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COURSE INTRODUCTION

The obj ective of this c ourse is t o i ntroduce t he ba sic c oncepts of data
structures. The implementation details of various types of data structures
and their applications for the c omputations and in c omputer s cience for
solving t he r eal w orld problems. V arious t ypes of da ta s tructures 1 ike
linear a nd non -linear are d iscussed i n d etail. A fter r eading t his co urse
material you are able to understand the meaning of data structure and also
learn about their implementation. Y ou will also able to see how the data
structures useful for the computation. The aim is to provide an extensive
variety of topics on this subject with appropriate examples. The course is
organized into following blocks:

Block-1 Introduction of data structures, basics of algorithms and Array
Block-2  Data structures like Stack & Queue and recursion.
Block-3  Linked list, Tree and Graph.

Block-4  Searching & Sorting, Hashing and File organization



UNIT-1 INTRODUCTION TO DATA
STRUCTURE

Structure

1.0  Introduction

1.1 Objective

1.2 Algorithm Definition

1.3 Basic criteria of Algorithm

1.4  Data structure Definition

1.5 Data types

1.6  Types of data Structures

1.7  Representation of Data structure
1.8 Data Structure operations

1.9 Summary

1.0 INTRODUCTION

This unit is an introductory unit and gives you an understanding of
data structure, A lgorithm, D ata r epresentation, various D ata types and a
general overview about linear and non-linear data structures. It is a bout
structuring and or ganizing da ta a s a fundamental a spect of
developing a computer application.

1.1 OBJECTIVES

After the end of this unit, you should be able to:
1.  Understand about algorithm.
Understand of the data organization and representation
Define the term data structure
Understand about various data types

Know the classification of data structure i.e. linear and non-linear

AN

Introduce with data structure representation and operation on data
structures

1.2 ALGORITHM DEFINITION

An algorithm is a set of instructions to be done sequentially. Any
work to be done can be thought as series of steps. For example, to perform
an experiment, one must do some sequential tasks like:
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1. Setup the required apparatus
2. Do the process required

3. Note any observations

4. Summarize the results

These tasks accomplish an experiment. Let us see where such sequential
steps are employed.

A computer or other electronic device which accomplishes a logical task is
not a ctually lo gical b utis s imply f ollowing a s eries o f p rogrammed,
sequential instructions. A computer algorithm consists of a series of well-
defined s teps given to the c omputer to follow. W e can al so d efine t he
algorithm as:

1. “Analgorithm is a well define procedure that takes some value as
input and produces some value as the output in finite number of
steps.”

2. “Analgorithmisthusa s equence of computational s tepst hat

transform t he i nput i nto t he out put t hat m ust h alt af ter a f inal
number of steps or time”

3.  “Analgorithm is a procedure for processing that is formulated so
precisely that it may be performed by a mechanical or el ectronic
devices must b e formulated s o ex actly t hat t he s equence o ft he
processing st eps i s completely clearandithastoterminatein
definite time.”

The typical examples for algorithms are computer programs written in a
formal programming language.

Example: Write an algorithm to exchange the value of two variables.
Algorithm:
1.  Consider the two variables a, b with some values.
2. Consider a third variable t.
3. Do the following steps
(@) Assignthe valueofatot
(b) Assign the value of b to a
(c) Assignthevalueofttob

4.  Print the exchange value of a and b

1.3 BASIC CRITERIA FOR ALGORITHMS:

There are following basic criteria for an algorithm:
MCA-107/8
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The algorithm must be expressed in a fashion that is completely
free of ambiguity.

The algorithm must be efficient. It s hould not unne cessarily use
memory | ocations nor s hould itrequire an e xcessive num ber of
logical operations.

The a Igorithm s hould be ¢ oncise a nd compactt o f acilitate
verification of their correctness.

The a Igorithm m ustb e 1 ndependent f rom a ny pr ogramming
language mostly its written in pseudo code, so it can convert to any
programming la nguage w ith the pr oper us e of pr ogramming
language syntax.

1.4

DATA STRUCTURE DEFINITION

First we define the meaning of simple data. Data are simply values

or set of values. A data item is either the value of a variable or a constant.
For example, the value of a variable x is 5 which is described by the data
type integer, a data item is a row in a database table, which is described by
a data type. A data item that does not have subordinate data items is called
an elementary ite m. A d ataite mth atis c omposed of one orm ore
subordinate data items is called a group item. A record can be either an
elementary item or a group item. For example, an employee’s name may
be divided into three sub items — first name, middle name and last name
but t he social security number would nor mally be treated asa s ingle
item. Data may be organized in many different ways:

The logical or mathematical model of a particular organization of
data is called a data structure.

A data structure is an arrangement of data in a computer’s memory
or even disk storage.

Data structure is the method to store and organize data to facilitate
access and modifications

A data structure, sometimes called data type, can be thought of as a
category o f data. Like, Integer is a d ata category which can only
contain 1 ntegers. S tring is data c ategory hol ding onl y s trings. A
data structure not only defines what elements it may contain, it also
supports a set of operations on these elements, such as addition or
multiplication.

Data s tructures a re ways t o or ganize da ta ( information) f or
example:

0  Simple variables are consider as the Primitive types

O  Array, the collection of data items of the same type, stored in
memory at contiguously
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0 Linked list, the sequence of data items, each one points to the
next one, stored in memory at non-contiguously.

e Data s tructures a re bui Iding bl ocks o fa program. If programis
built us ing 1 mproper da ta s tructures, t hen t he pr ogram m ay not
work as expected always.

e The possible ways in w hich the d ata i tems ar e logically r elated
define different data structures.

e A datastructure is a c ollection o f d ifferent d ata ite ms th at a re
stored together in a clearly defined way.

The ex amples o f's everal co mmon d ata s tructures ar e string, arrays,
Stacks, Queues, Linked list, Binary Trees, Graph and Hash Tables.

In combination with Algorithm we may define the data structures as:

. Algorithms go with the data structures to manipulate the data i.e.
Algorithms are used to manipulate the data contained in these data
structures as in the form of sorting and searching.

e  More generally w e can s ay: Algorithms + Data Structures =
Programs.

1.5 DATATYPE

A data type is a cl assification o f data, which can store a s pecific
type of 1 nformation. Datat ypesar ep rimarilyu sedi n computer
programming, in which variables are created to store data. Each variable is
assigned a d ata type that d etermines w hat type o f data the variable may
contain. Thus a datatypeisa method o finterpreting a p attern of bi ts.
There a re num erous di fferent da ta t ypes. T hey a re us ed t o m ake t he
storage and processing of data easier and more efficient.

A data type is a term which refers to the kinds of data that variables may
hold. W ith e very p rogramming la nguage th ere is a s et of bui lt-in d ata
types. This means that the language allows variables to name data of that
type and provides a s et of ope rations w hich m eaningfully m anipulates
these v ariables. Some d ata t ypes are easy to p rovide b ecause t hey are
built-in i nto the ¢ omputer’s m achine 1 anguage instruction s et, s uch as
integer, character etc. Other data types require considerably more efficient
ways to implement. In some languages, these are features which allow one
to c onstruct combinations of t he bui It-in t ypes (like structuresin ‘C”’).
However, i t1i s ne cessary to ha ve s uch m echanism t o c reate t he ne w
complex data types which are not provided by the programming language.
Thene wt ypea Iso mustbe m eaningful f or m anipulations. S uch
meaningful data types are referred as abstract data type.

Different programming languages have their own set of basic data types.
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Basic data types or primitive data types

The most common basic or intrinsic data types or primitive data types are
as follows:

. Integer : It is a positive or negative number that does not contain
any fractional part.

o Real : A number that contains the decimal part

e  Boolean : Itis adatatype that can store one of only two values,
usually these values are TRUE or FALSE

o Character : Itis any | etter, num ber, p unctuation m ark or s pace,
which takes up a single unit of storage, usually a byte

. String : Itis s ometimes justreferred to as ‘ text’. Anytypeo f
alphabetic or numeric data can be stored as a string: “Delhi City”,
“30/05/2013” and “459.78 are all examples of the strings. Each
character within a string will be stored in one byte using its ASCII
code. T he ma ximum le ngth o fa stringis limitedonlybythe
available memory.

Structure data types or Non Primitive data types

There is another class of data types which is considered as structure data
types or non primitive data types. These data types are user defined data
types. Structured da ta types hol da c ollection of da tava lues. T his
collection will generally consist of the primitive data types. Examples of
this would include arrays, records, list, tree and files. T hese d ata t ypes,
which are created by programmers, ar e ex tremely i mportant and are the
building block of data structures. These are more complex data structures.
They stress on formation of sets of homogeneous and heterogeneous data
elements.

Abstract data types or Non-primitive data types

It is another form o f the non-primitive data types. An abstract data type
can be assumed as a mathematical model with a collection of operations
defined on that model i.e. an Abstract data type (ADT) is a new data type
derived or created from basic or built in data type based on a p articular
logical or mathematical model. For example Set of integers consisting of
different numbers may be an ADT. A setis a combination of more than
one 1 nteger, but t he o perationsons etisa generalized op eration o f
different integers such as union, intersection, product, and difference.

Note: If the data contains a single value this can be organized using
primitive data type. If the data contains set of values they can be
represented using non-primitive data types.

Now on the basis of above mentioned data types the data structure can be
defined as:

MCA-107/11
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“An implementation of abstract data type is data structure i.e. a
mathematical or logical model of a particular organization of data is
called data structure.”

1.6

TYPE OF DATA STRUCTURES

A data structure is the portion of memory allotted for a model, in

which the required data can be arranged in a proper fashion. Normally The
data s tructures are of two types or it can be broadly cl assified into two
types of data structures:

(i)
(i)
l.

Primitive data structure
Non-primitive data structure

Primitive d ata s tructure : The d ata s tructures t hat t ypically are
directly op erated upon b y m achine I evel i nstruction. E xamples:
Integers, R eal num bers, C haracters a nd poi nters,a ndt heir
corresponding s torage r epresentation. P rogrammers c an use these
data types when creating variables in their programs. For example,

a programmer may create a variable say “z” and define it as a real
data type. The variable will then store data as a real number.

Non primitive data structure : Non — primitive data structures are
not defined by the programming language, but are instead created
by the programmer. They are also called as the reference variables,
since t hey reference a memory | ocation, w hich s tores t he d ata.
These d atas tructures ar ed erived f romt he p rimitive d ata
structures. Examples: A rray, S tack, Q ueues, Linked 1 ist, T ree,
Graphs and hash table.

There are two type of-primitive data structures.
a) Linear Data Structures:-

In linear data structure the elements are stored in sequential
order. Hence they are in the form of a list, which shows the
relationship of adjacency between elements and is said to be
linear data structure. The most, simplest linear data structure
is a 1-D array, but because of its deficiency, list is frequently
used for different kinds of data. The linear data structures are:

(i) Array : The Array is a collection of data of same data
type s tored 1 n ¢ onsecutive m emory | ocationa ndi s
referred by common name.

(i) Stack : A stack is a L ast-In-First-Out or First-In-Last-
Out linear data structure in which insertion and deletion
takes place at only from one end called the top of the
stack.



(ili) Queue : AQueueisaF irst-In-First-Out or Last-In-
Last-Out data s tructure in w hich insertion takes pl ace
from one end called the rear an d t he d eletions t akes
place at one end called the Front.

(iv)

Linked List : Linked list is a collection of data of same
typebut t hed atai temsne ednot be s toredi n
consecutive m emory | ocations. It1i s inear but non -
contiguous type data structure. A linked list may be a
single list or double list.

Single Linked list: - Asinglelistis usedto
traverse among the nodes in one direction.

Double linked list: - A double linked list is used
to traverse among the nodes in both the directions.

b) Non-linear data structure:-

In non linear data structure the elements are stored based on

the hierarchical r elationship am ong t he d ata. A list, w hich

doesn’t show the relationship of adjacency between elements,
is said to be non -linear d ata s tructure. The non -linear d ata
structures are:

(i) Tree: This data structure is used to represent data that
has s ome h ierarchical relationship am ongt he data
elements. Thus, it ma intains hierarchical relationship
between various elements.

(i) Graph: This data structure is used to represent data
that ha s r elationship be tween pa ir o f e lements not
necessarily hierarchical in nature. It maintains random
relationship or poi nt-to-point r elationship be tween
various el ements. For exampleel ectricalan d
communication ne tworks, a irline r outes, f low ¢ hart
and graphs for planning projects.

1.7 REPRESENATION OF DATA
STRUCTURES

(1)
(i)
(i)

There are generally t wo co mmon m ethods for the d ata s tructure
representation. These methods can be specified as:

Sequential representation

Linked representation

Sequential representation

A's equential r epresentation m aintains t he da tai n ¢ ontinuous

memory lo cations w hich takes le ss time to retrieve the d ata but
leads to more time during insertion and deletion operations due to
its sequential nature.

MCA-107/13
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(i) Linked Representation

Linked r epresentation maintainsthelistby meansofa link
between t he ad jacent elements w hichn eed notb es toredi n
continuous m emory | ocations. D uring i nsertion a nd de letion
operations, links will be created or removed between which it takes
less t ime w hen ¢ ompared t ot he corresponding op erations of
sequential r epresentation. G enerally, | inked r epresentationi s
preferred for any data structure.

1.8 DATA STRUCTURE OPERATIONS

The data elements appearing in the data structure is processed by
means of certain operations. In fact the particular data structure that one
chooses for a given situation depends largely on the frequency with which
specific ope rations a re pe rformed. T he f ollowing m ajor ope rations
performed on data structures are:

Insertion

It provides the means for adding new details or new node into the
existing data structure.

Deletion

It provides the means for removing a node from the data structure.

Traversing

It provides the means for accessing each node exactly once so that
the nodes of a data structure can be processed. It is also called the visiting
to data structure.

Searching

It provides the means for finding the location of node for a given
key value or finding the locations of all records, which satisfy one or more
conditions.

Sorting

It provides the means for arranging the data in a particular order in
given data structure.

Merging
It provides the means for joining the two data structures.

Note : Sometimes two or more data structure of operations may be used in
a given situations; e. g. we may want to delete the records with a given
key, w hich m ay m eans w e first ne ed t o s earch for t he 1 ocation of t he
record.



1.9 SUMMARY

. Data s tructure is th e p articular o rganization o f data e ither in a
logical or mathematical manner

o Data type is a concept that defines internal representation of data.

. Data s tructures a re bui lding bl ocks o fa program. If programis
built us ing i mproper da ta s tructures, t hen t he pr ogram m ay not
work as expected always

. An algorithm is a s et of instructions to be done sequentially. Any
work to be done can be thought as series of steps.

. Anab stractd atat ypei st hes pecificationo fl ogical an d
mathematical p roperties o fd ata t ypes o r s tructure. Itactsas a
guideline to implement a data structure.

e A data structure is the portion of memory allotted for a model, in
which the required data can be arranged in a proper fashion

. Primitive and non -primitive ar e the t wo b asic data types of d ata
structure.

. The relationship b etween ab stract d ata t ype and d ata structure is
well d efined. An abstract data type is the specification ofad ata
type whereas data type is the implementation of abstract data type
and d ata s tructure co mprises co mputer v ariable o fs ameo r
different data types.

. There ar e g enerally two common m ethods for the data s tructure
representation i.e. Sequential and linked representation.

Bibliography
Horowitz, E ., S. Sahni: “ Fundamental of = computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. A llen W eiss: “ Data s tructures a nd P roblem s olving us ing C ++7,
Pearson Addison Wesley, 2003

Ulrich Klehmet: “Introduction to Data Structures and Algorithms”, URL:
http://www7 . Informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa

Markus Blaner: “ Introductiont o A lgorithmsa nd D ata S tructures”,
Saarland University, 2011

R. B. Patel “Fundamental of Data Structures in C”, PHI Publication
V. Abo. Hopcropft, Ullaman, “data Structure and Algorithms”, I.P.E.

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series. MCA-107/15


http://en.wikipedia.org/wiki/Algorithm
http://www7/

MCA-107/16

SELF EVALUATION

A

10.

11.

12.
13.

Define the data structure and Algorithm.

What are different data types? Give the example of each data type.
Specify the types of data structure with the example of each type.
What are the various operations on data structures?

While C onsidering the data s tructure imp lementations, th e factor
under consideration is/are:

a. Time

b.  Space and Time

c.  Time, Space and Processor
d.  None of the above

A data type is the collection of values and the set of operations on
values (True/False)

.................... refers to the collection of computer variables that
are connected in some specific manner.

Oneo ft he exampleo f as tructured datat ype can

Explain abstract data type with an example.

What is a d ata structure and what are the difference between data
types, abstract data type and data structure?

An - data type is a keyword of a programming language
that specifies the amount of memory needed to store data and the
kind of data that will be stored in that memory location.

a. Abstract b. int
c. vector d. None of these
Graphs are classified into ................. category of data structure.

What do you mean by LIFO and FIFO?



UNIT-2 BASICS OF ALGORITHM

Structure

2.0 Introduction

2.1 Objectives

2.2 Algorithm

23 Format Convention of algorithm

24  Complexity of Algorithm

2.5 Time Complexity

2.6 Common Computing Times of Algorithm
2.7 Example and analysis

2.8 Summary

2.0 INTRODUCTION

This unitis an introductory unit about the algorithm ba sics and
complexity of t hea lgorithm. 1t gives you anunde rstanding a bout
Algorithm structure, the format for writing the algorithm and the time of
execution and s pace in memory dur ing t he c ourse of e xecution for t he
algorithm w hich ¢ onsiders a st he t ime and s pace ¢ omplexity of t he
algorithm.

2.1 OBIJECTIVES

Algorithm de signingi s a ni mportant pr ocess of s olvingt he
problem. T he de signing of an a lgorithm c onsiders va rious a spects | ike
space and time requirement for the execution of algorithm. At the end of
this unit, you will be able to:

1. Understand about basic of algorithm.
2. Understand of Computation time for execution of algorithm

3. Understand about r equirement of the s pace during the course o f
execution for algorithm.

4.  Notation f or d etermining th e time c omplexity of th e a Igorithm
(Asymptotic notations)

5. Understand the analysis of algorithm with asymptotic notations

MCA-107/17
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2.2 ALGORITHM

The algorithm provides the way for solving the given problem in a
systematic way. The term algorithm refers to the sequence of instructions
that must be followed to solve a problem. Alternatively, an algorithm is a
logical representation of t he 1 nstructions w hich s hould be e xecuted t o
perform a m eaningful t ask. T here a re following characteristics o fth e
algorithm:

o Each instruction should be unique and concise

. Each instruction should be relative in nature and should not repeat
infinitely

e Results houldb ea vailableto th eu sera fterth ea Igorithm
terminates.

Therefore, an algorithm is a ny de fined ¢ omputational pr ocedure, a long
with a specified set o f allowable i nputs t hat produce some value or set
values as o utput. T here ar e t wo b asic ap proaches for d esigning t he
algorithm.

. Top-Down a pproach: Int his a pproach w e s tart f rom the ma in
component of the program and decomposing it into sub problem or
components. T his process continues until all the sub modules do
not s olve. T op-down de sign m ethod t akes t he form of stepwise
refinement. Int his,w es tart w ith t he t opmost m odule a nd
incrementally add modules that it calls.

o Bottom — Up approach: In this approach of designing we start with
the m ost ba sic or primitive c omponents and proceeds to hi gher-
level ¢ omponents. B ottom-up m ethod w orks w ith layer of
abstraction.

Here a simple example of the algorithm is presented to d emonstrate the
various a lgorithmic not ations and a w ay t o e xpress t he a lgorithm f or
solving the problem.

Example :
Algorithm Greatest:

This a lgorithm f inds th e la rgest algebraic e lement o fv ector A w hich
contains N elements and places the result in MAX. Iis used to subscript
A.

1. [Is the vector empty?]
IfN<1
Then print(*Empty Vector’)
Exit



2. [Initialize]
MAX=A[1] [We assume initially that A[1] is the greatest
element]
1=2
3. [Examine all elements of vector]
Do while I<=N
3.1 [Change MAX if it is smaller than the next element]
If MAX < A[l]
Then MAX=A[I]
3.2 [Prepare to examine next element in vector]
I =1+1
4.  [Finished]
Exit
2.3 FORMAT CONVENTION OF ALGORITHM

Hence from this e xample w e ¢ an ¢ onsider t he following format

conventions for writing the algorithm. These c onventions are s o general
that these may be used for writing any algorithm.

Name of Algorithm: Every algorithm is given an identify name

Introductory Comment: The algorithm name is followed by a brief
description of the tasks the algorithm performs.

Steps: The algorithm is made up of a sequence of numbered steps,
each b eginning w ith a p hrase en closed in s quare b rackets w hich
gives an abbreviated description of that step.

Comments: E very step ofth e algorithm is e xplained f or b etter
understanding of it. T hese c omments a re e xpressed i n br ackets.
Comments specify no action and are included only for clarity.

Statements and control Structures: It includes the various operators
and looping methods those are required for logical and arithmetical
operations. For example; Assignment statement, If-statement, Case
statement and looping methods.

Variable names: An entity that possesses a value and its name is
chosen to reflect the meaning of the value it holds. F or e xample
The MAX is considered as the variable in our previous example of
algorithm Greatest.

Data s tructures: v arious d ata s tructures in cluding s tatic a nd
dynamic structures are used for the implementation of algorithm.
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Arithmetic ope rations a nd e xpressions: T he a Igorithm not ation
includes the standard binary and unary operators according to their
standard mathematical order of precedence as follows:

Operation Symbol Order of
Evaluation
1. Parentheses 0 Inner to outer
2. Exponentiation, U nary A, ++, __ Rightto left
plus, minus
3. Multiplication, Division * Left to right
4, Addition, Subtraction =, - Left to right

o Relations and R elational O perators: T here are standard relational
operators (<, <=, >=, #, =, ==) are used with their usual meaning
in th e imp lementation of a Igorithm. A relation e valuates to a
logical expression that is, it has one of two possible values, True or
False.

o Logical operations and Expressions: The algorithmic notation also
includes the standard logical operators like NOT, OR & AND with
their us ual m eaning. T hese may be us ed to c onnect r elations t o
form compound relations whose only values are True or False. In
order that logical expressions be clear, we consider that operators
precedence is as follows:

Precedence Operator
1 Parentheses
2 Arithmetic
3 Relational
4 Logical

o Input and output: The algorithm notation must include the notation
for input and output. The input is obtained and placed in a variable
and output is obtained by getting the value from variable.
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o Functions: A f unction isus ed w hen w e w ant a s ingle va lue
returned to the calling routine. Transfer of control and returning of
the value are accomplished by ‘Return (value)’.

. Procedures: A procedure is similar to a function but there is no
value returned explicitly. A procedure is also invoked di fferently,
where there are parameters, a procedure returns its results through
the parameters.

All algorithms must satisfy the following criteria.
1. Input

2 Output

3 Definiteness

4.  Finiteness

5 Effectiveness

The criteria 1 & 2 require that an algorithm produces one or more
outputs & have zero or more input. According to criteria 3, each operation
must be definite such that it must be perfectly clear what should be done.
According t ot he 4™ criteria a Igorithm s hould te rminate a fter a f inite
number of operations. According to 5™ criteria, every instruction must be
very basic so that it can be carried out by a person using only pencil &

paper.

After an al gorithm h as b een d esigned i ts ef ficiency m ustb e
analysed. This involves determining whether the algorithm is economical
int heus eof ¢ omputerr esources,i .e. CPU time and memory
requirement. Thetermusedtor efert ot he memory r equired b y an
algorithm is memory space andt het ermus edt or efert ot he
computational time is the execution time. The importance of efficiency of
an algorithm is the correctness. Thus, it always produces the correct result
and algorithm complexity which ¢ onsiders bot h the d ifficulty o f
implementing an algorithm along with its efficiency.

Therefore the requirement for implementation of an algorithm with
correctness co nsiders m any as pects. T he fundamental q uestion arisesis
that “H ow canw ej udge h ow u seful a certain co mbination of da ta
structures and a Igorithm i s?”” O fc ourse t he answer of t his qu estion
depends that how can we evaluate the effort that arises from performing a
computation us ingt he c ertain ¢ ombination of da tas tructures a nd
algorithms. There may be many algorithms devised for an application and
we must analyse and validate the algorithms to judge the suitable one.

Hence th is e ffort is me asured n ormally with f ollowing tw o imp ortant
factors t hose ha ve t he di rect r elationship w ith t he pe rformance of t he
algorithm:

e  Memory space used i.e. Space complexity. The space complexity
of an algorithm is the amount of memory it needs to run.
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o CPU t ime i nvolves r untime or e xecution t ime f or t he pr ogram
basedont hea Igorithmi .e. Time Complexity. The time
complexity of an algorithm is given by the number of steps taken
by the algorithm to compute the function it was written for.

24 COMPLEXITY OF ALGORITHM

The Complexity of algorithm is considered actually as in the form
of ¢ omputational ¢ omplexity. C omputational c omplexityis a
characterization of the time or space requirements for solving a problem
by a particular algorithm. These requirements are expressed in terms of a
single parameter that represents the size of the problem. For example we
consider a problem of size n. Let the time required of a specific algorithm
for solving this problem is expressed by a function:

f: R—R

Such that f(n)is th e largest amount o f time needed by th e algorithm to
solve the problem of size n. T he function ‘f’ is usually called the time
complexity function. Thus, we can say that the analysis of the algorithm
requires two main considerations:

. Time Complexity
. Space Complexity

The time complexity of an algorithm is the amount of computer time that
it needs to run to completion. The space of an algorithm is the amount of
memory that it needs to run to completion.

2.5 TIME COMPLEXITY

In o rder to compute th e time ¢ omplexity o fa n a Igorithm w e
consider only the frequency count of the important steps or instructions.
Since these data structures are so widespread, it is important to implement
them e fficiently. T his e fficiency is me asured u sing th e f ollowing tw o
methods:

. Asymptotic Analysis
o Big-O analysis

It is very general that the actual time (wall-clock time) ofa programis
affected by:

. Size of the input
o Programming language
. Programming tricks

. Compiler



. CPU Speed
o Multiprogramming level

Hence i nstead o fw all clock t ime forthe p rogram i f w e co nsider t he
pattern of the program’s behaviour as the program size increases. This is
called the Asymptotic Analysis.

Big- O Analysis

If f(n) represent the computing time of some algorithm and g(n) represents
a known standard function like n, n?, n log n etc then to write: f(n) is O
g(n) means that f(n) of n is equal to biggest order of function g(n). This
implies only when:

f(n)<Clog (n) for all sufficiently large integers n, where C is the constant.
Thus from the above statements we can say that the computing time of an
algorithm is O(g(n)), we mean that its execution time is no more than a
constant time g(n), n is the parameter which characterizes the input and /
or outputs. From the practical point of view, we get the Big-O notation for
a function by:

1.  Ignoring multiplicative constants (these are due to pesky difference
in compiler, CPU, etc.)

2. Discarding the lower order terms (as n gets larger, the largest term
has the biggest impact). Like;

e 8410=0(1)
e 100n*+nlogn+67n’+4n = O(n’)

The Bi g-O n otation h elps to d etermine th et imea sw ell ass pace
complexity of the algorithms. T he B 0g-O n otation h as b een ex tremely
useful to classify algorithms by their performances. Now we consider the
three simple algorithms with different number of sequences or steps:

Algorithm 1:
a=a+l
Algorithm 2:
For i=1to ndo:
a=a+l
end loop
Algorithm 3:
Fori=1tondo
For j= 1tondo

a=a+1
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end loop
end loop

Now w e d o t he an alysis o f't hese t hree al gorithms an d can s eet heir
performance with Big — O notation. In the algorithm 1 w e may find that
the ex ecution statement a=a+1 is the independent and is not constrained
within any 1 oop. T herefore, the num ber o f times this will execute is 1.
Thus, t he f requency ¢ ount of t hisa lgorithmi s 1. H enceits Time
Complexity is O(1).

In the second algorithm, the execution statement a=a+1 is inside the loop.
The number of times it is executed is n as the loop runs for n times. The
frequency count for this algorithm is n. Hence its Time Complexity is
O(n).

In the t hird a lgorithm, t he frequency ¢ ount for the e xecution s tatement
a=a+1 is n’ as the inner loop runs n times, each time the outer loop runs,
the outer loop also runs for n times. Hence its Time Complexity is O(n?).

Therefore dur ing t he a nalysis of a lgorithm w e ha ve t he ¢ oncernt o
determine the order of magnitude of an algorithm. Thus, we consider only
those statements which may have the greatest frequency count.

26 COMMON COMPUTING TIMES OF
ALGORITHM

The common computing times of algorithms in the order of their
performance are as follows:

o O(1): It means that the computing time of the algorithm is constant

J O(log n): It m eans th at th e c omputing time o f'the algorithmis
logarithmic

o O(n): It means that the computing time of the algorithm is directly
proportional to n. It is known as the linear time.

J O(n log n): It means that the computing time of the algorithm is
logarithmic

. O(n%): It is known as the quadratic time
o O(n®): 1t is known as the cubic time

o O(2"): It is known as the exponential time. Generally the algorithm
with exponential time has no practical use.

There are different types o f time complexities w hich can analyse for an
algorithm:

. Best ¢ ase time complexity: T he b estc ase complexity o f an

algorithm is a measure of the minimum time that the algorithm will
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algorithm varies not only for the input of different size but for the
different inputs of the same size.

e  Average c ase time c omplexity: T he time th at an a Igorithm w ill
require to execute input data of size ‘n’ is known as average case
time ¢ omplexity. W e can say thatthe value thatis obtainedby
averaging the running time of an algorithm for all possible inputs
of size ‘n’ can determine average-case time complexity.

o Worst ¢ ase time ¢ omplexity: T he w orst time complexity o f an
algorithm is a me asure of the maximum time that th e algorithm
will require for an input of size ‘n’. The worst case complexity is
useful for a number of reasons. After knowing the worst case time
complexity, w e c an guarantee t hat t he al gorithm w ill n ever t ake
more than this time.

Hence th e c omputation o fe xact time taken b y th e a Igorithm f or its

execution is very difficult. T hus, the work done by an algorithm for the
execution of the input of size ‘n’ defines the time analysis as function f(n)
of the input data items.

2.7 EXAMPLE AND ANALYSIS

Example: This ex ample ex hibits the an alysis o f 1 inear s earch al gorithm
complexity.

Consider the algorithm to search vector (array) V of size N for the location
containing value X.

Algorithm SEARCH [Givenav ector V co ntaining N el ements, t his
algorithm searches V for the value of a given X. FOUND is a Boolean
variable. I and LOCATION are integer variables.]

1. [Search for the location of value X in vector V]
FOUND = false
=1
Do while ((I<=N) && (FOUND ==false))
If V[I] ==
Then FOUND==true
LOCATION =1
EXIT
Elsel=1+1
Print(*“Value of”, X,””NOT FOUND”’)
2. [Finished]
Exit
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Analysis : Ar easonable act ive o perationi nt heal gorithmi st he
comparison be tween va lues of V and X. However, a p roblem arises in
counting the number of active operations executed and the answer depends
on the index of the location containing X. The best case is when X is equal
to V [1] since only one comparison is used. The worst case is when X is
equal to V [N] and N comparisons are used. Now to obtain the time o f
execution f ort hea veragec asew en eedt oknow t hep robability
distribution for the value X in the vector, i.e. the probability of X occurring
in each location. If we assume the vector is not sorted, it is reasonable to
assume that X is equally likely to be in each of the locations. But X might
not be in the list at all. Let q be the probability that X is in the list. Then
using the above assumption, we have;

Probability X is in location = ¢/N;
Probability X is not in the vector = 1-q;

The average time is given by:

T(avg) = Z (Probability of situation s) * (time for situation s) [where S
sin S

is the set of all possible situations where the X can be found]

N N
T(avg)=2%*s+(l—q)*N =%Zs+(l—q)*N =q*—(N2+1)+(1—q)*N
s=1 s=1

Thus if g=1, then: T (avg) = 1+

And if q=1/2, then: T (avg) = (N+D +% ~ %

So in either case the time is proportional to N.

Thus we obtain the time complexity for three cases as:
Best - case time for the linear search is O (1)
Worst-case time for the linear search is O (N)
Average-case time for the linear search is O (N)
Space Complexity

The space needed by the program is the sum of the following components:

o Fixed space requirement: This includes the instruction space, for
simple variables, fixed size structured variables and constants.

e  Variable space requirement: This consists o f space needed by
structured v ariables whose size depends on particular instance of

MCA-107/26 variables.



2.8 SUMMARY

This unit described the algorithm and its analysis in very concise

manner. The algorithm provides the way for solving the given problem in
a systematic way. The following points are described in this unit:

The term algorithm refers to the sequence of instructions that must
be followed to solve a problem.

An al gorithm is a logical representation of the instructions which
should be executed to perform a meaningful task.

Analysis of the algorithm is done a fter de termining t he r unning
time of an algorithm based on t he number of b asic operations it
performs.

There are t wo b asic ap proaches for d esigning t he al gorithm i .e.
Top-down approach and Bottom —Up approach.

The running time varies depending upon t he order in which input
data is supplied to it.

Analysis of an algorithm is done on the following basis:
*  Best case time complexity

* Worst case time complexity

*  Average case time complexity

Comparison of algorithm is done on the basis of the programming
efforts f or apr ograma ndont heba sisof t imea nds pace
requirements for the program.

Big ‘O’ notation is extremely useful for classifying algorithms by
their performances.

Examples and analysis for computing the time complexity of the
algorithm is explained.
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SELF EVALUATION

S

Algorithm must be:

a.  Efficient

b.  Concise and compact

c.  Free of ambiguity

d.  None of these

In top-down approach:

a. A problem is subdivided into sub problems.

b. A problem is tackled from beginning to end in one go.

c.  Sub-problems a re s olved first; t hese a 1l s olutions t 0 s ub-
problems are put to solve the main problem.

d.  None of these.

Which one of the following is better computing time?
a. O(N) b 0@Y

c. O(logz N) d. None of the above

Define algorithm a nd d esign an algorithm to find o ut th e to tal
number of even and odd numbers in a list of 100 numbers.

Explain different ways of analyzing algorithm.
What is time and space complexity for the algorithm?
What is Big-O method for algorithm analysis?

Determine the complexity of the algorithm with Big - O notation
for the following statement:

fori=1ton
forj=1ton
fork=iton
a=a*z;
b=Db+1
end loop
end loop

end loop
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UNIT-3 ARRAY

Structure

3.0  Introduction

3.1 Objective

3.2 Definition of Array

33 Declaration and initialization of array

3.4  One dimensional array and its memory representation
3.5 Operation on Linear Array

3.6  Two-Dimensional Array

3.7 2-D array representation

3.8 Multi-Dimensional Arrays

3.9 Sparse Matrices

3.10  Summary

3.0 INTRODUCTION

This unit discusses about one of the linear type data structure i.e.

Array. It also presents about the various operations that can be performed
onA rrays. T hisuni ta Isopr esentsth etw o-dimensionala nd
multidimensional a rrays a nd t heir r epresentations i nr ow-major an d
column-major or der. It also c onsiders about t he formulation of address
calculation for s ingle, t wo a nd mu Iti d imensional arrays. Inthelastit
introduces the concept of sparse matrices.

3.1

OBJECTIVE

Array is a linear data structure with contiguous memory location.

The array data s tructure isused to store the same type ofdatatype in
sequential manner. At the end of this unit, you will be able to;

1.

Understand t he d efinition and r epresentation of one di mensional
array.

Know a boutt her epresentation of t wod imensionala nd
multidimensional arrays in row-major and column-major way.

Calculation of address for one, two and multidimensional arrays.

Understanding and representation of the sparse matrices.
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3.2 DEFINITION OF ARRAY

The simplest type of linear data structure is an array. The array is
preferred for the situation which requires similar type of data items to be
stored t ogether asi nc ontiguous m emory lo cation in s tatic me mory
allocation manner. Thus, an array is a finite collection of similar elements
stored in adjacent memory locations, for example an array may contain all
integers or all characters. Therefore an array is a collection of variables of
the same type that are referred by a common name. Alternatively we can
also say that an array is a list of a finite number n of similar data elements
referenced respectively by a set of n consecutive numbers, usually 1, 2, 3,
LGN

An array with n number of elements is r eferenced us ing an i ndex t hat
ranges from 0 to n-1. The lowest index of anarrayiscalledits lower
bound and hi ghest i ndex i s c alled t he upper bound. T he num ber o f
elements in an array is called its range or length or size of the array. For
example the element of an array A[n] containing n elements are referenced
as A[0], A[1], A[2].......A[n-1] here the O (zero) is the lowest bound and n-
1 istheupperbound o fthearray. T he array definedinthisformis
considered as the linear array or the one-dimensional array. The linear
or one-dimensional array may also be defined as:

A linear array isa listo fa finite number n of i nhomogeneous da ta
elements (i.e., data elements of the same type) such that:

a) The elements of the array are referenced respectively by an index
set consisting of N consecutive numbers.

b) The el ements o ft he ar ray a re s tored r espectively i n s uccessive
memory locations.

As an example if we choose the name A for the array, then the elements of

A are denoted by subscript notation: Ay, Ay, Ag,y vennnns ,
Or, by the parenthesis notation: A1),AR2),AQR),..... , A(N)
Or, by the bracket notation: Alll,A[2],A[3]......... , A[N]

Regardless of the notation, the number K in A [K] is called a subscript and
A [K] is called a subscripted variable. The general e quation to find the
length or the number of data elements of the array can define as:

Length=UB-LB+1

Here, UB is the upper bound or largest index of the array and LB is the
lower bound or the smallest index of the array. This is quite obvious that
if: LB =1 then Length = UB.



3.3 DECLARATION & INITIALIZATION OF
ARRAY

Here we consider the declaration of array and its initialization. As
per the majority of people are aware from the C language so we choose the
syntax o f C | anguage fort he d eclaration o f array aswellas forits
initialization. T herefore an ar ray can b e d eclared j ust 1 ike an y o ther
variable in C i.e. data type followed by array name with subscription in
bracket w hich i ndicates t he num ber of e lementsitwillhold. Thusby
declaring an array, the specified number of memory locations i.e. the size
of array are allocated in the memory. The declaration of array is specified
with given example as:

int A[10]; // This is an integer t ype array w here each el ement holds an
integer value and in total 10 integers can hold.

float b_charge [20]; // This is a float type array where each element holds
a float value and in total 20 values can hold.

char name [50]; // This is a character type array where each element holds
a character value and in total 50 characters can hold.

The el ements o f an array can b e e asily processed as they are stored in
contiguous m emory | ocations a nditc an be s een f romt he f ollowing
example:

inta [5]

This is stored as:

1100 102 [104 |106 |[108 |
al0] all]  a2]  al3]  a[4]

Initialization of Array

Any array can be initialized at the time ofits declaration as specified in
following example:

int A[5] = [67, 102, 6, 8, 90];
float B[3] = [20.67, 100.78, 1000];
This array declaration and its initialization can be represented as:
[0 [1] [2] [3]1 [4]

67 |102 |6 '8 |90 |
Address— 100 102 104 106 108

In this array representation the address is mentioning the memory location
i.e. the array A is of type integer and every integer occupies 2 bytes in the
memory. So if the first element o f array stores at me mory lo cation 100 MCA-107/33
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then the next element of array will store on location 102 and so on. Thus,
it is showing the contiguous memory location for the array.

Now w e co nsidert heex ampleo fan a rrayo fch aracteran di ts
representation in the form of contiguous memory location.

Char name [4] = ““Ram”

The values assigned in the name array as follows:
[0] [1] [2] [3]
'R | a | m N0 |
Address— 100 101 102 103

An array o fcharactersis called a string and it is terminated by a null
character (“\0’).

34 ONED IMENSIONAL ARRAY AND ITS
MEMORY REPRESENTATION

The one dimensional array is the simplest form of a linear array.
The array is represented with its name and the elements those are referred
by the subscripts or indices of the array. A one dimensional array is used
to s tore a 1arge n umber o fite ms in me mory. It references all ite m in
uniform m anner. N ow we c onsider a linear array A in m emory of the
computer. A s w e kno w t hat t he m emory o ft he c omputer i s s imply a
sequence of addressed location as:

1000
1001
1002
1003
1005

Computer Memory with address location

Let us use the following notation when calculating the address of
any element in linear array or one dimensional array:



LOC (A [K]) = address of the element A [K] of the array A. As we
have discussed previously that the elements of any linear array stores in
contiguous or successive memory locations. Therefore the computer does
notneed to keep track of the address of every memory element of the
array but it needs to keep track of the address of the first element of the
array. T his ad dress o f the 1 ocation o f first el ement o f't he a rray we
represent it by base address of the array as: Base (A). The address of any
element of the array can be calculated by using this base address of the
array as:

Loc (A [Kk]) = Base (A) + w (k- lower bound); here w is the
number of words per memory cell for the array A.

Note: The time to calculate Loc (A [K]) is essentially the same for any
value of k. We can 1 ocate an d ac cess t he contento f A [K] without
scanning any other element of A.

Examples of Array :

1. Letus consider an Array D of 5 — element linear array of integers
such that:

D [1] = 247, D [2] =56, D [3] = 429, D [4] = 135, D [5] = 87

The array D will be represented as:

247 56 429 135 87

2. Letus consider a company which uses an array C to record the
number of items sold each year from 1932 to 1984.

Therefore rather than starting from the index 1 of the array we begin the
index set with 1932. So we know that:

C [K] = number of items sold in the year k.

Then, Lower bound (LB) = 1932 and the upper bound (UB) = 1984 of
the array C. Now we can find the length of the array as:

Length = UB - LB + 1 = 1984-1932+1 = 53.

Hence there will be the 53 elements in the array C and the index of
the array will start ~ from the index 1932 and ends on 1984.

3. Now from the example 2 of the array C if the base address of the
array is 200 and w = 4 words per memory cell for array C. Now
the base addresses of the following arrays are:

Loc( C [1932] ) = 200, Loc( C [1933] ) = 204, Loc( C [1934] ) = 208,
........ Now we find the address of the array element for the year k = 1965.
So that we have:

Loc( C [1965] ) = Base( C ) + w (1965 — LB) = 200 + 4 (1965 — 1932) =
332
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3.5 OPERATION ON LINEAR ARRAY

Let A be a co llection o f d ata el ements s tored in the m emory o f
computer in successive memory l ocations. N ow to print the contents of
each element of array A or count the number of elements of A with a given
property so that each element of A will have to be accessed or processed at
least once is known as the Traversing of the array.

Algorithm Traversing :

[Let A be the linear array with lower bound LB and upper bound
UB. This algorithm traverses A for each element of A.]

1.  [Initialize an integer variable counter with value of lower
bound]

k=LB
2. [Repeat the following steps]
Do while k < UB

[read the elements of array into a temporary variable temp
and print the read value ]

temp = A [K];
print(tehp P);
[Increasé the counter V\;,lriable]
k=k+1
3. [Exit thel loop]
Exit.

Insertion and Deletion operation in Array

Let A bea co llection o f data el ements in the memory o fthe co mputer.
“Inserting” refers t o t he ope ration of a dding a nother ¢ lement t o t he
collection A. Inserting an element at the end of a linear array can easily be
donei fm emory spaceal locatedt ot he arrayi sl argeen ought o
accommodate the additional element. The element can also be inserted in
the middle of the array. In this, on the average, half of the elements must
be moved downward to new locations to accommodate the new element
and ke ep the order of the other elements. The “deleting” refers to the
operation of removing one of the elements from A. Deleting an element at
the “end” o f an array p resents n o d ifficulties, b ut d eleting an el ement
somewhere i n t he m iddle of the array w ould require t hat e ach
subsequent element be moved one location upward in order to fill up the
array.



Algorithm Insertion :

[Let A be a linear array. The function is INSERT (A, N, K, ITEM). N is
the num ber of items, K isthe positive integer suchthat K<=N.T he
following algorithm inserts an element ITEM into the K" position of array

Al

5.

[Initialize Counter]

J=N;

[Repeat step 2 and 3 till J>=K]

While J>=K

{

A [J+1]= A [J]; /* Move J™ element downward */
J=J-1; I* Decrease Counter */
}

[Insert element]

A[K] = ITEM;

[Reset N]

N= N+1;

Exit

Algorithm Deletion :

[Let A be a linear array. T he functionused to delete from the arrayis
DELETE (A, N, K, ITEM). N is the number of items, K is the positive
integer such that K<= N. The following algorithm delete K™ element from

the array.|
1.

[Set the value of ITEM]

ITEM = A[K]

[Repeat the step]

for(J=K; J<=N-1;J++)

A[J] = A[J+1] /* Move J+1 element upward */
[Reset the number N of elements in A]

N=N+1

Exit
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Example :

Consider T has been declared as a 5-element array but data have b een
recorded only for T [1], T [2],and T [3]. If X is the value to the next
element, then we may simply assign, T [4] = X toadd X to the Linear
Array. Similarly, if Y is the value of the subsequent element, then we may
assign, T [5] =Y to add Y to the Linear Array. Thus, we cannot add any
new element to this Linear Array for T [6] because it exceeds the limit of
this array upper bound.

3.6 TWO-DIMENSIONAL ARRAY

A two-dimensional array of size m x n is a collection of elements
placed in m rows and n columns. Each element in array is specified by a
pair of integers (such thatj, k) knows as subscripts, with the following

property:
0<=j<=m and 0<=k<=n

Thus, there are t wo s ubscripts in the s yntax of 2-D array in which one
specifies the number of rows and the other the number of columns. In a 2-
D array each element is itself an array. Let A be a 2-D array. The element
of A with first subscripts j and second subscript k is represented as:

Ajx  Or Al j,Kk]

Any 2-D array is also called as the matrix in m athematics and Table in
business application. Thus, a 2-D array is also called the matrix arrays.

An example of 2-D array can be A[2][4] containing 2 rows and 4 columns
and A[0][7] is an element placed at 0" row and 7" column in the array. A
2-D array can be represented as:

Column 0 Column 1 Column 2
Row 0  A[0][0] A[O0][1] A[0][2]
Row 1  A[1][0] A[1][1] A[1][2]
Row2  AJ2][0] A[2][1] A[2][2]

Representation of 2-D array in memory
Example :

Let each student in a class of 10 students is given 4 tests. Assume the
students are numbered from 1 to 10, the test scores can be assigned to a 10
X 4 matrix array SCORE as follows:



Student Test1l Test2 Test3 Testd

1 23 56 29 38
2 56 67 92 83
3 47 78 39 48
4 78 87 93 84
5 82 77 49 58
6 56 65 94 85
7 30 56 59 68
8 65 45 95 86
9 78 54 69 78
10 36 35 96 87

Representation of Array SCORE

Thus, SCORE [K, L] contains t he K™ student’s s core ont he L™ test.
Hence the second row of an array is containing the four test scores of the
second student.

SCORE [2,1]=56 SCORE [2,2]=67  SCORE[2,3] = 92
SCORE [2, 4]= 83

Let Aisa2-D mx n array. The first dimension of A contains the index set
| DO ,m with lower bound land upper bound m.T hes econd
dimension of A contains the index set 1,2,...... n, with lower bound 1 and
upper bound n. The length of a dimension is the number of integers in its
index set. The product of length m x n is called the size of the array. Let us
find the length of a given dimension i.e. the number of integers in its index
set from the formula:

Length = upper bound - lower bound + 1

3.7 2-D ARRAY REPRESENTATION

As we know that all elements of a matrix or 2-D array set is stored
in the memory in a linear fashion. Let A be a 2-D m x n array. Since A is
pictured as ar ectangular ar ray o fb lock o f m, n sequential me mory
locations. This sequential memory representation can be considered in two
ways; Row Major Order and Column major Order. In row-major
representation the first row of the array occupies the first set of memory
locations, s econd oc cupies t he nextsetands oon. T his f orm of the
representation can be represented as:
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Row 0 » Row 1 » Row 2

v

Representation of 2-D Array in Row-Major Order

In column-major representation the first column of the array occupies the
first s et of m emory 1l ocation, s econd oc cupies the nextand so on. T his
form of the representation can represent as:

A[O][0] | A[1][0] | A[2][0] | A[O][1] | A[LI[1] | A[2][1] | A[O][2] | A[1][2] | A[2][2]

Column 0 — Column | ——— Column2 ——»

Representation of 2-D Array in Column-Major Order

As we have discussed already about the linear array and its base address.
A linear array A does not keep track of the address of every element of the
array A, but does keep track of Base (A). Hence the address of the K™
element of A can be computed as:

LOC(A[K])=Base(A)+w*(K—-1).H ere wist he
number of words per memory cell forthe array A,and 11 sthe l ower
bound of the index set of A.

3.8 ADDRESS IN 2-D ARRAY

A similar situation as we have discussed for the linear array also
holds for any 2 -dimensional m x n array A. H ence the c omputer ke eps
track of Base (A) i.e. the address of the first element of A [0, 0] of A. The
address of any element say A[J, K] can compute for row-major order and
also for column- major order.

(1) Row-major order:
The formula for row-major order is:
LOC(A[J,K]) = Base(A) +wW*[N(J =)+ (K 1]

Here w d enotes t he nu mber of words p er m emory | ocation f or
array A, | is the lower bound and N are the number of columns in
the array.

(i) Column-major order:
The formula for Column-major order is:
LOC(A[J,K]) =Base(A)+wW*[M(K =)+ (J =-1)]




Here w d enotes t he nu mber of words p er memory lo cation f or
array A, | is the lower bound and M are the number of Rows in the
array.

Example :
Calculate the address of an element in the following 2-D array:
int M [3][4] = { {1, 2,3,4}, {5,6,7,8},{9, 10, 11, 12} };

The base address of the array M is 100. S ince W = 2 (The arrayisof
integer type and integer occupies 2 byte in memory), according to the row-
major formula the address of (2, 3)th element in the array M is:

LOC (2, 3) = 100 + 2[4*(2-1) + (3-1)] = 100 + (4+2)*2 = 112
[lower bound of the array is assumed to be 1]

Now a ccording t ot he column-major f ormula the a ddress of (2, 3) th
element in the array M is:

LOC (2, 3) = 100 + 2[3*(3-1) + (2-1)] = 100 + (6+1)*2=114

3.9 MULTI-DIMENSIONAL ARRAYS

The arrays can also have more than two dimensions. For example,
a three — dimensional (3-D) array may be declared as:

int A[2][3][4];

The number of elements in any array is the product of the ranges of all its
dimensions. Therefore the array A contains 2*3*4 = 24 ¢ lements of type
integers. An element of this array is referenced with three subscripts. The
first s pecifies th e p lane o r rack number, t he s econd s pecifies t he r ow
number and the third specifies the column number. It is just like the library
of books. The book is available in a particular column of the selected row
in the specific rack. This array can be represented in memory as:

AL0][0][0]

ALO][0]11]

AL0][0]12]

ALO][01[3]

ALO][1][0]

ALO][1]11]

ALO][1112]

ALO][1]13]

ALO1[2][0]

ALOT[21[1]

AL01[2][2]

ALOI[2][3]

AL1][0][0]

ALL][0]11]

AL1][0112]

ALL][0113]

AL1][1]10]

ALL[]M1]

ALL[12]

ALL[113]

ALL][2][0]

ALLI[21[1]

AL][2][2]

ALL[2][3]

3-Dimensional Memory Representation if array in row major order

Similarly t he ¢ olumn major or der canb e c onsidered. T he general
multidimensional arrays are defined analogously. More specifically, an n-
dimensional M; X My X............ X My, array A isa collectionof my, my
............ , My, data elements in which each element is specified by a list of
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n integers such as K, Ky, ............ K, called subscripts, with the property
that:

0<=K,<=m, 0<=K,<=m, .......... 0<=K,<=m,
The element of B with subscripts Kj, K .... K, will be denoted by:
B[K1, Ka,.... Ky]

The array will be stored in memory in a sequence of memory locations.
Specifically, th e programming language will store the array B either in
row-major order or column-major order.

3.10 SPARSE MATRICES

Any matrices with relatively high proportion of zero or null entries
are c alled s parse m atrices. T hus, a s parse m atrix can b e d efined as a
matrix with maximum number of zero entries. In the sparse matrix space
and c omputing time c ould be saved ifthe non -zero entries were s tored
explicitly i.e. ignoring the zero entries the processing time and space can
be minimized in sparse matrices. A sparse matrix can be divided into two
categories:

. N? Sparse matrix: N? sparse matrix is a matrix with zero entries
that form a square or a bar.

o Triangular sparse matrix: In this sparse matrix the zero entries
are in its diagonal, either in the upper or lower side.

Now we consider the following sparse matrix:

0002 0 00
000 0 0 50
000 0 0 00
000 0 9 00
000 0 18 0 0
000 0 8 0 0]

In this s parse m atrix we have the 6 r ows and 7 ¢ olumns. T here are 5
nonzero entries out of 42 entries. Therefore it requires an alternate form to
represent the matrix without considering the null entries. Now we consider

a data structure triplet to represent a s parse matrix. The triplet is a two
dimensional a rray h aving t +1 rows and 3 ¢ olumns. Here t 1s the t otal
number of nonzero entries.

In this representation of triplet the first r ow c ontains num ber of rows,
columns and nonzero entries available in the matrix in its 1%, 2™ and 3™
column respectively. S econd row onw ards i1t c ontains the row subscript,
column subscript and the value of the nonzero entry in its 1%, 2" and 3™



column r espectively. N ow w e r epresent t he given s parse m atrix in t he
triplet form of a 6 x 3 two dimensional array as:

6 7 5
1 4 24
2 6 5
4 5

5 5 18
6 5

Triplet representation of the given sparse matrix

There is another method also available for the representation of the sparse

matrix. This method is known as 3-Tuple method. In this method only
the non-zero entries from the given sparse matrix are stored in three tuples
form. These three tuples are: row, column and value.

Let us consider a sparse matrix with 3 rows and 4 columns as:

Column 1 Column 2 Column 3 Column 4
Row 1 15 0 0 21
Row 2 22 11 0 0
Row 3 0 19 35 16

Now the 3-tuple representation of above matrix will be represented as:

Row Column Value
A[0] 1 1 15
A[1] 1 4 21
A[2] 2 1 22
A[3] 2 2 11
A[4] 3 2 19
A[5] 3 3 35
A[6] 3 4 16

Example:

Consider the following sparse matrix and represent it using array.
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15 0 0 21
22 11 0 0
0 19 35 16

As we k now that as parse matrix is one where most o fits el ements are
zero. The idea is to store information of non-zero el ements. Information
about non-zero elements has three parts:

. An integer representing its row.
e  Aninteger representing its column.
o The data associated with its elements.
The el ements o f the ab ove s parse m atrix can b e represented as follows

using array:

0,015 0,3,21 10,22 1,1,11 2,1,19 2,2,35 2,3,16

3.11 SUMMARY

An array is a simplest type oflinear data structure. The array is
preferred for the situation which requires similar type of data items to be
stored t ogether asi nc ontiguous m emory | ocationi n s tatic m emory
allocation manner. An array is a finite collection of similar elements stored
in a djacent me mory lo cations. T his u nit h as d escribed th e lin ear d ata
structure array. The contents of this unit can be summarized as:

e  Anarray is a finite collection of similar elements stored in adjacent
memory locations.

e  There are many ope rations w hich c ould be performed on a rrays
like insertion, deletion, searching, sorting and traversing.

e Arrays canb es ingle-dimensional, t wo-dimensional o r mu Iti-
dimensional.

o There are t wo w ays of r epresenting t wo-dimensional a rrays i n
memory i.e. Row-major and column-major order.

o Multidimensional arrays have more than two dimensions.

e Any matrices with relatively high proportion of zero or null entries
are called sparse matrices.

e Inthe sparse matrix space and computing time could be saved if
the non-zero en tries w ere s tored ex plicitly i .e. i gnoring t he z ero
entries the processing time and space can be minimized in sparse
matrices.
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SELF EVALUATION

Multiple Choice Questions :

1.  Elements of an array are accessed by:
a.  Accessing function in built —in data structure.
b.  Mathematical Function.
c. Index.
d.  None of these.

2. Arrayisa:
a.  Linear data structure
b.  Non-linear data structure
c.  Complex data structure
d.  None of the above

3. Row-majoro rderi n2 -Dimensionala rrayr eferst o an
arrangement where:

a. Allelementsofar owarestoredinmemoryin s equence
followed by next row in sequence and so on.

b. All elementso far oware s tored i n m emory in s equence
followed by next column in sequence and so on.

c. Allelements of a column are stored in memory in sequence
followed by next column in sequence.

d. None of the above.

4.  An element of sparse matrix consists of integers................

a. Two
b.  Three
c. Six

d. Ten

5. A sparse matrix is one where most of its elements are:

a. Even
b.  Prime
c. Zero
d. 0Odd

MCA-107/46 6. Anarray A is declared as: double A[2][4]; The array A has:



a. 2 elements
b. 4delements
C. 8 elements

d. None of these.

Answer the following Questions:

1.

10.

Writea ‘C ’° functiont o find outt he m aximum a nd s econd
maximum number from an array of integers.

Writea ¢ C’ f unctiont o ¢ ompute t he pr oduct of t wo s parse
matrices, represented with two-dimensional arrays.

Calculate the address of an element M [2][3] and M [3][1] in the
following 2-D array:

int M [4][4] = { {10, 12, 23, 14}, {15, 16, 17, 18},{19, 1, 2,
31, {5,6,9,4}};

The base address of the array M is 200.

In linear array, the “downward” refers to.........

At Maximum, an array can be a Three dimensional Array (True /
False)

Inoooo , the e lements o fa rray are s tored column

Write an a lgorithm t o a dd t he t wo one di mensional a rrays a nd
stored the sum in third array.

Write an a lgorithm to read the array in reverse orderi.e. from
upper bound to lower bound.

Calculate the address of an element A[4] and A[2] in the following
one dimensional array

int A[6] ={3, 6, 8, 1, 90, 62}; The base address of the array is 100.

MCA-107/47



MCA-107/48



Master in Computer Application

MCA-107

Data Structure

Uttar Pradesh Rajarshi Tandon
Open University

BLOCK

Stack, Queue and Recursion

UNIT-4 53-70
Stack

UNIT-5 71-80
Recursion

UNIT-6 81-94
Queue

MCA-107/49



Curriculum Design Committee

Dr.P.P.Dubey Coordinator
Director, School of Agri. Sciences,

UPRTOU, Prayagraj

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,

Indian Inst. Of Information Science and Tech.,

Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,

MNNIT, Allahabad, Prayagraj

Prof. P. K. Mishra Member
Dept. of Computer Science,

Baranas Hindu University, Varanasi

Mr. Prateek Kesrwani Member Secretary
Academic Consultant-Computer Science

School of Science, UPRTOU, Prayagraj

Course Design Committee
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,

Indian Inst. Of Information Science and Tech.,

Prayagraj

Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,

MNNIT, Allahabad, Prayagraj

Prof. P. K. Mishra Member
Dept. of Computer Science,

Baranas Hindu University, Varanasi

Faculty Members, School of Sciences

Dr. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj

Dr. Shruti, A sst. P rof., ( Statistics), School of S cience, UPRTOU,
Prayagraj

Ms. M arisha Asst. P rof., ( Computer S cience), School of S cience,
UPRTOU, Prayagraj

Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj

Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science,
UPRTOU, Prayagraj

MCA-107/50



Dr. A cademic C onsultant ( Maths), School of S cience, UPRTOU,
Prayagraj

Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj

Dr.R . P .S ingh, A cademic C onsultant ( Bio-Chemistry), School of
Science, UPRTOU, Prayagraj

Dr. S usma C huhan, A cademic C onsultant ( Botany), School of S cience,
UPRTOU, Prayagraj

Dr. Deepa pathak, A cademic Consultant (Chemistry), School of Science,
UPRTOU, Prayagraj

Dr. A. K. Singh, A cademic C onsultant ( Physics), School of S cience,
UPRTOU, Prayagraj

Dr. S . S . T ripathi, A cademic C onsultant ( Maths), School of S cience,
UPRTOU, Prayagraj

Course Preparation Committee

Prof. Manu Pratap Singh, Author
Dept. of Computer Science

Dr. B. R. Ambedkar University, Agra-282002

Dr. Ashutosh Gupta Editor
Director, School of Sciences,

UPRTOU, Prayagraj

Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,

Indian Inst. Of Information Science and Tech.,

Prayagraj

Prof. R.S. Yadav Member

Dept. of Computer Science and Engg.,

MNNIT, Allahabad, Prayagraj

Prof. P. K. Mishra Member

Dept. of Computer Science

Baranas Hindu University, Varanasi

Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

© UPRTOU, Prayagraj. 2020
ISBN : 978-93-83328-15-4

All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the
Uttar Pradesh Rajarshi Tondon Open University, Prayagraj.

MCA-107/51



MCA-107/52

BLOCK INTRODUCTION

This block will cover the two important types of linear data structures i.e.
stack and queue with an important problem solving technique i.e.
Recursion. This block includes the formal definition of these data
structures and the method of their implementations. The array is used for
the representation of these linear data structures. Therefore these data
structures are implemented in sequential and static manner. There are
various ope rations like insertion and delete are discussed for these two
data structures. T he applications in the computer and for computation of
these d ata s tructures are d iscussed. E nough number o fex amplesi s

discussed to show the operations of stack and queue.

Recursion i s a n 1 mportant ¢ oncept 1 n ¢ omputer s cience s pecially f or
solving the many problems of recursive nature. Any problem is considered
as recursive nature if the certain step of the problem or the entire problem
is repeating with different parameters each time of repetition. Thus, many
algorithms can be b est described in terms of recursion. R ecursionis an
important f acility in m any programming la nguages. T here are ma ny
problems w hose a lgorithmic de scription is be st described in a recursive
manner. T he r ecursive i mplementation of various problems is discussed

with examples.



UNIT-4 STACK

Structure

4.0  Introduction

4.1 Objectives

4.2 Stack

4.3 Array Representation of Stack

4.4 Operations on stack

4.5  Evaluation of Arithmetic expression (infix, postfix and prefix
notions) using stack

4.6  Applications of Stack

4.7 Summary

4.0 INTRODUCTION

This unit is introducing the concept of another linear data structure
i.e. Stack. It provides the definition of stack, its representation in memory,
implementation procedure and different common and important operations
those c an pe rform on t he e lements of stack. T his unit also includes the
method for evaluation of arithmetic expressions using stack. In the end it
highlights about the multiple stack concept and the different applications
of the stack.

4.1 OBJECTIVES

After going through this unit, you should be able to:
o Understand for the concept of stack
o Implementation of the stack using array.
o Implementation for the various operations on stack (Push, Pop).

o Understanding f ort he m ethod of e valuation of a rithmetic
expressions using stack (infix, prefix and postfix representation).

o Understanding the concept of multiple stacks and its application.

42 STACK

A stack is a linear data structure where all the elements in the stack
can insert and delete from one side only rather than at the middle or from
both the side. Thus, from the stack the elements may be added or removed
only from one s ide. T he f ollowing f igure s hows t he t hree e veryday
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stack. The TOP is pointing to 3 which says that stack has three items and
as the N = 6, there is still space for accommodating four items.

|

Top

ITEM1 |ITEM2 ITEM 3

— >

=z

Array Representation of a Stack
Example:

Suppose the following elements are inserted in order in an empty stack of
size 7:

AA, BB, CC, DD, EE, FF

This stack can represent in following ways using a linear array:

0 1 2 3 4 5 6
AA | BB CcC DD | EE FF
TOP
6
5 FF
TOP ——»

4 EE

3 DD

2 CcC

1 BB

0 AA
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44 OPERATION ON STACK

The ope ration to add an element into the stack ( push) a nd t he
operation to remove an element from the stack (pop) can be implemented
using the PUSH and POP functions. When we add a new element into the
stack, first we check that whether there is a free space in the stack for the
new element or not. If there is no free space available for the new element
then we have the condition of overflow. In the same way for the function
POP we must first check the condition that whether there is an element in
the stack to be deleted or not. If there is no element in the stack to delete
then we have the condition of underflow. These functions are defined as
follows:

Function PUSH (STACK, TOP, N, ITEM)
[This function adds or pushes an ITEM in the stack]
/* check the condition of overflow*/
If (TOP == N)
Printf (“‘stack is overflow”); exit;
Else {
TOP = TOP+1; /* Increase TOP by 1 */

STACK [TOP] = ITEM; } /* Insert ITEM in new TOP
position */

RETURN
Function POP (STACK, TOP, ITEM)

[This function de letes or pops the TOP element o f STACK and
assigns it to the variable ITEM]

/* check the condition of underflow*/

If (TOP ==-1)
Printf (“‘stack is underflow”); exit;
Else {

ITEM = STACK [TOP]; /* assign TOP element to ITEM */
TOP =TOP -1; } /* Decrease TOP by 1]
RETURN

We can see from the above de fined functions t hat the value of TOP is
changed before adding the element in the stack in function PUSH but the
value of TOP is changed a fter r emoving t he element f rom s tack i n
function POP.



Example:

Consider the following stack with size of 9.

XX |YY |ZZ

o1 2 3 4 5 6 7 8
TOP N

If we perform the operation PUSH (STACK, WW); then the status of the
stack can determine as:

Since TOP=2,s0 TOP=2+1=3.
And STACK [ TOP ] = STACK [3] = WW.

Therefore the item WW is now top element of the stack. This can
represent as:

XX | YY | ZZ | WW

0 1 2 3 4 5 6 7 8
TOP N

Now, on the same stack we perform the operations POP (STACK, ITEM);
POP (STACK, ITEM); then the status of the stack can determine as:

Right now the TOP = 3 and the operation POP is performed two
times. So, after the execution of first POP operation:

ITEM =WW and TOP =3-1=2
Now after the execution of second POP operation:
ITEM=ZZand TOP =2-1=1

Therefore STACK [TOP] = STACK [1] = YY isnow thetop
element in the stack.

XX | YY
o 1 2 3 4 5 6 7 8
TOP N
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45 EVALUATION OF ARITHMETIC
EXPRESSION (INFIX, POSTFIX AND
PREFIX NOTIONS) USING STACK

This is well known that the computer system can understand and
work only on binary paradigm. In which an arithmetic operation can take
place between two operands only like A + B, C * D, D / A. generally an
arithmetic e xpression m ay consist of m ore t han one operator a nd t wo
operands, for example (A + B) * (D / (J + D)). Such form of the arithmetic
expression i s c ommonly known a s t he infix expression. N ormally t he
evaluation of the any arithmetic expression does not take place in its infix
form. H ere w e ar ¢ i ntroducing t he m ethod f or e valuating t he infix
expression form computation point of view. The stack is found to be more
efficient to evaluate an infix arithmetical expression by first converting to
a prefix or postfix expression a ndt hen e valuatingt hese converted
expressions. This approach will eliminate the repeated scanning of an infix
expression in or der t o obtain its value. Therefore t here are t hree b asic
notations ar e r eferred f or t he r epresentation o f an y co mplex ar ithmetic
expression. These forms are as follows:

. If t he ope rator s ymbols are pl aced before its o perands, then the
expression is in prefix form.

. If t he ope rator s ymbols a re pl aced after i ts op erands, t hen t he
expression is in postfix form.

. If the operator symbols are placed between the operands then the
expression is in infix form.

Hence,a normal a rithmetic e xpressionis n ormally ¢ alled a s in fix
expression i.e. A+B. A Polish mathematician found a way to represent the
same ex pression cal led polish notation or prefix e xpression by ke eping
operators as p refixi.e. +AB. Weusether everse w ay o ft he ab ove
expression for our evaluation. The representation is called Reverse Polish
Notation (RPN) or postfix expression i.e. AB+.

Let Q bean i nfixa rithmetic e xpressioni nvolving ¢ onstants a nd
operations. T his e xpression w ill be e valuated with the ¢ ommon r ule of
arithmetic evaluation with the following level of operator precedence:

Highest: Exponentiation ( T)
Next highest: Multiplication (*) and division (/)
Lowest: Addition (+) and Subtraction (-)
Now let we evaluate the following parenthesis free arithmetic expression:
2T3+5%21T2-12/6

First we evaluate the exponentiations to obtain:



8+5*4-12/6

Then w e ev aluate th e multiplication and division to obtain 8 + 20 — 2.
Last, we evaluate the addition and subtraction to obtain the final result i.e.
26. Wec an obs erve t hati nt his e valuation t he w hole e xpressioni s
traversed three times, each time corresponding to a level of precedence of
the operations.

Second important issue about the infix notation is that these ex pressions
use parentheses for clarity and to make the evaluation convenient like (A +
(B = C)) * D) / E. On the other hand the polish notation expression i.e.
prefix and reverse polish notation expression i.e. postfix do not include any
parentheses for clarity.

Now w e consider for example the step by step translation of following
infix e xpression i nto p olish not ation us ing s quare br acketsi.e.[ ]Jto
indicate a partial translation:

(A+B)*C =[+AB]*C =*+ ABC
A+(B*C)=A+[*BC]=+A*BC
(A+B)/(C — D) =[+AB]/[-CD] = /+ AB —CD

The fundamental property of Polish notation is that the order in which the
operations are to be performed is completely determined by the positions
of t he ope rators a nd ope rands in t he e xpression. T here is no ne ed of
parentheses when writing e xpressions in P olish notation. T he computer
usually ev aluates an ar ithmetic ex pression w ritten i n i nfix notation i n
following two steps.

»  Coverts the expression in Reverse Polish notation form (post
fix notation).

»  Evaluate the post fix expression using stack.
Algorithm for transforming Infix Expression into Postfix Expression

Let Q be an arithmetic expression written in infix notation. The following
algorithm tr ansforms th e g iven in fix e xpression Q into its e quivalent
postfix e xpression P. T his a Igorithm us es a s tack t o t emporarily hol d
operators and 1 eft pa rentheses. T he pos tfix e xpression P willb e
constructed from left to right using the operands from Q and the operators
which are removed from STACK. We begin by pushing a left parenthesis
onto STACK and adding a right parenthesis at the end of Q. The algorithm
is completed when STACK is empty:

Algorithm: Conv_POLISH (Q, P)

[Suppose Q is an arithmetic e xpression w ritten in infix notation. T he
algorithm finds the equivalent postfix expression P]

1. Push “(*onto STACK, and add ““)”” to the end of Q.

2. Scan Q from left to right and repeat step3 to 6 for each element of
Q until the STACK is empty.
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3. If an operand is encountered, add it to P.
4. If aleft parenthesis is encountered, push it onto STACK.
5. If an operator is encountered, then:

a. Repeatedly pop from STACK and add to P each operator (on
the top of STACK) which has the same precedence as or
higher precedence than operator.

b.  Add operator to STACK.
[end of If]
6. If a right parenthesis is encountered, then:

a. Repeatedly pop from STACK and add to P each operator
(on top of STACK) until a left parenthesis is encountered.

b. Remove the left parenthesis. [Do not add the left
parenthesis to P.]

[End of if]
[End of step 2 loop]
7.  Exit.
Example:

Consider the following arithmetic infix expression:
Q@ A+(B*C-(D/ET F)* G)* H )
1 234 56789101112 1314151617181920

The el ements o f Q have now be en | abeled from I eft t o right for e asy
reference. Following table shows the status of STACK and of the Postfix
string P as each element of Q is scanned to follow the following steps of
algorithm.

1.  Each elementis simply added to P and does not change STACK
from A to C; operators +. (, * are pushed to stack and A, B, C are
added to P.

2. The subtraction operator (- in row 7 sends * from STACK to P
before it (-) is pushed onto the STACK.

3. The right parenthesis in row 14 sends T and then / from STACK to
P and then removes the left parenthesis from the STACK.

4.  The right parenthesis in row 20 sends * then + from STACK to P
and then removes the left parenthesis from the top of STACK.

After step 20 is executed, the stack is empty.



Symbol Scanned

STACK Expression P
(1) A ( A
2) + (+ A
3) ( (+( A
4 B (+( AB
(5) * (+C* AB
(6) C (+H(* ABC
(7) (+(- ABC*
(8) ( (+(~( ABC*
) D (+H(=( ABC*D
(10) / (+(-(/ ABC*D
(11) E (+(-(/ ABC*DE
(12) A -0 T ABC*DE
(13) F -0 T ABC*DEF
(14) ) (H(- ABC*DEF 1/
(15) * (H(-* ABC*DEF 1/
(16) G (+H(-* ABC*DEF T /G
(17) ) (+ ABC*DEF T /G*-
(18) * (+* ABC*DEF T G*-
(19) H (+* ABC*DEF T G*-H
(20) ) ABC*DEF T G*-H*+
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Evaluation of Post Fix Expression

As we know that in the infix expression it is difficult for the computer to
keep t rack of p recedence of op erators. O nt he ot her h and, a postfix
expression i tself d etermines t he p recedence of o peratorsd uet ot he
placement of the operator. Hence it is easier for the computer to perform
the evaluation of a postfix expression. The evaluation rule for the postfix
expression is stated as:

1.  Read the expression from left to right.
2. Ifitis an operand then push the element into the stack.

3. If the element is an operator except NOT operator, pop the two
operands from the stack and evaluate them with the read operator
and push back the result of the evaluation into the stack.

4. Ifitis the NOT operator then pop one operand from the stack and
then evaluate it and push back the result of the evaluation into the
stack.

5. Repeat it till the end of stack.

Now we de fine the algorithm for e valuation of postfix e xpression using
STACK. Let P be a arithmetic expression written in postfix notation. The
following algorithm uses the STACK to hold the operands and evaluate
expression P.

[This algorithm finds VALUE ofan arithmetic expression P written in
postfix notation.]

1.  Add a right parenthesis “)”" at the end of P.

2. Scan P from left to right and repeat step 3 and 4 for each element
until )™ is not encountered.

3. Ifanoperand is encountered , put it on STACK
4. If an operator is encountered then:

a. Remove the two top elements of STACK, where A is the top
element and B is the next —to-top element.

b.  Evaluate B and A for the encountered operator.
c.  Place the result of evaluation on step b back on STACK
[End of if]
[End of step 2 loop].
5. Set VALUE equal to the top element on STACK.

6. Exit.
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Example

Evaluate the following arithmetic expression Q written in infiX notation:
Q: 10*(8+4)-6/3

The equivalent postfix notation for the given infix notation is:

P: 10, 8, 4, +, *, 6, 3, /, - [Here Commas are used to separate
the elements of P ]

Now we apply the algorithm to evaluate the postfix notation:

First we add ‘)’ at the end of right side in expression P.

P: 10, 8, 4, + *, 0, 3, / - )
Hm» e 6 & 6 © O @ © «da07

The e valuation procedure w ith c ontents of STACK can c onsider
from the following table:

Symbol Scanned Stack
(1) 10 10
) 8 10, 8
(3) 4 10, 8, 4
(4) + 10, 12
(5) * 120
(6) 6 120, 6
(7)3 120, 6,3
8) / 120,2
9) — 118
(10))

The final numberin STACK is 118, w hich will assignto the V ALUE
when )’ encounters. Thus the evaluation of postfix notation P is 118.

Algorithm to convert infix into prefix expression form

Suppose Q is an arithmetic expression written in infix form. The following
steps find its equivalent prefix expression P.

1.  Push )’ onto STACK and add “(‘to the begin of Q.

2. Scan Q from right to left and repeat steps 3 to 6 for each element
of P until the STACK is empty.

3. Ifan operand is encountered add it to P.
4. If aright parenthesis is encountered, push it onto stack.
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5. Ifan operator is encountered then:

a. Repeatedly pop from STACK and add to P each operator (on
the top of STACK) which has same or higher precedence
than the operator.

b.  Add operator to STACK.
6. If aleft parenthesis is encountered then

a. Repeatedly pop from the STACK and add to P until a right
parenthesis is encountered.

b.  Remove the Right parenthesis
7.  Exit
Example:

Convert the f ollowing g iven infix expression inits e quivalent prefix
notation form.

Q: (A+B*C-D+E/(F+QG))
The procedure for converting the given infix expression into its equivalent

prefix notation form by applying the algorithm can represent in following
table:

Symbol Scanned Stack Prefix expression
)
) )
G ) G
+ ) + G
F )+ FG
( Empty +FG
/ )/ +FG
E )/ E+FG
+ )+ / E+FG
D )+ D/E+FG
- )+- D/E+FG
C - CD/E+FG
* )+-* CD/E+FG
B )+-* BCD/E+FG
+ )+ *BCD/E+FG
A )+ A*BCD/E+FG
( Empty +-+A*BCD/E+FG




Hence the resultant equivalent prefix notation for the given infix notation
is:

P: +,-,*+ ABCD,/JE+FG
Algorithm for evaluation of Prefix Expression

[This algorithm performs the evaluation for the infix notation expression.
Here the expression will read from right to left]

1. Read the next element.
2. Ifelement is operand then
a.  Push the element in the stack
3. Ifelement is operator then
a. Pop two operands from the stack

b.  Evaluate the expression formed by two operands and
the operator

c.  Push the results of the expression in the stack
4. If no more elements then
a. Pop the result
Else
Go to step 1.
Example:
Evaluate the following prefix notation expression.
P: +2*3+45

Now we start to read it from right to left: +2 * 3 + 45+

Symbol Scanned Stack

5 (push)
4,5 (push)

9 (pop, push)
3, 9 (push)

W 4+ A~ W

*

27 (pop, push)
2,27 (push)
+ 29 (pop, push)
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The final number in STACK is 29. Thus the evaluation of prefix notation
P is 29.

4.6 APPLICATION OF STACKS

The stack has various applications in computer science. It includes
the a pplication of the 1 evel of ¢ omputer or ganization a nd pr ogramming
level. Generally being a linear data structure the following applications of
stacks are highlighted:

. The stack is used for reversal of a given list. We can accomplish
this task by pushing each element onto the stack as it is read. When
the line is finished, elements are then popped off the stack, so they
come off in reverse order.

. The important application of the stack in computer organization is
for t he e valuation o f a rithmetic e xpressions. I t a ccomplishes by
converting first the given expression in reverse polish notation and
then evaluates the expression.

. It is also used for the zero address instruction imp lementation in
computer organization.

o Stacks ar eu sed f ort he a ddress hol ding i n f unction c alling
procedure of programming.

e  The stacks are used to implement recursive procedures. Recursion
is useful in developing algorithm for specific problems. Suppose a
function contains either a call statement to itself or a call statement
to a second function that may eventually result in a call statement
back t ot he or iginal f unction. T hen s ucha functioni s ¢ alled
recursive f unction. T hes tacksar eu sed generally f ort he
implementation of such type of recursive functions.

4.7 SUMMARY

In this unit we presented another important linear data structure i.e.
Stack. A stack is a linear data structure where all the elements in the stack
can insert and delete from one side only rather than at the middle or from
both th e side. W e h ave e xplored th e imp lementation o f's tack in s tatic
manner us ing array. T he t wo ba sic ope rations of P USH and P OP are
discussed with example for the stack. The contents can be summarized as
follows:

e Astackis a linear structure imp lemented in LIFO (Last In First
Out) manner where insertions and deletions take place at the same
end.

. An insertion is a stack is called pushing and deletion from a stack
is called popping.



When a stack implemented as an array, is full and no new element
can be accommodated, it is called OVERFLOW.

When a stack is empty and an attempt is made to delete an element
from the stack, it is called UNDERFLOW.

The m ain application of s tack can b e i mplementation of P olish
notation w hich refers t o a notation in w hich op erator s ymbol is
placed either b efore 1 ts ope rands ( prefix not ation) or a fteri ts
operands (postfix notation). The usual form, in which operator is
placed in between the operands, is called infix notation.

The other application of stack can be reversing a list and providing
recursion in various programs.

Itis also used for the zero address instruction imp lementation in
computer organization.

Stacks a re us ed f ort he a ddress hol ding i n f unction c alling
procedure of programming.
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SELF EVALUATION

Multiple Choice Questions:

........................ form of accessisusedtoaddand remove nodes
from a stack

(a) LIFO (b)  FIFO
(c) Both (a) and (b) (d) None of these

A data structure in which elements are added and removed only at
one end is know as:

(@) Queue (b) Stack

(c) Array (d) None of these
Underflow is a condition where you:

(a) Insert a new node when there is no free space for it
(b) Delete a non-existent node in the list

(c) Delete a node from the empty list

(d) None of the above

Stack is:

(a) Static data structure

(b) Dynamic data structure

(c) A built in data structure

(d) None of these

Which ope ration i n the s tack i s us ed f or g etting va lue of m ost
recent node and delete the node:

(a) PUSH
(b) POP
(c) Empty

(d) None of these

If A, B, C are inserted into a stack in the lexicographic order, the
order of removal will be:

(@ A,B,C
(b) C,B,A
(¢ B,CA

(d) None of these.



Fill in the blank:

1.

A stack may be represented by a ............... linked list. (linear /
non-linear)
Push operation instack mayresultin.................. (overflow /
underflow)

If TOP points to the top of stack, then TOP is....... (increased /
decreased)

State whether True or False

Push operation in stack is performed at the rear end.
PUSH operation in stack may result in underflow

For a s tack imp lemented w ith lin ear a rray arbitrary a mount o f
memory can be allocated.

Descriptive Questions

1.

Consider the following stack, where STACK is al located N = 6
memory cells.

STACK: AA, DD, EE, FF,GG..........ccoeiini

Describe the stack as the following operations take place and also
consider the overflow condition.

a.  PUSH (STACK, KK)
b. POP (STACK, ITEM)
c. PUSH (STACK, LL)
d. PUSH (STACK, SS)
e. POP (STACK, ITEM)
f  PUSH (STACK, TT)

Write a n a lgorithm w hich upon us er’s ¢ hoice, e ither pus hes or
Pops an el ement f rom the s tack i mplemented as an a rray (the
element should not shifted after the push or pop).

Write a program to convert an infix arithmetic expression into a
prefix a rithmetic e xpression. T he a lgorithm f or your pr ogram
should use the following expression:

Q:(A-B)*(C/D)+E
Show in tabular form the changing status of stack.

Convert the expression (A + B) / (C — D) into postfix expression
and then evaluate it for A =10, B =20, C = 15, D = 5. Display the

stack status after each operation.
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5. Write a program to read a string (one line of characters) and push
any vowels in the string to a stack. Then pop your stack repeatedly
and count the number of vowels in the string.
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UNIT-5 RECURSION

Structure

5.0  Introduction

5.1 Objectives

5.2 Definition of Recursion

53 Process of Recursion

5.4  Designing of Recursive algorithm

5.5  Examples of Recursive Algorithms

5.6 Summary

5.0 INTRODUCTION

This uni t introduces the ¢ oncept of Recursion. It highlights th e
basic concepts of recursion, its definition with the method for its working.
The solutions of some problems are performed with the recursive method.
The unit also considers the recursive algorithm for solving the problems. It
also e xplores t he us e o f's tack f or r ecursive algorithms or findingt he
solution with recursive method.

5.1 OBJECTIVES

At the end of this unit, you may be able to:
e  Understand the concept of Recursion and recursive method.

. Understand the principle of recursion and use of stack for the
implementation of recursive methods.

. Understand the working of recursive procedures and
implementation it for the solution of problems.

. Designing of Recursive algorithm for the solution of some popular
problems.

5.2 DEFINITION OF RECURSION

Recursion is an i mportant concept in computer science s pecially
for s olving t he m any problems of r ecursive nature. A ny p roblemi s
considered as recursive nature ifthe certain step of the problem or the
entire p roblem is r epeating w ith d ifferent parameters eacht ime o f
repetition. T hus, m any algorithms ¢ an be be st de scribed i n t erms of
recursion. Suppose P is any function containing either a Call statement to
itself or a call statement to a second function that may eventually result in

a call statement back to the original function P. The P is called a recursive MCA-107/71
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function. Thus, a recursive function is a function that either directly or
indirectly makes a call to itself. The important aspect is that the function P
calls itself on a different, generally simpler instance, for example files on a
computer ar ¢ generally storedi nd irectories. U sersm ay create
subdirectories that store more files and directories. Suppose that we want
toex amine ev ery filei nad irectory D, in cluding allf ilesin all
subdirectories a nd s ubdirectories, and soon. W edos o by recursively
examining every file in each subdirectory and then examining all files in
the directory D. Hence this logic seem to be circular lo gic but with the
method to come out from this infinite circular loop.

Therefore, ar ecursion is a n imp ortant f acility in ma ny p rogramming
languages. There are many problems whose algorithmic description is best
described in a recursive manner. Hence, a function is called recursive if
the function de finition r efers t o i tself or do es refer to another function
which in turn refers back to the same function but this procedure should
not i nclude i1 nfinite 1 oop or e ndless pr ocess. Hence i nor der f ort he
definition does not contain any endless circular process, t must have the
following properties:

(1) There must be certain arguments called base values, for which the
function does not refer to itself. Alternatively there must be certain
criteria, called base criteria, for which the function does not call
itself.

(1)) Each time the function does refer to itself, the argument of the
function must be closer to the base value.

Any recursive function with these two properties is said to be well defined
recursive function. Similarly, a function is said to be recursively defined
if the function definition refers to itself.

5.3 PROCESS OF RECURSION

Recursion is a pow erful pr oblem-solving t ool. M any a lgorithms
are m ost easily ex pressed ina recursive formulation. F urthermore, t he
most e fficient s olution for m any problemsis based ont his recursive
formulation but this formulation doe s not ¢ ontain any infinite I oop and
process. Generally the idea of Recursion is closely related to the principle
of mathematical induction which provides t he following issues for t he
recursion procedure:

o Solve the problem for small problem instances.
. Assume a solution for smaller problem instance.

. Figure out how to do a little more work which in combination with
solutions to smaller instances, solves the larger problem instance.



It can see that sometimes mathematical functions are defined recursively.
Let us consider the example of sum S (N) for the first N integers. The base
condition is defined as S (1) = 1, and the recursive function can define as:

S(N)=S(N=1)+N

Here w e have d efined the function S interms of a smaller instance o f
itself. The straight forward recursive evaluation of the sum of the first N
integers ba sed ont he r ecursive function as given a bove with i ts ba se
condition can define as:

[Recursive function to compute sum of first n integers. |

Function sum (int n)

{

If (n==1) /*base condition */
Return 1;

Else

Return (s (n—1) + n);

}

We can realize from the above al gorithm that if N=1, we have the basis,
for which we know that S (1) = 1 and the recursive step is with the return
statement as S (N) = S (N-1) + N. Now from the algorithm we can get an
idea for the working process of the recursive method and as well as for the
recursive function. W e c an c onsider in the above algorithm that a base
case is an instance that we can solve without recursion. Any recursive call
must progress towards the case in order to terminate eventually. Thus we
have the two fundamental rules of recursion:

1. Basecase: Alwayshave at leastonecasethat canbe solved
without using recursion.

2. Make Progress : Any recursive call must progress toward a base
case.

This is qui te obvious that i fthe ba se c ondition is not a vailable for the
recursive function then the function will stuck in infinite recursive call and
never terminates.

5.4 DESIGNING FOR RECURSIVE
ALGORITHM

We h ave d iscussed ab out t he r ecursive function a nd r ecursive
process. The important point which we have analyzed is that any recursive
function s hould have a based criteria or base condition or termination
condition otherwise the recursive procedure becomes unsolvable. Thus in
order to design any recursive process in terms of the algorithm, the base
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condition and progress c ondition s hould clearly describe and stated. F or
example t he pr oblem of factorial can bes olved us inga r ecursive
procedure. N ow w e c onsider t he factorial of number and its algorithm
described recursively as:

The product of the positive integers from 1 to n, inclusive, is called “n
factorial” and is usually denoted by N! :

N!' =1.2.3.4.5.......(N-2)(N-1)N for every positive integer N
So that we have, N! = N * (N-1)!
(N-1)! = N-1*(N-2)! Andsoonupto 1.

Therefore we can define the factorial function in the form of a recursive
function with its two conditions as:

(@) Ifn=0,thenn!=1.
(b) Ifn>0, then n! =n* (n-1)!

We de fine t he function FACT which f inds t he f actorial of t he g iven
number N from recursive process:

/* Function:*/ int FACT (N)
{
if N==0 return 1
else
if
N==
return 1
else
return (N * FACT(N-1))

}

To pe rform t his r ecursive a Igorithm, I etus c onsider N = 5. H ence
according to the definition we can see that the FACT (5) will call FACT
(4), FACT (4) will call FACT (3), FACT (3) will call FACT (2), and FACT
(2) will call FACT (1). The ex ecution will return back by finishing t he
execution of FACT (1), then FACT (2) andsoonupt o FACT (5) as
described below:



1) ol =57*4l

2) 41 =4* 3

3) 31=3*21

4) 20=2*11

5) =1
6) 20=2*1=2
7) 31=3*2=6

8) MN=4*6=24

9) Sl=5*24=120

From above it is clear that every sub function contain parameters and local
variables. T he p arameters ar e t he a rguments w hich r eceive v alues from
objects i n t he c alling pr ogram a nd w hich t ransmit va lues ba ck t o the
calling pr ogram. T he s ub-function m ust a Iso keep t rack of t he r eturn
address i nt he calling program. T his r eturn a ddress i s e ssential s ince
control must be transferred back to its proper place in the calling program.
After completion of the sub-function when the control is transferred back
to its calling program, the local values and returning address is no 1onger
needed. Suppose our sub-program is a r ecursive one, when it calls itself,
then current values must be saved, since they will be used again when the
program i s reactivated. T hus, 1 n r ecursive pr ocess a da ta s tructure i s
required to handle the d ata of on going called function and the function
which is called at last must be processed first i.e. the data accessed 1ast
must be processed fisti.e. Last in first out principle. So, a stack maybe
suitable d ata s tructure t hat follows LIFO to im plement r ecursion. Thus
when a recursive method is executed, each invocation of the method gets a
separate stack frame. H ence each invocation has a s eparate copy ofthe
following:

° Formal parameters
° Local variables
° Return value

Therefore t he recursion i s us eful i n de veloping a lgorithms f or s pecific
problems a nd t he Stack may us e t o i mplement r ecursive f unctions or
processes. Now we discuss the method for translating a recursive method
into a non-recursive method using stack.

5.5 EXAMPLES OF RECURSIVE
ALGORITHMS

Here w e are p resenting s ome ex amples o f v ery common an d
important recursive algorithms:
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1. Fibonacci number: Here we are defining the recursive al gorithm
for c omputing t he N th F ibonacci num ber. A s w e know that the
next F ibonacci num ber we ¢ an ¢ ompute by adding t he previous
two numbers i.e. the nth Fibonacci number we can find as:

Fib(n) = fib(n-1)+fib (n-2)

Fib (n-1) = fib (n-2) + fib (n-3)

And so on, in the last we can see Fib(3) = fib (2) + fib (1)
Here fib (1) = 1 and fib (2) = 1.

Thus we can see that the process of computing the Fibonacci number is a
recursive with two base conditions i.e. fib (1) = 1 and fib (2) = 1. Hence
the recursive algorithm for computing the Fibonacci number can define as:

Int fib (int n)
{

If(n<=1)

Return n;

Else

Return fib (n-1) + fib (n - 2);
}

2. Greater common divisor of two integers: Here we are defining
the recursive algorithm for obtaining the greatest common divisor
of two integers.

Int gcd (int a, int b)

{

If (b ==0)

Return a;

Else

Return gcd (b, a % b);
}

For example if we compute the gcd of 70 and 25 then the above recursive
algorithm will execute as:

First the recursive function will call with gcd (70, 25). On next iteration it
will call with gcd(25,20). After that the third call will call with gcd(20,5).
The last call ofthe recursive function will be o f gcd(5,0)=5. Here the
base ¢ ondition s atisfied a nd t he r ecursive p rocedure w ill t erminate.
Therefore the gcd of these two numbers is 5 as:



ged (70, 25) =gcd(25,20)=gcd(20,5)=gcd(5, 0)=5

3. Tower of Hanoi: The Tower of Hanoi is an example of a problem
that i s m uch e asier t o s olve us ing recursion r ather t han non -
recursive method. The problem is defined as follows:

o There are 3 pegs and n disks, all of different sizes

e Initially all disks are on the start peg, stacked in decreasing
size, with largest on bottom and smallest on top.

e  We must move all the disks to the end peg, one at a time and
without ever putting a larger disk on top of a smaller disk.

o The third peg can be used as a spare.

Initially w e explore the solution for the 2 di sks i.e. n = 2. After that we
consider the recursive algorithm for the generalize case i.e. for n disks.

1.  Move smaller disk from start peg to spare peg.
2. Move larger disk from start peg to end peg.
3. Move smaller disk from spare peg to end peg.

Now we consider the recursive procedure for solving this problem with n
disks as:

1. Move the top n-1 disks from the start peg to the spare peg using
recursive call

2. Move the bottom disk directly from the start peg to the end peg.

3. Movethen-1disksfromthesparpe gtotheendpegusing
recursive call.

4.  The n = 1 will work as the base condition for recursive process.
Therefore the peg can be moved directly.

The algorithm of the whole process can describe as:

Function Tower (int n, int stast, int finish, int spare)

{
If(n==1)
Move disk from start to finish
Else
{

Tower (n-1, start, spare, finish) /* move n-1 disks from start to
spare */

Move disk from start to finish /* move bottom disk directly to finish
*/
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Tower (n-1, spare, finish, start) /* move n-1 disks from spare to
finish */

}
}

5.6 SUMMARY

Recursion is useful in developing algorithm for specific problems.
Suppose a function c ontains e ither a call s tatement to itselfora call
statement to a s econd f unction th at ma y eventually resultin a c all
statement ba ck to the original function. T hen such a function is ¢ alled
recursive function. The stacks are used generally for the implementation
of s ucht ype of r ecursive f unctions. A ny p roblem i s co nsidered as
recursive nature if the certain step of the problem or the entire problem is
repeating w ith d ifferent parameters e ach time o f repetition. T hus, many
algorithms can be best described in terms of recursion. The contents of
this unit can be summarized as follows:

o Recursion i s t he name given t o t he phe nomenon of de fining a
function in terms of itself.

e  There must be base condition in the recursive definition of any
process which indicates its initial condition.

. Each time t he function does refer to its elf, the argument o fthe
function must be closer to the base value.

e  Recursioni sc losely relatedt ot he pr inciple of mathematical
induction.

. A stack mayb e s uitable d ata s tructure th at f ollows LIFO to
implement recursion.

. Important e xamples | ike factorial, GCD and t ower of H anoi are
explained and implemented with the help of recursive process.
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SELF EVALUATION

State whether it is TRUE or FALSE: “ Recursion is generally more
efficient than iteration”

What are the two fundamental rules of recursion?
Stack is used whenever .................... function is called
(Recursive / Non- recursive)
n
Write a program for evaluating € for the given value of n and r
r
using recursive procedure.

Formulate the recursive function for evaluating the l1east common
multiplier (LCM).



UNIT-6 QUEUE

Structure

6.0  Introduction

6.1 Objectives

6.2 Definition of Queue

6.3 Representation of Queue

6.4  Insertion and deletion in Linear Queue
6.5  Example

6.6 Circular Queue

6.7 Insertion and Deletion in the circular Queue
6.8  Example

6.9  Types of Queue

6.10  Summary

6.0 INTRODUCTION

This unit introduces the concept of another imp ortant lin ear d ata
structure us ed t o r epresent a linear listi.e. Queue. T hisunitstartsby
giving an introduction to the basic concept of queue. It also de fines the
operation of insertion and de letion from t he Q ueue. T he qu eue allows
insertion of an element to be made at one end and deletion of an element
to be performed at the other end. This unit further introduces various type
of queues like circular queue, de-queue and priority queue. It also provides
the operation of insertion and deletion in these types of queues. In the last

it highlights the application of queue.

6.1

OBJECTIVES

After working through this unit, you should be able to:

Understand the concept of queue and its working with its

definition.

Implementation of queue using Array and perform the operation of
insertion and deletion in it with the condition of overflow and

underflow of the queue.

Understand the concept of circular queue and its implementation

with array.
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o Implementation of insertion and deletion operations in the circular
queue with overflow and underflow condition.

e  Understand the concept of de-queues and priority queues with their
implementation details using array.

. Familiarity with the different application of queues in computer.

6.2 DEFINITION OF QUEUE

Queue is linear data structure in which the element is inserted from
one end of the queue called rear, and the deletion of the element from
other end of the queue called front. For ex ample the p eople w aiting for
their turn in railway reservation counter window, payment bill line at the
big bazaar cash counter and many other example of real world where the
line is maintain for the service. The service for these type of lines are on
the bases of first come first serve (FCFS) i.e. the person who comes first
for the service is on the front of the queue and the person who just arrived
for the service or join the queue for the service entered from the rear of
the queue. Therefore queue provides the service to handle the elements for
insertion and deletion on the basis of First-in-First-out (FIFO) or Last-in-
Last-out (LILO). Thus Queue is also called First-in-First-out (FIFO) list
since the first element in queue will be the first element out of the queue.
An important example o fa queue in computer s cience occurs in a time
sharing s ystem in which programs with the same priority form a queue
while w aiting t o be e xecuted. T he ot her example w hich can s ee m ore
common in ¢ omputer s ystem is the queue o f'tasks waiting for the line
printer, for access to disk storage. Following figure is a representation of a
queue illustrating how an insertion is made to the rightmost element in the
queue, and how a deletion consists of deleting the leftmost element in the
queue.

Front Rear

l l

«— «—

Deletion Insertion

Int his c ase of aque ue, t he upda ting ope rationi s r estrictedt ot he
examination of the last or end element. The size of the queue is fixed and
the maximum number of elements can enter in the queue up to the limit of
its size. This is called as the liner queue. A queue of elements of type A is
a finite sequence of elements of A together with the following operations:

1.  Initialization a queue to be empty.

2. Determine if a queue is empty or not.



3. Determine if a queue is full or not.

4. Insert a new element after the last element in a queue, if it is not
full.

5. Retrieve the first element of a queue, if it is empty.

6.  Delete the first element in a queue, if it is not empty.

6.3 REPRESENTATION OF QUEUE

Queues m ay be r epresented i nt he c omputer i n va rious w ays,
generally b y means of one -wayl ists or 1 inear a rrays. Queues are
maintained by a linear array say QUEUE and two pointer type variables:
FRONT, containing the 1 ocation of the front element of the queue (the
oldest element in the queue or the element which will be first delete); and
REAR, c ontaining t he | ocation of t he r ear e lement of t he qu eue ( the
newest element in the queue or the recently inserted element in the queue).
The condition FRONT = REAR = NULL will indicate that the queue is
empty and FRONT = 1, REAR = FRONT = MAX_SIZE indicates th at
the queue is full. These conditions are valid only for the linear queue. The
following figure represents the implementation of queue as an array which
is declared to its maximum size as per the requirement of the problem or
the number of elements those has to be entered in the queue. The size of
the Queue keeps on changing as the elements are either removed from the

front end or added at the rear end but the size of the array will remain
fixed.

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7]

A B C D E F G H

| |

Front Rear
6.4 INSERTION AND DELETION IN THE
LINEAR QUEUE

Now we formulate algorithms for the insertion of an element of an
element to and the deletion of an element from a queue. W e consider a
linear array of arbitrary size. This array is assumed to consist of al arge
number of elements, enough to be sufficient to handle the elements of the
linear que ue. T his a rray representation of a que ue c onsists w ith t wo
pointer type variables Rear (R) and Front (F). The algorithms of insertion
and deletion from the linear queue which is implemented with linear array
(Q) can describe as:
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Function QINSERT (Q, F, R, Y): [Given F and R, pointers to the front
and rear elements of a queue, a queue Q consisting of N elements, and an
element Y, this function inserts Y at the rear of the queue.]

If(R>=N) /* check for the overflow condition */
Printf (““Overflow™); return;

Else

{

R =R +1; /*Increment rear pointer */

Q[R] =Y; [/*insert element */

If (F ==0) /* set the front pointer */

F=1;
Return;
}

Function QDELETE (Q, F, R): [Given F and R, pointers to the front and
rear el ements o fa queue r espectively and the queue Q to w hich t hey
correspond, this function deletes and returns the last element of the queue.
Y is a temporary variable.]

If (F==0) /* check for the underflow condition */

Printf (*“‘underflow’); return 0; /* O denotes the empty queue */

Else

{

Y =Q [F]; /* delete element */
If (F==R)

F=R=0;

Else

F=F + 1; /*increment front pointer */
Return Y;
}

6.5 EXAMPLE

Consider an example where the size of the queue is four elements.
Initially, the queue is empty. It is required to insert symbols ‘A’, ‘B’ and
‘C’, delete ‘A’ and ‘B’, and insert ‘D’ and ‘E’. The trace for the insertion
and deletion algorithms can represent as follows for the given Queue:



Empty

FR
A Insert A
[
F R
A B Insert B
(I
F R
A B C Insert C
f !
F R
B C Delete A
[
F R
C Delete B
T
F R
€ |D Insert D
[
F R
C D Insert E

F R (Over Flow)

Note : R will increment only when there is no overflow i.e. if (R>=N) it
simply print “Overflow”
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3.6 CIRCULAR QUEUE

A more suitable method of representing a queue, w hich prevents
an ex cessiveu se 0 fm emory, i dt o ar range t he el ements Q [1], Q
[2],.......... Q [n] in a circular fashion with Q [1] following Q [n]. Thus
circular queues are the queues implemented in circular form rather than in
a straight line. Hence circular queues overcome the problem of unutilized
space in linear queue implemented as an array. In the array implemented
there is a possibility that the queue is reported full e ven though slots or
space in the queue are empty (since Rear has reached to the end of array).
The concept of circular queues can also understand as follows:

Suppose an array Q of n elements is used to implement a circular queue. If
we go on adding elements to the queue we may reach Q [n-1]. We cannot
add any more elements to the queue since the end of the array has been
reached. Instead of reporting the queue is full, if some elements in the
queue have been deleted then there might be empty slots at the beginning
of the queue. In such case these slots would be filled by new elements
added to the queue. Thus, just because we have reached the end ofthe
array, the queue w ould not be reported as full. T he qu eue would be
reported full only when all the slots in the array are occupied. The circular
queue can view in the following figure as:

The Circular Queue

Hence i nt hel inear ar rangement o ft he q ueue al ways co nsiders t he
elements in forward direction. In the insertion and deletion algorithms for
the linear queue, we had seen that, the pointers front (F) and rear (R) are
always incremented as and when we delete or insert element respectively.
Suppose ina queue of 10 e¢lements front points to 4™ element and rear
points to 8™ element as follows.

1 2 3 4 5 6 7 8 9 10
QUEUE ‘ ‘ ‘XX‘XX‘XX‘XX‘XX‘ ‘

F R

When we insert two more elements then the array will become



QUEUE XX XX [ XX [ XX [XX XX KX

F R

Later, when we try to insert some el ements, then according to the lo gic
when REAR is 10 then it encounters an overflow situation. But there are
some elements are left blank at the beginning part of the array. To utilize
those left over spaces more efficiently, a circular fashion is implemented
in queue representation. The circular fashion of queue reassigns the rear
pointer with 11 fitreaches 10 and b eginning el ements are free and the
process is continued for deletion also. Such logic is used for insertion and
deletion in Circular Queue.

6.7 INSERTION AND DELETION IN THE
CIRCULAR QUEUE

Now we formulate algorithms for the insertion of an element of an
element t 0 an d t he d eletion o fan el ement from a ci rcular q ueue. W e
consider a array of arbitrary size. T his array is assumed to consist of a
large number of elements, enough to be sufficient to handle the elements
of the linear queue. This array representation of a queue consists with two
pointer type variables Rear (R) and Front (F). The algorithms of insertion
and deletion from the circular queue which is implemented with array (Q)
can describe as:

Function CQINSERT (Q, F, R, Y): [Given F and R, pointers to the front
and rear elements of a circular queue, F and R, a queue Q consisting of N
elements, an d an el ement VY, t his functioninserts Y attherearo fthe
queue. ]

If (R==N) /* Reset rear pointer */
R=1;

Else

R=R+1;

If (F==R) /* Check over flow condition */

{

Printf (““Over Flow™)

Return

}
Else

{
Q[R] =Y; [/*insert element */
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If (F ==0) /* set the front pointer */

F=1;
Return;
}

Function CQDELETE (Q, F, R): [Given F and R, pointers to the front
and rear of a circular queue, respectively, and a Queue Q consisting of N
elements, this function deletes and returns the last element of the queue. Y
is a temporary variable.]

If (F==0) /* check for the underflow condition */
Printf (*“‘underflow’); return 0; /* 0 denotes the empty queue */

Else

{

Y =Q [F]; /* delete element */

If (F ==R) /* Check whether the queue is empty */

{

F=R=0;

Return (Y); }

Elseif (F == N)

F=1;

else

F=F +1; /*increment front pointer */

Return'Y;

}

6.8 EXAMPLE

Consider an example of a circular queue that contains a maximum
of four e lements. Itis required t o pe rform an umber of insertion and
deletion operations on a n initially e mpty queue. Itis required to insert
symbols ‘A’, ‘B’, ‘C’ and ‘D’, delete ‘A’, insert ‘E’, delete ‘B’, insert ‘F’,
delete * C’, *D’, E’ and ¢ F’. T he t race f or t he 1 nsertion a nd de letion
algorithms can represent as follows for the given Queue:

Empty

t



T

— >
W 00—

o

r
rr
ro
1

0 —>

Insert A

Insert B

Insert C

Insert D

Delete A

Insert E

Delete B

Insert F

Delete C
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E F Delete D
[
F R
F Delete E
11
F R
Delete F

T

F R

6.9 TYPES OF QUEUES

There are two types of Queues
»  Priority Queue
»  Double Ended Queue

Priority Queue

A priority queue is a collection of elements such that each element
has been assigned a priority value such that the order in which elements
are deleted and processed comes from the following rules:

1.  Anelement of higher priority is processed before any element of
lower priority.

2. Two el ements with the s ame priority are p rocessed according to
the order in which they were added to the queue.

There are various ways of maintaining a priority queue in memory. One is
using one w ay list. T he s equential r epresentation is ne ver pr eferred for
priority queue. We use linked Queue for priority Queue.

Double Ended Queue

A Double Ended Queue is in short called as Deque (pronounced as Deck
or dequeue). A deque is a linear queue in which insertion and deletion can
take place at either ends but not in the middle.

There are two types of Deque.
1.  Input restricted Deque

2. Output restricted Deque



o A Deque which allows insertion at only at one end of the list
but allows deletion at both the ends of the list is called Input
restricted Deque.

o A Deque which allows deletion at only at one end of the list
but a llows 1 nsertion at both t he e nds of thelistiscalled
Output restricted Deque.

The tw o p ossibilities th at mu st b e ¢ onsidered w hile in serting o r
deleting elements into the queue are:

o When an attempt is made to insert an element into a d eque
which is already full, an over flow occurs.

e  When an attempt is made to delete an element from a deque
which is empty, underflow occurs.

The Deque can represent as follows:

Deletion <+—— [ A B C D E |« Insertion

Insertion —» — Deletion

T |

F R

6.10 SUMMARY

Queue is linear data structure in which the element is inserted from

one end of the queue. Queue is also called First-in-First-out (FIFO) list
since the first element in queue will be the first element out of the queue.
In this unit we have described the insertion and deletion of an element in
the linear queue with the condition of Overflow and underflow. The same
operations are pe rformed for circular queue and a gain the c onditions of
overflow and underflow are explicitly de fined. T he c ontents of this unit
can be summarized as:

Queue is a lin ear d ata s tructure th at p ermits in sertion o fn ew
element at one end and deletion o fan element at the other end.
Queue is also referred to as first-in-first-out (FIFO) list.

Two pointers are used in the queue i.e. rear and front. From rear
the elements are inserted and from front the elements are deleted
but one at a time.

Circular queues are the queues implemented in circle rather than a
straight line.

Conditions of ove rflow a nd und erflow are di fferent f or 1 inear
queue and circular queue.

Deques are the queues in which elements can be added or removed
at either end but not in the middle.
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An input-restricted deque is a deque which allows insertion at only
one end but does not allow deletions at both the ends of the list.

An out put-restricted deque is a d eque which allows d eletions at
only one end of the list but allows insertions at both the ends of the
list.

A queue in which it is possible to insert an element or remove an
element a t a ny pos ition de pending ons ome priority i s ¢ alled
priority queue.

Queueisad atas tructure used i n m any applications | ike ev ent
simulation, job scheduling, etc.
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SELF EVALUATION

Multiple Choice Questions :

1.

“FRONT = REAR” pointer refer to empty:

a.  Stack
b.  Queue
c. Array

d. None of the above

A data structure in which insertion and deletion can take place at
both ends is called:

a. Deque b. Stack

C. Circular Queue d. None of these

Using arrays, most efficient implementation of queue is on:
a.  Linear queue b. Priority queue

c.  Circular queue d. None of the above

............... form of access is used to add and remove nodes from
a queue

a. LIFO, Last In First Out.
b.  FIFO, First In First Out
c. LILO, Lastin Last Out
d. Bothbandec.

New nodes are added to the ................ of the queue.
a.  Front

b. Back

c. Middle

d. Bothaandb.

Fill in the Blanks

1.

A queue can be defined asa ................ (data type / data
structure)

The term head of the queue is same as the term............. (front /
rear)

FRONT = REAR pointer refers to................ Queue. (empty /
full)
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A/An.................. is a queue in which insertion of an element
takes place at both the ends but deletion occurs at one end only.
(input-restricted / output restricted)

A is a data structure that organizes data similar to
a line in the super market, where the first one in the line is the first
one out (Linear queue / Circular queue)

State whether True or False

1.

won

5.

A queue can be implemented using a circular array with front and
rear indices and one position left vacant.

Queue is a useful data structure for any simulation application.
A priority queue is implemented using an array of stacks.

Queues ar e o ften r eferredt o as L astin F irst o ut ( LIFO) d ata
structure.

A deque is a generalization of both a stack and a queue.

Descriptive Questions:

1.

Show how a sequence of i nsertion a nd r emovals from a que ue
represented by a linear array can cause overflow to occur upon an
attempt to insert an element into an empty queue.

How would you implement a queue of stacks? A stack of queues?
A queue of queues? Write routines to imp lement th e appropriate
operations of each of these data structures.

What is a circular queue? Write a C program to insert an element
int he ¢ ircular qu eue. Write a nother C function f or p rinting
elements of the queue in reverse order.

Given the circular queue of with F = 6 and R = 2, give the values
of R and F after each operation in the s equence: insert, d elete,
delete, insert and delete.
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BLOCK INTRODUCTION

This block will cover the one linear but non-contiguous data structure i.e.
linked list and two non-linear & non-contiguous data s tructure i.e. Tree
and Graph. A1l of these three d ata s tructures s upport d ynamic m emory
allocation. The operations of insertion and deletion are explained with the
help of e xamples for s ingle | inked 1 ist, c ircular | inked 1 ist a nd doubl y
linked 1 ist. T he a pplications of 1inked I ist da ta s tructure a re di scussed
specifically f orr epresentation of pol ynomial. E nough num ber of
examples is discussed to show the operations in linked list.

Tree data structure is also discussed in full detail. The basic terminology
of tree an d i ts r epresentation i s ex plained w ith suitable ex amples. T he
concepts o f b inary t ree, co mplete b inary tree, binary s earch tree, AVL
tree, B -tree are illustrated with suitable examples. T he traversing for the
tree is explained w ith in -order, p re-order a nd post-order m anner. T he
iterative and recursive al gorithms for these traversing are also described.
The insertion and deletion of an element from the binary tree and binary
search tree 1 s al so explained w ith s uitable examples. T hreaded treei s
explaineda ndi tsr epresentationi s c onsidered w ith e xample. T he
operations of insertion and deletion are de fined for B-tree and A VL-tree
also.

Graph is explained with its used terminology. Various methods for graph
representation ar e co vered | ike m atrix r epresentation an d 1 inked 1 ist
representation. T he ad jacency m atrix, p ath m atrix an d r each m atrix are
explained w ith s uitable examples. T he ac yclic graph and directed graph
are a Iso c overedi nt his bl ock. T het wo b asic s earch t echniques of
searching i.e. Breadth first search and depth first search for the graphis
also discussed and explained with examples. The concept of spanning tree
and m inimum s panking t ree 1 s s tated with t he K ruskal’s a nd pr im’s
algorithm f or min imum s panning tr ee construction f orm th e given
weighted di graph. T he S hortest pa th a Igorithms | ike be Ilman F ord,
Dijkstra’sa nd F loyd-Warshall ar e ex plained w ith ex amples. T he
topological sort for the graph is also covered with example.

This bl ock w ill he Ip you t o r ealize t he ¢ oncept of non -primitive d ata
structures and illustrate you about the application of these important data
structure 1 n t he ¢ omputer or ganization a nd f or pr ocessing o f va rious
common operations of system software.



UNIT-7 LINKED LIST

Structure

7.0  Introduction

7.1 Objectives

7.2 Definition of linked list

7.3 Dynamic memory Allocation for Linked list
7.4  Creation of Linked list in ‘C’

7.5  Operation on Linked List

7.6 Insertion into a Linked List

7.7 Deletion form the Linked List

7.8 Copy of the Linked List

7.9  Circular Linked List

7.10  Doubly Linked Lists

7.11  Insertion in doubly linked list

7.12  Deletion in doubly linked list

7.13  Doubly linked list as Queue

7.14  Circularly doubly linked list

7.15  Application of linked list: Polynomial representation
7.16  Stack implementation with Linked list

7.17  Garbage Collation

7.18  Summary

7.0 INTRODUCTION

Alist can be defined as a co llection o fel ements. W e can ad d,
search, or delete elements in a list. The list in maintained either with array
or linked list. This unit introduces the concept of another important linear
but non -contiguous da ta s tructure i .e. lin ked lis t w hich isa 1 inear
collection of data elements called nodes, which pointing to the next node
by me ans o fp ointers. T his u nit s tarts w ith th e r epresentation a nd
implementation o f th e s ingle lik ed lis t w ith o peration o f in sertion a nd
deletion of the element in the liked list on various locations i.e. at first, last
and at middle. I't gives the i mplementation of stack and que ue with the
help of single liked list. The concept and implementation of circular liked
list & doubly liked list is presented with the op eration of insertion and
deletion of an element on different locations. The application of linked list
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is presented for representation of a polynomial and shows the operation of
addition in between two pol ynomials by using linked list. In the last the
concept o f garbage collection is introduced. Linked lists overcome the
drawbacks of arrays. In a linked list the number of elements need not be
predetermined; m ore m emory canb e al located an d r eleased d uring
processing. It s upports t he d ynamic m emory allocation me chanism to

make insertion and deletion easier.

7.1 OBJECTIVES

After going through this unit, you should be able to:
o Understand the concept of linked list and its representation.

o Implementation of s ingle1 inked I ist a nd pe rforming f ort he
operation of insertion and deletion for an element in the existing
linked list on various locations.

o Implementation of stack and queue with single linked list.

o Understandt he conceptof c¢ ircular]l inkedl ista ndi ts
representation.

o Implementation of circular 1 inked 1 ist a nd pe rforming f or t he
operation of insertion and deletion for an element in the existing
circular linked list on various locations.

o Implementation of doubl y 1 inked 1 ist a nd pe rforming f ort he
operation of insertion and deletion for an element in the existing
doubly linked list on various locations.

o Understand the application of linked list for the representation of
polynomial a nd pe rforming t he ope ration of addition f or t wo
polynomials using linked list.

o Understand the concept of garbage collection.

7.2 DEFINITION OF LINKED LIST

A s tructure in volved in ma ny d ata p rocessing a ctivities is th e
ordered list o f d ata ite ms, lik e a Iphabetical lists of names. T his type of
data processing is conveniently performed with Array. In Array there is a
linear relationship; between the data elements those are stored in memory
at contiguous location with static memory requirement. The address of any
element in the array can be easily computed but it is very difficult to insert
and delete any element in an array. Usually, a large block of memory is
occupied by an array which may not be in use and it is difficult to increase
the size of an array, if required. There is another way also for storing the
ordered list is to have each element in a list contain a field called a link or
pointer, which contains the address of the next element in the list. Thus it
provides the non ¢ ontiguous memory allocation but in liner relationship.



Hence the successive elements in the list need not occupy adjacent space
in memory. This type of data structure is called a linked list. Thus, Linked
list is the most commonly used data structure used to store similar type of
data in memory. The elements of a linked list are not stored in adjacent
memory locations as in arrays.

Therefore, a linked list or on e-way lis tis a 1 iner c ollection o f d ata
elements, cal led nodes, w here t he 1 inear or deri s g iven b y m eans of
pointers. That is, each node is divided into two parts:

1. First part: It contains the information of the element (Info)

2. Second part : It contains the address o f the next node in the list
(Link)

Any node of the linked list can represent as:

INFO | LINK

Node

In this type of list representation with linked list which is containing nodes
for the presentation of elements a pointer is used to represent the address
of the next element of the linked list. A pointer to the starting of the linked
list i.e. for the first node or head of the linked list is used to gain access to
the list itself and the end of the list is denoted by a NULL pointer. In ‘C’
language the structure is used to implement a single linked list as:

Struct node

{
Int INFO:;

Struct node *LINK; }

The structure declared for linear linked list holds two members, an integer
type variable INFO which holds the elements and another member of type
node which has the variable LINK, which stores the address of the next
node in the list.

Now we consider an example for the representation of a linked list of 4
nodes as s hown inthe following figure. E ach node is c onsidering t wo
parts. The left part represent the information part of the node, which may
contain an entire record of data items. The right part represents the Link
parti.e. a pointer field which contains the address of the next node. The
pointer of the last node contains the NULL pointer, which is any invalid
address.

INFO 1

v

INFO 3| |—|INFO 4

Start

A 4

v

INFO 2
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(NULL Pointer)

7.3 DYNAMIC MEMORY ALLOCATION FOR
LINKED LIST

The °C’ language requires the number of elements in an array at
compile time. This may cause wastage of memory space. Such situation
cant ake c are b yu singt he co ncept o fd ynamic m emory allocation
concepts. D ynamic m emory t echniques a llow us t o a llocate a dditional
memory space or to release unwanted space at the time ex ecution. T his
may cause minimum wastage to memory space with respect to the static
memory allocationa t compile time . T he C1 anguages upportst he
following functions for allocating and free memory during the execution
of the program:

. Malloc () : It allocates requested size of bytes

. Calloc () : It allocates space for an array of elements
. Free () : It Frees previously allocated space
. Realloc () : It modifies the size of previously allocated space.

7.4 CREATING THE LINKED LIST IN ‘C’

The linked list can create in * C’ language by us ing pointers and
dynamic memory allocation functions such as malloc(). The head pointer
is used to create and access unnamed nodes. The following code segment
is used in ‘C’ for creating the linked list:

Struct linked_list

{

Int INFO;

Struct linked_list *next; }

Typedef struct linked_list node;

Node *head,;

Head = (node*) malloc (size of (node));

Thus t he a bove s egment of ¢ ode obt ains m emory t o s tore a nod e and
assigns its address to head which is a pointer variable.

7.5 OPERATION ON LINKED LIST

We can perform the following operations on the linked list:



Traversing a Linked List

Let we have the linked list LIST in memory with its two fields
INFO and LINK with START pointing to the first element and
NULL indicating the end of LIST. Suppose we want to traverse
LIST and print the element of the list in order to process each node
exactly on ce. O ur t raversing a Igorithm us es a poi nter va rivable
PTR which points to the node that is currently being processed.
Accordingly, LINK[PTR] points to the next node to be processed.
The assignment PTR = LINK[PTR] moves the pointer to the next
node in the list. The algorithmic steps for the traversing process are
as follows:

Algorithm (Traversing a Linked List) :

[Initialize PTR and then process INFO [PTR], the information at
the first node. Update PTR by the assignment PTR = LINK[PTR],
and then process INFO[PTR], the information at the second node
and so on until PTR = NULL, which signals the end of the list.]

1. PTR =START [Initialize pointer PTR]

2 Repeat steps 3 and 4 while PTR #NULL

3. Print (INFO [PTR])

4. PTR =LINK[PTR] [Update pointer]
[End of step 2 loop]

5. Return

Count the nodes in a Linked List

Let we have the linked list LIST in memory with its two fields
INFO and LINK with START pointing to the first element and
NULL indicating the end of LIST. Suppose we want to count the
number of nodes in the linked list by traversing the LIST in order
to process each node exactly once. Our counting algorithm uses a
pointer varivable PTR which points to the node that is currently
being processed. Accordingly, LINK[PTR] points to the next node
to be processed. The assignment PTR = LINK[PTR] moves the
pointer to the next node in the list. The algorithmic steps for the
traversing process are as follows:

Algorithm COUNT (INFO, LINK, START, NUM)

[Initialize PTR and NUM and t hen pr ocess INFO [PTR], the
information at the first node. Update PTR by the assignment PTR
= LINK[PTR], and then process INFO[PTR], and increment the
NUM by one each time of this processing until PTR = NULL,
which signals the end of the list.]
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1. PTR=START and NUM = 0; [Initialize pointer PTR and
NUM]

Repeat steps 3 and 4 while PTR #NULL
NUM = NUM + 1; [Increase NUM by 1]
PTR = LINK [PTR] [Update pointer]

o M w

Print (““The number of nodes in the linked list are = **,
NUM)

[End of step 2 loop]
6. Return
Searching a Linked List

Let we have the linked list LIST in memory with its two fields
INFO and LINK with START pointing to the first element and
NULL indicating the end of LIST. We have given an ITEM of
information. The process here is for finding the location LOC for
the node where ITEM first appears in LIST.

Algorithm (Searching a Linked List):

[Initialize PTR and then process INFO [PTR], the information at
the first node. Update PTR by the assignment PTR = LINK[PTR],
andt henp rocess INFO[PTR].N ow co mparet heco ntent
INFO[PTR] of each node with LOC, one by one by updating the
pointer PTR by PTR = LINK[PTR] until PTR = NULL, which
signals t he e nd of t he list. H ere w e ha ve t he t wo t erminating
condition i.e. the end of the linked list or the item LOC is found i.e.
INFO[PTR]=ITEM.

Search(INFO, LINK, START, ITEM, LOC)
1. PTR =START [Initialize pointer PTR]
2. Repeat steps 3 while PTR #NULL
3. If I”TEM == INFO[PTR]) {
LOC = PTR; Return (PTR); }
Else
PTR =LINK [PTR] [PTR now points to the next node]
[End of Step 2 loop]
4. LOC=NULL [Search is unsuccessful.]
5. Exit.



7.6 INSERTION INTO A LINKED LIST

Let LIST be a linked list on any arbitrary nodes. An element A is
to be inserted into the list. There may be the following three conditions in
which the given element can insert in the existing list:

1. Thenew element A caninsertatthe beginning of the listasthe
first node.

2. The new element A can insert at the end of the list.

3.  The new element A can insert in between any two already existing
nodes 1in the list.

All the three locations for the insertion of given new element A into the
existing linked list can view diagrammatically as:

Start p| INFO1| L | INFO2 | |— 3| INFO3 | |—| INFO4
Existing Linked List
Start INFO 1 y| INFO2 »| INFO3 | | ——3| INFO4
A
Eliminated pointer Address - >
A
Actual current Pointer Address ——
(a) Situation First for the insertion in existing List
Start »| INFO I »| INFO2 »| INFO3 »| INFO 4
A 4
A
(b) Situation second for the insertion in
existing List
Start p INFO1 | 1| INFO2 | ...|eeceep| INFO3 | || INFO4
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Eliminated pointer AddreSS .......................... >
Actual current Pointer Address _—

(c)  Situation Third for the insertion in existing List

Now we present the algorithm of insertion on these three locations in the
given | inked 1 ist. T hus w e di scuss t hree 1 nsertion a lgorithms f or t he
following cases:

The first one inserts a node at the beginning of the list

The s econd one inserts a node into a fter the node witha given
location.

The third one inserts a node into the last or into a sorted list.

In all the following algorithms we consider a linked listi.e. LIST (INFO,

LINK,

START, AVAIL) and that the variable ITEM contains the new

information to be added to the list. Since our insertion algorithms will use
anode in the AVAIL list, all of the algorithms will include the following

steps:

(2)

(b)

(©)

Check t he condition for overflow. T his condition will ¢ heck to
examine the AVAIL listi.e. if AVAIL = NULL then it shows the
condition of overflow.

Removing the first node from the AVAIL list. Using the variable
NEW to keep track of the location of the new node, this step can
be implemented as:

NEW = AVAIL, AVAIL = LINK [ AVAIL]
Copying new information into the new node as:

INFO [NEW] = ITEM

The algorithms for these three cases are described as:

(1)

Insertion at the beginning of a List

This algorithm inserts a new element at the beginning of the
given linked list:

INSFIRST (INFO, LINK, START, AVAIL, ITEM)

[This algorithm will insert the given ITEM as the first node in
the list]

If (AVAIL == NULL) /* Check the condition for overflow
*/

{
Printf (‘OVERFLOW’);



Return;
}
Else {
NEW = AVAIL;

AVAIL = LINK [AVAIL];
AVAIL list */

INFO[NEW] = ITEM;
node */

LINK [NEW] = START;
original first node */

START = NEW;
to the new node */

}
Return (NEW);

(i) Insertion at end of a List

/* remove first node from

[* Copy new data into new

/* new node to point the

/* Change START so it points

This algorithm inserts a new element at the end or at the last of the

given linked list:

INSFIRST (INFO, LINK, START, AVAIL, ITEM)

[This algorithm will insert the given ITEM as the last node in the list]

If (AVAIL == NULL)
{
Printf ‘OVERFLOW’);
Return;
}
Else {

NEW = AVAIL;
node */

AVAIL = LINK [AVAIL];
AVAIL list */

INFO [NEW] = ITEM,;
node */

LINK [NEW] = NULL
node of the list */

/* Check the condition for overflow */

/* obtain address of next free

/* re remove first node from

[* Copy new data into new

/* new node to point the last
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If (START == NULL) /* check for the list that is list

empty? */

Return (NEW);

TEMP = START /* Initiate search for the last
node */

while (LINK [TEMP] != NULL)

{

TEMP = LINK [TEMP]

}

LINK [TEMP] = NEW /* Set LINK field of last node
to NEW */

Return (START)
}

(1) Insertion after a given Node of a List

This algorithm inserts a new element after the given node of the
given linked list:

INSORDER (INFO, LINK, START, AVAIL, ITEM)

[This a Igorithm inserts the given node ITEM into LIST onthe
given 1 ocationi.e. LOC isthelocationof a nodesay A. Thus ITEM
follows node A. Let N denote the new node (whose location is NEW). If
LOC=NULL, then N is inserted as the first node in LIST. Let the node N
point to node B (which originally followed no de A) by th e s tatement,
LINK [NEW] = LINK [LOC] and we let node A point to the new node N
by the statement, LINK [LOC] = NEW;

If (AVAIL == NULL) /* Check the condition for overflow

*/
{
Printf (‘OVERFLOW’);
Return;
}
Else {
NEW = AVAIL; [* obtain address of next free
node */
AVAIL = LINK [AVAIL];  /* re remove first node from
AVAIL list */
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INFO [NEW] = ITEM; [* Copy new data into new

node */
If (LOC == NULL) /* check for the list that is list
empty? */
{
LINK [NEW] = START;
START = NEW; I* Insert as first node */
}
Else
{
LINK [NEW] = LINK [LOC];
LINK [LOC] = NEW; /* Insert the node after LOC
}
}

Return (START);

7.7 DELETION FORM THE LINKED LIST

Let LIST be a linked list on any arbitrary nodes. An element A is
an existing node of the linked list which has to be deleted from the list.
There may be the following three conditions in which the given element
can insert in the existing list:

1. The node of the element A is the first node of the linked list which
has to be deleted.

2. The node of the element A is the last node of the linked list which
has to be deleted.

3. The node of the element A is the any middle node of the linked list
which has to be deleted. A specific location is given for a node and
that node which is at that location should delete.

All three situations for the deletion of given node of element A into the
existing linked list can view diagrammatically as:

Start » NFO1 | —T—»| WFO2 | —T—»| wFO3 | T | NFO4
Existing Linked List
A4
Start » A I I »| INFO2 »| INFO3 »| INFO 4
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Ellmlnated pOIHter Address .......................... >

Actual current Pointer Address _—

(a) Situation First for the deletion from the existing List

Start INFO 1 INFO 2 INFO 3 INFO 4

v

A
v

A
(b) Situation second for the deletion from the existing List
Ellmlnated pOll’lter AddI‘CSS .......................... »
Actual current Pointer Address ——»
\ 4

Start »| INFO I p| NFO2 | flip| A ceeefereenep| INFO 4

Eliminated pointer Address .......................... >

Actual current Pointer Address -

(c) Situation Third for the deletion from the existing list

Now w e present a general al gorithm for d eleting an el ement from t he
given linked list. T his algorithm encompasses all the three situations as
described in above mentioned figures for deletion.

Algorithm DELTE (X, FIRST): [Given X and FIRST pointer v ariables
whose values denote the address of a node in a linked list and the address
of the first node in the linked list, respectively, this procedure deletes the
node whose address is given by X. TEMP is used to find the desired node,
and PRED keeps track of the predecessor of TEMP. FIRST is changed
only when X is the first element of the list.]

If (FIRST == NULL) /* Check the condition for empty list
*/

{
Printf (‘UNDER FLOW’);



Return;

}
Else { /* Initialize search for X */
TEMP = FIRST;
While ((TEMP !'=X) && (LINK (TEMP) = NULL)) /* find
X */
{
PRED = TEMP [*  Update  predecessor
marker */
TEMP = LINK (TEMP) /* Move to next node */
}
If (TEMP 1= X) /* end of the list */
{
Printf (“‘Node not found”);
Return;
}

If (X == FIRST) /* X is the first node i.e. the deletion
of the first node */

FIRST = LINK (FIRST);
Else
LINK (PRED) = LINK (X);

LINK (X) = AVAIL; /* Return node to available
area */

AVAIL = X;
Return;

}

7.8 COPY OF THE LINKED LIST

Let LIST be alinked list on any arbitrary nodes. We formulate a
algorithm which copies a linked list into the another linked list. A general
algorithm to copy a linked list is as follows:

Algorithm COPY (FIRST): [Given FIRST, a pointer to the first node in a
linked list, this algorithm makes a copy of this list. A typical node in the
given list consists of INFO and LINK fields. The new list is to contain
nodes w hose i nformation and pointer fields are denoted by FIELD and

MCA-107/111



PTR, respectively. The address of the first node in the newly created list is
to be placed in BEGIN. NEW, SAVE and PRED are pointer variables. ]

If (FIRST == NULL) /* Check the condition for empty list

[* copy the first node */

/* Initialize traversal */

/* Move to next node if not at

*/
{

Printf CEMPTY LIST");
Return; }

Else

{
If (AVAIL == NULL)
{
Printf (“Availability stack underflow’);
Return (0); }
Else {
NEW = AVAIL,;
AVAIL = LINK (AVAIL);
FIELD (NEW) = INFO (FIRST);
BEGIN = NEW; }

SAVE = FIRST,

While (LINK (SAVE) != NULL)

end of list */
{
PRED = NEW;

SAVE = LINK (SAVE);
save pointer */

NEW = AVAIL;

AVAIL = LINK (AVAIL);
FIELD (NEW) = INFO (SAVE);
PTR (PRED) = NEW;

}

PTR (NEW) = NULL;
MCA-107/112
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Return (BEGIN); /* Set link of last node and
return */

}
7.9 CIRCULAR LINKED LIST

In the previous discussion we have concerned about linked lists in
which t he I ast node of such lists ¢ ontained t he null pointer. N ow w ¢
consider a slight different modification of this representation which results
in a further improvement in processing. This is accomplished by replacing
the null pointer in the last node of a list with the address of its first node.
Such a list is called a circularly linked linear list or simply a circular list.
The following figure illuSTARTes the structure of a circular list:

INFO 1| ——»| INFO 2 » INFO 3| ——»| INFO4 >
First A circularly linked list

Circular 1 ists h ave cer tain ad vantages o ver singly 1 inked 1 ist. T hese
advantages can highlight as follows:

* Accessibility of anode: In a circular list every node is accessible
from a given node. That is, from this given node, all nodes can be
reached by merely chaining through the list.

*  Deletion of a node: In the single linked list, to delete an element in
addition t o t he address X of thenode tobe deleteditis also
necessary to give t he a ddress of the first node of the list. T his
necessity r esults f romt he f actt hatinor dert o de lete X , t he
predecessor of this node has to be found. To find the predecessor
requires that a search be carried out by chaining through the nodes
from the first node of the list. T his s earch r equirement doe s not
exist for a circular list, since the search for the predecessor of node
X can be initiated from X itself.

Beside these ad vantages the circular link list also has a d isadvantage. In
circular linked list with if the processing is carried out without some care
it is possible to get into an infinite loop. In processing a circular list, it is
important that we are able to detect the end of the list. Hence to detect the
end of the list we place a special node which can be easily identified in the
circular list. This special node is called as the list head or header of the
circular list. The one of the important advantage of using the header node
in the circular list is that the list will never be empty because at least one
node will always present in the circular linked list. The representation of a
circular list with a header node can represent graphically as:
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HEAD

INFO 2

v

INFO 1

INFO 3

v

INFO 4

v

A circularly linked list with a head node

Here the variable HEAD denotes the address of the list head. The INFO
filed in the list head node is not used, which is illuSTARTed by shading
the field. An empty list is represented by having:

LINK (HEAD) = HEAD. The f ollowing a re t he va rious ope rations

performed on a circular header list:
o Traversing a circular header list
. Searching in a circular header list

. Deleting from a circular header list

Now we consider the algorithms for these three operations.

Algorithm (Traversing a circular header Linked List)

[Initialize PTR and then process INFO [PTR], the information at the first
node. U pdate PTR by the a ssignment PTR = LINK [PTR], and t hen
process INFO [PTR], the information at the second node and so on until

PTR # START.]

1. PTR =LINK [START] [Initialize pointer PTR]

Repeat steps 3 and 4 while PTR #START

2

3. Print (INFO [PTR])

4. PTR=LINK[PTR] [Update pointer]
[End of step 2 loop]

5. Return

Algorithm (Searching the circular header Linked List)

[This algorithm finds th e lo cation LOC of the node w here ITEM first

appears in LIST or sets LOC = NULL.]

1. PTR =LINK [START]; [Initialize pointer PTR]

2.  Repeat while INFO [PTR] # ITEM and PTR #START
PTR = LINK [PTR]; [PTR now points to the next node]

[End of loop]




4.

If INFO [PTR] == ITEM) then
LOC = PTR;

Else

LOC = NULL;

[End of if structure]

Exit

Algorithm CRDELTE (X, FIRST): [Given X and FIRST pointer
variables whose values denote the address of a node in a linked list and the
address of the first node in the linked list, r espectively, t his pr ocedure
deletes the node whose address is given by X. TEMP is used to find the
desired node, and PRED keeps track of the predecessor of TEMP. FIRST
is changed only when X is the first element of the list.]

If (FIRST == NULL)/* Check the condition for empty list */

{
Printf (‘UNDER FLOW’);

Return;
}
Else { /* Initialize search for
X */
TEMP = FIRST;
While ((TEMP = X) && (LINK (TEMP) != FIRST))
[* find X */
{
PRED = TEMP I* Update

predecessor marker */

TEMP = LINK (TEMP) /* Move to next node

*/
}
If (TEMP 1= X) /* end of the list */
{
Printf (*“Node not found™);
Return;
}
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If (X == FIRST) [* X is the first node i.e. the deletion
of the first node */

FIRST = LINK (FIRST);
Else
LINK (PRED) = LINK (X);

LINK (X) = AVAIL; /* Return node to
available area */

AVAIL = X;
Return;

}
7.10 DOUBLY LINKED LISTS

Now we discussa t wo — way |l ist, w hich can b et raversedin
following two directions:

1.  Inthe usual forward direction from the beginning of the list to the
end.

2. Inthe backward direction from the end of the list to the beginning.

This property of a linked linear list implies that each node must contain
two link fields instead of the single link field. The links are used to denote
the Predecessor and successor of anode . Thel ink de notingt he
predecessor of a node is called the left link, and that denoting its successor
its right link. A list containing this type of node is called a doubly linked
list or two-way list.

Therefore at wo — way list is a linear collection o f data structure, called
nodes, where each node N is divided into three parts:

(1)  An information field INFO which contains the data of the element.

(1) A pointer field L which contains the location of the preceding node
in the list.

(ii1)) A pointer field R which contains the location of the next node in
the list.

Any node of the doubly linked list can represent as:

LINK (L) | INFO |[LINK (R)

Node



In this linked list there are two NULL pointers. One is along the forward
passi.e. with R link and another is along the backward passi.e. with L
link. Hence along the forward pass the last node of the list will contain the
NULL pointer and along the backward pass the first node will contain the
NULL pointer. P ictorially,s ucha 1 inerl istc anbe r epresented
diagrammatically as follows:

v
v
o)

A doubly linked linear list

7.11 INSERTION IN DOUBLY LINKED LIST

Now w e consider the problem of inserting a node into a doubly
linked linear list to the left of a specified node whose address is given by
variable M. There are number of cases possible for insertion of an element
into the existing doubly linked list. These cases are as follows:

e Insertion in the list which is originally empty. This is denoted by
setting both L and R pointers to the address of the new node and by
assigning a NULL value to the left and right link of the node being
entered.

) Insertion in the middle of the list.

° The insertion can be made to the left of the le ft-most in the list,
thereby requiring the pointer L to be changed.

The last two situation of inserting a new element can pictorially represent
as:

v
A 4

|

NEW

Doubly linked list before insertion of the element
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A

A 4

-

< —

Doubly linked list after the insertion of an element in the middle

v

|

NEW

Doubly linked list before insertion of the element

v

A

+“—R

A
v

—>

<_

|

NEW Doubly linked list after the insertion of an element in

the left most side

Now we describe the general algorithm for inserting a node to the left of a
given node in a doubly linked list. The algorithm is stated as:



Algorithm DOUBINS (L, R, M, X):

[Given a doubly linked list whose left most and right most node addresses
are given by the pointer variables L and R, respectively, it is required to
insert a node whose address is given by the pointer variable NEW . The
lefta nd r ightl inks of a node a rede noted by LPTR and RPTR,
respectively. T he information field of a node is denoted by the variable
INFO. The name of an element of the list is NODE. The insertion is to be
performed to the left o fa specified nod e with its address given by the
pointer variable M. The information to be entered in the node is contained
in X.]

1.  [obtain new node from availability stack]
NEW «<NODE;

2. [copy information field]
INFO (NEW) = X;

3. [Insertion into an empty list?]
If (R ==NULL)
{
LPTR (NEW) = RPTR (NEW) = NULL;
L =R =NEW,;
Return (NEW);
}

4.  [Left-most insertion]
If(M==L)
{
LPTR (NEW) = NULL;
RPTR (NEW) = M;
LPTR (M) = NEW;
L = NEW;
Return (NEW);
}

5. [Insertion in middle]

LPTR (NEW) = LPTR (M);
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RPTR (NEW) = M;

LPTR (M) = NEW;

RPTR (LPTR (NEW))= NEW;
Return (NEW);

7.12 DELETION IN DOUBLY LINKED LIST

Now w e consider the problem of deleting a node from a doubly
linked | inear 1 ist. Int his pr ocess t here i sno need of a ny s earch f or
determining the predecessor node of the node to be deleted. In the doubly
linked list on g iving the address of the node which is to be deleted, the
predecessor a nd s uccessor node s a re i mmediately know n. T herefore
doubly linked lists are much more efficient with respect to deletions than
singly linked lists.

There a re n umber o f p ossibilities a rises f or th e d eletion o peration in
doubly linked list. These possibilities are as follows:

. If the list contains a single node, then a deletion results in an empty
list with the left — most and right-most pointers being set to NULL.

e  The node being deleted could be the left-most node of the list. In
this case the pointer variable L must be changed.

e  The node being deleted could be the Right-most node of the list. In
this case the pointer variable R must be changed.

° The deletion can occur from the middle of the list.

A general algorithm for deleting a node from the doubly linked listis as
follows:

Algorithm DOUBDEL (L, R, OLD):

[Given a doubly linked list with the addresses of the left most and right
most node s given by t he poi nter v ariables L and R, r espectively, it is
required to delete the node whose address is given by the pointer variable
OLD. The left and right links of a node are denoted by LPTR and RPTR,
respectively.]

1. [check the condition for underflow]

If (R == NULL)

{

Printf ("Underflow™);
Return

}



2. [Delete the node]

If (L ==R) /* single node in the list */

L =R = NULL;

Else if (OLD ==1) [* Left-most node being deleted */
{

L =RPTR (L);

LPTR (L) = NULL;

}

Else if (OLD ==R) /* Right-most node being deleted */
{

R=LPTR (R);

RPTR (R) = NULL;
}
Else
{
RPTR (LPTR (OLD)) = RPTR (OLD);
LPTR (RPTR (OLD)) = LPTR (OLD);
}
3. [Return deleted node]
Return (OLD);

7.13 DOUBLY LINKED LIST AS QUEUE

Doubly linked linear lists can be easily used to represent a queue
whose number of elements is very volatile. Such representation can see as:

l
|

F .............. +—— — R
L4 —_——P s B ———

Doubly linked linear list representation of a queue

Here R and F are pointer variables which denote the REAR and FRONT
of the queue, respectively. The insertion of a node whose address is NEW
at the REAR of the queue as shown below:
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NEW
Insertion in a doubly linked queue
The following sequence of steps accomplishes such insertion:
RPTR (R) = NEW;
RPTR (NEW) = NULL,;
LPTR (NEW) =R;
R =NEW;
Similarly, a deletion from a doubly linked queue can represent as:
F N TR

Deletion in a doubly linked queue

The de letion from t he front of the que ue is achieved by the following
algorithmic steps:

F =RPTR (F);
LPTR (F) = NULL;

7.14 CIRCULARLY DOUBLY LINKED LIST

The process of insertion and deletion can simplify if we combine
the advantages of doubly linked list and circular header linked list. The
doubly linked list may implement as the circular linked list by connecting
the two end nodes point back to its header node. Therefore the case of an
empty list is dispensed with by never permitting a list to be empty. This
can be accomplished by using a s pecial node that al ways remains in the
list. Hence, it is the only node in an empty list. The special node is called
the Head node of the list. Thus, such a two-way list requires only one list



pointer va riable i .e. START, w hich points t o the he ader node . T hisis
because the two pointers in the header node point to the two ends of the

listas s hownin the f ollowing g raphical r epresentation o f't he ci rcular
doubly linked list:

HEAD

A

o
_

v
A 4

A 4

]

A doubly linked circular list with a head node

In this representation we can see that the right link of the right-most node
contains the address of the head node and the left link of the head node
points to the right-most node. The empty list can present when both 1eft
and right links of the head node point to itself. This can view graphically
as:

HEAD

A 4 A 4

e
o

An empty doubly linked circular list with a head node.

The algorithm for inserting a node in the doubly linked circular list to the
left of a specified node M now reduces to the following sequence of steps
with respect to the insertion algorithm in a double linked linear list:

Algorithm DOUBCRINS (L, R, M, X):

[Given a doubl y circular 1 inked 1 ist w itht he HEAD node. Nowitis
required to insert a node whose address is given by the pointer variable
NEW. The left and right links of a node are denoted by LPTR and RPTR,
respectively. T he information field of anode is denoted by the variable
INFO. The name of an element of the list is NODE. The insertion is to be
performed to the left o fa specified node with its address given by the
pointer variable M. The information to be entered in the node is contained
in X.]

1.  [obtain new node from availability stack]
NEW «<NODE;

2. [copy information field]
INFO (NEW) = X;

3. [Insertion the node]
RPTR (NEW) =M
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LPTR (NEW) = LPTR (M)
RPTR (LPTR (M)) = NEW
LPTR (M) = NEW

Return (NEW);

The insertion of a node into an empty list can be represented before and
after the insertion as follows:

HEAD
\ 4
o
V)
Empty doubly linked circular list
Before the insertion of new node NEW
HEAD
Vg
7 >

Empty doubly linked circular list after the ipsertion of a new node

M NEW

In t he s ame m anner, t he de letion a Igorithm of a node with an address
given by the variable OLD from the doubly linear linked is modified and
this modification can present in the following steps as:

Algorithm DOUBCRDEL (L, R, OLD) :

[Given a doubly linked circular list with the HEAD node. This is required
to delete the node whose address is given by the pointer variable OLD.
The I eft and r ight 1 inks of a node aredenotedby LPTR and RPTR,
respectively.]

1.  [check the condition for underflow]
If (HEAD (LPTR) == HEAD (RPTR))

{
Printf ("Underflow™);



Return

}
2. [Delete the node]

{
RPTR (LPTR (OLD)) = RPTR (OLD);
LPTR (RPTR (OLD)) = LPTR (OLD);
}

3. [Return deleted node]
Return (OLD);

7.15 APPLICATION OF LINKED LIST:
POLYNOMIAL REPRESENTATION

Here we consider the applications of linked list. A very common and
important a pplication of lin ked lis tis f ort her epresentationo fa
polynomial. A polynomial, p (x), is an expression in variable x of the form

(ax" +bx"" +...+ jx+k) where a, b, c, ...k are real numbers and n is a

non-negative integer. The number n is called the degree of the polynomial.
An imp ortant ¢ haracteristic o fa p olynomial is th ate ach te rmin the
polynomial expression consists of following two parts:

e  Coefficient
. Exponent
Consider the following polynomial:
ax’ +bx’ —cx® —dx
Here, (a, b, -c, -d) are coefficients and (5, 3, 2, 1) are exponents.

Exponents are the pl aceholders for any value t hat r emains ¢ onstant for
each term in a single expression. In data structure, a pol ynomial can be
represented as a list of nodes where each node consists of coefficient and
an exponent.

Points to be considered when working with polynomials are:

o Sign of each ¢ oefficienta nd e xponenti ss tored w ithint he
coefficient and exponent itself.

. Only addition of term with equal exponent is possible.

. Storage of each term in the polynomial must be done in ascending /
descending order of their exponent.

Consider t he e xample of r epresentinga t erm of a pol ynomial i nt he
variables x, y, z. A typical node of the linked list can represent as:
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POWER X | POWER Y | POWER Z | COEFF | LINK

A typical node of the linked list for the representation of a
polynomial of three variables

This t ypical node c onsists of five s equentially allocated fields t hat we
collectively refer to as TERM. The first three fields represent the power of
the variables x, y, z, respectively. The fourth and fifth fields represent the
coefficient of the term in the polynomial and the address of the next term
in t he pol ynomial, r espectively. For example, the t erm 3xy would be
represented as:

We ¢ onsider t he poi nter a ddress P tor eference t he node f or our
algorithmic notation. COEFF (P) denotes the coefficient field of a node
pointedto by P. Similarly, t he e xponents of x, yandz are givenby
POWER_X (P), POWER_Y (P), and POWER_Z (P), respectively, and the
pointer to the next node is given by LINK (P).

Consideras an  examplet her epresentation of t he pol ynomial:
2X* +5Xy+ Yy’ +yz asa linked list. Assume that the nodes in the list are

to be storedsuchthat atermpointedtoby P precedes an other t erm
indicated by Q if POWER_X (P) is greater than POWER_X (Q); or, if the
power of x is equal, then POWER_Y (P) must be greater than POWER_Z
(Q). For our example, the list is represented as:

A 4
(=]

We can formulate an algorithm which inserts a term of a polynomial into a
linked list.

Algorithm POLYFRONT (NX, NY, NZ, NCOEFF, POLY):

[Given the definition of the node structure TERM and an availability area
from which we can obtain such nodes, it is required to insert a node in the
linked 1 ist s o t hat i t i mmediately pr ecedes t he node w hose a ddressis
designated by the pointer POLY. The fields of the new term are denoted
by NX, NY, NZ, and NCOEFF, which correspond to the exponents for x,



y, and z, and the c oefficient v alue o f the t erm, r espectively. NEW is a
pointer variable which contains the address of the new node.]

1.  [Obtain a node from available storage]
NEW & TERM

2. [Initialize numeric fields]
POWER_X (NEW) = NX;
POWER_Y (NEW) = NY;
POWER_Z (NEW) = NZ;
COEFF (NEW) = NCOEFF

3. [Set link to the list]
LINK (NEW) = POLY;

4.  [Return first node pointer]
Return (NEW)

This function performs all its insertions at one end of the linked list. In
general, it is also possible to perform insertions at the other end or in the
middle o fthe list. T he zero p olynomial ( polynomial w ith n o te rms) is
represented by the NULL pointer. B efore any term of a pol ynomial h as
been added to a list, its first node pointer, which we call POLY, has a value
of NULL. W hen function POLYFRONT is invoked, the address of the
created node is returned, and it is this value that replaces the function call
i.e. POLY = POLYFRONT (NX, NY, NZ, NCOEFF, POLY.T he
construction of a linked list for a polynomial is achieved by having a zero
polynomial in itially and by r epeatedly i nvoking function POLYFRONT
until all terms of the polynomial are processed.

7.16 STACK IMPLEMENTATION WITH
LINKED LIST

The pr oblem w ith a rray-based s tacksi st hatt he s izem ustb e
determined at compile time. Thus the size of the stack is fixed. The stack
implementation with array reflects the static memory allocation. Hence to
implement the stack with dynamic memory allocation we use a linked list,
with the stack pointer pointing to the TOP element, let FRESH be the new
node. To push a new element on the stack, we must do:

FRESH->NEXT= TOP;
TOP = FRESH;
To pop an item from a linked stack, we just have to reverse the operation.
ITEM =TOP;
TOP = TOP->NEXT;
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7.17 GARBAGE COLLECTION

Garbage c ollection is the process of collecting all unus ed node s
and returning them to available space. Therefore the garbage collection is
about f reeing d ynamically allocated m emory whenn oti nu se. This
process is carried out in two phases:

. First phase, known as marking phase. It involves marking of all
nodes that are accessible from the external pointer.

. Second phase, known as collection phase. It involves proceeding
sequentially through memory and freeing all nodes that have not
been marked.

In t he i mplementation for l inked 1ist w hen w e de lete a node from the
linked list and return it to the memory back i.e. free (node) then the space
allocated to the de leted node and its pointer address return back to the
memory. This process is considered as the garbage collection.

7.18 SUMMARY

Linked list is a linear dynamic data structure which allows storing
the e lements in non -contiguous me mory lo cations. It is not restricted as
the array. It provides the way of dynamic memory allocation. The contents
of this unit can be summarized as:

o Linked l ist i s t he m ost c ommonly us ed da ta s tructure t o s tore
similar type of data in memory.

o Itislinear t ype da ta s tructure but a llocate t he m emory i n non
contiguous manner.

. Itis a d atas tructure w hich a llocates th e d ynamic me mory
allocation aspect.

o Self referential structure and pointer data types may represent the
singly connected linked lists.

e  To make the traversal operation easy, doubly connected linked lists
are used, in which every node contains links to its left and right
neighbours.

. The NULL value in the end of a single linked list denotes the end
of the list. The NULL link when set to the be ginning of the list,
results in the list called circular linked list.

. The idea of d ynamic me mory allocation is to be able to allocate
and de -allocate m emory atr untimei nr esponset o pr ogram
requirement and thus manage that space efficiently.

. Stack and queue can implement with the linked linear lists.



. The polynomial can represent and implement with linked list.
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SELF EVALUATION

Multiple Choice Questions:

1.

In linked list, a node contains:

a.  Node, address field and data field.

b.  Node number, data field

c.  Next address field, information field.

d.  None of these

In linked list, the logical order of elements

a.  Is same as their physical arrangement

b.  Is not necessarily equivalent to their physical arrangement
c. Is determined by their physical arrangement.

d.  None of the above

NULL pointer is used to tell

a.  End of linked list.

b.  Empty pointer field of a structure

c.  The linked list is empty

d.  All of the above

List pointer variable in linked list contains address of the:
a.  Following node in the list

b.  Current node in the list

c.  First node in the list

d.  None of the above

Due to the linear s tructure of 1inked 1ist ha ving | inear or dering,
there is similarity between linked list and array in:

a. Insertion of a node

b.  Deletion of a node

c.  Traversal of element of list

d.  None of the above

Searching of linked list requires linked list to be created:
a.  Instored order only.

b. In any order



c.  Without underflow condition

d.  None of the above

Fill in the blanks

The next address field is known as............ (pointer / address)
Linked list provides ...... memory allocation (static / dynamic)

In lin ked lis t, th eid entity o fn exte lementi s........... defined.
(explicitly / implicitly)

Beside data field, each node of linked list contains at least...........
more fields. (one / two)

End of t helinked1ist is m arked b y put ting.......... inthene xt
address field in the last node. (next / NULL pointer)

Attempting to delete a new node in ............ linked list results in
underflow. (Empty / non-empty).

Polynomials in memory can be represented by ....... lists. (Linear /
Circular).

For representing polynomial in memory using linked list each node
must have ............... fields (three / two)

A polynomial is made of different terms each of which consists of
AU and ......coeceenenne.

State whether True or False

4.
5.

Doubly linked list is the two way linked lists.
List — null can be used to initialize list as empty list.

In linked list, successive elements need not occupy adjacent space
in memory.

Circular linked list can be used without header node efficiently.

Linear queue cannot implement with doubly linked list.

Answer the following questions

1.

Write a program in “C” which reads the name, age and salary of 10
persons and maintains them in linked list sorted by name.

There are two linked lists A and B containing the following data:
A:2,59,14,15,7,20,17,30

B:14,2,9,13,37,8,7,28

Write programs to create :

(1) Alinked list C that c ontains only those e lements those are
common in linked list A and B.
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(i) A linked list D which contains all elements of A as well as B
ensuring that there is no repetition of elements.

Define polynomial as an abstract data type. Write a “C” functions
to add the two polynomials and return the sum.

What do you mean by linked list? What are the elements available
in the list? Specify the advantages o f doubly linked list over the
singly linked list. What is garbage collection?

Write a function in “C’ that constructs a doubly linked list with a
list head from a singly linked list that is accessed through a pointer
FIRST. The original singly linked list need not be destroyed.

Write a program in “C” to insert and delete the element from the
circular doubly linked list.



UNIT-8 TREE

Structure

8.0  Introduction

8.1 Objectives

8.2 Tree and its basic terminology
8.3 Binary Tree

8.4  Binary Tree representation

8.5  Linked storage Representation for binary trees
8.6  Traversing Binary Tree

8.7  Operation on the binary Tree
8.8 Reconstruction of Binary Tree
8.9  Threaded Binary Tree

8.10  Binary Search Tree

8.11 Operation on BST

8.12  AVL Tree

8.13  Operation in AVL Tree

8.14 B-Tree

8.15 Insertion in a B-Tree

8.16 Deletion in B- tree

8.17  Summary

8.0 INTRODUCTION

This uni t i ntroduces on e of t he m ost i mportant da ta s tructures
which is of type nonlinear and noncontiguous. The tree is a fundamental
structure in computer science. Almost all operating systems store files in
tree or tree like structures. Trees are also used in complier d esign, text
processing and s earching algorithms. In this unit the c oncept o f tree is
introduced with various kinds of trees and the operations on t hese trees.
This uni t s tarts w ith t he i ntroduction of basic terminology used for the
tree. It i ntroduces t he c oncept of binary tree, complete bi nary tree and
extended binary tree and their representation with array and linked list.
This unit gives a detailed account of the various operations that can be
performed on t he binary tree like traversing and s earching in the binary
tree. T he concept of t hreaded bi naryt ree isin troduced w ith its
implementation. This unit covers the discussion about BST, AVL tree and
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B-tree w ith t he ope rations of insertion and de letion of a node in these
trees. Various examples are used to elaborate the operations of traversing,
insertion and deletion from the tree.

8.1 OBJECTIVES

After going through this unit, you should be able to:
o Define and understand the basic terminology used for tree.

e  Understand the concept of tree, binary tree, complete binary tree
and extended binary tree.

o Explore of various operations like traversing, s earching, insertion
and deletion from the binary tree.

e  Understand and implementation of the binary search tree.

o Understand t he e xamples f or s howing t hese o perations i nt he
binary tree.

. Understand and implementation of the threaded binary tree.
° Define and understand the BST, AVL tree and B-tree
. Understand the concept of these trees with their examples.

o Implementation of insertion and deletion operations in the B- Tree.

8.2 TREE AND ITS BASIC TERMINOLOGY

A Tree consists of a set of nodes and a set of directed edges that
connect pairs of nodes. Trees are useful in describing any structure which
involves hierarchy. F amiliar ex amples o f such structures are family tree,
the decimal classification of books in library, the hierarchy of positions in
an or ganization, an algebraic expression involving op erations for w hich
certain rules of precedence are prescribed. A Tree consists of a main node
from where all the branches emerged i.e. top of the tree which is called as
the Root node of the Tree. A rooted Tree has the following properties:

. One node is distinguished as the root.

. Every node c, expecttheroot,is connected by an directed edge
from exactly one other node p. Node p is C’s parent, and C is one
of p’s children.

. A unique path traverses from the root to each node. The number of
edges that must be followed is the path length.

The number of edges emerging from a node is called the out degree of the
node. T hus, ina directed tree, any nod e w hich has out degree zerois
called a terminal node or leaf node. Other nodes those have nonzero out
degree are called the branch nodes. The number of edges directing for a



node is called the in degree of the node. Thus, in a directed tree, any node
which has in degree zero is called a root node. It is important to note that
every tree must have atleast one node. A single isolated node is also
called as the directed tree.

The level of any node is the length of its path from the root. The level of
the root of a directed tree is zero, while the level of any node is equal to its
distance from the root.

A Node  Height  Depth
A 3 a
3_\ E i i
C 1 1
(8) (¢) (p) T
I £ 2 1
F 1] 2
(F) (6) (#) e 0
H 0 2
| {l 2
J | 2
i 0 3

The Tree with the information of height and depth

In this given tree therootnode is A: A’s childrenare B, C, D and E.
Because A is the root, it has no parent. All other nodes have parents like
B’s parent is A. The leaves in this tree are C, F, G, H, | and K. The length
of the path from A to K is 3 (edges). The length of the path from A to A is
0 (edges). A tree with N nodes must have N-1 edges because every node
except the parent has an incoming edge. The depth of a node isatreeis
the length of the path from the node to the deepest leaf. Thus the height of
E is 2. The height of any node is 1 more than the height of its maximum
height child. Thus, the height of a tree is the height of the root.

Nodes with the same parent are called siblings. Thus B, C, D and E are
siblings. If there is a path from any node U to node v, then u is an ancestor
of v and v is a descendant of u. If u # v, then u is a proper ancestor of v
and Vv is a proper descendant of u. The size of a node is the number of
descendants the node has (including the node itself). Thus the size of B is
3, and the size of C is 1. The size of a tree is the size of the root. Thus the
size of the given tree is the size of its root A, or 11.

If in a directed tree the out degree of every node is less than or equal to m,
then the tree is called an m-ary tree. If the out degree of everynodeis
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exactlyequalto m or O andthenumberofnodesatlevel i is m'

(assuming that the r oot node has a level number of 1), thenthetreeis
called a full or complete m- ary tree. For m = 2, the trees are called binary
and complete binary tree. We shall now m- ary tree consider in which the
m (or f ewer) ¢ hildren ofa ny node are a ssumedt o ha ve m distinct
positions. If such positions are taken into account, then the tree is called a
positional m- ary tree. T he f ollowing graphical r epresentations ar e
expressing the different form of the binary tree.

A Binary Tree A Complete Binary Tree

A Binary Tree with distinct position

Example :
Represent the following expression with binary tree.
Vv, ¥V, — (v, +v, Ty

The binary tree representation is as follows:



€
v D
@

Therefore we can define the Tree formally as:

A tree is anon | inear data structure and is generally de fined as a non
empty finite set of elements, called nodes such that:

. Tree contains a distinguished node called root of the tree.

. The remaining elements of the tree form an ordered collection of
zero or more disjoint subsets called sub tree.

8.3 BINARY TREE

A Binary tree is a special type o ftree in w hich e very nod e or
vertex has no ¢ hildren, one child or two children. A Binary tree is an
important class of tree data structure in which a node can have at most two
children (as sub trees). Child of a node in a binary tree on the left is called
the “left child” and the node intherightis called the “right child”. A
binary tree is defined as a finite set of elements, called nodes, such that:

. Tree is empty (called the null tree of empty tree) or

. Tree ¢ ontains a di stinguished node called r oot node , a nd t he
remaining nodes form an ordered pair of disjoint binary trees.

Complete Binary Tree

A binary tree is said to be complete if all its le vel except the last, have
maximum number of possible nodes, and if all the nodes at the last level
appear as far left as possible as shown below:
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o If a tree has n nodes then the number of branches it has is n-1.
e  Everynode in a tree has exactly one parent except the root node.
. Extended binary tree can have either no children or two children.

. Fé)rlbinary tree of height h the maximum number of nodes can be
21

. Any binary tree with n internal nodes has (n+1) external nodes.

Skewed Tree

Atreeiscalled Skewifallthenodes ofatree are attached to one side
only. i.e A left skew will not have any right children in its each node and
right skew will not have any left child in its each node.

Left Skew Right Skew

Heap

A binary tree is also called a heap and there are two types of heap. There
are Max Heap and Min Heap. A heap is called maximum heap if value of
anode is greater than or equal to each of its descendant node. A heap is
called minimum heap if value of a node is less than or equal to each of its
descendant node.

84 BINARY TREE REPRESENTATION

Any binary tree can be represented in two ways. The first way is
with sequential manner like array and second way is with linked list.

The sequential representation of tree stores datain an array as per the
following rules:

1. The root node is stored in 1* position.

2. Everyleft and right child of a parent node atlocation k w ill be
stored in (2*K)™ position and (2*K+1)™ position respectively.

Ane xample of s ucha t rees tructure,t ogether w ithi tss equential
representation can show as follows:
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@1
/
2 3
) ?@

The array representation of this tree is expressed as:

Position 1 2 3 4 5 6 7

INFO

Sequential representation of a complete binary tree

In this representation the locations of the left and right children of node i
are 2i and 2i +1, respectively. For example the index of the left child of
the node in position 3 (that is E) is 6. Similarly the index of the right child
is 7. Conversely, the position of the parent of node j is the index int (j / 2).
For example the parent of node 4 and 5 is 2.

Now we consider another example for representing the incomplete binary
tree with sequential representation.

(A)L

(B)2 (N3
T

@As/ 9 @/10 \@ 11

The array representation of this tree is expressed as:



Position 1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15

A[BII[C[F[-[-[D[E[G[H [- [- [- -

INFO

Sequential representation of an incomplete binary tree

We c an obs erve from hereisthata substantial a mount of m emoryis
wasted in this case. Therefore, for large trees of this type, this method of
representation may not be efficient in terms of storage.

85 LINKED STORAGE REPRESENTATION
FOR BINARY TREES

Since a binary tree consists of nodes which can have at most two
offspring, an obvious linked representation of such a tree involves having
storage nodes as follows:

LPTR DATA RPTR

Here LPTR and RPTR denote the a ddresses or locations of the left and
right sub-trees, respectively, of a particular root node. Empty sub-trees are
represented by a pointer value of NULL. DATA specifies the information
associated with a node. Let us consider an example for the binary tree and
its representation with linked list form. Now consider the following binary
tree:

@@ @ Gy

The linked list representation of this binary tree is:
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ST

[ e
NULL H NULL NULL H
\/

G H ! |
NULL NULL  NuLL NULL NULL NULL

The pointer variable T denotes the address of the root node.

8.6 TRAVERSING BINARY TREE

One of the most common operations performed on tree structures
is that of traversal. Traversing is the process of visiting every node in the
tree exactly once in a s ystematic manner. Therefore, a co mplete traversal
of binary tree implies visiting or processes the nodes of the tree in some
linear s equence. Ifap articular subtreeisem ptythenthetraversalis
performed by doing nothing. Thus, a null sub-tree is considered to be fully
traversed when it is encountered.

For example, at ree co uld r epresent an a rithmetic ex pression. In t his
context the processing of a node which represents an arithmetic operation
would probably mean p erforming or executing that operation. There are
three standard ways of visiting a binary tree T with root R:

. Preorder or depth-first order
. In-order or symmetric order
o Post-order

The easiest way to define the order of traversing is with recursion. So we
define these orders of traversing recursively:

The Pre-order traversal

The pre-order of a binary tree is defined as follows:



1. Process the root node R.
2. Traverse the left sub-tree in pre-order (Recursive call)
3. Traverse the Right Sub tree in Pre-order (Recursive call)
The In-order traversal
The in-order of a binary tree is given by the following steps:
1. Traverse the left sub-tree in In-order (Recursive call)
2. Process the root node R.
3. Traverse the Right Sub tree in In-order (Recursive call)
The Post-order traversal
The Post-order of a binary tree is given by the following steps:
1.  Traverse the left sub-tree in Post-order (Recursive call)
2. Traverse the Right Sub tree in Post-order (Recursive call)

3. Process the root node R.

Example

Now we consider an example ofab inary tree and its traversal from all

three orders i.e. Pre-Order, In-Order and Post-Order.

The Pre-Order travel sequence is as follows:
ABCDEFG

The In-Order travel sequence is as follows:
CBAEFDG
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The Post-Order travel sequence is as follows:
CBFEGDA

Now we can formulate the algorithms for the traversal. These al gorithms
can formulate in recursive as well as in iterative manner.

Let us c onsidert he t raversal of bi naryt rees by iterations. S ince i n
traversing a tree it is required to descend and subsequently ascend parts of
the tree, pointer information which will permit movement up the tree must
be temporarily stored. Because movement up t he tree must be made in a
reverse manner from that taken in descending a tree, a stack is required to
save pointer variables as the tree is traversed. A general al gorithm for a
Pre-order traversal of a binary tree using iteration is given as:

Algorithm PREORDER (T): [Given a bi nary tree w hose r oot nod ¢
address is given by a pointer variable T. This method traverses the tree in
Pre-Order in iterative manner. S and TOP denote an auxiliary stack and
its associated top index, respectively. The pointer variable P denotes the
current node in the tree. ]

/* Initialize the pointers */

If (T == NULL)
{
Printf (*““Empty tree”)
Return
}
Else {
TOP =0;

PUSH (S, TOP, T) /* the PUSH is the function call which
is already defined in stack previous unit */

}
While (TOP > 0)

{

P = POP (S, TOP) /* get stored address and branch left. The
PUSH is the function call which is already defined in stack
previous unit */

While (P '= NULL)
Printf (DATA (P));
If (RPTR (P) '=NULL)



PUSH (S, TOP, RPTR (P)); /* store address of non-empty right
sub-tree */

P=LPTR (P)
}
Return;

A trace o fthe algorithm forthe given binary tree as d escribed ab ove
already in the example can show as in the following table:

Stack Comments P Visit P Output String
A
A A A
D B B AB
D C C ABC
D NULL
D D ABCD
G E E ABCDE
G F NULL
G F F ABCDEF
G NULL
G G ABCDEFG
NULL

Trace of algorithm PREORDER for the given binary tree in the
example

An equivalent algorithm for a Pre-order traversal ofa b inary tree using
recursion can formulate as:

Algorithm RPREORDER (T): [Given abinary tree w hose r oot node
address is given by a pointer variable T. This algorithm traverses the tree
in Pre-order in a recursive manner.]

1.  /* Process the root node */
If (T != NULL)
Printf (DATA (T));
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Else {
Printf (“EMPTY TREE”);

Return

}
2. If (LPTR (T) '= NULL)

RPREORDER (LPTR (T)); /* process the left sub-tree */
3. If (RPTR (T) !'= NULL)

RPREORDER (RPTR (T)); /* process the right sub-tree */
4. Return

A g eneral al gorithm fora Post-order traversal o fab inaryt ree u sing
iteration is given as:

Algorithm POSTORDER (T): [Given a bi nary t ree w hose r oot nod ¢
address is given by a pointer variable T. This method traverses the tree in
Post-Order in iterative manner. S and TOP denote an auxiliary stack and
its associated top index, respectively. The pointer variable P denotes the
current node in the tree. In this process each node will be stacked twice,
once when its left sub tree is traversed and once when it right sub tree is
traversed. On completion of these t wo traversals, the particular nodeis
processed. C onsequently, w e ne ed t wo t ypes of s tack e ntries, t he first
indicating that a left sub-tree is being traversed, and the second that a right
sub-tree 1 s b eing t raversed. F or convenience we u se n egative p ointer
values to indicate the second type of entry.]

1. /*Initialize the pointers */
If (T == NULL)
{
printf (“Empty TREE”);
Return;
Else {
P=T,
Top =0;
}
2. [Traverse in Post-order]
Repeat thru step 5 while true
3. [Descend left]
While (P '= NULL) {
PUSH (S, TOP, P);



P=LPTR (P); }
4.  [Process a node whose left and right sub-tree have been traversed]
While (S [TOP] <0)
{
P =POP (S, TOP);
Printf (DATA (P));
If (TOP ==0)
Return;
}
5. [Branch right and then mark node from which we branched]
P =RPTR (S[TOP]);
S[TOP] =-S[TOP];

An equivalent algorithm for a Post-order traversal of a b inary tree using
recursion can formulate as:

Algorithm RPOSTORDER (T): [Given a binary tree w hose r oot node
address is given by a pointer variable T. This algorithm traverses the tree
in Pre-order in a recursive manner.]

1.  /* Check for empty tree */

If (T == NULL)

{

Printf (“EMPTY TREE”);
Return

}

2. [Process the left subtree]

If (LPTR (T) != NULL)

RPOSTORDER (LPTR (T)); /* process the left sub-tree */
3. If (RPTR (T) != NULL)

RPOSTORDER (RPTR (T)); /* process the right sub-tree */
4.  [Process the root node]

Printf (DATA (T));
5. [Finished]

Return

Now we present the recursive algorithm for traversing the binary tree in
In-order. MCA-107/147
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Algorithm RINORDER (T): [Given abi nary tree w hose rootnod e
address is given by a pointer variable T. This algorithm traverses the tree
in Pre-order in a recursive manner.]

1. /* Check for empty tree */

If (T == NULL)

{

Printf (“EMPTY TREE”);
Return

}

2. [Process the left subtree]

If (LPTR (T) != NULL)

RINORDER (LPTR (T)); [* process the left sub-tree */
3. [Process the root node]

Printf (DATA (T));
4. If (RPTR (T) != NULL)

RINORDER (RPTR (T)); [* process the right sub-tree */
5. [Finished]

Return

8.7 OPERATION ON THE BINARY TREE

Now w e di scuss t he various ope rations on t he bi nary tree. T he
traversing ope ration w e ha ve di scussed a Iready. T here a re s ome ot her
important operations also exist for the binary tree. These operations are:

. Copy of the tree

. Insertion of an element in the tree

. Deletion of an element from the tree
. Reconstruction of binary tree

Hence we discuss these operations with the description of algorithm one
by one.

Copy of the Tree

The ¢ opy of t he bi nary tree i s animportant o peration fort he t ree. It
provides a duplicate copy o fthe binary tree. T he original tree may be
destroyed during the manipulation or processing. So that it is required to
maintain a co py o ft heb inary t ree. T herefore,aco pyo fthetreeis



produces be fore s uch pr ocessing be gins. T he f ollowing algorithm
generates a copy of a tree.

Algorithm Copy (T) [Given a binary tree w hose r oot node a ddress id
given by the pointer T. This algorithm generates a co py of the tree and
returns the address of its root node. New is a temporary pointer variable. ]

1.  [Check for the NULL pointer ]
If (T ==NULL)
Return (NULL);
2.  [Create a new node]
NEW «<NODE;
3. [Copy of the information field]
DATA (NEW) = DATA (T);
4.  [Set the structural links]
LPTR (NEW) = COPY (LPTR (T));
RPTR (NEW) = COPY (RPTR (T));
5. [Return address of new node]

Return (NEW);
Insertion in the tree

A tree can be created through the repeated use of an insertion operation.
Now we assume that a binary tree exists. Such a tree, however, must be
constructed. This construction can be realized by the repeated use of an
insertion operation that adds a new node into an existing tree. For example
the in sertion o fa node into a lexically o rdered tr ee mu st ma intain th at
ordering. Such an insertion is performed at the 1eaf level. There are two
cases arise:

1. Asa special c ase, a n insertion in to a n ¢ mpty tree r esults in
appending the new node as the root of the tree.

2. Them ore general ¢ ase i nvolves i nsertinga n ew node into a
nonempty tree. The new node i.e. in lexically ordered tree the new
name is first compared with the name of the root node. If the new
name | exically precedes t he r oot node , t hen the ne w node i s
appended to the tree as a left leaf to the existing tree if the left sub
tree 1s e mpty, otherwise the c omparison process is repeated with
the r oot node of the left sub tree. If on t he other hand, the new
name lexically follows the root node name, then the new node is
appended as a right leaf to the present tree if the right sub-tree is
empty, otherwise the comparison process is repeated with the root
node of the right sub-tree.
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Example
Let us consider the following alphabets for the insertion in the tree:
N,R,J,B,L,P,Kand M

A trace of the construction or insertion of the tree can exhibit as:

N N
Step 1 Step 2
R
N N
J B J R
Step 3 N Step 4
B
J R
B L
Step 4
N
J
R
B L P
Step 5
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K

M

Step 6 Step 7

As we have seen from the example that a tree can be created through the
repeated use of an insertion operation. A general algorithm for performing
such a n i nsertion i nto an e xisting 1 exically o rdered bi narytreeisas
follows:

1. If the existing tree contains no nodes then append the new node as
the root of the tree and exit.

2.  Compare the new name with the name of the root node,
If the new name is lexically less than the root node name
Then if the left sub tree is not empty
Then repeat step 2 on the left sub-tree
Else append the new name as a left leaf to the present tree
Exit
Else if the right sub-tree is not empty
Then repeat step 2 on the right sub tree
Else append the new name as a right leaf to the present tree
Exit.

Deletion from the tree

Now we have the inverse problem of insertion i.e. the deletion. Here we
are defining the algorithm for deleting i.e. removing the node with key X
in a tree with ordered keys. This process is straight forward if the element
tobedeletedisat erminal n ode or one w ith single de scendant. T he
difficulty a rises i n r emoving a n e lement w ith t wo de scendants, for w e
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cannot point in two directions with a single pointer. Here in this situation
the deleted element is to be replaced by either the rightmost element of its
left sub-tree or by the leftmost node of its right sub tree, both of which
have at most one descendant. T his procedure di stinguishes among three
cases:

1. There is no component with a key equal to X.
2. The component with key X has at most one descendant.
3. The component with key X has at most two descendants.
The detail process of delete in recursive manner can represent as follows:

Algorithm TREE_DELETE (HEAD, X) [Givena 1 exically o rdered
binary tree w itht he node s tructure pr eviously d escribeda ndt he
information va lue ( X) of the node m arked for deletion, t his pr ocedure
deletes the nod e whose information field is equal to X. PARAENT isa
pointer va riable w hich denotes t he a ddress of t he pa rent of t he node
marked for deletion. CUR denotes the address of the node to be deleted.
PRED and SUC are pointer variables used to find the in-order successor
of CUR. Q contains the address of the node to which either the left or right
link of the parent of X must be assigned in order to compete the deletion.
Finally, D contains the direction from the parent node to the node marked
for deletion. It is assumed that the tree have a l ist head whose address is
given by HEAD. FOUND is a B oolean variable which indicates whether
the node marked for deletion has been found. ‘L’ and ‘R’ are representing
the left branch and right branch respectively.]

1. [Initialize]
If LPTR (HEAD) !=HEAD
{
CUR = LPTR (HEAD);
PARENT = HEAD;
D="L’
}
Else
{
Printf (‘"NODE NOT FOUND”)
Return;

}

2. [Search for the node marked for deletion]



FOUND = false;

While ((! FOUND) && (CUR !'=NULL))
{

If (DATA (CUR) == X)
FOUND = true;

Elseif (X < DATA (CUR))
{

PARENT = CUR;

CUR = LPTR (CUR);
D="L’

}

Else

{

PARENT = CUR;

CUR = RPTR (CUR);

D= ‘R’

}

If (found == false)

{

Printf (*"NODE NOT FOUND’);
Return;

}

}

[perform the indicated deletion and restructure the tree]
If (LPTR (CUR) == NULL)

Q =RPTR (CUR); /* empty left sub tree */

Elseif (RPTR (CUR) == NULL)

Q =RPTR (CUR); /* empty right sub tree */

Else /* check right child for successor */ MCA-107/153



SUC = RPTR (CUR);

If (LPTR (SUC) == NULL)
{

LPTR (SUC) = LPTR (CUR)

Q =SUC;

}

Else /* search for successor of CUR */
{

PRED = RPTR (CUR);

SUC = LPTR (PRED);

While (LPTR (SUC) != NULL)
PRED = SUC,;

SUC = LPTR (PRED);

[* connect successor */

LPTR (PRED) = RPTR (SUC);
LPTR (SUC) = LPTR (CUR);
RPTR (SUC) = RPTR (CUR);
Q= SUC;

/* connect parent of X to its replacement */
IfD="L

LPTR (PARENT) = Q;

Else

RPTR (PARENT) = Q;

Return;

}

Example

In order to understand process of deletion we consider a Binary tree. Now
we d elete s uccessively then odes w ithk eys 13, 15, 5, and 10.T he
resulting trees are as follows:
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AN

8 13 18

1 (item to be delete)

10
5 15
\8 (item to be d[h}‘l g
10 10
S 18 3 18
/ I\ (item to be delete) \
8 8

(Final tree after the deletion of all the key items)
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8.8 RECONSTRUCTION OF BINARY TREE

We have discussed already about the traversal of the binary tree.
There w ere t hree b asic m ethods f or b inary t ree t raversing n amely In-
Order, Post-Order and Pre-Order. T he In-Order, Post-Order and Pre-
Order traversal of binary tree may result in different s equence o fnodes
but by using In-order with preorder or Post-order we can uniquely find
the tree. As a result original tree cannot be reconstructed, givenits In-
Order, Post-Order and Pre-Order traversal alone. However, if s equence
of nodes produced by In-Order and Post-Order traversal of a b inary tree
are provided then a unique binary tree can be reconstructed. Consider the
following e xample w hich illu strates th e r econstruction of a binary tree
given its In-Order and Post-Order traversal.

Example
The given In-order sequence: HDIJEKBALFMCNGO
The given Post-order sequence: HIDJKEBLMFNOGCA

Since the first node visited in Post-order traversal of a b inary tree is the
left node , t he r oot of t he bi nary t ree b ecomes A. Inr econstruction of
binary tree from In-order and Post-order, the first node is taken from the
right hand side of the Post-Order sequence, i.e. A as:

HDIJKEB LFMCNGO

HIDJKEB LMFNOGC

Therefore the nodes to the left of A in the given In—-order sequence belong
to the left sub-tree and nodes to the right of A belong to the right sub-tree.
Moreover, the order in which the nodes to the left of A occur in the given
In-order sequence is the same as the In-Order sequence of the left sub-
tree.

Now the same scheme is applied to both the left and right sub-tree once
again. Therefore the left sub-tree i.e. In-order sequenceis HD I JK E B
and Post-order sequence is H | D J K E B. From the Post-order sequence
the root of this sub-tree is B. The In-order sequences of the left and right
sub-tree of the sub-tree rooted at Bare HD I JKEand HI D | KE. It can
see as:



A
B C
HDIJEK LFM NGO
HIDJKE LEM NOG

Hence on c ontinuing the same set of operations in each sub-tree, the tree
can be reconstructed. Further a gain from the Post-Order sequence, t he
root of t hiss ub-treei s E. T he pos ition of E in In-order sequence
determines its p osition o n th e le ft s ub-tree r ooted at B whereas a gain,
looking in the Post-Order sequence we find K as the nextroot andits
order in In-order sequence de termines its position in t he right s ub-tree
rooted at E. Similarly, the steps are repeated for all the remaining left and
right sub-trees. Therefore, the reconstruction of the tree can be seen as:

A

HDIJ K
HIDJ K

\K

HD I, HID
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7 )

\K

Reconstruction of the binary tree for the given sequence in In-order
and Post-Order

8.9 THREADED BINARY TREE

As we have seen that in a binary tree the empty sub-trees are set to
NULL i.e. left pointer of a node whose left child 1s an empty sub-tree is
normally set to NULL. Similarly, the right pointer of a node whose right
child i s e mpty s ub-tree is also setto NULL. Thus, a 1arge num ber o f
pointers are setto NULL. T hese nul 1 poi nters ¢ an be us ed in di fferent
ways. Assume that the left pointer of a node n is set to NULL as the left
child of n is an empty sub-tree, then the left pointer of n can be set to point
to the In-order predecessor of n. Similarly, if the right child of a node m
is e mpty t he r ight poi nter of m canbe settopointtothe In-order
successor of m. Thus, wasted NULL links in the storage representation of
binary trees can be replaced by threads.

A binary treeis threaded according t o a p articular traversal o rder. For
example, the threads for the in-order traversal of a tree are pointers to its
higher nodes. Therefore, if the left link of a node is NULL, then this link is
replaced b y t he a ddress of t he pr edecessor of the node . S imilarly, t he
NULL right link is replaced by the address of the successor of the node.
Hence the left or right link of a node can denote either a structural link or a
thread; we must somehow be able to distinguish them. Here, we can make
the a ssumption t hata wvalid poi nter va lues a re pos itive a nd non -zero,
structural | inks ¢ an be r epresented, a s us ual, b y p ositive a ddresses.
Threads ont he ot her h and w ill r epresent b y negative addresses. We

consider a Head node for t he r epresentation of the t hreaded tree. T his
Head node is simply another node which serves as the predecessor and



successor of the first and last tree nodes with respect to in-order traversal.
The empty threaded binary tree can represent as:

HEAD

....................

Here the dashed arrow denotes a thread link. The tree is attached to the
left branch of the Head node making the pointer to the root node of'the
treei.e. LPTR (HEAD). T he t hreading of the binary tree for in-order
traversal is given as:

R  Hes!

8.10 BINARY SEARCH TREE

When we place constraints on how data elements can be stored in
the tree, the items must be stored in such a way that the key values in the
left sub-tree of the root are less than the key value of the root, and the key
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values of all the nodes in the right sub-tree of the root are greater than the
key value of the root. When this relationship holds in all the nodes in the
tree than the tree is called a binary search tree. Binary search trees are
rooted and ordered binary trees that fulfill the following properties:

o Key(v)< Key (w) for all nodes w in the right sub tree of v,
. Key (v) < key (w) for all nodes w in the left sub-tree if v.

Every sub-tree of a binary search tree T is again a binary search tree. If X is
anode it T, we denote the sub-treec of T with root X by T (X). The binary
search tree property enables us to output the elements sorted by key. The
binary tree is travel with In-order traversal. The binary tree can represent
as:

26
19 29
11 23 27 33
13 21
35
/
20 22

Binary Search Tree

In such a binary search tree if we have a given key say K, we can check
that whether there is a node v in T with Key (v) = k. We just start at the
root r of T. If Key (r) = v, then we are done. If Key (r) <k, then we have
to look in the left sub-tree and otherwise in a right sub-tree.

8.11 OPERATION ON BST

We c an pe rform t he va rious ope rations on t he binary. T he first
operations that we perform is the Binary search algorithm for a binary tree
T with node X, and key k. The algorithm is defined as:



Algorithm BST-Search [This algorithm considers the two inputs. The
first input is the node x and the second input is the value of the key say k.
This algorithm returns a node y if Key (y) = k if such a y exists, otherwise
it returns NULL.]

if (x==NULL) ||(k = key [x]))
return (x);

if (k <Key (y))

return (BST-search (LPTR (x), k));
else

return (BST-search (RPTR (), k));

The second operation that we perform is to find the minimum in a binary
search tree. This operation is performed by always going to the left child
until we reach a node that has no left child. Now we present the algorithm
to determine the minimum in a binary search tree

Algorithm BST-minimum [This algorithm returns a node that has the
minimum key. Here we consider the input a node x in a binary tree T. The
output of the algorithm is a node in T (x) with minimum key.]

If (LPTR (x) !'= NULL)
Return (BST-minimum (LPTR (X));
Return (x);

The ot her ope ration t hat w e pe rform ont he BST i st o de termine t he
successor of the given node x. This means that we are looking for the node
with smallest key that is greater than K (x). This successor is completely
determined by the position in the tree, so we can find it without comparing
any elements. If a node X has a right child, that is RPTR (v) #NULL, then
the successor simply is the node in T (RPTR (X)) with minimum key. If X
does not have a right child, then the successor of X is the lowest ancestor
of X thathasal eftchild thatisalsoan ancestor o f x. BS T-successor
computes the successor of a node x. The second part deals with the case
that X has no right child. We go up t he paths from X to the root and y is
always the parent of X. We stop when either y = NULL or x = LPTR (y).
Now we present the algorithm for d etermining the successor of a given
node from the binary search tree.

Algorithm BST-successor [This algorithm returns the successor of a
given node x in a binary search tree T. The input to this algorithm is the
node x for the given binary search tree. The output of this algorithm is the
successor of node x, if x has it, otherwise it returns the value NULL.]

If (RPTR (x) '= NULL)
Return (BST-minimum (RPTR (X));
y= parent (X);
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While ((y '= NULL) && (x !'=LPTR (y))
X=Y,

Y = parent (y)

Return (y);

8.12 AVL TREE

An AVL treeis binary s earch tr ee w ith th e additional b alance
property that, for any node in the tree, the height of the left and right sub-
tree can differ by at most 1. As usual, the height of an empty sub-tree is -1.
Therefore, the first balanced binary search tree was the AVL tree (named
after i ts d iscoverers, Adelson-Velskii and Landia), w hich illu strate t he
ideas that ar e thematic for a w ide class o f balanced b inary s earch tree.
Thus, i tisbinarys earcht ree t hat ha s a n additional ba lanced bi nary
condition. The simplest idea is to require that the left and right sub-tree
have the same height.

In other words we can say that an AVL tree is a binary search tree with
the extra property that for every internal node X, the height of the sub-tree
with root LPTR (x) and the height of the sub-tree with root RPTR (x) differ
by at most one. The AVL tree has the following properties:

1.  An AVL tree fulfills the binary search tree property.
2. For every internal node say v, Bal (v) €{-1, 0, 1}.

Now w e de fine m ore precisely about the notation of a “balanced tree”.
The height of a binary tree is the maximum level of its 1eaves (depth of
tree). The height of null tree is defined as -1. Thus, a balanced binary tree
or AVL tree is a binary tree in which the heights of two sub-trees of every
node never differ by more than 1.

The balance factor of a node in a binary tree can have value 1, -1 or 0
depending on w hether the height of its left sub-tree is greater than, less
than or equal to the height of its right sub-tree. The balance factor of each
node is defined as follows:




We c onsider t he a nother e xample t o hi ghlight the di ffence bw teen an
ordinary b inary s earcht reean dt he AVL tree. Letus c onsidert he
following two binary search trees.

12

Binary Search Tree (A)

12

Binary Search Tree (B) MCA-107/163



The b inary tree (A) satifies the AVL balance condition andisthusan
AVL Tree. The binary search tree (B) is not the AVL tree because the
shaded nodes have left sub-tree whose heights are 2 larger than their right
sub-trees. If a new node say 13 is inserted then node 16 would also violate
the conditon for balancing because the left sub-tree would have height 1,
while the right sub tree would have height -1.

The m ajor advantage of an AVL tree is that there are height b alanced
tresses so that the operations like insertion and deletion have O(log n) time
complexity. Let us consider an example of the binary tree with keys: 1, 2,
3,4,5,6,7,t he binary tree and corresponding AVL Tree for these keys
can represent as:

AVL Tree

Binary Tree

8.13 OPERATION IN AVL TREE

Here we are describing the two basic operations on the AVL Tree,
namely, the operation of insertion and deletion of the node in or from the
AVL Tree.

Insertion

To di scuss t he 1 nsertion ope ration for t he AVL Tree we co nsider an

MCA-107/164 example. Now consider the binary search tree with the balance factor as:



LC Q

LC RGC,

Binary Search Tree with Balance factor

Here, the balance factor of P is -1 and that of Q is 0. LC; is the left child
of P and LC; and RC; are the left and right children of the node Q. After
insertion there are two cases that can make the tree unbalance. These cases
are as follows:

(a) The new node is inserted as a child (left to right) of the leaf node
of sub-tree RC; as shown in figure (a)

(b) The new node is inserted as a child (left to right) of the leaf node
of sub tree of structure LC;, as shown in figure (b)

P -2

P )
/ \ -
1 LCi1
C Q

L

|
L RC
LC RC2 /

/ Newly inserted node—— )
O

Figure (a) Figure (b)

Now t 0 a ccomplish t he ba lance i n bot h t hese c ases we ¢ onsider t he
following:

Case (a) Consider the given tree: MCA-107/165
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19 1

1 -1 24

1
0@/ 1\
26 | 0

0 12 e Newly inserted node

Insertion of a new Node

As we can see from this binary search tree that on i nsertion of the new
node, t he ba lance factor of the node containing the data 5 violates the
condition of an AVL tree. Now to rebalance the tree, we require making a
left-rotation of the tree along the node containing the data 5 as the left
child containing the data 11 and the node containing the data 9 as the right
child of t he node containingthedata 5. T his cans how as followto
consider the case (a).

0
11

ans AN

0| s 1
/\ 4\ 24 a1 |
0o | 12
] 0 \

26

4

Left rotation

Rebalancing the Tree using Left Rotation



Case (b): Now suppose instead of 12, we insert a node with value 10. This
node would get inserted as the right child of the node containing value 9.
After this the tree no longer remains a balanced tree as the balance factor
of node containing value 5 breaks the rules of AVL tree as show follows:

19 1

26 0

Ol 10 |[*— Newly inserted node

Unbalance tree after addition of New Node

Now the tree will right roatate for its rebalancing.

19 2
-2 5
\ 28 1
0 4
9 -2
\ -1 24 31 0
11 0
/ \ 26 | 0
ol 10 14 0

Rebalancing the tree again using Right Rotation MCA-107/167
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We can see that even after right rotation, the tree remians unbalanced and
hence, it is rotated to left along the node 5. As a result node 9 becomes the
left child of node 19. Node 5 becomes the left child of node 9. Since there
is no left child for node 9 the right child of node 5 is empty. Thus finally,
tree becomes a b alanced binary tree or an AVL Tree. This procedure of
rotating the tree, first to the right and then to the left is known as double
rotation. The resultant tree can show as:

19 0

2K 1

11| 0

0|4 10 410 \

26 0

Balance tree after double rotation

Delete Operation

Deletion is performed similar to insertion. We use the delete method from
binary search tree and then move the path up to the root and try to restore
the AVL Tree property.

When we delete a node from a binary search tree the following three cases
can occur:

. Itis a leaf node ofthe binary search tree. Thus, it is an internal
node w ith t wo vi rtual l eaves in our AVL Tree with ba lancing
factor 0.

. It is an internal node with only one child. Thus, in an AVL Tree,
this means that one of its children is a virtual leaf.

° Itis a node note with two children t hat are i nternal node s, t 0o.
Then we delete its successor and copy the content of the successor
to the node.



8.14 B TREE

To min imize the search in the binary tree our requirement is to
make the height of the tree as small as possible. We can accomplished this
by ensuring first th at n o e mpty sub-trees ap pear ab ove t he | eaves, al 1
leaves be on the same level and every node expect the leaves has at least
some minimal number of children. Hence we require that each node has at
least as many children as the maximum possible. These conditions lead to
the following definition:

A B-tree of order m is an m-way tree in which:
° All leaves are on same level.

e  Allinternal nodes e xcept the r oot have at most m (non-empty)
children, and at least [m/2] non-empty children.

o The num ber of k eys in e ach internal node is onelessthanthe
number of its c hildren, and these k eys partition the ke ys in the
children in the fashion of a search tree.

. The root has at most m children, but may have as few as 2 if it is
not a leaf, or none if the tree consists of the root alone.

Example

Let us consider a B-Tree of order 5 with 3 levels. All pages contain 2, 3,
or 4 items. The exception is the root which is allowed to contain a single
item only. All leaf pages appear at level 3. This B-Tree can represent as:

|

10 20
30 40
2578 13 14 15 16 9294 26 28 27 | | 32 35 38 41 42 45 46

B-Tree of order 5 with level 3
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8.15 INSERTION IN A B-TREE

The B-Tree are not allowed to grow at their leaves instead they
are forcedto grow attheroot. T he general m ethod of insertionisas
follows:

. First a search is made to see if the new key is the tree. This search
will terminate in failure at a leaf.

e  The new key is added to the leaf node. If the node was not
previously full, then insertion is finished.

o When a key is added to a full node, then the nodes split into two
nodes on the same level except that the median key is not put into
either of the new nodes but instead sent up the tree to be inserted
into the parent node.

o When a search is later made through a tree, a comparison with the
median key will serve to direct the search into proper sub-tree.

e  When a key is added to full root, then the root splits into two and
the median key sent upward becomes a new root.

Example

Now we consider an example to understand the process of insertion in the
B-Tree. The following keys are inserted into the B-Tree of order 5.
agfbkdmjesirxclntup

The first four keys will insert into one node, as follows:

1. ag f b:
a
a (g
a |f g
a |b |f g

The keys are stored into proper order as they inserted.

2. k:
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Now t he i nsertion of k ey K causes t he node to s plitintotwo andthe
median key f moves up to enter a new node.

3. d,h,m:

N

Since the split nodes are now only half full, the next three keys canbe
inserted w ithout di fficulty. However, these simple insertions c an require
rearrangement of keys within a node.

e

The next insertion j again splits a node and this time it is J itself that is the
median key and therefore moves up to join f in the root.

h |k | m

a |b h k | m

5. esir:
f i
al|b [d[e glhli k | mfr]|s
6. X
f r
/i
a|b|c|d g| hl i kK |m s | x
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7 clntu:

The insertion p splits the node originally c ontaining Kk, I, m, n sending
median key m upward into the node containing e, f, j, r which is however
already full. Hence, this node in turn splits and a new node containing j is
created.

8.16 DELETE IN AB-TREE

Deletion o fanite mo rite ms froma B-treei s fairly s traight-
forward. A s we have s een from the insertion o peration that a new k ey
always goes first into leaf. If the key that is to be deleting is not the leaf
then its immediate predecessor or successor is promoted into the position
of the deleted key. The natural order of keys is guaranteed to be in the leaf
nodes. H ence, we can p romote t he i mmediate p redecessor o r s uccessor
into the position occupied by the deleted key and delete the key from leaf.
If the leaf contains more than minimum number of keys, then one can be
deleted with no further action. If the leaf contains the minimum number,
then w e first 1 ook at the t wo | eaves t hat ar e 1 mmediately adjacent and
children of same node. If one of these has more than the minimum number



of keys, then one of them can be moved into the parent node and the key
from the parent is moved into the leaf where the deletion is occurring. If
finally the adjacent leaf has only the minimum number of keys, then the
two leaves and the median key from the parent can all be combined as one
new leaf which will contain no m ore than the maximum number of keys
allowed. If this step leaves parent node with too few keys, then the process
propagates upwards. In this case, the last key is removed from the root and
then t he he ight of t he t ree de creases. T hus w e m ay di stinguish t wo
different circumstances in the deletion process:

1. Theitemtobe deleted is on a leaf page. In this case the removal
algorithm is plain and simple

2. Theitem is not on a leaf page so it must be replaced by one of the
two l exicographically adjacent items which happentobe on leaf
pages and can easily be deleted.

Example

Here we consider an example for demonstrating the deletion the items or
keys from the given B-Tree. Here we have the following ke ys for them
the sequential deletion will occur.

Keys: 25 45 24;38 32;8 27 46 13 42;5 22 18 26;7 35 15;

The s equential de letion of t hese ke y f rom t he e xisting B-Tree can
represent as:

25
10 20 \ 3040
2578 13141518 2224 262728 323538 41424546

Given exisitng B-Tree

Solution Steps :

(1) Check the key from leaf, if the key that is to be deleting is not the
leaf then its immediate predecessor or SUCCESSOr is promoted into
the position of the deleted key.
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PN

1029 30 40
578 131518 2924 2627 | |32 35 42 45 46

Step 1

(2) Promote the immediate predecessor opr successor into
position occupied by the deleted key and delete the

the key.

578 13 15 18 20 2% 27 32 35 38

10 22 30

Step 2

(3) If the leaf contains the minimum number, then we first look at the
two leaves that are immediately adjacent and children of same
node. If one of these has more than the minimum number of keys,
then one of them can be moved into the parent node and the key
from the parent is moved into the leaf where the deletion is
occurring.

i

22 30

5 7 13 15 18 20 26 27 35 40 42 46

Step 3



(4) The two leaves and the median key from the parent can all be
combined as one new leaf which will contain no more than the
maximum number of keys allowed

22

N

5 18 20 26 30
Step 4

(5) , the last key is removed from the root and then the height of the
tree decreases

AN

7 20 30 35 40

Step 5

10 20 30 40

Step 6

Deletion of given keys in step wise manner from the
Given B-Tree

8.17 SUMMARY

In this unit we described a very important non-linear data structure
i.e. T ree. T he t ree s pecifies t he d ynamic m emory allocation. A Tree
consists of a set of nodes and a set of directed edges that connect pairs of
nodes. Trees areu sefuli1 nd escribingan y structure w hich i nvolves
hierarchy. Various operations like insertion, deletion, copy and traversal of
the t ree w ere di scussed i n full de tail. E nough examples w ere usedto
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describe the tree and its various operations. The contents of this unit can
be summarized as:

Tree is the nonlinear data structure.
A tree consists of a root node and a number of sub-trees.

There are d ifferentt ypes o ft rees s howing d ifferent t ypes o
properties.

There are many terms associated with a b inary tree like its right
and leftc hild, s ub-tree,i n-degree, out -degree,s uccessor,
predecessor and leaf nodes.

The b inary tree c an r epresent w ith s equential d ata s tructure 1 ike
array and with non-contiguous data structure like linked list.

There are various operations can performs on the Binary tree like
insertion, deletion, searching and traversing.

A fundamental a nd i mportant ope ration on t he treeis traversal.
Traversal of a binary tree implies visiting every node of that tree
exactly once in some specified sequence. There are three standard
traversal techniques for binary tree. These techniques are: In-order,
Post-Order and Pre-Order.

The bi naryt ree ¢ an ¢ onstruct f romt he g iven s equence of
traversing in the form of In-Order and Post-Order.

The recursive and iterative methods can use for the traversing in
any specified order.

In a binary tree, many nodes have one child or no children. The
pointers for the empty children for these nodes are set to NULL. A
more effective utilization of these pointers is possible if NULL left
pointers are set to point to the In-Order predecessor of that node
and NULL right pointers are set to point to the In-Order successor
of t hat node . T hese poi nters, s o i ntroduced a re ¢ alled threads.
Threads help in writing non -recursive version o f In-Order, P ost-
order and Pre-Order traversal.

When we place constraints on how data elements can be stored in
the tree, the items must be stored in such a way that the key values
in the left sub-tree o fthe root are less than the key value ofthe
root, and the key values of all the nodes in the right sub-tree of the
roota re greatert hant he ke y value of t he root. W hen t his
relationship holds in all the nodes in the tree than the tree is called
a binary search tree.

Operation of 1insertion a nd de letion ¢ an de scribe for the b inary
search tree.



e  AVL Trees are height balanced trees where the difference between
heights of 1eft and right s ub-trees rooted at any node c annot be
larger than one.

. The f undamental ope rations, na mely s earching, i nsertion a nd
deletion can be performed more efficiently on AVL Trees.

. In an AVL Trees the only case that causes difficulty when the new
node is added to sub-tree of the root that is strictly taller than other
sub-tree then the height is increased. This would cause one sub tree
to ha ve h eight 2 more t han ot her; whereast he AVL Trees
condition is that the height difference is never more thanl.

. When an AVL Trees is right high the action needed in this case is
called left rotation. On the other hand when the tree is left high, the
right r otation is performed. In some c ases, the tree is ne eded to
rotate twice, and then the condition is called double rotation.

. A B-Tree of order m isan m-way search tree where each node
except the root must have m / 2 children at most “m”” children. The
root node is allowed to have two children at the minimum.

o The s earching i nsertion a nd de letion ope rationon a B-Tree are
same as that of 2-3 trees.

o It is in teresting to n ote th at B-Tree grows o r s hrinks upw ards
during insertion and deletion of key values.
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SELF-EVALUATION

Multiple Choice Questions:

1.

The 1 n-order t raversal of s ome bi nary t ree pr oduced s equence
DBEAFC, and the post-order traversal of the same tree produced
the sequence DEBFCA, which of the following is a correct pre-
order traversal sequence:

a. DBAECF
b. ABEDFC
c. ABDECF

d.  None of the above

A balanced binary tree is a binary tree in which the heights of two
sub-trees of every node never differ by more than:

a. 2
b. 1
c. 3

d. None of the above

Which of the following statement is TRUE in view of a complete
binary tree?

a.  The number of nodes at each level is 1 less than some power
of 2.

b.  The out degree of every node is exactly equal to 2 or 0

c.  Total number of nodes in the tree is always some power of 2
d.  None of these

Level of any node of tree is:

a.  The distance from the root.

b.  Height of its left sub-tree minus height of its right sub-tree.
c.  Height of its Right sub-tree minus height of its left sub-tree.
d.  None of the above

What is the minimum ofnodes required to arrive ata B-tree of
order 3 and depth 2? Assume that the root is at depth 0.

a. 4
b. 5.
C. 12.



d 13

The minimum height of a binary tree having 1000 nodes would be
a. 10

b. 11

c. 100

d.  None of the above

The number of trees possible with 10 nodes is:

a. 1000
b. 1200
c. 1014

d. None of the above

Ifina given directed tree, the out-degree ofeverynodesisless
than or equal to m, then it is called a:

a.  Threaded binary tree
b.  Complete m-ary tree
C. m-ary tree

d. None of these

Fill in the blanks

1.

In a B-tree of order n, ¢ ach non r oot node contains atleast ......
keys. (n / n/2)

The minimum number of keys contained in each non-root node of
a B-tree of order 15 is...... (7/9)

A B-tree of order nis also called..................... (n-(n-1)/n +
(n-1)
A is a complete binary tree w here value at each

node is at least as much as values at children node. (heap / B-tree)

In a B-Tree of order m, no node has more than ....... Sub tree. (m
/ n)

The maximum level of any leaf in the tree is also known as----- of
the tree.

In an AVL tree the heights of the two sub trees of every node never
differ by more than....

In a tree, a node that has no children is called ..... node
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10.

A binary tree is threaded for a p ost order traversal, a N ULL right
link of any node is replaces by the address as its..........

The num ber of node s w hich must be traversed from the rootto
reach a leaf of a tree is called the ..... of a tree.

State whether True or False

l.
2.
3.

6.
7.

B-trees are balanced trees.
Total number of cycles contained in any tree is 0

The process of determining predecessor and successor nodes, for
any given node is easy for unthreaded tree compared to threaded
counterparts.

The in-degree of the root node in any binary tree is 1.

If Pre-order and post-order of any binary tree re known than the
tree can easily draw.

AVL — tree is not a complete binary tree.

Binary search tree is a special case of the B-tree

Answer the following questions

l.
2.

10.

11.

Define degree of B-tree.

What is complete binary tree? What is in degree and out degree of
a complete binary tree?

What is AVL Tree? Show the insertion and deletion operations in
AVL tree with the help of suitable example.

Writea  C’ f unction to f ormulate th e ite rative a 1gorithm f or
traversing a binary tree in in-order and post-order

How many different directed trees are there with three nodes?

Give a directed tree representation of the following formula: (a +b)
*(ctd)te

Show that in a complete binary tree, the total number of edges is
given by 2 (n-1), where n; is the number of terminal nodes.

Write a ¢ C’ program to construct a | exically ordered binary tree.
Also show the operation of insertion and deletion of a node from it.

Write a function in ‘C’ for finding the k™ element in the pre-order
traversal of a Binary tree.

Write a function in * C’ language to search an element from the
binary search tree.

Compare and describe the advantages and disadvantages of AVL
tree and B-tree.



UNIT-9 GRAPH

Structure

9.0  Introduction

9.1 Objective

9.2 Mathematical Definition of the graph and its basic terminology
9.3 Graph Representation

9.4  Path Matrix or Reach-ability Matrix

9.5 Linked Representation of the graph

9.6  Graph Traversal

9.7 Spanning Tree

9.8 Algorithm for computing Minimal Spanning Tree
9.9  Shortest Path Algorithms

9.10 Bellman-Ford Algorithm

9.11 Topological Sort

9.12  Summary

9.0 INTRODUCTION

This unit consists with the concept of graphs in general as well as
in mathematical form and its basic terminology. It includes the method for
the g raph representation 1 ike m atrix r epresentation o r ad jacency m atrix
form with linked list. It covers the various algorithms for s earching the
graph 1 ike br eadth first s earch a nd d epth first s earch. T he ¢ oncept of
spanning t ree f or obt aining t he opt imal pa th fromt he g raphi s a Iso
introduced and implemented with Kruskal’s and prism’s algorithms. The
technique for obtaining the shortest path from the graph is implemented
with B ellman f ord algorithm, D ijkstr’s a lgorithm a nd F loyd-Warshall
algorithm. A Graph is a nonlinear data structure that is used to represent a
relational datae.g. as et of terminals in an etwork or aroad map of all
citiesina country. S ucht ype o fc omplex r elationshipc anonl yb e
represented using a graphs data structure. Thus, a graph is such type of a
non linear data structure which is having point to point relationship among
the nodes. A tree can view as a restricted graph. Each node of the graph is
called as a vertex and link or line drawn between them is called edge. A
general graph can view with the following diagram which consists with 6
(six) nodes or vertices and eight (08) links or edges.
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9.1 OBJECTIVES

After reading this unit the learner is able to do the following task.
. Interpret the graph mathematically.
. Represent the graph as adjacency matrix and path matrix

. Perform the search in the graph either in breadth first or depth first
search manner

. Able to construct spanning tree from the given graph using
Kruskal’s and Prim’s algorithms

e  Able to explore the shortest path from the given graph

92 MATHEMATICAL DEFINITION OF THE
GRAPH AND ITS BASIC TERMINOLOGY

Mathematically, A graph ‘G’ consists of two sets V and ‘E’ such
that G={V, E},Where V is finite nonempty set of vertices or nodes, V(G)
represents set of vertices, E isa s etofedges and E(G) represents set of
Edges. Therefore we can say that a graph G consists of a non empty set V
called the set of nodes (points, vertices) of the graph, a set E which is the
set of edges of the graph, and a mapping from the set of edges E to a set of
pairs of elements of V.

Example

Let us consider the graph as follows:

C/
AN




The set of vertices in the above graphis {A, B, C, D, E} and the set of
edges are {(A, B), (A, D), (A, C), (C, D), (C, E)}

Adjacent Nodes

The definition of the graph G = (V, E) implies that to every edge of the
graph G, we can associate a pair of nodes of the graph. If an edge x € E is
thus associated with a pair of node (u, v) where u, v € V, then we say that
the edge X connects or joins the nodes U and v. Any two nodes which are
connected by an edge in a graph are called adjacent Nodes.

Directed and undirected graph

In a graph G = (V, E) an edge which is directed from one node to another
is called a directed edge, while an edge which has no specific direction is
called an undirected edge. A graphin which e very edgeis directedis
called a directed graph or a diagraph. A graph in which every edgeis
undirected is called an undirected graph. If some of the edges are directed
and some are undirected in a g raph, then the graph is a mixed graph. A
directed graph is also called as DAG. The directed graphs are shown in
the following figure:

Directed Graphs

C D D B

Undirected Graph
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Connected Graph

A graph is called connected if there is a path from any vertex to any other
vertex. A graph G = (V, E) is connected if and only ifthere is a simple
path between any two nodes in G. A graph G is said to be completed if
everynode U in G isadjacentto everyothernode v in G. A complete

graph with n nodes has n *@ edges. The connected graph can show
as:

Connected Graph
Cycle

A path from a node to itselfis called a cycle. Thus, a cycle is a path in
which the initial and final vertices are same. Acyclic graph with all vertex
connected is a tree.

Example

Let us consider the following graph:

(A
0.9

o4

Cycle in the Graph

The path (A, B, C, A) or (A, C, D, B, A) are cycles of different lengths in
the graph. If a graph contains a cycle, it is cyclic, otherwise it is acyclic. A
tree is a graph but the graph does not need to be a tree.

(2) (©

Free tree or graph without cyclic
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Loop

If an edge is having identical end points, then the edge is called a 1oop.
Thus, an edge e is called a loop if it has identical end points, i.e. € = (u, u).

Degree, incidence, adjacency

A vertex V is incident to an edge e if V is one of the two vertices in the
ordered pair of vertices that constitute e.

The degree of a vertex is the number of edges incident to it. The in-degree
of a vertex V is the number of edges that have V as the head and the out-
degree of a vertex V is the number of edges that have V as the tail.

Example

Let us consider the following graph

v
l/

In this graph vertex V has in-degree 1, out-degree 2 and degree 3. A V
vertex is adjacent to vertex U ifthereisan edge from U to V.If V is
adjacent to U, V is called a successor of U and U a predecessor of V.

Isolated node

If degree of a node is zero i.e. if the node is not having any edges, then the
node is called isolated node.

Complete Graph

A graphis called complete ifall the nodes ofthe graph are adjacent to
each other. A complete graph with n nodes will have n*(n-1)/2 edges.

Weighted Graph

A graph is said to be weighted if each edge in the graph is assigned a non-
negative numerical value called the weight or cost of the edge. If an edge
does not have any weight then the weight is considered as 1.



Weighted Graph
Multi-graph

If a graph has two parallel paths to an edge or multiple edges along with
loop is said to be multi-graph.

Sub Graph

A Graph G’ is called a sub-graph of G = (V, E) if V’ is a subset of V and
E’ is a subset of E. For G’ to a sub-graph of G if all the edges and vertices
of G’ should be in G.

Example

Consider t he f ollowing graph a nd obt ain s imple a nd e lementary pa ths
form it.

3

In this graph some of the paths originating in node 2 and ending in node 4
are:

Pi=(2,4)
Py=((2,3),3,4)
P3=((2, 1), (1,4))
P,=((2,3),3, 1, (1,4)
Ps=((2,3),3,2),(2,4)
Ps=((2,2),(2,4))

In this the paths P, P, P; and P4 are elementary paths while paths Ps and
P¢ are simple but not elementary.
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The following are some of the cycles in this graph:
Ci=(2,2)

C=((1,2), (2, 1)

C=(2,3),(3, 1), (1,2))
Ca=(2,1),(1,4),(4,3),3,2)

9.3 GRAPH REPRESENTATION

A d iagrammatic r epresentation o fa graphmayhavea limite d
usefulness. H owever, s uch a r epresentation i s not f easible w hen t he
number of nodes and edges in a graph is large. There are different methods
for the alternative representation of graph. The basic three methods for the
methods for the graph representation are as follows:

. Representation of the graph by using matrices.
. Representation of a graph by a list structure.
e  Representation of a graph by a Adjacency lists and edge lists.

Matrix Representation of Graphs

Given a simple diagraph G = (V, E), it is necessary to assume some kind
or ordering of the nodes of a graph in the sense that a particular node is
calleda first node ,a nothers econdnod e, ands oon. A m atrix
representation of G depends upon the ordering of the nodes. Therefore, in
the given di agraph G we have V = {vi, V,...... Vp } and the nodes are
assumed to be ordered from vy t0 vy An n X n matrix A whose elements a;
are given by:

ij

lif (Vi,vj) ek
- Ootherwise

This is called the adjacency matrix of the graph G.

Any element of the adjacency matrix is either 0 or 1. Any matrix whose
elements are 0 or 1 is called a bit matrix or a Boolean matrix. Hence the i
row in the adjacency matrix is determined by the edges which originate in
the node vi. The number of elements in the i"" row whose valueis 1 is
equal to the out-degree of the node v;. Similarly, the number of elements
whose value is 1 in a column, say the jth column, is equal to the in-degree
of t henode Vj. A n adjacency matrix  completely d efinesas imple
diagraph. If two diagraphs are such that the adjacency matrix of one can
be obtained from the adjacency matrix of the other by interchanging some
oft her ows a nd t he ¢ orresponding ¢ olumns, thent he di agraphs a re
equivalent.



Example

Obtain the adjacency matrix for the following diagraph.

\Y%

4

Gp——%)

v

v Diagraph

The corresponding adjacency matrix for this diagraph is as follows:

v[o1 01
v,[1 0 0 0
vi[1 1 0 1
v,[0 1 0 0

4

Adjacency Matrix

Now we consider the powers of an adjacency matrix. Naturally, an entry
of 1 in the i™ row and j™ column of A shows the existence of an edge (Vvi,
Vj), that is, a path of length 1 from v; to vj. Let us denote the elements of A2
by aij(z). Then:

ai(jZ) = kzzll A Ay

So that for any fixed k, g, ;= 1 if and only if both g, and ay equal 1;

ie. (V,Vv,) and (v,,v;)are edges of the graph. For each such k we geta
contribution of 1 in the sum. Now (v;,V,) and (v,,V;)imply that there is a

path from v; to vj of length 2. T herefore, aﬁ is e qual t o t he num ber of
different p aths o f ex actly 1ength 2 from v; to vj. Similarly, the diagonal
element ai? shows the number of cycles of length 2 at the node for v; for

i=1, 2,....,,n. By a similar argument, one can show that the element in the
i row and jth column of A’ gives the number of paths of exactly length 3

from vj to Vvj. In general, the following statement can be shown:

Let A be the adjacency matrix of the digraph G. The element in the i row

and j™ column of A"(n>1) is equal to the number of paths of length n
from the i node and j" node.
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Example

Consider the following diagraph:

/\
@

The corresponding matrices A*>, A’and A" for this diagraph can represent
as:

A%

\4

V4

\%}

Diagraph

1 100 1 1 01
A2=0101 A3=0100
1 2 01 2 2 0 1
1 000 01 0 1
1 2 0 1]
A4=1101
2 30 2
1 100

94 PATH MATRIX OR REACH-ABILITY
MATRIX

Suppose G = (V, E) i sa simple di graph with n node s and the
nodes of G are b eing ordered and are called v 1,v2,vs,.....,v,, An n X n
matrix P is a Path matrix of the diagraph G if:

1, if there is a path between V; and V;

0, otherwise

The path matrix only shows the presence or absence of at 1east one path
between a pair of points and also the presence or absence of a cycle at any
node. It is easily shown that in a simple diagraph with n nodes, the length
of an elementary path or cycle does not exceed n. Also, for a path between
any two nodes, one can obtain an elementary path by deleting certain parts



of the path that are cycles. Similarly (for cycles), we can always obtain an
elementary cycle from a given cycle. If we are interested in d etermining
whether there exists a path from v; to Vvj, , all we need to examine are the
elementary paths of length less than or equal to n-1. In the case where v; =
vj and the pathisac ycle, we need to ex amine al 1 p ossible el ementary
cycles of length less than or equal to n. Such cycles or paths are easily
determined from the matrix B, where;

B, =A+A>+ A’ +...... +A"

The element in the i row and j™ column of B, shows the number of paths
of length n or less which exist from v; to vj. If this element is non-zero,
then it is we need to know the existence of a path, and not the number of
paths between any two nodes. In any case, then matrix B, furnishes the
required i nformation a bout r each-ability of any node of the graph from
any other node.

Therefore, t he p ath m atrix can b e cal culated f rom t he m atrix B, by
choosing pjj = 1 if the element in the i" row and the | column of B, is
non-zero, and pj; = 0 otherwise.

Example

Now w e apply t his m ethod of c alculating t he p ath m atrix to the given
diagraph in the above mentioned examples. The adjacency matrix A and
the powers A>, A’and A* have already been cal culated in the previous
example. We thus have B4 and the path matrix P given by:

3503 1101

330 1101
B, = and P =

6 8 0 5 1101

2 3 01 1100

The method of obtaining the path matrix of a simple diagraph can easily
be computed by using the following WARSHALL algorithm

Algorithm WARSHALL [Given the adjacency matrix A, this algorithm
produces the path matrix P.]

1. [Initialize]

P=A
2.  [perform a Pass]

Repeat through step 4 fork =1, 2,.....,n
3.  [Process rows]

Repeat step 4 for 1 =1, 2,...... N
4.  [Process columns]

Repeat for j =1, 2,....,n

Pij = Pij V (Pic A Piy)
5. [Finished]

Exit
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95 LINKED REPRESENTATION OF THE
GRAPH

The M atrix r epresentation of graph do es not k eeps track of the
information related to the nodes. Hence a linked representation is used to
represent a graph called adjacency structure. An adjacency list is a listing
for each node of all edges connecting it to adjacent nodes. For a graph G =
(V, E), a list is formed for each element X of V, containing all nodes y such
that (X, y) is an element of E. The manipulation of such structure is also
known a st he list Processing. T he adjacency s tructure o ft he graph
maintains two lists called node list and edge list.

Node List
Each node in the node list will correspond to a node in the graph and will
have t hree field. T hey are t he i nformation of the node c alled INFO,
Pointer to the next node of the list called NEXT, a pointer to the edge list
called ADJ.
Edge List
Each element of the edge list will correspond to an edge of the graph and
will g ivet wo f ields. They are D EST c ontains t he a ddress of t he
destination node and L INK contains the address of the next node of the
edge list.
Representation
In the context of list processing, we define a list to be any finite sequence
of zero or more atoms or lists. Here an atom is taken to be any object that
is d istinguishable f roma lis tb ytr eatingth ea toma ss tructurally
indivisible. If we enclose lists within parentheses and separate elements of
lists by commas, then the following can be considered to be lists:

) (& (bcd)e(9)

@i 0

(i) (@)
The first element contains four elements, namely, the atom a, the list (b, c,
d) which contains the atoms b, ¢ and d, the atom e, and the list (f, g) whose
elements are the atoms f and g. The second has no elements, but the null
list is still a valid list. The third list has one element, the list (a), which in
turn contains the atom a. A graphic representation of these can show as:

@) (& (b, c,d)e, (f )



(ii) <:> 0

(iii) ((a))

Another notation w hich is o ften used to illustrate lists is similar to that
used i nt he | inked r epresentation of t rees. E ach e lementof a listis
indicated by a box and a pointer indicates whether the boxes are members
of the same list or member of the sub lists. Each box is separate into two
parts. The second part of an element contains a pointer to the next element
inthesamelistora null pointerto marktheendo fthelist. T his
representation contains the two types of links: (a) Horizontal pointer and
(b) vertical pointer.

The horizontal pointer represents the relation of physical adjacencyina
list. The vertical pointer specifies the non-atomic element or hierarchical
relationship in a list. N ow we consider this linked list representation for
our given list as :

(i)

(a, (b, c, d), e (f, 9)

(11) = (null Pointer)

0

MCA-107/193



(iii)

a
(@)
Example
Consider the following graph and represent it with adjacency list edge list
representation.
2
1 E
1
2
1 2
6
A 4 2 \ 4
D » F

a b ¢ d
b a C e
c d f

d e f

e F

f

The edge list of this graph is as follows:
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1 A — 2 3 » 4
2 B )
1 3 » 5

3 C
s+ b 4 ) 6
> E L5 6
6 F

/ > 6

The list is given as:

(& b), (a ), (a d), (b, a),
(b, ¢), (b, e), (c, d), (c, )
(d e), (d, ), (e f)

9.6 GRAPH TRAVERSAL

Traversinga graph m eans v isiting al 1t he v erticesina g raph
exactly one. Normally we use the following two basic searching methods
for traversal of the graph:

. Breadth First Search
. Depth First Search

Breadth First Searching / Level order traversal

In general, breadth first search (BFS) can use to find the shortest distance
between some starting node and the remaining nodes of the graph. T his
shortest distance is the minimum number of edges traversed in order to
travel from th e s tart n ode to th e s pecific node being e xamined. In this
searching we start from a node v, this distance is calculated by examining
all incident edges to node v, and then moving on to an adjacent node w
and repeating the process. T he traversal c ontinues until all nodes in the
graph have be en e xamined. A queue is maintained in this t echnique to
maintain t he 1 ist of i1 ncident e dges a nd m arked node s. Iti s m ore
appropriate for a digraph.

We can consider this searching strategy from the following diagraph:

MCA-107/195



A
2
1
B I C " D E
1
2
> | F

Using the BFS searching on t his graph, the in-directed traversal r esults,
assuming node A is the start position and each edge is assigned a value of
one. The shortest distance from the start is given by the number associated
with e ach node . A 1l node s a djacent t o t he ¢ urrent node a re num bered
before the search is continued. This ensures every node will be examined
at least once. The efficiency of a BFS al gorithm depends on the method
used to represent the graph. The adjacency list representation is suitable
for t his a lgorithm, s ince finding t he i ncident e dges t o t he ¢ urrent node
involves s imply traversing al inked I ist, w hereas an ad jacency m atrix
would require searching only particular row is traversed and that too only
one time. The representation of the node to implement this algorithm is as
follows:

REAC | NODENO DAT | DIST LISTPT

Node table directory structure

DESTI | EDGEP

Edge Structure
Here:

REACH specifies whether a node has been reached in the traversal and its
initial value is false.

NODENO identifies the node number.

DATA contains the information pertaining to this node.

MCA-107/196



DIST is the variable which will contain the distance from the start node.
LISTPTR is a pointer to a list of adjacent edges for the node.

DESTIN contains the number of the terminal node for this edge.
EDGEPTR points to the next edge in the list

Now, w e represent t he algorithm w hich calculates B FS di stances us ing
two s ub-procedures i .e. Q INSERT and Q DELETE ( we h ave already
discussed them in unit six (06)). QINSERT enters a value onto the rear of
aqueue,inthis case anode w hose incident e dges h ave not yet be en
examined. T he p rocedure h as t wo p arameters, t he q ueue name and t he
value to be inserted. QDELETE removes a value from the front of a queue
specified, placing it in INDEX. In the algorithm, this value is the next
node which will be processed. Now we write the algorithm formally as:

Procedure BFS (INDEX): [This algorithm generates the shortest path for
each node using a b readth first search (BFS). INDEX denotes the current
node being processed and LINK points to the edge being examined. It is
assumed that the REACH field has been yet set to false when the structure
was created. QUEUE denotes the name of the queue. |

1. [initialize the first node’s DIST number and place node in queue]
REACH [INDEX] = TRUE;
DIST [INDEX]=0;
QINSERT(QUEUE, INDEX);
2. [ Repeat until all nodes have been examined]
Repeat thru step 5 while queue is not empty.
3. [Remove current node to be examined from queue]
QDELETE (QUEUE, INDEX);
4.  [Find all unlabeled nodes adjacent to current node]
LINK = LISTPTR [INDEX];
Repeat step 5 while LINK #NULL
5. [Ifthis is an unvisited node, label it and add it to the queue]
If not REACH [DESTIN (LINK)]
Then DIST [DESTIN (LINK)]= DIST[INDEX] + 1;
REACH [DESTIN(LINK)] = TRUE;
QINSERT(QUEUE, DESTIN(LINK))
LINK = EDGEPTR(LINK) /* move down edge list */
6. [Finished]

Return
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The storage representation for the above given graph can be shown as after
the result of this algorithm:

REACH NODENO DATA DIST LISTPTR DESTIN | EDGEPTR
TRUE 1 A 0 —¥3
TRUE 2 B 2 — 33
TRUE 3 C 1 — 1
TRUE 4 D 2 —»3
TRUE 5 E 1 — 1
TRUE 6 F 2 —
5 le
6 |«
6 | 4 | 2 P
> <
4 <
3 &

Storage representation of given graph

Check your progress:

A graph is connected if for every two nodes X and Y, there is either a path
fromY to X or from X to Y. modify Algorithm BFS to determine if a
graph is connected.

Depth First Search

A depth first search (DFS) of an arbitrary graph can be used to perform a
traversal o fa general graph. A se achnewn odeisen countered,itis
marked w ith True indicatingth e orderi n whicht he node sw ere
encountered to show that the node has been visited. The DFS strategy is as
follows:

A node S ispickedasa start node and marked. An unm arked adjacent
nodeto S isnow s elected a nd m arked, be coming t he ne w s tart node ,



possibly | eaving t he or iginal s tart node w ith u nexplored e dges for t he
present. The search continues in the graph until the current path ends at a
node with out-degree zero orat anode with all adjacent nodes already
marked. Then the search returns to the last node which still has unmarked
adjacent nodes and continues marking until all nodes are marked.

Example

Consider the following graph:

Depth First Search Traversal

Therefore in this strategy result of the traversal indicated by the arrows,
assuming each edge has been assigned a value of one. Starting at node A,
the search numbers all nodes down until node F, where all adjacent nodes
have already been marked. This strategy returns to node C, which still has
an unlabeled adjacent node D. After node D and E are labeled, all nodes
are num bered and the search is complete. T hus the orders in which the
nodes will traverse are: ACBF D E.

Since ad jacent nodes are needed during the traversal, the mo st e fficient
representation is adjacency list. Therefore, the same data structure as used
in BFS will use here with the change that the DIST variable in the node
table directory to DFN (Depth first search number) as:

REAC | NODENO | DAT | DFN | LISTPT

Node table directory structure

DESTI | EDGEP
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Edge Structure

It is clear from the example that the stack is required to imp lement the
DFS traversing. The formal algorithm for DFS is as follows:

Procedure DFS (INDEX, COUNT): [This recursive al gorithm cal culates
the de pth first s earch numbers for a graph. INDEX denotes t he cu rrent
node be ing p rocessed a nd LINK pointst ot he ed ge b eing ex amined.
COUNT is used to keep track of the current DFN number and is initially
set to zero outside the procedure. Finally, it is assumed the DFN filed was
initialized to zero when the adjacency list structure was created]

1.  [Update the depth first search number, set and mark current node]
COUNT = COUNT + 1;
DFN [INDEX] = COUNT,;
REACH [INDEX] = TRUE;
2. [ Set up loop to examine each neighbor of current node]
LINK = LISTPTR [INDEX];
Repeat step 3 while LINK #NULL.
3. [Ifnode has not been marked, label it and make recursive call]
If not REACH [DESTIN (LINK)]
Then DFS (DESTIN (LINK), COUNT);

LINK = EDGEPTR(LINK) [* Examine next adjacent
node */

4.  [Finished]
Return
Check your progress :

Produce the input structure and DFN number for the following graph.

TN
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9.7 SPANNING TREE

A spanning tree of a graph is an undirected tree consisting of only
those e dges ne cessary to connect all the nodes in the original graph. A
spanning tree has the properties that for any pair of nodes there exists only
one path between them, and the insertion of any edge to a spanning tree
forms a unique c ycle. Those e dges 1 eft out of t he s panning t ree w ere
present in t he original graph c onnect p aths t ogether i n t he t ree. W hen
determine t he c ost of a s panning tree of a w eighted graph, the costis
simply t he s um of t he w eights of t he t ree’s edges. A m inimal c ost
spanning tree is formed when the edges are picked to minimize the total
cost.

We may define the spanning tree alternatively as follows also:

“If G is a weighted graph and T, T, are two spanning trees of G than the
sum o f weights o f all edges in T; may be di fferent from that of T,. A
spanning tree T of G where t he s um of weightsof alledgesin T is
minimum is called the minimal cost spanning tree or minimal spanning
tree of G.

Mathematical i nterpretation of t he s panningt ree ¢ an unde rstand a s
follows:

A sub-graph of a Graph G = (V, E) which is tree containing all vertices of
V is called a spanning tree of G. If G is not connected then there is no
spanning tree of G.

Example

Now consider the graph G given as follows:

o D
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There are two spanning trees of this graph can construct. These spanning
trees are as follows:

) (2
Y —(2) )

ONONO
(&

Spanning Trees

9.8 ALGORITHM FOR COMPUTING
MINIMAL SPANNING TREE

There a re tw o p opular a lgorithms to ¢ alculate min imal ¢ ost
spanning tree of a weighted undirected graph:

(@) Kruskal’s Algorithm

Kruskal’s algorithm functions on a list of edges of a graph where
the list is arranged in order of weight of the edges. Itis a greedy
algorithm. In each step it chooses the hi ghest e dge that doe s not
create a cycle. We start with n trees, each consisting of a single
vertex. Then trees are joined until in the end, we have a single tree.
Thus in each step an edge is selected and added if the incorporation
does not from a ¢ ycle. The ed ge which is selected, itis deleted
from the list o f edges. The algorithm continues until (n-1) edges
are added to the list of edges exhausted. When the algorithm ends
after adding (n-1) edges, a minimum spanning tree is produced.



Example

Consider the following graph. T here are e leven e dges. An e dge
connecting the vertices ‘i’ and ‘j” may be represented by a tuple (i,

)

25

The list of edges of the graph s orted i n non -descending order may b e
given by:

{(0,2), (1, 2), (0, 1), (1, 3), (2, 3), (2, 5), (4, 6), (4, 5), (3, 6), (5, 6), (1, )}

The initial tree we can show as:

The first edge (0,2) from the list of edges is taken into account. Since the
addition of this edge does not form a cycle. It can be added to change the
partial minimum spanning tree as show below:
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O O
OO

© ©

O,

Now, (1, 2) is the next edge to be considered. Inclusion of this edge does
notresultin a cycle and hence it w ill be added to the partially formed
minimum spanning tree, this can be shown as:

e
e
o

The next edge (0, 1) is not added to the partially formed tree as it forms a
cycle. The next edge (1, 3) is now taken into account. Since inclusion of
this edge does not form a cycle, this edge can be included and the partial
minimum spanning tree is created, it can be shown as:

6@\9
ol lc

©



If the next edge (2, 3) is added then a cycle 2-1-3-2 is formed. Therefore,
this edge is not added to the partially formed tree. The next edge (2, 5) is
selected. Since inclusion of this edge does not form a cycle, this edge can
be added and the partial minimal spanning tree is formed as:

SD :
5o
¥

Next the edge (4, 6) is chosen. This edge can be added. This can be shown
as:

2
1 2
6\@ 10
(4

The next edge in the list (4, 5) is added to complete the minimal spanning

tree as:
()
1
0
4
11 12
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Now we formally define the kruskal’s M inimum spanning tree algorithm

as:

Function Kruskal [Thisal gorithm accep ts aco nnected w eighted
undirected graph G = (V, E, w) as the i nput and produces a m inimum
spanning tree T of G as output]

1.
2.

(b)

Sort the edges by increasing weight

For each vertex v € V do

Make-set (v)

Er=@

For each edge e = {u, v} € E, in order by increasing weight do
If Find (u) #Find (v) then

Er=Er U {e}

Union (u, v)

Return (V, Ey)

Prim’s Algorithm

Prim’s algorithm also works in a greedy manner but it does not
grow s everal ¢ omponents. It ust e xtends on e ¢ omponentb y
successively a dding ne w node s. Int his a Igorithm w e s tore a Il
vertices in a priority queue. As long as a vertex Y is not adjacent to
a vertex of the spanning tree selected so far, its key is set to . If it
becomes adjacent to some vertex say X, then its key becomes the
weight of W({X, y}). If it becomes a adjacent to a new vertex, then
we only set the key to the new weight if this will decrease the key.
Thus, Key [X] is the cost of adding X to the tree grown so far.

Therefore w e c an s ay t hat th e P rim’s a Igorithm s tarts w ith a ny
arbitrary vertex as the partial minimal spanning tree ‘T’. In each
iteration of the algorithm one edge say (u, V) is added to the partial
tree ‘T’ so that exactly one end of this edge belongs to the set of
vertices in ‘T’. Hence, of all such possible edges, the edge having
the 1 east costis s elected. T he algorithm co ntinues to ad d (n-1)
edges.

Example

Consider the following graph:



25 10

15

Now we start with the vertex 0 and construct the minimal s panning tree
from prim’s algorithm as:

Now we formally define the Prim’s Minimum spanning tree algorithm as:

Function Prim’s [This algorithm accepts a connected weighted undirected
graph G = (V, E, w) as the input and produces a minimum spanning tree T
of G as output]

1. Choose an arbitrary rootr € V.
2. Key[r] =0, key [v] = forallv €V expectr.

3 Let Q be a min-priority queue filled with the vertices in V.

4. P [r] =NULL

5. While Q is not empty do

6. X = Extract-min (Q)

7. Ifp [x] # NULL then MCA-107/207
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8. Et=ErU {plx].x}

9.  For each vertex y adjacent to x do
10. Ify € Q and w({x, y}) < Key [y] then
11. Pl =17

12. Key [y] =w({x, y})
13. Return (V, Ey)

9.9 SHORTEST PATH ALGORITHMS

Suppose we are given a directed graph G in which every edge has
a weight attached and o ur problem is to obtain the path which has the
shortest 1 ength be tween s ource a nd d estination node s or t he I ength of
shortest path between the nodes. Thus we can say that let G = (V, E, w) be
an ed ge-weighted directed graph and let s, t € V. Let P = (vy,....... Vi) be
the path from s to t, thatis Vo= S, Vj=t. The issue is here to compute the
shortest path from s to t. The first point which we have to investigate is
that is that whether the shortest walk from S to t is always a path. This is
certainly the case if all weights are non-negative. Consider a walk from s
to t that is not a path. Then this walk contains a cycle C. If the weight of C
is non-negative, then we can remove this cycle and get a new walk whose
weight is equal to W(C) = 0 or shorter than if w(C)>0 the weight of the
original walk. If the weight of C is negative, then the walk gets shorter if
we go through C once more. In this case, there is no shortest walk from s
to t. Thus, if on every walk from s to t there is no negative cycle, then the
weight of shortest walk from s to t is well — defined and is always attained
by a path. If there is a walk with a negative cycle from S to t, then we set
weight to -oo.

Now we explore the general algorithm o f d etermining th e s hortest p ath
fromt he given weighted di agraph. T hisa Igorithmi s know na s
WARSHALL algorithm. This algorithm is used to obtain a matrix which
gives the I engths of s hortest paths be tween the nodes. T he algorithm is
defined as follows:

Algorithm MINIMAL [Given the adjacency matrix, B, in which the zero
elements are replaced by infinity or some very large number, the matrix C
produced by this algorithm shows the minimum lengths of paths between
the nodes.]

1. [Initialize]
C =B;
2. [Perform a pass]
Repeat thru step 4 fork =1, 2,,....,n

3. [process row]



4, Forj=1ltondo

Ci~ MIN(Cijacik +Cy)

5. [Finished]
Exit.
Example

Let us consider the following adjacency matrix of any diagraph:

00010
[10100]
P=lo 0o 0 0 1
01101
00010

Now the matrix Q can be obtained by using the WARSHALL’S algorithm
as:

1111 1
11111]
Q=|0 0 0 0 1
1111 1
00 00O

Now we define another algorithm for determining the shortest path. This
algorithm is known as the Dijkstra Algorithm.

In this algorithm we begin by examining how to alter D (w). In solving the
un-weighted shortest-path problem, if D (w) = o, we set D (w) = D (v) +1
because we lower the value of D (w) if vertex offers a shorter path to w.
The algorithm ensures that we need to alter D (w) only once. We add 1 to
D (v) because the length of the path to w is 1 more than the length of the
path to v. If we apply this logic to the weighted case, we should set D (w)
=D (v) + C, if this new value of D (W) is better than the original value.
However, we are no | onger guaranteed that D (w) is altered only once.
Consequently, D (w) should be altered ifits current value is larger than D
(v) + Cy, w. The algorithm decides whether v should be used on the path to
w. The original cost D (w) is the cost without using v; the cost D (v) + C ,,
w 18 the cheapest path using v. Problem is to find a path from one vertex V
to another W such that the sum of the weights on the path is as small as
possible. We call such path a shortest path. It is imp ortant to note that
length of a pathin a weighted graphis defined to be sum of costs or
weights of all edges in that path. In general there could be more than one
path between a p air of specified vertices. Thus the shortest path between
two vertices may not be unique.

This algorithm assumes that all weights of the digraph are non-negative.
This algorithm considers the input as the edge-weighted directed graph G
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=(V, E, w), w (e) > 0 for all e, source s € V. The output of this algorithm
is the shortest path tree. The algorithm is defined as follows:

Algorithm Dijkstra

1. Irlllitialize d[s] =0,d[v] =, foral v#sandp [v] = NULL for
all v.

2. Let Q be a min-priority queue filled with all vertices from V using
d [v] as keys.

3. While Q is not-empty do

4.  x=min (Q)

5. foreachy with (x, y) € E do
if d [y] > d[x] + w((x, y)) then
dyl =d[x] +w((x,y))
pIvl=x

6. exit

Example

The f ollowing imp lementation is s howing th e stages o fth e Dijkstra’s
algorithm as follows for the given graph:

WEIGHTED GRAPH FOR
DEMONSTRATING DIJKSTRA'S

Step 1:

Mark Vertex 1 as the source vertex. Assign a costzeroto Vertex 1 and
(infinite to all other vertices). The state is as follows:



L

Step 2:

For each of the unvisited neighbors (Vertex 2, Vertex 3 a nd V ertex 4)
calculate th ¢ min imum ¢ osta s min (current ¢ ost of ve rtex unde r
consideration, sum of cost of vertex 1 and connecting edge). Mark Vertex
1 as visited, in the diagram we border it black. The new state would be as
follows:

@
2
y @ -]
b 2
4 &
@ I A @ -]
. 4
@ [2] STEP2 - DIJKSTRA'S ALGORITHM

Step 3:

Choose the unvisited vertex with minimum cost (vertex 4) and consider all
its unvisited neighbors (Vertex 5 and Vertex 6) and calculate the minimum
cost for both of them. The state is as follows:
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@3]
e
Vo e
| E 2
+ @&
@ T 4 @

-
e [2] STEP 3 - DIJKSTRA'S ALGORITHM

Step 4:

Choose the unvisited vertex with minimum cost (vertex 2 or vertex 5, here
we choose vertex 2) and consider all its unvisited neighbors (Vertex 3 and
Vertex 5) and c alculate t he m inimum c ost for both of them. N ow, the
current cost of Vertex 3 is [4] and the sum of (cost of Vertex 2 + cost of
edge (2,3) ) is 3 + 4 = [7]. Minimum of 4, 7 is 4. Hence the cost of vertex
3 won’t c hange. By the s ame argumentthe c ost of vertex 5w ill not
change. We just mark the vertex 2 as visited, all the costs remain same.
The state is as follows:

@5
7
Vo @
| 8 2
1 @
‘@ T 1 @
2

o
e [2] STEP 4 - DIJKSTRA'S ALGORITHM

Step 5:

Choose the unvisited vertex with minimum cost (vertex 5) and consider all
its unvisited neighbors (Vertex 3 and Vertex 6) and calculate the minimum
cost for both of them. Now, the current cost of Vertex 3 is [4] and the sum
of (cost of Vertex 5 + cost of edge (5,3) ) is 3 + 6 = [9]. Minimum of 4, 9



is4. Hence the cost of vertex 3 won’t change. Now, the current c ost of
Vertex 6 is [6] and the sum of (cost of Vertex 5 + cost of edge (3,6) ) is 3
+ 2 =[5]. Minimum of 6, 5 is 45. Hence the cost of vertex 6 changes to 5.
The state is as follows:

@ [2 STEPS - DIJKSTRA'S ALGORITHM

Step 6:

Choose the unvisited vertex with minimum cost (vertex 3) and consider all
its unvisited neighbors (none). So mark it visited. The state is as follows:

@ STEP 6 - DIJKSTRA'S ALGORITHM

Step 7:

Choose the unvisited vertex with minimum cost (vertex 6) and consider all
its unvisited neighbors (none). So mark it visited. The state is as follows:
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o
2
3 4 -
. @[i]
4
@D 3] A @ s
2 4
e 2] STEP 7 - DIJKSTRA'S ALGORITHM

Now there is no unvi sited vertex left and the execution ends. At the end
we know the shortest paths for all the vertices from the source vertex 1.
Even if we know the shortest path length, we do not know the exact list of
vertices w hich ¢ ontributes t o t he s hortest pa th until w e m aintain t hem
separately or the data structure supports it.

9.10 BELLMAN-FORD ALGORITHM

Dijkstra’s algorithm requires that edge costs be non-negative. This
requirement is reasonable for most graph applications, but sometimes it is
too r estrictive. H ence, h ere w e co nsider t he m ost g eneral cas e i.e. the
negative-weighted, s hortest-path algorithm. T herefore our objective is to
find the shortest path (measured by total cost) from a designated vertex S
to every vertex, ed ge costs may be negative. Let us consider a g raph as
shown below:

In this graph the path from V3 to v4 has a cost of 2. H owever, a shorter
path exists by following the loop V3, V4, Vi, V3, V4. This has a cost of -3.
This pa th i s s till not t he s hortest be cause w e c ould s tay in t he 1 oop
arbitrarily 1 ong. T hus, the s hortest pa th be tween t hese t wo poi ntsi s
undefined. T his pr oblem i s not r estrictedt o nodesint he c ycle. T he
shortest path from V2 to V5 is also undefined because there is a way to get
into and out of the loop. This loop is called a negative-cost cycle, which
when pr esenti n a graph m akes m ost, 1 fnot a ll, t he s hortest p aths
undefined. Negative-cost edges by themselves are not necessarily bad; it is
the cycles that are. The general algorithm either finds the shortest paths or



reports the existence of a negative-cost cycle is known as the Bellman —
Ford algorithm.

Now w e f ormally define t he Bellman-Ford algorithm, th is a lgorithm
accept the edge-weighted directed graph G = (V, E, w) and source s € V as
the input and return a shortest path tree.

Algorithm Bellman-Ford algorithm
1. Initialize d and p.
2. Forl=1,..,|V|[-1ldo
3. Foreache = (u,v) € Edo
if d [v] > d[u] + w((u, v)) then
d[v] =d [u] +w((u,v))
p[v] =u;
4.  Foreach (u, v) € E do
5. Ifd[v] >d[u] +w((u, v)) then
6.  Error “negative cycle”
7

Exit.
Example

The following implementation is showing the stages of the Bellman-Ford
algorithm as follows for the given graph:

DIRECTED GRAPH FOR
BELLMAN FORD

Step1l:

Considering A as the source, assign it the cost zero. Add all the vertices
(A,B,C,D,E, F,G,H)toa list. For all vertices except A assign a cost
infinity. Also, it is advisable to maintain a list of edges handy. Here is the
graph to start with:
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DIRECTED GRAPH FOR
BELLMAN FORD

Step 2

Take one vertex at a time say A, and relax all the edges in the graph. Point
worth noticing is that we can only relax the e dges which are out going
from the vertex A. Rest of the edges will not make much of a difference.
So, the following are the sub steps for step 2.

Relax (A, E) : cost of E = MIN(current cost of E[x] , cost of A[0] +

Wiagi[6]).Cost(E) be comes 6.

Relax (A, B) : cost of B = MIN(current cost of B[oo] , cost of A[0] +
WiaBi[8]).Cost(B) be comes 8.

Relax (B, C): cost of C = MIN(current cost of C[x] , cost of B[8] +
Wig,c1[6]).Cost(C) be comes 14.

Relax (C, H) : cost of H = MIN(current cost of H[] , cost of C[14] +
Wicmy[4]).Cost(H) be comes 18.

Relax (H, G) : cost of G = MIN(current cost of G[o] , cost of H[18] +
Winai[-2]).Cost(G) be comes 16.

Relax (G, C) : cost of C = MIN(current cost of C[14], c ost of G[16] +
Wic,ci[-1]).Cost(C) r emains 14.

Relax (G, D) : cost of D = MIN(current cost of D[] , cost of G[16] +
Wicpi[1]).Cost(D) be comes 17.

Relax (D, B): cost of B = M IN(current costof B[8], c ostof D[17] +
Wps;[2]).Cost(B) re mains 8 _
Relax (E, F) : cost of F = MIN(current cost of F[e] , cost of E[6] +
Wier[3]).Cost(F) be comes 9.

Relax (E, G): cost of G = M IN(current c ost of G[16], c ostof E[6] +
Wie61[2]).Cost(G) be comes 8.

Relax (F, G): cost of G= M IN(current cost of G[8], c ostof F[9] +
W r,G1[6]).Cost(G) remains 8.



[14, 14]

Step 3:

Start from any one vertex, say A again and relax all the edges as below:

Relax (A, E) : cost of E =
W a1 [6]).Cost(E)
Relax (A, B) : cost of B
W a[8]).Cost(B)

MIN(current cost of E[6], cost of A[0] +

Relax (B, C) : cost of C = MIN(current cost of C[14] , cost of B[8] +

W{B,C} [6]).COSt(C)

Relax (C, H) : cost of H = MIN(current cost of H[18] , cost of C[14] +

Wicn[4]).Cost(H)

Relax (H, G) : cost of G = MIN(current cost of G[8] , cost of H[18] +

W 161[-2])-Cost(G)

Relax (G, C) : cost of C = MIN(current cost of C[14] , cost of G[8] +

Wigc[-1]).Cost(C)

Relax (G, D) : cost of D = MIN(current cost of D[17] , cost of G[8] +

W 6.py[1]).Cost(D)

Relax (D, B) : cost of B =
W ps1[2]).Cost(B)

Relax (E, F) : cost of F =
W e r[3]).Cost(F)

Relax (E, G) : cost of G
W £.63[2])-Cost(G)

Relax (F, G) : cost of G =
W rG;[6]).Cost(G) remains 8.

remains 6.
MIN(current cost of B[8] , cost of A[0] +
remains 8.
remains 14.
remains 18.
remains 8.
becomes 7
becomes 9.
MIN(current cost of B[8] , cost of D[9] +
remains 8.
MIN(current cost of F[9] , cost of E[6] +
remains 9.
MIN(current cost of G[8] , cost of E[6] +
remains 8

MIN(current cost of G[8] , cost of F[9] +
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Step 4:
Start from any one vertex, say A again and relax all the edges as below:

Relax (A, E) : cost of E = MIN(current cost of E[6] , cost of A[0] +

Wia g [6]).Cost(E) remains 6.
Relax (A, B) : cost of B = MIN(current cost of B[8] , cost of A[0] +
W ias;[8])-Cost(B) remains 8.
Relax (B, C) : cost of C = MIN(current cost of C[7] , cost of B[8] +
W s.c;[6]).Cost(C) becomes 7.
Relax (C, H) : cost of H = MIN(current cost of H[18] , cost of C[7] +
Wicny[4]).Cost(H) becomes 11.
Relax (H, G) : cost of G = MIN(current cost of G[8] , cost of H[11] +
Wina[-2]).Cost(G) remains 8.
Relax (G, C) : cost of C = MIN(current cost of C[7] , cost of G[8] +
Wiccy[-1]).Cost(C) remains 7
Relax (G, D) : cost of D = MIN(current cost of D[9] , cost of G[8] +
Wic,p[1]).Cost(D) remains 9.
Relax (D, B) : cost of B = MIN(current cost of B[8] , cost of D[9] +
W ip;[2]).Cost(B) remains 8.
Relax (E, F) : cost of F = MIN(current cost of F[9] , cost of E[6] +
W e, [3])-Cost(F) remains 9.
Relax (E, G) : cost of G = MIN(current cost of G[8] , cost of E[6] +
Wik 6y[2])-Cost(G) remains 8

Relax (F, G) : cost of G = MIN(current cost of G[8] , cost of F[9] +
Wk Gy[6]).Cost(G) remains 8.



9.11 TOPOLOGICAL SORT

A Topological sort orders vertices in a directed acyclic graph such
that if there is a path from u to v, then v appears after U in the ordering. For
instance, a graph is typically used to represent the prerequisite requirement
for courses at universities. An edge (v, W) indicates that course v must be
completed before course W may be attempted. A topological order of the
coursesi s anys equencet hatd oesn otv iolatet hep rerequisite
requirements. Thus, a Topological sort orders vertices in a directed acyclic
graph such that if there is a path from u to v, then v appears after u in the
ordering. A graph that has a cycle cannot have a topological order.

In this method we first find any vertex Vv that has no incoming edges. Then
we print the vertex and logically move it, along with its edges, from the
graph. Finally, we apply the same strategy to the rest of the graph. More
formally, we say that the in—degree of vertex v is the number of incoming
edges (u, v). We compute the in-degree of all vertices in the graph.

Example

Let us consider the following acyclic graph and r epresent t he s tages of
topological sorting in this graph.
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We a pply t he t opological s orting m ethod ont he a cyclic gr aphb y
computing the in-degree for each vertex. Vertex V; has in-degree 0, so it
is first in the topological order. If there were several vertices of in-degree
0, we could choose any one of them. When V, and its edges are removed
from the graph, the in-degrees of V, V3 and V4 are all decremented by 1.
Now Vj has in-degree 0, so it is next in the topological order, and V| and
V3 havet heir i n-degrees 1 owered. T he a lgorithm ¢ ontinues, a nd t he
remaining vertices are examined in the order V, V3, V4, Vg and Vs.

3.12 SUMMARY

In t his uni t w e ha ve di scussed a bout t he g raph a nd i ts r elated
terminology. The graph provides an excellent way to model the essential
features o f ma ny a pplications, th ereby facilitating s pecification o fth e
underlying problems and formulation of algorithms for their solutions are
discussed. The following contents were discussed:



A Graph is a nonlinear data structure thatis used to represent a
relational data

Each node of the graph is called as a vertex and link or line drawn
between them is called and edge

The 1 mplementation of graph a nd i ts r epresentations w ay w ere
discussed. It has been seen that the graph is implemented in many

ways by the use of different kinds of data structures.

In many applications, edges are to be assigned costs or w eights.
Such graphs are known as weighted graphs.

The directed graph and acyclic graphs were also described.
There are various ways of representing a graph.
Adjacency matrix of a graph is a matrix representation.
Adjacency list of a graph is a linked list representation.

The reach matrix and path matrix can also be constructed from the
adjacency matrix representation of the graph.

The method of obtaining the path matrix of a simple diagraph can
easily be computed by using the WARSHALL algorithm

There are two popul ar techniques for graph traversal i.e. br eadth
first search and Depth first search.

A spanning tree of a graph is an undirected tree consisting of only
those edges necessary to connect all the nodes in the original graph

The two famous algorithms to complete a minimal spanning tree of
a weighted graph are Kruskal’s and prim’s algorithm.

The shortest path determination is important for any directed and
weighted graph.

For positive — weighted graphs the Dijkstr’a algorithm is used but
for t he ne gative w eighted g raphs t he pr oblem be comes m ore
difficult.

The general algorithm either finds the shortest paths or reports the
existence of a negative-cost cycle is known as the Bellman — Ford
algorithm.

Finally, for acyclic graphs, the running time reverts to linear time
the aid of topological sort.
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SELF EVALUATION

A vertex with degree one is a graph is called

a. Aleaf

b.  Pendant Vertex

c.  Adjacency list

d.  None of the above

In an adjacency matrix parallel edges are given by:
a.  Similar Columns

b.  Similar rows

c.  Not represent-able

d.  None of the above

Which of the following representation of graph is more adequate?
a.  Stack representation of graphs.

b.  Adjacency matrix representation of graphs

c.  Linked representation of graphs.

d.  None of the above.

Prim’s a Igorithm is a me thod a vailable f or f inding o ut the
minimum cost of a spanning tree.

a. O(n*n)

b. O(nlogn)
c. O(Mm)

d 0O(@)

What is a Path matrix?

Kruskal’s algorithm for building minimal c ost s panning tree of a
graph ¢ onsiderse dgesf ori nclusioni nt het reei nt he
.................. order of the cost.

Write Prim’s algorithm for finding minimal spanning tree of any
graph.

By considering the complete graph with n v ertices, show that the
number of spanning trees is at least 2" —1

Find t he s hortest un -weighted p ath from V 3 to all o thers in the
graph show in figure (A) below.
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10. Find the shortest weighted path from V, to all others in the graph
shown in figure (B)

Figure (A)

11.  Write depth first s earch algorithm for the traversal of any graph.
Write a ‘C’ program for the same.

12.  Define spanning tree and minimal spanning tree.
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BLOCK INTRODUCTION

This block will cover the various searching & sorting techniques, hashing
techniques and file or ganization in the s ystem. We w ill co ncentrate o n
some techniques to search a particular data or piece of information from a
large amount of data in Unit 10. There are basically two types of searching
techniques, | inear or s equential search and binary search. W e will al so
discuss va rious s orting a lgorithms 1 ike S election s ort, B ubble s ort,
Insertion s ort, H eap s ort, Q uick S ort, M erge s ort, S hell s ort and R adix
sort. Enough number of examples is discussed to show the operations in
searching & sorting.

Hashing technique is also discussed in Unit 11. Hashing is the process of
mapping la rge a mount of d ata ite m to s mallertablewiththehelpof
hashing function. Hashing is also known as H ashing A Igorithm. Itisa
technique to convert a range of key values into a range ofindexes of an
array. Itis usedto facilitate th e n extle vel searching me thod w hen
compared with the linear or binary

In c ommon t erminology, a fileisa bl ock of i mportant da ta whichis
available to any computer s oftware and is usually stored on a ny storage
device. Storing a file on any storage medium like pen drive, hard disk or
floppy disk ensures the availability of the file in future. Now days all file
are stored in computers to reduce paper work and easy availability in any
office, bank or library. The file organization is also covered in Unit 12
with examples.

This bl ock w ill he Ip you t o r ealize t he ¢ oncept of s earching, s orting,
hashing and file organization in detail with suitable examples and with the
help of codes.



UNIT-10 SEARCHING AND SORTING

Structure

10.0  Introduction
10.1 Objectives
10.2 Sequential Search
10.3 Binary Search
10.4  Sorting

10.5 Selection Sort
10.6  Bubble Sort
10.7 Insertion Sort
10.8 Heap Sort
10.9 Quick Sort
10.10  Merge Sort
10.11  Shell Sort
10.12  Radix Sort
10.13  Summary

10.0 INTRODUCTION

Searching i s t he pr ocess of 1 ooking for s omething: F inding one
piece of data that has been stored within a whole group of data. However,
if the value is not present in the array, the searching process displays an
appropriate message and in this case searching is said to be unsuccessful.
It is o ften th e mo st time -consuming pa rt of m any ¢ omputer pr ograms.
There are a variety of methods, or algorithms, used to search for a data
item, depending on how much data there is to look through, what kind of
data it is, what type of structure the data is stored in, and even where the
data is stored - inside computer memory or on some external medium.

Sorting me ans arranging the elements ofan array in s mallest to largest
(ascending) or largest to smallest (descending) order. A sorting algorithm
is defined as an algorithm that puts the elements of a list in a certain order.
Sorting algorithms are widely used to optimize the use of other algorithms
like s earch an d m erge al gorithms w hich r equire s orted | ists t o w ork
correctly. There are two types of sorting:

. Internal s orting which deals w ith s orting th e d ata s tored in the
computer’s main memory (RAM)

MCA-107/231



MCA-107/232

o External s orting w hich deals with sorting the data stored in files
(Secondary Storage)

In this unit, we will concentrate on some techniques to search a particular
data or pi ece of 1 nformation from a 1arge a mount of data. There a re
basically two types of searching techniques, Linear or Sequential S earch
and Binary S earch. We will al so discuss various sorting algorithms lik e
Selection sort, Bubble sort, Insertion sort, Heap sort, Quick Sort, M erge
sort, Shell sort and Radix sort.

10.1 OBJECTIVES

After going through this unit, you should be able to:
. Understand the concept of searching and its types.
o Implementation of sequential and binary with example.
e  Understand the concept of sorting and its types.
. Understand the concept of Selection sort with example.
e  Understand the concept of Bubble sort with example.
. Understand the concept of Insertion sort with example.
e  Understand the concept of Heap sort with example.
. Understand the concept of Quick sort with example.
. Understand the concept of Merge sort with example.
e  Understand the concept of Shell sort with example.

. Understand the concept of Radix sort with example.

10.2 SEQUENTIAL SEARCH

Sequential s earch i s v ery simple t o i mplement for s earching an
item in a collection. It is also known as Linear search. It is not the most
efficient way to search for an item in a collection. It works by comparing
the value to be searched with every element of the array one by one in a
sequential manner until an item is found. Moreover, if the array elements
are arranged in random order, it is the only reasonable way to search an
item. Thus, for many situations, Sequential search is a valid approach.

For example, if an array A [ ] is initialized as under,
int A[ ] = {25, 18, 22, 67, 33, 54, 69, 10, 87,78},

and the value to be searched is 67. So we have to search whether the value
VAL=67 is present in the array or not. If yes, then it returns the position of
its occurrence. Here, POS = 3 (index starting from 0).



Algorithm for Linear Search
Linear Search (A, N, VAL)

Step 1: [initialize] SET pos = -1
Step 2: [initialize] SET idx =1
Step 3:
Repeat Step 4 WHILE 1dx<=N
Step 4:
IF Alidx]= VAL
SET pos=idx
PRINT pos
Go to Step 6
[END OF IF]
[END OF LOOP]
Step 6: EXIT

SET idx=1dx+1

Step 5: IF pos =1
PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

[END OF IF]

In Steps 1 and 2 of the algorithm, we shall initialize the value of pos and
idx. In next Step 3, a while loop is starting which will execute till idX is
less than N (total number of elements). In Step 4, condition is checked to
see ifthe VAL is found at A [idX]. If VAL is found, then the position of
the array element is printed, else the value of idX is incremented to match
the next element with VAL. However, if all the array elements have been
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compared with VAL and no match is found, then it means that VAL is not
present in the array.

Complexity of Linear Search Algorithm

Linear search executes in O(n) time where n is the number of items in the
array. Definitely, the best case of linear search is when VAL is available at
first location or zero index of the array. In this case, only one comparison
will be made. In the same way, the worst case will happen when VAL is
present in the last location of the array or it is not present in the array. In
these both the cases, all N comparisons will have to be made.

Example:Write a p rogram in ‘ C’ l anguage to s earch an el ement in an
array using the sequential search technique

# include<stdio.h>

# include<conio.h>

int main()
{ intarr[20],n,1,item;
clrscr();

printf("How many elements you want to enter in the array : ");
scanf("%d",&n);
for(i=0; i<n;i++)
{ printf("Enter element %d : ",i+1);
scanf("%d", &arrf[i]);
}
printf("Enter the element to be searched : ");

scanf("%d",&item);



for(i=0;1 <n;i++)

{ if(item == arr[i])
{ printf("%d found at position %d\n",item,i+1);
break;
h
}/*End of for*/
if(i ==n)

printf("Item %d not found in array\n",item);

return 0;

Efficiency of Linear Search:

In s equential s earch, w e ha ve s een t hat t he number of ¢ omparisons
depends upon the size of the array. If the required item is at the first place,
then number of comparison is only ‘1’. If required item is at last position,
‘n’ comparisons have to make.

If item is at any position in the array, then, a successful search will take
(n+1)/2 ¢ omparisons anda nun successfuls earchw illt ake‘ n’
comparisons. In any case, the order of the above algorithm is O(n).

10.3 BINARY SEARCH

Binary search is a searching algorithm that works efficiently with a
sorted list of items. The sequential search situation will be in worst case if
the element is at the end of the list. For eliminating this problem, we have
one efficient searching technique called binary search. The condition for
binary search is that all the data should be in sorted array. We compare the
element w ith mid dle element o fthe array. Ifit is less than the middle
element then we search it in the left portion of the array and if it is greater
than the middle element then search will be in the right portion of the
array. Now we will take that portion (either left or right) only for search
and c ompare w ith m iddle e lement of that por tion. T his process will be
repeated until we find required element or middle element has no I eft or
right element.
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For understanding this searching method, let us take 3 variables Beg, End
and Mid. The Beg variable will indicate to first item’s index of array (zero
index of array), End variable will indicate to the last index of array. Mid
will take care of average of both Beg and End as under:

Mid = (Beg + End) / 2

To unde rstand the concept of binary search, letus takeanarrayof 10
elements which is as under in ascending order.

Array [10] 0 1 2 3 4 5 6 7 8 9

Values 12 | 34 | 39 | 45 | 67 | 73 | 85 | 93 | 102 | 110

Now we are searching the item 85 in the above array.

12 [34] 39 [ 45 [ 67 | 73 93 [ 102110

Step 1: Beg=0 End=9 Mid = (Beg+End)/2=4

12 | 34 | 39 | 45 | 67 | 73 | 85 | 93 | 102 | 110

Now at index 4, middle item is 67 which is smaller than required item 85.
So we will search in right side from middle point. Now, Beg= Mid + 1
=5, and End will be the same.

Step 2: Beg=5 End=9 Mid = (Beg+End)/2=7

12 | 34 | 39 | 45 | 67 | 73 | 85 | 93 | 102 | 110
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Now at index 7, middle item is 93 which is greater than required item 85.
So we will search in left side from middle point. Now, End=Mid- 1=
6, and Beg will be the same.

Step 3: Beg=5 End=6 Mid = (Beg+ End)/2=5

12 | 34 | 39 | 45 | 67 | 73 | 85 | 93 | 102 | 110

Now at index 5, middle item is 73 which is less than required item 85. So
we will search in right side from middle point. Now, Beg= Mid+ 1 =6,
and End will be the same.

Step 4: Beg=16 End=6 Mid = (Beg+End)/2=6

12 | 34 | 39 | 45 | 67 | 73 | 85 | 93 | 102 | 110

Now at index 6, middle item is 85 which is equal to required item 85.
Let see the algorithm of binary search.

BINARY_ SEARCH(A, LB, UB, VAL)
Step 1: [INITIALIZE]
SET BEG=LB
END=UB,
POS=-1
Step 2: Repeat Step 3 and 4 while BEG <= END
Step 3: SET MID= (BEG+ END)/2

Step 4: IF A[MID]= VAL
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SET POS=MID
PRINT POS
Go to Step 6
ELSE IF A[MID|> VAL
SET END= MID-1
ELSE
SET BEG= MID+1
[END OF IF]
[END OF LOOP]
Step 5: IF POS=-1
PRINT “SEARCHED ITEM NOT FOUND IN THE ARRAY”
[END OF IF]

Step 6: EXIT

Example:

Write a program in ‘C’ language to search an element in an array using the
binary search technique

#include <stdio.h>
# include<conio.h>
int main()
{ intarr[20],start,end,middle,n,i,item;
printf("How many elements you want to enter in the array : ");

scanf("%d",&n);
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for(i=0; i< n; i++)
{ printf("Enter element %d : ",i+1);
scanf("%d",&arr][1]);
}
printf("Enter the element to be searched : ");
scanf("%d",&item);
start=0;
end=n-1;
middle=(start+end)/2;
while(item != arr[middle] && start <= end)
{ if(item >arr[middle])
start=middle+1;
else
end=middle-1;
middle=(start+end)/2;
}
if(item==arr[middle])
printf("%d found at position %d\n",item,middle+1);
if(start>end)
printf("%d not found in array\n",item);

return O;
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Efficiency of Binary Search:

In the binary search algorithm, we see that with each comparison, the size
of the array w here search hasto be made is reduced to half. Thus, the
maximum num ber of key comparisons are approximately lo gon. So, the
order of binary search is O (logn).

Comparison of Linear Search and Binary Search:

Binary search is faster than linear search. Here are some comparisons. We
are taking average case for both the search methods to be compare.

Array Sequential  Binary

size search search
8 4 4
128 64 8
256 128 9
1000 500 11
100000 50000 18

104 SORTING

Suppose you have to retrieve any information which is stored in
some predefined order than it is very easy task. If information is not in any
order than you have to search that from beginning to till end. So, Sorting is
a very important computer application activity. Sorting is a technique for
rearranging the elements of a list in ascending or descending order.

There are lot of sorting algorithms available. But depend on the different
environments, different sorting methods are used. Broadly Sorting can be
classified in two types i.e. Internal and External Sorting.

Internal Sorting : This method uses only the primary memory during
sorting process. All data items are held in main memory and no secondary
memory is required this sorting process. If all the data that is to be sorted
can b e a ccommodated atat imeinm emoryis cal led i nternal sorting.



There is a limitation for internal s orts; they can only process relatively
small lists due to memory constraints. There are 3 types of internal sorts.

1. EXCHANGE SORT :- Ex:- Bubble Sort Algorithm, Quick sort
algorithm

2. INSERTION SORT :-  Ex:- Insertion sort algorithm, Shell Sort
algorithm

3. SELECTION SORT :- Ex:- Selection sort algorithm, Heap
Sort algorithm

External Sorting : S orting 1 arge a mount of d ata r equires e xternal or
secondary memory. This process uses ex ternal memory such as HDD, to
store the data which is not fit into the main memory. So, primary memory
holds the currently being sorted data only. All external sorts are based on
process of merging. Different parts of data are sorted separately and then
merged together. Ex: Merge Sort

105 SELECTION SORT

Selection sort is the process to select the smallest element from the
array and put it at first place (zero index) in the array. Suppose A is an
array of size n stored in memory. The selection sort algorithm first selects
the smallest element in the array A and place it in array at index 0; then it
selects the next smallest element in the array A and placeitin array at
index 1 and so on. It simply continues this procedure until it places the
biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed
in its respective position in the array as detailed below:

Pass 1: Find the location j o fthe smallest element in the array x [0], A
[1],....A [n-1], and then interchange x[j] with A [0]. Then A [0] is sorted.

Pass 2: Leave the first element and find the lo cation j o fth e s mallest
element in the sub-array A [1], A [2].....A[n-1], and then interchange A[1]
with A[j]. Then A[0], A[1] are sorted.

Pass 3: Leave the first two elements and find the location j of the smallest
element in the sub-array A [2], A [3].....A[n-1], and then interchange A [2]
with A [j]. Then A [0], A [1], A[2] are sorted.

Pass (n-1): Find the location j o f the smaller of the elements A [n-2] and
A[n-1], and then interchange A[j] and A[n-2]. Then A[0], A[1],....A|[n-
2] are s orted. O fc ourse, dur ing t his pa ss A [n-1] will b e th e b iggest
element and so the entire array is sorted.
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0 1 2 3 4 5 6 7 8 Remarks

65 70 75 80 50 60 55 85 45 | find the smallest element
1 ] swap a[1] & a[j]
45 70 75 80 50 60 55 85 65 |find the second smallest
1 ] swap a[i] & a[j]
45 50 75 80 70 60 55 85 65 | Find the third smallest
1 ] swap a[i] & a[j]
45 50 55 80 70 60 75 85 65 |Find the fourth smallest
1 ] swap a[i] & a[j]
45 50 55 60 70 80 75 85 65 | Find the fifth smallest
1 ] swap a[i] & a[j]
45 50 55 60 65 80 75 85 70 | Find the sixth smallest
1 ] swap a[i] & a[j]
45 50 55 60 65 70 75 85 80 | Find the seventh smallest
1] swap a[i] & a[j]
45 50 55 60 65 70 75 85 80 | Find the eighth smallest
1] swap a[i] & a[j]

45 50 55 60 65 70 75 80 85 | The outer loop ends.

Complexity of Selection Sort

In general we prefer selection sort in case where the insertion sort or the

bubble s ort r equires e xclusive s wapping. In s pite of s uperiority o ft he

selection sort over bubble sort and the insertion sort (there is significant

decrease in run time), its efficiency is also O(n?) for n data items.
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Programming Example of Selection Sort

/*Program of sorting using selection sort*/
#include <stdio.h>
#include <conio.h>

int main()

{ inti,j,k,n=9;
intarr[9]={65,70,75,80,50,60,55,85,45};
clrscr();

printf("Given Unsorted list is :\n");
for (i=0; i<n; i++)
printf("%3d ", arr[i]);
/*Selection sort*/
fori=0;1<n-1;it++)

{ /*Find the index of smallest element*/

smallest =1i;

forck=1+1;k<n; k++)

{ if(arr[smallest] >arr[k])
smallest =k ;

j

if( 1 !=smallest )

{ temp = arr [i];

arr[i] = arr[smallest];
arr[smallest] = temp ;
}
printf("\n After Pass %d elements are : ",i+1);
for (j = 0; j <mn; j++)
printf("%d ", arr[j]);
}
printf("\n Sorted list is : \n");
for (i=0; i<n; i++)
printf("%d ", arr[i]);
return 0;

}

10.6 BUBBLE SORT

The bubble sort is easy to understand and program. The basic idea
of bubble sort is to pass through the file sequentially several times. In this
sorting algorithm, multiple swapping take place in one pass. In each pass,
we compare each element in the file with its successor i.e., A [i] with A
[i+1] and interchange two element when they are not in proper order. We
will illustrate this sorting technique by taking a specific example. Bubble
sort is also called as exchange sort.

Example: Let us take an array A [n] which is stored in memory as shown
below:
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Array [5] o] 123475

Values 34 | 45 | 24 | 12 | 67 | 56

Suppose our objective is to store our array in ascending order. Then we
follow steps through the array 5 times as below:

Pass 1. We will compare A[i] and A[i+1] fori =0,1,2,3,a nd4, and
swap A[i] with A[i+1], only if A[i] > A[i+1] otherwise move to next one.
The process is shown below:

A[O] | A[LT | A[2] | A[3] | A4] | A[5]

34 45 23 12 67 56

23 45

12 45

45 67

56 67

34 23 12 45 56 67

In this first pass, the biggest number of the array 67 is moved to the right
most position in the array.

Pass 2: Now once again, we repeat the same process. But be careful, this
time we will not include A[5] in our comparisons as it is already moved to

its proper location.

It m eans, w e c ompare A [i]withA [i+1]fori=0,1,2, and3 and
interchange A[i] and A[i+1]

if A[i] > A[i+1]. The process is shown below:



A[0] | AT] | A[2] | A[3] | Al4] | A[5]

34 23 12 45 56 67

23 34

12 34

34 45

45 56

23 12 34 45 56 67

Pass 3: We repeat the same process, but this time we leave both A[4] and
A [5] as these both are on correct position. By doing this, we move the
third biggest number 45 to A [3].

A[O] | A[1] | A[2] | A[3] | A[4] | A[5]

23 12 34 45 56 67

12 23

23 34

34 45

12 23 34 45 56 67

Pass 4: We repeat the process byl eaving el ements at A [3], A[4] and
A[5]. By doing this, we move the fourth biggest number 34 to A[2].
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A[O] | A[T] | A[2] | A[3] | A[4] | A[5]

12 23 34 45 56 67

12 23

23 33

12 23 34 45 56 67

Pass 5: We repeat the process by leaving elements at A[2], A[3], A[4]
and A[5]. By doing this, we move the fifth biggest number 23 to A[1]. At
this time, we will have the smallest number 12 in A[0]. Thus, we see that
we can sort the array of size 6 in 5 passes.

A[O] | A[L] | A[2] | A[3] | Al4] | A[5]

12 23 34 45 56 67

12 23

12 23 34 45 56 67

For an array of size n, we required (n-1) passes using bubble sort.

Algorithm for bubble sort:

BUBBLE SORT(A, N)

Step 1: Repeat Step2 For I=0 to N-1

Step 2: Repeat For J=0 to N-I

Step 3: IF A[J]> A[J+1]
SWAP A[J] and A[J+1]
[END OF INNER LOOP]
[END OF OUTER LOOP]

Step 4: EXIT



Complexity of Bubble Sort:

The ¢ omplexity of a ny sortinga lgorithm d epends onho w m any
comparisons are there in it. In bubble sort, there are total N—1 passes. In
the 1% pass, N—1 comparisons, then in ond Pass, there are N-2 comparisons
and so on. Therefore complexity can be given as:

fn)=n—-1)+(n-2)+(n-3)+..... +3+2+1
f(n)=n(n-1)/72
f(n) = n%*2 + O(n) = O(n?)

Therefore, we can seethat,itisinthe form o f arithmetic p rogression
which is of O(n?). Therefore bubble sort is very inefficient when there are
more elements to sorting.

Programming Example of Bubble Sort :

#include<stdio.h>

#include<conio.h>

int main()

{ intarr[5]={34,45,23,12,67,56};
inti,j,k,tmp,n,xchanges;
clrscr();
printf("The given list is :\n");
for (1=0; i<n; i++)

printf("%3d ", arr[i]);
printf("\n");
/* Bubble sort procedure*/
for 1=0; i<n-1 ; i++)
{ xchanges=0;
for j =0;j <n-1-1; j++)
{ if (arr[j] >arr[j+1])

{ tmp = arr[j];
arr(j] = arr[j+1];
arr[j+1] = tmp;
xchanges++;

}

h
printf(" After Pass %d elements are : ",i+1);
for (k =0; k <n; k++)

printf("%3d ", arr[k]);

printf("\n");
h
printf("Sorted list is :\n");
for (1= 0; i<n; i++)
printf("%3d ", arr[i]);
printf("\n");
retun 0;

}
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10.7 INSERTION SORT

Insertion sort is a very simple sorting algorithm in which the sorted
array is builtby one element ata time. In insertion sort the element is
inserted at an a ppropriate p lace s imilar to ¢ ard in sertion, as w e s ee in
playing card. Both the selection and bubble sorts exchange the elements to
make all in order. But insertion sort does not exchange elements. Here the
list is divided into two parts sorted and unsorted. In each pass, the first
element of unsorted sub list is picked up and moved into the sorted sub list
by inserting it in suitable position just like we arrange the playing cards.

Let us take an example to show how Insertion sort works to sort an array
Arr of size 10 as below:

Arr[10] | O 1 2 3 4 5 6 7 8 9

Values | 41 | 11 | 47 | 65 | 20 | 83 | 110 | 56 | 74 | 38

Now Ar 1[0] is first e lement a nd

sorted.

65 |20 |83 |110|56 |74 |38 | Passl, first two items are sorted.

65 | 20|83 |110|56 |74 |38 | Pass2, first three items are sorted.

65 20|83 |110 |56 |74 |38 | Pass3, first four items are sorted.

47 165|183 |110|56 |74 |38 | Pass4, first five items are sorted.

47 165|183 |110|56 |74 |38 | PassS5, first six items are sorted.

Pass 6 ,f irsts eveni temsar e

sorted.

47 |56 65|83 | 110 |74 |38 | Pass 7, first eight items are sorted.

47 156 |65|74 |83 | 110 |38 | Pass 8, first nine items are sorted.

41 |11 47|65 |20 |83 | 11056 |74 |38
11 [ 4147
11 [ 4147
11 [ 4147
11 20|41
11 20|41
11 [20]41 |47 65|83 | 11056 |74 |38
11 20|41
11 20|41
11 20|38

41 14715665 |74 |83 | 110 | Pass9, All 10 items are sorted.

MCA-107/248



In starting, Arr[0] is the only element which is sorted. In Pass 1, A rr[1]
will be placed before or after Arr[0], so that the two item of array Arr will
be sorted. In Pass 2, Arr[2] will be placed either before Arr[0], in between
Arr [0] and Arr [ 1], or after Arr [ 1] and first three item will be sorted. In
the same way, in Pass N—1, Arr [N-1] will be placed in its proper place to
keep the array sorted.

Algorithm for insertion sort:
INSERTION-SORT (ARR, N)

Step 1: Repeat Steps 2 to 5 for K= 1 to N-1
Step 2: SET TEMP = ARR[K]
Step3: SETJ=K -1
Step 4: Repeat while TEMP <= ARR[J]
SET ARR[J+1]= ARR[J]
SETJ=J-1
[END OF INNER LOOP]
Step 5: SET ARR[J+1] = TEMP
[END OF LOOP]

Step 6: EXIT

Complexity of insertion sort:

In i nsertion s ort, we i nsertt he el ement b efore o r af ter and w e s tart
comparison f rom t he first e lement. S o F irst e lement ha s no pr evious
element means no comparison. Second element needs 1 comparison, third
element needs 2 comparison and so on last element needs n-1 comparison.
It means total comparison will be

424344+ +n-2 +n-1.

which is again O(n?). It is the worst case when all elements are in reverse
order. It is O(n) when elements are in sorted order .
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Programming Example of Insertion Sort:

/* Program of sorting using insertion sort */

#include <stdio.h>

#include <conio.h>

int main()

{ inti,j,k,n=10;
intarr[10]={41,11,47,65,20,83,110,56,74,38};
printf("Given Unsorted list is :\n");
for (i=0; i<n; i++)

printf("%3d ", arr[i]);
/*Procedure for Insertion sort*/
for(j=1;j<n;j++)
{ k=arr(j];
for(i=j-1;1>=0 && k<arr[i];i--)
arr[i+1]=arr[i];
arr[i+1]=k;
printf("\nPass %d,Element placed in proper place:%d",j,k);
for (1=0; i<n; i++)
printf("%d ", arr[i]);
printf("\n");
b
printf("Sorted list is :\n");
for (1=0; i<n; i++)
printf("%d ", arr[i]);
printf("\n");
return 0;

}

10.8 HEAP SORT

Heap is a data structure, which permits one to insert elements into
asetand also to find the largest el ement efficiently. A binary heapisa
complete bi nary t ree i n w hich e very node s atisfies t he he ap pr operty
which states that:

If B is a child of A, then key(A) > key(B)

This imp lies th at e lements at e very node will b e e ither greater than or
equal to the element at its left and right child. Thus, the root node has the
highest key value in the heap. Such a heap is commonly known as a max-
heap.



Alternatively, el ements at every node will be either less than or equal to
the element at its left and right child. Thus, the root has the lowest key
value. Such a heap is called a min-heap.

Heap sort is an improvement over the binary tree sort. It does not create
nodes in case of Binary tree sort. Instead it builds a heap by adjusting the
position of elements within the array itself.

The he ap s ort i s s orting a lgorithm t he e fficiency of w hich i s r oughly
equivalent to that of the quick sort. T he three phases involved in sorting
the elements using heap sort algorithm are as follows.

1.  Construct a heap by adjusting the array elements.
2. Replace the root with the last node of heap tree.

3. Keep the last node (new root) at the proper position, means do not
delete operation in heap tree but here deleted node is root.

The root element of a max heap is always the largest element. The sorting
ends when all the root elements of each successive heap has been moved
to the end of the array (i.e. when the tree is exhausted). The resulting array
now contains a sorted list.

Let's take an example of heap sort using an array Arr of size 9.

arr[5] arr(6]
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Arr 0 1 2 3 4 5 6 7 8

Values | 70 | 62 | 63 | 54 | 30 | 44 | 52 | 27 | 46

Figure A: Array with its equivalent Heap tree.

Step 1:
Arr 0 1 2 3 4 5 6 | 7 | 8
Values 46 | 62 | 63 | 54 | 30 | 44 | 52 | 27 | 70

Figure B: Heap after eliminating root element 70.

In the same way, one by one the root element of the heap is eliminated, the
following figure show the heap and array after each elimination.

In figure B root is at the position of the last node and the last node is at the
position of root. Here left and right child 0f46 is 62 and 63. Bothare
greater t han 46, but right c hild 63 1 s gr eater t han 1 eft child 62, he nce
replace it with the right child 63.
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Here right child of 46 is 52, which is greater than 46, hence replace it with
52.

Now the elements of heap tree in array are as

Arr 0 1 2 3 4 5 6 7 8

Values | 63 | 62 | 52 | 54 | 30 | 44 | 46 | 27 | 70

Now 27 is the last node. So replace it with root node 63 and do the same
operation.

Step 2:
Arr | O [ 1 | 2|3 |4 |5 |6 | 7] 8

Values | 63 | 54 | 52 | 27 | 30 | 44 | 46 | 63 | 70
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Step 3:

Arr

Values

Step 4:

Arr

Values

Step 5:

Arr

Values

0 1 2 3 4 5 6 7 8
54 | 46 | 52 | 27 | 30 | 44 | 62 | 63 | 70
0 1 2 3 4 5 6 7 8
52 | 46 | 44 | 27 | 30 | 54 | 62 | 63 | 70
0 1 2 3 4 5 6 7 8
46 | 30 | 44 | 27 | 52 | 54 | 62 | 63 | 70




Step 6:

Arr

Values

Step 7:

Arr

Values

Step 8:

Arr

Values

0 1 2 3 4 5 6 7 8
44 | 30 | 27 | 46 | 52 | 54 | 62 | 63 | 70

0 1 2 3 4 5 6 7 8
30 | 27 | 44 | 46 | 52 | 54 | 62 | 63 | 70

0 1 2 3 4 5 6 7 8
27 | 30 | 44 | 46 | 52 | 54 | 62 | 63 | 70
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Algorithm for heap sort:

HEAPSORT(ARR, N)
Step 1: [Build Heap H]
Repeat for [=0 to N-1
CALL Insert Heap(ARR, N, ARR[I])

[END OF LOOP]

Step 2: (Repeatedly delete the root element)
Repeat while N>
CALL Delete Heap(ARR, N, VAL)
SETN=N+1
[END OF LOOP]

Step 3: END

Complexity of Heap Sort:

Let us consider the T iming A nalysis of this h eapsort. Since heap is an
almost co mplete b inary tree, t he w orst cas e an alysis i s eas ier t han t he
average case. In order to sort a given array elements, we need to create a
heap and then adjust it. This require number of comparisons in the worst
case is O (n log n). The worst case behavior of heap sort is far superior to
quick sort.

Programming Example:

/* Program of sorting through heapsort*/
# include <stdio.h>
intarr[20]={32,22,65,14,52,87,54,38,42,11};
int n=10;
main()
{ clrscr();

printf("Entered list is :\n");



display();
create_heap();
printf("Heap is :\n");
display();
heap_sort();
printf("Sorted list is :\n");
display();

}/*End of main()*/

display()
{ inti;
for(i=0;i<n;i++)
printf("%d ",arr[i]);
printf("\n");
+/*End of display()*/

create_heap()
{ inti;
for(i=0;i<n;i++)
insert(arr[i],1);
}/*End of create_heap()*/

insert(intnum,intloc)
{ int par;
while(loc>0)

{ par=(loc-1)/2;
if(num<=arr[par])

{ arr[loc]=num;
return;
}
arr[loc]=arr[par];
loc=par;
+/*End of while*/
arr[0]=num;
+/*End of insert()*/
heap_sort()
{ int last;

for(last=n-1; last>0; last--)
del _root(last);

b
del_root(int last)
{ intleft,right,i,temp;

1=0; /*Since every time we have to replace root with last*/
/*Exchange last element with the root */

temp=arr([i];

arr[i]=arr[last];

arr[last]=temp;

left=2*i+1; /*left child of root*/
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right=2*i+2;/*right child of root*/
while( right < last)
{ if( arr[i]>=arr[left] &&arr[i]>=arr[right] )

return;
if( arr[right]<=arr[left] )
{ temp=arr([i];

arr[i]=arr[left];
arr[left]=temp;

1=left;
}
else
{ temp=arr[i];
arr[i]=arr[right];
arr[right]=temp;
i=right;
}
left=2*i+1;
right=2*i+2;
}/*End of while*/
if( left==last-1 &&arr[i]<arr[left] )/*right==last*/
{ temp=arr([i];

arr[i]=arr[left];
arr[left]=temp;

}
}/*End of del root*/

109 QUICK SORT

The quick sort was invented by Prof. C. A. R. Hoare in the early
1960’s. It was one of the first most e fficient sorting algorithms. Itis an
example of algorithms that works on “divide and conquer” technique.

Quick sortis based on partition. It is also known as partition e xchange
sorting. The basic concept of quick sort process is pick one element from
an array and r earranges t he remaining el ements ar ound it. This el ement
divides the main list into two sub lists. This chosen element is called pivot.
Once pivot is chosen, then it shifts all the elements less than pivot to left
of value pivot and all the elements equal or greater than pivot are shifted
tot her ights ide. W hena Il t he s ubsets h ave be en p artitioned a nd
rearranged recursively, the original array is sorted.

How to choose pivot: So now the main task is to find the pivot element,
which will divide the list into two partitions. Just assume first element as
pivot and arrange the list accordingly into two halves.

The quick sort algorithm works as follows:

1.  Select any random element pivot from the array elements.



2. Now rearrange the elements in such a way that all el ements less
than pi vot a ppear i n | eft of the pi vot and all e qual and gr eater
elements s hould be i nr ights ide of t he pi vot. A fters uch a

partitioning, the pivot is placed in its final position.

3. Now recursively apply same procedure to both the sub list i.e. left
to pivot and right to pivot. (One with s ub-list of v alues s maller
than that of the pivot element and the other having hi gher v alue

elements.)

Example:

Letus takeanarray of 6 e lementandsortitusing quicks ort

algorithm.

Al6]

Original Array

We choose the first element A[0] as the pivot ie 29. Set Loc=0, Left=0 and

Right =5.

29

12

38

20

27

47

29

12

38

20

27

47

Loc, Left

Right

Now look from right to left. Since A[Loc] < A[Right], decrease value of

Right.

29

12

38

20

27

47

Loc, Left

Right

Since A[Loc] > A[Right], swap both values and set Loc=Right.

27

12

38

20

29

47

Left

Loc, Right
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Now look from left to right. Since A[Loc] > A[Left], increment the value
of left 2 times.

27 | 12| 38 20 29 47

Left Loc, Right

Since A[Loc] < A[Left], swap both values and set Loc=Left.

27 | 12 29 20 38 47

Left, Loc Right

Now look from right to left. Since A[Loc] < A[Right], decrease the value
of right.

27 12 29 20 38 | 47

Left, Loc | Right

Since A[Loc] > A[Right], swap the values and set Loc=Right

27 |12 |20 29 38 |47

Left | Loc, Right

Now look from left to right. Since A[Loc] > A[Left], increase the value of
left.

27 | 12 | 20 29 38 47

Loc, Right, Left
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Now s ee t he ab ove l ast s tep in w hich Left = Loc. S o t erminates t his
process here. Now you can see that the pivot element 29 is at right place.
All the smaller items are in le ft side and bigitems are in right side of
pivot. Now same procedure will applied to both left and right list of pivot.

Algorithm of Quick sort :

The quick sort algorithm makes use of a function Quick to divide the array
into two sub-arrays and fix the pivot at its suitable location.

PARTITION (ARR, BEG, END, LOC)
Step 1: [Initialize] Set Left= BEG, Right= END, LOC= BEG, Flag =0
Step 2: Repeat Step 3 To 6 While Flag =0
Step 3: Repeat While ARR[LOC] <= ARR[Right] And LOC != Right
Set Right= Right-1
[End Loop]
Step 4: If LOC= Right
Set Flag=1
Else If ARR[LOC]> ARR[Right]
Swap ARR[LOC] With ARR[Right]
Set LOC= Right
[End If]
Step 5: If Flag =0
Repeat While ARR[LOC] >= ARR[Left] And LOC != Left
Set Left= Left+1
[End Loop]
Step 6: If LOC= Left

Set Flag=1
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Else If ARR[LOC]< ARR[Left]
Swap ARR[LOC] With ARR[Left]
Set LOC= Left
[End If]
[End If]
Step 7: [End Loop]

Step 8: End

QUICK_SORT (ARR, BEG, END)

Step 1: IF (BEG< END)
CALL PARTITION (ARR, BEG, END, LOC)
CALL QUICKSORT(ARR, BEG, LOC-1)
CALL QUICKSORT(ARR, LOC+1, END)

[END OF IF]

Step 2: END

Complexity of Quick sort :

The average runtime efficiency of the Quicksort is O(nlog, n), which is the
best that has been achieved for al arge array of size n. in the worst case
situation; when the array is already sorted, the efficiency of the Quicksort
may drop down to O (n?) due to the continuous right-to-left scan all the
way to the last left boundary.

Practically, t he e fficiency of qui ck s ort de pends on t he e lement w hich
ischosen as the pivot. Itsworst-case efficiency is given as O(n?). The
worst case occurs when the array is already sorted (either in ascending or
descending order) and the left-most element is chosen as the pivot.



Programming Example Quick sort:

#include <stdio.h>
#include <conio.h>
int partition(int a[], int beg, int end);
void quick_sort(int a[], int beg, int end);
void main()
{
inti, n=6;
intarr[6]={29,12,38,20,27,47};
/1 clrscr();
quick sort(arr, 0, n-1);
printf("\n The sorted array is: \n");
for(i=0;i<n;i++)
printf(" %d\t", arr[i]);
getch();
}
int partition(int a[], int beg, int end)
{
int left, right, temp, loc, flag;
loc = left = beg;
right = end;
flag = 0;
while(flag != 1)
{
while((a[loc] <= a[right]) && (loc!=right))
right--;
if(loc==right)
flag =1;
else if(a[loc]>a[right])
{
temp = a[loc];
a[loc] = a[right];
a[right] = temp;
loc = right;
}
if(flag!=1)
{
while((a[loc] >= a[left]) && (loc!=left))
left++;
if(loc==left)
flag =1;
else if(a[loc] <a[left])
{
temp = a[loc];
a[loc] = a[left];
a[left] = temp;
loc = left;
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}

return loc;
}
void quick_sort(int a[], int beg, int end)
{ intloc;

if(beg<end)

{

loc = partition(a, beg, end);
quick sort(a, beg, loc-1);
quick sort(a, loc+1, end);

}
b

Programming Example of Quick sort with recursive algorithm:

/*Program of sorting using quick sort through recursion*/
#include<stdio.h>

#include<conio.h>

void display(int[],int,int);

int quick(int[],int,int);

enum bool {FALSE,TRUE};

int main()

{ int array[6]={29,12,38,20,27,47};
int n=6,1;
clrscr();

printf("The given Unsorted list is :\n");
display(array,0,n-1);

printf("\n");

quick(array,0,n-1); //Calling Quick sort
function printf("Sorted list is :\n");
display(array,0,n-1);

printf("\n");

return O;

}

int quick(intarr[],intlow,int up)

{ intpiv,temp,left,right;
enum bool pivot placed=FALSE;
left=low;
right=up;

piv=low; /*Taking pivot as first element */
if(low>=up)
return 0;

printf("Sublist : ");

display(arr,low,up);

/*Loop to set pivot on its proper place */

while(pivot _placed==FALSE)
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{
/*Compare from Right to Left */

while( arr[piv]<=arr[right] &&piv!=right )
right=right-1;

if( piv==right )

pivot_placed=TRUE;

if( arr[piv] >arr[right] )

{
temp=arr[piv];
arr[piv]=arr[right];
arr[right]=temp;
piv=right;

}

/*Compare from Left to Right */

while( arr[piv]>=arr[left] && left!=piv )
left=left+1;

if(piv==left)
pivot_placed=TRUE;

if( arr[piv] <arr[left] )

{ temp=arr[piv];
arr[piv]=arr|left];
arr|[left]=temp;
piv=left;

}

}
printf("-> Pivot Placed is %d -> ",arr[piv]);
display(arr,low,up);
printf("\n");
quick(arr,low,piv-1);
quick(arr,piv+1,up);

return 0;

}

void display(intarr[],intlow,int up)

{ inti;
for(i=low;i<=up;it++)

printf("%d ",arr[1]);

10.10 MERGE SORT

The basic concept of merge sort is divides the list into two smaller
sub-lists of approximately equal size. Recursively repeat this procedure till
only one element is left in the sub-list. A fter this, various sorted sub-lists
are merged to form sorted parent list. This process goes on recursively till
the original sorted list arrived.

Merge s ort a lgorithm f ocuses ont wo m ain ¢ oncepts t 0 1 mprove i ts
performance (running time): MCA-107/265



e A smaller list takes fewer steps and thus less time to sort than a
large list.

e  Asnumber of stepsis relatively less, thus less time is needed to
create a sorted list from two sorted lists rather than creating it using
two unsorted lists.

The basic steps of a merge sort algorithm are as follows:
e Ifthe array is of length 0 or 1, then it is already sorted.

e Otherwise, divide the unsorted array into two sub-arrays of about
half the size.

e Use merge sort algorithm recursively to sort each sub-array.
e Merge the two sub-arrays to form a single sorted list.
Example: Let us take a list of unsorted elements which are as under

38 |27 |43 |3 |9 |82 |10

4 3g|27]a3|3|9]82]|10

Divide the
Array

3827|433 9|82|10

38 | 27 43| 3 9|82 10

[
rd
y

.| 38 27 a3 3 9 82 10
( 4 i /
F
27 | 38 3|43 9|82 10
Merge the
Elements r ¥
tnSnrl:the'< 3|27 |38|43 9|10 |82

Array /

3|9|10|27 |38 |43 |82

Resultant Sorted array is:
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This merge sort algorithm will use a function M ERGE w hich c ombines
the s ub-arrays t o form a s orted a rray. W hile th e me rge s ort a Igorithm
recursively divides the list into smaller lists, the merge algorithm conquers
the list to sort the elements in individual lists. Finally, the smaller lists are
merged to form one original list which will be sorted list.

Algorithm for Merge Sort:
MERGE (Array, Beg, Mid, End)

Step 1: [Initialize] Set I= Beg, J=Mid+1, idx =0
Step 2: Repeat While (I <= Mid) AND (J<=End)
If Array[I]< Array[J]
Set Temp[idx]= Array[I]
Setl=1+1
Else
Set Temp[idx] = Array[J]
SetJ=J+1
[End of If]
Set idx =1idx + 1

[End of Loop]

Step 3: [Copy the remaining elements of right sub-Array, If any]
If 1> Mid
Repeat While J<= End
Set Temp[idx] = Array[J]

Setidx =idx + 1, SetJ=J + 1
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[End of Loop]
[Copy the remaining elements of left sub-Array, If any]
Else
Repeat Whilel<= Mid
Set Temp[idx] = Array[I]
Setidx=idx + 1, SetI=1+1
[End of Loop]

[End of If]

Step 4: [Copy the contents of Temp back to Array] Set K=

Step 5: Repeat WhileK<idx
Set Array [K] = Temp[K]
SetK =K + 1
[End of Loop]

Step 6: End

Merge_Sort(Array, Beg, End)
Step 1: IF Beg< End
SET Mid= (Beg+ End)/2

CALL Merge Sort (Array, Beg, Mid)

MCA-107/268



CALL Merge Sort (Array, Mid+1, End)
Merge (Array, Beg, Mid, End)
[End of If]

Step 2: End

The running time of merge sort in the average case and the worst case can
begivena sO (nl og n). A Ithough m erge s ort ha s a n opt imal t ime
complexity, it needs an additional space of O (n) for the temporary array
TEMP.

Programming Example:

/* Program of sorting using merge sort */
#include<stdio.h>

#include<conio.h>

void mergesort(int a[],inti,int j);

void merge(int a[],int 11,int j1,int i2,int j2);

int main()

{ int a[10]={38, 27, 43, 3, 9, 82, 10, 28, 89,74};
inti,n=10;
clrscr();

printf("The given unsorted list is as under:\n");
for(i=0;i<n;i++)
printf("%d ",a[i]);
mergesort(a,0,n-1);
printf("\nSorted array is :");
for(i=0;i<n;i++)
printf("%d ",a[i]);

return O;
}
void mergesort(int a[],inti,int j)
{ int mid;
if(i<))
{ mid=(i+j)/2;
mergesort(a,i,mid); //left recursion
mergesort(a,mid+1,j); //right recursion
merge(a,i,mid,mid+1,j); //merging o f tw o s orted s ub-
arrays
}
}
void merge(int a[],int il,int j1,int i2,int j2)
{ int temp[50]; //array used for merging
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inti,j,k;
i=i1l; //beginning of the first list
j=i2;  //beginning of the second list
k=0;
while(i<=j1 && j<=j2) //while elements in both lists
{ if(a[i]<a[j])
temp[k++]=a[i++];
else
temp[k++]=a[j++];
}
while(i<=j1) //copy remaining elements of the first list
temp[k++]=a[i++];

while(j<=j2) //copy remaining elements of the second list
temp[k++]=a[j++];
//Transfer elements from temp[] back to a[]
for(i=11,j=0;i<=j2;i++,j++)
a[i]=templ[j];

10.11 SHELL SORT

D. L. Shell proposed an i mprovement on i nsertion s ort in 1959
named after him as Shell Sort. It is a generalization of insertion sort. Shell
sort i s c onsidered a n i mprovement ove r i nsertion s ort a s i t ¢ ompares
elements s eparated by a gap o f several p ositions w hile in Insertion s ort
compares with adjacent item. This Shell sort enables the element to take a
big gap. In Shell sort, elements are sorted in multiple passes and in each
pass, data are taken from big gap to smaller gap sizes. And finally in last
step, it will work like plain insertion sort. As we reach towards last step,
the items are mostly sorted which results in good performance.

Let us take an example to understand the concept of Shell Sort. Suppose
we have an array with following elements.

60 |16 |4 |87 | 7833|5142 (69|24|19|6 |38 56|30

Step 1.Make arrangement of elements in two rows in the form of a table
and sort each columns as under.

Row 1

60

16 {4 |87 |78|33 |51 |42 6016 |4 |6 |38|33|30| 42

Row 2

69

241196 |38 |56 30 6924119 |87 |78 |56 |51
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Now the elements of the array will be as under after merging both sorted

TOWS.

60 | 16

38 | 33

30 | 42

69

24 | 19

87 |7

8

56 | 51

Step 2. Now repeat step 1 a gain with small column gap size as under in

three rows.
Rowl |60 |16 |4 |6 |38
Row?2 |33 1301|4269 |24
Row3 |19 |87 |78 |56 | 51

19

16

24

33

30

42

56

38

60

87

78

69

51

Now t he e lements of t he a rray w ill be a s unde r a fter m erging s orted

column

19 | 16

24 | 33

30 | 42

56

38

60

87

78

69

o1

Step 3. Now repeat previous s tep a gain with s mall c olumn gap size as
under in five rows.

Row 1 19 |16 | 4

Row 2 6 |24 |33
Row3 |30 |42 |56
Row4 |38 |60 |87
Row5 |78 |69 |51

16

19

24

33

30

42

o1

38

60

56

78

69

87

Now t he e lements of t he a rray w ill be a s unde r a fter m erging s orted

column.
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6 |16 4 | 19 | 24 |33|30(42|51|38|60|56|78 |69 |87
Step 4. Now repeat previous step again with single column and sort it.

6 4

16 6

4 16
19 19
24 24
33 30
30 33

—>
42 38
51 42
38 51
60 56
56 60
78 69
69 78
87 87
Finally, the elements of the array can be given as:
4 |6 (16 |19 |24 |30 |33 |38|42|51|56|60|69 78|87




Algorithm for shell sort:

The algorithm to sort an array of elements using shell sort is as under in
various s teps. W e s hall use multiple passes to sort the array Arr. A fter
every pass, reduce the gap(See the number of columns) by a factor of half
as shown in Step 4. For each iteration in for loop in Step 5, we swap the
array values accordingly with smaller one if required.

SHELL SORT(Arr, n)
Step 1: SET FLAG=1, GAP =N

Step 2: Repeat Steps 3 to 6 while FLAG=1 OR GAP > 1

Step 3: SET FLAG =0

Step 4: SET GAP=(GAP+1)/2

Step 5: Repeat Step 6 for [ =to I < (N- GAP)
Step 6: IF Arr[I+ GAP]>Arr[I]

SWAP Arr[I+ GAP], Arr[I]
SET FLAG =0

Step 7: END

Programming Example:

/* Program of sorting using shell sort */

#include <stdio.h>

void main()

{ inti,j,k,n=15,incr;
intarr[15]={60,16,4,87,78,33,51,42,69,24,19,6,38,56,30};
printf("The goven Unsorted list is :\n");
for (i=0; i<n; i++)

printf("%d ", arr[i]);
printf("\nEnter maximum increment (odd value) : ");
scanf("%d",&incr);
/*Shell sort*/
while(incr>=1)
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{ for(j=incr;j<n;j++)
{ k=arrfj];
for(i = j-incr; i>= 0 && k <arr[i]; 1 = i-incr)
arr[i+incr]=arr[i];
arr[i+incr]=k;
}
printf("Increment=%d \n",incr);
for (1=0; i<n; i++)
printf("%d ", arr[i]);
printf("\n");
incr=incr-2; /*Decrease the increment™*/
}/*End of while*/
printf("Sorted list is :\n");
for (1=0; i<n; i++)
printf("%d ", arr[i]);
printf("\n");
getch();
}

1.12 RADIX SORT

Radix sort is a linear sorting algorithm for integers and uses the
concept of sorting names in alphabetical order. Whenwe havealistof
sorted names, the radix is 26 (or 26 buckets) because there are 26 letters in
the English alphabet. So radix sort is also known as bucket sort. Observe
that words are first sorted according to the first letter of the name. That is,
26 classes are used to arrange the names, where the first class stores the
names that begin with A, the second class contains the names with B, and
SO on.

When radix sort is used on integers, sorting is done on each of the digits in
the number. The sorting procedure proceeds by sorting the least significant
to th e mo st s ignificant d igit. While s orting t he num bers, w ¢ ha ve t en
buckets, each for one digit (0, 1, 2,...,9) and the number of passes will
depend on the length of the number having maximum number of digits. If
numbers are of two digit, then 2 passes will be there and if the numbers
are of three digits then 3 passes will be there.

Example 1: Letus take an array of 12 num bers in unsorted order and
sort them using radix sort.

42 2064 5134 7031 1615 1219 33

In first element 42, unit digit is 2. So in first pass, the unit digit (first from
last) will be sorted.



Pass 1 for unit digit

Numbers

42

20

64

51

34

70

31

16

15

12

19

33

20

70

51

31

42

12

33

64

34

15

16

19

After Pass 1, the numbers are as follow

20 70 51 3142 1233 6434 15 16 19
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Pass 2 for ten’s digit :

Numbers | 0 1 2 3 |4 5 6 7 8 9

20 20

70 70

51 51

31 31

42 42

12 12

33 33

64 64

34 34

15 15

16 16

19 19

After Pass 2, the numbers are as follow which are sorted.
12 15 16 19 20 31 33 34 42 51 64 70

Example 2: Let us ta ke another exa mple of three digit nu mbers to
sort using Radix sort. We have an array of 11 numbers as under.

342 | 651 | 921 | 120 | 564 | 469 | 552 | 805 | 908 | 526 | 443
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Pass 1 for Unit Digit

Number

0

1

342

651

928

120

564

469

552

805

907

526

443

120

651

342

552

443

564

805

526

907

928

469

After Pass 1 the array values will be like this

120

651

343

552

443

564

805

526

907

928 | 469
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Pass 2 for ten's Digit

Number

0

1

120

651

343

552

443

564

805

526

907

928

469

805

907

120

526

928

343

443

651

552

564

469

After Pass 2 the array values will be like this

805 | 907

120

526

928

343

443

651

552

564

469

Pass 3 for Hundred Digit

Number

0

1

2

805

907

120

120

808

907




526 526
928 928
343 343
443 443
651 651
552 552
564 564
469 469
After Pass 3 the array values will sorted as below
120 | 343 | 443 | 469 | 526 | 552 | 564 | 651 | 808 | 907 | 928

Algorithm for Radix Sort

Radix Sort (ARR, N)

Step 1: Find the largest number in ARR as LARGE

Step 2: [INITIALIZE] SET NOP= Number of digits in LARGE

Step 3: SET PASS =0

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET I= 0 and INITIALIZE buckets

Step 6: Repeat Steps7to9 while I<N-1

Step 7: SET DIGIT = digit at PASS™ place in A[I]

Step 8: Add A[I] to the bucket numbered DIGIT
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Step 9: INCEREMENT bucket count for bucket numbered DIGIT
[END OF LOOP]

Step 10: Collect the numbers in the bucket

[END OF LOOP]

Step 11: END

Programming Example:

/*Program of sorting using Radix sort */

#include <stdio.h>

#include <conio.h>

#define size 10

int largest(intarr[], int n);

void radix_sort(intarr[], int n);

int main()

{ intarr[12]={42,20,64,51,34,70,31,16,15,12,19,33};

inti, n=12;

clrscr();

printf("\n The given unsorted list is as under \n");
for(i=0;i<n;i++)

printf("%d ",arr[1]);

printf("\n");

radix_sort(arr, n);

printf('"\n The sorted array is: \n");
for(i=0;i<n;i++)

printf("%d ",arr[i]);

return O;

}

int largest(intarr[], int n)

{

int large=arr[0], i;
for(i=1;i<n;i++)



{
if(arr[i]>large)
large = arrf[i];
h
return large;
b
void radix_sort(intarr[], int n)
{
int bucket[size][size], bucket count[size];
inti, j, k, remainder, NOP=0, divisor=1, large, pass;
large = largest(arr, n);
while(large>0)
{ NOP++;
large/=size;
b
for(pass=0;pass<NOP;pass++) // Initialize the buckets
{ for(i=0;i<size;i++)
bucket count[i]=0;
for(i=0;i<n;i++)
{

// sort the numbers according to the digit at passth place
remainder = (arr[i]/divisor)%size;
bucket[remainder][bucket count[remainder]] = arr[i];

bucket count[remainder] += 1;
}
// collect the numbers after PASS pass
1=0;
for(k=0;k<size;k++)
{
for(j=0;j<bucket_count[k];j++)
{ arr[i] = bucket[k][j];
1++;
b
}
divisor *= size;

}
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1.13 SUMMARY

Now w ¢ ha ve unde rstand all th e s orting a lgorithms w ith th eir
worst, average and best cases. But one thing should be very clear that, no
sorting t echnique is be st. It s hould de pend on t he s ituation of the data.
Choice of algorithm should depends on t he order of the data and storage
location of it. Now let us summarize all the sorting algorithms with respect
to their best, average and best case behavior in term of O notation.

Sorting Best Case Average case Worst case
Technique

Selection Sort O(n?) O(n?) Oo(n?)
Bubble Sort O(n) O(n?) Oo(n?)
Insertion Sort O(n) o(n?) o(n?)
Heap Sort O(n log n) O(n log n) O(n log n)
Quick Sort O(n?) O(n log n) O(n log n)
Merge Sort O(n log n) O(n log n) O(n log n)
Shell Sort - - -
Radix Sort O(n?) O(n log n) O(n logn)
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SELF-EVALUATION

AN A

10.

Write ar ecursive “C ” function to i mplement b inary s earch an d
compute its time complexity.

Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort.
Explain sequential search with suitable example.

What do you mean by sorting? Explain bubble sort with example.
Sort the sequence 33, 11, 64, 58, 94, 62, 76, 15 using quick sort

Sort the sequence 43, 18, 94, 28, 64, 92, 36, 75, 82, 99using heap
sort

Sort t he s equence 93,4 8, 74, 29,34, 97,39, 25,42,19us ing
selection sort

Sort the sequence 63, 98, 14, 28, 54, 72, 16, 17, 22, 79using merge
sort

Sort the sequence using Radix sort
103, 108, 924, 248, 664, 912, 736, 375, 182, 399
Show how heap sort processes the input values as under.

142, 543, 123, 65, 453, 879, 572,434, 111, 242, 811, 102.

Multiple Choice Questions

1.

What is the worst-case time for serial search finding a single item
in an array?

A. Constant time B. Quadratic time
C. Logarithmic time D. Linear time

What is the worst-case time for binary search finding a single item
in an array?

A. Constant time B. Quadratic time
C. Logarithmic D. Linear time

Which searching can be performed recursively?

A. Linear B. both
C. Binary search D. none
Which searching can be performed iteratively? [ B ]
A. linear search B. Both
C. Binary search D. none



10.

11.

In a selectionsortofn elements, how many ti mes is the s wap
function called in the complete execution of the algorithm?

A1 B. n’
C. n-1 D. nlogn

Selection s ort and quick sort both fall into the same category o f
sorting algorithms. What is this category?

A. O(nlogn) sorts

B. Interchange sorts

C. Divide-and-conquer sorts

D. Average time is quadratic

When is insertion sort a good choice for sorting an array?

A. Each component of the arrayr equires al arge a mount of
memory

B. The array has only a few items out of place

C. E ach c omponent o ft he arrayr equires a small a mount of
memory

D. The processor speed is fast

What is the worst-case time for quick sort tosortanarrayofn
elements?

A.  O(logn) B. O(n)
C. O(nlogn D. 0O(n?)

What is the w orst-case time forheap sorttosortan arrayofn
elements?

A. O(logn B. O(n)
C. O(nlogn) D. O(n?)

A min heap is the tree structure where smallest element is available
at the

A. leaf B. root

C. intermediate parent D. Any where

Which design algorithm technique is used for quick sort?
A. Divide and conqueror  B. greedy

C. backtrack D. dynamic programming
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12.

13.

14.

14.

Which a mong t he f ollowing i s f astest s orting t echnique ( for
unordered data)

A. Heap sort B. Selection Sort
C. Quick Sort D. Bubble sort

In w hich s earching t echnique el ements are eliminated by halfin
each pass.

A. Linear search B. Binary search
C. Both D. none

Binary search algorithm performs efficiently on a

A. linked list B. both
C. Array D. None
Heap is a good data structure to implement
A. priority Queue B. Deque
C. linear queue D. None

True or False

10.
11.
12.

Binary search is also called sequential search.
Linear search is performed on a sorted array.

For insertion s ort, the best case occurs when the array is already
sorted.

Selection sort has a linear running time complexity.

The running time of merge sort in the average case and the worst
case is O(n log n).

The worst case running time complexity of quick sortis O(nlog

n).
Heap sort is an efficient and a stable sorting algorithm.

External s orting de als w iths ortingt heda tas toredi nt he
computer’s memory.

Insertion sort is less efficient than quick sort, heap sort, and merge
sort.

The average case of insertion sort has a quadratic running time.
The partitioning of the array in quick sort is done in O(n) time.

In 1 nternal s orting m ethods, 1 t1 s ne cessary for a 1l da ta s hould
reside in main memory.



Answer

1. False 2. False
False

7. True 8. False
True

3. False

9. True

4. False

10. True

5. True

11. True

6.

12.

MCA-107/287



MCA-107/288



UNIT-11 HASHING

Structure:

11.0  Introduction:

11.1 Objective:

11.2  Hashing:

11.3 Hash Table:

11.4  Hash Function

11.5 Resolving Collision:

11.6  Some Applications of Hash Tables:

11.7 Summary

11.0 INTRODUCTION

The s earching techniques that we have discussed in the previous
unit 10 are based on c omparison of values with each other. In sequential
search, we have to search from the beginning and move up to last element,
so all items are compared with the searched items depend on its location in
the a rray. In bi nary s earch, | ess ¢ omparison a re t here with r espectto
sequential search as on each step list is divided in two halves. So there is
less ¢ omparison. Sothereisa need w here w e ha vet odom inimum
comparisons so that complexity could be reduced. So now our need is to
search the element in constant times and less key comparison should be
involved. Finally, the main objective is that, how to reduce the number of
comparisons in order to find the appropriate record within minimum time
and minimum comparison.

11.1 OBJECTIVE

After reading this unit the learner is able to do the following task.
. Understand the concept of hashing and its need.
. Understand hash function and its methods
. Understand Collision and its resolution strategies

e  Understand hash table and its implementation

11.2 Hashing

Hashing is a technique that is used to uniquely identify a specific
object from a group of similar objects. Some examples of how hashing is
used in our lives include: MCA-107/289
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o In universities, each student is assigned a unique roll number that
can be used to retrieve information about them.

o In libraries, each book i s assigned a uni que number that c an be
used t o de termine i nformation a bout t he book, such asits exact
position in the library or the users it has been issued to etc.

In both these examples the students and books were hashed to a unique
number.Assume that you have an object and you want to assign a key to it
to make searching easy. To store the key/value pair, you can use a simple
array like a data structure where keys (integers) can be used directly as an
index to s tore v alues. H owever, in cases where the keys are large and
cannot be used directly as an index, you should use hashing.

In h ashing, 1 arge ke ys a re ¢ onverted i nto s mall ke ys b y us ing ha sh
functions. The values are then stored in a data structure called hash table.
The i dea of hashing is to distribute e ntries ( key/value pa irs) uni formly
across an array. Each element is assigned a key (converted key). By using
that ke y you canaccess the elementin O(1) time. Using the ke y, the
algorithm (hash function) computes an index that suggests where an entry
can be found or inserted.

Hashing is imp lemented in tw o s teps: Inf irsts tep, th e element is
converted into an integer by using a hash function. This element can be
used as an index to store the original element, which falls into the hash
table. In second step, the element is stored in the hash table where it can
be quickly retrieved using hashed key.

hash = hashfunc(key)
index = hash % array size

In this method, the hash is independent of the array size anditisthen
reduced to an index (a number between 0 and N — 1(N is size of array) by
using the modulo operator (%).

Let us take an example to explain. In a university, there are 100 faculties,
and each faculty has assigned aTeacher ID in the range 0-99. To store the
records in an array, each faculty Teacher ID acts as an index into the array
where the faculty’s record will be stored as shown in Figure 1 be low. In
this case, we can directly access the record of any faculty, once we know
his T eacher ID, because the array index is the same as the Teacher ID
number. But practically, this implementation is hardly feasible.



Key Array of Faculty's Records

Key 0 — [0] | Faculty record with Teacher ID 0
Key 1 — [1] | Faculty record with Teacher ID 1
Key 2 — [2] | Faculty record with Teacher ID 2
Key98 — [98] | Faculty record with Teacher ID 98
Key99 — [99] | Faculty record with Teacher ID 99

Figure 1 : Faculties records with two digit Teacher_id.

Let us take a similar case of university which has fivedigitTeacher ID as
the primary key. In this case,key values will range from 00000 to 99999. If
we want to use the same technique as above, we need an array ofsize
100,000, of which only 100 elements will be used. This is illustrated in

Figure 2.

Key Array of Faculty's Records

Key 00000 — [0] Faculty record with Teacher ID 0

Key 00001 — [1] Faculty record with Teacher ID 1

Key 00002 — [2] Faculty record with Teacher ID 2
Keyn — [n] Faculty record with Teacher ID n

Key 99998  — [99998] Faculty record with Teacher ID 99998
Key 99999 — [99999] Faculty record with Teacher ID 99999

Figure 2 : Faculties records with five digitTeacher _id.
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It is obvious to waste a lot of memory storage space just to ensure that
each employee’s record is unique and it is on predictable location.

So if we use a two-digit primary key (Teacher ID) or a five-digit key, we
have only 100 f aculties in the university. For this we will be using only
100 locations in the array. Therefore, in order to keep the array size down
to the size that we will actually be using ( 100 e lements), a nother good
optionis to usejustthelasttw odigitso fth ek eyto id entify e ach
employee. For example, the faculty with Teacher 1D79439 will be stored
in t he e lement of t he array w ith i ndex 39. S imilarly, t he f aculty w ith
Teacher 1D12345 w ill ha ve hi s r ecord s tored inthearrayatthe45th
location.

11.3 HASH TABLE

Hash table is a d ata structure in which keys are mapped to array
positions by a hash function which is arranged in the form of an array that
is addressed via a hash function. The hash table is divided into a number
of buc kets and each bu cketisinturn capable of s toring a num ber o f
records. Thus we can say that a bucket has number of slots and each slot is
capable of holding one record.

Table
In_______h__ 0
ki ko [ hiky) hikz)
ks |2 hike)
kﬁ><j::3 hks) hik;)
k;’“ﬁf 4
5
6

The time required to locate any element in the hash tableis 0 (1). Itis
constant and it is not depend on the number of data elements stored in the
table. N ow que stion is how we map the number of keys to a particular
location in the hash table i.e., h (k). It is computed using the hash function.

11.4 HASH FUNCTION

Hash function is just a mathematical calculation to calculate the
key used as an index. The basic idea in hashing is the transformation of a
key into the corresponding 1 ocation in the hash table. Thisis done by a
hash function. To achieve a good hashing mechanism, it is important to
have a good hash function with the following basic requirements:



. Easy to compute: It s hould be e asyt o c ompute a nd m ust not
become an algorithm in itself.

o Uniform distribution: It s hould pr ovide a uni form di stribution
across the hash table and should not result in clustering.

o Less collision: C ollisions oc cur w hen pa irs of e lements a re
mapped to the same hash value. These should be avoided.

Sometimes, this hash function may not yield distinct values; it is possible
that two different keys K; and K, will yield the same hash address. This
situation is called Hash collision.

Note: Irrespective of how good a hash function is, collisions are bound to
occur. T herefore, t o m aintain t he pe rformance of a ha sht able,itis
importantt o m anage collisions t hrough va rious ¢ ollision r esolution
techniques.

There are three different types of Hash functions. There are two points to
be in mind while choosing a function H : K — M . The first one is that, it
should be easy and fast to calculate. Another one is that, it should always
give different location (un occupied) locations in the hash table to avoid
collisions.

These hash functions are as under:
(1) Truncate Method
(i1)) Division reminder method
(ii1)) Mid square method —
(iv) Folding method.
(v) For Floating point number

(vi) For Strings

11.4.1 Truncate Method

This is one of the easiest method for calculating the key value for
hash function. In this method, we take only a part of the key as address. It
could be from leftmost digits or rightmost digits.

EXAMPLE 1. C alculate the hash values or keys of following 8 di git
numbers for hash table of size 100.

76895534 78933524 93592415 18935445
SOLUTION.

Now as the table size is 100, so take 2 rightmost digit for getting the hash
table address as under.

34 24 15 45
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Key Rightmost 2 digits

76895534 34
78933524 24
93592415 15
18935445 45

Now w e ha ve t aken r ight t wo di git a s a ddress, but there are al ot of
chances that collision c an oc cur be cause last two digits canbe same in
many numbers.

11.4.2 DIVISION REMINDER METHOD

In this division reminder method of hash function, key k is divided
by a number m larger than the number n of keys in k and the reminder of
this division is taken as index into the hash table, i.e.,

h (k) = kMod m

The num ber m should be usually a prime number or a num ber w ithout
small divisors, so that it minimizes the number of collision possibilities.

The above hash function will map the keys in the range 0 to m —1 and is
acceptable in C/C++. But if we want the hash addresses to range from 1 to
m rather than from 0 to m —1 we use the formula

h(k)=k Mod m+1
EXAMPLE 2. Calculate the hash values of keys 1234 and 5462.
Solution: Setting M = 97, hash values can be calculated as:
h (1234) =1234 %97 =170
h (5642) =5642 % 97 =16

Consider a hash table with 7 slots i.e.,m = 7, then hash function h (k) =k
mod in will map the key 169 to slot 1 since

h (169) = 169 mod 7 =1
similarly,
h (130) =130 mod 7=4

is mapped to slot 4.



11.4.3 MID SQUARE METHOD

In the mid s quare method the key is first squared. T herefore the
hash function is defined by

h(l)=p

where p i s obtained by deleting digits from both sides of k* To properly
implement this the same position of k* must be used for all the keys.

EXAMPLE 3. Consider a hash table with 50 slotsi.e., m =50 and key
values k= 1632, 1739,3123.

SOLUTION.
k 1632 1739 3123
S 2663424 3024121 9753129
h(k)y 34 41 31

The hash values are obtained by taking the fourth and fifth digits counting
from right.

11.4.4 FOLDING METHOD

In folding method the key, k is partitioned into a number of parts
ki, ks....k; where each part, except possibly the last, has the same number
of di gits a s t he r equired a ddress: T hen t he pa rts a re a dded t ogether,
ignoring the last carry i.e.,

H(k)=k1 +k2+ ........... +kr
wherethe leading-digits carries, if any are ignored.

EXAMPLE 4. Consider a hash table with 100 slots i.e., m = 100 and key
values k = 7325, 76321, 1623, 7613.

SOLUTION.
k Parts Sum of parts h (k)
7325 73, 25 98 98
76321 76,32, 1 109 09
1623 16,23 39 39
7613 76, 13 89 89

MCA-107/295



MCA-107/296

11.45 FOR FLOATING POINT NUMBER

The a pproach f or ha sh a ddress f or f loating p oint num bers i s
something different but also needs modulus operation within the range of
hash table. There are following steps for calculating the hash values for
such floating point numbers.

1.  Take fractional part of the key.
2. Multiply this part with size of hash table array.

3. Now take integer part from it as the result of hash address of that
key.

Example 5 : Calculate t he ha sh va lues of k eys 123.6721, 970.663,
123.0558 and 679.99156 with table size 99.

Solution :
Let us take the fractional part of the keys and multiply with table size 99.
0.6721 x 99 = 66.5379
0.663 x 99 =65.637
0.0558 x 99 = 5.5242
0.99156 x 99 =98.16444

Now the hash address will be integer part of these numbers.

H(66.5379) = 66
H(65.637) = 65
H(5.5242) = 5
H(98.16444) = 98

11.46 FOR STRINGS

Inm any c ases s trings a reus ed a st he ke y w hich ¢ ould be
alphabetic o r alphanumeric. W e can see itin E nglish d ictionary v ery
frequently. We can take ASCII value of each character and sum all values
then take modulus by the table size to calculate the key for hash table.

Let us take an example.

Suppose we have a hash table of size 99 and the key is “Manisha”. Now
we have to calculate the hash value for it.

First sum up all the ASCII values respected to each character in the key as
under



Manisha M a n i S h a Total

77 97 110 105 115 104 97 705

So
H(Manisha) = 707%99=12

Now key “Manisha” can be mapped to 12" location in the hash table.

115 RESOLVING COLLISION

Hash c ollision i s t he pr ocess i n w hich m ore than one ke yis
mapped to the same memory location in the table. For example, if we are
using the division reminder hashing with following hash-function

h (k) =k % 7 then key = 8 and key =15 both mapped to the same location
of the table i.e., one

h(k)=8%7=1

h(k)=15%7=1

Both key will store at same location in the hash table and collision will
occur.

11.5.1 COLLISION RESOLUTION BY SEPARATE
CHAINING (OPEN HASHING)

This me thod maintains a chain ofall elements which have same
address. In this method all the elements where keys hash to the same hash-
table slot are put in a one array of pointers or a linked list. Therefore, the
slot 1 in the hash table contains a pointer to the head of the linked list of all
the elements that hash to value i. If there is no such elements that hash to
value i, the slot contains NULL value.
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0 NULL

1 —- 6 —1—=| 45 X

2 —> 3 X

3 MNULL

4 I 22 | %

5 > 67 > 12 —T*| X
6 NULL

11.5.2 Collision Resolution by Open Addressing (Closed
Hashing)

In open addressing the keys to be hashed is to put in the separate
location of the hash table. E achlocation c ontains some key or the some
other ¢ haracter to in dicate th at th e p articular lo cation is free. In th is
method to insert key into the table we simply hash the key using the hash
function. If the space is available, then insert the key into the hash table
location ot herwise; s earch t he 1 ocation 1 n t he f orward di rection of t he
table, to find the slot in a systematic manner. The process of finding the
slot in the hash table is called probing

11.5.2.1 LINEAR PROBING

This ha shing t echnique finds t he ha sh ke y v alue t hrough ha sh
function and maps the key on p articular position in hash table. In case if
key has same hash address then it will find the next empty position in the
hash table. We take the hash table as circular array. So if table size is N
then after N-1 position it will search from Oth position in the array.

The linear probing uses the following hash function
h(k,i)=[h'(k) +i]modn fori=0, 1, 2,..... n-1

wheren is the size ofthe hash table and h' (k) = kmod n the basic hash
function and i is the probe number.

Let us take some elements and the table size is 11.

30, 19,44, 11, 37, 24, 47



= 0 =

5 > H(30) = 30%11 =8
1 11 H(19) = 19%11 =8
)

3 47 H(44) =44%11=0
4 37

5 26 H(11)=11%11=0
6

- H(37)=37%]11=4
8 il H(26) = 26%11 = 4
9 19

10 H(47)=47%11=3

Now the first 30 will be inserted at the 8™ position in the array. Next 19
will also on same hash, address 8", but it is already oc cupied, so it will
search for the next free place which is 9t position. Similarly 44 and 11
also has same hash address i.e. 0™ position, so after insertion of 44 at 0™
position, 11 will be on n ext position i.e. 1* position. Similarly key value
37 and 26 has same, so that will store at 4™ and 5™ position. In last key 47
will be at 3 position.

The m ain di sadvantage of t hel inear pr obing t echnique i s ¢ lustering
problem. When half of the table is full thenitis difficult to find empty
position in hash table in case of collision. Searching will also become slow
because it will go for linear searching.

11.5.2.2 QUADRATIC PROBING

The m ain di sadvantage of 1inear pr obing i s ¢ lustering pr oblem.
Suppose ha sh addressis k't heninthe case of collision | inear pr obing
search the location k, k+ 1, k+2 (% S IZE). Here in quadratic probing it
search the location (k+i2)%SIZE (fori=1,2,34....... ). So it will search the
locations k+1, k+4, k+9...... So it will decrease the problem of clustering
but t his t echnique c annot s earch all t he l ocations. Ifhashtablesizeis
prime then it will search at least half of the locations of the hash table. Let
us take table size 11 and apply this technique with following elements-
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1] 10

1 H(29) = 29%11 =7
2 46

3 24 H(18)=18%11=7
4

5 H(43) = 43%11 = 10
6

7 29 H(10) = 10%11 = 10
8 18

3 H(46) = 46%11 = 2
10 43

H(54) = 54%11 =10

As well as we insert the element 43 at 10" position in table, the element
10 will search the empty position at (k +1) %11 = Oth position which is
empty. When we insert 54 then after getting collision first it w ill search
the next position (k+1) %11 = Oth position which is already occupied, so it
will again search the next position (k+4) % 11 = 3 position which is empty
so 54 will be inserted at that position

11.5.2.3 DOUBLE HASHING

Double hashing is similar to linear probing and the only difference
is t he 1 nterval b etween s uccessive p robes. Here, t he 1 nterval b etween
probes is computed by using two hash functions.

Let us say that the hashed index for an entry record is an index that is
computed by one hashing function and the slot at that index is already
occupied. You must start traversing in a specific probing sequence to look
for an unoccupied slot. The probing sequence will be:

index= ( index +1%*i ndexH) %  ha shTableSize;
index = (index + 2 * indexH) % hashTableSize;

and so on...

Here, indexH is the hash value that is computed by another hash function.

11.6  SOME APPLICATIONS OF HASH TABLES

Database systems: S pecifically, t hose t hat require efficient r andom
access. Generally, database systems try to optimize between two types of
access methods: sequential and random. Hash tables are an important part



of efficient random access because they provide a way to locate data in a
constant amount of time.

Symbol tables: T he t ables u sed b y ¢ ompilers to ma intain in formation
about s ymbols f rom a pr ogram. C ompilers a ccess i nformation a bout
symbols f requently. T herefore, itis imp ortant th at s ymbol ta bles b e
implemented very efficiently.

Data dictionaries: D ata s tructures t hat s upport a dding, de leting, a nd
searching for d ata. A Ithough t he ope rations of ahash tableanda data
dictionary are similar, other data structures may be used to implement data
dictionaries. Using a hash table is particularly efficient.

Network processing algorithms: H ash tablesar ef undamental
components of s everal network pr ocessing algorithms a nd a pplications,
including route lookup, packet classification, and network monitoring.

Associative arrays: Hash tables are commonly used to implement many
types of in-memory tables. They are used to implement associative arrays
(arrays whose indices are arbitrary strings or other complicated objects).

Caches: Hash tables can be used to implement caches i.e. auxiliary data
tables that are used to speed up the access to data, w hich is p rimarily
stored in slower media.

Object representation: Several dynamic languages, such as Perl, Python,
JavaScript, and Ruby use hash tables to implement objects.

Browser Cashes: Hash tables are used to implement browser cashes.

11.7 SUMMARY

Hashing is the process of mapping 1 arge amount of dataitem to
smaller table with the help of hashing function. Hashing is also known as
Hashing Algorithm.It is a technique to convert a range of key values into
arange o findexes o fan array. Itis usedto facilitatet hen extlevel
searching method when compared with the linear or binary search.

Hash table or hash map is a data structure used to store key-value pairs.It
is a collection of items stored to make it e asy to find them later.It uses a
hash function to compute an index into an array of buckets or slots from
which the desired value can be found.It contains value based on the key.

Hash Function is a fixed process which converts a key to a hash key to
store in array.This function takes a key and maps it to a value of a certain
length which is called a Hash value or Hash using various methods like
Truncate, D ivision R eminder, M id S quare M ethod and F olding M ethod
etc. Using these functions we calculate a Hash value which represents the
original value, but it is normally smaller than the original.

In s ome cases, there are ch ances o f'same h ash v alues is cal culated for
same memory location. It means collisions occur when the hash function
maps t wo di fferent k eys t o t he s ame | ocation. O bviously, t wo r ecords
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cannot be stored in the same location. Therefore, a method used to solve
the pr oblem of c ollision, a Iso ¢ alled ¢ ollision r esolution t echnique, 1 s
applied. T he t wo m ost popul ar m ethods of r esolving c ollisions a re
Collision Resolution by Separate Chaining (Open Hashing) and Collision
Resolution by Open Addressing (Closed Hashing)
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Self - Evaluation

What do you mean by hash table?

What i s ha sh f unction? W hat a re t he qua lities of a g ood ha sh
function?

Write a short note on t he di fferent h ash functions. Give suitable
examples to justify your answers.

Calculate hash values of keys: 8922, 9241, 3807 , 5643 a nd 4522
using different methods of hashing.

What is collision? How to resolve a collision. Which technique do
you think is better and why?

Consider a hash table with size = 10. U sing linear probing, insert
the keys 72, 27, 33, 54, 26, 68, 59,and 101 into the table.

What is hashing? Give its applications. Also, discuss the pros and
cons of hashing.

Explain chaining with examples.
Write short notes on:

o Mid square Method



10.

o Folding Method

. Modular Method
o Linear probing

o Quadratic probing
e  Double hashing

What are applications of hashing?

MCQ :

What is a hash table?

a) A structure that maps values to keys

b) A structure that maps keys to values

c) A structure used for storage

d) A structure used to implement stack and queue

If several elements are competing for the same memory location in
the hash table, what is it called?

a) Diffusion

b) Replication

c) Collision

d) None of the mentioned

What is direct addressing?

a)  Distinct array position for every possible key
b) Fewer array positions than keys

c) Fewer keys than array positions

d) None of the mentioned

What can be the techniques to avoid collision?
a)  Make the hash function appear random
b)  Use the chaining method

c¢)  Use uniform hashing

d) All of the mentioned

What is a hash function?

a) A function has allocated memory to keys

b) A function that computes the location of the key in the
array MCA-107/303



c) A function that creates an array

d) None of the mentioned
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UNIT-12 FILE STRUCTURE

Structure

12.0  Introduction

12.1 Objectives

12.2 File Terminology

12.3 File Organization

12.4  Basic File Operations
12.5 Sequential Files

12.6  Direct File

12.7  Indexed Sequential Files
12.8 Summary

12.0 INTRODUCTION

File o rganization r efers to the way datais stored in a file. File
organization i s ve ry 1 mportant be cause i t de termines t he m ethods of
access, efficiency, flexibility and storage devices to use in efficient way.

Nowadays, almost all organizations use data collection software to collect
large amounts o f data. For example, when we approach any college for
admission, our all data like name, address, phone number, the requested
course, aggregate of m arks obt ained i nt hel ast e xaminationet c.1 s
collected.

A university might like to store data related to all students—the courses
they sign up for etc., all this implies the following:

J Data will be stored on external storage devices like magnetic tapes,
disk, floppy etc.

. Data will be accessed by many people and software programs
e Users of the data will expect that

0 Itis always reliably available for processing

0 Itissecure

0  Itisstored in a manner flexible enough to allow the users to
add new data as per changing needs

In c ommon t erminology, a fileisa bl ock of i mportant da ta whichis
available to any computer s oftware and is usually stored on a ny storage
device. Storing a file on any storage medium like pen drive, hard disk or
floppy disk ensures the availability of the file in future.Now a days all file
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are stored in computers to reduce paper work and easy availability in any
office, bank or library.

121 OBJECTIVES

After reading this unit the learner is able to do the following task.
. Understand the concept of File and its terminology.
e  File Organization and its uses
. Operations that could be performed of file
. Sequential File organization and its features
o Direct File organization and its features

. Index Sequential File organization and its features

12.2 FILE TERMINOLOGY

Every file ¢ ontains r ecords w hich could be o fa ¢ ustomer ( in
Business), s tudents ( in uni versity or c ollege), pa tient ( in hos pital),
passenger (int rain/flight r eservation) w hich can be or ganizedi na
hierarchy to present a systematic way so that it could be utilized in future
as requested.

Now we will define the terms of the hierarchical structure of data which
we are storing in computer in the form of file.

Field : Itis anel ementaryd ataitemt hats toresas ingle f actan d
characterized by its length and types.

For example :
Name : Size= 25 Type= Character
Age Size=2 Type= Integer/Numeric
Address: Size=100 Type=Character

Record : Itisa collection of related fields that can be treated as a unit
from an applications point of view.

For example : The student’s record may contain data fields such
as name, address, phone number, roll number, marks obtained, and
SO on.

File : Datais organized for s torage in files. A fileis a c ollectiono f
similar, related records. It has an identifying name.

For example : There are 100 students in a class, then there are 100
records, one for each student. All these related records are stored in
a file with the respective class name.



Directory : A directory stores information of files belongs to one group
or related in any manner. A directory is used to store files so that users can
access all files easily.

For example :
Teachers : This directory will stores all files of teachers.
BSc Partl : This directory will stores all first year students.
Courses : T his d irectory w ill storesa 1lin formation o f

available courses.

12.3 FILE ORGANIZATION

File organization tell that what is the way to store data and how to
retrieve that d ata. Basically File Organization is a way o f arranging the
records in a file when the file is stored on the disk. The factors involved in
selecting a particular file organization for uses are:

J Easily storing and retrieval of information
J Easily modify or updates

. Less storage space

. Reliability of data for future

. Security

. Integrity

Different f ile o rganizations assurest he a bove f actors w ith di fferent
weightages. The choice of particular file organization depends on the type
of application and need of the user.

Now we will discuss some of the file organization in brief.

Sequential Files : Datarecords are stored in some s pecific s equence
e.g., order of arrival, value of key field etc. Records of a sequential file
cannot b e ac cessed atrandom 1 .e., to acces s thenthrecord, on e must
traverse the preceding (n - 1) records. Sequential files will be dealt with at
length in the next section.

Relative Files : Each data record has a fixed place in a relative file. Each
record must have associated with it an integer key value th at will help
identify t his s lot. T his key, t herefore, w ill be wused f or 1 nsertion a nd
retrieval of the records. Random as well as sequential access is possible.
Relative files can exist only on random access devices like disks.

Direct Files : These are similar to relative files, except that the key value
need not be an integer. The user can specify keys which make sense to his
application.
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Indexed Sequential Files : Anindex isadded to the sequence file to
provide random access. An overflow area needs to be maintained to permit
insertion in sequence.

12.4 BASIC FILE OPERATIONS

Before moving to a p articular organization, let usunderstand basic

file operations that can be performed on any kind of file.

A.
B.

Creation of file

Updation of file

I.  Insert a new record
II.  Modify an existing record

II.  Delete a particular record

Retrieval of Information

I.  Inquiry of record
II.  Generate a report
Maintenance

I.  Restructuring the file records
II.  Reorganizing the records
Creation of File:

Before creating a file we have to collect the data, validate the data
and process the datato giveita record like s tructure. T hen w e
choose the name for the file and open the file on secondary storage
device and store the collected data on it.

Updating File:

It means to change/delete/modify the contents of the file. A file can
be updated in the following ways:

o Inserting a new record: F or e xample, i fa ne w s tudent

comes later and joins the course, we have to add his record in
the STUDENT file.

o Modifyingan existing record: For example, if the name of a
student w as s pelt in correctly, th en c orrecting the name will
be a modification of the existing record.

. Deletingan existing record. For example, if a student switch
or quits a particular course in the initial/middle of the session,
his/her record has to be deleted from the STUDENT file.



C. Retrieving from a File :

It means, we are accessing only the useful data from a given file as
per the requirement. Information can be retrieved for an inquiry or
for report generation. For any inquiry less data is retrieved while to
generate a report needs large amount of data from the file.

D. Maintenance of File:

It involves r estructuring or r e-organizing the file to imp rove the
performance o f the programs that access this file. R estructuring a
file k eeps the file or ganization unc hanged and ¢ hanges onl y the
structural aspects of the file (for example, changing the field width
or adding/deleting fields). On the ot her hand, file r eorganization
may involve changing the entire organization of the file. We will
discuss file organization in detail in the next section.

125 SEQUENTIAL FILE

Sequential f ilesh aved ata
records stored in a s pecific sequence. B
A s equential or ganized filem ayb e I

Starting

1 -t o1 Record O
stored on eitheras erial accessora Record 1
direct access storage medium. Record 2
A sequentially or ganized f ile —
storest her ecordsi nt heor deri n Record k

which they were entered. That is, the Record kil
first record that was entered is written -
asth e firstr ecord in the file, th e -
second record entered is written as the Record n-2
second record in the file, and so on. Record n-1
Asar esult,n ewr ecords ar e added J_' Recordn
only at the end of the file. Sequential | Erdof

files can b er ead o nly s equentially,
starting w ith th e very first record in
the file to the last record of'the file. It is the most basic and simple file
organization to organize a large collection of records in a file.

File

Once we store the records in a file, we cannot modify the records
means deletion or Updation in sequential file is not allowed. Y ou have to
create a new file with existing file to do any such operation like delete or
modify.

All records h ave t he s ame s ize an d t he s ame field format. T he
records are sorted based on the value of one field or a combination of two
or more fields. Records can be sorted in either ascending or d escending
order.

These files are used to generate reports or to perform sequential reading of
large a mount of data w hich s ome programs need to do s uch as payroll
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processing, or billing of all customers. Sequential files can be easily stored
on both disks and tapes.

The features, advantages, and disadvantages of sequential file organization
are as under.

Features

Records are written in the order in which they are entered
Records are read and written sequentially

Deletion or Updation of one or more records calls for replacing the
original file with a new file that contains the desired changes

Records have the same size and the same field format
Records are sorted on a key value

Generally used for report generation or sequential reading

Advantages :

Simple and easy to handle
No extra overheads involved

Sequential files can be stored on magnetic disks as well as
magnetic tapes

Well suited for batch oriented applications

Disadvantages :

All records must be structurally identical. If a new field has to be
added, then every record must be rewritten to provide space for the
new field.

Records can be read only sequentially. If i™ record has to be read,
then all the i—1 records must be read

Updates are not e asily accommodated. D oes n ot s upport upda te
operation? A new file has to be created and the original file has to
be replaced with the new file that contains the desired changes

By definition, random access is not possible

Continuous areas may not be pos sible be cause both t he primary
data file and the transaction file must be looked during merging.

Areas of Use :

Sequential files ar e m ost frequently u sed 1 n co mmercial b atch o riented
data processing where there is the concept of a master file to which details
are added periodically. For example, Payroll applications.



Example: Write a program to implement sequential file operation

(Write, Read) using C.

#include <stdio.h>
#include <conio.h>

typedefstruct {

intusn;
char name[25];
int ml,m2,m3;

}Student;
Student s;
void display(FILE *);
int search(FILE *,int);
void main()

{

inti,n,usn_key,opn;
FILE *fp;
printf(" How many Records ? ");
scanf("%d",&n);
fp=fopen("stud.dat","w");
for (i=0;i<n;i++) {
printf("Read the Info for Student: %d

(usn,name,m1,m2,m3) \n",i+1);

do {

else

scanf("%d%s%d%d%d",&s.usn,s.name,&s.m1,&s.m2,&s.m3);
fwrite(&s,sizeof(s),1,p);
}

fclose(fp);
fp=fopen("stud.dat","r");

printf("Press 1- Display\t 2- Search\t 3- Exit\t Your Option?");
scanf("%d",&opn);
switch(opn)
{
case 1: printf("\n Student Records in the File \n");
display(fp);
break;
case 2: printf(" Read the USN of the student to be searched ?");
scanf("%d",&usn_key);
if(search(fp,usn_key))
{printf("Success ! Record found in the file\n");

printf("%d\t%s\t%d\t%d\t%d\n",s.usn,s.name,s.m1,s.m2,s.m3);

}

printf(" Failure!! Record with USN %d not

found\n",usn_key);

break;
case 3: printf(" Exit!! Press a key . ..");
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getch();
break;

default: printf(" Invalid Option!!! Try again !!!\n");

break;
!
}while(opn != 3);
fclose(fp);
}
/* End of main() */
void display(FILE *fp) {
rewind(fp);
while(fread(&s,sizeof(s),1,fp))

printf("%d\t%s\t%d\t%d\t%d\n",s.usn,s.name,s.m1,s.m2,s.m3);

}
int search(FILE *fp, intusn_key)

{
rewind(fp);
while(fread(&s,sizeof(s),1,fp))

if( s.usn == usn_key) return 1;
return O;

3.6 DIRECT FILE

In di rect file or ganization t he ke y va lue i s m apped di rectly or
indirectly to a s torage 1 ocation, a voiding t he us e of indices. T he us ual
method of direct mapping is by some arithmetical manipulation of the key
value, also known as hashing. It offers an effective way to organize data

whent herei san eedt oacces s
individual r  ecords di  rectly. A
calculation i s pe rformedont heke y
value to g et an a ddress. T his a ddress
calculation technique is often termed as
hashing. T he ¢ alculation a ppliedi s
called a hash function.

Direct f ile o rganizationp rovides
random a ccess b y di rectly j umping t o
the record which has to be accessed. If
the records are o f fixed length and we
know t he ba se a ddress of the file and
the length of the record, then any record
ican b e acces sed us ing t he following
formula:

Address of n™ Record =

Recard N Record in

Memory

o Record O

1 Record 1

2 Record 2

3 Record 3

4 Rccord 4

5 Record 5

6 Record 6
89499 Record 999
1000 Record 1000

Starting_address_of file + (n-1) * Record_Size




Therefore, i n d irect f iles, r ecords are o rganized i n as cending r elative
record number. A direct file can be thought of as a single dimension table
stored on a disk, in which the relative record number is the index into the
table. D irect files c an be u sed f or b oth r andom as w ell as s equential
access. For sequential access, records are simply read one after another.

Features

Provides an effective way to access individual records

The record number represents the location of the record relative to
the beginning of the file

Records in a relative file are of fixed length

Relative files can be used for both random as well as s equential
access

Every location in the table either stores a r ecord or is marked as
FREE

Advantages of Direct File Organization

l.
2.

3
4.
5
6

Records can be immediately accessed for Updation.

Several files ¢ an be s imultaneously upd ated d uring t ransaction
processing.

Transaction need not be sorted.
Existing records can be amended or modified.
Most suitable for interactive online applications.

Very easy to handle random enquiries.

Disadvantages of Direct File Organization

1.

e A R

Data m ay be accidentally e rased o r o ver w ritten u nless s pecial
precautions are taken.

Risk of loss of accuracy and breach of Security.

Special backup and reconstruction procedures must be established.
Expensive hardware and Software are required.

High complexity in programming.

Use of relative files is restricted to disk devices

Records can be of fixed length only

For random access of records, the relative record number must be
known in advance
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Example : Write a program to implement Directfile operation (Write,
Reading record randomly) using C.

/* Program to save alphabet A to Z in file and then print the letters
sequentially or randomly*/

#include <stdio.h>
int main(void)
L
inti;

char ch;

FILE *fptr;
clrscr();
fptr = fopen("char", "w");

if (fptr != NULL)
printf("File created successfully!\n");
else
{
printf("Failed to create the file.\n");
return -1;
}
// writing all characters in data file
for (ch ="A"; ch<="Z'"; ch++)
putc(ch, fptr);
fclose(fptr);

printf("\nCounting of Characters :\n");
for (i=0; i< 26; i++)
printf(" %2d", (i+1));

printf("\n");

for (1 = 65; 1<=90; i++)
printf("%3c", 1);

printf("\n\n");

// Again open file for reading
fptr = fopen("char", "r");
printf("Currpos: %ld\n", ftell(fptr));

// read 1st char in the file
fseek(fptr, 0, 0);
ch = getc(fptr);
printf(" st char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

// read 5th char in the file




fseek(fptr, 4. 0);

ch = getc(fptr);

printf("5th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

fseek(fptr, 25, 0); // read 26th char in the file

ch = getc(fptr);

printf("26th char: %c\n", ch);

printf("Currpos: %ld\n", ftell(fptr));

printf("Rewind : Moving to first location in the file\n");

rewind(fptr);
printf("Currpos: %ld\n", ftell(fptr));
fseek(fptr, 9, 0); // read 10th char in the file

ch = getc(fptr);
printf("10th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

// read 15th char in the file
fseek(fptr, 4, 1); // move 4 bytes forward from current position
ch = getc(fptr);
printf("15th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

// read 20th char in the file
fseek(fptr, 4, 1); // move 4 bytes forward from current position
ch = getc(fptr);
printf("20th char: %c\n", ch);

printf("Currpos: %ld\n", ftell(fptr));

fclose(fptr);
return O;
}

3.7 Indexed Sequential Files

On an av erage, the retrieval o fa record from as equential file,
requires a ccess t o ha Ift her ecordsi nt he file. It m akesitnot only
inefficient b ut v ery tim e ¢ onsuming p rocess for th e la rge file. S o to
improve the query response time from a sequential file, a type of indexing
technique can be added. When there is need to access records sequentially
by some key value and also to access records directly by the same key
value, the collection of records may be organizedin an e ffective m anner

called Indexes Sequential Organization.
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Indexed s equential f ile
organization stores data for fast

retrieval. The recordsi nan Record No | Memaory Record a
indexed s equential f ilear eo f 1 1027 ‘/

fixed length and every record is

uniquely i dentifiedb ya ke y z 224 == Recordf
field. W ema intain ata ble 3 19 o

known as the index table which a 1733 .,:\A Record g
stores the record number and the

address o f all the records. T hat ) 874 N

isforevery file, wehavean 6 Null Record m
index t able. T his t ype of f ile 7 Null

organization is called as indexed

sequential f ile o rganization 8 Null Recore x
because p hysically t he records 9 Null

may be stored anywhere, but the 10 Null

index table stores the address of
those records.

A sequential (or sorted on pr imary keys) file that is indexed is called an
Index Sequential File. The index provides for random access to records,
while t he s equential n ature o ft he f ile p rovides eas y accesst ot he
subsequent records as well as sequential processing. An additional feature
of this file system is the overflow area. T his feature provides additional
space for record addition without necessitating the creation of a new file.

For example, Letustake an example ofa school where the details o f
students are stored in an indexed sequential file. Now we can accessed the
records from this file in two different ways:

. Sequentially : To print the report card of each student in an
exam
. Randomly . To modify the marks of a particular student in

any subject that are wrongly typed by typist.

Advantages of Indexed sequential access file organization

o Inindexed sequential access file, sequential file and random file
access 1s possible.

e Itaccessestherecords very fastiftheindex tablei s p roperly
organized.

e The records can be inserted in the middle of the file.
o It provides quick access for sequential and direct processing.

o It reduces the degree of the sequential search.



Disadvantages of Indexed sequential access file organization

. Indexed s equential access file r equires uni que k eys and pe riodic
reorganization.

. Indexed sequential access file takes longer time to search the index
for the data access or retrieval.

. It requires more storage space.
. It is expensive because it requires special software.

. It is less efficient in the use of storage space as compared to other
file organizations.

3.8 SUMMARY

A file is a collection or bag of records. Having stored the records in
afile,itis necessary to ac cess these records using either a primary or
secondary key. The type and frequency of access required determines the
type o f file or ganization to be used fora given set of records. In this
chapter we looked at some common file organizations: Sequential, Index
sequential, direct etc.

In a sequential file, records are maintained in the logical sequence of their
primary ke y value. The search fora given record requires, on average,
access to halfthe records in the file. U pdate o perations, i ncluding t he
appending of a new record, require creation of a new file. Updates could
be batched and a t ransaction file o fupdates used to create a new master
file from th e existing one. T his s cheme a utomatically c reates a b ackup
copy of the file.

Access to a sequential file can be enhance by creating an index. The index
provides random a ccess to records and t he s equential nature o fthe file
provides easy access to the next record. To avoid frequent reorganization,
an index sequential file uses overflow areas. This scheme provides space
for the addition of records without the need for the creation of a new file.
In index sequential organization, it is the usual practice to have a hierarchy
of indexes with the lowest level index pointing to the records while the
higher level ones point to the index below them.

In direct file organization the key value is mapped directly or indirectly to
a storage location, avoiding the use of indices. The usual method of direct
mapping is b y some arithmetical ma nipulation o fth e k ey v alue, th e
process is called hashing.
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SELF EVALUATION

Short Answer Questions

A

8.

Why do you mean by file concept?

What is the need of file in computer system?

Explain the terms field, record, directory and index.
What are various operations that you can perform on file?

What do you understand by the File organization? Discuss in brief
with suitable example.

What is Sequential file organization and its advantage?

Differentiate b etween S equential file organization and Direct file
organization.

What is Index Sequential file organization and its advantages?

Multiple Choice Questions

A i s the basic element of data w here i ndividual
field contains a single value, such as an employee’s last name or
DOB or Mob No.

A) Field B) record

C) file D) database

2. A is collection of related fields that can be treated as a
unit by some application program.

A) Field B) record

C) file D) database

In........l f ile or ganization, a f ixed f ormati sus ed for

records where all records are of the same length, consisting of the
same number of fixed length fields in a particular order.

A) Flat File B) sequential
C) indexed sequential D) indexed

The cooeiii m aintains the key characteristic of the
sequential file: Records are organized in sequence based on a key
field.

A) Flat File B) sequential file
C) indexed sequential file D) indexed file

The oo greatly reduced the time required to access
a single record, without sacrificing the sequential nature of the file.
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A) FlatFile B) sequential file
C) indexed sequential file D) indexed file

An a lternative is to o rganize th e s equential file p hysically is a

A) List B) Linked List
C) Queue D) Stack

............... a ret ypicallyus ed i nba tch a pplications a nd a re
generally opt imum f or s uch a pplicationsi ft heyi nvolve t he
processing of all the records.

A) Indexed files B) Direct files

C) Sequential files D) Indexed Sequential files
Which is the simplest file structure.

A) Indexed files B) Direct files

C) Sequential files D) Flat File
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