
G

B
-0

21



                

r1 

⟹ 𝛼𝛼 = 4𝜆𝜆,𝛽𝛽 = 2𝜆𝜆, 𝛾𝛾 =  4𝜆𝜆 

As 𝐶𝐶(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the common point for both sphere  

⟹ 𝛼𝛼2 +  𝛽𝛽2 + 𝛾𝛾2 = 4                                                                                                           
……. (1)           

     𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 8𝛼𝛼 − 4𝛽𝛽 − 8𝛾𝛾 + 20 = 0                                                                       
……. (2)   

By solving equation (1) and (2) we get 

−8𝛼𝛼 − 4𝛽𝛽 − 8𝛾𝛾 + 24 = 0  

⟹ 2𝛼𝛼 + 𝛽𝛽 + 2𝛾𝛾 − 6 = 0                                                                                                      
……. (3)   

By putting the value of 𝛼𝛼,𝛽𝛽, 𝛾𝛾 in equation (3)  

8𝜆𝜆 + 2𝜆𝜆 + 8𝜆𝜆 − 6 = 0 

⟹ 18𝜆𝜆 = 6 

⟹ 𝜆𝜆 =
1
3

 

The required point of contact is �4
3

, 2
3

, 4
3
�   

Example 4.29: Show that the spheres  

𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 = 25 and 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 18x − 24y − 40z + 225 = 0  

touch externally and their point of contact is �9
5

, 12
5

, 4�. 

Solution: 

                                                                           

   

   

 

                           

                                 

  

                                                                                                                    

 

 

 

 

 

 
 r2 

𝐂𝐂𝟐𝟐(9,12,20) 𝐂𝐂𝟏𝟏(0,0,0)  

𝐂𝐂(𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
  

Figure 4.33 
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 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 = 25                                              ….....(S1) 

Radius of the sphere r1 = 5 

Centre of the sphere = C1(0,0,0)  

𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 18x − 24y − 40z + 225 = 0 

(𝑙𝑙 − 9)2 + (𝑚𝑚 − 12)2 + (𝑛𝑛 − 20)2 = 400         ……..(S2) 

Radius of the sphere r2 = 20 

Centre of the sphere = C2(9,12,20)  

C1C2 = �(9 − 0)2 + (12 − 0)2+(20 − 0)2 = 25 

 r1 +  r2 = 5 + 20 = 25 

C1C2 =  r1 +  r2 

Hence the spheres touch externally. 

Let C(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the point of contact. 

Hence,  

𝛼𝛼 − 0
9 − 0

=
𝛽𝛽 − 0

12 − 0
=

𝛾𝛾 − 0
20 − 0

= 𝜆𝜆(𝑠𝑎𝑎𝑚𝑚) 

⟹ 𝛼𝛼 = 9𝜆𝜆,𝛽𝛽 = 12𝜆𝜆, 𝛾𝛾 =  20𝜆𝜆 

As 𝐶𝐶(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the common point for both sphere  

⟹ 𝛼𝛼2 +  𝛽𝛽2 + 𝛾𝛾2 = 25                                               

     𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 18𝛼𝛼 − 24𝛽𝛽 − 40𝛾𝛾 + 225 = 0         

By solving both the equation 

we get, 

−18𝛼𝛼 − 24𝛽𝛽 − 40𝛾𝛾 + 250 = 0  

⟹ 9𝛼𝛼 + 12𝛽𝛽 + 20𝛾𝛾 − 125 = 0 

By putting the value of 𝛼𝛼,𝛽𝛽, 𝛾𝛾  

81𝜆𝜆 + 144𝜆𝜆 + 400𝜆𝜆 − 125 = 0 

⟹ 625𝜆𝜆 = 125 

⟹ 𝜆𝜆 =
1
5

 

The required point of contact is �9
5

, 12
5

, 4�   
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𝑟𝑟1 𝑟𝑟2 

Example 4.30: Two spheres of radii 𝑟𝑟1 and 𝑟𝑟2 cut orthogonally prove that 
the radius of the common circle is 𝑟1 𝑟2

�𝑟12+𝑟22
. 

Solution:  

  

                                                                           A  

 

   

  

                           

                                            𝐂𝐂𝟏𝟏                M               𝐂𝐂𝟐𝟐 

 

 

 

 

If the Spheres 𝑆𝑆1 and 𝑆𝑆2 intersect orthogonally then ∠𝐶𝐶1𝐴𝐴𝐶𝐶2 = 90° 

C1C2 = �𝑟𝑟12 + 𝑟𝑟22 

Area of the triangle ∆𝐶𝐶1𝐴𝐴𝐶𝐶2 = 1
2
𝑟𝑟1𝑟𝑟2  

Let 𝐴𝐴𝑀 = 𝑟𝑟 be the radius of common circle 

Then Area of the triangle ∆𝐶𝐶1𝐴𝐴𝐶𝐶2 = 1
2
𝑟𝑟 (𝐶𝐶1𝐶𝐶2) = 1

2
𝑟𝑟�𝑟𝑟12 + 𝑟𝑟22  

By comparing the area of  ∆𝐶𝐶1𝐴𝐴𝐶𝐶2  

1
2
𝑟𝑟1𝑟𝑟2 = 1

2
𝑟𝑟�𝑟𝑟12 + 𝑟𝑟22  

⟹ 𝑟𝑟 = 𝑟1𝑟2

�𝑟12+𝑟22
  

Example 4.31: Find the angle of intersection of the spheres (𝑙𝑙 − 1)2 +
(𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 4        

and (𝑙𝑙 − 3)2 + (𝑚𝑚 − 1)2 + (𝑛𝑛 + 1)2 = 9.       

Solution: The equations of the given spheres are    

Figure 4.34 
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𝑟𝑟1 2 3 

S1 ≡ (𝑙𝑙 − 3)2 + (𝑚𝑚 − 1)2 + (𝑛𝑛 + 1)2 = 9        

S2 ≡ (𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 4        

                                                                             

 A  

   

  

                           

                                       𝐂𝐂𝟏𝟏(3,1,−1)                         𝐂𝐂𝟐𝟐(1,2,3) 

 

 

 

 

 

Let ∠𝐶𝐶1𝐴𝐴𝐶𝐶2 = 𝜃𝜃  be the angle of intersection of the Spheres 𝑆𝑆1 and 𝑆𝑆2 . 

Now,  

C1C2 = �(3 − 1)2 + (1 − 2)2 + (−1 − 3)2 = √21 

 

In ∆𝐶𝐶1𝐴𝐴𝐶𝐶2  

cos 𝜃𝜃 =
32 + 22 − �√21�

2

2 × 3 × 2
= −

2
3

 

⟹ cos 𝜃𝜃 =
2
3

 (taking the accute angle) 

⟹ 𝜃𝜃 = 𝑐𝑐𝑜𝑠−1 �
2
3
� 

Example 4.32: Show that the two spheres (x − 0)2 + (y + 3)2 +
(z + 1)2 = 2 and         

(x + 3)2 + (y + 4)2 + (z + 2)2 = 9 are orthogonal.    

Solution: The equations of the given spheres are  

(x − 0)2 + (y + 3)2 + (z + 1)2 = �√2�
2
    

(x + 3)2 + (y + 4)2 + (z + 2)2 = (3)2  

  

Figure 4.35 
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3 √2 

                                                                          A  

  

  

  

                           

                                     𝐂𝐂𝟏𝟏(0,−3,−1)                            𝐂𝐂𝟐𝟐(−3,−4,−2) 

 

 

 

 

 

C1C2 = �(0 + 3)2 + (−3 + 4)2 + (−1 + 2)2 = √11 

(C1C2)2 = (C1A)2 + (C2A)2 

⟹ The spheres are orthogonal  

 

Example 4.33: Show that the two spheres x2 + y2 + z2 + 2x + 2y + 1 =
0 and         

x2 + y2 + z2 + 4y − 2z + 3 = 0 are orthogonal. Find their plane of 
intersection.    

Solution: The equations of the given spheres are  

S1 ≡ x2 + y2 + z2 + 2x + 2y + 1 = 0  

𝑢𝑢1 = 1, 𝑣𝑣1 = 1,𝑤𝑤1 = 0,𝑑𝑑1 = 1 

S2 ≡ x2 + y2 + z2 + 4y − 2z + 3 = 0  

𝑢𝑢2 = 0, 𝑣𝑣2 = 2,𝑤𝑤2 = −1,𝑑𝑑2 = 3 

Two spheres are orthogonal if  

2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 = 𝑑𝑑1 + 𝑑𝑑2 

2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 = 0 + 4 + 0 = 4 

𝑑𝑑1 + 𝑑𝑑2 = 1 + 3 = 4 

⟹ 2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 = 𝑑𝑑1 + 𝑑𝑑2 

Hence the spheres S1 and S2 are orthogonal.  

Figure 4.36 
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Plane of intersection is given by 

S1 − S2 = 0 ⟹ 2𝑙𝑙 − 2𝑚𝑚 + 2𝑛𝑛 − 2 = 0 

⟹ 𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 − 1 = 0 

Example 4.34: Find the equation of the sphere that passes through the two 
points (0,0,0), (0,2,0) and cuts orthogonally the two spheres 

𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 2x − 25 = 0 and 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 4z − 8 = 0. 

Solution: Let the equation of the sphere be  

𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 2ux + 2vy + 2wz + d = 0                                                                         
.……(S) 

Sphere (S) passes through the points (0,0,0) and (0,2,0)   

⟹ d = 0 and v = −1    

Sphere (S) cuts the spheres 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 2x − 25 = 0 orthogonally 

By applying the condition of orthogonality  

 2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 = 𝑑𝑑1 + 𝑑𝑑2 ⟹ 2𝑢𝑢(1) = 0 − 25 ⟹ 𝑢𝑢 = −25
2

 

Again, sphere (S) cuts the sphere 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 4z − 8 =
0 orthogonally 

⟹ 2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 = 𝑑𝑑1 + 𝑑𝑑2 ⟹ 2𝑤𝑤(−2) = 0 − 8 ⟹𝑤𝑤 = 2 

The required equation of the sphere is  

𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 25x − 2y + 4z = 0 

Check Your Progress 

1. Prove that the polar plane of any point on the line 𝑥𝑥
2

= 𝑦𝑦−1
3

= 𝑧𝑧+3
4

  
with respect to the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 1 passes through the 
line 2𝑥𝑥+3

13
= 𝑦𝑦−1

−3
= 𝑧𝑧

−1
 . 

2. Find the equation of the tangent plane of the sphere 𝑙𝑙2 + 𝑚𝑚2 +
𝑛𝑛2 = 9 at (1,−2,2). 

Ans.  𝑙𝑙 − 2𝑚𝑚 + 2𝑛𝑛 = 9. 

3. Show that the spheres 𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 2x − 25 = 0 and 𝑙𝑙2 +
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𝑷𝑷(𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏, 𝒛𝒛𝟏𝟏) 

 𝑚𝑚2 + 𝑛𝑛2 − 25x − 2y + 4z = 0 are orthogonal.    

4. Show that the spheres  𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 4z − 8 = 0 and 𝑙𝑙2 +
 𝑚𝑚2 + 𝑛𝑛2 − 25x − 2y + 4z = 0 are orthogonal. 

5. Show that the spheres  𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 6y + 2z + 8 = 0 and 
𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 6x + 8y + 4z + 20 = 0 are orthogonal. Find their 
plane of intersection. 

Ans. 3𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 + 6 = 0. 

6. Find the angle of intersection of two intersecting spheres  𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 1 = 0 and 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑚𝑚 − 2𝑛𝑛 + 2 =
0. 

𝐀𝐀𝐧𝐬.𝜃𝜃 = 𝑐𝑐𝑜𝑠−1 �
1

2√3
� 

7.     Find the angle of intersection of two intersecting spheres  𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0 and  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 +
2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0. 

𝐀𝐀𝐧𝐬.𝜃𝜃 = 𝑐𝑐𝑜𝑠−1 ��
2𝑢𝑢1𝑢𝑢2 + 2𝑣𝑣1𝑣𝑣2 + 2𝑤𝑤1𝑤𝑤2 − 𝑑𝑑1 − 𝑑𝑑2

2�𝑢𝑢12 + 𝑣𝑣12 + 𝑤𝑤12 − 𝑑𝑑1�𝑢𝑢22 + 𝑣𝑣22 + 𝑤𝑤22 − 𝑑𝑑2
�� 

 

4.21 THE LENGTH OF THE TANGENT AND 
POWER OF A POINT 

 

 

 

 

 

 

 

                                                                    

 

 

 T 

  

                  

                  

                 C(-u,-v,-w) 

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 2𝑢𝑢𝑢𝑢 + 2𝑣𝑣𝑣𝑣 + 2𝑤𝑤𝑤𝑤 + 𝑑𝑑 = 0 

Tangent Line 

Figure 4.37 
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Centre of Sphere = C(−𝑢𝑢,−𝑣𝑣,−𝑤𝑤) 

Radius = CT = �𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑 

T is the point of contact. 

CT ⊥ PT 

PT2 = PC2 − CT2 

PT2 = {(𝑙𝑙1 + 𝑢𝑢)2 + (𝑚𝑚1 + 𝑣𝑣)2 + (𝑛𝑛1 + 𝑤𝑤)2} − (𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 − 𝑑𝑑) 

PT2 = 𝑙𝑙12 + 𝑚𝑚12+𝑛𝑛12 + 2𝑢𝑢𝑙𝑙1 + 2𝑣𝑣𝑚𝑚1 + 2𝑤𝑤𝑛𝑛1 + 𝑑𝑑 

PT2 is also known as the Power of the point P with respect to the 
given sphere. 

4.22 THE RADICAL PLANE OF TWO SPHERES 

The locus of a point whose powers with respect to two given spheres are 
the same is called the radical plane of the two spheres.   

           S1 ≡ x2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0     

           S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0      

Let P(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be any point. 

The power of the point P(𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to the sphere 𝑆𝑆1 = 0 is 
given by 

  (𝑃𝑃𝑇𝑇1)2 = 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 + 2𝑢𝑢1𝛼𝛼 + 2𝑣𝑣1𝛽𝛽 + 2𝑤𝑤1𝛾𝛾 + 𝑑𝑑1 

and the power of the point P(𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to the sphere 𝑆𝑆2 = 0 
is given by 

  (𝑃𝑃𝑇𝑇2)2 = 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 + 2𝑢𝑢2𝛼𝛼 + 2𝑣𝑣2𝛽𝛽 + 2𝑤𝑤2𝛾𝛾 + 𝑑𝑑2 

For radical plane 

       (𝑃𝑃𝑇𝑇1)2 = (𝑃𝑃𝑇𝑇2)2 

 ⟹ 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 + 2𝑢𝑢1𝛼𝛼 + 2𝑣𝑣1𝛽𝛽 + 2𝑤𝑤1𝛾𝛾 + 𝑑𝑑1 = 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 +
2𝑢𝑢2𝛼𝛼 + 2𝑣𝑣2𝛽𝛽 + 2𝑤𝑤2𝛾𝛾 + 𝑑𝑑2 

⟹ 2𝑢𝑢1𝛼𝛼 + 2𝑣𝑣1𝛽𝛽 + 2𝑤𝑤1𝛾𝛾 + 𝑑𝑑1 = 2𝑢𝑢2𝛼𝛼 + 2𝑣𝑣2𝛽𝛽 + 2𝑤𝑤2𝛾𝛾 + 𝑑𝑑2 

⟹ 2𝛼𝛼(𝑢𝑢1 − 𝑢𝑢2) + 2𝛽𝛽(𝑣𝑣1 − 𝑣𝑣2) + 2𝛾𝛾(𝑤𝑤1 − 𝑤𝑤2) + (𝑑𝑑1 − 𝑑𝑑2) = 0 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

2𝑙𝑙(𝑢𝑢1 − 𝑢𝑢2) + 2𝑚𝑚(𝑣𝑣1 − 𝑣𝑣2) + 2𝑛𝑛(𝑤𝑤1 − 𝑤𝑤2) + (𝑑𝑑1 − 𝑑𝑑2) = 0 

or   𝑆𝑆1 −   𝑆𝑆2 = 0 

This is the required equation of radical plane of two spheres. 
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4.23 THE RADICAL AXIS (RADICAL LINE) OF 
THREE SPHERES  

The radical planes of three spheres taken two at a time pass through a 
common line which is said to be the radical axis (or radical line) of the 
three spheres.   

  𝑆𝑆1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0              ….. (1)                                

  𝑆𝑆2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0     ….. (2)                                                     

  𝑆𝑆3 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢3𝑙𝑙 + 2𝑣𝑣3𝑚𝑚 + 2𝑤𝑤3𝑛𝑛 + 𝑑𝑑3 = 0   ….. (3)                                                         

Radical plane of 𝑆𝑆1 and  𝑆𝑆2 is given by 𝑆𝑆1 − 𝑆𝑆2 = 0                 …...(𝐏𝐏𝟏𝟏)                                          

Radical plane of 𝑆𝑆2 and  𝑆𝑆3 is given by 𝑆𝑆2 − 𝑆𝑆3 = 0                       …(𝐏𝐏𝟐𝟐)                                     

Radical plane of 𝑆𝑆3 and  𝑆𝑆1 is given by 𝑆𝑆3 − 𝑆𝑆1 = 0                       .…(𝐏𝐏𝟑𝟑)                  

Plane (𝐏𝐏𝟏𝟏) and (𝐏𝐏𝟐𝟐) represent a line 𝑆𝑆1 = 𝑆𝑆2 = 𝑆𝑆3    

Plane (𝐏𝐏𝟐𝟐) and (𝐏𝐏𝟑𝟑) represent a line 𝑆𝑆1 = 𝑆𝑆2 = 𝑆𝑆3    

Plane (𝐏𝐏𝟑𝟑) and (𝐏𝐏𝟏𝟏) represent a line 𝑆𝑆1 = 𝑆𝑆2 = 𝑆𝑆3    

Clearly these three planes pass through the line 𝑆𝑆1 = 𝑆𝑆2 = 𝑆𝑆3   which is 
the equation of the radical line (or radical axis) of three given spheres. 

4.24 COAXIAL SYSTEM OF SPHERES 

A family of spheres is called a coaxial system of spheres if for all the 
spheres any two of them have the same radical plane. 

   S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢1𝑙𝑙 + 2𝑣𝑣1𝑚𝑚 + 2𝑤𝑤1𝑛𝑛 + 𝑑𝑑1 = 0                        

  S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑢𝑢2𝑙𝑙 + 2𝑣𝑣2𝑚𝑚 + 2𝑤𝑤2𝑛𝑛 + 𝑑𝑑2 = 0    

The radical plane of the spheres S1 = 0 and S2 = 0 is given by  

S1 − S2 = 0 

The equation of the co-axial system of spheres determined by the spheres 
S1 = 0 and S2 = 0 is given by the following different three ways 

S1 + λ(S1 − S2) = 0 or S2 + μ(S1 − S2) = 0 or  S1 + νS2 = 0. 

4.25 LIMITING POINTS OF A CO-AXIAL 
SYSTEM OF SPHERES 

The centres of the spheres of a co-axial system which have zero radius are 
called limiting points of the co-axial system.  
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𝑷𝑷(𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏, 𝒛𝒛𝟏𝟏) 

Example 4.35: Find the length of the tangent and power of the point 
P(6,6,5) with respect to the sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 4𝑛𝑛 + 2 = 0. 

Solution: 

 

  

 

 

 

 

 

                                                                    

 

 

 T 

  

 

Equation of the given sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 4𝑛𝑛 + 2 = 0 

Centre of Sphere = C(−1,−1,−2) 

Radius = CT = �(−1)2 + (−1)2 + (−2)2 − 2 = 2 

T is the point of contact. 

CT ⊥ PT 

PT2 = PC2 − CT2 

PT2 = {(6 + 1)2 + (6 + 1)2 + (5 + 2)2} − (2)2 

PT2 = 143 

PT = √143 

Hence the length of the tangent is PT = √143 and power of the point 
P(6,6,5) with respect to the given sphere is PT2 = 143.    

 

                  

                  

                 C(-1,-1,-2) 

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 2𝑥𝑥 + 2𝑦𝑦 + 4𝑧𝑧 + 2 = 0 

Tangent Line 

2 

𝐏𝐏(𝟔𝟔,𝟔𝟔,𝟓𝟓) 
Figure 4.38 
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Example 4.36: Find the radical plane of the spheres 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 +
6𝑚𝑚 + 7𝑛𝑛 + 8 = 0 and 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 4𝑛𝑛 + 2 = 0. 

Solution: Equation of the given spheres are  

       S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 + 6𝑚𝑚 + 7𝑛𝑛 + 8 = 0  

and S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 4𝑛𝑛 + 2 = 0 

 Radical plane of the given spheres is given by  

⟹ S1 − S2 = 0 

⟹ (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 + 6𝑚𝑚 + 7𝑛𝑛 + 8) − (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚
+ 4𝑛𝑛 + 2) = 0 

⟹ 2𝑙𝑙 + 4𝑚𝑚 + 3𝑛𝑛 + 6 = 0 

Example 4.37: Find the equation of the radical axis of the spheres 

S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 2𝑛𝑛 + 2 = 0  

S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 + 4𝑛𝑛 + 4 = 0 

S3 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 𝑙𝑙 + 6𝑚𝑚 − 4𝑛𝑛 − 2 = 0  

Solution: The radical plane of the spheres S1 = 0 and S2 = 0 is given by  

S1 − S2 = 0 

⟹−2𝑙𝑙 + 2𝑚𝑚 − 2𝑛𝑛 − 2 = 0 

⟹ 𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 + 1 = 0 

Again the radical plane of the spheres S1 = 0 and S3 = 0 is given by  

S1 − S3 = 0 

⟹ 𝑙𝑙 − 4𝑚𝑚 + 6𝑛𝑛 + 4 = 0 

The equation of required radical axes is given by 

𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 + 1 = 0; 𝑙𝑙 − 4𝑚𝑚 + 6𝑛𝑛 + 4 = 0 

 Example 4.38: Find the limiting points of the co-axial system of spheres 
determined by the spheres  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 3𝑙𝑙 − 3𝑚𝑚 + 6 = 0, 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 6𝑚𝑚 − 6𝑛𝑛 + 6 = 0. 

Solution: The equations of the given spheres are  

S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 3𝑙𝑙 − 3𝑚𝑚 + 6 = 0 

S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 6𝑚𝑚 − 6𝑛𝑛 + 6 = 0 

The radical plane of the spheres S1 = 0 and S2 = 0 is given by 

S1 − S2 = 0 

⟹ 3𝑙𝑙 + 3𝑚𝑚 + 6𝑛𝑛 = 0 UGMM-102/161
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⟹ 𝑙𝑙 + 𝑚𝑚 + 2𝑛𝑛 = 0 

The equation of radical plane is  

P ≡ 𝑙𝑙 + 𝑚𝑚 + 2𝑛𝑛 = 0 

The equation of the co-axial system of spheres determined by the spheres 
S1 = 0 and S2 = 0 is given by 

S1 + λP = 0 

⟹ (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 3𝑙𝑙 − 3𝑚𝑚 + 6) + λ(𝑙𝑙 + 𝑚𝑚 + 2𝑛𝑛) = 0 

⟹ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + (3 + λ)x + (−3 + λ)y + 2λz + 6 = 0 

 

Centre of the sphere is �−3−λ
2

, 3−λ
2

,−λ� 

Radius = ��
−3 − λ

2
�
2

+ �
3 − λ

2
�
2

+ (−λ)2 − 6 

            = 1
2
�(3 + λ)2 + (3 − λ)2 + 4λ2 − 24 = 1

2
√6λ2 − 6 

If the radius of the sphere is zero, then  

1
2
�6λ2 − 6 = 0 

⟹ 6λ2 − 6 = 0 
⟹ λ2 − 1 = 0 
⟹ λ = 1,−1 
Putting λ = 1 in the co-ordinates of centre of the sphere, we get  
(−2,1,−1) 
Again putting λ = −1 in the co-ordinates of centre of the sphere, we get  
(−1,2,1) 
The required limiting points of the co-axial system of spheres are 
(−2,1,−1) and (−1,2,1). 

4.26 SUMMARY 

We conclude with summarizing what we have covered in this unit 

  The definition of sphere  

  A point lies on the boundary, inside or outside the sphere. 

  Circle, Great circle and Small circle. 

 Equation of a Sphere with centre at C(u, v, w) and radius r  

 Equation of a Sphere with centre at origin O(0,0,0) and radius r  
 General equation of the Sphere and determine its centre and radius 
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 The equation of the Sphere with a given diameter  

 The equation of a circle and determine its centre and radius  

 The great circle and find the equation of a sphere for which the 
circle is a great circle  

 Intersection of two sphere 

 Equation of a sphere passing through a circle 

 A line does not intersect the sphere or  intersect the sphere at two 
point or it is tangent line 

 Equation of tangent planes 

 Condition of tangency 

 Equation of plane of contact 

 Pole and polar planes 

 The equation of the polar plane of a point A(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) with respect 
to the sphere  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

 The equation of the polar plane of a point A(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) with respect 
to the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑎𝑎2 

 The pole of the polar plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 with respect to the 
sphere   𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 is �𝑙𝑎

2

𝑝
,𝑚𝑎2

𝑝
, 𝑛𝑎

2

𝑝
� 

 Condition that the two spheres are orthogonal  

 Angle of intersection of two spheres  

 The two spheres are touch internally or externally and find their 
point of contact 

 The length of a tangent and power of a point 

 The radical plane of two spheres 

 The radical axis(radical line) of three spheres 

 The Coaxial system of spheres 

 The limiting points of a co-axial system of spheres 

4.27 TERMINAL QUESTIONS 

1. Find the equation of the sphere with centre at (2,3,4) and which 
passes through the point(1,2,8). 

Ans. (𝑙𝑙 − 2)2 + (𝑚𝑚 − 3)2 + (𝑛𝑛 − 4)2 = 18 

2. Find the equation of the sphere with centre at (1,2,3) and radius 6. 

Ans. (𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 36 

3. Find the centre and radius of the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4x − 6y −
2z + 5 = 0. UGMM-102/163
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Ans. Radius = 3 and Centre = (2,3,1) 

4. Find the equation of the sphere on the join of (2,4,6) and 
(−2,−4,−6)  as diameter. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 56 = 0 

5. Find the equation of the sphere with centre at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) and which 
touch the plane  

 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑑𝑑 = 0.  

Ans. (𝑙𝑙 − 𝛼𝛼)2 + (𝑚𝑚 − 𝛽𝛽)2 + (𝑛𝑛 − 𝛾𝛾)2 = (𝑎𝛼+𝑏𝛽+𝑐𝛾+𝑑)2

a2+b2+c2
 

6. Find the equation of the sphere with centre at (0,0,0) and which 
passes through the point(0, 𝑏𝑏, 0). 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑏𝑏2 

7. Find the equation of the sphere with centre at (0,0,0) and which 
passes through the point (0,0, 𝑐𝑐). 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑐𝑐2 

7. Find the equation of the sphere on the join of (a, 0,0) and (0,0, c)  
as diameter. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − ax − cz = 0 

8. (i) Show that the point P(2,1,2) lies on the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =
9. 

(ii) Show that the point Q(1,1,−4) lies inside the sphere 𝑙𝑙2 + 𝑚𝑚2 +
𝑛𝑛2 − 6𝑙𝑙 + 4𝑚𝑚 + 4𝑛𝑛 − 32 = 0. 

(iii) Show that the point R(4,4,7) lies outside the sphere 𝑙𝑙2 + 𝑚𝑚2 +
𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 − 4𝑛𝑛 − 19 = 0. 

9. Find the centre and radius of the circle (𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 +
(𝑛𝑛 − 3)2 = 16,  𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 3 = 0. 

Ans. Centre of the circle = (0,1,2),  Radius of the circle = √13 
10. Find the equation of the sphere which passes through the point 

(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and the circle          𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 𝑛𝑛 = 0. 

Ans. (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎2)𝛾𝛾 − (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2)𝑛𝑛 = 0. 
11. Find the equation of the sphere for which the circle 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 − 8 = 0, 2𝑙𝑙 + 2𝑚𝑚 + 𝑛𝑛 + 8 = 0 is a great circle. 

Ans. 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 14x
3

+ 8y
3

+ 4z
3

+ 8
3

= 0 

12. Find the equation to the plane in which the circle of intersection of 
the spheres  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 7𝑙𝑙 + 16𝑚𝑚 + 9𝑛𝑛 + 18 = 0 and 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 +
𝑚𝑚 + 3𝑛𝑛 + 8 = 0 lies.  
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Ans. 3𝑙𝑙 + 15𝑚𝑚 + 6𝑛𝑛 + 10 = 0 

13. Prove that the circle (𝑙𝑙 − 4)2 + (𝑚𝑚 + 2)2 + (𝑛𝑛 − 2)2 = 36, 
𝑙𝑙 − 2𝑚𝑚 + 2𝑛𝑛 = 12 is a great circle.  

14. Show that the equation of the circle whose centre is (0,1,2) and 
which lies on the sphere (𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 16 is 
(𝑙𝑙 − 1)2 + (𝑚𝑚 − 2)2 + (𝑛𝑛 − 3)2 = 16,  𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 3 = 0. 

15. Show that the line 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛 intersect the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =
𝑎𝑎2 at the point ( 𝑎

√3
, 𝑎
√3

, 𝑎
√3

) and (− 𝑎
√3

,− 𝑎
√3

,− 𝑎
√3

).  

16. Show that the line 𝑥𝑥+2
2

= 𝑦𝑦−3
2

= 𝑧𝑧−3
−1

 is the tangent line of the sphere  
𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 − 2𝑚𝑚 − 2𝑛𝑛 − 6 = 0 and find the point of 
contact. 

Ans. (−2,3,3) 

17. Find the equation of the tangent plane of the sphere  𝑙𝑙2 + 𝑚𝑚2 +
𝑛𝑛2 + 2𝑙𝑙 − 2𝑚𝑚 − 2𝑛𝑛 − 6 = 0 at the point (−2,3,3). 

Ans. 𝑙𝑙 − 2𝑚𝑚 − 2𝑛𝑛 + 14 = 0 

18. Show that the plane 𝑙𝑙 − 2𝑚𝑚 − 2𝑛𝑛 + 14 = 0 is a tangent plane of 
the sphere 

 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 − 2𝑚𝑚 − 2𝑛𝑛 − 6 = 0 and find the point of contact.. 

Ans. (−2,3,3) 

19. Show that the plane 𝑚𝑚 = 0  touches the sphere (𝑙𝑙 − 2)2 +
(𝑚𝑚 − 2)2 + (𝑛𝑛 − 2)2 = 4  and find the point of contact. 

Ans. Point of Contact (2,0,2). 

20. Show that the plane 𝑛𝑛 = 0  touches the sphere (𝑙𝑙 − 2)2 +
(𝑚𝑚 − 2)2 + (𝑛𝑛 − 2)2 = 4  and find the point of contact. 

Ans. Point of Contact (2,2,0). 

21. Show that the plane 2𝑙𝑙 − 𝑚𝑚 − 22 = 16 touches the sphere  
𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 4𝑙𝑙 + 2𝑚𝑚 + 2𝑛𝑛 − 3 = 0, and find the point of 
contact. 

𝐀𝐀𝐧𝐬. (𝟒,−𝟐𝟐,−𝟑𝟑) 

22. Show that the spheres  𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 + 2x + 4y + 6z + 7 = 0 and 
𝑙𝑙2 +  𝑚𝑚2 + 𝑛𝑛2 − 4x − 2y + 8z + 9 = 0 are orthogonal.   

23. Find the radical plane of the spheres 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 7𝑙𝑙 + 9𝑚𝑚 +
7𝑛𝑛 + 8 = 0 and 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 2𝑚𝑚 + 4𝑛𝑛 + 2 = 0. 

Ans. 5𝑙𝑙 + 7𝑚𝑚 + 3𝑛𝑛 + 6 = 0.  
24. Find the equation of the radical axis of the spheres 

S1 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 4𝑙𝑙 + 2𝑚𝑚 + 2𝑛𝑛 + 2 = 0  

S2 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 + 4 = 0 
UGMM-102/165

D
G

B
-0

21



 
 

S3 ≡ 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 𝑙𝑙 + 3𝑚𝑚 − 4𝑛𝑛 − 2 = 0  

Ans. 2𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 2 = 0 = 3𝑙𝑙 − 𝑚𝑚 + 6𝑛𝑛 + 4  

4.28 FURTHER READINGS 

1. Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, 
Published by S. Chand & Company Ltd. 7th Edition.  

2. A text book of Mathematics for BA/B.Sc Vol 1, by V Krishna 
Murthy & Others, Published by S. Chand & Company, New Delhi.  

3. A text Book of Analytical Geometry of Three Dimensions, by P.K. 
Jain and Khaleel Ahmed, Published by Wiley Eastern Ltd., 1999.  

4. Co-ordinate Geometry of two and three dimensions by P. 
Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman 
published by Tata-MC Gran-Hill Publishers Company Ltd., New 
Delhi. 

5. Plane and solid Geometry by C.A. Hart, Published by Forgotten 
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UNIT-5  CYLINDER 

Structure 

5.1 Introduction 

5.2 Objectives 

5.3 Quadratic Equation 

5.4 Cylinder 

5.5 Equation of a cylinder with given base and generators 
parallel to a fixed line 

5.6 Equation of a cylinder with given base and generators 
parallel to co-ordinate axis 

5.7 Enveloping cylinders 

5.8 Right-Circular Cylinder 

5.9 Ruled Surfaces 

5.10 Hyperboloid of one sheet 

5.11 Summary 

5.12 Terminal Questions 

5.13 Further readings 

5.1 INTRODUCTION 

Definition (Cylindrical Surface) 5.1: 

A cylindrical surface is a surface generated by a moving straight line that 
continually intersects a fixed curve and remains parallel to a fixed straight 
line not coplanar with the given curve.        The moving line is the 
generator, and the generator in any one of its positions is an element of the 
surface. 

 

 

 

 

  

                     Figure 5.1 (Cylindrical Surface) 
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Definition (Cylinder) 5.2: 

 A solid bounded by a cylindrical surface and two parallel plane sections 
cutting all its elements is called a cylinder. 

Definition (Right Section) 5.3: 

A right section of a cylinder is made by a plane cutting each of its 
elements at right angles.      

Definition (Circular Cylinders) 5.4: 

A circular cylinder is one whose right section is a circle. 

The radius of a circular cylinder is the radius of its right section. 

Definition (Right Cylinder) 5.5:   

A right cylinder is a cylinder whose elements are perpendicular to the 
bases (Fig.5.2). 

 

 

 

 

 

                    Fig. 5.2(Right Cylinder)         Fig. 5.3 (Oblique Cylinder) 
 

Definition (Oblique Cylinder) 5.6:   

An oblique cylinder is a cylinder whose elements are not perpendicular to 
the bases (Fig.5.3). 

Definition (Right Circular Cylinder) 5.7: 

A right circular cylinder is a right cylinder whose base is a circle. 

 

 

 

 

 

 

 

                 Fig. 5.4 (Right Circular Cylinder) 
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Definition (Oblique Circular Cylinder) 5.8: 

An oblique circular cylinder is an oblique cylinder whose base is a circle. 

 

 

 

 

 

 

 

                Fig. 5.5 (Oblique Circular Cylinder) 

 

Note 5.1: If a right section of a cylinder is a circle then the cylinder is a 
circular cylinder. In more generality, if a right section of a cylinder is 
a conic section (parabola, ellipse, hyperbola) then the solid cylinder is said 
to be parabolic, elliptic and hyperbolic respectively. 

 

 Definition (Axis of a Cylinder) 5.9: 

The line passing through the centers of two right sections of a circular 
cylinder is the axis of the cylinder. 

A right circular cylinder may be generated by revolving a rectangle about 
one of its sides as an axis. 

5.2 OBJECTIVES 

After reading this unit, you should be able to  

  Understand the quadratic equation in x, y, z.  

  Understand the cylindrical surface, Cylinder, Right Cylinder, 
Oblique Cylinder, Right Circular Cylinder and Oblique Circular 
Cylinder. 

 Find the equation of a cylinder with given base and generators are 
parallel to a fixed line 

 Find the equation of a cylinder with given base and generators are 
parallel to a co-ordinate axis i.e. x-axis, y-axis and z-axis. 

  Define Enveloping Cylinder 
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 Find the equation of the enveloping cylinder to the sphere 𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2  whose generators are parallel to the line  𝑥𝑥

𝑙
= 𝑦𝑦

𝑚
= 𝑧𝑧

𝑛
. 

 Find the equation of the enveloping cylinder to the surface 
𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 whose generators are parallel to the line  
𝑥𝑥
𝑙

= 𝑦𝑦
𝑚

= 𝑧𝑧
𝑛
. 

 Find the equation of the enveloping cylinder to the surface 
𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1 whose generators are parallel to the line  𝑥𝑥

𝑙
= 𝑦𝑦

𝑚
=

𝑧𝑧
𝑛
. 

 Find the equation of a right circular cylinder of radius a whose axis 
is the line                 𝑥𝑥−𝛼

𝑙
= 𝑦𝑦−𝛽

𝑚
= 𝑧𝑧−𝛾

𝑛
, where l,m,n are the direction 

cosines. 

 Find the equation of a right circular cylinder of radius a whose axis 
is the line  

𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

, where l,m,n are the direction ratios. 

 Understand  ruled surface 

 Understand  Hyperboloid of one sheet 

5.3 QUADRATIC EQUATION 

The general equation of the second degree in x, y, z is given by  

    𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃𝟐𝟐 + 𝒄𝒄𝒄𝒄𝟐𝟐 + 𝟐𝟐𝒇𝒃𝒃𝒄𝒄 + 𝟐𝟐𝒈𝒄𝒄𝒂𝒂 + 𝟐𝟐𝒉𝒂𝒂𝒃𝒃 + 𝟐𝟐𝒖𝒖𝒂𝒂 + 𝟐𝟐𝟐𝟐𝒃𝒃 + 𝟐𝟐𝟐𝟐𝒄𝒄 +
𝒅𝒅 = 𝟗𝟗 

with at least one of the coefficients a, b, c, f, g or h of the second-degree 
terms being non-zero. 

5.3.1 EQUATION OF CONIC WITH THE 
INTERSECTION OF yz-PLANE, zx-PLANE AND 
xy-PLANE  

(i ) Intersection with the yz-plane (𝒂𝒂 = 𝟗𝟗) 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 +
𝑑𝑑 = 0, 𝑙𝑙 = 0 

                                            𝑜𝑟𝑟  

       𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0, 𝑙𝑙 = 0 
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X 

Z 

Y 

O(0,0,0) 

𝐏𝐏(𝛂𝛂,𝛃𝛃, 𝛄𝛄) A 

l,m,n 

Q

 
M

 

N

 Guiding 

(ii) Intersection with the zx-plane (𝒃𝒃 = 𝟗𝟗) 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 +
𝑑𝑑 = 0, 𝑚𝑚 = 0 

                                              𝑜𝑟𝑟  

𝑎𝑎𝑙𝑙2 + 𝑐𝑐𝑛𝑛2 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2𝑢𝑢𝑙𝑙 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0, 𝑚𝑚 = 0 

(iii) Intersection with the xy-plane (𝒄𝒄 = 𝟗𝟗) 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 +
𝑑𝑑 = 0, 𝑛𝑛 = 0 

                                              𝑜𝑟𝑟  

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 𝑑𝑑 = 0, 𝑛𝑛 = 0 

5.4 CYLINDER 

Definition (Cylinder) 5.10: A cylinder is a surface generated by a 
variable line which moves parallel to a fixed line and intersects a given 
curve or a touches a given surface. 

The moving line is called generator and the curve which it intersect, is 
called the guiding curve.   

 

 

 

 

 

 

 

 

     

  

 

 

  

  

                                                              

Figure: 5.6 

Generating 

Fixed 
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5.5 EQUATION OF A CYLINDER WITH 
GIVEN BASE AND GENERATORS 
PARALLEL TO A FIXED LINE 

Equation of the fixed line OA, passing through the origin O(0,0,0) with 
direction cosine l,mn is given by 

                                                               𝒂𝒂
𝒍𝒍

= 𝒃𝒃
𝒎𝒎

= 𝒄𝒄
𝒏𝒏
                 

…………………(5.1) 

   Also let the given conic QMN is given by  

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 𝑑𝑑 = 0, 𝑛𝑛 = 0     
…………………(5.2) 

Let P(α,β, γ) be any point on the surface of cylinder. The equation of 
generating line through the point  P(α,β, γ) and parallel to the fixed line 
OA is given by 

                                                        𝒂𝒂−𝜶𝜶
𝒍𝒍

= 𝒃𝒃−𝜷𝜷
𝒎𝒎

= 𝒄𝒄−𝜸𝜸
𝒏𝒏

   
…………………(5.3) 

Let the generating line (5.3) meets the plane 𝑛𝑛 = 0 in Q 

Putting 𝑛𝑛 = 0 in (5.3) we get the coordinate of the point Q  

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
0 − 𝛾𝛾
𝑛𝑛

 

�α −
𝑙𝑙γ
n

,β −
𝑚𝑚γ
n

, 0� 

As PQ is the generating line of the cylinder, the coordinate point Q �α −
𝑙γ
n

, β − 𝑚γ
n

, 0� must satisfied the equation of conic (5.2) 

𝑎𝑎 �α − 𝑙γ
n
�
2

+ 𝑏𝑏 �β − 𝑚γ
n
�
2

+ 2ℎ �α − 𝑙γ
n
� �β − 𝑚γ

n
� + 2𝑢𝑢 �α − 𝑙γ

n
� +

2𝑣𝑣 �β − 𝑚γ
n
� + 𝑑𝑑 = 0    

⟹ 𝑎𝑎(𝑛𝑛𝛼𝛼 − 𝑙𝑙𝛾𝛾)2 + 𝑏𝑏(𝑛𝑛𝛽𝛽 −𝑚𝑚𝛾𝛾)2 + 2ℎ(𝑛𝑛𝛼𝛼 − 𝑙𝑙𝛾𝛾)(𝑛𝑛𝛽𝛽 −𝑚𝑚𝛾𝛾) 

                                                         +2𝑢𝑢𝑛𝑛(𝑛𝑛𝛼𝛼 − 𝑙𝑙𝛾𝛾) + 2𝑣𝑣𝑛𝑛(𝑛𝑛𝛽𝛽 −𝑚𝑚𝛾𝛾) +
𝑑𝑑𝑛𝑛2 = 0  

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛)  is 

𝑎𝑎(𝑛𝑛𝑙𝑙 − 𝑙𝑙𝑛𝑛)2 + 𝑏𝑏(𝑛𝑛𝑚𝑚 −𝑚𝑚𝑛𝑛)2 + 2ℎ(𝑛𝑛𝑙𝑙 − 𝑙𝑙𝑛𝑛)(𝑛𝑛𝑚𝑚 −𝑚𝑚𝑛𝑛) 

                                                         +2𝑢𝑢𝑛𝑛(𝑛𝑛𝑙𝑙 − 𝑙𝑙𝑛𝑛) + 2𝑣𝑣𝑛𝑛(𝑛𝑛𝑚𝑚 −𝑚𝑚𝑛𝑛) +
𝑑𝑑𝑛𝑛2 = 0  

 This is the required equation of cone. 
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5.6 EQUATION OF A CYLINDER WITH GIVEN 
BASE AND GENERATORS PARALLEL TO A 
CO-ORDINATE AXIS  

Case (i) Generator of the cylinder parallel to the x-axis 

  

 

 

 

 

 

 

 

     

  

 

 

 

                                                             Figure: 5.7  

 

 

 

Equation of x-axis is given by 

                                                               𝒂𝒂
𝟏𝟏

= 𝒃𝒃
𝟗𝟗

= 𝒄𝒄
𝟗𝟗
       

…………………(5.4) 

 

Also let the given conic QMN is given by  

 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0, 𝑙𝑙 = 0    
…………………(5.5) 

Let P(α,β, γ) be any point on the surface of cylinder. The equation of 
generating line through the point  P(α,β, γ) and parallel to the fixed line 
(x-axis) is given by 
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X 

Y 

Z 

O(0,0,0) 

𝐏𝐏(𝛂𝛂,𝛃𝛃, 𝛄𝛄) 

0,1,0 

Q

 M

 

N

 

                                                      𝑥𝑥−𝛼
1

= 𝑦𝑦−𝛽
0

= 𝑧𝑧−𝛾
0

   
…………………(5.6) 

Let the generating line (5.6) meets the plane 𝑙𝑙 = 0 in Q 

Putting 𝑙𝑙 = 0 in (5.6) we get the coordinate of the point Q  

0 − 𝛼𝛼
1

=
𝑚𝑚 − 𝛽𝛽

0
=
𝑛𝑛 − 𝛾𝛾

0
 

(0,β, 𝛾𝛾) 

As PQ is the generating line of the cylinder, the coordinate point Q(0,β, 𝛾𝛾) 
must satisfied the equation of conic (5.5) 

  𝑏𝑏β2 + 𝑐𝑐𝛾𝛾2 + 2𝑓𝑓β𝛾𝛾 + 2𝑣𝑣β + 2𝑤𝑤𝛾𝛾 + 𝑑𝑑 = 0 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

  𝑏𝑏y2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓yz + 2𝑣𝑣y + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 

 This is the required equation of cone. 

Case (ii) Generator of the cylinder parallel to the y-axis 

 

 

 

 

 

 

 

     

  

 

 

 

 

                        Figure: 5.8  

 

Equation of y-axis is given by 

                                                                   𝒂𝒂
𝟗𝟗

= 𝒃𝒃
𝟏𝟏

= 𝒄𝒄
𝟗𝟗
       

…………………(5.7) UGMM-102/174
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Q
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   Also let the given conic QMN is given by  

𝑎𝑎𝑙𝑙2 + 𝑐𝑐𝑛𝑛2 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2𝑢𝑢𝑙𝑙 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0, 𝑚𝑚 = 0    
…………………(5.8) 

Let P(α,β, γ) be any point on the surface of cylinder. The equation of 
generating line through the point  P(α,β, γ) and parallel to the fixed line 
(x-axis) is given by 

                                                           𝑥𝑥−𝛼
0

= 𝑦𝑦−𝛽
1

= 𝑧𝑧−𝛾
0

   
…………………(5.9) 

Let the generating line (5.9) meets the plane 𝑚𝑚 = 0 in Q 

Putting 𝑚𝑚 = 0 in (5.9) we get the coordinate of the point Q  

𝑙𝑙 − 𝛼𝛼
0

=
0 − 𝛽𝛽

1
=
𝑛𝑛 − 𝛾𝛾

0
 

(𝛼𝛼, 0, 𝛾𝛾) 

As PQ is the generating line of the cylinder, the coordinate point 
Q(𝛼𝛼, 0, 𝛾𝛾) must satisfied the equation of conic (5.8) 

                        𝑎𝑎𝛼𝛼2 + 𝑐𝑐𝛾𝛾2 + 2𝑔𝑔𝛾𝛾𝛼𝛼 + 2𝑢𝑢𝛼𝛼 + 2𝑤𝑤𝛾𝛾 + 𝑑𝑑 = 0 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛)  is 

                        𝑎𝑎𝑙𝑙2 + 𝑐𝑐𝑛𝑛2 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2𝑢𝑢𝑙𝑙 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 

This is the required equation of cone. 
 

Case (iii) Generator of the cylinder parallel to the z-axis  

 

 

 

 

 

 

     

  

 

 

 

                          

Figure: 5.9 UGMM-102/175

D
G

B
-0

21



 
 

 

Equation of z-axis is given by 

                                                                 𝒂𝒂
𝟗𝟗

= 𝒃𝒃
𝟗𝟗

= 𝒄𝒄
𝟏𝟏
       

…………………(5.10) 

 

   Also let the given conic QMN is given by  

     𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 𝑑𝑑 = 0, 𝑛𝑛 = 0  
…………………(5.11) 

 

Let P(α,β, γ) be any point on the surface of cylinder. The equation of 
generating line through the point  P(α,β, γ) and parallel to the fixed line 
(z-axis) is given by 

                                                       𝑥𝑥−𝛼
0

= 𝑦𝑦−𝛽
0

= 𝑧𝑧−𝛾
1

   
…………………(5.12) 

 

Let the generating line (5.12) meets the plane 𝑛𝑛 = 0 in Q 

Putting 𝑛𝑛 = 0 in (5.12) we get the coordinate of the point Q  

𝑙𝑙 − 𝛼𝛼
0

=
𝑚𝑚 − 𝛽𝛽

0
=

0 − 𝛾𝛾
1

 

(α,β, 0) 

As PQ is the generating line of the cylinder, the coordinate point Q(α,β, 0) 
must satisfied the equation of conic (5.11) 

𝑎𝑎α2 + 𝑏𝑏β2 + 2ℎαβ + 2𝑢𝑢α + 2𝑣𝑣β + 𝑑𝑑 = 0 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛)  is 

𝑎𝑎x2 + 𝑏𝑏y2 + 2ℎxy + 2𝑢𝑢x + 2𝑣𝑣y + 𝑑𝑑 = 0 

 This is the required equation of cone. 

 

Note 5.2: 

(i) The general equation in x and y i.e. 𝑓𝑓(𝑙𝑙, 𝑚𝑚) = 𝑎𝑎x2 + 𝑏𝑏y2 + 2ℎxy +
2𝑢𝑢x + 2𝑣𝑣y + 𝑑𝑑 = 0 represents a cylinder whose generators are parallel to 
z-axis. 

In other words 𝑓𝑓(𝑙𝑙,𝑚𝑚) = 𝑎𝑎x2 + 𝑏𝑏y2 + 2ℎxy + 2𝑢𝑢x + 2𝑣𝑣y + 𝑑𝑑 = 0 
represents a cylinder passing through the conic 𝑓𝑓(𝑙𝑙,𝑚𝑚) = 𝑎𝑎x2 + 𝑏𝑏y2 +
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2ℎxy + 2𝑢𝑢x + 2𝑣𝑣y + 𝑑𝑑 = 0, 𝑛𝑛 = 0 with generators parallel to z-axis. 

(ii) The general equation in y and z i.e. 𝑓𝑓(𝑚𝑚, 𝑛𝑛) =  𝑏𝑏y2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓yz +
2𝑣𝑣y + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 

 represents a cylinder whose generators are parallel to x-axis. 

In other words 𝑓𝑓(𝑚𝑚, 𝑛𝑛) =  𝑏𝑏y2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓yz + 2𝑣𝑣y + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 
represents a cylinder passing through the conic 𝑓𝑓(𝑚𝑚, 𝑛𝑛) =  𝑏𝑏y2 + 𝑐𝑐𝑛𝑛2 +
2𝑓𝑓yz + 2𝑣𝑣y + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0, 𝑙𝑙 = 0 with generators parallel to x-axis. 

(iii) The general equation in z and x i.e. 𝑓𝑓(𝑛𝑛, 𝑙𝑙) = 𝑎𝑎𝑙𝑙2 + 𝑐𝑐𝑛𝑛2 + 2𝑔𝑔𝑛𝑛𝑙𝑙 +
2𝑢𝑢𝑙𝑙 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 represents a cylinder whose generators are parallel to 
y-axis. 

In other words 𝑓𝑓(𝑛𝑛, 𝑙𝑙) = 𝑎𝑎𝑙𝑙2 + 𝑐𝑐𝑛𝑛2 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2𝑢𝑢𝑙𝑙 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 
represents a cylinder passing through the conic 𝑓𝑓(𝑛𝑛, 𝑙𝑙) = 𝑎𝑎𝑙𝑙2 + 𝑐𝑐𝑛𝑛2 +
2𝑔𝑔𝑛𝑛𝑙𝑙 + 2𝑢𝑢𝑙𝑙 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0, 𝑚𝑚 = 0 with generators parallel to y-axis. 

 

Example 5.1: Find the equation of the cylinder with generators parallel to 
the x-axis and passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9, 2𝑙𝑙 = 𝑚𝑚 + 𝑛𝑛. 

Solution: Let P(α,β, γ) be any point on the cylinder. 

Eqn generator of the cylinder passing through the point P(α,β, γ) and 
parallel to the x-axis, is given by 

                      𝑥𝑥−𝛼
1

= 𝑦𝑦−𝛽
0

= 𝑧𝑧−𝛾
0

= 𝑟𝑟              ………………..(5.13) 

An arbitrary point on the line is given by (α + r, β, γ)  

As the cylinder passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9, 2𝑙𝑙 = 𝑚𝑚 + 𝑛𝑛, 
the generator of cylinder also passing through the circle. 

Let (α + r,β, γ) point satisfy the equation of circle 

i.e. 

                  (α + r)2 + β2 + γ2 = 9           …………………..(5.14) 

                   2(α + r) = β + γ                     ………………….(5.15) 

By equation (5.15) 

r =
β + γ

2
− α 

Putting the value of r = β+γ
2
− α in equation (5.14), we get 

                                       �β+γ
2
�
2

+ β2 + γ2 = 9 

                               ⟹ β2 + γ2 + 2βγ + 4β2 + 4γ2 = 36 
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𝐏𝐏(𝛂𝛂,𝛃𝛃, 𝛄𝛄) 

Plane 𝟐𝟐𝟐𝟐 − 𝒚𝒚 − 𝒛𝒛 = 𝟎𝟎 

Direction ratios of Normal 

of the plane are  𝟐𝟐,−𝟏𝟏,−𝟏𝟏 

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 9 

Circle 

                              ⟹ 5β2 + 5γ2 + 2βγ = 36 

Taking locus P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) 

                                   5y2 + 5z2 + 2yz = 36 

This is the required equation of cylinder. 

 

Example 5.2: 

Find the equation of right circular cylinder passing through the circle 

 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9, 2𝑙𝑙 = 𝑚𝑚 + 𝑛𝑛. 

Solution: 

 

 

  

 

 

 

 

    

 

` 

                                                          Figure: 5.10  

Given equation of circle  

                                             𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9 

                                             2𝑙𝑙 − 𝑚𝑚 − 𝑛𝑛 = 0 

 Direction ratios of normal of the plane (2𝑙𝑙 − 𝑚𝑚 − 𝑛𝑛 = 0) are 2,-1,-1.  

The generators of right circular cylinder are parallel to normal of the plane  

 Let P(α,β, γ) be any point on the cylinder. 

Eqn generator of the cylinder passing through the point P(α,β, γ) is given 
by 

                      𝑥𝑥−𝛼
2

= 𝑦𝑦−𝛽
−1

= 𝑧𝑧−𝛾
−1

= 𝑟𝑟                                 
………………..(5.16) UGMM-102/178

D
G

B
-0

21



An arbitrary point on the line is given by (α + 2r,β − r, γ − r)  

As the cylinder passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9, 2𝑙𝑙 = 𝑚𝑚 + 𝑛𝑛, 
the generator of cylinder also passing through the circle. 

Let (α + 2r,β − r, γ − r) point satisfy the equation of circle 

i.e. 

                  (α + 2r)2 + (β − r)2 + (γ − r)2 = 9           
…………………..(5.17) 

                   2(α + 2r) = (β − r) + (γ − r)                     
………………….(5.18) 

By equation (5.18) 

6r = β + γ − 2α    

                 ⟹ r = β+γ−2α
6

      

Putting the value of r = β+γ−2α
6

 in equation (5.17), we get 

�α + 2β+2γ−4α
6

�
2

+ (β − β+γ−2α
6

)2 + (γ − β+γ−2α
6

)2 = 9           

⟹ (6α + 2β + 2γ − 4α)2 + (6β − β − γ + 2α)2 + (6γ − β − γ +
2α)2 = 9 × 36          

⟹ (2α + 2β + 2γ)2 + (6β − β − γ + 2α)2 + (6γ − β − γ + 2α)2 = 9 
× 36      

⟹ 4(α + β + γ)2 + (5β − γ + 2α)2 + (2α − β + 5γ)2 = 9 × 36      

⟹ 4(α + β + γ)2 + (2α + 5β − γ)2 + (2α − β + 5γ)2 = 324 

 ⟹ 4α2 + 4β2 + 4γ2 + 8αβ + 8𝛽𝛽γ + 8γα + 4α2 + 25β2 + γ2 + 20αβ −
10𝛽𝛽γ − 4γα + 4α2 + β2 + 25γ2 − 4αβ − 10𝛽𝛽γ + 20γα = 324 

⟹ 12α2 + 30β2 + 30γ2 + 24αβ − 12𝛽𝛽γ + 24γα = 324 

⟹ 2α2 + 5β2 + 5γ2 + 4αβ − 2𝛽𝛽γ + 4γα = 54 

Taking locus P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) 

                                   2x2 + 5y2 + 5z2 + 4xy − 2𝑚𝑚𝑛𝑛 + 4zx = 54 

This is the required equation of cylinder. 

Example 5.3: 
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𝐏𝐏(𝛂𝛂,𝛃𝛃, 𝛄𝛄) 

Direction ratios of Normal 

of the plane are  𝟏𝟏,−𝟏𝟏,𝟏𝟏 

Sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 9 

Circle 

Find the equation to the right circular cylinder for its base the circle 

x2 + y2 + z2 = 9, x − y + z = 3. 

Solution: 

 

 

  

 

 

 

 

     

 

` 

                                                      Figure: 5.11  

Given equation of circle  

                                             𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9 

                                             𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 = 3 

 Direction ratios of normal of the plane (𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 = 3) are 1,-1,1.  

The generators of right circular cylinder are parallel to normal of the plane  

 Let P(α,β, γ) be any point on the cylinder. 

Eqn generator of the cylinder passing through the point P(α,β, γ) is given 
by 

                      𝑥𝑥−𝛼
1

= 𝑦𝑦−𝛽
−1

= 𝑧𝑧−𝛾
1

= 𝑟𝑟                                     
………………..(5.19) 

An arbitrary point on the line is given by (α + r, β − r, γ + r)  

As the cylinder passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 9, 𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 =
3, the generator of cylinder also passing through the circle. 

Let (α + r,β − r, γ + r) point satisfy the equation of circle 

i.e. 

Plane 𝒙𝒙 − 𝒚𝒚 + 𝒛𝒛 = 𝟑𝟑 
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                  (α + r)2 + (β − r)2 + (γ + r)2 = 9                 
…………………..(5.20) 

                   (α + r) − (β − r) + (γ + r) = 3                       
………………….(5.21) 

By equation (5.21) 

3r = 3 + β − γ − α    

⟹ r =
3 + β − γ − α

3
 

Putting the value of r = 3+β−γ−α
3

  in equation (5.20), we get 

�α + 3+β−γ−α
3

�
2

+ (β − 3+β−γ−α
3

)2 + (γ + 3+β−γ−α
3

)2 = 9           

⟹ (3α + 3 + β − γ − α)2 + (3β − 3 − β + γ + α)2 + (3γ + 3 + β −
γ − α)2 = 9 × 9     

⟹ (2α + β − γ + 3)2 + (α + 2β + γ − 3)2 + (−α + β + 2γ + 3)2 = 81          

⟹ (2α + β − γ + 3)2 + (α + 2β + γ − 3)2 + (−α + β + 2γ + 3)2 = 81          

⟹ 4α2 + β2 + γ2 + 9 + 4αβ − 4αγ + 12α − 2𝛽𝛽γ + 6𝛽𝛽 − 6γ + α2
+ 4β2 + γ2 + 9 + 4αβ + 2 − 6α + 4𝛽𝛽γ − 12𝛽𝛽 − 6γ + α2
+ β2 + 4γ2 + 9 − 2αβ − 4αγ − 6α + 4𝛽𝛽γ + 6𝛽𝛽 + 12γ
= 81 

⟹ 6α2 + 6β2 + 6γ2 + 6αβ − 6αγ + 6𝛽𝛽γ = 54 

⟹ α2 + β2 + γ2 + αβ − αγ + 𝛽𝛽γ = 9 

Taking locus P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) 

                                   x2 + y2 + z2 + xy − zx + yz = 9 

This is the required equation of cylinder. 

Check Your Progress 

1. Find the equation of the cylinder with the generators parallel to x-
axis and passing through the curve 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛, 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 +
𝑛𝑛𝑛𝑛 = 𝑝𝑝.  

𝑨𝒏𝒏𝒔. 𝒂𝒂�𝒑−𝒎𝒎𝒃𝒃−𝒏𝒏𝒄𝒄
𝒍𝒍

�
𝟐𝟐

+ 𝒃𝒃𝒃𝒃𝟐𝟐 = 𝟐𝟐𝒄𝒄 . 

2. Find the equation of the cylinder with the generators parallel to y- UGMM-102/181
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axis and passing through the curve 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛, 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 +
𝑛𝑛𝑛𝑛 = 𝑝𝑝.  

𝑨𝒏𝒏𝒔. 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃�𝒑−𝒍𝒍𝒂𝒂−𝒏𝒏𝒄𝒄
𝒎𝒎

�
𝟐𝟐

= 𝟐𝟐𝒄𝒄 . 

3. Find the equation of the cylinder with the generators parallel to z-
axis and passing through the curve 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛, 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 +
𝑛𝑛𝑛𝑛 = 𝑝𝑝.  

𝑨𝒏𝒏𝒔. 𝒏𝒏(𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃𝟐𝟐) + 𝟐𝟐(𝒍𝒍𝒂𝒂 + 𝒎𝒎𝒃𝒃− 𝒑) = 𝟗𝟗 . 

 

5.7 ENVELOPING CYLINDER 

Definition (Enveloping Cylinder) 5.11: It is the cylinder whose 
generators are parallel to a fixed line and touch a given surface. 

In other words, Enveloping cylinder of a surface is the locus of the tangent 
lines to the surface which are parallel to a given line. 

5.7.1 EQUATION OF THE ENVELOPING CYLINDER 
TO THE SPHERE 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 + 𝒄𝒄𝟐𝟐 = 𝒂𝒂𝟐𝟐 WHOSE 
GENERATORS ARE PARALLEL TO THE LINE 

                                 𝒂𝒂
𝒍𝒍

= 𝒃𝒃
𝒎𝒎

= 𝒄𝒄
𝒏𝒏
. 

Let P(α,β, γ) be any point on the enveloping cylinder. The generating line 
through the point P(α,β, γ) is given by  

                                 𝑥𝑥−α
𝑙

= 𝑦𝑦−β
𝑚

= 𝑧𝑧−γ
𝑛

= 𝑟𝑟                                                  
…………..(5.22) 

Any general point on the generating line (5.22) is given by  

Q(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) 

If Q(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) be the point of intersection of (5.22) and the 
sphere 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, the coordinate of Q must satisfy the equation of 
sphere. 

Therefore, 

(𝛼𝛼 + 𝑙𝑙𝑟𝑟)2 + (𝛽𝛽 + 𝑚𝑚𝑟𝑟)2 + (𝛾𝛾 + 𝑛𝑛𝑟𝑟)2 = 𝑎𝑎2 
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⟹ 𝑟𝑟2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) + 𝑟𝑟(2𝛼𝛼𝑙𝑙 + 2𝛽𝛽𝑚𝑚 + 2𝛾𝛾𝑛𝑛) + (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) =
0   ….…….(5.23) 

Since (5.22) is the tangent of sphere, roots of the equation (5.23) must be 
equal. 

Therefore, 

 𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 = 0   

⟹ (2𝛼𝛼𝑙𝑙 + 2𝛽𝛽𝑚𝑚 + 2𝛾𝛾𝑛𝑛)2 − 4(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) = 0     

⟹ (𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛)2 − (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) = 0     

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

(𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛)2 − (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎2) = 0     

⟹ (𝒍𝒍𝒂𝒂 + 𝒎𝒎𝒃𝒃 + 𝒏𝒏𝒄𝒄)𝟐𝟐 = (𝒍𝒍𝟐𝟐 + 𝒎𝒎𝟐𝟐 + 𝒏𝒏𝟐𝟐)(𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 + 𝒄𝒄𝟐𝟐 − 𝒂𝒂𝟐𝟐)     

This is the required equation of enveloping cylinder. 

5.7.2 EQUATION OF THE ENVELOPING CYLINDER 
TO THE SURFACE 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃𝟐𝟐 + 𝒄𝒄𝒄𝒄𝟐𝟐 = 𝟏𝟏 WHOSE 
GENERATORS ARE PARALLEL TO THE LINE 

                                 𝒂𝒂
𝒍𝒍

= 𝒃𝒃
𝒎𝒎

= 𝒄𝒄
𝒏𝒏
. 

Let P(α,β, γ) be any point on the enveloping cylinder. The generating line 
through the point P(α,β, γ) is given by  

                                 𝑥𝑥−α
𝑙

= 𝑦𝑦−β
𝑚

= 𝑧𝑧−γ
𝑛

= 𝑟𝑟                                                                  
………..(5.24) 

Any general point on the generating line (5.24) is given by  

Q(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) 

If Q(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) be the point of intersection of (5.24) and the  

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1, the coordinate of Q must satisfy the equation of 
surface. 

Therefore, 

𝑎𝑎(𝛼𝛼 + 𝑙𝑙𝑟𝑟)2 + 𝑏𝑏(𝛽𝛽 + 𝑚𝑚𝑟𝑟)2 + 𝑐𝑐(𝛾𝛾 + 𝑛𝑛𝑟𝑟)2 = 1 

⟹ 𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 𝑟𝑟(2𝑎𝑎𝛼𝛼𝑙𝑙 + 2𝑏𝑏𝛽𝛽𝑚𝑚 + 2𝑐𝑐𝛾𝛾𝑛𝑛) + (𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1) = 0 ….(5.25) 
Since (5.24) is the tangent of sphere, roots of the equation (5.25) must be 
equal. 
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Therefore, 

 𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 = 0   

⟹ (2𝑎𝑎𝛼𝛼𝑙𝑙 + 2𝑏𝑏𝛽𝛽𝑚𝑚 + 2𝑐𝑐𝛾𝛾𝑛𝑛)2 − 4(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1) = 0     

⟹ (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)2 − (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 −
1) = 0     

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

(𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛)2 − (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1) = 0     

⟹ (𝒂𝒂𝒍𝒍𝒂𝒂 + 𝒃𝒃𝒎𝒎𝒃𝒃 + 𝒄𝒄𝒏𝒏𝒄𝒄)𝟐𝟐 = (𝒂𝒂𝒍𝒍𝟐𝟐 + 𝒃𝒃𝒎𝒎𝟐𝟐 + 𝒄𝒄𝒏𝒏𝟐𝟐)(𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃𝟐𝟐 + 𝒄𝒄𝒄𝒄𝟐𝟐 − 𝟏𝟏)         
This is the required equation of enveloping cylinder. 

5.7.3 EQUATION OF THE ENVELOPING CYLINDER 
TO THE SURFACE 𝒂𝒂𝟐𝟐

𝒂𝒂𝟐𝟐
+ 𝒃𝒃𝟐𝟐

𝒃𝒃𝟐𝟐
+ 𝒄𝒄𝟐𝟐

𝒄𝒄𝟐𝟐
= 𝟏𝟏 WHOSE 

GENERATORS ARE PARALLEL TO THE LINE 

                                 𝒂𝒂
𝒍𝒍

= 𝒃𝒃
𝒎𝒎

= 𝒄𝒄
𝒏𝒏
. 

Let P(α,β, γ) be any point on the enveloping cylinder. The generating line 
through the point P(α,β, γ) is given by  

                                 𝑥𝑥−α
𝑙

= 𝑦𝑦−β
𝑚

= 𝑧𝑧−γ
𝑛

= 𝑟𝑟     ………………..(5.26) 

Any general point on the generating line (5.26) is given by  

Q(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) 

If Q(𝛼𝛼 + 𝑙𝑙𝑟𝑟,𝛽𝛽 + 𝑚𝑚𝑟𝑟, 𝛾𝛾 + 𝑛𝑛𝑟𝑟) be the point of intersection of (5.26) and the 
surface                    𝒂𝒂

𝟐𝟐

𝒂𝒂𝟐𝟐
+ 𝒃𝒃𝟐𝟐

𝒃𝒃𝟐𝟐
+ 𝒄𝒄𝟐𝟐

𝒄𝒄𝟐𝟐
= 𝟏𝟏, the coordinate of Q must satisfy the 

equation of surface. 

Therefore, 

(𝛼𝛼 + 𝑙𝑙𝑟𝑟)2

𝑎𝑎2
+

(𝛽𝛽 + 𝑚𝑚𝑟𝑟)2

𝑏𝑏2
+

(𝛾𝛾 + 𝑛𝑛𝑟𝑟)2

𝑐𝑐2
= 1 

⟹ 𝑟𝑟2 �𝑙
2

𝑎2
+ 𝑚2

𝑏2
+ 𝑛2

𝑐2
� + 𝑟𝑟 �2𝛼𝑙

𝑎2
+ 2𝛽𝑚

𝑏2
+ 2𝛾𝑛

𝑐2
� + ( 𝛼

2

𝑎2
+ 𝛽2

𝑏2
+ 𝛾2

𝑐2
− 1) =

0…….(5.27) 

Since (5.26) is the tangent of surface, roots of the equation (5.27) must be 
equal. 

Therefore, 
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 𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 = 0   

⟹ �2𝛼𝑙
𝑎2

+ 2𝛽𝑚
𝑏2

+ 2𝛾𝑛
𝑐2
�
2
− 4 �𝑙

2

𝑎2
+ 𝑚2

𝑏2
+ 𝑛2

𝑐2
� ( 𝛼

2

𝑎2
+ 𝛽2

𝑏2
+ 𝛾2

𝑐2
− 1) = 0     

⟹ �𝛼𝑙
𝑎2

+ 𝛽𝑚
𝑏2

+ 𝛾𝑛
𝑐2
�
2
− �𝑙

2

𝑎2
+ 𝑚2

𝑏2
+ 𝑛2

𝑐2
� ( 𝛼

2

𝑎2
+ 𝛽2

𝑏2
+ 𝛾2

𝑐2
− 1) = 0     

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

�
𝑙𝑙𝑙𝑙
𝑎𝑎2

+
𝑚𝑚𝑚𝑚
𝑏𝑏2

+
𝑛𝑛𝑛𝑛
𝑐𝑐2
�
2

− �
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
� � 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
− 1� = 0     

⟹ �
𝒍𝒍𝒂𝒂
𝒂𝒂𝟐𝟐

+
𝒎𝒎𝒃𝒃
𝒃𝒃𝟐𝟐

+
𝒏𝒏𝒄𝒄
𝒄𝒄𝟐𝟐
�
𝟐𝟐

= �
𝒍𝒍𝟐𝟐

𝒂𝒂𝟐𝟐
+
𝒎𝒎𝟐𝟐

𝒃𝒃𝟐𝟐
+
𝒏𝒏𝟐𝟐

𝒄𝒄𝟐𝟐
� � 

𝒂𝒂𝟐𝟐

𝒂𝒂𝟐𝟐
+
𝒃𝒃𝟐𝟐

𝒃𝒃𝟐𝟐
+
𝒄𝒄𝟐𝟐

𝒄𝒄𝟐𝟐
− 𝟏𝟏�     

This is the required equation of enveloping cylinder. 

Example 5.4: Find the enveloping cylinder of the sphere 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 −
𝑙𝑙 − 𝑚𝑚 + 2𝑛𝑛 − 2 = 0 having the generators parallel to the line 𝑙𝑙 = 𝑚𝑚 = 𝑛𝑛. 

Solution: Let P(α,β, γ) be any point on the enveloping cylinder. The 
generating line through the point P(α,β, γ) is given by  

                                 𝑙𝑙 − α = 𝑚𝑚 − β = 𝑛𝑛 − γ = 𝑟𝑟     ………………..(5.28) 

Any general point on the generating line (5.28) is given by  

Q(𝛼𝛼 + 𝑟𝑟,𝛽𝛽 + 𝑟𝑟, 𝛾𝛾 + 𝑟𝑟) 

If Q(𝛼𝛼 + 𝑟𝑟,𝛽𝛽 + 𝑟𝑟, 𝛾𝛾 + 𝑟𝑟) be the point of intersection of (5.28) and the 
sphere                               𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑙𝑙 − 𝑚𝑚 + 2𝑛𝑛 − 2 = 0 , the 
coordinate of Q must satisfy the equation of sphere. 

Therefore, 

(𝛼𝛼 + 𝑟𝑟)2 + (𝛽𝛽 + 𝑟𝑟)2 + (𝛾𝛾 + 𝑟𝑟)2 − (𝛼𝛼 + 𝑟𝑟) − (𝛽𝛽 + 𝑟𝑟) + 2(𝛾𝛾 + 𝑟𝑟) − 2
= 0 

⟹ 3𝑟𝑟2 + 𝑟𝑟(2𝛼𝛼 + 2𝛽𝛽 + 2𝛾𝛾) + ( 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝛼𝛼 − 𝛽𝛽 + 2𝛾𝛾 − 2) =
0…….(5.29) 

Since (5.28) is the tangent of surface, roots of the equation (5.29) must be 
equal. 

Therefore, 

       𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 = 0   

⟹ (2𝛼𝛼 + 2𝛽𝛽 + 2𝛾𝛾)2 − 4 × 3 × ( 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝛼𝛼 − 𝛽𝛽 + 2𝛾𝛾 − 2) = 0     

⟹ (𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)2 − 3( 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝛼𝛼 − 𝛽𝛽 + 2𝛾𝛾 − 2) = 0     

⟹ 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 + 2𝛼𝛼𝛽𝛽 + 2𝛽𝛽𝛾𝛾 + 2𝛾𝛾𝛼𝛼 − 3𝛼𝛼2 − 3𝛽𝛽2 − 3𝛾𝛾2 + 3𝛼𝛼 +
3𝛽𝛽 − 6𝛾𝛾 + 6 = 0     UGMM-102/185
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⟹−2𝛼𝛼2 − 2𝛽𝛽2 − 2𝛾𝛾2 + 2𝛼𝛼𝛽𝛽 + 2𝛽𝛽𝛾𝛾 + 2𝛾𝛾𝛼𝛼 + 3𝛼𝛼 + 3𝛽𝛽 − 6𝛾𝛾 + 6 = 0     

⟹ 2𝛼𝛼2 + 2𝛽𝛽2 + 2𝛾𝛾2 − 2𝛼𝛼𝛽𝛽 − 2𝛽𝛽𝛾𝛾 − 2𝛾𝛾𝛼𝛼 − 3𝛼𝛼 − 3𝛽𝛽 + 6𝛾𝛾 − 6 = 0     

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

2𝑙𝑙2 + 2𝑚𝑚2 + 2𝑛𝑛2 − 2𝑙𝑙𝑚𝑚 − 2𝑚𝑚𝑛𝑛 − 2𝑛𝑛𝑙𝑙 − 3𝑙𝑙 − 3𝑚𝑚 + 6𝑛𝑛 − 6 =0 

This is the required equation of enveloping cylinder. 

Example 5.5: Find the enveloping cylinder of the surface  𝑙𝑙2 + 2𝑚𝑚2 +
𝑛𝑛2 − 2 = 0 having the generators parallel to the line 𝑥𝑥−1

2
= 𝑦𝑦−3

3
= 𝑧𝑧−4

1
. 

Solution: Let P(α,β, γ) be any point on the enveloping cylinder. The 
generating line through the point P(α,β, γ) is given by  

                                 𝑥𝑥−α
2

= 𝑦𝑦−β
3

= 𝑧𝑧−γ
1

= 𝑟𝑟     ………………..(5.30) 

Any general point on the generating line (5.30) is given by  

Q(𝛼𝛼 + 2𝑟𝑟,𝛽𝛽 + 3𝑟𝑟, 𝛾𝛾 + 𝑟𝑟) 

If Q(𝛼𝛼 + 2𝑟𝑟,𝛽𝛽 + 3𝑟𝑟, 𝛾𝛾 + 𝑟𝑟) be the point of intersection of (5.30) and the 
surface 

𝑙𝑙2 + 2𝑚𝑚2 + 𝑛𝑛2 − 2 = 0, the coordinate of Q must satisfy the equation of 
surface. 

Therefore, 

     (𝛼𝛼 + 2𝑟𝑟)2 + 2(𝛽𝛽 + 3𝑟𝑟)2 + (𝛾𝛾 + 𝑟𝑟)2 − 2 = 0 

⟹ 23𝑟𝑟2 + 𝑟𝑟(4𝛼𝛼 + 12𝛽𝛽 + 2𝛾𝛾) + ( 𝛼𝛼2 + 2𝛽𝛽2 + 𝛾𝛾2 − 2) = 0…….(5.31) 

Since (5.30) is the tangent of surface, roots of the equation (5.31) must be 
equal. 

Therefore, 

       𝐵𝐵2 − 4𝐴𝐴𝐶𝐶 = 0   

⟹ (4𝛼𝛼 + 12𝛽𝛽 + 2𝛾𝛾)2 − 4 × 23 × ( 𝛼𝛼2 + 2𝛽𝛽2 + 𝛾𝛾2 − 2) = 0     

⟹ (2𝛼𝛼 + 6𝛽𝛽 + 𝛾𝛾)2 − 23( 𝛼𝛼2 + 2𝛽𝛽2 + 𝛾𝛾2 − 2) = 0     

⟹ 4𝛼𝛼2 + 36𝛽𝛽2 + 𝛾𝛾2 + 24𝛼𝛼𝛽𝛽 + 12𝛽𝛽𝛾𝛾 + 4𝛾𝛾𝛼𝛼 − 23𝛼𝛼2 − 46𝛽𝛽2 − 23𝛾𝛾2 +
46 = 0     

⟹−19𝛼𝛼2 − 10𝛽𝛽2 − 22𝛾𝛾2 + 24𝛼𝛼𝛽𝛽 + 12𝛽𝛽𝛾𝛾 + 4𝛾𝛾𝛼𝛼 + 46 = 0     

⟹ 19𝛼𝛼2 + 10𝛽𝛽2 + 22𝛾𝛾2 − 24𝛼𝛼𝛽𝛽 − 12𝛽𝛽𝛾𝛾 − 4𝛾𝛾𝛼𝛼 − 46 = 0     

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

19𝑙𝑙2 + 10𝑚𝑚2 + 22𝑛𝑛2 − 24𝑙𝑙𝑚𝑚 − 12𝑚𝑚𝑛𝑛 − 4𝑛𝑛𝑙𝑙 − 46 = 0     

This is the required equation of enveloping cylinder. 
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𝐏𝐏(𝐱𝐱′, 𝐲𝐲′, 𝐳𝐳′) 

M

 
𝐀𝐀(𝛂𝛂,𝛃𝛃, 𝛄𝛄) 

a 

𝒍𝒍,𝒎𝒎,𝒏𝒏 

Eqn axis of cylinder  𝒙𝒙−𝜶𝜶
𝒍𝒍

= 𝒚𝒚−𝜷𝜷
𝒎𝒎

= 𝒛𝒛−𝜸𝜸
𝒏𝒏

 

 

Check Your Progress 
1. Find the enveloping cylinder of the surface  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛 

having the generators parallel to the x-axis. 

𝑨𝒏𝒏𝒔. 𝒃𝒃𝒃𝒃𝟐𝟐 = 𝟐𝟐𝒄𝒄 . 

2. Find the enveloping cylinder of the surface  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛 
having the generators parallel to the y-axis. 

𝑨𝒏𝒏𝒔. 𝒂𝒂𝒂𝒂𝟐𝟐 = 𝟐𝟐𝒄𝒄 . 

 

5.8 EQUATION OF A RIGHT-CIRCULAR 
CYLINDER 

To find the equation of a right circular cylinder of radius a whose axis is 
the line  
𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

, where l,m,n are the direction cosines. 

 

  

 

 

 

 

 

 

 

 

 

                         

                                                            

Figure: 5.12 

AM is the projection of AP on axis of cylinder. 

Therefore, AM = (𝑙𝑙′ − 𝛼𝛼)𝑙𝑙 + (𝑚𝑚′ − 𝛽𝛽)𝑚𝑚 + (𝑛𝑛′ − 𝛾𝛾)𝑛𝑛 
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                             PM2 = PA2 − AM2 

                      ⇒ a2 = (x′ − α)2 + (y′ − β)2+(z′ − γ)2 − {(𝑙𝑙′ − 𝛼𝛼)𝑙𝑙 +
(𝑚𝑚′ − 𝛽𝛽)𝑚𝑚 + (𝑛𝑛′ − 𝛾𝛾)𝑛𝑛}2 

As, 𝑙𝑙2 + 𝑚𝑚2+𝑛𝑛2 = 1, we have 

a2 = {(x′ − α)2 + (y′ − β)2+(z′ − γ)2}(𝑙𝑙2 + 𝑚𝑚2+𝑛𝑛2)
− {(𝑙𝑙′ − 𝛼𝛼)𝑙𝑙 + (𝑚𝑚′ − 𝛽𝛽)𝑚𝑚 + (𝑛𝑛′ − 𝛾𝛾)𝑛𝑛}2 

By Lagrange's identity 
a2 = {(𝑙𝑙′ − 𝛼𝛼)𝑚𝑚− (𝑚𝑚′ − 𝛽𝛽)𝑙𝑙}2 + {(𝑚𝑚′ − 𝛽𝛽)𝑛𝑛 − (𝑛𝑛′ − 𝛾𝛾)𝑚𝑚}2

+ {(𝑛𝑛′ − 𝛾𝛾)𝑙𝑙 − (𝑙𝑙′ − 𝛼𝛼)𝑛𝑛}2 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

a2 = {(𝑙𝑙 − 𝛼𝛼)𝑚𝑚− (𝑚𝑚 − 𝛽𝛽)𝑙𝑙}2 + {(𝑚𝑚 − 𝛽𝛽)𝑛𝑛 − (𝑛𝑛 − 𝛾𝛾)𝑚𝑚}2
+ {(𝑛𝑛 − 𝛾𝛾)𝑙𝑙 − (𝑙𝑙 − 𝛼𝛼)𝑛𝑛}2 

                                                                           or 

      a2 = �𝑙𝑙 − 𝛼𝛼   𝑚𝑚′ − 𝛽𝛽
𝑙𝑙            𝑚𝑚

�
2

+ �𝑚𝑚 − 𝛽𝛽   𝑛𝑛 − 𝛾𝛾
𝑚𝑚            𝑛𝑛 �

2
+ �𝑛𝑛 − 𝛾𝛾   𝑙𝑙 − 𝛼𝛼

𝑛𝑛            𝑙𝑙 �
2
 

Note 5.3: Equation of a right circular cylinder of radius a whose axis is the 
line  

𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

, where l,m,n are the direction ratios is given by 

a2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)
= {(𝑙𝑙 − 𝛼𝛼)𝑚𝑚− (𝑚𝑚 − 𝛽𝛽)𝑙𝑙}2 + {(𝑚𝑚 − 𝛽𝛽)𝑛𝑛 − (𝑛𝑛 − 𝛾𝛾)𝑚𝑚}2 

                                                                                                      +{(𝑛𝑛 −
𝛾𝛾)𝑙𝑙 − (𝑙𝑙 − 𝛼𝛼)𝑛𝑛}2 

                                                               or  

      a2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) = �𝑙𝑙 − 𝛼𝛼   𝑚𝑚 − 𝛽𝛽
𝑙𝑙            𝑚𝑚

�
2

+ �𝑚𝑚 − 𝛽𝛽   𝑛𝑛 − 𝛾𝛾
𝑚𝑚            𝑛𝑛 �

2
+

�𝑛𝑛 − 𝛾𝛾   𝑙𝑙 − 𝛼𝛼
𝑛𝑛            𝑙𝑙 �

2
 

Example 5.6: 

Find the equation to the right circular cylinder of radius 3 and its axis is 
the line  

𝑙𝑙 − 1
2

=
𝑚𝑚 − 3

2
=
𝑛𝑛 − 5
−1
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𝐏𝐏(𝛂𝛂,𝛃𝛃, 𝛄𝛄) 

M

 

𝐀𝐀(𝟏𝟏,𝟑𝟑,𝟓𝟓) 

3 

𝟐𝟐,𝟐𝟐,−𝟏𝟏 

Eqn axis of cylinder  𝒙𝒙−𝟏𝟏
𝟐𝟐

= 𝒚𝒚−𝟑𝟑
𝟐𝟐

= 𝒛𝒛−𝟓𝟓
−𝟏𝟏

 

 

Solution : 

 

  

 

 

 

 

 

 

 

 

 

                                

 

Figure: 5.13 

 

Let P(α,β, γ) be any point on the cylinder  

 As shown in the figure 

PM = 3 and  AP2 = (α − 1)2 + (β − 3)2 + (γ − 5)2 

Now, MA = Projection of AP on the axis = 2(α−1)+2(β−3)−1(γ−5)
�22+22+(−1)2

=
2𝛼+2𝛽−𝛾−3

3
 

In right angled triangle ∆PMA, 

AP2 − MA2 = 9  

⟹ (α − 1)2 + (β − 3)2 + (γ − 5)2 − �
2𝛼𝛼 + 2𝛽𝛽 − 𝛾𝛾 − 3

3
�
2

= 9 

⟹ 9{(α − 1)2 + (β − 3)2 + (γ − 5)2} − (2𝛼𝛼 + 2𝛽𝛽 − 𝛾𝛾 − 3)2 = 81 

⟹ 9{α2 + 1 − 2α + β2 + 9 − 6β + γ2 + 25 − 10γ} − (4α2 + 4𝛽𝛽2 + 𝛾𝛾2
+ 9 + 8𝛼𝛼𝛽𝛽 − 4𝛼𝛼𝛾𝛾 − 12𝛼𝛼 − 4𝛽𝛽𝛾𝛾 − 12𝛽𝛽 − 6𝛾𝛾) = 81 

⟹ 9{α2 + β2 + γ2 − 2α − 6β − 10γ + 35} − (4α2 + 4𝛽𝛽2 + 𝛾𝛾2 + 8𝛼𝛼𝛽𝛽
− 4𝛽𝛽𝛾𝛾 − 4𝛼𝛼𝛾𝛾 − 12𝛼𝛼 − 12𝛽𝛽 − 6𝛾𝛾 + 9) = 81 UGMM-102/189
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𝐏𝐏(𝛂𝛂,𝛃𝛃, 𝛄𝛄) 

M

 

𝐀𝐀(𝟏𝟏,−𝟑𝟑,𝟐𝟐) 

𝟐𝟐,−𝟏𝟏,𝟓𝟓 

Eqn axis of cylinder  𝒙𝒙−𝟏𝟏
𝟐𝟐

= 𝒚𝒚+𝟑𝟑
−𝟏𝟏

= 𝒛𝒛−𝟐𝟐
𝟓𝟓

 

 

⟹ 5α2 + 5β2 + 8γ2 − 6α − 42β − 84γ − 8𝛼𝛼𝛽𝛽 + 4𝛽𝛽𝛾𝛾 + 4𝛼𝛼𝛾𝛾 + 306
= 81 

⟹ 5α2 + 5β2 + 8γ2 − 6α − 42β − 84γ − 8𝛼𝛼𝛽𝛽 + 4𝛽𝛽𝛾𝛾 + 4𝛼𝛼𝛾𝛾 + 225 = 0 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

5x2 + 5y2 + 8z2 − 8𝑙𝑙𝑚𝑚 + 4𝑚𝑚𝑛𝑛 + 4𝑛𝑛𝑙𝑙 − 6x − 42y − 84z + 225 = 0 

This is the required equation of cylinder. 

Example 5.7: 

Find the equation to the right circular cylinder of radius 2 and its axis is 
the line  

𝑙𝑙 − 1
2

=
𝑚𝑚 + 3
−1

=
𝑛𝑛 − 2

5
 

Solution: 

  

 

 

 

 

 

 

 

 

 

 

 

Figure: 5.14 

Let P(α,β, γ) be any point on the cylinder  

 As shown in the figure 

PM = 2 and  AP2 = (α − 1)2 + (β + 3)2 + (γ − 2)2 

2 
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Now, MA = Projection of AP on the axis = 2(α−1)−1(β+3)+5(γ−2)
�22+(−1)2+(5)2

=
2𝛼−𝛽+5𝛾−15

√30
 

In right angled triangle ∆PMA, 

AP2 − MA2 = PM2  

⟹ (α − 1)2 + (β + 3)2 + (γ − 2)2 − �
2𝛼𝛼 − 𝛽𝛽 + 5𝛾𝛾 − 15

√30
�
2

= 4 

⟹ 30{(α − 1)2 + (β + 3)2 + (γ − 2)2} − (2𝛼𝛼 − 𝛽𝛽 + 5𝛾𝛾 − 15)2 = 120 

⟹ 30{α2 + 1 − 2α + β2 + 9 + 6β + γ2 + 4 − 4γ} − (4α2 + 𝛽𝛽2 + 25𝛾𝛾2
+ 225 − 4𝛼𝛼𝛽𝛽 + 20𝛼𝛼𝛾𝛾 − 60𝛼𝛼 − 10𝛽𝛽𝛾𝛾 + 30𝛽𝛽 − 150𝛾𝛾)
= 120 

⟹ 30{α2 + β2 + γ2 − 2α + 6β − 4γ + 14} − (4α2 + 𝛽𝛽2 + 25𝛾𝛾2 − 4𝛼𝛼𝛽𝛽
− 10𝛽𝛽𝛾𝛾 + 20𝛼𝛼𝛾𝛾 − 60𝛼𝛼 + 30𝛽𝛽 − 150𝛾𝛾 + 225) = 120 

⟹ 26α2 + 29β2 + 5γ2 + 150β + 30γ + 4𝛼𝛼𝛽𝛽 + 10𝛽𝛽𝛾𝛾 − 20𝛼𝛼𝛾𝛾 + 195
= 120 

⟹ 26α2 + 29β2 + 5γ2 + 4𝛼𝛼𝛽𝛽 + 10𝛽𝛽𝛾𝛾 − 20𝛼𝛼𝛾𝛾 + 150β + 30γ + 75 = 0 

Hence the locus of P (𝛼𝛼 → 𝑙𝑙,𝛽𝛽 → 𝑚𝑚, 𝛾𝛾 → 𝑛𝑛) is 

26x2 + 29y2 + 5z2 + 4𝑙𝑙𝑚𝑚 + 10𝑚𝑚𝑛𝑛 − 20𝑛𝑛𝑙𝑙 + 150y + 30z + 75 = 0 

This is the required equation of cylinder 

Example 5.8 :  

Find the equation to the right circular cylinder of radius 2 and having as 
axis the line  

𝑙𝑙 − 1
2

=
𝑚𝑚 − 2

1
=
𝑛𝑛 − 3

2
 

Solution: The required equation of right circular cylinder is given by 

22(22 + 12 + 22) = �𝑙𝑙 − 1   𝑚𝑚 − 2
2            1 �

2
+ �𝑚𝑚 − 2   𝑛𝑛 − 3

1        2 �
2

+ �𝑛𝑛 − 3   𝑙𝑙 − 1
2          2 �

2
 

4(9) = [{x − 2y + 3}2 + {2y − z − 1}2 + {2z − 2x − 4}2] 

36 = x2 + 4y2 + 9 − 4xy − 12y + 6x + 4y2 + z2 + 1 − 4yz + 2z − 4y
+ 4z2 + 4x2 + 16 − 8zx + 16x − 16z 

5x2 + 8y2 + 5z2 − 4xy − 4yz − 8zx + 22x − 16y − 14z − 10 = 0. 
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Example 5.9: Find the equation of right circular cylinder of radius 2 and 
its axis passes through the point (1,2,3) and direction ratios are 2,−3,6. 

Solution: Equation axis of right circular cylinder is given by  

𝑙𝑙 − 1
2

=
𝑚𝑚 − 2
−3

=
𝑛𝑛 − 3

6
 

The required equation of cylinder is given by  

22{22 + (−3)2 + 62}

= �𝑙𝑙 − 1   𝑚𝑚 − 2
2           − 3 �

2
+ �𝑚𝑚 − 2   𝑛𝑛 − 3

−3        6 �
2

+ �𝑛𝑛 − 3   𝑙𝑙 − 1
6          2 �

2
 

196 = (−3x − 2y + 7)2 + (6y + 3z − 21)2 + (2z − 6x)2 

196 = 9x2 + 4y2 + 49 + 12xy − 28y − 42x + 36y2 + 9z2 + 441
+ 36yz − 126z − 252y + 4z2 + 36x2 − 24zx 

45x2 + 40y2 + 13z2 + 12xy + 36yz − 24zx − 42x − 280y − 126z
+ 294 = 0 

 

 

Check Your Progress 
1. Prove that equation of right circular cylinder of radius 'r' and axis is 

the x-axis is 𝑚𝑚2 + 𝑛𝑛2 = 𝑟𝑟2. 

2. Prove that equation of right circular cylinder of radius 'r' and axis is 
the y-axis is 𝑙𝑙2 + 𝑛𝑛2 = 𝑟𝑟2. 

3. Prove that equation of right circular cylinder of radius 'r' and axis is 
the z-axis is 𝑙𝑙2 + 𝑚𝑚2 = 𝑟𝑟2. 

 

5.9 RULED SURFACE 

Definition (Ruled Surface) 5.12: In geometry, a surface S is ruled if 
through every point of S there is a straight line that lies on S.  

It therefore has a parameterization of the form 

𝐱𝐱(𝑢𝑢, 𝑣𝑣) = 𝐛𝐛(𝑢𝑢) + 𝑣𝑣𝛅(𝑢𝑢) 
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where b is called the base curve and 𝛅 is director curve. The straight lines 
themselves are called rulings.   

Example 5.10: Parameterization of Hyperboloid of one Sheet  

𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1         

𝑙𝑙 = 𝑎𝑎 (𝑐𝑐𝑜𝑠𝑢𝑢 − 𝑣𝑣 𝑠𝑖𝑛𝑛𝑢𝑢), 𝑚𝑚 = 𝑏𝑏 (𝑠𝑖𝑛𝑛𝑢𝑢 + 𝑣𝑣 𝑐𝑐𝑜𝑠𝑢𝑢), 𝑛𝑛 = 𝑐𝑐 𝑣𝑣 

�
𝑎𝑎 (𝑐𝑐𝑜𝑠𝑢𝑢 − 𝑣𝑣 𝑠𝑖𝑛𝑛𝑢𝑢)
𝑏𝑏 (𝑠𝑖𝑛𝑛𝑢𝑢 + 𝑣𝑣 𝑐𝑐𝑜𝑠𝑢𝑢)

𝑐𝑐 𝑣𝑣
� = �

𝑎𝑎 𝑐𝑐𝑜𝑠𝑢𝑢
𝑏𝑏 𝑠𝑖𝑛𝑛𝑢𝑢

0
� + 𝑣𝑣 �

−𝑎𝑎 𝑠𝑖𝑛𝑛𝑢𝑢
𝑏𝑏 𝑐𝑐𝑜𝑠𝑢𝑢
𝑐𝑐 

� 

and  

𝑙𝑙 = 𝑎𝑎 (𝑐𝑐𝑜𝑠𝑢𝑢 + 𝑣𝑣 𝑠𝑖𝑛𝑛𝑢𝑢), 𝑚𝑚 = 𝑏𝑏 (𝑠𝑖𝑛𝑛𝑢𝑢 − 𝑣𝑣 𝑐𝑐𝑜𝑠𝑢𝑢), 𝑛𝑛 = 𝑐𝑐 𝑣𝑣 

�
𝑎𝑎 (𝑐𝑐𝑜𝑠𝑢𝑢 + 𝑣𝑣 𝑠𝑖𝑛𝑛𝑢𝑢)
𝑏𝑏 (𝑠𝑖𝑛𝑛𝑢𝑢 − 𝑣𝑣 𝑐𝑐𝑜𝑠𝑢𝑢)

𝑐𝑐 𝑣𝑣
� = �

𝑎𝑎 𝑐𝑐𝑜𝑠𝑢𝑢
𝑏𝑏 𝑠𝑖𝑛𝑛𝑢𝑢

0
� + 𝑣𝑣 �

𝑎𝑎 𝑠𝑖𝑛𝑛𝑢𝑢
−𝑏𝑏 𝑐𝑐𝑜𝑠𝑢𝑢

𝑐𝑐 
� 

are two parameterizations of Hyperboloid of one sheet. 

Definition (Doubly Ruled Surface) 5.13: 

A surface that contains two families of rulings is known as doubly ruled 
surface.  

The plane, Hyperbolic Paraboloid and Hyperboloid of one Sheet are 
doubly ruled surface. 

5.10 HYPERBOLOID OF ONE SHEET 

The standard equation of a hyperboloid of one sheet is given by 

                                           𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1        …………….(5.32) 

 (P1) Origin is the centre of Hyperboloid of one sheet 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

= 𝑟𝑟 

A general point on line is (𝑙𝑙𝑟𝑟,𝑚𝑚𝑟𝑟,𝑛𝑛𝑟𝑟) 

 (𝑙𝑟)2

𝑎2
+ (𝑚𝑟)2

𝑏2
− (𝑛𝑟)2

𝑐2
= 1 ⟹ 𝑟𝑟 = ± 1

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

         

A line passing through the origin cut the surface (5.32) at two points                                                        
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P( 𝑙

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

, 𝑚

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

, 𝑛

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

) and Q( 

−𝑙

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

, −𝑚

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

, −𝑛

�𝑙2

𝑎2
+𝑚

2

𝑏2
−𝑛

2

𝑐2

) 

Obviously origin is the middle point of the Chord PQ.  

Hence, the origin is the centre of the surface as every chord passing 
through the origin is bisected at the origin. 

In other words, If 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be any point on the surface (5.32) then the 
point 𝑄(−𝛼𝛼,−𝛽𝛽,−𝛾𝛾) will also lie on the surface. This shows that the 
origin O(0,0,0) is the middle point of chord PQ. This shows that all the 
chord of the surface which passes through the origin have their middle 
point at the origin. Hence the surface (5.32) has a centre at origin.      

(P2) The intercepts of the hyperboloid of one sheet with the x, y, z-axes. 

(i) If the surface (5.32) meets the x-axis, put 𝑚𝑚 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 = 0 

     We get,  𝑥𝑥
2

𝑎2
+ 0

𝑏2
− 0

𝑐2
= 1         

⟹ 𝑥𝑥2

𝑎2
= 1          

⟹ 𝑙𝑙 = 𝑎𝑎,−𝑎𝑎          

Hence the surface (5.32) meets the x-axis at the points 𝑨(𝒂𝒂,𝟗𝟗,𝟗𝟗) and 
𝑨′(−𝒂𝒂,𝟗𝟗,𝟗𝟗). 

(ii) If the surface (5.32) meets the y-axis, put 𝑙𝑙 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 = 0 

we get,  0
𝑎2

+ 𝑦𝑦2

𝑏2
− 0

𝑐2
= 1         

⟹ 𝑦𝑦2

𝑏2
= 1 ⟹ 𝑚𝑚 = 𝑏𝑏,−𝑏𝑏          

Hence the surface (5.32) meets the y-axis at the points 𝑩(𝟗𝟗,𝒃𝒃,𝟗𝟗) and 
𝑩′(𝟗𝟗,−𝒃𝒃,𝟗𝟗). 

(iii) If the surface (5.32) meets the z-axis, put 𝑙𝑙 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚 = 0 

we get,  0
𝑎2

+ 0
𝑏2
− 𝑧𝑧2

𝑐2
= 1         

⟹−𝑧𝑧2

𝑐2
= 1         

⟹ 𝑛𝑛2 = −𝑐𝑐2 
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which admits no real solution for real c. 

Hence the surface (5.32) does not meet the z-axis. 

(P3)The traces of the Hyperboloid of one sheet are ellipses in the xy-
plane  

 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
= 1  for 𝑛𝑛 = 0(𝑙𝑙𝑚𝑚 − 𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒) 

 hyperbolas in xz-plane 

𝑥𝑥2

𝑎2
− 𝑧𝑧2

𝑐2
= 1   for 𝑚𝑚 = 0(𝑙𝑙𝑛𝑛 − 𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒) 

hyperbolas in xz-plane 

𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1   for 𝑙𝑙 = 0(𝑚𝑚𝑛𝑛 − 𝑝𝑝𝑙𝑙𝑎𝑎𝑛𝑛𝑒) 

(P4) The Hyperboloid of one sheet is symmetrical about the three co-
ordinate planes. These are the principal planes and the co-ordinate axes are 
the principal axes of the Hyperboloid of one sheet. 

 (P5) The section of the Hyperboloid of one sheet by the plane 𝑛𝑛 = 𝑘 is 
the ellipse given by   

                                           𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
= 1 + 𝐾2

𝑐2
, 𝑛𝑛 = 𝑘    

Thus it is an ellipse whose centre is on z-axis.       

 For, 𝑘 = 0, it is called the principal ellipse.  

 

The section of the Hyperboloid of one sheet by the plane 𝑚𝑚 = 𝑘 is the 
hyperbola given by   

                                           𝑥𝑥
2

𝑎2
− 𝑧𝑧2

𝑐2
= 1 − 𝑘2

𝑏2
, 𝑚𝑚 = 𝑘    

The section of the Hyperboloid of one sheet by the plane 𝑙𝑙 = 𝑘 is the 
hyperbola given by   

                                           𝑦𝑦
2

𝑏2
− 𝑧𝑧2

𝑐2
= 1 − 𝑘2

𝑎2
, 𝑙𝑙 = 𝑘    

(P6) Hyperboloid of one sheet is not a bounded surface.  
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Figure: 5.15 

5.11 SUMMARY 

We conclude with summarizing what we have covered in this unit.  

 Quadratic equation in x,y,z.  

 Definition of cylindrical surface, Cylinder, Right Cylinder, 
Oblique Cylinder, Right Circular Cylinder and Oblique Circular 
Cylinder. 

  Find the equation of a cylinder with given base and generators are 
parallel to a fixed line 

 Find the equation of a cylinder with given base and generators are 
parallel to a co-ordinate axis i.e. x-axis, y-axis and z-axis. 

  Define Enveloping Cylinder 

 Find the equation of the enveloping cylinder to the sphere 𝑙𝑙2 +
𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2  whose generators are parallel to the line  𝑥𝑥

𝑙
= 𝑦𝑦

𝑚
=

𝑧𝑧
𝑛
. 
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 Find the equation of the enveloping cylinder to the surface 
𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 whose generators are parallel to the line  
𝑥𝑥
𝑙

= 𝑦𝑦
𝑚

= 𝑧𝑧
𝑛
. 

 Find the equation of the enveloping cylinder to the surface 
𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1 whose generators are parallel to the line  𝑥𝑥

𝑙
= 𝑦𝑦

𝑚
=

𝑧𝑧
𝑛
. 

 Find the equation of a right circular cylinder of radius a whose axis 
is the line 𝑥𝑥−𝛼

𝑙
= 𝑦𝑦−𝛽

𝑚
= 𝑧𝑧−𝛾

𝑛
, where l,m,n are the direction cosines. 

 Find the equation of a right circular cylinder of radius a whose axis 
is the line 𝑥𝑥−𝛼

𝑙
= 𝑦𝑦−𝛽

𝑚
= 𝑧𝑧−𝛾

𝑛
, where l,m,n are the direction ratios 

 Ruled surface 

 Hyperboloid of one sheet 

5.12 TERMINAL QUESTIONS 

1. Find the equation of the cylinder with the generators parallel to x-
axis and passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 𝑙𝑙𝑙𝑙 +
𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝.  

𝑨𝒏𝒏𝒔. �𝒑−𝒎𝒎𝒃𝒃−𝒏𝒏𝒄𝒄
𝒍𝒍

�
𝟐𝟐

+ 𝒃𝒃𝟐𝟐 + 𝒄𝒄𝟐𝟐 = 𝒂𝒂𝟐𝟐.  

2. Find the equation of the cylinder with the generators parallel to y-
axis and passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 𝑙𝑙𝑙𝑙 +
𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝.  

𝑨𝒏𝒏𝒔. 𝒂𝒂𝟐𝟐 + �𝒑−𝒍𝒍𝒂𝒂−𝒏𝒏𝒄𝒄
𝒎𝒎

�
𝟐𝟐

+ 𝒄𝒄𝟐𝟐 = 𝒂𝒂𝟐𝟐.  

3. Find the equation of the cylinder with the generators parallel to z-
axis and passing through the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2, 𝑙𝑙𝑙𝑙 +
𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝.  

𝑨𝒏𝒏𝒔. 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 + �𝒑−𝒍𝒍𝒂𝒂−𝒎𝒎𝒃𝒃
𝒏𝒏

�
𝟐𝟐

= 𝒂𝒂𝟐𝟐.  

4. Prove that equation of the cylinder passing through the curve 
𝑙𝑙2 + 𝑚𝑚2 = 1, 𝑛𝑛 = 0  with the generators parallel to the line 
𝑥𝑥
1

= 𝑦𝑦
2

= 𝑧𝑧
3
 

                    is  �𝒂𝒂 − 𝒄𝒄
𝟑𝟑
�
𝟐𝟐

+ �𝒃𝒃 − 𝟐𝟐𝒄𝒄
𝟑𝟑
�
𝟐𝟐

= 𝟗𝟗.   
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5. Find the enveloping cylinder of the surface  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 
having the generators parallel to the x-axis. 

𝑨𝒏𝒏𝒔. 𝒃𝒃𝒃𝒃𝟐𝟐 + 𝒄𝒄𝒄𝒄𝟐𝟐 = 𝟏𝟏. 

6. Find the enveloping cylinder of the surface  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 
having the generators parallel to the y-axis. 

𝑨𝒏𝒏𝒔. 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒄𝒄𝒄𝒄𝟐𝟐 = 𝟏𝟏 . 

7. Find the enveloping cylinder of the surface  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 
having the generators parallel to the z-axis. 

𝑨𝒏𝒏𝒔. 𝒂𝒂𝒂𝒂𝟐𝟐 + 𝒃𝒃𝒃𝒃𝟐𝟐 = 𝟏𝟏. 

8. Find the equation of right circular cylinder of radius 2 and its axis 
is the line 

𝑥𝑥−1
2

= 𝑦𝑦−2
1

= 𝑧𝑧−3
2

. 

𝑨𝒏𝒏𝒔. 𝟏𝟏𝒂𝒂𝟐𝟐 + 𝟖𝒃𝒃𝟐𝟐 + 𝟏𝟏𝒄𝒄𝟐𝟐 − 𝟒𝒂𝒂𝒃𝒃 − 𝟒𝒃𝒃𝒄𝒄 − 𝟖𝒄𝒄𝒂𝒂 + 𝟐𝟐𝟐𝟐𝒂𝒂 − 𝟏𝟏𝟔𝟔𝒃𝒃 − 𝟏𝟏𝟒𝒄𝒄 −
𝟏𝟏𝟗𝟗 = 𝟗𝟗. 

9. Find the equation of right circular cylinder of radius 2 and its axis 
passes through the point (1,0,0) and its direction ratios are 2,1,3. 

𝑨𝒏𝒏𝒔. 𝟏𝟏𝟗𝟗𝒂𝒂𝟐𝟐 + 𝟏𝟏𝟑𝟑𝒃𝒃𝟐𝟐 + 𝟏𝟏𝒄𝒄𝟐𝟐 − 𝟒𝒂𝒂𝒃𝒃 − 𝟔𝟔𝒃𝒃𝒄𝒄 − 𝟏𝟏𝟐𝟐𝒄𝒄𝒂𝒂 − 𝟐𝟐𝟗𝟗𝒂𝒂 + 𝟒𝒃𝒃 +
𝟏𝟏𝟐𝟐𝒄𝒄 − 𝟏𝟏𝟗𝟗 = 𝟗𝟗. 

5.13 FURTHER READINGS 

1. Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, 
Published by S. Chand & Company Ltd. 7th Edition.  

2. A text book of Mathematics for BA/B.Sc Vol 1, by V Krishna 
Murthy & Others, Published by S. Chand & Company, New Delhi.  

3. A text Book of Analytical Geometry of Three Dimensions, by P.K. 
Jain and Khaleel Ahmed, Published by Wiley Eastern Ltd., 1999.  

4. Co-ordinate Geometry of two and three dimensions by P. 
Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman 
published by Tata-MC Gran-Hill Publishers Company Ltd., New 
Delhi. 

5. Plane and solid Geometry by C.A. Hart, Published by Forgotten 
Books 2013. 

6. The Project Gutenberg EBook of Solid Geometry with Problems 
and Applications by H. E. Slaught and N. J. Lennes, 2009 
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Unit-6 Cones : Equation of a cone with a given base, Intersection of a 
cone  and a plane passing through the vertex of cone, tangent 
plane, reciprocal cone, Enveloping cone, right circular cone. 

Unit-7 Central Conicoids-I : Standard equation of a Central conicoid, 

ellipsoid, hyperboloid of one sheet and two sheets, tangent 

planes, tangent lines, polar planes and polar lines. 

Unit-8 Central Conicoids-II : Enveloping cones and cylinders section 

with a given centres. Diametral plane conjugate diameters, 

normal drawn from a given point. 
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UNIT-6 THE CONE 

Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Equation of a cone with vertex as origin 

6.4 Illustrative Examples 

6.5 Condition for the general equation of second degree to 
represent a cone 

6.6 Equation of a cone with given conic for base 

6.7 Illustrative Examples 

6.8 The angle between the lines in which a plane cuts a cone 

6.9 Three mutually perpendicular generators of a cone 

6.10 Illustrative Examples 

6.11 The tangent line and the tangent plane 

6.12 The condition of tangency 

6.13 Reciprocal cone 

6.14 Enveloping cone 

6.15 Right circular cone 

6.16 Illustrative examples 

6.17 Summary 

6.18 Self assessment questions 

6.19 Further readings 

6.1 INTRODUCTION 

 You have studied the mensuration of solids earlier in school where 
you calculated the volume and the surface area of some specific kind of 
cones, i.e. the solid right circular cones. In this unit, we shall study the 
general definition of a cone and derive its equation. In the next unit, you 
will come to know that the surface of a cone is a particular case of some 
more generalized surfaces called conicoids. We shall begin this unit by 
first defining a cone and deriving the equation of a cone whose vertex is UGMM-102/203
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𝑉𝑉(vertex) 

the origin. Then we shall obtain the condition for the general equation of 
second degree to represent a cone, equation of a cone with given conic for 
base and the angle between the lines in which a plane cuts a cone. We 
shall also discuss whether a cone could have three mutually perpendicular 
generators. The concepts like tangent lines, tangent planes and the 
condition of tangency are important as you have already seen in case of 
sphere. We shall discuss these concepts for the surface of a cone. We shall 
also study reciprocal cone, enveloping cone and right circular cone in this 
unit. Let us begin with the definition of the surface cone- 

Definition: A cone is a surface generated by a moving straight line 
passing through a fixed point and intersecting a given curve or touching a 
given surface. 

       The fixed point is called the vertex and the given curve (or surface) is 
called the guiding curve (or guiding surface). The variable straight line is 
called the generator (or the generating line) of the cone.  

 

 

 

 

 

 

 

 

 

 

 

A cone which is represented by an equation of second degree is called a 
quadratic (or quadric) cone. Any straight line other than the generators 
intersects a quadric cone in two points. 

6.2 OBJECTIVES  

After reading this unit, you should be able to 

• Define a cone 

• Obtain the equation of a cone with vertex as origin 

• Derive the condition for the general equation of second degree to 
represent a cone 

Generator 

Guiding curve 
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• Obtain the equation of a cone with a given conic for base 

• Understand how a plane through the vertex cuts the cone and to 
determine the angle between the lines in which a plane cuts a cone 

• Find the condition when a cone has three mutually perpendicular 
generators 

• Discuss the tangent line and the tangent plane 

• obtain the condition of tangency 

• derive the equations of reciprocal cone, enveloping cone and a 
right circular cone 

6.3 EQUATION OF A CONE WITH VERTEX AS 
ORIGIN 

Let us obtain the equation of a quadric cone which has origin as its vertex. 
Let the quadric cone be represented by the following equation of second 
degree 

 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 

                                                                           +2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0  … . . (1)                                                                                                                          

Let 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) be any point on the cone. Then the equations of the 
generator joining the origin 𝑂𝑂(0,0,0) and 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) are 

𝑙𝑙
𝑙𝑙′

=
𝑚𝑚
𝑚𝑚′

=
𝑛𝑛
𝑛𝑛′

= 𝑟𝑟 (say) … . .  (2) 

This generator 𝑂𝑂𝑃𝑃 lies wholly on the cone represented by (1). Any point 𝑄 
on this generator may be given by (𝑟𝑟𝑙𝑙′, 𝑟𝑟𝑚𝑚′, 𝑟𝑟𝑛𝑛′). The points 𝑃𝑃(𝑙𝑙′, 𝑚𝑚′, 𝑛𝑛′) 
and  𝑄(𝑟𝑟𝑙𝑙′, 𝑟𝑟𝑚𝑚′, 𝑟𝑟𝑛𝑛′) must satisfy equation (1). Hence we have 

𝐹𝐹(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) = 𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 + 2𝑓𝑓𝑚𝑚′𝑛𝑛′ + 2𝑔𝑔𝑛𝑛′𝑙𝑙′ + 2ℎ𝑙𝑙′𝑚𝑚′ + 2𝑢𝑢𝑙𝑙′ 

                                                           +2𝑣𝑣𝑚𝑚′ + 2𝑤𝑤𝑛𝑛′ + 𝑑𝑑 = 0  … . (3)    

and 𝐹𝐹(𝑟𝑟𝑙𝑙′, 𝑟𝑟𝑚𝑚′, 𝑟𝑟𝑛𝑛′)
= 𝑟𝑟2(𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 + 2𝑓𝑓𝑚𝑚′𝑛𝑛′ + 2𝑔𝑔𝑛𝑛′𝑙𝑙′ + 2ℎ𝑙𝑙′𝑚𝑚′) 

                                           +2𝑟𝑟(𝑢𝑢𝑙𝑙′ + 𝑣𝑣𝑚𝑚′ + 𝑤𝑤𝑛𝑛′) + 𝑑𝑑 = 0   … … . (4)    

Equation (4) is an identity as it is true for all values of 𝑟𝑟. Therefore the 
coefficients of 𝑟𝑟2, 𝑟𝑟 and the constant term must vanish separately, i.e. 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 + 2𝑓𝑓𝑚𝑚′𝑛𝑛′ + 2𝑔𝑔𝑛𝑛′𝑙𝑙′ + 2ℎ𝑙𝑙′𝑚𝑚′ = 0 … … . (5) 

                                         𝑢𝑢𝑙𝑙′ + 𝑣𝑣𝑚𝑚′ + 𝑤𝑤𝑛𝑛′ = 0 … … . (6) UGMM-102/205
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and 𝑑𝑑 = 0. 

Equation (6) shows that if 𝑢𝑢, 𝑣𝑣 and 𝑤𝑤 are not all zero, then the locus of 
𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) will be the plane 𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0. But this is against our 
assumption that the point 𝑃𝑃 lies on the cone. Therefore we must have 
𝑢𝑢 = 0, 𝑣𝑣 = 0,𝑤𝑤 = 0. Also we have 𝑑𝑑 = 0, hence equation (1) gives 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0  … … . (7) 

This is a homogeneous equation of the second degree and represents a 
quadric cone with vertex as origin.  

      Conversely, if we are given a general homogeneous equation of 
second degree in 𝑙𝑙,𝑚𝑚 and 𝑛𝑛, then we can show that this represents a 
quadric cone with vertex as origin. 

Suppose we are given equation (7). If a point 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) lies on the 
surface represented by (7), then 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 + 2𝑓𝑓𝑚𝑚′𝑛𝑛′ + 2𝑔𝑔𝑛𝑛′𝑙𝑙′ + 2ℎ𝑙𝑙′𝑚𝑚′ = 0 

Therefore, for all values of 𝑟𝑟, we have 

 𝑎𝑎(𝑟𝑟𝑙𝑙′)2 + 𝑏𝑏(𝑟𝑟𝑚𝑚′)2 + 𝑐𝑐(𝑟𝑟𝑛𝑛′)2 + 2𝑓𝑓(𝑟𝑟𝑚𝑚′)(𝑟𝑟𝑛𝑛′) + 2𝑔𝑔(𝑟𝑟𝑛𝑛′)(𝑟𝑟𝑙𝑙′) 

                                                                                 +2ℎ(𝑟𝑟𝑙𝑙′)(𝑟𝑟𝑚𝑚′) = 0 

This shows that if 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) lies on (7), then  (𝑟𝑟𝑙𝑙′, 𝑟𝑟𝑚𝑚′, 𝑟𝑟𝑛𝑛′) also lies on 
it. Therefore all the points on the line 𝑂𝑂𝑃𝑃 lies on the surface given by (7). 
Thus equation (7) represents a surface which is generated by the lines 
passing through the origin, i.e. equation (7) represents a cone with origin 
as its vertex. Therefore every homogeneous equation of second degree 
always represents a quadric cone with vertex at the origin. 

You can check for yourself that a homogeneous equation of any degree 
represents a cone through the origin. 

Deduction Let the equation of a cone with vertex as origin be given by 

𝐹𝐹(𝑙𝑙, 𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0  

Let the equations of a generator be 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

(= 𝑟𝑟) 

Any point on this line will be (𝑙𝑙𝑟𝑟,𝑚𝑚𝑟𝑟,𝑛𝑛𝑟𝑟). These coordinates must satisfy 
the equation 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 0 for all values of 𝑟𝑟 i.e. 𝐹𝐹(𝑙𝑙𝑟𝑟,𝑚𝑚𝑟𝑟,𝑛𝑛𝑟𝑟) = 0. 
Therefore 
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𝑎𝑎𝑙𝑙2𝑟𝑟2 + 𝑏𝑏𝑚𝑚2𝑟𝑟2 + 𝑐𝑐𝑛𝑛2𝑟𝑟2 + 2𝑓𝑓𝑚𝑚𝑛𝑛𝑟𝑟2 + 2𝑔𝑔𝑛𝑛𝑙𝑙𝑟𝑟2 + 2ℎ𝑙𝑙𝑚𝑚𝑟𝑟2 = 0 

or   𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 

which is the same as 𝐹𝐹(𝑙𝑙,𝑚𝑚,𝑛𝑛) = 0. Thus the direction cosines of the 
generator satisfy the homogeneous equation of the cone with vertex at the 
origin. 

6.4 ILLUSTRATIVE EXAMPLES 

Example 6.4.1 Find the equation of the cone whose vertex is (0,0,0) and 
which passes through the curve given by 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝,𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 =
2𝑛𝑛 

Solution Remember if the guiding curve is given by two equations in 
which one equation is of first degree, then the equation of the cone is 
obtained by making the other equation homogeneous with the help of the 
first equation. So here we have  

 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛  … … (8) 

and 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝      or     
𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛

𝑝𝑝
= 1  … . (9) 

Making equation (8) homogeneous with the help of (9), we get the 
required equation of the cone with the vertex at origin as 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 = 2𝑛𝑛 �
𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛

𝑝𝑝
� 

or                                       𝑝𝑝(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2) = 2𝑛𝑛(𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛) 

 

Example 6.4.2 Find the equation of the cone whose vertex is (0,0,0) and 
which passes through the circle given by 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 𝑙𝑙 − 2𝑚𝑚 + 3𝑛𝑛 −
4 = 0, 𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 = 2 

Solution We have 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 𝑙𝑙 − 2𝑚𝑚 + 3𝑛𝑛 − 4 = 0 … … . . (10) 

𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛 = 2   or    
𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛

2
= 1   … … . (11) 

Making equation (10) homogeneous with the help of (11) we have 
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𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + (𝑙𝑙 − 2𝑚𝑚 + 3𝑛𝑛) �
𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛

2
� − 4 �

𝑙𝑙 − 𝑚𝑚 + 𝑛𝑛
2

�
2

= 0 

or                                          𝑙𝑙2 + 2𝑚𝑚2 + 3𝑛𝑛2 + 𝑙𝑙𝑚𝑚 − 𝑚𝑚𝑛𝑛 = 0 

 

Example 6.4.3 Find the equation of the cone passing through the 
coordinate axes.  

Solution Let the equation of the cone be given by 

𝐹𝐹(𝑙𝑙, 𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0  

Since the dc’s of the coordinate axes are 1,0,0;   0,1,0  and  0,0,1, hence 
they must satisfy the equation 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 0. Therefore 

𝑎𝑎. 1 + 𝑏𝑏. 0 + 𝑐𝑐. 0 + 2𝑓𝑓. 0.0 + 2𝑔𝑔. 0.1 + 2ℎ. 1.0 = 0 

𝑎𝑎. 0 + 𝑏𝑏. 1 + 𝑐𝑐. 0 + 2𝑓𝑓. 1.0 + 2𝑔𝑔. 0.0 + 2ℎ. 0.1 = 0 

𝑎𝑎. 0 + 𝑏𝑏. 0 + 𝑐𝑐. 1 + 2𝑓𝑓. 0.1 + 2𝑔𝑔. 1.0 + 2ℎ. 0.0 = 0 

Which give 𝑎𝑎 = 0, 𝑏𝑏 = 0, 𝑐𝑐 = 0. Hence the required equation of the cone 
becomes                     

0 + 0 + 0 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 

or                                                𝑓𝑓𝑚𝑚𝑛𝑛 + 𝑔𝑔𝑛𝑛𝑙𝑙 + ℎ𝑙𝑙𝑚𝑚 = 0 

6.5 CONDITION FOR THE GENERAL 
EQUATION OF SECOND DEGREE TO 
REPRESENT A CONE 

Let a cone be represented by the following equation of second degree 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 

                                                     +2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0  … … (12)                                                                                                                    

Let (𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the vertex of the cone. Shifting the origin to the vertex 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾), the equation of the cone becomes 

𝑎𝑎(𝑙𝑙 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛 + 𝛾𝛾)2 + 2𝑓𝑓(𝑚𝑚 + 𝛽𝛽)(𝑛𝑛 + 𝛾𝛾)
+ 2𝑔𝑔(𝑛𝑛 + 𝛾𝛾)(𝑙𝑙 + 𝛼𝛼) + 2ℎ(𝑙𝑙 + 𝛼𝛼)(𝑚𝑚 + 𝛽𝛽) + 2𝑢𝑢(𝑙𝑙 + 𝛼𝛼)
+ 2𝑣𝑣(𝑚𝑚 + 𝛽𝛽) + 2𝑤𝑤(𝑛𝑛 + 𝛾𝛾) + 𝑑𝑑 = 0 

or 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑙𝑙(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾 + 𝑢𝑢) 
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                                   +2𝑚𝑚(ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾 + 𝑣𝑣) + 2𝑛𝑛(𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑤𝑤)  
+(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑓𝑓𝛽𝛽𝛾𝛾 + 2𝑔𝑔𝛾𝛾𝛼𝛼 + 2ℎ𝛼𝛼𝛽𝛽 + 2𝑢𝑢𝛼𝛼 + 2𝑣𝑣𝛽𝛽 + 2𝑤𝑤𝛾𝛾 +
𝑑𝑑) = 0 

                                                                                                             ……. 
(13) Now (13) represents a cone with vertex at the origin and therefore it 
must be a homogeneous equation of second degree in 𝑙𝑙,𝑚𝑚, 𝑛𝑛. Hence the 
coefficients of 𝑙𝑙,𝑚𝑚, 𝑛𝑛 and the absolute term must vanish separately, i.e.  

𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾 + 𝑢𝑢 = 0  … … . . (14) 

ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾 + 𝑣𝑣 = 0  … … . . (15) 

𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑤𝑤 = 0  … … . . (16) 

 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑓𝑓𝛽𝛽𝛾𝛾 + 2𝑔𝑔𝛾𝛾𝛼𝛼 + 2ℎ𝛼𝛼𝛽𝛽 + 2𝑢𝑢𝛼𝛼 + 2𝑣𝑣𝛽𝛽 + 2𝑤𝑤𝛾𝛾 + 𝑑𝑑 =
0                                                                                                                           
….... (17) 

Equation (17) can be written as 

𝛼𝛼(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾 + 𝑢𝑢) + 𝛽𝛽(ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾 + 𝑣𝑣) + 𝛾𝛾(𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑤𝑤) 

                                                              +(𝑢𝑢𝛼𝛼 + 𝑣𝑣𝛽𝛽 + 𝑤𝑤𝛾𝛾 + 𝑑𝑑) = 0 

Using (14), (15) and (16) we get 

𝑢𝑢𝛼𝛼 + 𝑣𝑣𝛽𝛽 + 𝑤𝑤𝛾𝛾 + 𝑑𝑑 = 0  … … . . (18) 

Eliminating 𝛼𝛼,𝛽𝛽, 𝛾𝛾 between (14), (15), (16) and (18), we have 

�

𝑎𝑎
ℎ

ℎ
𝑏𝑏

𝑔𝑔
𝑓𝑓

𝑢𝑢
𝑣𝑣

𝑔𝑔
𝑢𝑢

𝑓𝑓
𝑣𝑣

𝑐𝑐
𝑤𝑤

𝑤𝑤
𝑑𝑑
� = 0 … … (19) 

This is the required condition that equation (12) represents a cone.  

The coordinates (𝛼𝛼,𝛽𝛽, 𝛾𝛾) of the vertex can be obtained by solving any 
three of the equations (14), (15), (16) and (18). 

There is an easy way to obtain the coordinates of the vertex. First make 
equation (12) homogeneous by introducing a fourth variable ‘t’. Let 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛, 𝑡) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙𝑡 + 2𝑣𝑣𝑚𝑚𝑡 

                                                                         +2𝑤𝑤𝑛𝑛𝑡 + 𝑑𝑑𝑡2 = 0                                                                                                        

Then you will observe that 
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𝜕𝐹𝐹
𝜕𝑙𝑙

= 0 ⟹ 𝑎𝑎𝑙𝑙 + ℎ𝑚𝑚 + 𝑔𝑔𝑛𝑛 + 𝑢𝑢𝑡 = 0  

𝜕𝐹𝐹
𝜕𝑚𝑚

= 0 ⟹ ℎ𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑓𝑓𝑛𝑛 + 𝑣𝑣𝑡 = 0  

𝜕𝐹𝐹
𝜕𝑛𝑛

= 0 ⟹ 𝑔𝑔𝑙𝑙 + 𝑓𝑓𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑤𝑤𝑡 = 0 

and  
𝜕𝐹𝐹
𝜕𝑡

= 0 ⟹ 𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 + 𝑡𝑑𝑑 = 0 

Putting  𝑡 = 1 , we get the equations  

𝑎𝑎𝑙𝑙 + ℎ𝑚𝑚 + 𝑔𝑔𝑛𝑛 + 𝑢𝑢 = 0,ℎ𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑓𝑓𝑛𝑛 + 𝑣𝑣 = 0𝑔𝑔𝑙𝑙 + 𝑓𝑓𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑤𝑤
= 0,𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 

If 𝑙𝑙 = 𝛼𝛼,𝑚𝑚 = 𝛽𝛽, 𝑛𝑛 = 𝛾𝛾 is the solution of any three of the above equations, 
then this solution must satisfy the remaining fourth equation also. 

 So the working rule for solving numerical problems is simple. 

1. Make the equation homogeneous by introducing a fourth variable ‘t’ 

2. Solve the equations �𝜕𝐹
𝜕𝑥𝑥
�
𝑡=1

= 0, �𝜕𝐹
𝜕𝑦𝑦
�
𝑡=1

= 0, �𝜕𝐹
𝜕𝑧𝑧
�
𝑡=1

= 0 

3. If the solution thus obtained satisfies �𝜕𝐹
𝜕𝑡
�
𝑡=1

= 0, then this solution 

gives the vertex of the cone represented by 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 0.   

6.6 EQUATION OF A CONE WITH GIVEN 
CONIC FOR BASE 

Suppose we are given the following conic in xy-plane  

𝑎𝑎𝑙𝑙2 + 2ℎ𝑙𝑙𝑚𝑚 + 𝑏𝑏𝑚𝑚2 + 2𝑔𝑔𝑙𝑙 + 2𝑓𝑓𝑚𝑚 + 𝑐𝑐 = 0, 𝑛𝑛 = 0 … . . (20) 

Now we shall find the equation of a cone whose vertex is given as 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and base the conic given by (20). 

The equations of any straight line through the vertex (𝛼𝛼,𝛽𝛽, 𝛾𝛾) are 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

    … … . . (21) 

This line (21) meets the plane 𝑛𝑛 = 0 (xy-plane) at the point given by 
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𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
0 − 𝛾𝛾
𝑛𝑛

 , 𝑛𝑛 = 0    

𝑖. 𝑒.   𝑙𝑙 = 𝛼𝛼 −
𝑙𝑙𝛾𝛾
𝑛𝑛

,𝑚𝑚 = 𝛽𝛽 −
𝑚𝑚𝛾𝛾
𝑛𝑛

, 𝑛𝑛 = 0 

Hence the point is �𝛼𝛼 − 𝑙𝛾
𝑛

,𝛽𝛽 − 𝑚𝛾
𝑛

, 0�. 

If equations (21) represent the generator of the cone with base given by 
(20), this point must lie on (20). i.e. 

𝑎𝑎 �𝛼𝛼 −
𝑙𝑙𝛾𝛾
𝑛𝑛
�
2

+ 2ℎ �𝛼𝛼 −
𝑙𝑙𝛾𝛾
𝑛𝑛
� �𝛽𝛽 −

𝑚𝑚𝛾𝛾
𝑛𝑛
�+ 𝑏𝑏 �𝛽𝛽 −

𝑚𝑚𝛾𝛾
𝑛𝑛
�
2

+ 2𝑔𝑔 �𝛼𝛼 −
𝑙𝑙𝛾𝛾
𝑛𝑛
� 

                                                              
+2𝑓𝑓 �𝛽𝛽 − 𝑚𝛾

𝑛
� + 𝑐𝑐 = 0      … . . (22) 

The required equation of the cone, i.e. the locus of the line (21) can be 
obtained by eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 between (21) and (22). 

From (21), we have 

𝑙𝑙
𝑛𝑛

=
𝑙𝑙 − 𝛼𝛼
𝑛𝑛 − 𝛾𝛾

,
𝑚𝑚
𝑛𝑛

=
𝑚𝑚 − 𝛽𝛽
𝑛𝑛 − 𝛾𝛾

   

Substituting these values in (22), we have  

𝑎𝑎 �𝛼𝛼 − �
𝑙𝑙 − 𝛼𝛼
𝑛𝑛 − 𝛾𝛾

� 𝛾𝛾�
2

+ 2ℎ �𝛼𝛼 − �
𝑙𝑙 − 𝛼𝛼
𝑛𝑛 − 𝛾𝛾

� 𝛾𝛾� �𝛽𝛽 − �
𝑚𝑚 − 𝛽𝛽
𝑛𝑛 − 𝛾𝛾

�𝛾𝛾�

+ 𝑏𝑏 �𝛽𝛽 − �
𝑚𝑚 − 𝛽𝛽
𝑛𝑛 − 𝛾𝛾

� 𝛾𝛾 �
2

+ 2𝑔𝑔 �𝛼𝛼 − �
𝑙𝑙 − 𝛼𝛼
𝑛𝑛 − 𝛾𝛾

� 𝛾𝛾�

+ 2𝑓𝑓 �𝛽𝛽 − �
𝑚𝑚 − 𝛽𝛽
𝑛𝑛 − 𝛾𝛾

 � 𝛾𝛾� + 𝑐𝑐 = 0       

After simplification we get 

 𝑎𝑎(𝛼𝛼𝑛𝑛 − 𝛾𝛾𝑙𝑙)2 + 2ℎ(𝛼𝛼𝑛𝑛 − 𝑙𝑙𝛾𝛾)(𝛽𝛽𝑛𝑛 − 𝛾𝛾𝑚𝑚) + 𝑏𝑏(𝛽𝛽𝑛𝑛 − 𝛾𝛾𝑚𝑚 )2 

          +2𝑔𝑔(𝛼𝛼𝑛𝑛 − 𝑙𝑙𝛾𝛾)(𝑛𝑛 − 𝛾𝛾) + 2𝑓𝑓(𝛽𝛽𝑛𝑛 − 𝑚𝑚𝛾𝛾)(𝑛𝑛 − 𝛾𝛾) + 𝑐𝑐(𝑛𝑛 − 𝛾𝛾)2 = 0       

This is the required equation of the cone with vertex (𝛼𝛼,𝛽𝛽, 𝛾𝛾) and base 
given by (20). 

6.7 ILLUSTRATIVE EXAMPLES 

Example 6.7.1 Prove that 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 
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represents a cone if  𝑢
2

𝑎
+ 𝑣2

𝑏
+ 𝑤2

𝑐
= 𝑑𝑑 

Solution Let (𝛼𝛼,𝛽𝛽, 𝛾𝛾) be the vertex of the cone. Shifting the origin to the 
vertex (𝛼𝛼,𝛽𝛽, 𝛾𝛾), the equation of the cone becomes 

𝑎𝑎(𝑙𝑙 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛 + 𝛾𝛾)2 + 2𝑢𝑢(𝑙𝑙 + 𝛼𝛼) + 2𝑣𝑣(𝑚𝑚 + 𝛽𝛽)
+ 2𝑤𝑤(𝑛𝑛 + 𝛾𝛾) 

                                                                                                        +𝑑𝑑 = 0 

or 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑙𝑙(𝑎𝑎𝛼𝛼 + 𝑢𝑢) + 2𝑚𝑚(𝑏𝑏𝛽𝛽 + 𝑣𝑣) + 2𝑛𝑛(𝑐𝑐𝛾𝛾 + 𝑤𝑤) 

          +(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑢𝑢𝛼𝛼 + 2𝑣𝑣𝛽𝛽 + 2𝑤𝑤𝛾𝛾 + 𝑑𝑑) = 0 … . (23)                                                                                                                         

If this equation represents a cone, it must be a homogeneous equation of 
second degree in 𝑙𝑙,𝑚𝑚, 𝑛𝑛. Hence the coefficients of 𝑙𝑙,𝑚𝑚, 𝑛𝑛 and the absolute 
term must vanish separately, i.e.  

𝑎𝑎𝛼𝛼 + 𝑢𝑢 = 0, 𝑏𝑏𝛽𝛽 + 𝑣𝑣 = 0, 𝑐𝑐𝛾𝛾 + 𝑤𝑤 = 0  … … . . (24) 

and    𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑢𝑢𝛼𝛼 + 2𝑣𝑣𝛽𝛽 + 2𝑤𝑤𝛾𝛾 + 𝑑𝑑 = 0 … . . (25) 

From (24) we have  

𝛼𝛼 = −
𝑢𝑢
𝑎𝑎

, 𝛽𝛽 = −
𝑣𝑣
𝑏𝑏

, 𝛾𝛾 = −
𝑤𝑤
𝑐𝑐

 

Substituting these values in (25), we get 

  
𝑢𝑢2

𝑎𝑎
+
𝑣𝑣2

𝑏𝑏
+
𝑤𝑤2

𝑐𝑐
−  

2𝑢𝑢2

𝑎𝑎
−

2𝑣𝑣2

𝑏𝑏
−

2𝑤𝑤2

𝑐𝑐
+ 𝑑𝑑 = 0 

or       
𝑢𝑢2

𝑎𝑎
+
𝑣𝑣2

𝑏𝑏
+
𝑤𝑤2

𝑐𝑐
= 𝑑𝑑 

 

Example 6.7.2 Find the equation of a cone whose vertex is the point 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and whose generating lines pass through the conic 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
= 1, 𝑛𝑛 = 0 

Solution Any line through (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is given by 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

    … … . . (26) 

This line (26) meets the plane 𝑛𝑛 = 0 at the point given by 
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𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
0 − 𝛾𝛾
𝑛𝑛

 , 𝑛𝑛 = 0    

𝑖. 𝑒.   𝑙𝑙 = 𝛼𝛼 −
𝑙𝑙𝛾𝛾
𝑛𝑛

,𝑚𝑚 = 𝛽𝛽 −
𝑚𝑚𝛾𝛾
𝑛𝑛

, 𝑛𝑛 = 0 

Hence the point is �𝛼𝛼 − 𝑙𝛾
𝑛

,𝛽𝛽 − 𝑚𝛾
𝑛

, 0�. 

If equations (26) represent the generator of the cone, this point must lie on  
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
= 1, 𝑛𝑛 = 0 

Hence we have 

�𝛼𝛼 − 𝑙𝑙𝛾𝛾
𝑛𝑛 �

2

𝑎𝑎2
+
�𝛽𝛽 − 𝑚𝑚𝛾𝛾

𝑛𝑛 �
2

𝑏𝑏2
= 1 

or 𝑏𝑏2(𝛼𝛼𝑛𝑛 − 𝛾𝛾𝑙𝑙)2 + 𝑎𝑎2(𝛽𝛽𝑛𝑛 − 𝛾𝛾𝑚𝑚 )2 = 𝑎𝑎2𝑏𝑏2𝑛𝑛2  … . . (27)    

Eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 between (26) and (27) we get 

       𝑏𝑏2{𝛼𝛼(𝑛𝑛 − 𝛾𝛾) − 𝛾𝛾(𝑙𝑙 − 𝛼𝛼)}2 + 𝑎𝑎2{𝛽𝛽(𝑛𝑛 − 𝛾𝛾) − 𝛾𝛾(𝑚𝑚 − 𝛽𝛽) }2 =
𝑎𝑎2𝑏𝑏2(𝑛𝑛 − 𝛾𝛾)2 

or 𝑏𝑏2(𝛼𝛼𝑛𝑛 − 𝛾𝛾𝑙𝑙)2 + 𝑎𝑎2(𝛽𝛽𝑛𝑛 − 𝛾𝛾𝑚𝑚 )2 = 𝑎𝑎2𝑏𝑏2(𝑛𝑛 − 𝛾𝛾)2      

This is the required equation of the cone.                                                  

Example 6.7.3 Prove that the equation 

4𝑙𝑙2 − 𝑚𝑚2 + 2𝑛𝑛2 − 3𝑚𝑚𝑛𝑛 + 2𝑙𝑙𝑚𝑚 + 12𝑙𝑙 − 11𝑚𝑚 + 6𝑛𝑛 + 4 = 0 

represents a cone. Find the coordinates of its vertex. 

Solution Let us make the equation homogeneous by introducing variable 
t. Let 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛, 𝑡) = 4𝑙𝑙2 − 𝑚𝑚2 + 2𝑛𝑛2 − 3𝑚𝑚𝑛𝑛 + 2𝑙𝑙𝑚𝑚 + 12𝑙𝑙𝑡 − 11𝑚𝑚𝑡 + 6𝑛𝑛𝑡
+ 4𝑡2 = 0 

Now  

𝜕𝐹𝐹
𝜕𝑙𝑙

= 8𝑙𝑙 + 2𝑚𝑚 + 12𝑡,
𝜕𝐹𝐹
𝜕𝑚𝑚

= −2𝑚𝑚 + 2𝑙𝑙 − 3𝑛𝑛 − 11𝑡,   

𝜕𝐹𝐹
𝜕𝑛𝑛

= 4𝑛𝑛 − 3𝑚𝑚 + 6𝑡,
𝜕𝐹𝐹
𝜕𝑡

= 12𝑙𝑙 − 11𝑚𝑚 + 6𝑛𝑛 + 8𝑡 

Putting 𝑡 = 1 and equating to zero, we get 
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8𝑙𝑙 + 2𝑚𝑚 + 12 = 0 … . . (28)   

−2𝑚𝑚 + 2𝑙𝑙 − 3𝑛𝑛 − 11 = 0 … . (29)  

4𝑛𝑛 − 3𝑚𝑚 + 6 = 0 … . (30)   

12𝑙𝑙 − 11𝑚𝑚 + 6𝑛𝑛 + 8 = 0 … … (31) 

Solving (28), (29) and (30) we get 𝑙𝑙 = −1,𝑚𝑚 = −2, 𝑛𝑛 = −3.  

You can see that this solution satisfies (31) as 

12(−1) − 11(−2) + 6(−3) + 8 = 0 

Hence the given equation represents a cone with vertex (−1,−2,−3). 

 

Example 6.7.4 Show that the lines drawn through the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
whose d.c.’s satisfy the relation 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 0 generate the cone 

𝑎𝑎(𝑙𝑙 − 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚 − 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛 − 𝛾𝛾)2 = 0 

Solution Equations of any line through (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with dc’s 𝑙𝑙,𝑚𝑚, 𝑛𝑛 are 
given by 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

    … … . . (32) 

It is given that the dc’s satisfy the equation 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 0 … … (33) 

Eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 between (32) and (33), we get the equation of the cone 
as 

𝑎𝑎(𝑙𝑙 − 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚 − 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛 − 𝛾𝛾)2 = 0 

Example 6.7.5 The plane 𝑥𝑥
𝑎

+ 𝑦𝑦
𝑏

+ 𝑧𝑧
𝑐

= 1 meets the coordinate axes in 
𝐴𝐴,𝐵𝐵,𝐶𝐶. Prove that the equation to the cone generated by lines through 𝑂𝑂 to 
meet the circle 𝐴𝐴𝐵𝐵𝐶𝐶 is 

𝑚𝑚𝑛𝑛 �
𝑏𝑏
𝑐𝑐

+
𝑐𝑐
𝑏𝑏
� + 𝑛𝑛𝑙𝑙 �

𝑎𝑎
𝑐𝑐

+
𝑐𝑐
𝑎𝑎
� + 𝑙𝑙𝑚𝑚 �

𝑎𝑎
𝑏𝑏

+
𝑏𝑏
𝑎𝑎
� = 0 

Solution First of all we shall find the equations of the circle through 
𝐴𝐴,𝐵𝐵,𝐶𝐶. Obviously the coordinates of 𝐴𝐴,𝐵𝐵,𝐶𝐶 are (𝑎𝑎, 0,0), (0, 𝑏𝑏, 0), (0,0, 𝑐𝑐) 
respectively. From your study of sphere you know that the equation of the 
sphere through 𝑂𝑂,𝐴𝐴,𝐵𝐵,𝐶𝐶 is 
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𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑚𝑚 − 𝑐𝑐𝑛𝑛 = 0 

Therefore the equations of the circle 𝐴𝐴𝐵𝐵𝐶𝐶 are given by 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − 𝑎𝑎𝑙𝑙 − 𝑏𝑏𝑚𝑚 − 𝑐𝑐𝑛𝑛 = 0,
𝑙𝑙
𝑎𝑎

+
𝑚𝑚
𝑏𝑏

+
𝑛𝑛
𝑐𝑐

= 1 … … . (33) 

We make the first equation homogeneous with the help of the second 
equation as follows 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 − (𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛) �
𝑙𝑙
𝑎𝑎

+
𝑚𝑚
𝑏𝑏

+
𝑛𝑛
𝑐𝑐
� = 0 

i.e.  𝑚𝑚𝑛𝑛 �
𝑏𝑏
𝑐𝑐

+
𝑐𝑐
𝑏𝑏
� + 𝑛𝑛𝑙𝑙 �

𝑎𝑎
𝑐𝑐

+
𝑐𝑐
𝑎𝑎
� + 𝑙𝑙𝑚𝑚 �

𝑎𝑎
𝑏𝑏

+
𝑏𝑏
𝑎𝑎
� = 0  

Example 6.7.6 Find the equation of the cone whose vertex is (1,2,3) and 
guiding curve is the circle 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 4, 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 1 

Solution Any straight line through (1,2,3) can be given by 

𝑙𝑙 − 1
𝑙𝑙

=
𝑚𝑚 − 2
𝑚𝑚

=
𝑛𝑛 − 3
𝑛𝑛

= 𝑟𝑟 (say) … . . (34) 

The equations of the circle are 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 4, 𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 = 1  … … . (35) 

Any point on (34) is (𝑙𝑙𝑟𝑟 + 1,𝑚𝑚𝑟𝑟 + 2,𝑛𝑛𝑟𝑟 + 3). If the line (34) meets the 
circle (35) in this point, then 

(𝑙𝑙𝑟𝑟 + 1)2 + (𝑚𝑚𝑟𝑟 + 2)2 + (𝑛𝑛𝑟𝑟 + 3)2 = 4 … … . . (36) 

(𝑙𝑙𝑟𝑟 + 1) + (𝑚𝑚𝑟𝑟 + 2) + (𝑛𝑛𝑟𝑟 + 3) = 1   … … (37) 

From (37) we have 

𝑟𝑟 =
−5

𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛
 

Putting this value in (36) we get 

�
−5𝑙𝑙

𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛
+ 1�

2

+ �
−5𝑚𝑚

𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛
+ 2�

2

+ �
−5𝑛𝑛

𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛
+ 3�

2

= 4 

or  (𝑚𝑚 + 𝑛𝑛 − 4𝑙𝑙)2 + (2𝑙𝑙 − 3𝑚𝑚 + 2𝑛𝑛)2 + (3𝑙𝑙 + 3𝑚𝑚 − 2𝑛𝑛)2
= 4(𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛)2   … . (38) 

Eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 between (34) and (38), i.e. replacing 𝑙𝑙,𝑚𝑚, 𝑛𝑛 in (38) by 
(𝑙𝑙 − 1), (𝑚𝑚 − 2) and (𝑛𝑛 − 3) respectively, we have 

  (𝑚𝑚 + 𝑛𝑛 − 4𝑙𝑙 − 1)2 + (2𝑙𝑙 − 3𝑚𝑚 + 2𝑛𝑛 − 2)2 + (3𝑙𝑙 + 3𝑚𝑚 − 2𝑛𝑛 − 3)2 UGMM-102/215
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                                                                                = 4(𝑙𝑙 + 𝑚𝑚 + 𝑛𝑛 − 6)2  

or    5𝑙𝑙2 + 3𝑚𝑚2 + 𝑛𝑛2 + 6𝑚𝑚𝑛𝑛 − 4𝑛𝑛𝑙𝑙 − 2𝑙𝑙𝑚𝑚 + 6𝑙𝑙 + 8𝑚𝑚 + 10𝑛𝑛 − 26 = 0 

This is the required equation of the cone. 

Example 6.7.7 Show that cone of the second degree can be found to pass 
through two sets of rectangular axes through the same origin. 

Solution Let the first system of rectangular axes consist of the coordinate 
axes and the second one consist of rectangular axes with dc’s 𝑙𝑙1,𝑚𝑚1,𝑛𝑛1; 
𝑙𝑙2,𝑚𝑚2,𝑛𝑛2; 𝑙𝑙3,𝑚𝑚3,𝑛𝑛3. 

We know that the equation of the cone through the coordinate axes is 
given by 

𝑓𝑓𝑚𝑚𝑛𝑛 + 𝑔𝑔𝑛𝑛𝑙𝑙 + ℎ𝑙𝑙𝑚𝑚 = 0  … … (39) 

Now the dc’s of the lines must satisfy the homogeneous equation (39). For 
the first two lines with dc’s 𝑙𝑙1,𝑚𝑚1,𝑛𝑛1 and 𝑙𝑙2,𝑚𝑚2,𝑛𝑛2, we have 

𝑓𝑓𝑚𝑚1𝑛𝑛1 + 𝑔𝑔𝑛𝑛1𝑙𝑙1 + ℎ𝑙𝑙1𝑚𝑚1 = 0 … . . (40) 

𝑓𝑓𝑚𝑚2𝑛𝑛2 + 𝑔𝑔𝑛𝑛2𝑙𝑙2 + ℎ𝑙𝑙2𝑚𝑚2 = 0 … . . (41) 

Adding (40) and (41), we get 

𝑓𝑓(𝑚𝑚1𝑛𝑛1 + 𝑚𝑚2𝑛𝑛2) + 𝑔𝑔(𝑛𝑛1𝑙𝑙1 + 𝑛𝑛2𝑙𝑙2) + ℎ(𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2) = 0 … . . (42) 

Since the axes are rectangular, we have 

𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2 + 𝑙𝑙3𝑚𝑚3 = 0, 𝑚𝑚1𝑛𝑛1 + 𝑚𝑚2𝑛𝑛2 + 𝑚𝑚3𝑛𝑛3 = 0, 𝑛𝑛1𝑙𝑙1 + 𝑛𝑛2𝑙𝑙2 +
𝑛𝑛3𝑙𝑙3 = 0  

⟹ 𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2 = −𝑙𝑙3𝑚𝑚3, 𝑚𝑚1𝑛𝑛1 + 𝑚𝑚2𝑛𝑛2 = −𝑚𝑚3𝑛𝑛3, 𝑛𝑛1𝑙𝑙1 + 𝑛𝑛2𝑙𝑙2 =
−𝑛𝑛3𝑙𝑙3  

Hence (42) becomes 

−𝑓𝑓𝑙𝑙3𝑚𝑚3 − 𝑔𝑔𝑚𝑚3𝑛𝑛3 − ℎ𝑛𝑛3𝑙𝑙3 = 0 

or   𝑓𝑓𝑙𝑙3𝑚𝑚3 + 𝑔𝑔𝑚𝑚3𝑛𝑛3 + ℎ𝑛𝑛3𝑙𝑙3 = 0 

This shows that the third axis with dc’s 𝑙𝑙3,𝑚𝑚3,𝑛𝑛3 also lies on the cone. 
Hence the result. 

6.8 THE ANGEL BETWEEN THE LINES IN 
WHICH A PLANE CUTS A CONE 

We shall find the angle between the lines in which the plane 
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𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0 … … (43) 

cuts the cone 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 … . . (44) 

 

 

 

 

 

 

 

 

 

 

 

 

Since the cone (44) has the vertex at the origin and the plane (43) also 
passes through the origin, hence the line of intersection will pass through 
the origin. The equations of this line of intersection can be given as 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

= 𝑟𝑟 (say)    … … . . (45) 

Any point on this line will be (𝑙𝑙𝑟𝑟,𝑚𝑚𝑟𝑟,𝑛𝑛𝑟𝑟). This point must lie on the plane 
(43) and the cone (44). Hence  

𝑢𝑢𝑙𝑙𝑟𝑟 + 𝑣𝑣𝑚𝑚𝑟𝑟 + 𝑤𝑤𝑛𝑛𝑟𝑟 = 0  or   𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0 … … (46) 

and 𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚) = 0 

i.e.     𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 … . . (47) 

From (46) we have 𝑙𝑙 = − (𝑣𝑚+𝑤𝑛)
𝑢

. Putting this value in (47) we get 

𝑎𝑎
(𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛)

𝑢𝑢2
2

+ 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 − 2𝑔𝑔𝑛𝑛
(𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛)

𝑢𝑢
− 2ℎ𝑚𝑚

(𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛)
𝑢𝑢

= 0 

or   (𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣) �
𝑚𝑚
𝑛𝑛
�
2

+ 2(𝑎𝑎𝑣𝑣𝑤𝑤 − 𝑢𝑢𝑣𝑣𝑔𝑔 − 𝑢𝑢ℎ𝑤𝑤 + 𝑓𝑓𝑢𝑢2) �
𝑚𝑚
𝑛𝑛
� 

 

𝜃𝜃 

𝑂𝑂 

Plane 
 𝑢𝑢𝑢𝑢 + 𝑣𝑣𝑣𝑣 + 𝑤𝑤𝑤𝑤 = 0 
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                                                        +(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤) = 0  … . . (48)  

This is a quadratic equation in (𝑚𝑚 𝑛𝑛⁄ ) and it shows that the plane (43) cuts 
the cone (44) in two lines. Let 𝑙𝑙1,𝑚𝑚1,𝑛𝑛1 and 𝑙𝑙2,𝑚𝑚2,𝑛𝑛2 be the dc’s of these 
lines. Thus the equation (48) will have two roots- (𝑚𝑚1 𝑛𝑛1⁄ ) and (𝑚𝑚2 𝑛𝑛2⁄ )  
(say). Therefore  

𝑚𝑚1

𝑛𝑛1
+
𝑚𝑚2

𝑛𝑛2
= −

2(𝑎𝑎𝑣𝑣𝑤𝑤 − 𝑢𝑢𝑣𝑣𝑔𝑔 − 𝑢𝑢ℎ𝑤𝑤 + 𝑓𝑓𝑢𝑢2)
(𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣)    … … (49) 

 

and         
𝑚𝑚1

𝑛𝑛1
∙
𝑚𝑚2

𝑛𝑛2
=

(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤)
(𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣)     

or         
𝑚𝑚1𝑚𝑚2

(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤) =
𝑛𝑛1𝑛𝑛2

(𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣)    

By symmetry we can write 

         
𝑙𝑙1𝑙𝑙2

(𝑐𝑐𝑣𝑣2 + 𝑏𝑏𝑤𝑤2 − 2𝑓𝑓𝑣𝑣𝑤𝑤) =
𝑚𝑚1𝑚𝑚2

(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤)
=

𝑛𝑛1𝑛𝑛2
(𝑏𝑏𝑢𝑢2 + 𝑎𝑎𝑣𝑣2 − 2ℎ𝑢𝑢𝑣𝑣) … (50)   

From (49) we have 

𝑚𝑚1𝑛𝑛2 + 𝑚𝑚2𝑛𝑛1
𝑛𝑛1𝑛𝑛2

= −
2(𝑎𝑎𝑣𝑣𝑤𝑤 − 𝑢𝑢𝑣𝑣𝑔𝑔 − 𝑢𝑢ℎ𝑤𝑤 + 𝑓𝑓𝑢𝑢2)

(𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣)     

 

or   
𝑚𝑚1𝑛𝑛2 + 𝑚𝑚2𝑛𝑛1

−2(𝑎𝑎𝑣𝑣𝑤𝑤 − 𝑢𝑢𝑣𝑣𝑔𝑔 − 𝑢𝑢ℎ𝑤𝑤 + 𝑓𝑓𝑢𝑢2) =
𝑛𝑛1𝑛𝑛2

(𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣)    

=
𝑚𝑚1𝑚𝑚2

(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤)  = 𝜆𝜆 (say),  using (50)   

Now (𝑚𝑚1𝑛𝑛2 − 𝑚𝑚2𝑛𝑛1)2 = (𝑚𝑚1𝑛𝑛2 + 𝑚𝑚2𝑛𝑛1)2 − 4𝑚𝑚1𝑚𝑚2𝑛𝑛1𝑛𝑛2 

= 4𝜆𝜆2(𝑎𝑎𝑣𝑣𝑤𝑤 − 𝑢𝑢𝑣𝑣𝑔𝑔 − 𝑢𝑢ℎ𝑤𝑤 + 𝑓𝑓𝑢𝑢2)2
− 4𝜆𝜆2(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤)(𝑎𝑎𝑣𝑣2 + 𝑏𝑏𝑢𝑢2 − 2ℎ𝑢𝑢𝑣𝑣) 

 = 4𝜆𝜆2𝑤𝑤2𝑃𝑃2 

Where 𝑃𝑃2 = �
𝑎𝑎 ℎ
ℎ 𝑏𝑏

𝑔𝑔 𝑢𝑢
𝑓𝑓 𝑣𝑣

𝑔𝑔 𝑓𝑓
𝑢𝑢 𝑣𝑣

𝑐𝑐 𝑤𝑤
𝑤𝑤 0

� 
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Hence we have 𝑚𝑚1𝑛𝑛2 − 𝑚𝑚2𝑛𝑛1 = ±2𝜆𝜆𝑤𝑤𝑃𝑃. Similarly 𝑛𝑛1𝑙𝑙2 − 𝑛𝑛2𝑙𝑙1 =
±2𝜆𝜆𝑢𝑢𝑃𝑃 and 𝑙𝑙1𝑚𝑚2 − 𝑙𝑙2𝑚𝑚1 = ±2𝜆𝜆𝑣𝑣𝑃𝑃 

If 𝜃𝜃 is the angle between the lines in which the plane (43) cuts the cone 
(44), then 

tan𝜃𝜃 =
�(𝑛𝑛1𝑙𝑙2 − 𝑛𝑛2𝑙𝑙1)2 + (𝑙𝑙1𝑚𝑚2 − 𝑙𝑙2𝑚𝑚1)2 + (𝑚𝑚1𝑛𝑛2 − 𝑚𝑚2𝑛𝑛1)2

𝑙𝑙1𝑙𝑙2 + 𝑚𝑚1𝑚𝑚2 + 𝑛𝑛1𝑛𝑛2
 

=
√4𝜆𝜆2𝑢𝑢2𝑃𝑃2 + 4𝜆𝜆2𝑣𝑣2𝑃𝑃2 + 4𝜆𝜆2𝑤𝑤2𝑃𝑃2

𝜆𝜆(𝑐𝑐𝑣𝑣2 + 𝑏𝑏𝑤𝑤2 − 2𝑓𝑓𝑣𝑣𝑤𝑤) + 𝜆𝜆(𝑎𝑎𝑤𝑤2 + 𝑐𝑐𝑢𝑢2 − 2𝑔𝑔𝑢𝑢𝑤𝑤) + 𝜆𝜆(𝑏𝑏𝑢𝑢2 + 𝑎𝑎𝑣𝑣2 − 2ℎ𝑢𝑢𝑣𝑣) 

or    tan𝜃𝜃 =
2𝑃𝑃(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)1 2⁄

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) − 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤)
 

Corollary 1. Condition of perpendicularity 

If the lines are perpendicular, we have 𝜃𝜃 = 𝜋
2
 and hence  

tan𝜃𝜃 = ∞ 

⟹ (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) − 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 0 

⟹ (𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) = 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤) 

Corollary 2. Condition of tangency of a plane and a cone 

The plane (43) touches the cone (44), if the lines are coincident. 

 i.e.  𝜃𝜃 = 0 and hence  

tan𝜃𝜃 = 0 

⟹ 2𝑃𝑃(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)1 2⁄ = 0 

⟹ 𝑃𝑃 = 0 

⟹ �
𝑎𝑎 ℎ
ℎ 𝑏𝑏

𝑔𝑔 𝑢𝑢
𝑓𝑓 𝑣𝑣

𝑔𝑔 𝑓𝑓
𝑢𝑢 𝑣𝑣

𝑐𝑐 𝑤𝑤
𝑤𝑤 0

� = 0 

⟹ 𝐴𝐴𝑢𝑢2 + 𝐵𝐵𝑣𝑣2 + 𝐶𝐶𝑤𝑤2 + 2𝐹𝐹𝑣𝑣𝑤𝑤 + 2𝐺𝐺𝑤𝑤𝑢𝑢 + 2𝐻𝐻𝑢𝑢𝑣𝑣 = 0 

Where 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐹𝐹,𝐺𝐺,𝐻𝐻 are the cofactors of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑓𝑓,𝑔𝑔,ℎ respectively in the 
determinant 

Δ = �
𝑎𝑎 ℎ 𝑔𝑔
ℎ 𝑏𝑏 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐

� 
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i.e.  𝐴𝐴 = 𝑏𝑏𝑐𝑐 − 𝑓𝑓2,𝐵𝐵 = 𝑐𝑐𝑎𝑎 − 𝑔𝑔2,𝐶𝐶 = 𝑎𝑎𝑏𝑏 − ℎ2 

𝐹𝐹 = 𝑔𝑔ℎ − 𝑎𝑎𝑓𝑓,𝐺𝐺 = ℎ𝑓𝑓 − 𝑏𝑏𝑔𝑔,𝐻𝐻 = 𝑓𝑓𝑔𝑔 − 𝑐𝑐ℎ 

6.9 THREE MUTUALLY PERPENDICULAR 
GENERATORS OF A CONE 

Let the equation of the cone be given as 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 … . . (51) 

Suppose the plane 𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0 cuts the cone (51) in perpendicular 
generators. Then from the condition of perpendicularity we have 

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) − 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 0 … . (52) 

Now the equations of the normal to the plane through the origin (i.e. 
vertex of the cone) are  

𝑙𝑙
𝑢𝑢

=
𝑚𝑚
𝑣𝑣

=
𝑛𝑛
𝑤𝑤

  … . . (53)   

This line will be a generator of the cone if it lies on the surface of the 
cone, i.e. the dc’s of the line satisfies the equation of the cone 

𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 0 

Hence from (52) we have 

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) = 0 

⟹ 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 = 0     since  𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 ≠ 0 

Therefore the condition that the cone (51) may have three perpendicular 
generators is 

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 = 0 

Conversely, if the above condition is satisfied and if the normal (53) lies 
on the cone (51), then 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 0 and hence the condition (52) gets 
satisfied for values of 𝑢𝑢, 𝑣𝑣,𝑤𝑤. Therefore a plane which is perpendicular to 
a generator cuts the cone in two mutually perpendicular generators. Hence 
many sets of three mutually perpendicular generators exist. 

6.10 ILLUSTRATIVE EXAMPLES 

Example 6.10.1 Find the equations of the lines in which the plane 
2𝑙𝑙 + 𝑚𝑚 − 𝑛𝑛 = 0 cuts the cone 4𝑙𝑙2 − 𝑚𝑚2 + 3𝑛𝑛2 = 0. Find also the angle 
between the lines of section. 

Solution: The equation of the cone is  
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4𝑙𝑙2 − 𝑚𝑚2 + 3𝑛𝑛2 = 0 … . . (54) 

and the given plane is    

2𝑙𝑙 + 𝑚𝑚 − 𝑛𝑛 = 0 … … (55) 

Let the plane (55) cut the cone (54) in the lines given by 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

 

Since the line lies on the plane and the cone, hence 

4𝑙𝑙2 − 𝑚𝑚2 + 3𝑛𝑛2 = 0 … (56) 

                                      and     2𝑙𝑙 + 𝑚𝑚− 𝑛𝑛 = 0 … . (57) 

From (57), we have              𝑛𝑛 = 2𝑙𝑙 + 𝑚𝑚     … (58) 

Substituting this value in (56), we have 

4𝑙𝑙2 − 𝑚𝑚2 + 3(2𝑙𝑙 + 𝑚𝑚)2 = 0 

                                          or    8𝑙𝑙2 + 6𝑙𝑙𝑚𝑚 + 𝑚𝑚2 = 0 

                                         or    (2𝑙𝑙 + 𝑚𝑚)(4𝑙𝑙 + 𝑚𝑚) = 0 

  2𝑙𝑙 + 𝑚𝑚 = 0 or  4𝑙𝑙 + 𝑚𝑚 = 0 

When 2𝑙𝑙 + 𝑚𝑚 = 0, we have 𝑚𝑚 = −2𝑙𝑙. Therefore from (58),  

𝑛𝑛 = 2𝑙𝑙 + 𝑚𝑚 = 2𝑙𝑙 − 2𝑙𝑙 = 0 

Hence  
𝑙𝑙
1

=
𝑚𝑚
−2

=
𝑛𝑛
0

 

The corresponding line of section is 

𝑙𝑙
1

=
𝑚𝑚
−2

=
𝑛𝑛
0

  … . . (58) 

When 4𝑙𝑙 + 𝑚𝑚 = 0, we have 𝑚𝑚 = −4𝑙𝑙. Therefore from (58),  

𝑛𝑛 = 2𝑙𝑙 + 𝑚𝑚 = 2𝑙𝑙 − 4𝑙𝑙 = −2𝑙𝑙 

Hence  
𝑙𝑙
1

=
𝑚𝑚
−4

=
𝑛𝑛
−2

 

The corresponding line of section is 
UGMM-102/221

D
G

B
-0

21



 
 

𝑙𝑙
1

=
𝑚𝑚
−4

=
𝑛𝑛
−2

  … . . (59) 

If 𝜃𝜃 is the angle between the lines of section (58) and (59), then 

cos 𝜃𝜃 =
1.1 + (−2)(−4) + 0. (−2)

�{12 + (−2)2 + 02}{12 + (−4)2 + (−2)2}
= �27

35
 

⟹ 𝜃𝜃 = cos−1 ��
27
35
� 

Example 6.10.2 Prove that the plane 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 = 0 cuts the cone 
𝑚𝑚𝑛𝑛 + 𝑛𝑛𝑙𝑙 + 𝑙𝑙𝑚𝑚 = 0 in perpendicular lines if 

1
𝑎𝑎

+
1
𝑏𝑏

+
1
𝑐𝑐

= 0 

Solution Let the plane 𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 = 0 cuts the cone 𝑚𝑚𝑛𝑛 + 𝑛𝑛𝑙𝑙 + 𝑙𝑙𝑚𝑚 = 0 
in lines given by 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

    … … . . (60) 

Since the lines lie on the plane and the cone, hence 

𝑎𝑎𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛 = 0 … . (61) 

and                                 𝑚𝑚𝑛𝑛 + 𝑛𝑛𝑙𝑙 + 𝑙𝑙𝑚𝑚 = 0 … . . (62) 

From (61) we have 

𝑙𝑙 = −
(𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛)

𝑎𝑎
 

 Putting this value in (62) we get 

𝑚𝑚𝑛𝑛 −
𝑛𝑛(𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛)

𝑎𝑎
−
𝑚𝑚(𝑏𝑏𝑚𝑚 + 𝑐𝑐𝑛𝑛)

𝑎𝑎
= 0 

or                                      𝑏𝑏𝑚𝑚2 + 𝑚𝑚𝑛𝑛(𝑏𝑏 + 𝑐𝑐 − 𝑎𝑎) + 𝑐𝑐𝑛𝑛2 = 0   

or   𝑏𝑏 �
𝑚𝑚
𝑛𝑛
�
2

+ (𝑏𝑏 + 𝑐𝑐 − 𝑎𝑎) �
𝑚𝑚
𝑛𝑛
� + 𝑐𝑐 = 0  … . . (63) 

This is a quadratic equation in (𝑚𝑚 𝑛𝑛⁄ ) with two roots, say (𝑚𝑚1 𝑛𝑛1⁄ ) and 
(𝑚𝑚2 𝑛𝑛2⁄ ). It shows that the plane cuts the cone in two lines. Now 

The product of roots =   
𝑚𝑚1

𝑛𝑛1
∙
𝑚𝑚2

𝑛𝑛2
=
𝑐𝑐
𝑏𝑏
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or         
𝑚𝑚1𝑚𝑚2

1 𝑏𝑏⁄
=
𝑛𝑛1𝑛𝑛2
1 𝑐𝑐⁄

    

By symmetry we can write 

         
𝑙𝑙1𝑙𝑙2
1 𝑎𝑎⁄

=  
𝑚𝑚1𝑚𝑚2

1 𝑏𝑏⁄
=
𝑛𝑛1𝑛𝑛2
1 𝑐𝑐⁄

    

The lines of section are perpendicular if 

𝑙𝑙1𝑙𝑙2 + 𝑚𝑚1𝑚𝑚2 + 𝑛𝑛1𝑛𝑛2 = 0 

⟹
1
𝑎𝑎

+
1
𝑏𝑏

+
1
𝑐𝑐

= 0 

Hence the result. 

6.11 THE TANGENT LINE AND THE TANGENT 
PLANE 

Now we shall find the condition that a given line through the point 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾)on the cone is a tangent line to the cone and we shall also obtain 
the equation of tangent plane at that point. 

Let the equation of the cone be given as 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 … . . (64) 

Let 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be any point on the cone (64). The equations of any line 
through 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) may be given as 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

= 𝑟𝑟 (say)     …. . (65) 

The coordinates of any point on this line will be (𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾). 
If the line (65) meets the cone (64) at this point, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 + 2𝑓𝑓(𝑚𝑚𝑟𝑟 + 𝛽𝛽)(𝑛𝑛𝑟𝑟 + 𝛾𝛾) 
                            +2𝑔𝑔(𝑛𝑛𝑟𝑟 + 𝛾𝛾)(𝑙𝑙𝑟𝑟 + 𝛼𝛼) + 2ℎ(𝑙𝑙𝑟𝑟 + 𝛼𝛼)(𝑚𝑚𝑟𝑟 + 𝛽𝛽) = 0 

 or 𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚) 

          +2𝑟𝑟{(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)𝑙𝑙 + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)𝑚𝑚 + (𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾)𝑛𝑛} 

                 +(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑓𝑓𝛽𝛽𝛾𝛾 + 2𝑔𝑔𝛾𝛾𝛼𝛼 + 2ℎ𝛼𝛼𝛽𝛽) = 0 … . . (66) 

Since the point 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) lies on the cone, hence 

𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑓𝑓𝛽𝛽𝛾𝛾 + 2𝑔𝑔𝛾𝛾𝛼𝛼 + 2ℎ𝛼𝛼𝛽𝛽 = 0 … . (67) 
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 𝑟𝑟2𝐹𝐹(𝑙𝑙,𝑚𝑚,𝑛𝑛) + 2𝑟𝑟{(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)𝑙𝑙 + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)𝑚𝑚 +
(𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾)𝑛𝑛} = 0  

This is a quadratic equation in 𝑟𝑟 with one root equal to zero. If the line 
(65) is a tangent to the cone, the other root must also vanish, i.e.  

(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)𝑙𝑙 + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)𝑚𝑚 + (𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾)𝑛𝑛 = 0 … (68) 

This is the condition that the line (65) is a tangent line to the cone at 
𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾). 

        Now the tangent plane to the cone (64) at point 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is the locus 
of the tangent line (65) under the condition (68). Hence the equation of the 
tangent plane at 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is obtained by substituting the proportionate 
values of 𝑙𝑙,𝑚𝑚,𝑛𝑛 from (65) in equation (68) as  

(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)(𝑙𝑙 − 𝛼𝛼) + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)(𝑚𝑚 − 𝛽𝛽) + (𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 +
𝑐𝑐𝛾𝛾)(𝑛𝑛 − 𝛾𝛾) = 0  

 or (𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)𝑙𝑙 + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)𝑚𝑚 + (𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾)𝑛𝑛 

                                −(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 + 2𝑓𝑓𝛽𝛽𝛾𝛾 + 2𝑔𝑔𝛾𝛾𝛼𝛼 + 2ℎ𝛼𝛼𝛽𝛽) = 0 

Using (67), we get the required equation of the tangent plane to the cone 
(64) at 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) as 

(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)𝑙𝑙 + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)𝑚𝑚 + (𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾)𝑛𝑛 = 0 

6.12 THE CONDITION OF TANGENCY 

In this section we shall obtain the condition that the plane 

𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0  … . . (69) 

May touch the cone 

𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 … . . (70) 

If the plane (69) touches the cone (70) at the point 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾), then it must 
be identical to the tangent plane at 𝑃𝑃 

(𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾)𝑙𝑙 + (ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾)𝑚𝑚 + (𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾)𝑛𝑛 = 0 … . (71) 

Since (69) and (71) represent the same plane, hence comparing the 
coefficients of 𝑙𝑙,𝑚𝑚 and 𝑛𝑛, we have 

𝑢𝑢
𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾

=
𝑣𝑣

ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾
=

𝑤𝑤
𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾

= −
1
𝑘

 (say) 

Therefore 
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𝑎𝑎𝛼𝛼 + ℎ𝛽𝛽 + 𝑔𝑔𝛾𝛾 + 𝑢𝑢𝑘 = 0 … . . (72) 

ℎ𝛼𝛼 + 𝑏𝑏𝛽𝛽 + 𝑓𝑓𝛾𝛾 + 𝑣𝑣𝑘 = 0 … . . (73) 

𝑔𝑔𝛼𝛼 + 𝑓𝑓𝛽𝛽 + 𝑐𝑐𝛾𝛾 + 𝑤𝑤𝑘 = 0 … . . (74) 

Also the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) lies on the plane (69), hence 

𝑢𝑢𝛼𝛼 + 𝑣𝑣𝛽𝛽 + 𝑤𝑤𝛾𝛾 = 0 … … (75) 

Eliminating 𝛼𝛼,𝛽𝛽, 𝛾𝛾 and 𝑘 from (72), (73), (74) and (75), we get the 
required condition as 

�
𝑎𝑎 ℎ
ℎ 𝑏𝑏

𝑔𝑔 𝑢𝑢
𝑓𝑓 𝑣𝑣

𝑔𝑔 𝑓𝑓
𝑢𝑢 𝑣𝑣

𝑐𝑐 𝑤𝑤
𝑤𝑤 0

� = 0     … . . (76) 

⟹  𝐴𝐴𝑢𝑢2 +  𝐵𝐵𝑣𝑣2  +  𝐶𝐶𝑤𝑤2  +  2𝐹𝐹𝑣𝑣𝑤𝑤 +  2𝐺𝐺𝑤𝑤𝑢𝑢 +  2𝐻𝐻𝑢𝑢𝑣𝑣 =  0   

Where 𝐴𝐴 =  𝑏𝑏𝑐𝑐 −  𝑓𝑓2,𝐵𝐵 =  𝑐𝑐𝑎𝑎 −  𝑔𝑔2,𝐶𝐶 =  𝑎𝑎𝑏𝑏 −  ℎ2,𝐹𝐹 =  𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓, 

𝐺𝐺 =  ℎ𝑓𝑓 −  𝑏𝑏𝑔𝑔,𝐻𝐻 =  𝑓𝑓𝑔𝑔 −  𝑐𝑐ℎ  

6.13 RECIPROCAL CONE 

Definition The reciprocal cone of a given cone is the locus of the lines 
through the vertex and right angles to the tangent planes of the given cone. 
In other words, the reciprocal cone of a given cone is the locus of the 
normals through the vertex to the tangent planes of the given cone. 

 Let the equation of the cone be given as 

                     𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑦𝑦2 + 𝑐𝑐𝑧𝑧2 + 2𝑓𝑓𝑦𝑦𝑧𝑧 + 2𝑔𝑔𝑧𝑧𝑥𝑥 + 2ℎ𝑥𝑥𝑦𝑦 = 0 … … (77) 

Let the equation of a tangent plane to the cone (77) be 

                                           𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 + 𝑤𝑤𝑧𝑧 = 0 …. . (78) 

The dc’s of the normal to the plane (78) are proportional to 𝑢𝑢, 𝑣𝑣, 𝑤𝑤. The 
vertex of the cone is the origin (0,0,0) Therefore the equations to the 
normal to the tangent plane (78) through the origin will be 

𝑙𝑙
𝑢𝑢

=
𝑚𝑚
𝑣𝑣

=
𝑛𝑛
𝑤𝑤

  … . . (79) 

The condition that the plane (78) touches the cone (77) is 

                     𝐴𝐴𝑢𝑢2 + 𝐵𝐵𝑣𝑣2 + 𝐶𝐶𝑤𝑤2 + 2𝐹𝐹𝑣𝑣𝑤𝑤 + 2𝐺𝐺𝑤𝑤𝑢𝑢 + 2𝐻𝐻𝑢𝑢𝑣𝑣 = 0 …. (80) 

Where 𝐴𝐴 = 𝑏𝑏𝑐𝑐 − 𝑓𝑓2, 𝐵𝐵 = 𝑐𝑐𝑎𝑎 − 𝑔𝑔2, 𝐶𝐶 = 𝑎𝑎𝑏𝑏 − ℎ2, 𝐹𝐹 = 𝑔𝑔ℎ − 𝑎𝑎𝑓𝑓, 

𝐺𝐺 = ℎ𝑓𝑓 − 𝑏𝑏𝑔𝑔, 𝐻𝐻 = 𝑓𝑓𝑔𝑔 − 𝑐𝑐ℎ 
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The locus of the normal (79) is obtained by eliminating 𝑢𝑢, 𝑣𝑣, 𝑤𝑤 between 
(79) and (80), i.e. 

                  𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑦𝑦2 + 𝐶𝐶𝑧𝑧2 + 2𝐹𝐹𝑦𝑦𝑧𝑧 + 2𝐺𝐺𝑧𝑧𝑥𝑥 + 2𝐻𝐻𝑥𝑥𝑦𝑦 = 0 … … (81) 

This is a homogeneous equation of second degree in 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 and therefore 
represents a cone with vertex at the origin. This is the reciprocal cone of 
the given cone (77). 

6.14 ENVELOPING CONE 

As the name suggests, it is a cone which envelopes a given surface. 
You will learn more about the enveloping cone of conicoids in unit-8. Let 
us begin with the formal definition: 

Definition The locus of the tangent lines drawn from a given point to a 
given surface is called the enveloping cone or tangent cone to the surface. 
The point from which the tangent lines are drawn is called the vertex of 
the enveloping cone. 

Let us derive the equation of the enveloping cone of a sphere with vertex 
at (𝛼𝛼,𝛽𝛽, 𝛾𝛾). Suppose the equation of the sphere be given as 

                                              𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2          …. . (82) 

The equations of a straight line passing through the point (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) are 
given as 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

 (= 𝑟𝑟) … … (83) 

Then the coordinates of any point 𝑃𝑃 on the straight line (83) are given by 
(𝑙𝑙𝑟𝑟 + 𝛼𝛼, 𝑚𝑚𝑟𝑟 +𝛽𝛽, 𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the line (83) meets the sphere (82) at point 𝑃𝑃, 
then 

(𝑙𝑙𝑟𝑟 +  𝛼𝛼)2  +  (𝑚𝑚𝑟𝑟 +  𝛽𝛽)2  +  (𝑛𝑛𝑟𝑟 +  𝛾𝛾)2  =  𝑎𝑎2 

or    𝑟𝑟2(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2) + 2𝑟𝑟(𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛) + 𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2 = 0 … . (84) 

This is a quadratic equation in 𝑟𝑟 giving two roots, corresponding to which 
we have two points of intersection of the line (83) and the sphere (82). If 
the line (83) is a tangent line to the sphere, the points of intersection must 
coincide, i.e. the roots of the quadratic equation (84) must be equal, i.e. 

{2(𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛)}2 = 4(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) 

or            (𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛)2 = (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) … … (85) 
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The locus of the tangent line (83) gives the required enveloping cone of 
the sphere and can be obtained by eliminating 𝑙𝑙, 𝑚𝑚, 𝑛𝑛 from (83) and (85), 
i.e. 

 {  (𝑥𝑥 − 𝛼𝛼) + 𝛽𝛽(𝑦𝑦 − 𝛽𝛽) + 𝛾𝛾(𝑧𝑧 − 𝛾𝛾)}2 

                  = {(𝑥𝑥 − 𝛼𝛼)2 + (𝑦𝑦 − 𝛽𝛽)2 + (𝑧𝑧 − 𝛾𝛾)2}(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) 

or  {(𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦 + 𝛾𝛾𝑧𝑧 − 𝑎𝑎2) − (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2)}2 

           = {(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 𝑎𝑎2) − 2(𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦 + 𝛾𝛾𝑧𝑧 − 𝑎𝑎2) + (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 
𝑎𝑎2)}     

                                                                               × (𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) … 
(86) 

 Let           
𝑆𝑆 ≡  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 –  𝑎𝑎2

𝑆𝑆′ ≡  𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2  − 𝑎𝑎2

𝑇𝑇 ≡  𝛼𝛼𝑙𝑙 +  𝛽𝛽𝑚𝑚 +  𝛾𝛾𝑛𝑛 −  𝑎𝑎2
�  

Then (86) becomes (𝑇𝑇 −  𝑆𝑆′)2  =  (𝑆𝑆 −  2𝑇𝑇 +  𝑆𝑆′)𝑆𝑆′ 

or 𝑇𝑇2  +  𝑆𝑆′2  −  2𝑇𝑇𝑆𝑆′ =  𝑆𝑆𝑆𝑆′ −  2𝑇𝑇𝑆𝑆′ +  𝑆𝑆′2  

or   𝑆𝑆𝑆𝑆′ =  𝑇𝑇2 

or    (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 𝑎𝑎2)(𝛼𝛼2 + 𝛽𝛽2 + 𝛾𝛾2 − 𝑎𝑎2) = (𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑦𝑦 + 𝛾𝛾𝑧𝑧 − 𝑎𝑎2)2 

This is the required equation of the enveloping cone of the sphere. 

6.15 RIGHT CIRCULAR CONE 

Definition A right circular cone is a surface generated by a moving line 
which passes through a fixed point (called vertex) and makes a constant 
angle 𝜃𝜃 with a fixed straight line through the vertex. 

The constant angle 𝜃𝜃 is called the semi-vertical angle and the fixed 
straight line through the vertex is called the axis of the cone. The section 
of the right circular cone by a plane perpendicular to its axis is a circle. 

Now we shall obtain the equation of a right circular cone with vertex at 
𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾) and the axis 𝐴𝐴𝐶𝐶 with direction cosines proportional to 𝑙𝑙, 𝑚𝑚, 𝑛𝑛. 
The equations of the axis 𝐴𝐴𝐶𝐶 can be given as 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

… . (87) 
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Let 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) be any point on the surface of the cone. Then the direction 
cosines of the line 𝐴𝐴𝑃𝑃 are proportional to 𝑙𝑙′ − 𝛼𝛼,𝑚𝑚′ − 𝛽𝛽, 𝑛𝑛′ − 𝛾𝛾. If 𝜃𝜃 is the 
semi-vertical angle of the cone, then we have 

𝑐𝑐𝑜𝑠 𝜃𝜃 =
𝑙𝑙(𝑙𝑙′ −  𝛼𝛼)  +  𝑚𝑚(𝑚𝑚′ −  𝛽𝛽)  +  𝑛𝑛(𝑛𝑛′ −  𝛾𝛾)

√𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2�(𝑙𝑙′ −  𝛼𝛼)2 + (𝑚𝑚′ −  𝛽𝛽)2  + (𝑛𝑛′ −  𝛾𝛾)2 

 

or  {𝑙𝑙(𝑙𝑙′ −  𝛼𝛼) +  𝑚𝑚(𝑚𝑚′ −  𝛽𝛽) +  𝑛𝑛(𝑛𝑛′ −  𝛾𝛾)}2  

=  (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2){(𝑙𝑙′ −  𝛼𝛼)2 + (𝑚𝑚′ −  𝛽𝛽)2  +  (𝑛𝑛′ −  𝛾𝛾)2} 𝑐𝑐𝑜𝑠2 𝜃𝜃  

Generalizing the coordinates (𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′), we get the required equation of the 
right circular cone as 

{𝑙𝑙(𝑙𝑙 −  𝛼𝛼) +  𝑚𝑚(𝑚𝑚 −  𝛽𝛽) +  𝑛𝑛(𝑛𝑛 −  𝛾𝛾)}2  

=  (𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2){(𝑙𝑙 –  𝛼𝛼)2 + (𝑚𝑚 –  𝛽𝛽)2  + (𝑛𝑛 –  𝛾𝛾)2} 𝑐𝑐𝑜𝑠2 𝜃𝜃… … (88) 

6.16 ILLUSTRATIVE EXAMPLES 

Example 6.16.1 Find the equation of the cone reciprocal to the cone 

                                         𝑓𝑓𝑦𝑦𝑧𝑧 + 𝑔𝑔𝑧𝑧𝑥𝑥 + ℎ𝑥𝑥𝑦𝑦 = 0 …. (89) 

Solution Comparing the equation (89) with the general equation 

                  𝑎𝑎0𝑥𝑥2 + 𝑏𝑏0𝑦𝑦2 + 𝑐𝑐0𝑧𝑧2 + 2𝑓𝑓0𝑦𝑦𝑧𝑧 + 2𝑔𝑔0𝑧𝑧𝑥𝑥 + 2ℎ0𝑥𝑥𝑦𝑦 = 0     … (90) 

We have 𝑎𝑎0 = 0, 𝑏𝑏0 = 0, 𝑐𝑐0 = 0, 𝑓𝑓0 = 𝑓𝑓⁄2, 𝑔𝑔0 = 𝑓𝑓⁄2, ℎ0 = 𝑓𝑓⁄2 
Now the reciprocal cone of (90) is given by 

                      𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑦𝑦2 + 𝐶𝐶𝑧𝑧2 + 2𝐹𝐹𝑦𝑦𝑧𝑧 + 2𝐺𝐺𝑧𝑧𝑥𝑥 + 2𝐻𝐻𝑥𝑥𝑦𝑦 = 0   …. (91) 

Where  = 𝑏𝑏0𝑐𝑐0 − 𝑓𝑓0
2 = − 𝑓𝑓2⁄4,          𝐵𝐵 = 𝑐𝑐0𝑎𝑎0 − 𝑔𝑔0

2 = − 𝑔𝑔2⁄4, 

             𝐶𝐶 = 𝑎𝑎0𝑏𝑏0 − ℎ0
2 = − ℎ2⁄4,         𝐹𝐹 = 𝑔𝑔0ℎ0 − 𝑎𝑎0𝑓𝑓0 = 𝑔𝑔ℎ⁄4,  

𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾) 

𝐷𝐷 𝐵𝐵 𝐶𝐶 

𝑃𝑃(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) 

  • 
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             𝐺𝐺 = ℎ0𝑓𝑓0 − 𝑏𝑏0𝑔𝑔0 = ℎ𝑓𝑓⁄4,          𝐻𝐻 = 𝑓𝑓0𝑔𝑔0 − 𝑐𝑐0ℎ0 = 𝑓𝑓𝑔𝑔⁄4 

Putting these values in (91), we get 

−
𝑓𝑓2

4
𝑙𝑙2 −

𝑔𝑔2

4
𝑚𝑚2 −

ℎ2

4
𝑛𝑛2 + 2.

𝑔𝑔ℎ
4
𝑚𝑚𝑛𝑛 + 2.

ℎ𝑓𝑓
4
𝑛𝑛𝑙𝑙 + 2.

𝑓𝑓𝑔𝑔
4
𝑙𝑙𝑚𝑚 = 0 

or               𝑓𝑓2𝑥𝑥2 + 𝑔𝑔2𝑦𝑦2 + ℎ2𝑧𝑧2 − 2𝑔𝑔ℎ𝑦𝑦𝑧𝑧 − 2ℎ𝑓𝑓𝑧𝑧𝑥𝑥 − 2𝑓𝑓𝑔𝑔𝑥𝑥𝑦𝑦 = 0 

Example 6.16.2 Find the equation of the right circular cone with vertex at 
(1, −2, −1), semi-vertical angle 600 and the axis 

𝑙𝑙 − 1
3

=
𝑚𝑚 + 2
−4

=
𝑛𝑛 + 1

5
 

Solution The equation of right cicular cone is given by (88). Therefore we 
have 
{3(𝑙𝑙 − 1)− 4(𝑚𝑚 + 2) +  5(𝑛𝑛 + 1)}2  

=  {32 + (−4)2 + 52}{(𝑙𝑙 – 1)2 + (𝑚𝑚 + 2)2  +  (𝑛𝑛 + 1)2} 𝑐𝑐𝑜𝑠2 600 
Simplifying it we get 

7𝑥𝑥2 − 7𝑦𝑦2 − 25𝑧𝑧2 + 80𝑦𝑦𝑧𝑧 − 60𝑧𝑧𝑥𝑥 + 48𝑥𝑥𝑦𝑦 + 22𝑥𝑥 + 4𝑦𝑦 + 170𝑧𝑧 + 78 = 0 
 

Example 6.16.3 Find the locus of points from which three mutually 
perpendicular tangent lines can be drawn to the paraboloid 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑦𝑦2 = 
2𝑐𝑐𝑧𝑧 

Solution Let (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) be a given point and 

𝑆𝑆 ≡  𝑎𝑎𝑙𝑙2  +  𝑏𝑏𝑚𝑚2 − 2𝑐𝑐𝑛𝑛
𝑆𝑆′ ≡  𝑎𝑎𝛼𝛼2  +  𝑏𝑏𝛽𝛽2 − 2𝑐𝑐𝛾𝛾

𝑇𝑇 ≡  𝑎𝑎𝛼𝛼𝑙𝑙 +  𝑏𝑏𝛽𝛽𝑚𝑚 − 𝑐𝑐(𝑛𝑛 +  𝛾𝛾)
�… . . (92) 

Then the equation of the enveloping cone of the given paraboloid with 
vertex at 

(𝛼𝛼, 𝛽𝛽, 𝛾𝛾) is           

                                                         𝑆𝑆𝑆𝑆′ = 𝑇𝑇2 

or (𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑦𝑦2 − 2𝑐𝑐𝑧𝑧)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 − 2𝑐𝑐𝛾𝛾) = {𝑎𝑎𝛼𝛼𝑥𝑥 + 𝑏𝑏𝛽𝛽𝑦𝑦 − 𝑐𝑐(𝑧𝑧 + 𝛾𝛾)}2 … 
(93) 

 Since three mutually perpendicular tangent lines are drawn to the given 
paraboloid  from 𝑃𝑃(𝛼𝛼, 𝛽𝛽, 𝛾𝛾), the enveloping cone (93) will have three 
mutually perpendicular generators. Hence we must have 

                                   coeff. of 𝑥𝑥2+coeff. of 𝑦𝑦2 + coeff. of 𝑧𝑧2 = 0 

or                                𝑎𝑎(𝑏𝑏𝛽𝛽2 − 2𝑐𝑐𝛾𝛾) + 𝑏𝑏(𝑎𝑎𝛼𝛼2 − 2𝑐𝑐𝛾𝛾) − 𝑐𝑐2 = 0 

or 𝑎𝑎𝑏𝑏(𝛼𝛼2 + 𝛽𝛽2) − 2𝑐𝑐(𝑎𝑎 + 𝑏𝑏)𝛾𝛾 = 𝑐𝑐2 

The locus of the point (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) is 

                                         (𝑥𝑥2 + 𝑦𝑦2) − 2𝑐𝑐(𝑎𝑎 + 𝑏𝑏)𝑧𝑧 = 𝑐𝑐2 
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6.17 SUMMARY 

In this unit, we have studied the following facts- 

(1) A cone is a surface generated by a moving straight line passing 
through a fixed point and intersecting a given curve or touching a 
given surface. 

(2) The condition that the general equation of second degree 𝑎𝑎𝑙𝑙2 +
𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0 
represents a cone is 

�

𝑎𝑎
ℎ

ℎ
𝑏𝑏

𝑔𝑔
𝑓𝑓

𝑢𝑢
𝑣𝑣

𝑔𝑔
𝑢𝑢

𝑓𝑓
𝑣𝑣

𝑐𝑐
𝑤𝑤

𝑤𝑤
𝑑𝑑
� = 0 

(3) The equation of the cone with vertex (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) and base conic 
𝑎𝑎𝑙𝑙2 + 2ℎ𝑙𝑙𝑚𝑚 + 𝑏𝑏𝑚𝑚2 + 2𝑔𝑔𝑙𝑙 + 2𝑓𝑓𝑚𝑚 + 𝑐𝑐 = 0, 𝑛𝑛 = 0 is given by  
𝑎𝑎(𝛼𝛼𝑛𝑛 − 𝛾𝛾𝑙𝑙)2 + 2ℎ(𝛼𝛼𝑛𝑛 − 𝑙𝑙𝛾𝛾)(𝛽𝛽𝑛𝑛 − 𝛾𝛾𝑚𝑚) + 𝑏𝑏(𝛽𝛽𝑛𝑛 − 𝛾𝛾𝑚𝑚 )2           
+2𝑔𝑔(𝛼𝛼𝑛𝑛 − 𝑙𝑙𝛾𝛾)(𝑛𝑛 − 𝛾𝛾) + 2𝑓𝑓(𝛽𝛽𝑛𝑛 − 𝑚𝑚𝛾𝛾)(𝑛𝑛 − 𝛾𝛾) + 𝑐𝑐(𝑛𝑛 − 𝛾𝛾)2 =
0       

(4) The angle between the lines in which the plane 𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0 
cuts the cone 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 +
2ℎ𝑙𝑙𝑚𝑚 = 0  is given by 

  tan 𝜃𝜃 =
2𝑃𝑃(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)1 2⁄

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2) − 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤)
 

(5) The condition that the cone 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 +
2ℎ𝑙𝑙𝑚𝑚 = 0 has three mutually perpendicular generators is 𝑎𝑎 + 𝑏𝑏 +
𝑐𝑐 = 0 

(6) The equation of the tangent plane to the cone 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 +
2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 at point (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) is given by (𝑎𝑎𝛼𝛼 +
 ℎ𝛽𝛽 +  𝑔𝑔𝛾𝛾)𝑙𝑙 +  (ℎ𝛼𝛼 +  𝑏𝑏𝛽𝛽 +  𝑓𝑓𝛾𝛾)𝑚𝑚 +  (𝑔𝑔𝛼𝛼 +  𝑓𝑓𝛽𝛽 +  𝑐𝑐𝛾𝛾)𝑛𝑛 =  0 

(7) The condition that the plane 

𝑢𝑢𝑙𝑙 + 𝑣𝑣𝑚𝑚 + 𝑤𝑤𝑛𝑛 = 0 
may touch the cone 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 
is given by 

 𝐴𝐴𝑢𝑢2 +  𝐵𝐵𝑣𝑣2  +  𝐶𝐶𝑤𝑤2  +  2𝐹𝐹𝑣𝑣𝑤𝑤 +  2𝐺𝐺𝑤𝑤𝑢𝑢 +  2𝐻𝐻𝑢𝑢𝑣𝑣 =  0   

Where 𝐴𝐴 =  𝑏𝑏𝑐𝑐 −  𝑓𝑓2,𝐵𝐵 =  𝑐𝑐𝑎𝑎 −  𝑔𝑔2,𝐶𝐶 =  𝑎𝑎𝑏𝑏 −  ℎ2,𝐹𝐹 =
 𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓, 

          𝐺𝐺 =  ℎ𝑓𝑓 −  𝑏𝑏𝑔𝑔, 𝐻𝐻 =  𝑓𝑓𝑔𝑔 −  𝑐𝑐ℎ  
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(8) The reciprocal cone of a given cone is the locus of the lines 
through the vertex and right angles to the tangent planes of the 
given cone. The reciprocal cone of the cone 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 
is given by 

𝐴𝐴𝑙𝑙2 +  𝐵𝐵𝑚𝑚2  +  𝐶𝐶𝑛𝑛2  +  2𝐹𝐹𝑚𝑚𝑛𝑛 +  2𝐺𝐺𝑛𝑛𝑙𝑙 +  2𝐻𝐻𝑙𝑙𝑚𝑚 =  0   

Where 𝐴𝐴 =  𝑏𝑏𝑐𝑐 −  𝑓𝑓2,𝐵𝐵 =  𝑐𝑐𝑎𝑎 −  𝑔𝑔2,𝐶𝐶 =  𝑎𝑎𝑏𝑏 −  ℎ2,𝐹𝐹 =
 𝑔𝑔ℎ −  𝑎𝑎𝑓𝑓, 

           𝐺𝐺 =  ℎ𝑓𝑓 −  𝑏𝑏𝑔𝑔,𝐻𝐻 =  𝑓𝑓𝑔𝑔 −  𝑐𝑐ℎ  

(9) The locus of the tangent lines drawn from a given point to a given 
surface is called the enveloping cone or tangent cone to the 
surface. The point from which the tangent lines are drawn is called 
the vertex of the enveloping cone. 

(10) A right circular cone is a surface generated by a moving line which 
passes through a fixed point (called vertex) and makes a constant 
angle 𝜃𝜃 with a fixed straight line through the vertex. The constant 
angle 𝜃𝜃 is called the semi-vertical angle and the fixed straight line 
through the vertex is called the axis of the cone. 

6.18 SELF ASSESSMENT QUESTIONS 

(1) Prove that the equation of the cone whose vertex is the origin and 
base is the curve 𝑓𝑓(𝑙𝑙,𝑚𝑚) = 0, 𝑛𝑛 = 𝑘 is 𝑓𝑓(𝑙𝑙𝑘 𝑛𝑛⁄ ,𝑚𝑚𝑘 𝑛𝑛⁄ ) = 0. 

(2) Find the equation of the cone with the vertex at the origin and 
which passes through the curve 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧 − 4 = 0, 
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 2𝑥𝑥 − 3𝑦𝑦 + 4𝑧𝑧 − 5 = 0  

                                                      [Ans: 2𝑥𝑥2 + 𝑦𝑦2 − 5𝑥𝑥𝑦𝑦 − 3𝑦𝑦𝑧𝑧 + 4𝑧𝑧𝑥𝑥 = 0] 
(3) Find the equation of the cone with vertex at the origin and direction 

cosines of its generators satisfy the relation 𝑙𝑙2 + 2𝑚𝑚2 − 3𝑛𝑛2 = 0.  

                                                                     [Ans: 𝑥𝑥2 + 2𝑦𝑦2 − 3𝑧𝑧2 = 0] 

(4) Prove that a line which passes through (𝛼𝛼, 𝛽𝛽, 𝛾𝛾) and intersects the 
parabola 𝑧𝑧2 = 4𝑎𝑎𝑥𝑥, 𝑦𝑦 = 0 lies on the cone (𝛽𝛽𝑛𝑛 −  𝛾𝛾𝑚𝑚 )2 = 4𝑎𝑎(𝛽𝛽 −
 𝑚𝑚)(𝛽𝛽𝑙𝑙 −  𝛼𝛼𝑚𝑚) . 

(5) Find the equation of the cone with vertex (5,4,3) and with 3𝑥𝑥2 + 
2𝑦𝑦2 = 6, 𝑦𝑦 + 𝑧𝑧 = 0 as base.  

 [Ans: 147𝑥𝑥2 + 87𝑦𝑦2 + 101𝑧𝑧2 + 90𝑦𝑦𝑧𝑧 − 210𝑧𝑧𝑥𝑥 − 210𝑥𝑥𝑦𝑦 + 84𝑦𝑦 + 
84𝑧𝑧 − 294 = 0] 

(6) Prove that the cones 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 0 and  𝑥𝑥
2

𝑎
+ 𝑦𝑦2

𝑏
+ 𝑧𝑧2

𝑐
=

0are reciprocal to each other. 
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(7) Prove that the equation �𝑓𝑓𝑙𝑙 ± �𝑔𝑔𝑚𝑚 ± √ℎ𝑛𝑛 = 0 represents a cone 
that touches the coordinate planes and find the equation of its 
reciprocal cone.  

 [ Ans:  𝑓𝑓𝑚𝑚𝑛𝑛 +  𝑔𝑔𝑛𝑛𝑙𝑙 +   ℎ𝑙𝑙𝑚𝑚 =  0] 

(8) If the plane 2𝑥𝑥 − 𝑦𝑦 + 𝑐𝑐𝑧𝑧 = 0 cuts the cone 𝑦𝑦𝑧𝑧 + 𝑧𝑧𝑥𝑥 + 𝑥𝑥𝑦𝑦 = 0 in  
perpendicular lines, find the value of 𝑐𝑐. [Ans: 𝑐𝑐 =  2] 

(9) Prove that the condition that the cone 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 = 0 
 may have three mutually perpendicular tangent planes is 

𝐴𝐴 +  𝐵𝐵 + 𝐶𝐶 =  0 
Where 𝐴𝐴 = 𝑏𝑏𝑐𝑐 − 𝑓𝑓2, 𝐵𝐵 = 𝑐𝑐𝑎𝑎 − 𝑔𝑔2, 𝐶𝐶 = 𝑎𝑎𝑏𝑏 − ℎ2. 

(10) Find the equation to the right circular cone whose vertex is 
(−2,−3,5), axis makes equal angles with the coordinate axes and 
semi-vertical angle is 300. 

[Ans: 5𝑥𝑥2 + 5𝑦𝑦2 + 5𝑧𝑧2 − 8𝑦𝑦𝑧𝑧 − 8𝑧𝑧𝑥𝑥 − 8𝑥𝑥𝑦𝑦 − 4𝑥𝑥 + 86𝑦𝑦 − 58𝑧𝑧 + 278 
= 0] 

(11) Find the equation of the cone formed by rotating the line 2𝑙𝑙 +
 3𝑚𝑚 =  6, 𝑛𝑛 = 0 about the 𝑦𝑦-axis. [Ans: 4𝑥𝑥2 − 9𝑦𝑦2 + 4𝑧𝑧2 + 36𝑦𝑦 − 
36 = 0] 

(12) Find the enveloping cone of the sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 2𝑦𝑦 + 6𝑧𝑧 + 2 = 
0 with its vertex at (1,1,1). 

  [Ans: 8𝑥𝑥2 + 9𝑦𝑦2 − 7𝑧𝑧2 − 8𝑧𝑧𝑥𝑥 − 8𝑥𝑥 − 18𝑦𝑦 + 22𝑧𝑧 + 2 = 0] 
(13) Find the equation to the right circular cone whose vertex is the 

origin, axis is 𝑥𝑥- axis and semi-vertical angle is 𝛼𝛼. [Ans: 𝑦𝑦2 + 𝑧𝑧2 = 
𝑥𝑥2 tan2 𝛼𝛼] 

6.19 FURTHER READINGS 

(1) Shanti Narayan, P.K. Mittal (2007): Analytical Solid Geometry, 
S.Chand Publication, New Delhi. 

(2) Abraham Adrian Albert (2016): Solid Analytic Geometry, Dover 
Publication. 

 (3) George Wentworth, D.E. Smith (2007): Plane and solid Geometry, 
Merchant books.  

(4) D.M.Y. Sommerville (2016): Analytical Geometry of three 
dimensions, Cambridge university Press. 
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UNIT-7 CENTRAL CONICOIDS I 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Standard equation of a central conicoid 

7.4 The Ellipsoid  

7.5 The Hyperboloid of one sheet 

7.6 The Hyperboloid of two sheets 

7.7 Tangent lines and tangent planes 

7.8 Condition of tangency 

7.9 Illustrative examples 

7.10 Polar planes and polar lines 

7.11 Illustrative examples 

7.12 Summary 

7.13 Self assessment questions 

7.14 Further readings 

7.1 INTRODUCTION 

In two dimensional geometry you studied conic sections (or 
conics) such as Circle, ellipse, hyperbola and parabola. A conic can be 
described as the intersection of a plane and a double-napped cone. 

Do you know what happens when these conics are revolved about 
certain specific axes?  It generates some interesting surfaces. For example, 
we obtain the surface of a sphere when a circle is revolved about its 
diameter. If an ellipse is revolved about its major or minor axis, a surface 
called spheroid or ellipsoid of revolution is obtained. Similarly we 
obtain a paraboloid of revolution by revolving a parabola about its axis 
of symmetry and a hyperboloid of revolution by revolving a hyperbola 
about conjugate axis or transverse axis. Let us see how this happens. 

In general a surface is a locus of a variable point (𝑙𝑙,𝑚𝑚, 𝑛𝑛) 
represented by 𝑓𝑓(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑐𝑐. We may assume it to be generated by a 
plane curve by revolving about an axis. If a plane curve 𝑓𝑓(𝑙𝑙,𝑚𝑚) = 0, 𝑛𝑛 = 0 
is revolved about 𝑙𝑙-axis, we obtain a surface of revolution given by 
𝑓𝑓�𝑙𝑙,�𝑚𝑚2 + 𝑛𝑛2� = 0.  UGMM-102/233

D
G

B
-0

21



 
 

Suppose we revolve the ellipse 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
= 1, 𝑛𝑛 = 0 about its major axis 

(i.e. 𝑙𝑙-axis). The ellipsoid of revolution obtained is given by  

𝑙𝑙2

𝑎𝑎2
+
��𝑚𝑚2 + 𝑛𝑛2�

2

𝑏𝑏2
= 1 

or    
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2 + 𝑛𝑛2

𝑏𝑏2
= 1 

This surface is called a prolate spheroid. Similarly, if this ellipse is 
revolved about its minor axis (i.e. 𝑚𝑚-axis), we obtain an ellipsoid of 
revolution called oblate spheroid 

  
𝑙𝑙2 + 𝑛𝑛2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
= 1 

Similarly, you can obtain a paraboloid of revolution 𝑚𝑚2 + 𝑛𝑛2 = 4𝑎𝑎𝑙𝑙 by 
revolving the parabola 𝑚𝑚2 = 4𝑎𝑎𝑙𝑙, 𝑛𝑛 = 0 about 𝑙𝑙-axis and hyperboloid of 
revolution  

  
𝑙𝑙2 + 𝑛𝑛2

𝑎𝑎2
−
𝑚𝑚2

𝑏𝑏2
= 1 

by revolving the hyperbola 𝑥𝑥
2

𝑎2
− 𝑦𝑦2

𝑏2
= 1, 𝑛𝑛 = 0 about conjugate axis (𝑚𝑚-

axis). These surfaces are special cases of more general surfaces called 
conicoids. 

A conicoid is a surface whose sections by some specific planes (such as 
planes parallel to coordinate planes) are conics. For some conicoids , we 
can define a unique special point called centre. Such conicoids are called 
central conicoids. The examples are cone, ellipsoids, hyperboloids of one 
sheet and hyperboloids of two sheets. The cylinders and paraboloids are 
examples of non-central conicoids.  

In this unit, we shall study the central conicoids in details. We shall define 
centre and establish a standard equation for central conicoids. We shall 
study the equations and geometry of ellipsoids and hyperboloids. We shall 
discuss tangent lines, tangent planes, polar lines and polar planes for these 
surfaces.  

7.2 OBJECTIVES  

After reading this unit, you should be able to 

• Define central conicoids 

• Obtain standard equations of central conicoid 

• Discuss some special central conicoids such as ellipsoid, 
hyperboloid of one sheet and hyperboloid of two sheet 
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• Define tangent lines and tangent planes at a point to a central 
conicoid 

• Obtain the condition of tangency 

• Discuss polar plane and polar lines for a central conicoid 

7.3 STANDARD EQUATION OF A CENTRAL 
CONICOID 

A conicoid (or a quadric surface) in the three dimensional rectangular 
Cartesian coordinate system is the set of points (𝑙𝑙,𝑚𝑚, 𝑛𝑛) in three 
dimensional space satisfying a general second degree equation in three 
variables. 

i.e.  

 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 + 2𝑣𝑣𝑚𝑚 +
2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0                                                                                                                                
………. (1) 

Let us shift the origin to a point 𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) and consider new coordinate 
system of coordinate axes 𝐶𝐶𝑋′,𝐶𝐶𝑌′,𝐶𝐶𝑍′ parallel to the given system with 
origin 𝐶𝐶. Then we have 

𝑙𝑙 = 𝑙𝑙′ + 𝑙𝑙0, 𝑚𝑚 = 𝑚𝑚′ + 𝑚𝑚0, 𝑛𝑛 = 𝑛𝑛′ + 𝑛𝑛0 

and equation (1) becomes 

�𝑎𝑎(𝑙𝑙′ + 𝑙𝑙0)2 + �2𝑓𝑓(𝑚𝑚′ + 𝑚𝑚0)(𝑛𝑛′ + 𝑛𝑛0) + �2𝑢𝑢(𝑙𝑙′ + 𝑙𝑙0) + 𝑑𝑑 = 0 

Expanding above expression and simplifying, we get 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 + 2𝑓𝑓𝑚𝑚′𝑛𝑛′ + 2𝑔𝑔𝑛𝑛′𝑙𝑙′ + 2ℎ𝑙𝑙′𝑚𝑚′ + 2𝑢𝑢′𝑙𝑙′ + 2𝑣𝑣′𝑚𝑚′ +
2𝑤𝑤′𝑛𝑛′ + 𝑑𝑑′ = 0                  

         …….. (2) 

Where 

𝑢𝑢′ = 𝑎𝑎𝑙𝑙0 + ℎ𝑚𝑚0 + 𝑔𝑔𝑛𝑛0 + 𝑢𝑢
𝑣𝑣′ = ℎ𝑙𝑙0 + 𝑏𝑏𝑚𝑚0 + 𝑓𝑓𝑛𝑛0 + 𝑣𝑣
𝑤𝑤′ = 𝑔𝑔𝑙𝑙0 + 𝑓𝑓𝑚𝑚0 + 𝑐𝑐𝑛𝑛0 + 𝑤𝑤

𝑑𝑑′ = 𝑎𝑎𝑙𝑙02 + 𝑏𝑏𝑚𝑚02 + 𝑐𝑐𝑛𝑛02 + 2𝑓𝑓𝑚𝑚0𝑛𝑛0 + 2𝑔𝑔𝑛𝑛0𝑙𝑙0 + 2ℎ𝑙𝑙0𝑚𝑚0 + 2𝑢𝑢𝑙𝑙0 + 2𝑣𝑣𝑚𝑚0 + 2𝑤𝑤𝑛𝑛0 + 𝑑𝑑⎦
⎥
⎥
⎤
  

                                                                       ……(3) 
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For a particular type of conicoids, the linear part of equation (2) vanishes. 
Let us choose the new origin 𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) such that 𝑢𝑢′ = 𝑣𝑣′ = 𝑤𝑤′ = 0, 
i.e. 

𝑎𝑎𝑙𝑙0 + ℎ𝑚𝑚0 + 𝑔𝑔𝑛𝑛0 + 𝑢𝑢 = 0
ℎ𝑙𝑙0 + 𝑏𝑏𝑚𝑚0 + 𝑓𝑓𝑛𝑛0 + 𝑣𝑣 = 0
𝑔𝑔𝑙𝑙0 + 𝑓𝑓𝑚𝑚0 + 𝑐𝑐𝑛𝑛0 + 𝑤𝑤 = 0

 

or we can say that (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) is a solution of the system of equations 

                                                    
𝑎𝑎𝑙𝑙 + ℎ𝑚𝑚 + 𝑔𝑔𝑛𝑛 + 𝑢𝑢 = 0
ℎ𝑙𝑙 + 𝑏𝑏𝑚𝑚 + 𝑓𝑓𝑛𝑛 + 𝑣𝑣 = 0
𝑔𝑔𝑙𝑙 + 𝑓𝑓𝑚𝑚 + 𝑐𝑐𝑛𝑛 + 𝑤𝑤 = 0

�        ……… (4) 

If the system of equations (4) has a solution(𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) ∈ ℝ3, then the 
point 𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) is called a centre of the given conicoid. 

If  𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) is a centre of the conicoid, then (2) becomes 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 + 2𝑓𝑓𝑚𝑚′𝑛𝑛′ + 2𝑔𝑔𝑛𝑛′𝑙𝑙′ + 2ℎ𝑙𝑙′𝑚𝑚′ + 𝑑𝑑′ = 0 

Hence if a conicoid is represented by a general second degree equation 
𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 0 and the conicoid has a centre 𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0), then by shifting 
the origin to the centre 𝐶𝐶 , the equation assumes the following form with 
respect to the new coordinate system- 

                  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 𝑑𝑑′ = 0 …….. (5) 

Definition : A conicoid is called a central conicoid if it has a unique 
centre. If a conicoid has no centre or it has infinitely many centres, then it 
is called a non-central conicoid. 

For example, consider a sphere  

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 + 2𝑙𝑙 + 8𝑚𝑚 − 6𝑛𝑛 + 5 = 0 

Comparing with equation (1), we get 

𝑎𝑎 = 𝑏𝑏 = 𝑐𝑐 = 1,𝑓𝑓 = 𝑔𝑔 = ℎ = 0 ,𝑢𝑢 = 1, 𝑣𝑣 = 4,𝑤𝑤 = −3,𝑑𝑑 = 5 

The system of equations (4) becomes 

𝑙𝑙 + 1 = 0
𝑚𝑚 + 4 = 0
𝑛𝑛 − 3 = 0

� 

Which gives 𝑙𝑙 = −1,𝑚𝑚 = −4, 𝑛𝑛 = 3. Thus the system of equations (4) has 
a unique solution (−1,−4,3). Hence the given sphere is a central conicoid 
with centre (−1,−4,3) . You can verify that every sphere is a central 
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conicoid. What do you think about a cylinder? Take any equation of a 
cylinder and check it. 

Note: The system of equations (4) has a unique solution if 

Δ = �
𝑎𝑎 ℎ 𝑔𝑔
ℎ 𝑏𝑏 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐

� ≠ 0 

So you can use this fact to check whether a surface given by general 
second degree equation is a central conicoid or not. 

Now suppose that a general second degree equation represents a central 
conicoid. We have seen that shifting the origin to the centre 𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0), 
the equation can be reduced to the following form 

                          𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 𝑑𝑑′ = 0 
……….. (6) 

Where 
𝑑𝑑′ = 𝑎𝑎𝑙𝑙02 + 𝑏𝑏𝑚𝑚02 + 𝑐𝑐𝑛𝑛02 + 2𝑓𝑓𝑚𝑚0𝑛𝑛0 + 2𝑔𝑔𝑛𝑛0𝑙𝑙0 + 2ℎ𝑙𝑙0𝑚𝑚0 + 2𝑢𝑢𝑙𝑙0 + 2𝑣𝑣𝑚𝑚0

+ 2𝑤𝑤𝑛𝑛0 + 𝑑𝑑 

Since 𝑎𝑎𝑙𝑙0 + ℎ𝑚𝑚0 + 𝑔𝑔𝑛𝑛0 = −𝑢𝑢, ℎ𝑙𝑙0 + 𝑏𝑏𝑚𝑚0 + 𝑓𝑓𝑛𝑛0 = −𝑣𝑣, 𝑔𝑔𝑙𝑙0 + 𝑓𝑓𝑚𝑚0 +
𝑐𝑐𝑛𝑛0 = −𝑤𝑤 

Hence  
𝑑𝑑′ = (𝑎𝑎𝑙𝑙0 + ℎ𝑚𝑚0 + 𝑔𝑔𝑛𝑛0)𝑙𝑙0 + (ℎ𝑙𝑙0 + 𝑏𝑏𝑚𝑚0 + 𝑓𝑓𝑛𝑛0)𝑚𝑚0

+ (𝑔𝑔𝑙𝑙0 + 𝑓𝑓𝑚𝑚0 + 𝑐𝑐𝑛𝑛0)𝑛𝑛0 + 2𝑢𝑢𝑙𝑙0 

           +2𝑣𝑣𝑚𝑚0 + 2𝑤𝑤𝑛𝑛0 + 𝑑𝑑 

       = −𝑢𝑢𝑙𝑙0 − 𝑣𝑣𝑚𝑚0 − 𝑤𝑤𝑛𝑛0 + 2𝑢𝑢𝑙𝑙0 + 2𝑣𝑣𝑚𝑚0 + 2𝑤𝑤𝑛𝑛0 + 𝑑𝑑 

       = 𝑢𝑢𝑙𝑙0 + 𝑣𝑣𝑚𝑚0 + 𝑤𝑤𝑛𝑛0 + 𝑑𝑑 

Suppose that the new axes are rotated with the following scheme 

 𝑙𝑙 𝑚𝑚 𝑛𝑛 

𝑋 𝑙𝑙1 𝑚𝑚1 𝑛𝑛1 

𝑌 𝑙𝑙2 𝑚𝑚2 𝑛𝑛2 

𝑍 𝑙𝑙3 𝑚𝑚3 𝑛𝑛3 
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Where 𝑙𝑙1,𝑚𝑚1,𝑛𝑛1;  𝑙𝑙2,𝑚𝑚2,𝑛𝑛2; 𝑙𝑙3,𝑚𝑚3,𝑛𝑛3 are the direction cosines of the new 
coordinate axes 𝐶𝐶𝑋,𝐶𝐶𝑌,𝐶𝐶𝑍 respectively. Then 

𝑋 = 𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛 

𝑌 = 𝑙𝑙2𝑙𝑙 + 𝑚𝑚2𝑚𝑚 + 𝑛𝑛2𝑛𝑛 

𝑍 = 𝑙𝑙3𝑙𝑙 + 𝑚𝑚3𝑚𝑚 + 𝑛𝑛3𝑛𝑛 

By using these relations, equation (6) can be reduced to the form  

𝜆𝜆1𝑋2 + 𝜆𝜆2𝑌2 + 𝜆𝜆3𝑍2 + 𝑑𝑑′ = 0 

Where 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 are the roots of the discriminating cubic 

�
𝑎𝑎 − 𝜆𝜆 ℎ 𝑔𝑔
ℎ 𝑏𝑏 − 𝜆𝜆 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐 − 𝜆𝜆

� = 0 

Therefore if 𝑆𝑆 is a conicoid given by the general second degree equation 
𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 0 which has a centre 𝐶𝐶 (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0), then we can form a new 
coordinate system by shifting the origin to the centre 𝐶𝐶 and then rotating 
the system about the new origin 𝐶𝐶, in which the equation reduced to the 
form  

                                           𝜆𝜆1𝑙𝑙2 + 𝜆𝜆2𝑚𝑚2 + 𝜆𝜆3𝑛𝑛2 + 𝑑𝑑′ = 0 …………. (7) 

Equation (7) is called the standard equation of the central conicoid. 

Since (7) has a unique centre, hence, we have  

Δ = �
𝜆𝜆1 0 0
0 𝜆𝜆2 0
0 0 𝜆𝜆3

� ≠ 0 

i.e.                                                            𝜆𝜆1𝜆𝜆2𝜆𝜆3 ≠ 0 

Therefore 𝜆𝜆1 ≠ 0, 𝜆𝜆2 ≠ 0, 𝜆𝜆3 ≠ 0. 

Now the following five cases arise 

Case 1 When 𝑑𝑑′ = 0 

 In this case, equation (7) reduces to  

𝜆𝜆1𝑙𝑙2 + 𝜆𝜆2𝑚𝑚2 + 𝜆𝜆3𝑛𝑛2 = 0 

This represents a cone. 

Case 2 When 𝑑𝑑′ ≠ 0 and 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 and 𝑑𝑑′ have the same sign 
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In this case, the left hand side of (7) is not zero for any real values of 𝑙𝑙,𝑚𝑚 
and 𝑛𝑛. This represents an imaginary ellipsoid.  

Suppose 𝜆𝜆1 > 0, 𝜆𝜆2 > 0, 𝜆𝜆3 > 0 and 𝑑𝑑′ > 0. Then equation (7) becomes 

𝑙𝑙2

�𝑑𝑑
′

𝜆𝜆1
�

+
𝑚𝑚2

�𝑑𝑑
′

𝜆𝜆2
�

+
𝑛𝑛2

�𝑑𝑑
′

𝜆𝜆3
�

= −1 

or 

𝑙𝑙2

𝑎𝑎12
+
𝑚𝑚2

𝑏𝑏1
2 +

𝑛𝑛2

𝑐𝑐12
= −1 

Where 𝑎𝑎1 = �𝑑′

𝜆1
, 𝑏𝑏1 = �𝑑′

𝜆2
 and 𝑐𝑐1 = �𝑑′

𝜆3
 . 

Case 3 When 𝑑𝑑′ ≠ 0 and the sign of  𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 are different from 𝑑𝑑′  

In this case, the equation (7) becomes 

𝜆𝜆1𝑙𝑙2 + 𝜆𝜆2𝑚𝑚2 + 𝜆𝜆3𝑛𝑛2 = −𝑑𝑑′ 

or  
𝑙𝑙2

�−𝑑𝑑
′

𝜆𝜆1
�

+
𝑚𝑚2

�−𝑑𝑑
′

𝜆𝜆2
�

+
𝑛𝑛2

�−𝑑𝑑
′

𝜆𝜆3
�

= 1 

Since −𝑑𝑑′ 𝜆𝜆1⁄ > 0,−𝑑𝑑′ 𝜆𝜆2⁄ > 0 and −𝑑𝑑′ 𝜆𝜆3⁄ > 0, hence we can write 

𝑙𝑙2

𝑎𝑎12
+
𝑚𝑚2

𝑏𝑏1
2 +

𝑛𝑛2

𝑐𝑐12
= 1 

Where 𝑎𝑎1 = �−𝑑′

𝜆1
, 𝑏𝑏1 = �−𝑑′

𝜆2
 and 𝑐𝑐1 = �−𝑑′

𝜆3
. This central conicoid is 

called an ellipsoid. 

Case 4 When 𝑑𝑑′ ≠ 0 and 𝜆𝜆1 > 0, 𝜆𝜆2 > 0, 𝜆𝜆3 < 0 and 𝑑𝑑′ < 0 (or any two 
of the four coefficients 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 and 𝑑𝑑′ are of the same sign) 

In this case, −𝑑𝑑′ 𝜆𝜆1⁄ > 0,−𝑑𝑑′ 𝜆𝜆2⁄ > 0 and 𝑑𝑑′ 𝜆𝜆3⁄ > 0. Let 𝑎𝑎1 = �−𝑑′

𝜆1
, 

𝑏𝑏1 = �−𝑑′

𝜆2
 and 𝑐𝑐1 = �𝑑′

𝜆3
 . Then equation (7) becomes 

𝑙𝑙2

𝑎𝑎12
+
𝑚𝑚2

𝑏𝑏1
2 −

𝑛𝑛2

𝑐𝑐12
= 1 

This central conicoid is called a hyperboloid of one sheet. UGMM-102/239
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Case 5 When 𝑑𝑑′ ≠ 0 and 𝜆𝜆1 > 0, 𝜆𝜆2 < 0, 𝜆𝜆3 < 0 and 𝑑𝑑′ < 0 (or any two 
of the coefficients 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 have the same sign as 𝑑𝑑′) 

In this case, −𝑑𝑑′ 𝜆𝜆1⁄ > 0,𝑑𝑑′ 𝜆𝜆2⁄ > 0 and 𝑑𝑑′ 𝜆𝜆3⁄ > 0. Let 𝑎𝑎1 = �−𝑑′

𝜆1
, 

𝑏𝑏1 = �𝑑′

𝜆2
 and 𝑐𝑐1 = �𝑑′

𝜆3
 . Then equation (7) becomes 

𝑙𝑙2

𝑎𝑎12
−
𝑚𝑚2

𝑏𝑏1
2 −

𝑛𝑛2

𝑐𝑐12
= 1 

This central conicoid is called a hyperboloid of two sheets. 

Thus the standard equations for five types of central conicoids may be 
given as follows- 

1.  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 0   (Cone) 

2. 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= −1          (Imaginary ellipsoid) 

3. 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1             (Ellipsoid) 

 

4.  

𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1

𝑥𝑥2

𝑎2
− 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1

−𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1⎦

⎥
⎥
⎥
⎤

       (Hyperboloid of one sheet) 

 

5.  

𝑥𝑥2

𝑎2
− 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1

−𝑥𝑥2

𝑎2
− 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1

−𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1⎦

⎥
⎥
⎥
⎤

       (Hyperboloid of two sheets) 

The standard form representing ellipsoid, hyperboloid of one sheet, 
hyperboloid of two sheets and imaginary ellipsoid may be given as 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 

This equation represents an ellipsoid if 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are all positive, a 
hyperboloid of one sheet if any one of them is negative and the remaining 
two are positive. It represents a hyperboloid of two sheets if any two of 
them are negative and the remaining one is positive. This represents an 
imaginary ellipsoid if all the 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are negative. 
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Definition A conicoid 𝑆𝑆 is called symmetric with respect to a point 𝐶𝐶 if 
on shifting the origin to the point 𝐶𝐶, the new equation is symmetric with 
respect to the new origin 𝐶𝐶. Then the point 𝐶𝐶 is called a centre of the 
conicoid 𝑆𝑆.  

Consider the central conicoid  

                                               𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1    ……….……… (8) 

Let 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) be any point on the central conicoid given by (8). Then 
you can verify that the point 𝑄(−𝑙𝑙1,−𝑚𝑚1,−𝑛𝑛1) also lies on (8). Hence the 
central conicoid given by standard form (8) is symmetric with respect to 
the origin 𝑂𝑂(0,0,0). The origin is the centre of the conicoid (8). 

Illustrative Example  Reduce the second degree equation 

11𝑙𝑙2 + 10𝑚𝑚2 + 6𝑛𝑛2 − 8𝑚𝑚𝑛𝑛 + 4𝑛𝑛𝑙𝑙 − 12𝑙𝑙𝑚𝑚 + 72𝑙𝑙 − 72𝑚𝑚 + 36𝑛𝑛 + 150 =
0 ….. (9) 

to the standard form and identify the surface. 

Solution comparing with the general second degree equation (1), we have 

𝑎𝑎 = 11, 𝑏𝑏 = 10, 𝑐𝑐 = 6,𝑓𝑓 = −4,𝑔𝑔 = 2,ℎ = −6, 𝑢𝑢 = 36, 𝑣𝑣 = −36,𝑤𝑤
= 18, 𝑑𝑑 = 150 

The discriminating cubic is  

                       �
𝑎𝑎 − 𝜆𝜆 ℎ 𝑔𝑔
ℎ 𝑏𝑏 − 𝜆𝜆 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐 − 𝜆𝜆

� = 0 or 

�
11 − 𝜆𝜆 −6 2
−6 10 − 𝜆𝜆 −4
2 −4 6 − 𝜆𝜆

� = 0 

or                               𝜆𝜆3 − 27𝜆𝜆2 + 180𝜆𝜆 − 324 = 0  

The factorization of above polynomial equation gives 

(𝜆𝜆 − 3)(𝜆𝜆 − 6)(𝜆𝜆 − 18) = 0 

Therefore 𝜆𝜆 = 3,6,18.  

The equations (4) becomes 

                                       
    11𝑙𝑙 − 6𝑚𝑚 + 2𝑛𝑛 + 36 = 0
−6𝑙𝑙 + 10𝑚𝑚 − 4𝑛𝑛 − 36 = 0
      2𝑙𝑙 − 4𝑚𝑚 + 6𝑛𝑛 + 18 = 0

�     …….. (10) 

These equations have unique solution 𝑙𝑙 = −2,𝑚𝑚 = 2, 𝑛𝑛 = −1. Hence the 
given equation (9) represents a central conicoid with centre (−2,2,−1). 
The equation reduces to the standard form 
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𝜆𝜆1𝑙𝑙2 + 𝜆𝜆2𝑚𝑚2 + 𝜆𝜆3𝑛𝑛2 + 𝑑𝑑′ = 0 

Where 𝑑𝑑′ = 𝑢𝑢𝑙𝑙0 + 𝑣𝑣𝑚𝑚0 + 𝑤𝑤𝑛𝑛0 + 𝑑𝑑 

                 = 36(−2) + (−36)(2) + 18(−1) + 150 = −12 

Therefore the standard form of (9) may be given as 

3𝑙𝑙2 + 6𝑚𝑚2 + 18𝑛𝑛2 − 12 = 0 

Or 
𝑙𝑙2

4
+
𝑚𝑚2

2
+

𝑛𝑛2

(2 3⁄ ) = 1 

Therefore the surface represented by (9) is an ellipsoid with centre 
(−2,2,−1). 

7.4 THE ELLIPSOID  

The standard equation of an ellipsoid is given by 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1  … … . (11) 

 
Fig-1 

Now we have the following observations- 

(i) If the point 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) lies on the ellipsoid given by (11), then 
the point 𝑄(−𝑙𝑙1,−𝑚𝑚1,−𝑛𝑛1) also lies on it.  Hence the origin 
𝑂𝑂(0,0,0) is the centre of the ellipsoid. 

(ii) The ellipsoid is symmetrical about the coordinate planes (i.e. 𝑙𝑙𝑚𝑚-
plane, 𝑚𝑚𝑛𝑛-plane, 𝑛𝑛𝑙𝑙-plane). These coordinate planes bisect all 
chords perpendicular to them. For instance the chord joining 
(𝑙𝑙,𝑚𝑚, 𝑛𝑛) and (𝑙𝑙, 𝑚𝑚,−𝑛𝑛) drawn perpendicular to 𝑙𝑙𝑚𝑚-plane is bisected 
by the 𝑙𝑙𝑚𝑚-plane. These coordinate planes are called the principal UGMM-102/242
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planes of the ellipsoid. The lines of intersection of these principal 
planes are the coordinate axes. These axes are called the principal 
axes of the ellipsoid. 

(iii) From (11), we observe that the ellipsoid meets the 𝑙𝑙-axis at points 
where  

𝑚𝑚 = 0, 𝑛𝑛 = 0 and 
𝑙𝑙2

𝑎𝑎2
+

0
𝑏𝑏2

+
0
𝑐𝑐2

= 1 

 i.e. 𝑙𝑙 = ±𝑎𝑎,𝑚𝑚 = 0, 𝑛𝑛 = 0. Hence the ellipsoid (11) meets the 𝑙𝑙-
axis at 𝐴𝐴(𝑎𝑎, 0,0) and 𝐴𝐴′(−𝑎𝑎, 0,0). Similarly, you can check that the 
points of intersection with 𝑚𝑚-axis are 𝐵𝐵(0, 𝑏𝑏, 0) and 𝐵𝐵′(0,−𝑏𝑏, 0) 
and with 𝑛𝑛-axis are 𝐶𝐶(0,0, 𝑐𝑐) and 𝐶𝐶′(0,0,−𝑐𝑐). The lengths 
𝐴𝐴𝐴𝐴′,𝐵𝐵𝐵𝐵′ and 𝐶𝐶𝐶𝐶′ are called the principal diameters of the 
ellipsoid and 𝑂𝑂𝐴𝐴,𝑂𝑂𝐵𝐵 and 𝑂𝑂𝐶𝐶 are called the semi-axes of the 
ellipsoid. 

 
    Fig-2 

(iv) The ellipsoid is a closed surface (i.e. bounded surface) 

 Equation (11) can be written as 

𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1 −

𝑙𝑙2

𝑎𝑎2
 

 You will observe that 𝑦𝑦
2

𝑏2
+ 𝑧𝑧2

𝑐2
 is negative for |𝑙𝑙| > 𝑎𝑎, i.e. at least 

one of 𝑚𝑚 and 𝑛𝑛 has imaginary value. Therefore the surface does not 
exist when |𝑙𝑙| > 𝑎𝑎, i.e, it is bounded by the planes 𝑙𝑙 = −𝑎𝑎 and 
𝑙𝑙 = 𝑎𝑎. Similarly you can check for yourself that the ellipsoid (11) 
is bounded by the planes 𝑙𝑙 = −𝑏𝑏 and 𝑙𝑙 = 𝑏𝑏 and 𝑙𝑙 = −𝑐𝑐 and 
𝑙𝑙 = 𝑐𝑐. UGMM-102/243
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(v) The section of the ellipsoid (11) by the plane 𝑛𝑛 = 𝑘 is the ellipse 
given by the equations 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
= 1 −

𝑘2

𝑐𝑐2
, 𝑛𝑛 = 𝑘 

 Since −𝑐𝑐 < 𝑘 < 𝑐𝑐,  i.e. 𝑘
2

𝑐2
< 1, hence the section of the ellipsoid 

by the plane 𝑛𝑛 = 𝑘 (−𝑐𝑐 < 𝑘 < 𝑐𝑐 ) is an ellipse. The centre of this 
ellipse lies on 𝑛𝑛-axis. Similarly, you can check that the sections of 
the ellipsoid by the planes parallel to 𝑚𝑚𝑛𝑛-plane and 𝑛𝑛𝑙𝑙-plane are 
ellipses. 

(vi) When 𝑏𝑏 = 𝑐𝑐, equation (11) becomes 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2 + 𝑛𝑛2

𝑏𝑏2
= 1 

This ellipsoid of revolution is called a prolate spheroid. Similarly, 
if 𝑐𝑐 = 𝑎𝑎 we obtain an ellipsoid of revolution called oblate 
spheroid 

  
𝑙𝑙2 + 𝑛𝑛2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
= 1 

If 𝑎𝑎 = 𝑏𝑏 = 𝑐𝑐, then equation (11) becomes 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 𝑎𝑎2 

 Which is a sphere of radius 𝑎𝑎 with centre located at the origin.  

7.5 THE HYPERBOLOID OF ONE SHEET 

The standard equation of a hyperboloid of one sheet is given by 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
−
𝑛𝑛2

𝑐𝑐2
= 1 … … (12) 

Now we have the following observations- 

(i) The origin 𝑂𝑂(0,0,0) is the centre of the hyperboloid as all chords 
passing through the origin are bisected at the origin. 

(ii)  The surface (12) is symmetrical about the coordinate planes (i.e. 𝑙𝑙𝑚𝑚-
plane, 𝑚𝑚𝑛𝑛-plane, 𝑛𝑛𝑙𝑙-plane). These coordinate planes bisect all 
chords perpendicular to them. Hence the coordinate planes are the 
principal planes of the surface. The lines of intersection of these 
principal planes are the coordinate axes, i.e. these coordinate axes 
are the principal axes of the surface (12). 

(iii) The surface (12) meets the 𝑙𝑙-axis at points 𝐴𝐴(𝑎𝑎, 0,0) and 
𝐴𝐴′(−𝑎𝑎, 0,0).  Also the points of intersection with 𝑚𝑚-axis are 
𝐵𝐵(0, 𝑏𝑏, 0) and 𝐵𝐵′(0,−𝑏𝑏, 0) and the surface intersects the 𝑛𝑛-axis at 
imaginary points, i.e. the surface does not intersect 𝑛𝑛-axis. UGMM-102/244
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(iv) The section of the surface (12) by the plane 𝑛𝑛 = 𝑘 is given by the 
equations 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
= 1 +

𝑘2

𝑐𝑐2
, 𝑛𝑛 = 𝑘 

 

 
   Fig 3 

Here we have  −∞ < 𝑘 < ∞, i.e. the section of the surface (12) by the 
plane 𝑛𝑛 = 𝑘 is always an ellipse for all real values of 𝑘. The centres of 
these ellipses lie on 𝑛𝑛-axis. The ellipse corresponding to 𝑘 = 0 is called 
the principal ellipse. Similarly, you can check that the sections of this 
surface by the planes parallel to 𝑚𝑚𝑛𝑛-plane and 𝑛𝑛𝑙𝑙-plane are the following 
hyberbolas 

𝑙𝑙2

𝑎𝑎2
−
𝑛𝑛2

𝑐𝑐2
= 1 −

𝑘2

𝑏𝑏2
, 𝑚𝑚 = 𝑘 ; (𝑘 < 𝑏𝑏) 

𝑚𝑚2

𝑏𝑏2
−
𝑛𝑛2

𝑐𝑐2
= 1 −

𝑘2

𝑎𝑎2
, 𝑙𝑙 = 𝑘 ; (𝑘 < 𝑎𝑎) 

 

7.6 THE HYPERBOLOID OF TWO SHEETS 

The standard equation of a hyperboloid of two sheets is given by 
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𝑙𝑙2

𝑎𝑎2
−
𝑚𝑚2

𝑏𝑏2
−
𝑛𝑛2

𝑐𝑐2
= 1  … … (13)  

 

You will observe that 

(i) The origin 𝑂𝑂(0,0,0) is the centre of the surface as all chords 
passing through the origin are bisected at the origin. 

(ii) The surface (13) is symmetrical about the coordinate planes (i.e. 
𝑙𝑙𝑚𝑚-plane, 𝑚𝑚𝑛𝑛-plane, 𝑛𝑛𝑙𝑙-plane). Hence the coordinate planes are the 
principal planes of the surface and the coordinate axes are the 
principal axes of the surface. 

(iii) The surface (13) meets the 𝑙𝑙-axis at points 𝐴𝐴(𝑎𝑎, 0,0) and 
𝐴𝐴′(−𝑎𝑎, 0,0).The surface does not intersect 𝑚𝑚-ais and 𝑛𝑛-axis. 

 

 

 
   Fig-4 

(iv) The section of the surface (13) by the plane 𝑙𝑙 = 𝑘 is given by the 
equations 

𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
=
𝑘2

𝑎𝑎2
− 1, 𝑙𝑙 = 𝑘 
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Which represents an ellipse. For  −𝑎𝑎 < 𝑘 < 𝑎𝑎, this ellipse is imaginary. 
Hence no part of the surface lies in the region −𝑎𝑎 < 𝑙𝑙 < 𝑎𝑎. you 
can check that the sections of this surface by the planes parallel to 
𝑚𝑚𝑛𝑛-plane and 𝑛𝑛𝑙𝑙-plane are the following hyberbolas 

𝑙𝑙2

𝑎𝑎2
−
𝑛𝑛2

𝑐𝑐2
= 1 +

𝑘2

𝑏𝑏2
, 𝑚𝑚 = 𝑘  

𝑙𝑙2

𝑎𝑎2
−
𝑚𝑚2

𝑏𝑏2
= 1 +

𝑘2

𝑐𝑐2
, 𝑛𝑛 = 𝑘  

You will notice that it is not a bounded surface. 

7.7 TANGENT LINES AND TANGENT PLANES 

First we shall discuss the intersection of a line with a central conicoid. 
Then we shall obtain conditions for a line to become a tangent to a given 
central conicoid. Finally we shall obtain the equation of a tangent plane to 
the central conicoid. 

Let a central conicoid be given by equation (8). Let the equations of a 
straight line passing through a point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾) with direction cosines 
𝑙𝑙,𝑚𝑚, 𝑛𝑛 be                                                    

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

    … … . . (14) 

Then the coordinates of any point 𝑃𝑃 on the straight line (14) distant 𝑟𝑟 from 
the point 𝐴𝐴 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) are given by (𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the line (14) 
meets the central conicoid (8) at point 𝑃𝑃, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 = 1 

or       𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 2𝑟𝑟(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1 = 0     

                                ………….….(15)   

This is a quadratic equation in 𝑟𝑟. Hence we get two values of 𝑟𝑟 
corresponding to which we have two points of intersection of the line (14) 
and the central conicoid (8). These two points may be real and distinct, 
coincident or imaginary depending upon the roots of equation (15). 

If the line (14) is a tangent line to the conicoid (8), then the points of 
intersection must coincide, i.e. the roots of the quadratic equation (15) 
must be identical. It is possible if 

{2(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)}2 = 4(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

or (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1)  
……….. (16)                                                                                             UGMM-102/247

D
G

B
-0

21



 
 

If the point 𝐴𝐴 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) lies on the conicoid (8), then 

𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 = 1 

Then (16) becomes 

                                              𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 0        …………. (17) 

This is the condition that the line (14) is a tangent to the central conicoid 
(8) at point 𝐴𝐴 (𝛼𝛼,𝛽𝛽, 𝛾𝛾).  

There are infinitely many lines passing through (𝛼𝛼,𝛽𝛽, 𝛾𝛾) satisfying the 
condition (17). 

For example, consider the ellipsoid  

𝑙𝑙2

4
+
𝑚𝑚2

9
+
𝑛𝑛2

16
= 1  … … . (18) 

The point (2,0,0) lies on (18). Here 𝑎𝑎 = 1
4

, 𝑏𝑏 = 1
9

 , 𝑐𝑐 = 1
16

. The condition 
(17) gives 

1
4

(2)𝑙𝑙 +
1
9

(0)𝑚𝑚 +
1

16
(0)𝑛𝑛 = 0 

⟹ 𝑙𝑙 = 0 

Now 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 1. Hence we have 𝑙𝑙 = 0,𝑚𝑚2 + 𝑛𝑛2 = 1. There are 
infinitely many sets of values (𝑙𝑙,𝑚𝑚,𝑛𝑛) satisfying these conditions. For 
instance, 𝑙𝑙 = 0,𝑚𝑚 = 1, 𝑛𝑛 = 0 and 𝑙𝑙 = 0,𝑚𝑚 = 0, 𝑛𝑛 = 1 are two such sets 
of values. Therefore the lines lying in the plane parallel to 𝑚𝑚𝑛𝑛-plane and 
passing through the point (2,0,0) are tangent lines to the ellipsoid (18) at 
(2,0,0). This plane containing all the tangent lines at a given point of any 
conicoid is called the tangent plane at that point. Hence the locus of the 
tangent lines to a conicoid at a point on it is called the tangent plane at that 
point. 

In order to find the locus of these tangent lines, i.e. to obtain the equation 
of a tangent plane at 𝐴𝐴 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the central conicoid (8), we have to 
eliminate 𝑙𝑙,𝑚𝑚,𝑛𝑛 from (14) and (17). Hence we obtain 

𝑎𝑎𝛼𝛼(𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏𝛽𝛽(𝑚𝑚 − 𝛽𝛽) + 𝑐𝑐𝛾𝛾(𝑛𝑛 − 𝛾𝛾) = 0 

or                                     𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 

or                                    𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 1              …………. (19) 

This equation represents the tangent plane at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the central 
conicoid (8). 
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7.8 CONDITION OF TANGENCY 

Now you may ask a question. Is there a way to decide whether a given 
plane is a tangent plane to a given conicoid? The answer is yes. Let us see 
how we can obtain the condition of tangency. 

Suppose equation (8) represents a given conicoid, i.e. 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 

Assume that we are given a plane   𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝       …………. (20) 

The equation of the tangent plane at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the conicoid is given by 
equation (19), i.e.                                                 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 1 

  If the plane (20) represents the tangent plane at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the conicoid, 
then equations (19) and (20) must be identical or the coefficients of these 
equations must be proportional, i.e. 

𝑎𝑎𝛼𝛼
𝑙𝑙

=
𝑏𝑏𝛽𝛽
𝑚𝑚

=
𝑐𝑐𝛾𝛾
𝑛𝑛

=
1
𝑝𝑝

,    𝑝𝑝 ≠ 0 

                                  i.e.    𝛼𝛼 = 𝑙
𝑎𝑝

,𝛽𝛽 = 𝑚
𝑏𝑝

, 𝛾𝛾 = 𝑛
𝑐𝑝

         …………….. (21)                                                                                           

since the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) lies on the conicoid (8), hence 

𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 = 1 

⟹ 𝑎𝑎�
𝑙𝑙
𝑎𝑎𝑝𝑝
�
2

+ 𝑏𝑏 �
𝑚𝑚
𝑏𝑏𝑝𝑝
�
2

+ 𝑐𝑐 �
𝑛𝑛
𝑐𝑐𝑝𝑝
�
2

= 1 

⟹     
𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
= 𝑝𝑝2        … … (22) 

Which is the condition that the plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 touches the 
conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1. The point at which the plane touches the 
conicoid is called the point of contact and is given by (21). 

7.9 ILLUSTRATIVE EXAMPLES 

Example 7.9.1 Find the equation of the tangent plane to the hyperboloid 

𝑙𝑙2

4
+
𝑚𝑚2

9
−
𝑛𝑛2

25
= 1 

at (2,3,5). 

Solution : Here 𝑎𝑎 = 1
4

, 𝑏𝑏 = 1
9

, 𝑐𝑐 = − 1
25

  and 𝛼𝛼 = 2,𝛽𝛽 = 3, 𝛾𝛾 = 5. 
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The equation of tangent plane at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 +
𝑐𝑐𝑛𝑛2 = 1 is given by  

𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 1 

⟹ �
1
4
� (2)𝑙𝑙 + �

1
9
� (3)𝑚𝑚 + �−

1
25
� (5)𝑛𝑛 = 1 

or                                        15𝑙𝑙 + 10𝑚𝑚 − 6𝑛𝑛 = 30  

Example 7.9.2 Show that the plane 7𝑙𝑙 + 5𝑚𝑚 + 3𝑛𝑛 = 30 touches the 
ellipsoid 7𝑙𝑙2 + 5𝑚𝑚2 + 3𝑛𝑛2 = 60. Find the point of contact. 

Solution : The equation of the ellipsoid may be written in the standard 
form as follows 

7
60

𝑙𝑙2 +
1

12
𝑚𝑚2 +

1
20

𝑛𝑛2 = 1 

Here 𝑎𝑎 = 7
60

, 𝑏𝑏 = 1
12

, 𝑐𝑐 = 1
20

.  

The given plane is 7𝑙𝑙 + 5𝑚𝑚 + 3𝑛𝑛 = 30. Therefore 𝑙𝑙 = 7,𝑚𝑚 = 5,𝑛𝑛 =
3, 𝑝𝑝 = 30 

Now  

    
𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
=

60
7

(7)2 + 12(5)2 + 20(3)2 

                                                            = 420 + 300 + 180 

                                                            = 900 = 302 = 𝑝𝑝2 

Thus the condition of tangency (22) is satisfied. Hence the plane touches 
the ellipsoid. The point of contact is given by  

i.e.    𝛼𝛼 =
𝑙𝑙
𝑎𝑎𝑝𝑝

=
60 × 7
7 × 30

= 2,𝛽𝛽 =
𝑚𝑚
𝑏𝑏𝑝𝑝

=
12 × 5
1 × 30

= 2, 𝛾𝛾 =
𝑛𝑛
𝑐𝑐𝑝𝑝

=
20 × 3
1 × 30

= 2 

i.e. (2,2,2) is the point of contact. 

Example 7.9.3 Find the equation to the tangent planes to the hyperboloid 
2𝑙𝑙2 − 6𝑚𝑚2 + 3𝑛𝑛2 = 5 which pass through the line 𝑙𝑙 + 9𝑚𝑚 − 3𝑛𝑛 = 0, 3𝑙𝑙 −
3𝑚𝑚 + 6𝑛𝑛 = 5 

Solution : The equation of any plane through the given line is 

(𝑙𝑙 + 9𝑚𝑚 − 3𝑛𝑛) + 𝜆𝜆(3𝑙𝑙 − 3𝑚𝑚 + 6𝑛𝑛 − 5) = 0 

or                         (1 + 3𝜆𝜆)𝑙𝑙 + (9 − 3𝜆𝜆)𝑚𝑚 + (6𝜆𝜆 − 3)𝑛𝑛 = 5𝜆𝜆     ……. (23) 
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Suppose the plane (23) touches the given hyperboloid and let (𝛼𝛼,𝛽𝛽, 𝛾𝛾) be 
the point of contact. The equation of the tangent plane at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the 
hyperboloid 2𝑙𝑙2 − 6𝑚𝑚2 + 3𝑛𝑛2 = 5 is 

                                                     2𝛼𝛼𝑙𝑙 − 6𝛽𝛽𝑚𝑚 + 3𝛾𝛾𝑛𝑛 = 5    ………. (24) 

Now (23) and (24) represent the same plane. Thus 

2𝛼𝛼
1 + 3𝜆𝜆

=
−6𝛽𝛽

9 − 3𝜆𝜆
=

3𝛾𝛾
6𝜆𝜆 − 3

=
5

5𝜆𝜆
 

⟹ 𝛼𝛼 =
1 + 3𝜆𝜆

2𝜆𝜆
, 𝛽𝛽 =

9 − 3𝜆𝜆
−6𝜆𝜆

, 𝛾𝛾 =
6𝜆𝜆 − 3

3𝜆𝜆
 

Since the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) lies on the hyperboloid 2𝑙𝑙2 − 6𝑚𝑚2 + 3𝑛𝑛2 = 5, 
hence  

2 �
1 + 3𝜆𝜆

2𝜆𝜆
�
2

− 6 �
9 − 3𝜆𝜆
−6𝜆𝜆

�
2

+ 3 �
6𝜆𝜆 − 3

3𝜆𝜆
�
2

= 5 

⟹ 𝜆𝜆2 = 1 or  𝜆𝜆 = ±1 

From (23) the required equations of the tangent planes are 

 4𝑙𝑙 + 6𝑚𝑚 + 3𝑛𝑛 = 5 and  2𝑙𝑙 − 12𝑚𝑚 + 9𝑛𝑛 = 5  

Definition The director sphere of a central conicoid is the locus of the 
point of intersection of three mutually perpendicular tangent planes to that 
central conicoid. 

In the following example, we shall obtain the equation of director sphere 
of a central conicoid. 

Example 7.9.4 Find the locus of the point of intersection of three mutually 
perpendicular tangent planes to the central conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 =
1. 

Given conicoid is 

                    𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1                                             .... (25) 

Let the equations of any three mutually perpendicular tangent planes to the 
conicoid (25) be 

         𝑙𝑙1𝑙𝑙 + 𝑚𝑚1𝑚𝑚 + 𝑛𝑛1𝑛𝑛 = 𝑝𝑝1, 𝑙𝑙2𝑙𝑙 + 𝑚𝑚2𝑚𝑚 + 𝑛𝑛2𝑛𝑛 = 𝑝𝑝2, 𝑙𝑙3𝑙𝑙 + 𝑚𝑚3𝑚𝑚 + 𝑛𝑛3𝑛𝑛 =
𝑝𝑝3  .... (26) 

Then from the condition of tangency, we have 
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𝑙𝑙1
2

𝑎𝑎
+
𝑚𝑚1

2

𝑏𝑏
+
𝑛𝑛12

𝑐𝑐
= 𝑝𝑝12 ,   

𝑙𝑙2
2

𝑎𝑎
+
𝑚𝑚2

2

𝑏𝑏
+
𝑛𝑛22

𝑐𝑐
= 𝑝𝑝22 ,   

𝑙𝑙3
2

𝑎𝑎
+
𝑚𝑚3

2

𝑏𝑏
+
𝑛𝑛32

𝑐𝑐
= 𝑝𝑝32 

                                                                                                   ….(27)                         

Since the planes are mutually perpendicular, hence 

𝑙𝑙1
2 + 𝑙𝑙2

2 + 𝑙𝑙3
2 = 1,𝑚𝑚1

2 + 𝑚𝑚2
2 + 𝑚𝑚3

2 = 1,𝑛𝑛12 + 𝑛𝑛22 + 𝑛𝑛32 = 1
𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2 + 𝑙𝑙3𝑚𝑚3 = 0,𝑚𝑚1𝑛𝑛1 + 𝑚𝑚2𝑛𝑛2 + 𝑚𝑚3𝑛𝑛3 = 0, 𝑙𝑙1𝑛𝑛1 + 𝑙𝑙2𝑛𝑛2 + 𝑙𝑙3𝑛𝑛3 = 0

�

...(28) 

Let (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) be the point of intersection of the tangent planes (26). Then 

𝑙𝑙1𝑙𝑙1 + 𝑚𝑚1𝑚𝑚1 + 𝑛𝑛1𝑛𝑛1 = 𝑝𝑝1, 𝑙𝑙2𝑙𝑙1 + 𝑚𝑚2𝑚𝑚1 + 𝑛𝑛2𝑛𝑛1
= 𝑝𝑝2, 𝑙𝑙3𝑙𝑙1 + 𝑚𝑚3𝑚𝑚1 + 𝑛𝑛3𝑛𝑛1 = 𝑝𝑝3 

Squaring and adding these equations we get 

(𝑙𝑙1𝑙𝑙1 + 𝑚𝑚1𝑚𝑚1 + 𝑛𝑛1𝑛𝑛1)2 +  (𝑙𝑙2𝑙𝑙1 + 𝑚𝑚2𝑚𝑚1 + 𝑛𝑛2𝑛𝑛1)2
+ (𝑙𝑙3𝑙𝑙1 + 𝑚𝑚3𝑚𝑚1 + 𝑛𝑛3𝑛𝑛1)2 

= 𝑝𝑝12 + 𝑝𝑝22 + 𝑝𝑝32 

or  𝑙𝑙12 ∑ 𝑙𝑙1
2 + 𝑚𝑚12 ∑𝑚𝑚1

2 + 𝑛𝑛12 ∑ 𝑛𝑛12 + 2𝑙𝑙𝑚𝑚 ∑ 𝑙𝑙1𝑚𝑚1 + 2𝑚𝑚𝑛𝑛 ∑𝑚𝑚1𝑛𝑛1 +
2𝑛𝑛𝑙𝑙 ∑𝑛𝑛1𝑙𝑙1 

                            =  𝑙1
2

𝑎
+ 𝑚1

2

𝑏
+ 𝑛12

𝑐
+ 𝑙22

𝑎
+ 𝑚2

2

𝑏
+ 𝑛22

𝑐
+    𝑙3

2

𝑎
+ 𝑚3

2

𝑏
+ 𝑛32

𝑐
 , 

using (27)                                                                            

or 𝑙𝑙12(1) + 𝑚𝑚12(1) + 𝑛𝑛12(1) + 2𝑙𝑙𝑚𝑚(0) + 2𝑚𝑚𝑛𝑛(0) + 2𝑛𝑛𝑙𝑙(0) = 1
𝑎

+ 1
𝑏

+ 1
𝑐
 , 

using (28) 

or                       𝑙𝑙12 + 𝑚𝑚12 + 𝑛𝑛12 = 1
𝑎

+ 1
𝑏

+ 1
𝑐
 

The locus of the point (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) is 

𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =
1
𝑎𝑎

+
1
𝑏𝑏

+
1
𝑐𝑐

 

This is the required equation of the director sphere of the central conicoid 
(25). 

7.10 POLAR PLANES AND POLAR LINES 

Let a central conicoid be given as 

                                             𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1        ….. (29) 
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Fig 5 

Let a straight line through a given point 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾)meet the conicoid (29) 
in two points 𝐴𝐴 and 𝐵𝐵. Suppose 𝑅 is a point on this straight line such that  

                                                   1
𝑃𝐴

+ 1
𝑃𝐵

= 2
𝑃𝑅

                 …… (30) 

Then the point 𝑃𝑃 is called the pole and the locus of point 𝑅 is called the 
polar plane of the point 𝑃𝑃 with respect to the given conicoid. 

Now we shall obtain the equation of the polar plane of 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with 
respect to the conicoid (29). 

The equations of any line through 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) may be given as 

                                         𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

(= 𝑟𝑟)    ……… (31) 

Any point on this line will be(𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the line (31) 
meets the conicoid (29) in this point, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 = 1 

or     𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 2𝑟𝑟(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1 = 0     

                                                                                                              
……….…. (32)   

Let 𝑟𝑟1 and 𝑟𝑟2 be the roots of above quadratic equation. Then 𝑟𝑟1 = 𝑃𝑃𝐴𝐴 and 
𝑟𝑟2 = 𝑃𝑃𝐵𝐵. 
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𝑟𝑟1 + 𝑟𝑟2 = −2
(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)
(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)  

and    𝑟𝑟1𝑟𝑟2 =
(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1)

(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)   

Hence on dividing, we get 

𝑟𝑟1 + 𝑟𝑟2
𝑟𝑟1𝑟𝑟2

= −2
(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)

(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

or   
1
𝑟𝑟1

+
1
𝑟𝑟2

= −2
(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)

(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1)       … . . (33)    

Let 𝑃𝑃𝑅 = 𝑟𝑟3. Then (30) becomes 

1
𝑟𝑟1

+
1
𝑟𝑟2

=
2
𝑟𝑟3

 

Using (33), we have 

2
𝑟𝑟3

= −2
(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)

(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

or                  𝑎𝑎𝛼𝛼(𝑙𝑙𝑟𝑟3) + 𝑏𝑏𝛽𝛽(𝑚𝑚𝑟𝑟3) + 𝑐𝑐𝛾𝛾(𝑛𝑛𝑟𝑟3) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1 = 0  
….. (34) 

If (𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) are the coordinates of point 𝑅, then from (31) we have 

𝑙𝑙′ − 𝛼𝛼 = 𝑙𝑙𝑟𝑟3, 𝑚𝑚′ − 𝛽𝛽 = 𝑚𝑚𝑟𝑟3, 𝑛𝑛′ − 𝛾𝛾 = 𝑛𝑛𝑟𝑟3 

Hence (34) becomes 

𝑎𝑎𝛼𝛼(𝑙𝑙′ − 𝛼𝛼) + 𝑏𝑏𝛽𝛽(𝑚𝑚′ − 𝛽𝛽) + 𝑐𝑐𝛾𝛾(𝑛𝑛′ − 𝛾𝛾) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1 = 0 

or                                                 𝑎𝑎𝛼𝛼𝑙𝑙′ + 𝑏𝑏𝛽𝛽𝑚𝑚′ + 𝑐𝑐𝛾𝛾𝑛𝑛′ = 1 

The locus of point 𝑅(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) is 

                                                     𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 1    ……. (35) 

This represents the polar plane of the pole 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to the 
conicoid (29). 

You will notice that the tangent plane at any point (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) to the 
conicoid (29) is given as 

𝑎𝑎𝑙𝑙1𝑙𝑙 + 𝑏𝑏𝑚𝑚1𝑚𝑚 + 𝑐𝑐𝑛𝑛1𝑛𝑛 = 1 

If this tangent plane passes through 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾), then UGMM-102/254
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𝑎𝑎𝑙𝑙1𝛼𝛼 + 𝑏𝑏𝑙𝑙1𝛽𝛽 + 𝑐𝑐𝑙𝑙1𝛾𝛾 = 1 

Which shows that the point (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) lies on the polar plane (35) of the 
pole 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to the conicoid (29). That means the polar 
plane of 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) cuts the conicoid at points the tangent planes at which 
pass through the point 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾). In other words, the polar palne (35) of 
𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) cuts the conicoid (29) in a conic and the line joining 𝑃𝑃 to any 
point on this conic is a tangent line to the conicoid. The collection of all 
such tangent lines forms a cone called the tangent cone from 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to 
the conicoid. 

Note: If the point 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾) lies on the conicoid (29), then the polar plane 
of 𝑃𝑃 becomes the tangent plane at 𝑃𝑃 (𝛼𝛼,𝛽𝛽, 𝛾𝛾). 

Polar lines: 

Suppose we are given two points 𝐴𝐴1(𝛼𝛼1,𝛽𝛽1,𝛾𝛾1) and 𝐴𝐴2(𝛼𝛼2,𝛽𝛽2,𝛾𝛾2). The 
polar plane of 𝐴𝐴1(𝛼𝛼1,𝛽𝛽1,𝛾𝛾1) with respect to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 +
𝑐𝑐𝑛𝑛2 = 1 is 

𝑎𝑎𝛼𝛼1𝑙𝑙 + 𝑏𝑏𝛽𝛽1𝑚𝑚 + 𝑐𝑐𝛾𝛾1𝑛𝑛 = 1 

If the point 𝐴𝐴2(𝛼𝛼2,𝛽𝛽2,𝛾𝛾2) lies on this plane, then 

𝑎𝑎𝛼𝛼1𝛼𝛼2 + 𝑏𝑏𝛽𝛽1𝛽𝛽2 + 𝑐𝑐𝛾𝛾1𝛾𝛾2 = 1 

This equation shows that the point 𝐴𝐴1(𝛼𝛼1,𝛽𝛽1,𝛾𝛾1) lies on the polar plane of 
𝐴𝐴2(𝛼𝛼2,𝛽𝛽2, 𝛾𝛾2). Thus if the polar plane of any point 𝐴𝐴1 with respect to a 
conicoid passes through a point 𝐴𝐴2, then the polar plane of 𝐴𝐴2 passes 
through the point 𝐴𝐴1. 

Suppose 𝐵𝐵1 is any point on the line of intersection of the polar planes of 
𝐴𝐴1 and 𝐴𝐴2. Then 𝐵𝐵1 lies on the polar planes of 𝐴𝐴1 and 𝐴𝐴2. Hence the polar 
plane of 𝐵𝐵1 must pass through  𝐴𝐴1 and 𝐴𝐴2, and therefore through the line 
𝐴𝐴1𝐴𝐴2. Similarly the polar plane of any other point 𝐵𝐵2 lying on the line of 
intersection of the polar planes of 𝐴𝐴1 and 𝐴𝐴2 will pass through the line 
𝐴𝐴1𝐴𝐴2.  Thus we can say that the lines 𝐴𝐴1𝐴𝐴2 and 𝐵𝐵1𝐵𝐵2 are such that the 
polar planes of all points on 𝐴𝐴1𝐴𝐴2 pass through 𝐵𝐵1𝐵𝐵2 and vice versa. The 
lines 𝐴𝐴1𝐴𝐴2 and  𝐵𝐵1𝐵𝐵2 are called polar lines. 

Let us verify it analytically. Suppose the equations of the line 𝐴𝐴1𝐴𝐴2 are 
given as 

                                                𝑥𝑥−𝛼
𝑙

= 𝑦𝑦−𝛽
𝑚

= 𝑧𝑧−𝛾
𝑛

(= 𝑟𝑟) …….(36) 

Any point on this line will be 𝑃𝑃(𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾). The polar plane 
of 𝑃𝑃 with respect to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)𝑙𝑙 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)𝑚𝑚 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)𝑛𝑛 = 1 
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or                           (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1) + 𝑟𝑟(𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛) = 0   
…… (37) 

This plane passes through the line of intersection of the planes 

                               𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1 = 0 and 𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛 = 0 
…… (38) 

We call this line of intersection as the line 𝐵𝐵1𝐵𝐵2. You observe that for 
different values of 𝑟𝑟, the polar plane (37) always passes through the line 
(38), i.e. the line 𝐵𝐵1𝐵𝐵2. Hence the polar plane of every point on 𝐴𝐴1𝐴𝐴2 
passes through the line 𝐵𝐵1𝐵𝐵2 and vice versa. Thus the line 𝐴𝐴1𝐴𝐴2 given by 
(36) and the line 𝐵𝐵1𝐵𝐵2 given by (38) are polar lines. 

7.11 ILLUSTRATIVE EXAMPLES 

Example 7.11.1 Find the pole of the plane 4𝑙𝑙 + 6𝑚𝑚 + 8𝑛𝑛 = 18 with 
respect to the conicoid 2𝑙𝑙2 + 3𝑚𝑚2 + 8𝑛𝑛2 = 1. 

Solution: Let the pole of the plane 

                                    4𝑙𝑙 + 6𝑚𝑚 + 8𝑛𝑛 = 18 ….. (39) 

with respect to the conicoid  

                                  2𝑙𝑙2 + 3𝑚𝑚2 + 8𝑛𝑛2 = 1 …… (40) 

be (𝛼𝛼,𝛽𝛽, 𝛾𝛾). Now the polar plane of (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to the conicoid 
(40) is 

                                 2𝛼𝛼𝑙𝑙 + 3𝛽𝛽𝑚𝑚 + 8𝛾𝛾𝑛𝑛 = 1   …….. (41) 

Equations (39) and (41) represent the same plane. Hence 

2𝛼𝛼
4

=
3𝛽𝛽
6

=
8𝛾𝛾
8

=
1

18
 

i.e. 𝛼𝛼 = 1
9

,𝛽𝛽 = 1
9

, 𝛾𝛾 = 1
18

. Therefore the required pole is �1
9

, 1
9

, 1
18
�. 

Example 7.11.2 Find the conditions that the two given lines  

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

… … . . . . (42) 

and    
𝑙𝑙 − 𝛼𝛼′

𝑙𝑙′
=
𝑚𝑚 − 𝛽𝛽′

𝑚𝑚′ =
𝑛𝑛 − 𝛾𝛾′

𝑛𝑛′
… . . (43) 

be polar lines with respect to the conicoid 
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                                              𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1   ……… (44) 

Solution: The polar line of the line (42) with respect to the conicoid (44) 
is the line of intersection of the planes 

                               𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1 = 0 and 𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛 = 0 
…… (45) 

If the polar line of (42) is the line (43), then the line (43) must lie in the 
planes given by (45). Therefore 

                                           
𝑎𝑎𝛼𝛼𝛼𝛼′ + 𝑏𝑏𝛽𝛽𝛽𝛽′ + 𝑐𝑐𝛾𝛾𝛾𝛾′ − 1 = 0
𝑎𝑎𝛼𝛼𝑙𝑙′ + 𝑏𝑏𝛽𝛽𝑚𝑚′ + 𝑐𝑐𝛾𝛾𝑛𝑛′ = 0 � …………. (46) 

                                                   𝑎𝑎𝑙𝑙𝛼𝛼
′ + 𝑏𝑏𝑚𝑚𝛽𝛽′ + 𝑐𝑐𝑛𝑛𝛾𝛾′ = 0

𝑎𝑎𝑙𝑙𝑙𝑙′ + 𝑏𝑏𝑚𝑚𝑚𝑚′ + 𝑐𝑐𝑛𝑛𝑛𝑛′ = 0
� …………. (47) 

Equations (46) and (47) give the required conditions. 

Example 7.11.3 Find the locus of the pole of the tangent planes of the 
conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 with respect to the conicoid 𝛼𝛼𝑙𝑙2 + 𝛽𝛽𝑚𝑚2 +
𝛾𝛾𝑛𝑛2 = 1. 

Solution: Let a tangent plane to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 be 

                                                𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 ……… (48) 

Then from the condition of tangency, we have 

    
𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
= 𝑝𝑝2   … … . (49) 

Let (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) be the pole of the plane (48) with respect to the conicoid 
𝛼𝛼𝑙𝑙2 + 𝛽𝛽𝑚𝑚2 + 𝛾𝛾𝑛𝑛2 = 1. Now the polar plane of (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) with respect to 
the conicoid 𝛼𝛼𝑙𝑙2 + 𝛽𝛽𝑚𝑚2 + 𝛾𝛾𝑛𝑛2 = 1 is 

                                         𝛼𝛼𝑙𝑙1𝑙𝑙 + 𝛽𝛽𝑚𝑚1𝑚𝑚 + 𝛾𝛾𝑛𝑛1𝑛𝑛 = 1   ……….. (50) 

 The planes (49) and (50) are identical. Hence we have 

𝑙𝑙
𝛼𝛼𝑙𝑙1

=
𝑚𝑚
𝛽𝛽𝑚𝑚1

=
𝑛𝑛
𝛾𝛾𝑛𝑛1

=
𝑝𝑝
1

 

Which gives = 𝛼𝛼𝑙𝑙1𝑝𝑝, 𝑚𝑚 = 𝛽𝛽𝑚𝑚1𝑝𝑝, 𝑛𝑛 = 𝛾𝛾𝑛𝑛1𝑝𝑝 . Therefore from (49) we 
have 

(𝛼𝛼𝑙𝑙1𝑝𝑝)2

𝑎𝑎
+

(𝛽𝛽𝑚𝑚1𝑝𝑝)2

𝑏𝑏
+

(𝛾𝛾𝑛𝑛1𝑝𝑝)2

𝑐𝑐
= 𝑝𝑝2 

or      
𝛼𝛼2𝑙𝑙12

𝑎𝑎
+
𝛽𝛽2𝑚𝑚1

2

𝑏𝑏
+
𝛾𝛾2𝑛𝑛12

𝑐𝑐
= 1  UGMM-102/257
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The locus of the pole (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) is  

or      
𝛼𝛼2𝑙𝑙2

𝑎𝑎
+
𝛽𝛽2𝑚𝑚2

𝑏𝑏
+
𝛾𝛾2𝑛𝑛2

𝑐𝑐
= 1 

7.12 SUMMARY 

In this unit, we have studied the following facts- 

(1) A conicoid (or a quadric surface) in the three dimensional 
rectangular Cartesian coordinate system is the set of points 
(𝑙𝑙,𝑚𝑚, 𝑛𝑛) in three dimensional space satisfying a general second 
degree equation in three variables. 

 𝐹𝐹(𝑙𝑙,𝑚𝑚, 𝑛𝑛) = 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 + 2𝑓𝑓𝑚𝑚𝑛𝑛 + 2𝑔𝑔𝑛𝑛𝑙𝑙 + 2ℎ𝑙𝑙𝑚𝑚 + 2𝑢𝑢𝑙𝑙 +
2𝑣𝑣𝑚𝑚 + 2𝑤𝑤𝑛𝑛 + 𝑑𝑑 = 0  

(2) This general second degree equation represents a central conicoid 
if 

Δ = �
𝑎𝑎 ℎ 𝑔𝑔
ℎ 𝑏𝑏 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐

� ≠ 0 

(3) The centre (𝑙𝑙0,𝑚𝑚0, 𝑛𝑛0) of the central conicoid is the unique solution 
of the following equations- 

 𝑎𝑎𝑙𝑙0 + ℎ𝑚𝑚0 + 𝑔𝑔𝑛𝑛0 + 𝑢𝑢 = 0
ℎ𝑙𝑙0 + 𝑏𝑏𝑚𝑚0 + 𝑓𝑓𝑛𝑛0 + 𝑣𝑣 = 0
𝑔𝑔𝑙𝑙0 + 𝑓𝑓𝑚𝑚0 + 𝑐𝑐𝑛𝑛0 + 𝑤𝑤 = 0

 

 (4) For a central conicoid, the general equation of second degree can 
be reduced to the following standard form 

𝜆𝜆1𝑙𝑙2 + 𝜆𝜆2𝑚𝑚2 + 𝜆𝜆3𝑛𝑛2 + 𝑑𝑑′ = 0 

Where 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 are the roots of the discriminating cubic 

�
𝑎𝑎 − 𝜆𝜆 ℎ 𝑔𝑔
ℎ 𝑏𝑏 − 𝜆𝜆 𝑓𝑓
𝑔𝑔 𝑓𝑓 𝑐𝑐 − 𝜆𝜆

� = 0 

and 𝑑𝑑′ = 𝑢𝑢𝑙𝑙0 + 𝑣𝑣𝑚𝑚0 + 𝑤𝑤𝑛𝑛0 + 𝑑𝑑 

(5) The standard equations for five types of central conicoids may be 
given as follows- 

1.  𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 0   (Cone) 

2. 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= −1          (Imaginary ellipsoid) 

3. 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1             (Ellipsoid) 
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4.  

𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1

𝑥𝑥2

𝑎2
− 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1

−𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1⎦

⎥
⎥
⎥
⎤

       (Hyperboloid of one sheet) 

 

5.  

𝑥𝑥2

𝑎2
− 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1

−𝑥𝑥2

𝑎2
− 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1

−𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1⎦

⎥
⎥
⎥
⎤

       (Hyperboloid of two sheets) 

(6) The standard form representing ellipsoid, hyperboloid of one sheet, 
hyperboloid of two sheets and imaginary ellipsoid may be given as 

𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 

This equation represents an ellipsoid if 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are all positive, a 
hyperboloid of one sheet if any one of them is negative and the 
remaining two are positive. It represents a hyperboloid of two 
sheets if any two of them are negative and the remaining one is 
positive. This represents an imaginary ellipsoid if all the 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are 
negative. 

(7) We studied ellipsoid, hyperboloid of one sheet and hyperboloid of 
two sheets in details. 

(8) The condition that the line given by  

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

 

is a tangent to the central conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 

                                                      𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 0        

(9) The equation of the tangent plane to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 +
𝑐𝑐𝑛𝑛2 = 1 at (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 1. 

(10) The condition that the plane 𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝 is a tangent plane 
to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is 

 
𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
= 𝑝𝑝2 

(11) The equation of the polar plane of the pole (𝛼𝛼,𝛽𝛽, 𝛾𝛾) with respect to 
the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 1. 

(12) The polar line of the line 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛
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 with respect to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is the line of 
intersection of the planes 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1 = 0 and 𝑎𝑎𝑙𝑙𝑙𝑙 +
𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛 = 0. 

7.13 SELF ASSESSMENT QUESTIONS 

(1) Prove that the equation 

3𝑙𝑙2 − 𝑚𝑚2 − 𝑛𝑛2 + 6𝑚𝑚𝑛𝑛 − 6𝑙𝑙 + 6𝑚𝑚 − 2𝑛𝑛 − 2 = 0 

represents a hyperboloid of one sheet. Also find its centre.   [Ans: 
(1,0,−1) ] 

(2)  Find the equation of the tangent plane to the conicoid 3𝑙𝑙2 −
6𝑚𝑚2 + 9𝑛𝑛2 + 17 = 0 parallel to the plane 𝑙𝑙 + 4𝑚𝑚 − 2𝑛𝑛 = 0. [Ans: 
3𝑙𝑙 + 12𝑚𝑚 − 6𝑛𝑛 ± 17 = 0 ] 

(3) Tangent planes are drawn to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 
through (𝛼𝛼,𝛽𝛽, 𝛾𝛾). Prove that perpendiculars to them from origin 
generate the cone 

𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
= (𝛼𝛼𝑙𝑙 + 𝛽𝛽𝑚𝑚 + 𝛾𝛾𝑛𝑛)2 

(4) Find the polar plane of the point (2,−3,4) with respect to the 
conicoid 𝑙𝑙2 + 2𝑚𝑚2 + 𝑛𝑛2 = 4 [Ans: −3𝑚𝑚 + 2𝑛𝑛 = 2 ] 

(5) Prove that the surface generated by the straight lines drawn 
through a fixed point  (𝛼𝛼,𝛽𝛽, 𝛾𝛾) at right angles to their polar with 
respect to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is ∑ 𝛼

𝑥𝑥−𝛼
�1
𝑏
− 1

𝑐
� = 0 

(6) Find the polar of the line 𝑥𝑥−1
2

= 𝑦𝑦−2
3

= 𝑧𝑧−3
4

 with respect to the 

conicoid 𝑙𝑙2 − 2𝑚𝑚2 + 3𝑛𝑛2 = 4. [Ans : 𝑥𝑥+6
3

= 𝑦𝑦−2
3

= 𝑧𝑧−3
1

 ] 

7.14 FURTHER READINGS 

(1) Shanti Narayan, P.K. Mittal (2007): Analytical Solid Geometry, 
S.Chand Publication, New Delhi. 

(2) Abraham Adrian Albert (2016): Solid Analytic Geometry, Dover 
Publication. 

(3) George Wentworth, D.E. Smith (2007): Plane and solid Geometry, 
Merchant books.  

(4) D.M.Y. Sommerville (2016): Analytical Geometry of three 
dimensions, Cambridge university Press. 
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UNIT-8 CENTRAL CONICOIDS II 
Structure 

8.1 Introduction 

8.2 Objectives 

8.3 Enveloping cone 

8.4 Enveloping cylinder 

8.5 Illustrative examples 

8.6 Normals to a central conicoid 

      8.6.1 Normals from a given point 

      8.6.2 Cone through the six normals 

     8.6.3 Cubic curve through the feet of the normals 

8.7 Illustrative examples  

8.8 Diametral planes 

8.9 Conjugate diameters 

8.9.1 Conjugate diameters of an ellipsoid 

8.9.2 Properties of conjugate diameters 

8.9.3 Conjugate diameters of the hyperboloids 

8.10 Illustrative examples 

8.11 Section with a given centre 

8.12 Illustrative examples 

8.13 Summary 

8.14 Self assessment questions 

8.15 Further readings 

8.1 INTRODUCTION 

In unit-7 you have studied different central conicoids such as 
ellipsoids, hyperboloids of one sheet and hyperboloids of two sheets. 
These conicoids may be enveloped by certain cones and cylinders. For 
example, if a fixed point is given, we can draw tangent lines to a central 
conicoid from this point. These tangent lines will lie on a cone with this UGMM-102/261

D
G

B
-0

21



 
 

given point as vertex. This cone is an enveloping cone of the conicoid. 
Similarly, if a line is given, then we can draw tangents to a conicoid 
parallel to this given line. The locus of all these tangent lines is an 
enveloping cylinder of the conicoid. In this unit, we shall obtain equations 
of enveloping cone and enveloping cylinder of a given central conicoid. 

Also in unit-7 you studied condition of tangency and obtained 
equations of tangent planes to a central conicoid. A line through a point on 
a conicoid perpendicular to the tangent plane at this point is called the 
normal to the conicoid at that point. In this unit we shall obtain equations 
of the normal at a given point on a central conicoid. You will see that we 
can draw six normals to a central conicoid from a given point  and the 
curve passing through the feet of these normals is a cubic curve. We shall 
obtain the equation of the cone on which these normals lie. In the next 
section, we shall discuss diametral planes and conjugate diameters of a 
conicoid which are helpful in exploring the geometry of ellipsoids and 
hyperboloids. Lastly, you will see how to define a plane intersecting a 
central conicoid in a conic with a given centre. 

8.2 OBJECTIVES  

After reading this unit, you should be able to 

• Obtain equations of enveloping cone and enveloping cylinder of a 
central conicoid. 

• Define normals to a central conicoid. 

• Obtain equation of the cone through the six normals. 

• Show that six normals can be drawn to a central conicoid from a 
given point and the curve through the feet of these normals is a 
cubic curve. 

• Define and discuss the diametral planes and conjugate diameters of 
an ellipsoid and hyperboloid. 

• Obtain the equation of the plane containing section with a given 
centre. 

8.3 ENVELOPING CONE 

 The enveloping cone or tangent cone of a given surface is the 
locus of the tangent lines drawn from a given point to the given surface. 
The point from which the tangent lines are drawn is called the vertex of 
the enveloping cone. Suppose we want to obtain the equation of the 
enveloping cone of the central conicoid 

                                𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1   ……… (1) 

with the vertex at the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾).   UGMM-102/262
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The equations of a straight line passing through the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) are 
given as 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

 (= 𝑟𝑟)     … … … . (2) 

Then the coordinates of any point 𝑃𝑃 on the straight line (2) are given 
by (𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the line (2) meets the central conicoid (1) 
at point 𝑃𝑃, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 = 1 

or       𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 2𝑟𝑟(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1 = 0     

                                                                                                         
………….….(3)   

This is a quadratic equation in 𝑟𝑟. Hence we get two values of 𝑟𝑟 
corresponding to which we have two points of intersection of the line (2) 
and the central conicoid (1). If the line (2) is a tangent line to the conicoid 
(1), then the points of intersection must coincide, i.e. the roots of the 
quadratic equation (3) must be equal. It is possible if 

{2(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)}2 = 4(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

or        (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 −
1) … … (4) 

The locus of the tangent line (2) is the required enveloping cone of the 
conicoid (1). It is obtained by eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 from (2) and (4), i.e.  

 {𝑎𝑎𝛼𝛼(𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏𝛽𝛽(𝑚𝑚 − 𝛽𝛽) + 𝑐𝑐𝛾𝛾(𝑛𝑛 − 𝛾𝛾)}2 

 = {𝑎𝑎(𝑙𝑙 − 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚 − 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛 − 𝛾𝛾)2}(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

or {(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1) − (𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1)}2 

= {(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1) − 2(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1)
+ (𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1)}(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

Let                                    
𝑆𝑆 ≡ 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1
𝑆𝑆′ ≡ 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1 
𝑇𝑇 ≡ 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1

�… … … (5) 

Hence we have (𝑇𝑇 − 𝑆𝑆′)2 = (𝑆𝑆 − 2𝑇𝑇 + 𝑆𝑆′)𝑆𝑆′ 

or                    𝑇𝑇2 + 𝑆𝑆′2 − 2𝑇𝑇𝑆𝑆′ = 𝑆𝑆𝑆𝑆′ − 2𝑇𝑇𝑆𝑆′ + 𝑆𝑆′2 

or                                                  𝑆𝑆𝑆𝑆′ = 𝑇𝑇2 UGMM-102/263
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or (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) = (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 +
𝑐𝑐𝛾𝛾𝑛𝑛 − 1)2 

This is the required equation of the enveloping cone of the conicoid 
𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1. 

8.4 THE ENVELOPING CYLINDER 

The enveloping cylinder of a given surface is the locus of the tangent 
lines to the surface drawn parallel to a given line. In other words, the 
enveloping cylinder is the cylinder whose generators touch a given surface 
and are directed in a given direction. 

Let us obtain the equation of an enveloping cylinder of a central conicoid 

                                              𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1      ………….. (6) 

Whose generators are parallel to the line  

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

 … … …  (7) 

Let 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) be any point on the enveloping cylinder of the conicoid (6). 
Since the generators of the cylinder are parallel to the line (7), hence the 
equations of the generator through 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) may be given as 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

 (= 𝑟𝑟)     … … … . (8) 

Then the coordinates of any point on the generator are given by (𝑙𝑙𝑟𝑟 +
𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽,𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the generator (8) meets the conicoid (6) at point this 
point, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 = 1 

or       𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 2𝑟𝑟(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1 = 0     

                                                                                                         
………….….(9)   

If the generator (8) is a tangent to the conicoid (6), then the points of 
intersection must coincide, i.e. the roots of above quadratic equation (9) 
must be equal. It is possible if 

{2(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)}2 = 4(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) 

or    (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 −
1) … … (10) 
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The locus of 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾), i.e. the equation of the enveloping cylinder of the 
conicoid (6) is 

       (𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1) 
……. (11) 

8.5 ILLUSTRATIVE EXAMPLES 

Example 8.5.1 Find the locus of the vertex of enveloping cone of the 
conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 which has three mutually perpendicular 
generators. 

Or 

Find the locus of points from which three mutually perpendicular tangent 
lines can be drawn to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 

Solution: Let 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾)be the point whose locus is required. The equation 
of enveloping cone of the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 with vertex 
𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is given by 
 (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) = (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 −
1)2 … (12) 

If this enveloping cone has three mutually perpendicular generators, then 
the sum of the coefficients of 𝑙𝑙2,𝑚𝑚2and 𝑛𝑛2 in (12) should be equal to zero, 
i.e. 

(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)(𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) − (𝑎𝑎2𝛼𝛼2 + 𝑏𝑏2𝛽𝛽2 + 𝑐𝑐2𝛾𝛾2) = 0 

or                         (𝑏𝑏 + 𝑐𝑐)𝛼𝛼2 + (𝑎𝑎 + 𝑐𝑐)𝛽𝛽2 + (𝑎𝑎 + 𝑏𝑏)𝛾𝛾2 = 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 

The required locus of point 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 

(𝑏𝑏 + 𝑐𝑐)𝑙𝑙2 + (𝑎𝑎 + 𝑐𝑐)𝑚𝑚2 + (𝑎𝑎 + 𝑏𝑏)𝑛𝑛2 = 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 

Example 8.5.2 Find the locus of the luminous point which moves so that 
the ellipsoid 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1 

casts a circular shadow on the plane 𝑛𝑛 = 0. 

Solution: Let 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾)be the luminous point. We have to find the locus 
of 𝑃𝑃 such that the section of the enveloping cone of the given ellipsoid 
with vertex at 𝑃𝑃 by the plane 𝑛𝑛 = 0 is a circle. 

Proceeding as in article 8.3, we can obtain the equation of the enveloping 
cone of the ellipsoid as 
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�
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
− 1��

𝛼𝛼2

𝑎𝑎2
+
𝛽𝛽2

𝑏𝑏2
+
𝛾𝛾2

𝑐𝑐2
− 1�

= �
𝛼𝛼𝑙𝑙
𝑎𝑎2

+
𝛽𝛽𝑚𝑚
𝑏𝑏2

+
𝛾𝛾𝑛𝑛
𝑐𝑐2
− 1�

2

… (13) 

The section of this enveloping cone by the plane 𝑛𝑛 = 0 is 

�
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
− 1��

𝛼𝛼2

𝑎𝑎2
+
𝛽𝛽2

𝑏𝑏2
+
𝛾𝛾2

𝑐𝑐2
− 1� = �

𝛼𝛼𝑙𝑙
𝑎𝑎2

+
𝛽𝛽𝑚𝑚
𝑏𝑏2

− 1�
2

, 𝑛𝑛

= 0      … (14) 

This represents a conic in 𝑙𝑙𝑚𝑚-plane. It is a circle if the coefficients of 
𝑙𝑙2 and 𝑚𝑚2 are equal, and the coefficient of 𝑙𝑙𝑚𝑚 is zero, i.e. 

1
𝑎𝑎2
�
𝛼𝛼2

𝑎𝑎2
+
𝛽𝛽2

𝑏𝑏2
+
𝛾𝛾2

𝑐𝑐2
− 1� −

𝛼𝛼2

𝑎𝑎4
=

1
𝑏𝑏2
�
𝛼𝛼2

𝑎𝑎2
+
𝛽𝛽2

𝑏𝑏2
+
𝛾𝛾2

𝑐𝑐2
− 1� −

𝛽𝛽2

𝑏𝑏4
 … . . (15) 

and      
−2𝛼𝛼𝛽𝛽
𝑎𝑎2𝑏𝑏2

= 0      … … . (16) 

Equation (16) gives 𝛼𝛼𝛽𝛽 = 0, i.e. 𝛼𝛼 = 0 or 𝛽𝛽 = 0. 

When 𝛼𝛼 = 0, equation (15) becomes 

1
𝑎𝑎2
�
𝛽𝛽2

𝑏𝑏2
+
𝛾𝛾2

𝑐𝑐2
− 1� =

1
𝑏𝑏2
�
𝛽𝛽2

𝑏𝑏2
+
𝛾𝛾2

𝑐𝑐2
− 1� −

𝛽𝛽2

𝑏𝑏4
 

or               
𝛽𝛽2

𝑎𝑎2𝑏𝑏2
+

𝛾𝛾2

𝑎𝑎2𝑐𝑐2
−

1
𝑎𝑎2

=
𝛾𝛾2

𝑏𝑏2𝑐𝑐2
−

1
𝑏𝑏2

 

 

or      𝑐𝑐2𝛽𝛽2 + 𝑏𝑏2𝛾𝛾2 − 𝑏𝑏2𝑐𝑐2 = 𝑎𝑎2𝛾𝛾2 − 𝑎𝑎2𝑐𝑐2 

or      𝑐𝑐2𝛽𝛽2 + (𝑏𝑏2 − 𝑎𝑎2)𝛾𝛾2 = (𝑏𝑏2 − 𝑎𝑎2)𝑐𝑐2 

The required locus of 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 

or      𝑐𝑐2𝑚𝑚2 + (𝑏𝑏2 − 𝑎𝑎2)𝑛𝑛2 = (𝑏𝑏2 − 𝑎𝑎2)𝑐𝑐2 , 𝑙𝑙 = 0 

When 𝛽𝛽 = 0, equation (15) becomes 

1
𝑎𝑎2
�
𝛼𝛼2

𝑎𝑎2
+
𝛾𝛾2

𝑐𝑐2
− 1� −

𝛼𝛼2

𝑎𝑎4
=

1
𝑏𝑏2
�
𝛼𝛼2

𝑎𝑎2
+
𝛾𝛾2

𝑐𝑐2
− 1�  

or      𝑐𝑐2𝛼𝛼2 + (𝑎𝑎2 − 𝑏𝑏2)𝛾𝛾2 = (𝑎𝑎2 − 𝑏𝑏2)𝑐𝑐2 

The required locus of 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 
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or      𝑐𝑐2𝑙𝑙2 + (𝑎𝑎2 − 𝑏𝑏2)𝑛𝑛2 = (𝑎𝑎2 − 𝑏𝑏2)𝑐𝑐2 , 𝑚𝑚 = 0 

Example 8.5.3 Show that the enveloping cylinder of the conicoid 
𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 with generators perpendicular to the 𝑛𝑛-axis meets 
the plane 𝑛𝑛 = 0 in parabolas. 

 Solution:  We know that the enveloping cylinder of the conicoid 𝑎𝑎𝑙𝑙2 +
𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1, whose generators are parallel to the line 𝑥𝑥

𝑙
= 𝑦𝑦

𝑚
= 𝑧𝑧

𝑛
 is 

given by equation (11), i.e. 

(𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1) 

The direction cosines of 𝑛𝑛-axis are 0,0,1. Hence if the generators are 
perpendicular to 𝑛𝑛-axis, we have 

0𝑙𝑙 + 0𝑚𝑚 + 1𝑛𝑛 = 0 

                                                  ⟹ 𝑛𝑛 = 0 

Thus the direction ratios of the generators can be taken as 𝑙𝑙,𝑚𝑚, 0. The 
equation of the enveloping cylinder becomes 

(𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2)(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1) 

The section of this cylinder by the plane 𝑛𝑛 = 0 is 

(𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2)(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 − 1), 𝑛𝑛 = 0 

or       𝑎𝑎𝑏𝑏(𝑚𝑚2𝑙𝑙2 + 𝑙𝑙𝑚𝑚 − 2𝑙𝑙𝑚𝑚𝑙𝑙𝑚𝑚) − (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2) = 0, 𝑛𝑛 = 0 

or       𝑎𝑎𝑏𝑏(𝑚𝑚𝑙𝑙 − 𝑙𝑙𝑚𝑚)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2), 𝑛𝑛 = 0 

This equation represents a parabola in the plane 𝑛𝑛 = 0. 

8.6 NORMALS TO A CENTRAL CONICOID 

You have studied tangent planes to a central conicoid in unit-7. A line 
through a point 𝑃𝑃(𝛼𝛼,𝛽𝛽, 𝛾𝛾) on a conicoid perpendicular to the tangent plane 
at 𝑃𝑃 is called the normal to the conicoid at 𝑃𝑃. 

Let a given conicoid be        𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1  ……… (17) 

The equation of the tangent plane at 𝑃𝑃(𝑙𝑙′, 𝑚𝑚′, 𝑛𝑛′) to the conicoid (17) is 
given                                  

                                          𝑎𝑎𝑙𝑙′𝑙𝑙 + 𝑏𝑏𝑚𝑚′𝑚𝑚 + 𝑐𝑐𝑛𝑛′𝑛𝑛 = 1      ………. (18) 

Hence the direction cosines of the normal to this plane through the point 
𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) are proportional to 𝑎𝑎𝑙𝑙′, 𝑏𝑏𝑚𝑚′, 𝑐𝑐𝑛𝑛′. Therefore the equations of 
the normal to the conicoid (17) at 𝑃𝑃 may be given as 

𝑙𝑙 − 𝑙𝑙′

𝑎𝑎𝑙𝑙′
=
𝑚𝑚 − 𝑚𝑚′

𝑏𝑏𝑚𝑚′
=
𝑛𝑛 − 𝑛𝑛′

𝑐𝑐𝑛𝑛′
         … … … (19) 

UGMM-102/267

D
G

B
-0

21



 
 

 

8.6.1 NORMALS FROM A GIVEN POINT 

Suppose we are given a point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾). If the normal to the conicoid at 
𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) passes through 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾), then from (19) 

𝛼𝛼 − 𝑙𝑙′

𝑎𝑎𝑙𝑙′
=
𝛽𝛽 − 𝑚𝑚′

𝑏𝑏𝑚𝑚′
=
𝛾𝛾 − 𝑛𝑛′

𝑐𝑐𝑛𝑛′
= 𝜆𝜆 (say)       … … (20) 

Therefore 

𝑙𝑙′ =
𝛼𝛼

1 + 𝑎𝑎𝜆𝜆
 ,𝑚𝑚′ =

𝛽𝛽
1 + 𝑏𝑏𝜆𝜆

 , 𝑛𝑛′ =
𝛾𝛾

1 + 𝑐𝑐𝜆𝜆
  … . . (21) 

For a given point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾), equations (21) give points (𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) on the 
conicoid the normal through which passes through 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾). Since 
(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) lies on the conicoid (17), hence we have 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 = 1 

or    𝑎𝑎 �
𝛼𝛼

1 + 𝑎𝑎𝜆𝜆
�
2

+ 𝑏𝑏 �
𝛽𝛽

1 + 𝑏𝑏𝜆𝜆
�
2

+ 𝑐𝑐 �
𝛾𝛾

1 + 𝑐𝑐𝜆𝜆
�
2

= 1  

or             
𝑎𝑎𝛼𝛼2

(1 + 𝑎𝑎𝜆𝜆)2 +
𝑏𝑏𝛽𝛽2

(1 + 𝑏𝑏𝜆𝜆)2 +
𝑐𝑐𝛾𝛾2

(1 + 𝑐𝑐𝜆𝜆)2 = 1 … … . (22) 

This is a sixth degree equation in 𝜆𝜆. It has six roots, i.e. six values of 𝜆𝜆, 
corresponding to each of which there is a point on the conicoid determined 
by (21) such that the normals at these six points pass through the given 
point 𝐴𝐴(𝛼𝛼,𝛽𝛽, 𝛾𝛾).  Hence there are six points on the conicoid (17), the 
normal at which pass through a given fixed point, i.e. six normals can 
be drawn to a central conicoid from a given point. 

8.6.2 CONE THROUGH THE SIX NORMALS 

Now we shall show that all the six normals drawn from a fixed point 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the conicoid (17) lie on a cone of second degree. 

Let 𝑙𝑙,𝑚𝑚,𝑛𝑛 be the direction cosines of the normal at 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′)  given by 
(19). Then 

𝑙𝑙
𝑎𝑎𝑙𝑙′

=
𝑚𝑚
𝑏𝑏𝑚𝑚′

=
𝑛𝑛
𝑐𝑐𝑛𝑛′

= 𝑝𝑝 (say) 

                           or            𝑙𝑙 = 𝑝𝑝𝑎𝑎𝑙𝑙′,𝑚𝑚 = 𝑝𝑝𝑏𝑏𝑚𝑚′, 𝑛𝑛 = 𝑝𝑝𝑐𝑐𝑛𝑛′ 

or   𝑙𝑙 =
𝑝𝑝𝑎𝑎𝛼𝛼

1 + 𝑎𝑎𝜆𝜆
 ,𝑚𝑚 =

𝑝𝑝𝑏𝑏𝛽𝛽
1 + 𝑏𝑏𝜆𝜆

 ,𝑛𝑛 =
𝑝𝑝𝑐𝑐𝛾𝛾

1 + 𝑐𝑐𝜆𝜆
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which gives 

  1 + 𝑎𝑎𝜆𝜆 =
𝑝𝑝𝑎𝑎𝛼𝛼
𝑙𝑙

 ,1 + 𝑏𝑏𝜆𝜆 =
𝑝𝑝𝑏𝑏𝛽𝛽
𝑚𝑚

 ,1 + 𝑐𝑐𝜆𝜆 =
𝑝𝑝𝑐𝑐𝛾𝛾
𝑛𝑛

 

Multiplying above equations by (𝑏𝑏 − 𝑐𝑐), (𝑐𝑐 − 𝑎𝑎) and (𝑎𝑎 − 𝑏𝑏), and then 
adding we have  

  
𝑝𝑝𝑎𝑎𝛼𝛼
𝑙𝑙

(𝑏𝑏 − 𝑐𝑐) +
𝑝𝑝𝑏𝑏𝛽𝛽
𝑚𝑚

(𝑐𝑐 − 𝑎𝑎) +
𝑝𝑝𝑐𝑐𝛾𝛾
𝑛𝑛

(𝑎𝑎 − 𝑏𝑏) 

                                         = (1 + 𝑎𝑎𝜆𝜆)(𝑏𝑏 − 𝑐𝑐) + (1 + 𝑏𝑏𝜆𝜆)(𝑐𝑐 − 𝑎𝑎) +
(1 + 𝑐𝑐𝜆𝜆)(𝑎𝑎 − 𝑏𝑏) 

or   
𝑎𝑎𝛼𝛼
𝑙𝑙

(𝑏𝑏 − 𝑐𝑐) +
𝑏𝑏𝛽𝛽
𝑚𝑚

(𝑐𝑐 − 𝑎𝑎) +
𝑐𝑐𝛾𝛾
𝑛𝑛

(𝑎𝑎 − 𝑏𝑏) = 0     … … . (23) 

Now the equations of the normal through the point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) are 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

   … … . . (24) 

Eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 from (23) and (24), we have 

or   
𝑎𝑎𝛼𝛼
𝑙𝑙 − 𝛼𝛼

(𝑏𝑏 − 𝑐𝑐) +
𝑏𝑏𝛽𝛽
𝑚𝑚 − 𝛽𝛽

(𝑐𝑐 − 𝑎𝑎) +
𝑐𝑐𝛾𝛾
𝑛𝑛 − 𝛾𝛾

(𝑎𝑎 − 𝑏𝑏) = 0   

This is the equation of the quadratic cone upon which the six normals 
from a given point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) to the conicoid (17) lie. 

8.6.3 CUBIC CURVE THROUGH THE FEET OF THE 
NORMALS 

So you have seen that six normals can be drawn to a central conicoid from 
a given point (𝛼𝛼,𝛽𝛽, 𝛾𝛾). These normals intersect the conicoid in six points 
which are given by (21). We shall show that these six points lie on a cubic 
curve. 

Equations (20) can be written as 

(𝛼𝛼 − 𝑙𝑙′)𝑏𝑏𝑚𝑚′ = (𝛽𝛽 − 𝑚𝑚′)𝑎𝑎𝑙𝑙′ 

(𝛽𝛽 − 𝑚𝑚′)𝑐𝑐𝑛𝑛′ = (𝛾𝛾 − 𝑛𝑛′)𝑏𝑏𝑚𝑚′ 

(𝛾𝛾 − 𝑛𝑛′)𝑎𝑎𝑙𝑙′ = (𝛼𝛼 − 𝑙𝑙′)𝑐𝑐𝑛𝑛′ 

Hence the six points lie on the cylinders given by 

(𝛼𝛼 − 𝑙𝑙)𝑏𝑏𝑚𝑚 = (𝛽𝛽 − 𝑚𝑚)𝑎𝑎𝑙𝑙 

(𝛽𝛽 − 𝑚𝑚)𝑐𝑐𝑛𝑛 = (𝛾𝛾 − 𝑛𝑛′)𝑏𝑏𝑚𝑚 
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(𝛾𝛾 − 𝑛𝑛)𝑎𝑎𝑙𝑙 = (𝛼𝛼 − 𝑙𝑙)𝑐𝑐𝑛𝑛 

These cylinders intersect on a common curve on which the six points of 
intersection of the normals and the conicoid lie. Let the plane intersecting 
this curve be 

𝐴𝐴𝑙𝑙 + 𝐵𝐵𝑚𝑚 + 𝐶𝐶𝑛𝑛 + 𝐷𝐷 = 0 

Since the points (𝑙𝑙′, 𝑚𝑚′, 𝑛𝑛′)  lie on this plane, hence 

𝐴𝐴𝑙𝑙′ + 𝐵𝐵𝑚𝑚′ + 𝐶𝐶𝑛𝑛′ + 𝐷𝐷 = 0 

or 
𝐴𝐴𝛼𝛼

1 + 𝑎𝑎𝜆𝜆
+

𝐵𝐵𝛽𝛽
1 + 𝑏𝑏𝜆𝜆

+
𝐶𝐶𝛾𝛾

1 + 𝑐𝑐𝜆𝜆
+ 𝐷𝐷 = 0     using (21) 

This is a cubic equation in 𝜆𝜆 having three roots. Hence the curve through 
the feet of the normals intersects the plane in three points, i.e. the curve is 
a cubic curve. 

8.7 ILLUSTRATIVE EXAMPLES  

Example 8.7.1 If the normal at a point 𝑃𝑃 to the ellipsoid 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1  … … . . (25) 

meets the principal planes in 𝐺𝐺1,𝐺𝐺2,𝐺𝐺3, show that 𝑃𝑃𝐺𝐺1:𝑃𝑃𝐺𝐺2:𝑃𝑃𝐺𝐺3 =
𝑎𝑎2: 𝑏𝑏2: 𝑐𝑐2 and if 

𝑃𝑃𝐺𝐺12 + 𝑃𝑃𝐺𝐺22 + 𝑃𝑃𝐺𝐺32 = 𝑘2 then find the locus of 𝑃𝑃. 

Solution: Let 𝑃𝑃 be the point (𝑙𝑙′, 𝑚𝑚′, 𝑛𝑛′). The equation of the tangent plane 
at  𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) t the ellipsoid is 

𝑙𝑙𝑙𝑙′

𝑎𝑎2
+
𝑚𝑚𝑚𝑚′

𝑏𝑏2
+
𝑛𝑛𝑛𝑛′

𝑐𝑐2
= 1 

Hence the direction cosines of the normal to the ellipsoid at  𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) 
are proportional to 𝑙𝑙′ 𝑎𝑎2⁄ ,𝑚𝑚′ 𝑏𝑏2⁄ , 𝑛𝑛′ 𝑐𝑐2⁄ . Let the actual direction cosines 
of the normal at 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) be 𝑝𝑝 𝑙𝑙′ 𝑎𝑎2⁄ ,𝑝𝑝 𝑚𝑚′ 𝑏𝑏2⁄ , 𝑝𝑝 𝑛𝑛′ 𝑐𝑐2⁄ . Then 

�
𝑝𝑝𝑙𝑙′

𝑎𝑎2
�
2

+ �
𝑝𝑝𝑚𝑚′

𝑏𝑏2
�
2

+ �
𝑝𝑝𝑛𝑛′

𝑐𝑐2
�
2

= 1 

or       
1
𝑝𝑝2

= �
𝑙𝑙′

𝑎𝑎2
�
2

+ �
𝑚𝑚′

𝑏𝑏2
�
2

+ �
𝑛𝑛′

𝑐𝑐2
�
2

  … … (26) 

Now the equations of the normal to the ellipsoid (25) at 𝑃𝑃 may be given as 
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𝑙𝑙 − 𝑙𝑙′

𝑝𝑝 𝑙𝑙′ 𝑎𝑎2⁄ =
𝑚𝑚 − 𝑚𝑚′

𝑝𝑝 𝑚𝑚′ 𝑏𝑏2⁄ =
𝑛𝑛 − 𝑛𝑛′

𝑝𝑝 𝑛𝑛′ 𝑐𝑐2⁄ = 𝑟𝑟(say )       . . … (27) 

If the normal (27) meets the plane 𝑙𝑙 = 0 in 𝐺𝐺1, then 

0 − 𝑙𝑙′

𝑝𝑝 𝑙𝑙′ 𝑎𝑎2⁄ =
𝑚𝑚 − 𝑚𝑚′

𝑝𝑝 𝑚𝑚′ 𝑏𝑏2⁄ =
𝑛𝑛 − 𝑛𝑛′

𝑝𝑝 𝑛𝑛′ 𝑐𝑐2⁄ = 𝑃𝑃𝐺𝐺1 

or       𝑃𝑃𝐺𝐺1 = −
𝑎𝑎2

𝑝𝑝
 

Similarly if the normal (27) meets the plane 𝑚𝑚 = 0 and 𝑛𝑛 = 0 in points 𝐺𝐺2 
and 𝐺𝐺3 respectively, then 

𝑃𝑃𝐺𝐺2 = −
𝑏𝑏2

𝑝𝑝
,𝑃𝑃𝐺𝐺3 = −

𝑐𝑐2

𝑝𝑝
 

Therefore 𝑃𝑃𝐺𝐺1:𝑃𝑃𝐺𝐺2:𝑃𝑃𝐺𝐺3 = 𝑎𝑎2: 𝑏𝑏2: 𝑐𝑐2. 

Now given that 𝑃𝑃𝐺𝐺12 + 𝑃𝑃𝐺𝐺22 + 𝑃𝑃𝐺𝐺32 = 𝑘2. 

⟹ �−
𝑎𝑎2

𝑝𝑝
�
2

+ �−
𝑏𝑏2

𝑝𝑝
�
2

+ �−
𝑐𝑐2

𝑝𝑝
�
2

= 𝑘2 

⟹
1
𝑝𝑝2

=
𝑘2

𝑎𝑎4 + 𝑏𝑏4 + 𝑐𝑐4
 

Using (26), we have 

�
𝑙𝑙′

𝑎𝑎2
�
2

+ �
𝑚𝑚′

𝑏𝑏2
�
2

+ �
𝑛𝑛′

𝑐𝑐2
�
2

=
𝑘2

𝑎𝑎4 + 𝑏𝑏4 + 𝑐𝑐4
 

or     
𝑙𝑙′2

𝑎𝑎4
+
𝑚𝑚′2

𝑏𝑏4
+
𝑛𝑛′2

𝑐𝑐4
=

𝑘2

𝑎𝑎4 + 𝑏𝑏4 + 𝑐𝑐4
 

Hence the locus of point 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) is 

or     
𝑙𝑙2

𝑎𝑎4
+
𝑚𝑚2

𝑏𝑏4
+
𝑛𝑛2

𝑐𝑐4
=

𝑘2

𝑎𝑎4 + 𝑏𝑏4 + 𝑐𝑐4
 

Example 8.7.2 Prove that the feet of the six normals drawn to the ellipsoid 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1  … … . . (28) 

 from any point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) lie on the curve of intersection of the ellipsoid 
and the cone 
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𝑎𝑎2(𝑏𝑏2 − 𝑐𝑐2)𝛼𝛼
𝑙𝑙

+
𝑏𝑏2(𝑐𝑐2 − 𝑎𝑎2)𝛽𝛽

𝑚𝑚
+
𝑐𝑐2(𝑎𝑎2 − 𝑏𝑏2)𝛾𝛾

𝑛𝑛
= 0 

Solution: Let (𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) be any point on the ellipsoid (28). Then the 
equations of the normal at (𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) to the ellipsoid are given by (27). 
Which gives 

𝑙𝑙 − 𝑙𝑙′

𝑙𝑙′ 𝑎𝑎2⁄ =
𝑚𝑚 − 𝑚𝑚′

𝑚𝑚′ 𝑏𝑏2⁄ =
𝑛𝑛 − 𝑛𝑛′

𝑛𝑛′ 𝑐𝑐2⁄     … … . (29)   

If this normal passes through the given point (𝛼𝛼,𝛽𝛽, 𝛾𝛾), then 

𝛼𝛼 − 𝑙𝑙′

𝑙𝑙′ 𝑎𝑎2⁄ =
𝛽𝛽 − 𝑚𝑚′

𝑚𝑚′ 𝑏𝑏2⁄ =
𝛾𝛾 − 𝑛𝑛′

𝑛𝑛′ 𝑐𝑐2⁄ = 𝜆𝜆 (say )     

Hence we have 

𝑙𝑙′ =
𝑎𝑎2𝛼𝛼
𝑎𝑎2 + 𝜆𝜆

 , 𝑚𝑚′ =
𝑏𝑏2𝛽𝛽
𝑏𝑏2 + 𝜆𝜆

 , 𝑛𝑛′ =
𝑐𝑐2𝛾𝛾
𝑐𝑐2 + 𝜆𝜆

  … … (30) 

This gives the coordinates of the six feet of the normals drawn from the 
given point (𝛼𝛼,𝛽𝛽, 𝛾𝛾). We can write these equations as 

𝜆𝜆 =
𝑎𝑎2𝛼𝛼
𝑙𝑙′

− 𝑎𝑎2, 𝜆𝜆 =
𝑏𝑏2𝛽𝛽
𝑚𝑚′

− 𝑏𝑏2, 𝜆𝜆 =
𝑐𝑐2𝛾𝛾
𝑛𝑛′

− 𝑐𝑐2 

Multiplying these equations by (𝑏𝑏2 − 𝑐𝑐2), (𝑐𝑐2 − 𝑎𝑎2) and (𝑎𝑎2 − 𝑏𝑏2) and 
then adding we have 

 𝜆𝜆(𝑏𝑏2 − 𝑐𝑐2) + 𝜆𝜆(𝑐𝑐2 − 𝑎𝑎2) + 𝜆𝜆(𝑎𝑎2 − 𝑏𝑏2) 

= �
𝑎𝑎2𝛼𝛼
𝑙𝑙′

− 𝑎𝑎2� (𝑏𝑏2 − 𝑐𝑐2) + �
𝑏𝑏2𝛽𝛽
𝑚𝑚′

− 𝑏𝑏2� (𝑐𝑐2 − 𝑎𝑎2) + �
𝑐𝑐2𝛾𝛾
𝑛𝑛′

− 𝑐𝑐2� (𝑎𝑎2

− 𝑏𝑏2) 

Or       �
𝑎𝑎2𝛼𝛼
𝑙𝑙′

− 𝑎𝑎2� (𝑏𝑏2 − 𝑐𝑐2) + �
𝑏𝑏2𝛽𝛽
𝑚𝑚′

− 𝑏𝑏2� (𝑐𝑐2 − 𝑎𝑎2)

+ �
𝑐𝑐2𝛾𝛾
𝑛𝑛′

− 𝑐𝑐2� (𝑎𝑎2 − 𝑏𝑏2) = 0 

Simplifying the equation, we have 

𝑎𝑎2(𝑏𝑏2 − 𝑐𝑐2)𝛼𝛼
𝑙𝑙′

+
𝑏𝑏2(𝑐𝑐2 − 𝑎𝑎2)𝛽𝛽

𝑚𝑚′
+
𝑐𝑐2(𝑎𝑎2 − 𝑏𝑏2)𝛾𝛾

𝑛𝑛′
= 0 

Locus of (𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) is 
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𝑎𝑎2(𝑏𝑏2 − 𝑐𝑐2)𝛼𝛼
𝑙𝑙

+
𝑏𝑏2(𝑐𝑐2 − 𝑎𝑎2)𝛽𝛽

𝑚𝑚
+
𝑐𝑐2(𝑎𝑎2 − 𝑏𝑏2)𝛾𝛾

𝑛𝑛
= 0 

This equation is a homogeneoussecond degree equation and hence 
represents a cone. Therefore the six feet of normals drawn from (𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
lie on the curve of intersection of the ellipsoid and this cone . 

Example 8.7.3 Prove that the lines drawn from the origin parallel to the 
normal to the conicoid                𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1        ……… (31) 

at points lying on its curve of intersection with the plane 

                                        𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝                    ……….. (32) 

generates the cone 

𝑝𝑝2 �
𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
� = �

𝑙𝑙𝑙𝑙
𝑎𝑎

+
𝑚𝑚𝑚𝑚
𝑏𝑏

+
𝑛𝑛𝑛𝑛
𝑐𝑐
�
2

 

Solution: Let 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) be any point on the conicoid (31). Then the 
equations of the normal to the conicoid at 𝑃𝑃 may be given as 

𝑙𝑙 − 𝑙𝑙′

𝑎𝑎𝑙𝑙′
=
𝑚𝑚 − 𝑚𝑚′

𝑏𝑏𝑚𝑚′
=
𝑛𝑛 − 𝑛𝑛′

𝑐𝑐𝑛𝑛′
         … … … (33) 

Hence the equations of the line passing through the origin and parallel to 
the normal (33) may be given as 

𝑙𝑙
𝑎𝑎𝑙𝑙′

=
𝑚𝑚
𝑏𝑏𝑚𝑚′

=
𝑛𝑛
𝑐𝑐𝑛𝑛′

                … … … (34) 

Since the point 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) lies on(31) and (32), hence 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 = 1, 𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′ = 𝑝𝑝 

We can make the first equation homogeneous with the help of second 
equation, i.e. 

𝑎𝑎𝑙𝑙′2 + 𝑏𝑏𝑚𝑚′2 + 𝑐𝑐𝑛𝑛′2 = �
𝑙𝑙𝑙𝑙′ + 𝑚𝑚𝑚𝑚′ + 𝑛𝑛𝑛𝑛′

𝑝𝑝
�
2

 

or   𝑝𝑝2 �
(𝑎𝑎𝑙𝑙′)2

𝑎𝑎
+

(𝑏𝑏𝑚𝑚′)2

𝑏𝑏
+

(𝑐𝑐𝑛𝑛′)2

𝑐𝑐
�

= �𝑙𝑙
(𝑎𝑎𝑙𝑙′)
𝑎𝑎

+ 𝑚𝑚
(𝑏𝑏𝑚𝑚′)
𝑏𝑏

+ 𝑛𝑛
(𝑐𝑐𝑛𝑛′)
𝑐𝑐

�
2

… . . (35) 

The locus of line (34) is obtained by eliminating 𝑎𝑎𝑙𝑙′, 𝑏𝑏𝑚𝑚′, 𝑐𝑐𝑛𝑛′ from (34) 
and (35), i.e. 
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𝑝𝑝2 �
𝑙𝑙2

𝑎𝑎
+
𝑚𝑚2

𝑏𝑏
+
𝑛𝑛2

𝑐𝑐
� = �

𝑙𝑙𝑙𝑙
𝑎𝑎

+
𝑚𝑚𝑚𝑚
𝑏𝑏

+
𝑛𝑛𝑛𝑛
𝑐𝑐
�
2

 

Which is the equation of the required cone.  

8.8 DIAMETRAL PLANES 

Any chord through the centre of a conicoid is called a diameter of the 
conicoid. A plane which bisects a system of parallel chords is called a 
diametral plane of a conicoid. In other words, a diametral plane is the 
locus of middle points of a system of parallel chords drawn parallel to a 
given line or diameter. If a diametral plane bisects a system of chords 
parallel to a given line, we say that the diametral plane is conjugate to that 
line. Diametral planes which are perpendicular to the chords bisected by 
them are called principal planes. The lines of intersection of principal 
planes are called principal axis. Let us find the equation of a diametral 
plane of a central conicoid  

                                                    𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1     …… (36) 

Let a fixed line be given as 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

   … … . . (37) 

The equations of a chord drawn parallel to (37) with mid-point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
may be given as 

 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

 (= 𝑟𝑟)     … … … . (38) 

Any point on this chord will be (𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽, 𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the chord (38) 
meets the conicoid (36) at point this point, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 = 1 

or       𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 2𝑟𝑟(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1 = 0   

Since (𝛼𝛼,𝛽𝛽, 𝛾𝛾)is the mid-point of the chord (38), the two values of 𝑟𝑟 given 
by above quadratic equation must be equal in magnitude but opposite in 
sign, i.e.  

𝑟𝑟1 = −𝑟𝑟2 

or                                                𝑟𝑟1 + 𝑟𝑟2 = 0 
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or                                               𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 0   …….. (39) 

If 𝑙𝑙,𝑚𝑚,𝑛𝑛 are given, then (38) represents system of parallel chords. The 
locus of middle point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 

                                                 𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛 = 0 ………. (40) 

This is the diametral plane conjugate to the line with dc’s 𝑙𝑙,𝑚𝑚,𝑛𝑛. 

For example, suppose we want to obtain the diametral plane of the 
conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 conjugate to 𝑛𝑛-axis, i.e. diametral plane 
bisecting the chords parallel to 𝑛𝑛-axis. 

The equations of 𝑛𝑛-axis are 

𝑙𝑙
0

=
𝑚𝑚
0

=
𝑛𝑛
1

   

Here 𝑙𝑙 = 0,𝑚𝑚 = 0,𝑛𝑛 = 1. Hence from (40) the equation of diametral 
plane is 

𝑛𝑛 = 0, 𝑖. 𝑒.  𝑙𝑙𝑚𝑚-plane  

Similarly, it can be shown that the diametral planes bisecting chords 
parallel to 𝑙𝑙-axis and 𝑚𝑚-axis are 𝑚𝑚𝑛𝑛-plane and 𝑙𝑙𝑛𝑛-plane respectively. Also 
the coordinate planes are such that they bisect chords perpendicular to 
them. Hence the coordinate planes are principal planes and the coordinate 
axes are principal axes. 

8.9 CONJUGATE DIAMETERS 

You have seen that the coordinate planes are such diametral planes 
of the central conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1  that each bisects chords 
parallel to the line of intersection of the other two planes. Such planes are 
called conjugate diametral planes. Hence any three diametral planes which 
are such that each is the diametral plane of the line of intersection of the 
other two are called conjugate diametral planes. 

 Also you have seen that the coordinate axes are such that planes 
through any two bisect chords parallel to the third axis. Such lines are 
called conjugate diameters. Hence the three lines which are such that the 
plane containing any two is the diametral plane of the third are called 
conjugate diameters. 

8.9.1 CONJUGATE DIAMETERS OF AN ELLIPSOID 

Now we shall discuss the conjugate diameters of an ellipsoid given by the 
equation 
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𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1  … … . . (41) 

Let 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) be any point on the ellipsoid (41). Then the direction 
cosines of the line 𝑂𝑂𝑃𝑃 are proportional to 𝑙𝑙1 − 0,𝑚𝑚1 − 0, 𝑛𝑛1 − 0, i.e. 
𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1. Hence by (40), the diametral plane of 𝑂𝑂𝑃𝑃 is  

𝑙𝑙𝑙𝑙1
𝑎𝑎2

+
𝑚𝑚𝑚𝑚1
𝑏𝑏2

+
𝑛𝑛𝑛𝑛1
𝑐𝑐2

= 0  … … . . (42) 

If 𝑄(𝑙𝑙2,𝑚𝑚2, 𝑛𝑛2) lies on the diametral plane (42) of 𝑂𝑂𝑃𝑃, then 

𝑙𝑙2𝑙𝑙1
𝑎𝑎2

+
𝑚𝑚2𝑚𝑚1
𝑏𝑏2

+
𝑛𝑛2𝑛𝑛1
𝑐𝑐2

= 0  … … . . (43) 

The symmetry of above equation indicates that if 𝑄 lies on the diametral 
plane of 𝑂𝑂𝑃𝑃, then 𝑃𝑃 lies on the diametral plane of 𝑂𝑂𝑄. 

Let the diametral planes of 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 intersect in diameter 𝑂𝑂𝑅 where 
𝑅(𝑙𝑙3,𝑚𝑚3, 𝑛𝑛3)  is one of the two points where the line of intersection of 
diametral planes of 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 meets the ellipsoid.  

Now the diametral plane of 𝑂𝑂𝑅 is 

𝑙𝑙𝑙𝑙3
𝑎𝑎2

+
𝑚𝑚𝑚𝑚3
𝑏𝑏2

+
𝑛𝑛𝑛𝑛3
𝑐𝑐2

= 0  … … . . (44) 

Since 𝑅(𝑙𝑙3,𝑚𝑚3, 𝑛𝑛3) lies on the diametral planes of 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄, hence 𝑃𝑃 
and 𝑄 must lie on the diametral plane of 𝑂𝑂𝑅, i.e. 

𝑙𝑙3𝑙𝑙1
𝑎𝑎2

+
𝑚𝑚3𝑚𝑚1
𝑏𝑏2

+
𝑛𝑛3𝑛𝑛1
𝑐𝑐2

= 0 … … . . (45) 

and   
𝑙𝑙2𝑙𝑙3
𝑎𝑎2

+
𝑚𝑚2𝑚𝑚3
𝑏𝑏2

+
𝑛𝑛2𝑛𝑛3
𝑐𝑐2

= 0  … … . . (46) 

Thus the planes 𝑃𝑃𝑂𝑂𝑄,𝑄𝑂𝑂𝑅,𝑅𝑂𝑂𝑃𝑃 are conjugate diametral planes and 
𝑂𝑂𝑅,𝑂𝑂𝑃𝑃,𝑂𝑂𝑄 are the corresponding conjugate semi-diameters. 
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Now the points 𝑃𝑃,𝑄,𝑅 lie on the ellipsoid (41), hence 

𝑙𝑙12

𝑎𝑎2
+
𝑚𝑚12

𝑏𝑏2
+
𝑛𝑛12

𝑐𝑐2
= 1,

𝑙𝑙22

𝑎𝑎2
+
𝑚𝑚22

𝑏𝑏2
+
𝑛𝑛22

𝑐𝑐2
= 1 ,

𝑙𝑙32

𝑎𝑎2
+
𝑚𝑚32

𝑏𝑏2
+
𝑛𝑛32

𝑐𝑐2
= 1     … … . . (47) 

Equations (44), (45), (46) and (47) indicate that the lines with direction 
cosines 

𝑙𝑙1
𝑎𝑎

,
𝑚𝑚1
𝑏𝑏

,
𝑛𝑛1
𝑐𝑐

;  
𝑙𝑙2
𝑎𝑎

,
𝑚𝑚2
𝑏𝑏

,
𝑛𝑛2
𝑐𝑐

;  
𝑙𝑙3
𝑎𝑎

,
𝑚𝑚3
𝑏𝑏

,
𝑛𝑛3
𝑐𝑐

 

are mutually perpendicular. Hence we have 

𝑙𝑙12 + 𝑙𝑙22 + 𝑙𝑙32 = 𝑎𝑎2

𝑚𝑚12 + 𝑚𝑚22 + 𝑚𝑚32 = 𝑏𝑏2

𝑛𝑛12 + 𝑛𝑛22 + 𝑛𝑛32 = 𝑐𝑐2
�      … … . . (48) 

𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2 + 𝑙𝑙3𝑚𝑚3 = 0
𝑚𝑚1𝑛𝑛1 + 𝑚𝑚2𝑛𝑛2 + 𝑚𝑚3𝑛𝑛3 = 0
𝑛𝑛1𝑙𝑙1 + 𝑛𝑛2𝑙𝑙2 + 𝑛𝑛3𝑙𝑙3 = 0

�      … … . . (49) 

Now we shall discuss the properties of these conjugate diameters.  

8.9.2 PROPERTIES OF CONJUGATE DIAMETERS 

PROPERTY I The sum of squares of any three conjugate semidiameters 
of an ellipsoid is constant. 

We have 

𝑂𝑂𝑃𝑃2 + 𝑂𝑂𝑄2 + 𝑂𝑂𝑅2
= (𝑙𝑙12 + 𝑚𝑚12 + 𝑛𝑛12) + (𝑙𝑙22 + 𝑚𝑚22 + 𝑛𝑛22)
+ (𝑙𝑙32 + 𝑚𝑚32 + 𝑛𝑛32) 

                             = (𝑙𝑙12 + 𝑙𝑙22 + 𝑙𝑙32) + (𝑚𝑚12 + 𝑚𝑚22 + 𝑚𝑚32) +
(𝑛𝑛12 + 𝑛𝑛22 + 𝑛𝑛32) 

                             = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2,         using (48)  

                             = constant 

PROPERTY II The sum of squares of the projections of three conjugate 
semi-diameters on any line is constant 

Suppose we are given a line with direction cosines 𝑙𝑙,𝑚𝑚,𝑛𝑛. Then the 
projection of the semi-diameter 𝑂𝑂𝑃𝑃 on this line 

𝐿1 = 𝑙𝑙(𝑙𝑙1 − 0) + 𝑚𝑚(𝑚𝑚1 − 0) + 𝑛𝑛(𝑛𝑛1 − 0) 

                                          = 𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 UGMM-102/277
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Similarly, the projections of the semi-diameters 𝑂𝑂𝑃𝑃 and 𝑂𝑂𝑄 on this line 
will be 

𝐿2 = 𝑙𝑙𝑙𝑙2 + 𝑚𝑚𝑚𝑚2 + 𝑛𝑛𝑛𝑛2, 𝐿3 = 𝑙𝑙𝑙𝑙3 + 𝑚𝑚𝑚𝑚3 + 𝑛𝑛𝑛𝑛3 

Now 𝐿12 + 𝐿22 + 𝐿32 = (𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1)2 + (𝑙𝑙𝑙𝑙2 + 𝑚𝑚𝑚𝑚2 + 𝑛𝑛𝑛𝑛2)2 

                                                                                     +(𝑙𝑙𝑙𝑙3 + 𝑚𝑚𝑚𝑚3 +
𝑛𝑛𝑛𝑛3)2 

 = 𝑙𝑙2(𝑙𝑙12 + 𝑙𝑙22 + 𝑙𝑙32) + 𝑚𝑚2(𝑚𝑚12 + 𝑚𝑚22 + 𝑚𝑚32) + 𝑛𝑛2(𝑛𝑛12 + 𝑛𝑛22 + 𝑛𝑛32) 

+2𝑙𝑙𝑚𝑚(𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2 + 𝑙𝑙3𝑚𝑚3) + 2𝑚𝑚𝑛𝑛(𝑚𝑚1𝑛𝑛1 + 𝑚𝑚2𝑛𝑛2 + 𝑚𝑚3𝑛𝑛3) + 2𝑙𝑙𝑛𝑛(𝑛𝑛1𝑙𝑙1
+ 𝑛𝑛2𝑙𝑙2 + 𝑛𝑛3𝑙𝑙3) 

 = 𝑙𝑙2𝑎𝑎2 + 𝑚𝑚2𝑏𝑏2 + 𝑛𝑛2𝑐𝑐2        using (48)and (49) 

 = constant 

Similarly we can prove the following property- 

PROPERTY III The sum of squares of the projections of three conjugate 
semi-diameters on any plane is constant. 

PROPERTY IV The volume of the parallelopiped formed by three 
conjugate semi-diameters of an ellipsoid as coterminous edges is constant. 

The volume of the parallelopiped having 𝑂𝑂𝑃𝑃,𝑂𝑂𝑄,𝑂𝑂𝑅 as coterminous 
edges 

𝑉𝑉 = 6 × volume of the tetrahedron (𝑂𝑂,𝑃𝑃𝑄𝑅)  

                                      = 6 × 1
6
�

0 0
𝑙𝑙1 𝑚𝑚1

0 1
𝑛𝑛1 1

𝑙𝑙2 𝑚𝑚2
𝑙𝑙3 𝑚𝑚3

𝑛𝑛2 1
𝑛𝑛3 1

� 

                                      = �
𝑙𝑙1 𝑚𝑚1 𝑛𝑛1
𝑙𝑙2 𝑚𝑚2 𝑛𝑛2
𝑙𝑙3 𝑚𝑚3 𝑛𝑛3

� 

Hence 𝑉𝑉2 = �
𝑙𝑙1 𝑚𝑚1 𝑛𝑛1
𝑙𝑙2 𝑚𝑚2 𝑛𝑛2
𝑙𝑙3 𝑚𝑚3 𝑛𝑛3

� × �
𝑙𝑙1 𝑚𝑚1 𝑛𝑛1
𝑙𝑙2 𝑚𝑚2 𝑛𝑛2
𝑙𝑙3 𝑚𝑚3 𝑛𝑛3

� 

 

                 = �
𝑙𝑙1 𝑙𝑙2 𝑙𝑙3
𝑚𝑚1 𝑚𝑚2 𝑚𝑚3
𝑛𝑛1 𝑛𝑛2 𝑛𝑛3

� × �
𝑙𝑙1 𝑙𝑙2 𝑙𝑙3
𝑚𝑚1 𝑚𝑚2 𝑚𝑚3
𝑛𝑛1 𝑛𝑛2 𝑛𝑛3

� 
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                 = �
∑ 𝑙𝑙12 ∑ 𝑙𝑙1𝑚𝑚1 ∑𝑙𝑙1𝑛𝑛1
∑𝑙𝑙1𝑚𝑚1 ∑𝑚𝑚12 ∑ 𝑚𝑚1𝑛𝑛1
∑ 𝑙𝑙1𝑛𝑛1 ∑ 𝑚𝑚1𝑛𝑛1 ∑ 𝑛𝑛12

� 

                 = �
𝑎𝑎2 0 0
0 𝑏𝑏2 0
0 0 𝑐𝑐2

� 

          or    𝑉𝑉2 = 𝑎𝑎2𝑏𝑏2𝑐𝑐2     or 𝑉𝑉 = 𝑎𝑎𝑏𝑏𝑐𝑐 = constant 

PROPERTY V The sum of the squares of the areas of the faces 
𝑃𝑃𝑂𝑂𝑄,𝑄𝑂𝑂𝑅,𝑅𝑂𝑂𝑃𝑃 of the parallelopiped formed by three conjugate semi-
diameters as coterminous edges is constant. 

Let the areas of the faces 𝑄𝑂𝑂𝑅,𝑅𝑂𝑂𝑃𝑃,𝑃𝑃𝑂𝑂𝑄 be 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3respectively. Let 
𝑙𝑙1,𝑚𝑚1,𝑛𝑛1;  𝑙𝑙2,𝑚𝑚2,𝑛𝑛2 and 𝑙𝑙3,𝑚𝑚3,𝑛𝑛3 be the direction cosines of the normals 
to the planes 𝑄𝑂𝑂𝑅,𝑅𝑂𝑂𝑃𝑃,𝑃𝑃𝑂𝑂𝑄 respectively. Then the projection of the area 
𝐴𝐴1 on the plane 𝑙𝑙 = 0 is 

𝐴𝐴1𝑙𝑙1 =
1
2

(𝑚𝑚2𝑛𝑛3 − 𝑚𝑚3𝑛𝑛2)  … … (50) 

Now solving equations (43), (45) and (46), we have 

𝑙𝑙1
𝑎𝑎

= ±
(𝑚𝑚2𝑛𝑛3 − 𝑚𝑚3𝑛𝑛2)

𝑏𝑏𝑐𝑐
,
𝑚𝑚1
𝑏𝑏

= ±
(𝑛𝑛2𝑙𝑙3 − 𝑛𝑛3𝑙𝑙2)

𝑐𝑐𝑎𝑎
,
𝑛𝑛1
𝑐𝑐

= ±
(𝑙𝑙2𝑚𝑚3 − 𝑙𝑙3𝑚𝑚2)

𝑎𝑎𝑏𝑏
 

𝑙𝑙2
𝑎𝑎

= ±
(𝑚𝑚3𝑛𝑛1 − 𝑚𝑚1𝑛𝑛3)

𝑏𝑏𝑐𝑐
    and so on. 

Hence (50) becomes 

𝐴𝐴1𝑙𝑙1 = ±
𝑏𝑏𝑐𝑐𝑙𝑙1
2𝑎𝑎

 

Similarly  

𝐴𝐴1𝑚𝑚1 = ±
𝑐𝑐𝑎𝑎𝑚𝑚1
2𝑏𝑏

,𝐴𝐴1𝑛𝑛1 = ±
𝑎𝑎𝑏𝑏𝑛𝑛1

2𝑐𝑐
 

Squaring and adding, we have 

𝐴𝐴12�𝑙𝑙1
2 + 𝑚𝑚1

2 + 𝑛𝑛12� =
1
4
�
𝑏𝑏𝑐𝑐𝑙𝑙1
𝑎𝑎

�
2

+
1
4
�
𝑐𝑐𝑎𝑎𝑚𝑚1
𝑏𝑏

�
2

+
1
4
�
𝑎𝑎𝑏𝑏𝑛𝑛1
𝑐𝑐

�
2

 

or             𝐴𝐴12 =
1
4
��
𝑏𝑏𝑐𝑐𝑙𝑙1
2𝑎𝑎

�
2

+ �
𝑐𝑐𝑎𝑎𝑚𝑚1
2𝑏𝑏

�
2

+ �
𝑎𝑎𝑏𝑏𝑛𝑛1

2𝑐𝑐
�
2

�    …….. (51)   

Similarly for the areas 𝑅𝑂𝑂𝑃𝑃 and 𝑃𝑃𝑂𝑂𝑄, we have 
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           𝐴𝐴22 =
1
4
��
𝑏𝑏𝑐𝑐𝑙𝑙2
2𝑎𝑎

�
2

+ �
𝑐𝑐𝑎𝑎𝑚𝑚2
2𝑏𝑏

�
2

+ �
𝑎𝑎𝑏𝑏𝑛𝑛2

2𝑐𝑐
�
2

�    …….. (52)   

           𝐴𝐴32 =
1
4
��
𝑏𝑏𝑐𝑐𝑙𝑙3
2𝑎𝑎

�
2

+ �
𝑐𝑐𝑎𝑎𝑚𝑚3
2𝑏𝑏

�
2

+ �
𝑎𝑎𝑏𝑏𝑛𝑛3

2𝑐𝑐
�
2

�    …….. (53)   

Adding (51), (52) and (53) 

𝐴𝐴12 + 𝐴𝐴22 + 𝐴𝐴32 =
1
4
�
𝑏𝑏2𝑐𝑐2

𝑎𝑎2
�𝑙𝑙12 +

𝑐𝑐2𝑎𝑎2

𝑏𝑏2
�𝑚𝑚12 +

𝑎𝑎2𝑏𝑏2

𝑐𝑐2
�𝑛𝑛12� 

Using (48), we get 

𝐴𝐴12 + 𝐴𝐴22 + 𝐴𝐴32 =
1
4
�
𝑏𝑏2𝑐𝑐2

𝑎𝑎2
× 𝑎𝑎2 +

𝑐𝑐2𝑎𝑎2

𝑏𝑏2
× 𝑏𝑏2 +

𝑎𝑎2𝑏𝑏2

𝑐𝑐2
× 𝑐𝑐2� 

or         𝐴𝐴12 + 𝐴𝐴22 + 𝐴𝐴32 =
1
4

[𝑏𝑏2𝑐𝑐2 + 𝑐𝑐2𝑎𝑎2 + 𝑎𝑎2𝑏𝑏2] = constant 

8.9.3 CONJUGATE DIAMETERS OF THE 
HYPERBOLOIDS 

Now we shall obtain relations for the conjugate semi-diameters of a 
hyperboloid of one sheet  

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
−
𝑛𝑛2

𝑐𝑐2
= 1  … … . . (54) 

Let 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1),𝑄(𝑙𝑙2,𝑚𝑚2, 𝑛𝑛3) and 𝑅(𝑙𝑙3,𝑚𝑚3, 𝑛𝑛3) be the extremities of the 
conjugate semi-diameters of the hyperboloid (54). Then we have  

𝑙𝑙1𝑙𝑙2
𝑎𝑎2

+
𝑚𝑚1𝑚𝑚2
𝑏𝑏2

−
𝑛𝑛1𝑛𝑛2
𝑐𝑐2

= 0  … … . . (55) 

𝑙𝑙2𝑙𝑙3
𝑎𝑎2

+
𝑚𝑚2𝑚𝑚3
𝑏𝑏2

−
𝑛𝑛2𝑛𝑛3
𝑐𝑐2

= 0  … … . . (56) 

 
𝑙𝑙3𝑙𝑙1
𝑎𝑎2

+
𝑚𝑚3𝑚𝑚1
𝑏𝑏2

−
𝑛𝑛3𝑛𝑛1
𝑐𝑐2

= 0 … … . . (57) 

and 

𝑙𝑙12 + 𝑙𝑙22 − 𝑙𝑙32 = 𝑎𝑎2

𝑚𝑚12 + 𝑚𝑚22 − 𝑚𝑚32 = 𝑏𝑏2

𝑛𝑛12 + 𝑛𝑛22 − 𝑛𝑛32 = 𝑐𝑐2
�      … … . . (58) 

Now the points 𝑃𝑃,𝑄,𝑅 lie on the hyperboloid (54), hence 
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𝑙𝑙12

𝑎𝑎2
+
𝑚𝑚12

𝑏𝑏2
−
𝑛𝑛12

𝑐𝑐2
= 1,

𝑙𝑙22

𝑎𝑎2
+
𝑚𝑚22

𝑏𝑏2
−
𝑛𝑛22

𝑐𝑐2
= 1 ,

𝑙𝑙32

𝑎𝑎2
+
𝑚𝑚32

𝑏𝑏2
−
𝑛𝑛32

𝑐𝑐2
= 1     … … . . (59) 

Hence we have 

𝑂𝑂𝑃𝑃2 + 𝑂𝑂𝑄2 − 𝑂𝑂𝑅2
= (𝑙𝑙12 + 𝑚𝑚12 + 𝑛𝑛12) + (𝑙𝑙22 + 𝑚𝑚22 + 𝑛𝑛22)
− (𝑙𝑙32 + 𝑚𝑚32 + 𝑛𝑛32) 

                             = (𝑙𝑙12 + 𝑙𝑙22 − 𝑙𝑙32) + (𝑚𝑚12 + 𝑚𝑚22 − 𝑚𝑚32) +
(𝑛𝑛12 + 𝑛𝑛22 − 𝑛𝑛32) 

                             = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2,         using (58)  

                             = constant 

Let the areas of the faces 𝑄𝑂𝑂𝑅,𝑅𝑂𝑂𝑃𝑃,𝑃𝑃𝑂𝑂𝑄 be 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3respectively. Then 
proceeding as in case of ellipsoid using relations (55), (56), (57), (58) and 
(59) we can show that 

         𝐴𝐴12 + 𝐴𝐴22 − 𝐴𝐴32 =
1
4

[𝑏𝑏2𝑐𝑐2 + 𝑐𝑐2𝑎𝑎2 − 𝑎𝑎2𝑏𝑏2] 

Similarly for the hyperboloid of two sheets 𝑥𝑥
2

𝑎2
− 𝑦𝑦2

𝑏2
− 𝑧𝑧2

𝑐2
= 1, we have 

        𝐴𝐴12 − 𝐴𝐴22 − 𝐴𝐴32 =
1
4

[𝑏𝑏2𝑐𝑐2 − 𝑐𝑐2𝑎𝑎2 − 𝑎𝑎2𝑏𝑏2] 

8.10 ILLUSTRATIVE EXAMPLES 

Example 8.10.1 Find the equation to the plane through the extremities 
𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1),𝑄(𝑙𝑙2,𝑚𝑚2, 𝑛𝑛2) and 𝑅(𝑙𝑙3,𝑚𝑚3, 𝑛𝑛3) of three conjugate semi-
diameters of an ellipsoid 

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
= 1  … … . . (60) 

Solution: Let the equation of the plane 𝑃𝑃𝑄𝑅 be  

                                             𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑛𝑛 = 𝑝𝑝   ………. (61) 

Since 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1),𝑄(𝑙𝑙2, 𝑚𝑚2, 𝑛𝑛2) and 𝑅(𝑙𝑙3,𝑚𝑚3, 𝑛𝑛3) lies on (61), hence 

                                             𝑙𝑙𝑙𝑙1 + 𝑚𝑚𝑚𝑚1 + 𝑛𝑛𝑛𝑛1 = 𝑝𝑝    ……. (62) 

                                            𝑙𝑙𝑙𝑙2 + 𝑚𝑚𝑚𝑚2 + 𝑛𝑛𝑛𝑛2 = 𝑝𝑝     ..….. (63) 

                                            𝑙𝑙𝑙𝑙3 + 𝑚𝑚𝑚𝑚3 + 𝑛𝑛𝑛𝑛3 = 𝑝𝑝   …….. (64) 
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Multiplying (62), (63) and (64) by 𝑙𝑙1, 𝑙𝑙2 and 𝑙𝑙3 respectively and adding 
we have 

𝑙𝑙(𝑙𝑙12 + 𝑙𝑙22 + 𝑙𝑙32) + 𝑚𝑚(𝑙𝑙1𝑚𝑚1 + 𝑙𝑙2𝑚𝑚2 + 𝑙𝑙3𝑚𝑚3) + 𝑛𝑛(𝑛𝑛1𝑙𝑙1 + 𝑛𝑛2𝑙𝑙2 + 𝑛𝑛3𝑙𝑙3) 

                                                                             = 𝑝𝑝(𝑙𝑙1 + 𝑙𝑙2 + 𝑙𝑙3)     

Using (48) and (49), we have 

𝑙𝑙𝑎𝑎2 = 𝑝𝑝(𝑙𝑙1 + 𝑙𝑙2 + 𝑙𝑙3) 

or     𝑙𝑙 =
𝑝𝑝(𝑙𝑙1 + 𝑙𝑙2 + 𝑙𝑙3)

𝑎𝑎2
 

Similarly            𝑚𝑚 =
𝑝𝑝(𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3)

𝑏𝑏2
   and   𝑙𝑙 =

𝑝𝑝(𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3)
𝑐𝑐2

 

Putting these values in (61), we get the required equation of the plane 
𝑃𝑃𝑄𝑅 as 

𝑙𝑙 �
𝑙𝑙1 + 𝑙𝑙2 + 𝑙𝑙3

𝑎𝑎2
� + 𝑚𝑚 �

𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3
𝑏𝑏2

� + 𝑛𝑛 �
𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3

𝑐𝑐2
� = 1 

Example 8.10.2 Find the locus of the equal conjugate diameters of the 
ellipsoid 𝑥𝑥

2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1 

Solution Let 𝑃𝑃(𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1),𝑄(𝑙𝑙2,𝑚𝑚2, 𝑛𝑛3) and 𝑅(𝑙𝑙3,𝑚𝑚3, 𝑛𝑛3) be the 
extremities of the conjugate semi-diameters of the ellipsoid such that 
𝑂𝑂𝑃𝑃 = 𝑂𝑂𝑄 = 𝑂𝑂𝑅 = 𝑟𝑟 

Now we know that       𝑂𝑂𝑃𝑃2 + 𝑂𝑂𝑄2 + 𝑂𝑂𝑅2 = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 

⟹ 3𝑟𝑟2 = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 

⟹ 𝑟𝑟2 =
1
3

(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)  … . . (65) 

Let the direction cosines of 𝑂𝑂𝑃𝑃 be 𝑙𝑙,𝑚𝑚, 𝑛𝑛. Then the equations of the line 
𝑂𝑂𝑃𝑃 are 

𝑙𝑙
𝑙𝑙

=
𝑚𝑚
𝑚𝑚

=
𝑛𝑛
𝑛𝑛

   … . . (66) 

and 𝑙𝑙1 = 𝑙𝑙𝑟𝑟,𝑚𝑚1 = 𝑚𝑚𝑟𝑟, 𝑛𝑛1 = 𝑛𝑛𝑟𝑟. 

Since 𝑃𝑃 lies on the given ellipsoid, hence 

𝑙𝑙12

𝑎𝑎2
+
𝑚𝑚12

𝑏𝑏2
+
𝑛𝑛12

𝑐𝑐2
= 1 
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or       
(𝑙𝑙𝑟𝑟)2

𝑎𝑎2
+

(𝑚𝑚𝑟𝑟)2

𝑏𝑏2
+

(𝑛𝑛𝑟𝑟)2

𝑐𝑐2
= 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2,     as  𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 = 1 

or     𝑟𝑟2 �
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
� = 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 

Using (65) we get 

1
3

(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)�
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
� = 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 

or         �
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
� = 3

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)
(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)     … . . (67) 

The locus of the line 𝑂𝑂𝑃𝑃 is obtained by eliminating 𝑙𝑙,𝑚𝑚,𝑛𝑛 from (66) and 
(67), i.e. 

�
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
� = 3

(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)
(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2)   

or     
𝑙𝑙2

𝑎𝑎2
(2𝑎𝑎2 − 𝑏𝑏2 − 𝑐𝑐2) +

𝑚𝑚2

𝑏𝑏2
(2𝑏𝑏2 − 𝑐𝑐2 − 𝑎𝑎2) +

𝑛𝑛2

𝑐𝑐2
(2𝑐𝑐2 − 𝑎𝑎2 − 𝑏𝑏2)

= 0 

Which represents a cone. 

8.11 SECTION WITH A GIVEN CENTRE 

Suppose (𝛼𝛼,𝛽𝛽, 𝛾𝛾) be given as middle point of a chord of the conicoid                     

                                         𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1                  …… (68) 

We can find the equation of the plane which intersects the conicoid in a 
conic with centre as (𝛼𝛼,𝛽𝛽, 𝛾𝛾). This plane will be the locus of all chords of 
(68) with (𝛼𝛼,𝛽𝛽, 𝛾𝛾) as middle point.  

The equations of a chord with (𝛼𝛼,𝛽𝛽, 𝛾𝛾) as mid-point may be given as 

 

𝑙𝑙 − 𝛼𝛼
𝑙𝑙

=
𝑚𝑚 − 𝛽𝛽
𝑚𝑚

=
𝑛𝑛 − 𝛾𝛾
𝑛𝑛

 (= 𝑟𝑟)     … … … . (69) 

Any point on this chord will be (𝑙𝑙𝑟𝑟 + 𝛼𝛼,𝑚𝑚𝑟𝑟 + 𝛽𝛽, 𝑛𝑛𝑟𝑟 + 𝛾𝛾). If the chord (69) 
meets the conicoid (68) at point this point, then 

𝑎𝑎(𝑙𝑙𝑟𝑟 + 𝛼𝛼)2 + 𝑏𝑏(𝑚𝑚𝑟𝑟 + 𝛽𝛽)2 + 𝑐𝑐(𝑛𝑛𝑟𝑟 + 𝛾𝛾)2 = 1 

or       𝑟𝑟2(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2) + 2𝑟𝑟(𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛) + 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 +
𝑐𝑐𝛾𝛾2 − 1 = 0   
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Since (𝛼𝛼,𝛽𝛽, 𝛾𝛾)is the mid-point of the chord (69), the two values of 𝑟𝑟 given 
by above quadratic equation must be equal in magnitude but opposite in 
sign, i.e.  

𝑟𝑟1 = −𝑟𝑟2 

or                                                          𝑟𝑟1 + 𝑟𝑟2 = 0 

or                                               𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 0   …….. (70) 

 
Fig-7 

The locus of chord with a middle point (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is obtained by eliminating 
𝑙𝑙,𝑚𝑚, 𝑛𝑛 from (69) and (70), i.e. 

𝑎𝑎𝛼𝛼(𝑙𝑙 − 𝛼𝛼) + 𝑏𝑏𝛽𝛽(𝑚𝑚 − 𝛽𝛽) + 𝑐𝑐𝛾𝛾(𝑛𝑛 − 𝛾𝛾) = 0 

or                                    𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 … . . (71) 

Using the notations 𝑆𝑆1 ≡ 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1,𝑇𝑇 ≡ 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 −
1, the equation of the plane containing the section with centre (𝛼𝛼,𝛽𝛽, 𝛾𝛾) 
may be given as  

𝑆𝑆1 = 𝑇𝑇 

8.12 ILLUSTRATIVE EXAMPLES 

Example 8.12.1 Find the equation of the plane which cuts the conicoid 
2𝑙𝑙2 − 3𝑚𝑚2 + 5𝑛𝑛2 = 1 in a conic whose centre is at the point (2,1,3). 

Solution The required equation of plane is given by 

                                 𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 ……. (72) 

Here 𝛼𝛼 = 2,𝛽𝛽 = 1, 𝛾𝛾 = 3 and 𝑎𝑎 = 2, 𝑏𝑏 = −3, 𝑐𝑐 = 5. 

Hence (72) gives 

2(2)𝑙𝑙 + (−3)(1)𝑚𝑚 + 5(3)𝑛𝑛 = 2(4) − 3(1) + 5(9) 
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or                                           4𝑙𝑙 − 3𝑚𝑚 + 15𝑛𝑛 = 50  

 

Example 8.12.2 Prove that the centres of sections of 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 =
1 by the planes which are at a constant distance 𝑝𝑝 from the origin lie on 
the surface 

                  (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)2 = 𝑝𝑝2(𝑎𝑎2𝑙𝑙2 + 𝑏𝑏2𝑚𝑚2 + 𝑐𝑐2𝑛𝑛2) 

Solution:  The equation of the plane containing the section with centre 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) is given as              𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 

or                         – 𝑎𝑎𝛼𝛼𝑙𝑙 − 𝑏𝑏𝛽𝛽𝑚𝑚 − 𝑐𝑐𝛾𝛾𝑛𝑛 + (𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2) = 0  

The length of the perpendicular drawn from the origin to this palne 

𝑝𝑝 =
𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2

�𝑎𝑎2𝛼𝛼2 + 𝑏𝑏2𝛽𝛽2 + 𝑐𝑐2𝛾𝛾2
 

or                         (𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2)2 = 𝑝𝑝2(𝑎𝑎2𝛼𝛼2 + 𝑏𝑏2𝛽𝛽2 + 𝑐𝑐2𝛾𝛾2) 

Therfore the locus of the centre (𝛼𝛼,𝛽𝛽, 𝛾𝛾) is 

(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)2 = 𝑝𝑝2(𝑎𝑎2𝑙𝑙2 + 𝑏𝑏2𝑚𝑚2 + 𝑐𝑐2𝑛𝑛2) 

 

Example 8.12.3 Find the locus of the centres of sections of 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 +
𝑐𝑐𝑛𝑛2 = 1 which touch the conicoid 𝛼𝛼𝑙𝑙2 + 𝛽𝛽𝑚𝑚2 + 𝛾𝛾𝑛𝑛2 = 1 

Solution Let the centre of one such section of the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 +
𝑐𝑐𝑛𝑛2 = 1 be (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1). Then the equation of the plane containing the 
section is given as 

                                     𝑎𝑎𝑙𝑙𝑙𝑙1 + 𝑏𝑏𝑚𝑚𝑚𝑚1 + 𝑐𝑐𝑛𝑛𝑛𝑛1 = 𝑎𝑎𝑙𝑙12 + 𝑏𝑏𝑚𝑚12 + 𝑐𝑐𝑛𝑛12    
…… (73) 

If the plane (73) touches the conicoid 𝛼𝛼𝑙𝑙2 + 𝛽𝛽𝑚𝑚2 + 𝛾𝛾𝑛𝑛2 = 1, then from 
the condition of tangency [see eqn 22, Unit-7] we have 

(𝑎𝑎𝑙𝑙1)2

𝛼𝛼
+

(𝑏𝑏𝑚𝑚1)2

𝛽𝛽
+

(𝑐𝑐𝑛𝑛1)2

𝛾𝛾
= (𝑎𝑎𝑙𝑙12 + 𝑏𝑏𝑚𝑚12 + 𝑐𝑐𝑛𝑛12)2   

The required locus of (𝑙𝑙1,𝑚𝑚1, 𝑛𝑛1) is 

𝑎𝑎2𝑙𝑙2

𝛼𝛼
+
𝑏𝑏2𝑚𝑚2

𝛽𝛽
+
𝑐𝑐2𝑛𝑛2

𝛾𝛾
= (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)2   
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8.13 SUMMARY 

In this unit, we have studied the following facts- 

(1) The equation of the enveloping cone with vertex (𝛼𝛼,𝛽𝛽, 𝛾𝛾) of the 
conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is  (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 1)(𝑎𝑎𝛼𝛼2 +
𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 − 1) = (𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 − 1)2 

(2) The equation of an enveloping cylinder of a central conicoid 
𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1  whose generators are parallel to the line 
𝑥𝑥
𝑙

= 𝑦𝑦
𝑚

= 𝑧𝑧
𝑛
 is  

       (𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛)2 = (𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2)(𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 −
1) 

(3) The equations of the normal to the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 
at 𝑃𝑃(𝑙𝑙′,𝑚𝑚′, 𝑛𝑛′) may be given as 

𝑙𝑙 − 𝑙𝑙′

𝑎𝑎𝑙𝑙′
=
𝑚𝑚 − 𝑚𝑚′

𝑏𝑏𝑚𝑚′
=
𝑛𝑛 − 𝑛𝑛′

𝑐𝑐𝑛𝑛′
    

(4) Six normals can be drawn to a central conicoid from a given point. 
These six normals lie on a cone. These normals intersect the 
conicoid in six points which lie on a cubic curve. 

(5) A plane which bisects a system of parallel chords is called a 
diametral plane of a conicoid. If a diametral plane bisects a system 
of chords parallel to a given line, we say that the diametral plane is 
conjugate to that line. 

(6) The equation of a diametral plane of a central conicoid 𝑎𝑎𝑙𝑙2 +
𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 conjugate to the line with dc’s 𝑙𝑙,𝑚𝑚,𝑛𝑛 is given by 

𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑛𝑛𝑛𝑛 = 0 

(7) The planes which are such that each bisects chords parallel to the 
line of intersection of the other two planes are called conjugate 
diametral planes. Any three diametral planes which are such that 
each is the diametral plane of the line of intersection of the other 
two are called conjugate diametral planes. 

(8) The three lines which are such that the plane containing any two is 
the diametral plane of the third are called conjugate diameters. 

(9) The sum of squares of any three conjugate semidiameters of an 
ellipsoid is constant. 

𝑂𝑂𝑃𝑃2 + 𝑂𝑂𝑄2 + 𝑂𝑂𝑅2 = 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 = constant 

(10) The sum of squares of the projections of three conjugate semi-
diameters on any line is constant. 
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(11) The sum of squares of the projections of three conjugate semi-
diameters on any plane is constant. 

(12) The volume of the parallelopiped formed by three conjugate semi-
diameters of an ellipsoid as coterminous edges is constant. 

(13) The sum of the squares of the areas of the faces 𝑃𝑃𝑂𝑂𝑄,𝑄𝑂𝑂𝑅,𝑅𝑂𝑂𝑃𝑃 
of the parallelopiped formed by three conjugate semi-diameters as 
coterminous edges is constant. 

       𝐴𝐴12 + 𝐴𝐴22 + 𝐴𝐴32 =
1
4

[𝑏𝑏2𝑐𝑐2 + 𝑐𝑐2𝑎𝑎2 + 𝑎𝑎2𝑏𝑏2] = constant 

(14) The locus of the chords with a given middle point (𝛼𝛼,𝛽𝛽, 𝛾𝛾), i.e. 
The equation of the plane containing the section with centre 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) of the conicoid 𝑎𝑎𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 = 1 is given as  

𝑎𝑎𝛼𝛼𝑙𝑙 + 𝑏𝑏𝛽𝛽𝑚𝑚 + 𝑐𝑐𝛾𝛾𝑛𝑛 = 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛽𝛽2 + 𝑐𝑐𝛾𝛾2 

8.14 SELF ASSESSMENT QUESTIONS 

(1) Find the locus of the vertices of enveloping cones of the ellipsoid 
𝑥𝑥2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1, if sections of cones by the plane 𝑛𝑛 = 0 are 

circles. 

(2) Find the equation to the cylinder whose generators are parallel to 
the line 𝑥𝑥

𝑙
= 𝑦𝑦

𝑚
= 𝑧𝑧

𝑛
  and which envelopes the surface 𝑥𝑥

2

𝑎2
+ 𝑦𝑦2

𝑏2
+

𝑧𝑧2

𝑐2
= 1. 

[Ans. �
𝑙𝑙𝑙𝑙
𝑎𝑎2

+
𝑚𝑚𝑚𝑚
𝑏𝑏2

+
𝑛𝑛𝑛𝑛
𝑐𝑐2
�
2

= �
𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
� �

𝑙𝑙2

𝑎𝑎2
+
𝑚𝑚2

𝑏𝑏2
+
𝑛𝑛2

𝑐𝑐2
− 1�

2

] 

(3) Prove that the enveloping cylinder of the ellipsoid 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
=

1, whose generators are parallel to the line 𝑥𝑥
0

= 𝑦𝑦
√𝑎2−𝑏2

= 𝑧𝑧
𝑐
 meets 

the plane 𝑛𝑛 = 0 in a circle. 

(4) Prove that the greatest value of the shortest distance between the 
𝑙𝑙-axis and a normal to the ellipsoid 𝑥𝑥

2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1 is 𝑏𝑏 − 𝑐𝑐. 

(5) Prove that the locus of the foot of the perpendicular from the 
centre to the plane through the extremities of three conjugate 
diameters of an ellipsoid 𝑥𝑥

2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1 is 

𝑎𝑎2𝑙𝑙2 + 𝑏𝑏2𝑚𝑚2 + 𝑐𝑐2𝑛𝑛2 = 3(𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2)2 
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(6) Prove that the locus of middle points of chords of 𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 +
𝑐𝑐𝑛𝑛2 = 1 , which are parallel to 𝑙𝑙 = 0 and touch 𝑙𝑙2 + 𝑚𝑚2 + 𝑛𝑛2 =
𝑟𝑟2 lie on the surface 

𝑏𝑏𝑚𝑚2(𝑏𝑏𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 𝑏𝑏𝑟𝑟2) + 𝑐𝑐𝑛𝑛2(𝑐𝑐𝑙𝑙2 + 𝑏𝑏𝑚𝑚2 + 𝑐𝑐𝑛𝑛2 − 𝑏𝑏𝑟𝑟2)
= 0 

 (7) Prove that the section of the ellipsoid 𝑥𝑥
2

𝑎2
+ 𝑦𝑦2

𝑏2
+ 𝑧𝑧2

𝑐2
= 1 whose 

centre is at the point (𝑎𝑎 3⁄ , 𝑏𝑏 3⁄ , 𝑐𝑐 3⁄ ) passes through the 
extremities of the axes. 

(8) Find the centre of the conic 

𝑙𝑙2

9
+
𝑚𝑚2

16
+
𝑛𝑛2

4
= 1, 2𝑙𝑙 + 2𝑚𝑚 − 𝑛𝑛 = 3    [Ans. �

27
52

,
12
13

,
−3
26
�] 
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(3) George Wentworth, D.E. Smith (2007): Plane and solid Geometry, 
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