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UNIT : 1 

VECTOR ANALYSIS 

Structure: 
1.1 Introduction 

1.2 Objectives 

1.3 Scalars and Vectors 

1.3.1 Scalars 

1.3.2 Vectors 

1.3.3 Free and Localized Vector 

1.3.4 Representation and Notation of a Vector 

1.4 Some Fundamental Definitions of Vectors 

1.4.1 Equal Vectors 

1.4.2 Null Vectors or Zero Vectors 

1.4.3 Unit Vectors 

1.4.4 Polar Vectors 

1.4.5 Axial Vectors 

1.5 Angle Between Two Vectors 

1.6 Concept of Tensor 

1.7 Scalar Product of Two Vectors (DOT Product) 

1.7.1 Properties of DoT Product 

1.7.2 DOT Product in Terms of Components in Cartesion System 

1.7.3 Angle Between Two Vectors 

1.8 Vector (or Cross) Product of Two Vectors 

1.8.1 Properties of Cross Product 

1.8.2 Cross Product in Terms of Components in Cartesian 
System 

1.8.3 Cross Product and Area Vector 

1.9 Curl of Vector 

1.9.1 Physical Interpretation of Curl 

1.10 Solenoidal Vector UGPHS-101(N)/5



1.11 Lamellar Vector or Irrotational Vector 

1.12 Line Integral 

1.12.1 Physical Meaning of the Line Integral 

1.12.2 Line Integrals Independent of Path 

1.12.3 Line Integral and Work 

1.13 Circulation and Irrotational Vector 

1.14 Surface Integral 

1.15 Volume Integral 

1.16 Conservative Field 

1.17 Gauss’s Divergence Theorem 

1.18 Stokes’s Theorem 

1.19 Green’s Theorem 

1.20 Summary 

1.21 Terminal Questions 

1.22 Suggested Readings 

1.1 INTRODUCTION

In physics different types of quantities are discussed. some 
quantities possess magnitude only, while other quantities possess both 
magnitude and direction. All measurable physical quantities are usually 
divided into two classes: Scalars and Vectors. In this unit, we wish to 
study vectors, representation and notation of a vector. Further we also 
introduce the concept of Tensor, define line, Surface and Volume integrals 
and consider their transformation through Gauss, Green and stokes 
theorem’s with statement. In this unit, we also derive the expression for 
the gradient of a scalar function. However, we shall confine ourselves to 
the study of vectors and scalars in the field of physics. 

1.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Understand the concept of Vector and Scalar

 Define some fundamental definition of Vectors

 Concept of Tensor

 Explain the concept of DOT Product and Cross Product.
UGPHS-101(N)/6



 Define Line, Surface, Volume Integral

 Statement of Gauss, Stokes and Greens theorem

1.3 SCALARS AND VECTORS 

1.3.1 Scalars 

Scalar quantities, or scalars, are quantities that have only 
magnitude and can be completely specified if their magnitudes are given. 
These quantities obey the rules of ordinary algebra, and they can be added, 
subtracted, multiplied and divided accordingly. For example, if the mass 
of a body is 2 kg and that of another body is 3 kg, the total mass of the 
system comprising these two bodies is 2 kg + 3 kg = 5 kg. some examples 
of scalar quantities: mass, length, time, volume, speed, density, electric 
current, electric potential, gravitational potential, kinetic energy and 
magnetic potential energy. 

1.3.2 Vectors 

Vector quantities, or vectors, are those quantities which have both 
magnitude and direction, and can be completely specified only if both 
magnitude and direction are given. These quantities do not obey the rules 
of algebra; they obey the triangle law, which will be explained later. Some 
examples of vectors: displacement, velocity, momentum, force, intensity 
of electric field, intensity of magnetic field and intensity. 

1.3.3 Free and Localized Vector 

(a) Free Vector: A free vector is a vector which is not associated 
with any particular point in space, e.g. the translation of a rigid 
body. 

(b) Localized Vector: A localized vector is a vector which 
occupies a definite position in space, e.g. the particle velocity of a 
moving fluid. 

1.3.4 Representation and Notation of a Vector 

Graphically, a vector is represented by an arrow (or a directed line 
segment) whose length is equal to the magnitude of the vector and whose 
direction is the direction of the vector. 

Thus, the arrow OP represents a vector whose magnitude is the 
length OP, say a, and whose direction is that from O to P. The point O is 
called the origin or initial point, while the point P is called the terminal 
point or terminus of the vector OP. 
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Figure - 1 

Analytically, in printing, a vector is denoted by bold-faced type as a, and 
in writing, it is denoted by 

1.4 SOME FUNDAMENTAL DEFINITIONS OF 
VECTORS 

1.4.1 Equal Vectors 

Two vectors are said to be equal if they represent the same 
physical quantity, have the same magnitude and the same direction (are 
parallel). A vector, therefore, remains unchanged by a parallel translation. 
Figure (2) shows some equal vectors. 

Figure - 2 

1.4.2 Null Vectors or Zero Vectors 

A vector having zero magnitude is called a null vector or zero 
vector. 

A zero vector is represented by  (arrow over the number zero). 

1.4.3 Unit Vectors 

A vector having a magnitude equal to unity is known as a unit 
vector. Unit vectors are represented by special symbols, like  etc. 
Note that

Consider a vector  having a magnitude -------- as shown in figure below. 

What do we get if we multiply  with number 

Obviously, we get a vector of magnitude I in the direction of 
This is a unit vector along  In general, 

UGPHS-101(N)/8



Where ----- is a unit vector along 

Many a time, it is convenient to express a vector  as the product of its 
magnitude and a unit vector  having a direction corresponding to  A 
unit vector has no dimension. 

In the Cartesian coordinate system, unit vectors along positive x, y and z 
directions have been assigned special symbols. Unit vectors along x, y and 
z directions are  and  respectively. 

A vector of magnitude 10 in x direction is written as A vector of 
magnitude 10 in negative z direction can be written as 

1.4.4 Polar Vector 

The vectors having defined terminating point and starting point is 
called polar vector. 

Example: Position vector 

1.4.5 Axial Vector 

The vectors having no starting and terminating point are called 
axial vectors. 

Example: Angular velocity, Torque, Angular momentum, 
Angular displacement, angular acceleration. 

Note: Axial vector always lie along the axis of rotation. 

1.5 ANGLE BETWEEN TWO VECTORS 

An Angle between two vectors is the angle between their 
respective direction. In all the figures given below, the angle between  
and  is 60o. Please take a note of the third figure where the head of one 
vector is placed over the tail of the other. 

The angle between two vectors is always from 0o to 180o. 
Therefore, angle between two vectors can never be greater than 180o. 

Figure - 3 
UGPHS-101(N)/9



1.6 CONCEPT OF TENSOR 

Tensor are natural generalization of the concept of vectors. Vectors 
are physical quantities have a magnitude and a direction. They are 
described geometrically as an arrow as directed line segment. Both its 
magnitude and direction may be specified by giving three numbers such as 

 which are called the components of the vector. While the 
vector is a geometrical entity, its components depend on the coordinate 
system needed to describe it. How the components depend on the 
transform one coordinate system to another depends on the two coordinate 
systems. For S coordinate system S’, rotated about the z-axis through an 
angle θ, with respect to a fixed coordinate system S, the components 

 and  are related by 

Figure – 4 

1.7 SCALAR PRODUCT OF TWO VECTORS 
(DOT PRODUCT) 

There are many physical quantities which are scalar but are defined 
using two vectors. For example, the physical quantity ‘work’ is defined 
using two vector quantities – displacement and force. The vector operation 
involved in such cases is known as scalar product. 

UGPHS-101(N)/10



Figure - 5 

The scalar product of two vectors  and  is denoted by .  (it is often 
known as dot product and is defined as  

where 

 = angle between  and 

The quantity ab cos  is a scalar. We have defined a product of two 
vectors which gives a scalar. It must be noted that the magnitude of a 
vector is never negative (i.e. a and b are positive numbers), and hence, the 
sign of  is decided by the sign of cos . 

Figure - 6 

if  is acute 

if  is 90o 

if  is obtuse. UGPHS-101(N)/11



We can give a geometric interpretation for the dot product as 

Here, acos  projection (i.e. component) of  in the direction of . 

Therefore,  is the product of magnitude of  and the component 

of  in the direction of . 

We can also write the dot product as 

        = (magnitude of ) × (projection of  in the direction of ) 

1.7.1 Properties of DOT Product 
(1) Scalar product of a vector with itself is called the square of 

the vector. 

 Angle between  and  is 0o. 

(2) Scalar product is commutative. 

(3) If  and  are two vectors and m is a scalar, then 

(4) Scalar product is distributive with respect to addition. 

A corollary of this is 

1.7.2 DOT Product in Terms of Components in Cartesian 
System 

Similarly, 

Also, 

Similarly, 
UGPHS-101(N)/12



Now consider two vectors  and  expressed in their component 
form as 

 is calculated as 

Out of the nine terms, six terms are zero as 
 In the remaining three terms, we should 

put 

1.7.3 Angle Between Two Vectors 

Dot product is useful in finding angle between two vectors if the 
vectors are in component form. 

Magnitudes of the two vectors are 

and 

Dot product is 

Using the definition of dot product, we have 

⇒ 

Here,  is the angle between the two vectors. UGPHS-101(N)/13



1.8 VECTOR (OR CROSS) PRODUCT OF TWO 
VECTORS 

This is second type of vector multiplication in which two vectors 
are multiplied to give a new vector. 

Vector product of  and  is denoted as  (hence the name 
cross product) and is defined as: 

 is a vector perpendicular to the plane of  and  with its 
proper direction given by the right-hand thumb when fingers are curled 
from the direction of  to  and has a magnitude equal to ab sin  where  

is the angle between  and . 

Figure - 7 

Let  be a unit vector perpendicular to the plane of  and  in the 

direction of right-hand thumb when fingers are curried from  to  

We can write 

It is important to notice that  and  are vectors of same 
magnitude but have opposite directions. In fact, 
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. 

1.8.1 Properties of Cross Product 
Properties of Cross Product 

(1) If  and  are vectors with non-zero magnitude and 
 then 

It means either  and  are parallel or they are antiparallel. 

(2) [∵ ]  

(3) 

It means cross-product is not commutative 

(4) If m is a scalar (or a number) 

(5) Vector product is distributive with respect to addition 

(6) Vector product is not associative 

1.8.2 Cross Product in Terms of Components in Cartesian 
System 
Since  

What is Obviously, magnitude of is 

The direction of  is perpendicular to the xy plane. Once the x 
and y axes are chosen, there are two possible choices for positive z 
direction. We chose the positive z-axis in the direction of , and 
therefore, we write 

. 
Such a coordinate system in which the right-hand’s thumb gives 
the direction of positive z axis when fingers are curled from x to y 
direction is known as a right-handed Cartesian coordinate system. 

In such a coordinate system, we have 
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and 

An easy way to remember this is the figure shown. If you wish to 
find , walk along the circle from  to . If you move 
clockwise, the result is positive, i.e. 

In order to get , walk along the circle from  to . You are 
moving anticlockwise, hence the result is negative 

Thinking on similar lines, you can evaluate other products. 

Figure - 8 

Now consider two vectors expressed as 

Since 

UGPHS-101(N)/16



Now, we put 

Using determinants, we can write 

1.8.3 Cross Product and Area Vector 
In many applications in physics, we consider area to be a vector 

quantity. Direction of the area vector is taken perpendicular to the surface 
under consideration. 

For example, think of a wire loop placed in a stream. You wish to 
find the rate of flow of water through the loop. Just knowing the area of 
loop and speed of flow will not surface. You must also know the 
orientation of the loop with respect to the direction of flow. If the loop is 
parallel to the flow, no water flows through it. If it is held normal to the 
direction of water flow, rate of water flow through it will be maximum. In 
such situations, we consider area to be a vector. 

Consider a parallelogram formed by vectors  and  as adjacent 
sides. Area of the parallelogram is 

A = base × height 

UGPHS-101(N)/17



Figure - 9 

If we consider area of parallelogram to be vector, its direction is 
perpendicular to the plane of the parallelogram. Hence, we can write 

. 

To some extent direction of  is arbitrary. We could also write 

. 

If the parallelogram is in the plane of the paper, its area vector ( ) is either 
coming towards you  or it is going into the plane of the paper (i.e. 

along ). 

1.9 CURL OF VECTOR 

Let V (x, y, z) be vector point function. 

Then curl 

Curl  is a vector quantity. 
UGPHS-101(N)/18



1.9.1 Physical Interpretation of Curl 

We know that  where  is the angular velocity. V is the 
linear velocity and  is the position vector of a point on the rotating body. 

Curl V = V × V 

Curl  which shows that curl of a vector field is connected 
with rotational properties of the vector field and justifies the name rotation 
used for curl. 

If curl , the field F is termed irrotational. 

UGPHS-101(N)/19



1.10 SOLENOIDAL VECTOR 

A vector point function f is said to be solenoidal vector if its 
divergent is equal to zero i.e., div f = 0 at all points of the function. For 
such a vector, there is no loss or gain of fluid. 

1.11 LAMELLAR VECTOR OR IRROTATIONAL 
VECTOR 

A continuous vector function F is said to be irrotational in a simply 
connected region D, if its circulation along every closed curve in d 
vanishes, i.e., F is irrotational in D, if 

          ………………. (1) 

1.12 LINE INTEGRAL 

Consider an oriented curve C in space and assume that C is a 
simple curve in the sense that it has no points at which it intersects or 
touches itself. Let P0 be the initial point and P’ the terminal point of C in 
the chosen orientation. Further, let the parametric representation of C with 
the are length s as the parameter be 

………………. (2) 

such that the position vector r(s) is continuous and has a 
continuous first derivative, not equal to zero vector, for all s under 
consideration. Then C is a smooth curve in the sense that C has a unique 
tangent at each of its points. 

Le F be a continuous vector point function defined at each point of 
C. Let C be subdivided into n portions in an arbitrary manner by a set of 
points P0, P1, P2, ….. Pi, ….. Pn = P’ whose position vectors are r0, r1, r2, 
…… ri, …… rn and , i  = 1 2, …….., n. 

Let Q1, Q2,……, Qi, ……. Qn be arbitrary points chosen on the 
portions P0P1, P1P2, ….., Pi-1Pi, ….., Pn-1Pn and let F(Qi) be the value of F 
at Qi, i =1, 2, …., n. 

From the sum 

………………. (3) 

and compute the limit of this sum as  and every 
Since F is continuous and C is smooth, this limit exists and is 
independent of the choice of the mode of subdivision and the point 
Qi. UGPHS-101(N)/20



This limit is called the line integral of F along the curve C from P0 
to P’ and is denoted by 

………………. (4) 

If  then (4) takes the form 

……………. (5) 

Further, since the unit tangent vector to C is  we can 
also write (4) as 

………………. (6) 

Which implies that the line integral is the integral of the tangential 
component of F along the curve w.r.t. s. So, the line integral is also 
called the tangential line integral of F along C from P0 to P’. 

If the curve C is represented by 
in terms of some other 

parameter t, then (4) takes the form 

………………. (7) 

If the vector field F is defined in a region along different curves 
joining P0 and P’, then the integral (4) will have generally different 
values along different curves although the end points of the curves 
are the same. Hence, in general, a line integral depends not only on 
the end points but also on the geometrical shape of the path of 
integration. 

1.12.1 Physical Meaning of the Line Integral 
Let a variable force F act on a particle which is displaced along a 

path C in space. Then the work done by F in this displacement is the line 
integral of F along C, i.e. 

………………. (8) 

1.12.2 Line Integral Independent of Path 

Under certain conditions, the value of the line integral (4) depends 
only on the end points P0 and P’ but does not depend on the path from P0 
to P’. In this section, we wish to obtain such condition. 

Let a vector function F be defined and be continuous in a region D 
of space. Then the line integral (4) is said to be independent of path in D, 
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if every pair of end point P0 and P’ in D the value of the integral is the 
same for all paths C in from P0 to P’. 

1.12.3 Line Integrals and Work 
If the point of application of a force 

…………. (9) 

moves along a curve C from a point A(x, y, z) to a point B(x, y, z) 
then the work done by the force is 

………...(10) 

         ………...(11) 

This integral is also called a line integral. 

To evaluate the integral in (19) we might express the equation of 
curve C in terms of parameter t : 

 ………...(12) 

such that the curve is described from A to B as t varies from a 
value t1 to a value t2. 

1.13 CIRCULATION AND IRROTATIONAL 
VECTOR 

Circulation: The line integral of a continuous vector function F 
along a closed smooth curve C is called the circulation of F along C and is 
sometimes denoted by 

 ………………. (13) 

Simply Connected Region: A region (or domain) d is called 
simply connected if every closed curve in D can be continuously 
shrunk to any point in D without leaving D. 

Irrotational Vector: A continuous vector function F is said to be 
irrotational in a simply connected region D, if its circulation along 
every closed curve in d vanishes, i.e., F is irrotational in D, if 

          ………………. (14) 

1.14 SURFACE INTEGRAL 

Consider a simple, smooth and orientable surface S. The surface S 
is simple in the sense that it has no points at which it intersects or touches UGPHS-101(N)/22



itself, it is smooth in the sense that it has a unique normal at every point of 
it, and it is orientable in the sense that a chosen positive normal direction 
at any point of S can be continued in a unique and continuous manner to 
the entire surface. We consider here only two-sided surface which is 
orientable. Surfaces such as the Mobius strip or Klein bottle are excluded. 
The positive normal will be assumed conventionally to be in outward 
direction for a closed surface and in a right-handed sense for an open 
surface bounded by a closed curve C. 

Let a continuous vector function F be defined at each point of S. 
Let S be arbitrarily subdivided into n parts S1, S2, ….., Si, ……, Sn of 
areas  Let  be arbitrary 
points chosen in these parts, and let F(Qi) be the value of F at Qi, i = 1, 2, 
…….., n and let  be the positive (outward) unit normal vector Si at Qi, i 
= 1, 2, ……. n. 

Form the sum, 

 ………...(15) 

and find the limit of this sum as  and every  Since F 
is continuous and S is smooth, this limit exists and is independent 
of the mode of subdivision of S and the points Qi. 

          This limit is called the surface integral of F over S and is denoted by 

  ………………. (16) 

1.15 VOLUME INTEGRAL 

Let scalar function ϕ (x, y, z) be defined and continuous in a 
bounded closed region V in space which is bounded by finitely many 
smooth surfaces. Subdivide V into n elementary portions enclosing 
volumes  Let  be arbitrarily 
chosen points in these portions and let ϕ(Qi) be the value of ϕ at Qi, i = 1, 
2, ……, n. 

Form the sum 

 ………...(17) 

and find the limit of this sum as  and every  Since ϕ 
is continuous, this limit axis’s and is independent of the mode of 
subdivision of V and the points Qi. 

This limit is called the volume integral or space integral or triple 
integral of ϕ over the region V, and is denoted by 

   ………………. (18) 
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Similarly, we define the volume integral of a continuous vector 
function F by 

………………. (19) 

1.16 CONSERVATIVE FIELD 

In general, the line integral  depends on the function F, the 
curve C joining two points P and Q and also on the points P and Q 
themselves. 

If the integral  depends on F and end points only but not 
on the curve joining the end points, then the vector field over the region is 
called conservative field. 

Since is also the work done by a force in moving a 
particle along a curve r(t), the field is conservative if the work done in 
moving the particle from one point to another is independent of the curve 
joining the points. 

Theorem 1: The field F is conservative over a region if and only 
if  along any closed curve in the region. 

Proof: Let PAQ and PBQ be two different paths joining the points 
P and Q in the region. Together, these paths make up a closed curve , 
i.e., PAQBP.

If the field is conservative, we have 

Thus 

Conversely, if over any closed curve Γ, say, PAQBP is 
zero, we have 
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Therefore, 

Theorem 2: The field F is conservative if there exists a single-
valued differentiable scalar function ϕ such that F= ϕ, and conversely. 

Proof: First, let F= ϕ. Then the work done in moving a particle 
from the point  to the point  in the field is 

. 

Thus, the work done is independent of the path joining the end 
points, i.e., the field F is a conservative. 

Conversely, let the field  be conservative. By 

hypothesis,  is independent of the path joining any two 
points which we take as  and (x, y, z) respectively. Thus 

is independent of the path joining   and (x, y, z). Now  

Since the last integral is independent of the path joining (x, y, z) and 
, we choose the path to be a straight line joining these points 

so that dy and dz are zero. Then  
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Taking the limit on both sides as  we have 

Similarly, it follows that 

Thus, we have 

………. (20) 

Note: The function ϕ obtained in the above theorem is called scalar 
potential of the field F. 

Theorem 3: The necessary and sufficient condition that a field F be 
conservative is that 

Proof: The condition is necessary. If the field F is conservation, then from 
Theorem 2, we have . Thus 

The condition is sufficient. Let 

where is an arbitrary interior point of the region and 
. Then 

 and  

Since , the component of  along k is 

Hence . 

Therefore, 

and similarly, 

Thus, we have  

Hence, from Theorem 2, it follows that the field F is conservative. UGPHS-101(N)/26



Corollary: The necessary and sufficient condition that 

 is independent of the path C, is that 

Remark: We can now characterize conservative field by the 
following statements: 

Field F is conservative if and only if: 

(i)  (the choice of ϕ is not unique), 

(ii) 

(iii) F is irrotational, 

(iv)  for every closed curve. 

1.17 GAUSS’S DIVERGENCE THEOREM 

Theorem : If V be a closed region in space whose boundary is a 
piecewise smooth orientable surface S and F (x, y, z) be a vector function 
which is continuous and has continuous first partial derivatives in some 
domain containing V, then the volume integral of the divergence of F 
taken over the volume V enclosed by the surface S is equal to the surface 
integral of the normal component of F taken of over the surface S, i.e. 

 ………………. (21) 

where  is the outward unit normal vector to S w.r.t. V. 

1.18 STOKES’S THEOREM 

Theorem : If S be a piecewise smooth oriented surface whose 
boundary is a piecewise smooth simple closed curve C and if F(x, y, z) be 
a vector function which is continuous and has continuous first partial 
derivatives in a region in space containing S, then the surface integral of 
the component of curl F normal to the surface S is equal to the line 
integral of F taken round the curve C, the normal to S being taken in the 
righthanded sense with respect to orientation of C, i.e. 

……………. (22) 

1.19 GREEN’S THEOREM 

Gauss’s divergence theorem, which is also called Green’s theorem 
in space, leads to two forms of Green’s theorem as given below. 
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Let ϕ and ψ be scalar functions defined in a region V enclosed by a 
surface S and possess continuous derivatives of second order at least. Let 
F = ϕ grad ψ, G = ψ grad ϕ and let V and S satisfy all assumptions of the 
divergence theorem. Then, we have 

(a) First Form : In the divergence theorem (21), let F = ϕ ψ. Then  

 ………………. (23) 
or

or 

………………. (24) as grad  The formula (24) is 
called Green’s first formula or the first form of Green’s theorem or 
Green’s first identity. 

(b) Second Form: Interchanging  and ψ, we get 

We find that, 

This formula is called Green’s second formula or the second form 
of Green’s theorem or Green: second identity or Green’s symmetrical 
theorem. 

1.20 SUMMARY 

In the present unit, we have studied about vector and Scalar. We 
have also studied some fundamental definitions of vectors. 

 Scalar quanties are quantities with magnitudes only.

 Vector quantities are quantities with magnitude and direction both.

In this unit, we also introduced the concept of line, surface and
volume integrals. 
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1.21 TERMINAL QUESTIONS 

1. Define the following:

(a) Unit Vector

(b) Equal Vector

(c) Null Vector

(d) Polar Vector

(e) Axial Vector

2. What do you understand by Notation of Vector.

3. How is a vector represented? Illustrate with an example.

4. What do you mean by Scalar and Vector quantities. Explain with
example.

5. Define Line Integral. Explain physical meaning of Line Integral.

6. Write short notes on:

(a) Solenoidal Vector

(b) Stokes’s Theorem

(c) Green’s Theorem

(d) Gauss’s Divergence Theorem

7. Explain the Concept of Tensor.

8. What do you understand by Conservative field.

ANSWERS TERMINAL QUESTIONS 

1. (a) Hint (Section 1.4.3)

(b) Hint (Section 1.4.1)

(c) Hint (Section 1.4.2)

(d) Hint (Section 1.4.4)

(e) Hint (Section 1.4.5)

2. Hint (Section 1.3.4)

3. Hint (Section 1.3.4)

4. Hint (Section 1.3)

5. Hint (Section 1.12)

6. (a) Hint (Section 1.10)
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(b) Hint (Section 1.18) 

(c) Hint (Section 1.19) 

(d) Hint (Section 1.17) 

7. Hint (Section 1.6)

8. Hint (Section 1.16)

1.22 SUGGESTED READINGS 

1. Fundamental University Physics - I, M. Alonslo and E. Finn,
Addition Wesley Publication.

2. Mathematics for Engineers – Volume - I S. N. Pandey, Paragon
International Publication.

3. Concept of Physics – H. C. Verma, Bharti Bhawan, Patna.

4. College Physics: Hugh D. Young.
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UNIT : 2 

DYNAMICS OF A PARTICLE 

Structure 
2.1 Introduction 

2.2 Objectives 

2.3 What is Mechanics? 

2.3.1 Types of Mechanics 

2.3.2 Branches of Mechanics 

2.4 Force 

2.4.1 Types of Force 

2.4.2 Characteristics of Force 

2.4.3 Newton’s First Law 

2.4.4 Concept of Inertia 

2.4.5 Types of Inertia 

2.4.6 Inertial and Non-Inertial Reference Frames 

2.5 Momentum 

2.5.1 Newton’s Second Law 

2.6 Impulsive Force and Impulse 

2.6.1 Applications of the Concept of Impulse 

2.6.2 Newton’s Third Law 

2.7 Work 

2.7.1 Nature of Work Done 

2.7.2 Work Done by a Variable Force 

2.8 Power 

2.9 Energy 

2.9.1 The Concept of Kinetic Energy 

2.9.2 The Concept of Potential Energy 

2.9.3 Gravitational Potential Energy 
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2.10 Conservative and Non-Conservative Forces 

2.11 Work-Energy Theorem or Work Energy Principle 

2.12 Law of Conservation of Momentum 

2.13 Principle of Conservation of Energy 

2.14 Collision 

2.14.1 Elastic collision 

2.14.2 Inelastic Collision 

2.14.3 Perfectly Inelastic Collision 

2.14.4 Elastic Collisions in One Dimension (Head on Collision) 

2.15 Summary 

2.16 Terminal Questions 

2.17 Solution and Answers 

2.18 Suggested Readings 

2.1 INTRODUCTION 

In the previous unit, we have studied about vector analysis. In the 
present unit, we will learn about dynamics of a Particle. We already learnt 
some basic concept of Mechanics and Dynamics of the Particles in the 
previous classes. 

We used Kinematic quantities for describing motion without 
considering what might cause that motion. In order to understand this 
beauty, let us take a step forward by understanding “Force and Newton’s 
laws of motion.” 

Newton’s law of motion are heart and Soul of Physics. Though 
the laws are simple to state and involve little mathematical complexity.  

Also, in this unit we shall study about work, Power and Energy. 
We, also understand the Elastic and Inelastic Collision. 

2.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Understand the Concept of Force, Momentum Impulse.

 Solve Problems based on Force, Momentum Impulse.

 Explain the Concept of Conservative and Non-Conservative
Forces.
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 Distinguish between Conservative and Non-Conservative Force.

 Apply Work – Energy Theorem.

 Compute Power in various Mechanical Systems.

2.3 WHAT IS MECHANICS 

Mechanics is one of the main branches of Physics which deals with 
the study and behavior of Physical bodies when subjected to different 
types of forces or displacement and the subsequent effect of bodies on the 
environment.  

2.3.1 Type of Mechanics  
There are generally two main types of Mechanics - 

1. Classical Mechanics

2. Quantum Mechanics

Classical Mechanics deals with the study of macroscopic objects
while quantum mechanics deals with the study of microscopic object. 

2.3.2 Branches of Mechanics 
Statics: The Branch of mechanics that treats objects which are 

stationary (usually) or at constant velocity.  

Dynamics: The effect of force when the body is in motion 
(combination of kinematics and kinetics)  

Kinematics: Which is the description of motion without regard to 
force. We calculated accelerations, but never asked what forces are needed 
to product these acceleration (force which caused the motion are not 
considered)  

Kinetics: Analysis of forces and torques that cause motion 
(Newton's second law)  

Force which caused the motion are considered UGPHS-101(N)/33



All the principles of dynamics can be summarized in a neat 
package containing three statement called newton's laws of motion. 
These laws, that are corner stone of mechanics, are based on they 
cannot be deduced or proved from any other principles. 

2.4 FORCE 

Force is defined as a push or pull which tries to change or changes 
the state of rest or uniform motion of body.  

Let us consider some examples, to open a door someone has to pull 
it. To throw a ball upwards, one has to give it an upward push. A boat 
moves in a flowing river without anyone rowing it. To roll a ball lying on 
a floor, we have to push it. From these examples it is clear that some 
external agency is needed to provide force to change the motion of the 
body. 

Figure - 1 

What force can do? 

a. Force can start a body means it can set a body in a motion.

b. it can stop a body i.e. it can continuously reduce the reduce
velocity of the tat body and it can make the body to stop also.

c. It can change the direction of a body without applying force we
can never change the direction of a body.

2.4.1 Types of Force 
Forces is a physical cause that can change the state of motion of 
the dimension of an object.  

Broadly we can divide force into two types 

(a) Contact Forces 

(b) Non-contact Force (field forces) 
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Figure - 2 

(a) Contact Forces: Force which action a body either directly or 
through medium are called contact forces. If the contact is frictionless the 
contact force is perpendicular to the common surface and known as 
normal reaction.  

If, however, the objects are in rough contact and move (or have a 
tendency to move) relative to each other without losing contact then 
frictional force arise which oppose such motion. Again, each object exerts 
a frictional force on the other and the two forces are equal and opposite. 
This force is perpendicular to normal reaction. Thus, the contact force (F) 
between two objects is made up of two forces. 

(i) Normal reaction (N) 

(ii) Force of friction (f) 

and since these two forces are mutually perpendicular. 

…………… (1) 

Consider two wooden blocks A and B being rubbed against each 
other. 

In the diagram, A is being moved to the right while B is being 
moved leftward. In order to see more clearly which forces, act on A and 
which on B, a second diagram is drawn showing a space between the 
blocks but they are still supposed to be in contact. 

In Figure (3 & 4) the two normal reactions each of magnitude N 
are perpendicular to the surface of contact between the blocks and the two 
frictional forces each of magnitude f act along that surface, each in a 
direction opposing the motion of the block upon which it acts. UGPHS-101(N)/35



Figure – 3 

Figure – 4 

(b) Non- Contact Forces or Field Forces : A force that one object 
can apply to another object without touching it. These are the forces in 
which contact between two objects is not necessary. Gravitational force 
between two bodies and electrostatic force between two charges are two 
examples of field forces. Weight (W = mg) of a body comes in this 
category. 

2.4.2 Characteristics of Force 
Force is a vector quantity therefore has magnitude as well as 

direction when forces act on a solid body, they usually deform the body. 

To predict how a force affects motion of a body we must know its 
magnitude, direction and point on the body where the force is applied. 
This point is known a point of application of the force. the direction and 
the point of application of a force both decide line of action of the force.  

Units of force: 

Absolute Units: 

a. Newton (S.I.)

b. Dyne (C.G.S.)
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Gravitational Units  

a. Kilogram force (M.K.S.)

b. Gram Force (C.G.S)

Newton: One Newton is that force which produces an acceleration of m/s2 
in a body mass 1 kilogram  

∴ 1 Newton = 1kg m/s2

Dyne: One dyne is that force which action on body of mass 1 kg produces 
in it an acceleration of 1 cms-2 in its own directions.  

Relation between newton and dyne 

We have 1N = 1 Kg × 1ms-2 = 1000 g × 100 cms-2 

1N = 105 gms-2 =105 dyne 

 ∴ 1N = 105dyne 

Kilogram- force: It is that force which produces an acceleration of 9.8 
m/s2 in a body of mss 1 kg   

∴ 1kg –f = 9.81 newton  

Gram – Force: It is that force which produces an acceleration of 980cm/s 
in a body of mass 1g

∴ 1 gm –f = 980 dyne  

2.4.3 Newton’s First Law 
State of rest and state of uniform motion are natural states of a 

body. A body continues to remain in its natural state of rest or uniform 
motion unless it is acted upon by an unbalanced external force. 

“Everybody continues to be in it state of rest or of uniform motion 
in a straight line unless compelled by some external force to act 
otherwise.” 

This is quite counter-intuitive as our everyday experience shows 
that a body stops moving if it is not continuously pushed or pulled. This is 
because we often forget about forces like friction and air resistance. A 
body stops moving not due to absence of forces, rather due to presence of 
forces. If we can somehow eliminate all resistive forces, a moving body 
will keep moving forever. Practically it is not possible to eliminate friction 
completely.  

2.4.4 Concept of Inertia 
The Concept of inertia was introduced and developed both in terms 

of objects of rest and objects in motion. 
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Inertia is a property of a body by virtue of which it stays in its state 
of rest of state of uniform motion in absence of an external unbalanced 
force. How much acceleration will be produced in a body when an 
external force is applied on it is decided by its inertia. Our daily life 
experience tells us that more massive a body is, higher is its tendency to 
resist any change in its state. It is far more difficult to push a truck into 
motion compared to a small box. In fact, the physical property mas is 
defined as a measure of inertia. 

2.4.5 Types of Inertia 

There are three types of inertia: 

(i) Inertia of Rest 

(ii) Inertia of Motion 

(iii) Inertia of Direction 

(i) Inertia of Rest: It is inability of a body by virtue of which it 
cannot move by itself. A body at rest remains at rest and cannot 
start moving on its own due to inertia of ret. 

Applications: 

 When horse starts suddenly, the rider falls backward due to inertia
of rest.

 When we shake the branches of a fruit tree, the fruits fall down due
to inertia of rest.

Figure: 5 

(ii) Inertia of Motion: It is inability of a body in motion to stop by 
itself. A body in uniform motion can neither get accelerated nor get 
retarded on its own. It also cannot come to rest on its own. UGPHS-101(N)/38



Applications: 

 A man jumping from moving bus falls forward due to inertia of
motion. As his feet touch the ground lower part of the body comes
to rest, while the remaining parts of the body keep on moving. As a
result, he falls down in the direction of motion of the bus.

Figure: 6 

 An athlete runs some distance, before taking a long jump due to
inertia of motion, since length of jump depends upon his velocity
at the instant of jump.

(iii) Inertia of Direction: It is inability of a body by virtue of which it 
cannot change its direction of motion by itself. 

Applications: 

 The sparks coming out of a grinding stone are tangential to the
rotating stone due to directional inertia.

 The mud from the wheels of a moving vehicle files off
tangentially.

2.4.6 Inertial and Non-Inertial Reference Frames 

An observer in a reference frame S1 finds that a body A is at rest. 
Let us assume that the observer measures the net external force acting on 
A to be zero. For her, no force means no acceleration and this confirms the 
validity of the first law of motion. There is another reference frame S2 
which is moving with a constant velocity (v) relative to the frame S1. An 
observer in this frame also finds Newton’s first law to be valid as he sees 
that in absence of any force, the body A continues to move uniformly. 
Now assume that there is a third frame S3 which is accelerated with 
respect to S1 (or S2). An observer in this frame finds that the body A is 
accelerated. But the observers in S1 and S2 have confirmed that net force 
on A is zero. Observer in reference frame S3 finds A to be accelerated in 
absence of a real force. Yes, Newton’s first law fails, in usual sense, in a 
frame like S3. 
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The reference frames in which Newton’s first law (also known as 
law of inertia) holds are said to be inertial and those in which it fails are 
known as non-inertial frames. 

A reference frame attached to the Earth is nearly inertial for most 
practical applications. All other frames which are at rest or moving 
uniformly with respect to the Earth are also inertial. Any frame that is 
accelerated with respect to the Earth is non-inertial. For now, we will 
avoid using Newton’s laws in such frames. 

It is important t note that the reference frame of the Earth is not 
inertial in a strict sense and in case of large-scale motions like those of 
ballistic missiles, ocean current, etc., we must account for the non-inertial 
character of the Earth’s frame. 

Example: 1 

Why is it advised to tie our luggage kept on the roof of a bus 
with a rope? 

Solution: 

Because it may slide and fall due to following reasons: 

(i) Initially, if the bus is in the state of rest, the luggage is also in the 
same state of rest. When the bus starts suddenly the luggage tends 
to remain in the state of rest due to inertia of rest. As a result, the 
luggage can be thrown in the backward direction and it may fall. 

(ii) If the bus is in the state of motion, the luggage is also in the same 
state of motion due to inertia of motion. So, when the brakes are 
applied it may fall in the forward direction. 

(iii) If the bus takes a sharp turn on a road, the luggage will resist any 
change of its state of direction due to inertia. As a result, the 
luggage can be thrown sideways and may fall. Therefore, it is 
advised to tie the luggage kept on the roof of the bus to prevent it 
from falling. 

Self-Assessment Questions (SAQs) 
1. Why does an athlete run some distance, before taking a long jump?

2.5 MOMENTUM 

It is defined as the quantity of motion contained in a body. It is 
measured as the product of mass of the body and its velocity and has the 
same direction as that of the velocity. It is a vector quantity. It is 
represented by p. 
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Momentum (p) = Mass (m) × Velocity (v) 

or 

……. (2) 

In vector form, we may write as 

……. (3) 

Its unit is kgms-1 which is same as Ns. It is a vector and any change 
in direction of motion implies a change in momentum. 

Momentum of an extended body or a collection of particles is the 
sum of momenta of individual particles. As studied in last chapter, 
momentum for a collection of particles is given by product of total mass 
and velocity of COM. 

……. (4) 

2.5.1 Newton’s Second Law 

According to Newton’s second law of motion, the rate of change of 
linear momentum of a body is directly proportional to the external force 
applied on the body, and this change takes place always in the direction of 
the applied force. 

Suppose two bodies of different masses are initially at rest, and a 
fixed force is applied on them for a certain interval of time. To start with, 
the lighter body picks up a greater speed than the heavier body. However, 
at the end of the time interval observations show that each body acquires 
the same linear momentum. It means that the same force applied for the 
same time causes the same change in linear momentum in bodies of 
different masses. 

The law implies that when a bigger force is applied on a body of 
given mass, its linear momentum changes faster and vice-versa. The 
momentum will change in the direction of the applied force. 

Mathematical Formulation of Newton’s of Second Law 

Consider a body of mass m moving with some initial velocity . If 

an unbalanced force  is applied, the velocity will change from  to 
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 The change in momentum will be  which changes 
from  (initial momentum) to  (final momentum). 

According to the second law. 

or 

……. (5) 

Where k is a constant of proportionality. Taking the limit , 

the term  becomes the derivative or differential coefficient of 

w.r.t. t, denoted by 

⸫ 

as 

⸫ 

⸫ (Here mass remains the same) 

⸫ 

The value of constant of proportionality k is considered as 1 for 
simplicity, so that in both the SI and CGS system of units, it may 
be selected in simple manner. 

By taking k = 1, we get 

……. (6) 

Example: 2 

An iron block of mas m = 500 kg is kept at the back of a truck 
moving at a speed The driver applies the 
brakes and slows down to a speed of in 10 s. 
What constant force acts on the block during this time if the 
block does not slide on the truck-bed? 
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Solution: 

We know that, 

The acceleration, 

or , Force F = ma 

= 500 kg (-1 ms-2) 

= - 500 N 

-ve sign indicates that the force acts opposite to the velocity of the 
block. The magnitude of force is 500 N. 

Self-Assessment Questions (SAQs) 
2. Write short notes on

(a) Momentum

(b) Newton’s Second Law
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2.6 IMPULSIVE FORCE AND IMPULSE 

Impulsive forces: The forces which act on bodies for a short time 
are called impulsive forces. The examples of impulsive forces are 

(i)  A bat hitting the ball. 

(ii) The collision of two billiard balls. 

(iii) The firing of a gun. 

The impulsive force is not constant but varies with time. For 
example. when a bat hits the ball. the impulsive force jumps from zero at 
the moment of contact to a very large value within a very short time and 
then abruptly returns to zero again as shown in Figure-7. 

Figure - 7 

Note that during the short time interval  ∆t(= t2 - t1) the impulsive 
force is varying continuously. Therefore, it is not easy to measure the 
impulsive force. In such cases. we measure the total effect of the 
impulsive force, called impulse. UGPHS-101(N)/44



Impulse. If  is the average force [Sec Figure-7] exerted by the 
bat on the ball during the time interval ∆r and the change in linear 
momentum during this time interval is p∆


, then according to Newton's 

second law of motion 

t
pFav ∆

∆
=



……. (7) 

ptFav ∆=∆


 = Change in linear Momentum ……. (8) 

The Product tFav∆


is called impulse of the force 

hence impulse of a force is the product of average force during the impact 
and the time for which the impact lasts i.e., 

Impulse = Fav × ∆t ...............(in magnitude) 

Mathematical Analysis. If F is the Force at any time t during the 
collision, then according to Newton’s second law of the Motion,  

dt
pdF



=  or dtFpd


= ……. (9) 

If we integrate it over the time interval ∆t = (t1 – t2) we get the total change 
in linear momentum p∆ during that time interval 

tFp av∆=∆


……. (10) 

From equation (9) and (10) ∫ ∆=
1

2

t

t
av tFdtF


......change in linear 

momentum 

The quantity ∫
1

2

t

t

dtF


is knows as impulse of the force F


during the time

interval t1 to t2 and is equal to change in the linear momentum of the body 
on which it acts (= area under the F –t graph during the time interval t1 to 
t2 ) 

Units of impulse. The impulse has the same SI units as that of the liner 
momentum i.e. kg m/s or NS. Therefore, the dimensional formula of 
impulse is also the same as that of linear momentum i.e. [MLT-1]. Impulse 
is a vector quantity and its direction is the same as the direction of change 
in linear momentum.  

IMPULSE LINEAR MOMENTUM THEOREM 

We know that, 
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Impulse = 

Impulse ……. (11) 

Impulse = Change in linear momentum 

Thus, a given change in linear momentum can be produced by applying a 
larger force for a smaller time or by applying a smaller force for a larger 
time.  

This is called impulse linear momentum theorem. 

2.6.1 Applications of the Concept of Impulse 

Average impulsive force, 
Time

MomentumlinearinChangeFav =


Therefore, whenever you wish the force of impact to be small, 
extend the time if impact. On the other Hand, If the time of impact is 
small, the impact of force will be large. There are a large number of 
practical applications where impulse linear momentum relationship plays 
an important role: 

(a) While catching a ball, a cricket player extends his hand 
forward so that he has plenty of room to let his hands move backwards 
after making contact with the ball. This extends the time of impact and 
thus reduces the force of impact. 

(b) A person is better of falling on a wooden floor than a concrete 
floor. The wooden floor allows for a longer time of impact and therefore a 
lesser force of impact than a concrete floor.  

(c) A person jumping from an elevated position on a floor below 
balms his knees upon making contacts. This extends the time of impact. 
Therefore, the force of impact is reduced. 

(d) China wares are wrapped in a paper or straw before packing 
to avoid breakage. This increase the time of impact between various 
articles during jerks. Thereby decreasing the force of impact on the 
articles.  

(e)  While catching a cricket ball, if you do not move your bands 
away upon contact. you may be hurt. it is because the time of impact 
will be small so that the impact force will be large.  

2.6.2 Newton’s Third Law 
A force acting on a body is always the result of its interaction with 

another body, so forces always come in pairs. We cannot pull on a 
doorknob without the doorknob pulling back on us. When we kick a 
football, the forward force that our foot exerts on the ball launches it into 
its trajectory, but we also feel the force the ball exerts back on our foot. If 
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we kick a wall, the pain that we feel is due to the force that the wall exerts 
on our foot. 

In each of these cases, the force that we exert on the other body is 
in the opposite direction to the force that body exerts on us. Experiments 
show that whenever two bodies interact, the two forces that they exert on 
each other are always equal in magnitude and opposite in direction. This 
fact is started by Newton in his third law of motion as “To every action, 
there is always an equal and opposite reaction.” 

Note: These two forces act on two different bodies and we should always 
remember that forces always occur in pairs and these forces always act at 
the same instant of time. 

Suppose a body A exerts a force on body B, then 

Action and Reaction 

When there is a force exerted by body I on body II, there is also a force 
exerted by body II on body I. These forces are equal in magnitude and act 
in opposite directions. Such a pair of forces is called an action-reaction 
pair. Any of the two forces may be called the action, the other will be the 
reaction. Consider a book placed on a table. 

The book pushes the table down with a force. The table pushes the book 
up with an equal force. If we call the downward force exerted by the book 
on the table as action, the upward force exerted by the table on the book is 
the reaction or vice-versa as shown in figure-8. 

Figure - 8 

Newton’s third law can be rested as ‘action and reaction are always 
equal and opposite’. 

Applications of Third Law 

(a) Recoiling of a gun: When a bullet is fired from a gun, it exerts a 
forward force on the bullet and the bullet exerts an equal and 
opposite force on the gun. Due to high mass of the gun, it moves a UGPHS-101(N)/47



little distance backward and gives a backward jerk to the shoulder 
of the gunman. 

Figure - 9 

(b) To walk, we press the ground in backward direction with foot:
When we walk on the ground, our foot pushes the ground 

backward and in return the ground pushes our foot forward. 

Figure - 10 

(c) Jet Aeroplanes and Rockets: In jet engines and rockets, the fuel 
is burnt to produce a large quantity of hot gases. These hot gages 
come out of a nozzle with a great force (this is action). According 
to third law of motion, the equal and opposite reaction pushes the 
jet planes and rockets upward with a great speed (this is reaction). 

Figure - 11 

Example: 3 

Acceleration due to gravity near the surface of the Earth is g = 
9.8 ms-2. A ball of mass 10 kg is dropped from the top of a UGPHS-101(N)/48



buildings. Find the acceleration produced in the Earth due to 
the force exerted on it by the ball. Mas of the Earth is M = 6 × 
1024 kg. 

Solution: 

The ball and the Earth are two interacting bodies. They exert 
equal and opposite force on one another. 

 Now, 

Force exerted by the Earth on the ball is F = (mass) × 
(acceleration) 

⇒ F = mg = 10 × 9.8 = 98 N (vertically down)

The ball pulls the Earth with an equal force towards itself.  

For the Earth: Mae = 98 N 

⇒ 

2.7 WORK 
Work is said to be done by a force when the body is displaced 
actually through some distance in the direction of the applied 
force. 

However, when the is no displacement in the direction of the 
applied force, no work is said to be done i.e. work done is zero, 
when displacement of the body in the direction of the force is zero.  

Suppose a constant force F


acting on a body produces a
displacement s in the body along the positive x- direction figure –
12 & 13. 

Figure – 12 
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Figure - 13 

If  θ is the angle which  F


 makes with the positive x-direction of
the displacement, then the component of F


 in the direction of the

displacement is (F cosθ). As work done by the force is the product 
of component of force in the direction of the displacement and the 
magnitude of the displacement,   

⸫    …………… (12) 

if displacement is in the direction of force applied θ = 0° from (1), 
W = (F cos0°) s=Fs 

Equation (12) can be rewritten as    …………… (13) 

Thus, work done by a force is the dot product of force and 
displacement  

In terms of rectangular components, F


and smay be written as

zyx FkFjFiF


++= and  zkyjxis


++=

From (8),  

W = ( )( )zkyjxiFkFjFi zyx


++++ .

   …………… (14) 

Obviously, work is a scalar quantity, i.e. it has magnitude only and 
no direction. However, work done by a force can be positive or 
negative or zero.  

2.7.1 Nature of Work Done 
Although, work done is a scalar quantity, its value may be positive, 
negative or even zero:  

(a) Positive work 

UGPHS-101(N)/50



Figure - 14 

θcos. sFsFW ==


  

∴ when θ is acute (<90°), cosθ is positive. Hence, work 
done is positive. 

Figure – 15 

For example: 

(i) A body falls freely under the action of gravity θ = 0o, cosθ = +1. 
Work done by gravity on a body falling freely is positive. (Here, 
force of gravity and displacement are in the same direction). 

(ii) A lawn roller is pulled by a force along the handle at an acute 
angle, work done by the force is positive. 

Figure - 16 
(b)  Negative work 
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Figure - 17 

θcos. sFsFWAs ==


  
∴ When θ is obtuse (>90o), cos  θ  is negative. Hence, 

work done is negative. 

For example: 

(i) Work done by the braking force on a moving vehicle is negative. 
Force is in a direction opposite to the direction of motion. θ = 180o,
cos 180o = - 1, W = -Fd (Refer to figure 15) 

Figure - 18 

(c)  Zero work 

When force applied F


or the displacement s or both are
zero, work done W=F s cos θ is zero. Again, when angle θ 
between F


 and s is 90°, cosθ = cos 90° = θ. Therefore,

work done is zero. 

For example: 

(i) A body moving on a smooth horizontal surface is not acted 
upon by a horizontal force (as there is no friction), but may 
undergo displacement. So, W = 0 as             F = 0 even 
though d  0 and 

2.7.2 Work Done by a Variable Force 
(a) Graphical Method 

(b)  Mathematical Treatment 

Now, we discuss it one by one: 
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(a) Graphical Method: A constant force is rare. It is the variable 
force which is encountered more commonly. We can their force learn to 
calculate work done by a variable force. Let us consider a force acting 
along the fixed direction say x-axis but having a variable. Magnitude, as 
shown in figure 19.   

Figure - 19 

Now, 

We have to calculate work done in moving the body from A or B under 
the action of this variable force.  

To do this, we assume the entire displacement from A to B is made up of a 
large number in infinitesimal displacements. One such displacement show 
in figure is from P to Q  

Let displacement PQ = dx is infinitesimally small, we consider that all this 
displacement force is constant in magnitude (=PS) as well as in direction.  

∴  Small amount of work done in moving the body form P to Q is 

dW = F × dx = (PS)(PQ) = area of strip PQRS 

Total work done in moving the body from A to B is 

W =  ∑dW 

W = ∑F × dx 

If the displacement are allowed to approach zero, then the number of 
terms in the sum increases without limit. And the sum approaches a 
definite value equal to the area under the curve CD as shown in figure19. 

∴  Hence, we may rewrite ( )∑
→

= dxFW Limit
dx 0

 

From integral calculus, we may write it as 

∫=
B

A

x

x

dxFW ),(  where xA  = OA and xB = OB
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∫=
B

A

x

x

W area of the strip PQRS 

= total area under the curve between F and x-axis from x=xA to x = 
xB 

…………… 
(15) 

Hence, Work done by a variable force is numerically equal to area 
under the force curve and the displacement axis. 

(b)  Mathematical Treatment: 

Figure - 20 

From the figure 20, small amount of work done in moving 
the body from P to Q is  

…………… (16) 

When sd  →0, total work done in moving the body from A to B can be
obtained by integrating the above expression between SA and SB  

…………… (17) 

Example: 4 

A force F = (10+0.50x) act on a particle in x direction, where F 
is in newton and x is metre. Find the work done by the force 
during a displacement from x = 0 to x = 2 m.  

Solution: 

 Hence, F = (10 + 0.50x) 

Small amount of work done in moving the particle thought a small 
distance dx is  

( )dxxxdFdW 5.010. +==
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Total Work done, ( )∫
=

=

+=
2

0

5.010
x

x

dxxW

( ) ( ) joulexxW 2112002
2
5.00210

2
5.010 2

2

0

2

=+=−+−=







+= . 

Self-Assessment Questions (SAQs)
3. A gas filled in a cylinder with a movable piston is allowed to

expand. What is the nature of the work done by the gas?

Solution: 

Positive, as force due to gaseous pressure and displacement of 
piston are in the same direction. 

2.8 POWER 

Often, we say a person is physically fit and powerful, if he not only 
climbs up four floors of a tall building, but also climbs them fast.  

Power of a person or machine is defined as the time rate at which 
work is done by it.  

OR 

The rate of which a force perform & work is known s its Power. 

i.e. 
takentime
donework  = work during of Rate =Power 

This, is the average power Pav  

Thus, power of a body measure how fast it can do the work. When a body 
takes lesser time to do a particular amount of work, its power is said to be 
greater and vice versa.  

The power at a particular instant of time t is the radio of small work (dW) 

to small time interval (dt) around t, i.e. 
dt

dWP =   …………… (18)

Now, ,. sdFdW 
= where F


the force is applied and sd is the small

displacement.  

dt
sdFP


.
=∴

But v
dt
sd 


= , the instantaneous velocity. 
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∴ vFP .=   
…………… (19) 

Thus, power can be expressed as the dot product of force and 
velocity  

if θ is angle between F


and v  then

θcos. FvvFP ==


. However, when v  is along  F


, θ=0°, ∴ P =
Fv Cos° Fv 

As Power is the ratio of two scalar quantities W and t, therefore, Power is 
scalar. That is why it is expressed as dot product of F


 and v

Dimension of Power can be deduced as : 

[ ]32
1

221
−

−

=== TML
T

TLM
t

WP

Unit of power  

The absolute unit of power is SI is watt. Which is denoted by W.  

From  P = W/t  

..,
sec1

11 eijoulewatt =  

1 W = 1J s-1     Hence, 

Power of an agent is said to be one watt, if it can do one joule of 
work in one second.  

The bigger units of power are 1 kilo watt = 1000 watt, i.e. 1 kW = 
103W 

and 1 megawatt = 1,000,000 watt, i.e.  1MW = 106W 

The absolute unit of power in cgs system is 1 erg s-1 

We know that,  

1 W = 1 Js-1 = 107 erg s-1  

The gravitational unit of power in SI is (kg f) m s-1 and is cgs 
system, it is (g f) cm s-1. 

Another popular unit of power (used mostly in engineering) is 
horse power (h.p.) 

We come across the unit watt while dealing with electrical goods 
like bulb, tube lights etc. e.g., power of a bulb is said to be 60 W 
when it consumes 60 J of energy in one second. 

UGPHS-101(N)/56



Let us calculate the energy used by a 100 W bulb when it is on for 
10 hours. 

Our electricity bills show the energy consumption in units (kWh). 

Remember: kWh is commercial unit of energy. It is not a unit of 
power. 

This unit is still used to describe the output of automobile, 
motorbike etc.  

Example: 5 

An elevator weighing 500 Kg is to be lifted up at a constant 
velocity of 0-4 m/s. What should be the minimum horse power 
of the motor to be used?  

Solution: 

Here m = 500 Kg, v = 0.4m/s, P = ? 

P = Fv = (mg) ×v = 500 × 9.8 × 0.4 = 1960 watt.  

If we assume that there is no loss against friction etc. In the motor 

then minimum horse power motor ..62.2..
746

1960 phphP ==  

2.9 ENERGY 

The amount of work that a body or a system can perform is known 
as its energy. A well-fed young man can do more work than an old man, 
before both of them get completely exhausted. We say that the young man 
has more energy. Energy has many forms, viz. kinetic energy, thermal 
energy, chemical energy, nuclear energy, light energy, etc. Energy can 
neither be created nor destroyed. However, it can be concerted from one 
form to another. 

Unit of energy is joule (J). 

2.9.1 The Concept of Kinetic Energy 
The kinetic energy of a moving body is measured by the amount of 

work which has been done in bringing the body from the rest position to 
its present position, or which the body can do in going from its present 
position to the rest position. 
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Let a body of mass m be in the rest position. When we apply a 
constant force F on the body, it starts moving under an acceleration. If a be 
the acceleration, then by Newton’s second law, we have 

A = F / m. 
Suppose the body acquired a velocity v in moving a distance s. 

According to the reaction v2 = u2 + 2as (u = 0, since the body was initially 
at rest), we have 

v2 = 2as = 2 × (F / m) × s 

or 

But F × s (force × distance) is the work W which the force F has done on 
the body in moving it a distance s. It is due to this work that the body has 
itself acquired the capacity of doing work. This is the measure of the 
kinetic energy of the body. Hence if we represent kinetic energy of a body 
by K, then 

…………… (20) 

Thus, the kinetic energy of a moving body is equal to half the product 
of mass (m) of the body and the square of its speed (v2). 

Note: 

(a) The expression  holds even when the force applied 

varies in magnitude or in direction or in both. Thus, the expression 
is valid irrespective of how the body acquires the velocity v. 

(b) Kinetic energy of a body is always positive. It can never be 
negative. 

(c) Kinetic energy of a body depends upon the frame of reference. For 
example, K.E. of a person of mass m sitting in a train moving with 
vel. v is in the frame of earth, and K.E. of the same 

person = 0, in the frame of the train.   

2.9.2 The Concept of Potential Energy 
The word potential suggests capacity or possibility for action. This 

term potential energy brings to one’s mind ‘stored energy’. A wound-up 
spring or a stretched bow string possesses potential energy. 
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Figure – 21 

The potential energy of a body is defined as the energy possessed by 
the body by virtue of its position or configuration in some field. 

Thus, potential energy is the energy that can be associated with the 
configuration (or arrangement) of a system of objects that exert forces on 
one another. Obviously, if configuration of the system changes, then its 
potential energy changes. 

2.9.3 Gravitational Potential Energy 
Gravitational potential energy of a body is the energy possessed by the 
body by virtue of its position above the surface of the earth. 

We know that, 

Work done = force × distance 

W= F × h = mgh 

Note that we have taken the upward direction to be positive. 
Therefore, work done by applied force = + mgh. However, work 
done by gravitational force = - mgh.  

This work gets stored as potential energy. The gravitational 
potential energy of a body, as a function of height (h) iş denoted by 
V (h), and it is negative of work done by the gravitational force in 
raising the body to that height. 

…………… (21) 

If h is taken as a variable, then 

Where F is the gravitational force on the body. The negative sign indicates 
that gravitational force is downwards.  

Thus, gravitational force F equals the negative of the derivative of 
V (h), w.r.t. h, i.e., UGPHS-101(N)/59



…………… (22) 

Mathematically, the potential energy V (x) is defined if the force F (x) can 
be written as 

This implies that 

i.e., work done by a conservative force like gravity in taking the
body from initial position (xf) to final position (xi) is equal to 
difference between initial and final P.E. of the body. 

When the body is released from height h, it comes down with an 
increasing speed. The velocity v with which the body hits the 
ground is calculated from the fact that the gravitational P.E. of the 
body at height h manifests itself as K.E. of the body on reaching 
the ground, i.e., 

or 

…………… (23) 

2.10 CONSERVATIVE AND NON-CONSERVATIVE 
FORCES 

Conservative Forces: 
A force is said to be conservative if the work done by the force (or against 
the force) in moving a body depends only upon the initial and final 
positions of the body and is independent of the path followed between the 
initial and final positions. 

A Central Force is a Conservative Force: 
A force acting upon a particle is a ‘central’ force if it is always directed 
towards or away from a fixed point, and its magnitude depends only on the 
distance of the particle from that point. Gravitational force between two 
masses, electrostatic force between two charges and magnetic force 
between two magnetic poles are examples of central forces and hence of 
conservative forces. 

Non-Conservative Force: 

UGPHS-101(N)/60



A force is said to be non-conservative, if the work done by the force, or 
against the force, in moving a body from one position to another, depends 
upon the path followed between the two positions.  

For example, frictional forces are non-conservative forces. 

1. Conservative force as a negative gradient of potential
energy 

…………… (24) 

We know that, 

The potential energy of the particle under a conservative force. 

U=- …………. (25) 

Here, negative sign indicate that force and potential energy are in opposite 
direction. 

= differential displacement. 

If motion is in three dimensions than, force act on a particle is 3D. 

Putting the value of  and  in Equation (25) 

We get, 

 …………… (26) 
Now, partially differentiating equation (26) w.r.t. x and putting y and z as 
constant. 

We get. 

…………… (27) 
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Similarly, w.r.t. y and, we get 

and  …………… (28) 

Hence, 

or, 

Thus, 

…………… (29) 

When a particle moves origin to another point then we take as 
negative sign. 

2. Work done by a conservative Force along closed path is
zero.

Figure - 22 

For Conservative Force, 

Path APB = Path AQB 
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     (Path APB)    (Path AQB) 

In Complete cycle, 

Conservation force is the force under which if a particle moves in a 
closed path, there is no change in K.E. of the particle. 

According to work energy theorem. 

for complete cycle/closed path 

∴ 

Self-Assessment Questions (SAQs) 
4. What is conservative force? Explain with example.

5. Define conservative force. Prove that the curl of conservative force
is zero.

2.11 WORK ENERGY THEOREM OR WORK 
ENERGY PRINCIPLE 

Work Energy Theorem states that “the work done by the net force 
acting on a body is equal to the change in kinetic energy of a body” i.e.  

Work = gain in kinetic energy 

2
1

2
2 2

1
2
1 mvmv −=

Let us consider a body of mass m acted upon a net force F along x axis. If 
body moves from a position x1 to position x2 Along the x axis its velocity 
increase from v1 and v2 the work done  

∫=
2

1

x

x

FdxW

By Newton’s second law, we know UGPHS-101(N)/63



F = ma = 
dx
dvmv

dt
dx

dx
dvm

dt
dvm == (putting )v

dt
dx

=

Therefore, 

∫= 2

1

x

x
dx

dx
dvmvW  

= ∫∫ = 2

1

2

1

x

x

x

x
vdvdx

dx
dvvm
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or 2
12

2

2
1

2
1 mvmvW −=

or W = K2 - K1 

Where K1 and K2 are the initial and final kinetic energies of the body. 
Thus if ∆K represents the change kinetic energy, ∆K = K2 – K1 then, 
we have  

…………… (30) 

This is mathematical statement of Work Energy Theorem or Work 
Energy Principle. 

2.12 LAW OF CONSERVATION OF MOMENTUM 

According to conservation of linear momentum. “The total 
momentum of an isolated system of interacting particles is conserved”. In 
words, “If there is no net external force acting on the system, the total 
momentum remains conserved.” In words, “for an isolated system the 
initial momentum of the system is equal to the final momentum of the 
system”. 

Consider two objects A and B of masses  and  moving along 
the same direction at different velocities  and  respectively. 

Figure - 23 
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If , then they collide and during collision A exerts a force 
on B and simultaneously B exerts a force  on, A. Let   and  are the 
velocities of two objects A and B after collision and they are moving 
along same straight line. 

The momentum of B before collision, 

The momentum of B after collision, 

The rate of chance of momentum of B is equal to equal to force by A on B 
(i.e. ) 

∴ 

According to Newton’s third law of motion, the force  (action) 
must be equal opposite to  (reaction). 

Therefore, 

or 

or 
…………… (31) 

or Total momentum before collision = Total 
momentum after collision. 

2.13 PRINCIPLE OF CONSERVATION OF 
ENERGY 

According to this principle, energy can neither be created nor 
can be destroyed, but can only be concerted from one form to another, 
the total amount of energy of the universe remaining constant. In other 
words, whenever energy disappears in one form, an equal amount of 
energy appears in some other form. No violation of this principle has yet 
been observed. 

2.14 COLLISION 

Collision between two billiard balls or between two automobiles 
on a road are a few examples of collision from everyday life. Even gas 
atoms and molecules at room temperature keep on colliding against each UGPHS-101(N)/65



other. For the collision to take place, physical contact is not necessary. In 
case of Rutherford’s scattering experiment, the particles are suggested due 
to electrostatics interaction between the particle and the nucleus.  

Figure - 24 

Thus, in physics a collision is said to have occurred if the two bodies 
physically collide against each other or even when the path of the 
motion of one body is affected by other. 

Types of Collision 

(i) On the basis of the direction of colliding bodies 

(a) Head on or one-dimensional collision 

(b) Oblique collision 

(ii)  On the basis of conservation of kinetic energy 

(a) Elastic collision 

(b) Inelastic collision 

(c) Perfectly inelastic collision 

(d) Partially inelastic collision 

2.14.1 Elastic collision 
Those collision, in which both momentum and kinetic energy of 

the system are conserved are called elastic collisions. 

The collision between two bodies and subatomic particles are 
elastic in nature. In daily life the collisions between two glass or 
preferably ivory balls may be taken as elastic collisions. 

Characteristics of elastic collisions: 

(a) The momentum is conserved. 

(b) The total energy is conserved. 

(c) The kinetic energy is conserved. 

(d) The mechanical energy is not converted into any other form 
(sound, heat, light) of energy. 

(e)  Forces involved during the interaction are of conservative nature. 
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2.14.2 Inelastic Collision 
Those collisions in which the momentum of the system is 

conserved but the kinetic energy is not conserved, are called inelastic 
collisions. 

Most of the collisions in everyday life are inelastic collisions. The 
kinetic energy lost in an inelastic collision appears is some other form of 
energy, such as heat, sound etc. 

2.14.3 Perfectly Inelastic Collision 
Those collisions, in which the colliding bodies stick together after 

the collision and then move with a common velocity are called perfectly 
inelastic collision. 

Mud throw on the wall an sticking to it, a bullet fired into wooden 
block and remaining embedded in it, are the examples of perfectly 
inelastic collision. In such collisions the momentum of the system 
conserved. But the loss of kinetic energy is maximum. 

Characteristics of inelastic collisions: 

(a) The momentum is conserved. 

(b) The total energy is conserved. 

(c) The kinetic energy is not conserved. 

(d) A part or whole of the mechanical energy may be converted into 
other forms heat, light, sound) of energy. 

(e) Some or all of the forces involved are non-conservative in nature. 

 It may be pointed out that in both the types of collisions, 

(a) Momentum is conserved; 

(b) Total energy is conserved and 

(c) It is kinetic energy, which may or not be conserved. 

What does momentum and energy conservation in collision means: 

(a) Momentum Conservation: In a collision the effect of external 
forces such as gravity or friction are not taken into account as due 
to small duration of collision (st) average impulsive force 
responsible for collision is much larger than external force acting 
on the system and since this impulsive force is “Internal” therefore 
the total momentum of system always remains conserved. 

(b) Energy Conservation: In a collision ‘total energy’ is also always 
conserved. Here total energy includes all forms of energy such as 
mechanical energy internal energy, excitation energy, radiant 
energy or even mass energy.  
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2.14.4  Elastic Collisions in One Dimention (Head on 
Collision) 

The collision in which both the momentum and kinetic energy 
are conserved and the colliding bodies continue to move along the 
same straight line after the collisions, is called an elastic collision in 
one dimension.  

Consider two perfectly elastic bodies A and B of masses M1 and M2 
moving along the same straight line with velocities u1 and u2 respectively. 
The difference velocities i.e. (u1-u2) is called velocity of approach. Same 
straight line with velocities v1 and v2 in the same direction. The two bodies 
will separate after the collision only if 

v2 > v1 

The difference in final velocity i.e. (v2-v1) is called velocity of separation. 
As in an elastic collision, momentum is conserved we have 

       …………… (32) 

Since kinetic energy is also conserved in an elastic collision we get, 

       …………… (33) 

From the equation (32) we have 

        …………… (34) 

form equations (33) we get 

        …………… (35) 

Dividing the equation (35) by the equation (34) we get 

or 

or 

From the equation (36), it follows that in one dimensional elastic collision, 
the laive velocity of approach ( ) before collision is equal to the 
relative velocity of parathion ( ) after collision. 

Let us first find velocity of body A after collision. From equation we have 
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…………… (36) 

In the equation (32) substituting for  we get 

or 

or 

        …………… (37) 

Again from (37) have 

In the equation (37) substituting for v1 we get 

or 

or 

        …………… (38) 

Now,  

We have to find the final velocities of the two bodies after collision in the 
following special cases: 

1. When the two bodies are of equal masses: Let us consider that

M1=M2=M (say) 
From the equation (37) we have 

or 
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Also, from the equation (38), we have 

or 

Thus, if two bodies of equal masses suffer elastic collision in one 
dimension then after the collision the bodies will exchange their velocities. 

2. When the target body is at rest i.e. u2=0: In the equation
(37) and (38) 

Thus, we have 

        …………… (39) 

        …………… (40) 

When the target body B is at rest let us find velocities of the two bodies in 
the following sub-cases; 

(a) When the two bodies are of equal masses: Setting M1=M2=M in 
the equation (39) and (40), we get 

Therefore, when the body A collides against the body B of equal mass at 
rest, the body A should come to rest and the body B should move on with 
the velocity of the body A. 

Thus, is sometimes observed, when one of the two boys playing with glass 
ball, shoots a stationary glass ball with the help of his fingers: his own 
glass ball comes to rest while the stationary ball of the other boy starts 
moving with the same velocity. 

In this case transfer of energy is hundred percent. 

(b) When the mass of body B is negligible as compared to that of 
A: When M2<<M1 then in the equations (39) and (40) M2 can be 
neglected as compared to M1 i.e. M1-M2 M1 and M1+M2  M1. 
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Therefore, when a heavy body A collides against a light body B 
at rest the body A should keep on moving with the same 
velocity and the body B should start moving with a velocity 
double that of A. 

Thus, in principle if a moving truck (heavy body) collides against a 
stationary drum then the truck would keep on moving with the 
same velocity while the drum would be set into motion with a 
velocity double the velocity of the truck. 

(c)  When the mass of body B is very large as compared to that of 
A: When M2>> M1, then in the equations (39) and (40) M1 can be 
neglected in comparison to  M2 i.e., M1-M2  - M2 and M1+M2  
M2. Therefore, we have 

Therefore, when a light body A collides against a heavy body B 
at rest the body A should start moving with equal velocity in 
opposite direction, while the body B should practically remain 
at rest. 

This result is in according with the observation that when a rubber 
ball hits a stationary wall, the wall remains at rest, while the ball 
bounces back with the same speed. 

Example: 

8kg ball moving with velocity 4m/s collides with a 2kg ball 
moving with a velocity 8m/s in opposite direction. If the 
collision be perfectly elastic what are the velocities of the balls 
after the collision. 

Solution: By conservation of momentum  
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As collision is elastic, so we have 

2.15 SUMMARY 

In the present unit, we have studied about various parameters 
related to dynamics of Particle, Force, Momentum, Impulse and also learnt 
about Newton’s laws of Motion. In this unit, we also studied work, Energy 
and Power. Using these definitions, we formulated the laws to simplify 
many problems in dynamics; particularly those which require us to relate 
position and speed of particle. 

2.16 TERMINAL QUESTIONS 

1. Write answers to the following questions:

(a) What is Mechanics? Explain the branches of Mechanics.

(b) What is inertia? Why do we call the Newton’s first law as
the law of inertia? 

(c) What is force? Discuss the types of Forces. 

2. State Newton’s second law of Motion.

3. Discuss the elastic collision of two bodies in one dimension.
Calculate the velocities of bodies after the collision.

4. What is an elastic collision? Calculate the velocities of the two
bodies undergoing elastic collision in one dimension.

5. A body of mass 2 kg makes an elastic collision with another body
at rest and continues to move in the original direction with a speed
equal to one third of its original speed. Find the mass of the second
body.

6. Two balls each of mass M moving in opposite directions with
equal speed u undergo a head on collision. Calculate the velocity
of the two balls after collision.

7. Define Kinetic energy. Derive an expression for the Kinetic
Energy of a body moving with a Uniform Velocity.UGPHS-101(N)/72



8. Define Work and Power. What are their units in SI system?

9. What is a Conservative Force? Explain its various properties.

10. What are Conservative and Non-Conservative Forces? Explain.

11. Write short notes on: -

(a) Applications of the Concept of Impulse.

(b) Newton’s Third Law.

(c) Inertial and Non-Inertial Reference Frames.

(d) Types of Inertia.

2.17 SOLUTION AND ANSWERS: 

Self-Assessment Questions (SAQs): 
1. Inertia of Motion

2. (a) Hint (Section 2.5)

(b) Hint (Section 2.5.1)

3. Positive, as force due to gaseous pressure and displacement of
piston are in the same direction.

4. Hint (Section 2.10)

5. Hint (Section 2.10)

ANSWERS TERMINAL QUESTIONS 

1. (a) Hint (Section 2.3, 2.3.2)

(b) Hint (Section 2.4.3, 2.4.3)

(c) Hint (Section 2.4, 2.4.1)

(d) Hint (Section 2.6)

2. Hint (Section 2.5.1)

3. Hint (Section 2.15, 2.15.1, 2.15.2)

4. Hint (Section 2.15.1)

5. Here,

In a elastic collision in one dimension, 
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6. Solution:

Here,

Now, 

or 

Also, 
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or 

Thus, after the collision the two balls back with equal speeds v. 

7. Hint (Section 2.9.1)

8. Hint (Section 2.7)

9. Hint (Section 2.10)

10. Hint (Section 2.10)

11. (a) Hint (Section 2.6.1)

(b) Hint (Section 2.6.2)

(c) Hint (Section 2.4.6)

(d) Hint Section 2.4.5)

2.18 SUGGESTED READINGS: 

1. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl
Walker, John Wiley & Sons.

2. Elementary Mechanics, IGNOU, New Delhi.

3. College Physics, Hugh D. Young.

4. An Introduction to Mechanics, Daniel Kleppner and Robert J.
Kolenkow.
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UNIT 3 

ANGULAR AND ROTATIONAL MOTION 

Structure: 
3.1 Introduction 

3.2 Objectives 

3.3 Motion of a Rigid Body 

3.3.1 Translational Motion 

3.3.2 Rotational Motion 

3.3.3 General Motion 

3.3.4 Nature of Rotational Motion 

3.3.5 Comparison between Translational and Rotational Motion 

3.4 Rotational Equation of Motion 

3.5 Some Fundamental definitions of Rotational Motion 

3.5.1 Angular Velocity 

3.5.2 Uniform Angular Velocity 

3.5.3 Angular Displacement 

3.5.4 Angular Acceleration 

3.5.5 Uniform Circular Motion 

3.5.6 Relation between Angular Velocity and Linear Velocity 

3.5.7 Relation between Angular Acceleration and Linear Acc. 

3.6 Angular Momentum 

3.6.1 Angular Momentum of a Particle 

3.6.2 Angular Momentum of a rigid body 

3.7 Torque or Moment of Force 

3.7.1 Expression for Torque in Polar Co-ordinate 

3.7.2 Power associated with Torque 

3.7.3 Relation between Torque and Force 

3.7.4 Relation between Torque and Angular Momentum UGPHS-101(N)/77



3.8 Rotational Kinetic Energy 

3.8.1 Relation between Angular Momentum Rotational Kinetic 
Energy 

3.9 Angular Impulse 

3.10 Conservation of Angular Momentum 

3.10.1 Application of Angular Momentum 

3.11 Moment of Inertia 

3.11.1 Physical Significance of Moment of Inertia 

3.11.2 Practical Application of Moment of Inertia 

3.11.3 Expression for Moment of Inertia of Certain Regular 
Bodies. 

3.11.4 Radius of Gyration 

3.12 Theorem of Parallel Axes 

3.13 Theorem of Perpendicular Axes 

3.14 What is Rolling Motion? 

3.14.1 Types of Rolling Motion 

3.14.2 Kinetic Energy of a Rolling Motion 

3.14.3 Condition for Rolling without Slipping  

3.14.4 Motion of a Rolling body on an Inclined Plane 

3.15 Summary 

3.16 Terminal Questions 

3.17 Solutions and Answers 

3.18 Suggested Readings 

3.1 INTRODUCTION 

In the Previous Units, we have studied about some basic 
parameters of Kinematic quantities for describing dynamic of a Particle. 
We have also studied important conservation Principles such as 
conservation of momentum, conservation of energy. In the Present Unit, 
we shall study about the kinematics of rotational motion describes the 
relationships among angular velocity angular acceleration, Uniform Circle 
Motion and time. This, in turn, leads to the concept of angular momentum 
and the all – important conservation of angular momentum, which 
explains some surprising and seemingly counter intuitive phenomena 
involving rotating objects. In this unit, we have also studied and proved UGPHS-101(N)/78



the general theorems on moment of inertia, i.e. theorem of Parallel axes 
and theorem of Perpendicular axes. In this unit, we shall also, study about 
the concept of rolling motion. 

3.2 OBJECTIVES 

After studying this unit, you should be able to – 

• Understand Rotational and translational motion.

• Solve Problems based on translational motion and Rotational
motion.

• Apply Rotational Equation of Motion

• Define some Parameters of Rotational motion.

• Relate torque and moment of inertia.

• Apply theorems of Parallel and Perpendicular axes.

• Compute numerical related to angular momentum Torque,
Rotational Kinetic Energy.

• Comparison Translational and Rotational motion.

3.3 MOTION OF A RIGID BODY 

Consider that a rigid body is free to execute translational and 
rotational motion in space. To study the general motion of the rigid body, 
we should know its position and orientation at each instant of time. To fix 
its position at any instant, consider a point, say O’ in the rigid body. 
(Figure-1) 

Figure - 1 

Let )'( OOr ==  be the position vector of the point O’ in the body
w.r.t. the origin O of a fixed (internal) frame of reference. Then, as the UGPHS-101(N)/79



body moves in space (translational motion), its position vector r  also 
changes and its value at any instant gives the position of the body at that 
instant. 

The motion of the rigid body can be classified under the following 
type. 

3.3.1 Transitional Motion 
If a body moves such that its orientation does not change with 

respect to time then body is said to move in translational motion. 

Example-1 

Figure - 2 

Motion of a rod as shown. 

Example-2 

Figure - 3 

Motion of body of car on a straight rod. 

In both the above examples, velocity of all the particles is same as 
they all have equal displacements in equal intervals of time. 

Properties of Translational Motion 

(i) At any particular time, t = t, each point of rigid body will have the 

same velocity, if it performs translational motion. 

(ii) Path of each point of rigid body in case of translational motion will 

be parallel to each other. 

(iii) If one considers the frame of reference of any point of rigid body 

then we will observe that body is at rest. UGPHS-101(N)/80



3.3.2 ROTATION MOTION 

If a body is rotating about the fixed axis of rotation then its motion 
is known as pure rotational motion or rotational motion 

Figure - 4 

In pure rotational motion. 

Angular velocity of all the points is same about the fixed axis. 

Properties of Pure Rotation 

(i) Each point of body will rotate about the fixed center and center 
will lie on the axis of rotation. 

(ii) Each point of rigid body will have fixed radius 

3.3.3 GENERAL – MOTION 

If a move such that its motion is neither pure rotational nor pure 
translational, then its motion is known as general motion. 

Figure - 5 

Where, v = velocity of axis. 

And ω  = Angular velocity of system about O. 
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Property of general motion 

If a body performs general motion then different points of body 
will have different velocity. If we consider the frame of reference of any 
point of body then we will observe that the body is purely rotating about 
our self. 

3.3.4 Nature of Translational and Rotational Motion 

Translational motion may be one, two or three dimensional, but the 
rotational motion of a rigid body can either be two or three dimensional. 
As the rotational motion in two dimensions is very simple as compared to 
that in three dimensions, we shall study the rotational motion of a rigid 
body in the former case only. 

The rotational motion of a rigid body can be studied by applying 
Newton’s laws of motion to the small parts of which the rigid body is 
made of. How really new principles are involved to study the rotational 
motion. However, it is found that the study of rotational motion becomes 
convenient by introducing a few physical quantities and concepts (such as 
angular velocity, angular acceleration, moment of inertia, torque, angular 
momentum, etc.) connected with rotational motion. 

3.3.5 Comparison between Translational and Rotational 
Motion 

Table -1 

The comparison between translational and rotational motion are 
given in tabular form: 

Translatory motion Rotatory motion 

1. All the constituent particles of the
rigid body parallel to one another
in straight lines

1. The particles move
parallel to one another in
circles of different radii
about the given axis of
rotation.

2. All the particles have same linear
velocity.

2. All the particles have
same  angular
velocity. As the 

particles at different r 
have  different linear 
velocities.

3. All the particles undergo same
linear displacement. 

3. All the particles undergo
same angular
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displacement. 

4. All the particles have same linear
acceleration.

4. All the particles have
same  angular
acceleration.

5. The position of the center of mass
changes with time.

5. The distance of center of
mass  from the axis of
rotation remains  constant
with respect to time.

6. Mass is analogous to moment of
inertia. Mass depends on the
quantity of matter in the body.

6. Moment of inertia (l) is
analogous to mass.
Moment of inertia (l)
depends on distribution of
mass  about axis of
rotation.

7. Kinetic energy of translation 7. Kinetic energy of rotation

8. Force produces the translator
motion.

8. Torque produces the
rotational  motion.

9. Work done = W

W = force  displacement

9. W = torque

10. Force – mass acceleration 10. Torque = I angular
acceleration

11. Linear momentum = p

p = mass linear velocity

11. Angular momentum =

where = angular 
velocity

12. Impulse = force  time 12. Angular impulse = torque
time 

13. Power = force velocity 13. Power = torque

Table - 2 

Translational Motion and Rotational Motion 
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There is a strong analogy between rotational motion and 
translational motion. Every law of physics governing rotational motion has 
a translational equivalent. The analogies between rotational and 
translational motion are summarized in table -2. 

Translatio
nal motion 
term 

In symbols Rotational 
motion 
term 

In symbols Magnitude 
of angular 
terms if u, a 
and F are 
perpendicul
ar to r, the 
radius of the 
motion 

Displaceme
nt 

Angular 
displaceme
nt 

Velocity Angular 
velocity 

Acceleratio
n 

Angular 
acceleratio
n 

Momentum Angular 
momentum 

Kinetic 
energy 

Kinetic 
energy 

Force Torque (or 
moment) 

Newton’s 
Second Law 
of motion 

Angular 
version of 
Newton II 

Mass Moment of 
inertia 

Impulse PTF ∆=∆ Impulse Lt ∆=∆τ  
Work done W = F s Work done τθ=W  

Power P = F v Power τω=P  

Self-Assessment Question (SAQ) 
1. Classify types of motion for rigid body with suitable examples.

2. Explain the properties of Translational and Rotational motion.

3. Write a short note on General motion.
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4. Give comparison/analogies between Translational and Rotational
motion.

3.4 ROTATIONAL EQUATION OF MOTION 

Three simple relations between rotational kinematic variables are: 

(i)     (ii)  and  (iii)

where the symbols have their usual meaning. They correspond 
respectively to the three equations of linear motion 

(i)   (ii)  (iii)

We can deduce rotational kinematic equations as follow: 

(a) 

Suppose a rigid body is rotating about a given axis with a uniform 
angular acceleration . We know that 

or …………… (1) 

At t = 0, let 

At t = t, let 

 Integrating equation 1 within proper limits, we get 

or 

(b) 

If  is angular velocity of the rigid body at any time t, then we 
know that  

or dtd ωθ = …………… (2) 

At t = 0, let 
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At t = t, let 

 Integrating equation 2 within proper limits, we get 

 = 

(c) 

We know that  and   or 

   .…………… (3) 

When , initial angular velocity and when 
, final angular velocity  

 Integrating equation 3 within proper limits, we get 

or 

….…………… (4) 

Example-1 

The angular speed of a motor wheel is increased from 1200 
rpm to 3120 rpm in 16 second. 

(i) What is the angular acceleration, assuming the 
acceleration to be uniform? 

(ii) How many revolutions does the wheel make during this 
time? 

Solution: 

Given, 
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(i) Angular acceleration 

(ii) The angular displacement can be obtained as 

Number of revolutions in 16 s 

Example-2 

The angular acceleration of a flywheel is given by  where 
is in rad/s2 and t in second. If the angular velocity of the wheel is 60 
rad/s at the end of 4 second, determine the angular velocity at the end 
of 6 second. How many revolutions take place in these 6 second? 

Solution: 

Given that 

i.e.  

or 

Integrating above equation, we get 

or 

At 
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or C = 20 

…………. (5) 

At 

Now we can write 

Integrating the above equation, we get 

or 

Let at 

Thus, we have 

or  …………. (6) 

Angular displacement during 6 s 

= 300 rad 

Number of revolutions 

Self-Assessment Question (SAQ) 
5. The motor of an engine is rotating about its axis with an angular

velocity of 100 rpm. It comes to rest in 15 s, after being switched
off. Assuming constant angular deceleration, calculate the number
of revolutions made by it before coming to rest.

6. The motor of an engine is rotating about its axis with an angular
velocity of 120 r.p.m. It comes to rest in 10 s, after switched off.
Assuming constant deceleration, calculate the number of
revolutions made by it before coming to rest.
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3.5 SOME FUNDAMENTAL DEFINITIONS OF 
ROTATIONAL MOTION

System of particles can move in different ways as observed by us 
in daily life. To understand that we need to understand few parameters. 

3.5.1 Angular Velocity 

Angular velocity is the angle described by a rotating body per 
unit time. It is a vector quantity and is denoted by . 

Consider a particle moving along a circular path in the 
anticlockwise direction. Let the rotating particle be at A at any instant (t = 
0). Let the particle be at B after a time t [Fig. 6].  

Figure - 6 

Let the angle AOB described by the particle during this time be *
radian. Then the magnitude of angular velocity is given by 

If the particle describes one complete revolution, then 

 (time period) 

In that case, 

If the particle describes n revolution in one second, i.e., if n be the 
frequency of revolution, then 

            ….…………… (7) 

The angular velocity is measured in radian per second. 

Direction of angular velocity is given by right hand thumb rule. 
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According to right hand thumb rule, if we curl the fingers of right 

hand along with the body, then right-hand thumb gives us the direction of 

angular velocity. 

It is always along the axis of the motion. 

3.5.2 Uniform Angular Velocity 
If the particle describes equal angles in equal intervals of time, 

then the angular velocity is said to be uniform. 

Instantaneous angular velocity of a particle is given by 

Figure - 7 

Where d  is the infinitesimally small angle covered in 
infinitesimally small time dt. 

3.5.3 Angular Displacement 
It is the angle described by the position vector  about the axis of 

rotation. 

Angular displacement 

Figure - 8 
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Consider a particle moves from A to B in the following figures-
Angle is the angular displacement of particle about O. 

Figure - 9 

 Unit: radian

 Dimension: [M0 L0 T0]

 Vector form:

i.e., angular displacement is a vector quantity whose direction is
given by right hand rule. It is also known as axial vector. For anit-
clockwise sense of rotation direction of  is perpendicular to the plane, 
outward and along the axis of rotation and vice-versa. 

 2  radian = 360o = 1 revolution.

 If a body rotates about a fixed axis then all the particles will have
same angular displacement (although linear displacement will
differ from particle to particle in accordance with the distance of
particles from the axis of rotation).

3.5.4 Angular Acceleration 
The rate of change of angular velocity is defined as angular 

acceleration. 

If particle has angular velocity   at time  and angular velocity 

   at time  then,  

Angular acceleration tt 12

12

−
=

−ωωα
 ….…………… (8) 
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Figure - 10 

dt
dωα =

Instantaneous angular acceleration
.2

2

0
lim dt

d
dt
d

tt

θωωα ==
∆
∆

=
→∆  ……… (9) 

 Unit: rad/sec2

 Dimension: [M0 L0 T2].

 If , circular or rotational motion is said to be uniform. 

 Average angular acceleration  . 

 Relation between angular acceleration and linear acceleration

.ra ×= α

 It is an axial vector whose direction is along the change in
direction of angular velocity i.e. normal to the rotational plane,
outward or inward along the axis of rotation (depends upon the
sense of rotation).

3.5.5 Uniform Circular Motion 

A particle moving in a circular is said to perform uniform circular 
motion if its speed remains constant. Since rv ω= , the angular speed (ω ) 
is also constant in a uniform circular motion. 
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         Figure - 11 

For a particle moving uniformly in a circle, the time required to 
complete one rotation is called time period (T). 

sradT
rads ω

π
ω

π 22
1 == −

T
πω 2

⇒
….…………… (10) 

Frequency (f) of rotation is defined a
s
 the number of completed rotations 

per unit time. 

π
ω
2

1
==

T
f

 
.2 fπω =⇒ ….…………… (11) 

Unit of frequency is s-1 also known as hertz (Hz). 

 Figure - 12 

If a particle moves in a circle with changing speed, its motion is 
said to be non-uniform circular motion. 

3.5.6 Relation between Angular Velocity and Linear Velocity  
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Let us consider a body P moving along the circumference of a 
circle of radius r with linear velocity v and angular velocity w as shown in 
Figure 13. Let it move from P to Q in time dt and d  be the angle swept by 
the radius vector. 

 Figure - 13 

Now, Suppose PQ = ds, be the arc length covered by the particle moving 
along the circle, then the angular displacement d  is expressed as d  = 
ds/r. But ds = vdt 

d /dt = v/r 

i. e.  Angular vel. or ….…………… (12) 

In vector notation 

….…………… (13) 

3.5.7 Relation between Angular Acceleration and Liner 
Acceleration 

Figure-14 

We know that, 

Linear acceleration = Rate of change of linear velocity 
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…….. (14) 

Angular acceleration = Rate of change of angular velocity 

…….. (15) 

Using equation (14) and (15), we get 

⇒ 

In vector form 

Example - 3 

What is the ratio of the angular speeds of the minute hand and 
the hour hand of a watch? 

Solution: 

For minute had: 

For hour hand:  

Example - 4 

A flywheel of diameter 2 m has an angular speed of 120 rpm. 
Find the linear speed of a point on its rim. 

Solution: 

r = 1.0 m 
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Example - 5 

Angular displacement of a particle moving in a circle of radius 
r = 1 m is given by     

(i) Find its angular velocity at time t = 2 s. 

(ii) Find its average angular velocity in the first 2 s of its 
motion. 

Solution: 

(i) 

(ii) 

Example - 6 

Radius of the Earth is R = 6400 km. Find the speed of a man 
standing on the surface of the Earth at a latitude in 60o. 

Solution: 

Man is rotating in a circle of radius r = R cos 60o = 3200 km. 

Angular speed of the Earth 

While calculating torque of a force about an axis, one just needs to 
learn the following three points: 

1. If the given force is parallel to the axis, torque about the said axis
is zero.

2. If the line of action of the force intersects the axis, there is no
torque.

3. A force F has torque about an axis (say z) only when F is neither
parallel to z-axis nor its line of action intersects z-axis. When a
force is perpendicular to z-axis about it line of action does not
intersect it (skewed lines), torque about z-axis is  where d
is the perpendicular distance between the line of force and z-axis.
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Self-Assessment Question (SAQ) 
7. Find the angular speeds of the second hand and the minute hand of

a watch.

8. Find the speed of the tip of the hour hand of a watch. The tip of the
hour is 1cm long.

3.6 ANGULAR MOMENTUM 

The angular momentum of a particle about a fixed point is defined 
as the moment of its linear momentum about that point. It is measured 
by the vector product of linear momentum of the particle 
and its vector distance  from the fixed point in the inertial frame. 

Figure-15 

Angular momentum vmrprL ×=×=

Angular momentum being the vector product of two vectors is 
obviously a vector quantity. Its direction is perpendicular both to   
and  or  as given by the right-hand screw rule. 

Note: We know the importance of linear momentum in dealing with the 
translational motion of a particle or a system of particles. Angular 
momentum is an analogous concept in dealing with rotational 
motion. 

3.6.1 Angular Momentum of a Particle 

Consider a particle moving with momentum P . Position vector of 
the particle (at any instant) is r  with respect to a point O. Angular 
momentum of the particle about O is defined as 

)( vmrPrL ×=×=    ……………….. (16) 
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where m and v  are mass and velocity of the particle. 

Consider the plane defined by r  and P  to be our xy-plane. 
Angular momentum ( L ) is a vector directed perpendicular to r  and P  and 
it must be along z-direction. In the figure shown, Pr ×  (by right hand 
rule) is along positive z-direction. If the particle were moving in exactly 
opposite direction. Pr ×  would have been along negative z-direction. 

Figure - 16 

Magnitude of angular momentum of the particle about O is 

PrrPL
⊥

== θsin ……………… (17) 

where P⊥  component of momentum perpendicular to r . One can
also interpret the above expression as 

rPrPL
⊥

== )sin( θ ……………. (18) 

where r⊥ is perpendicular distance of line of P  from O.

Note: Unit of a angular momentum is kgm2s-1. 
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In this fig. L  is directed out of the plane of the fig. Direction of 
L about O can also be conveyed simply by saying that it is 
anticlockwise 

Figure - 17 

However, if the motion is not restricted to xy plane, angular 
momentum of the particle about O can be in any direction. The component 
of PrL ×= parallel to z-axis is defined as angular momentum of the 
particle about z-axis (Lz) 

Mathematically, Fr ×=τ and PrL ×=

3.6.2 Angular momentum of a rigid body 
The sum of the moments of the linear momentum of all the 

particles of a rotating rigid body about the axis of rotation is called its 
angular momentum. 

When a body is free to rotate about an axis the angular velocity of 
all the particles, at whatever distance they may be, is the same. Since the 
distance of the various particles from the axis of rotation is not the same, 
their linear velocities will be different. 

Figure - 18 

Where, 

......,

.......,

.....,

21

21

21

rrr
vvv

mmm

i

i

i

=

=

=

Consider the particles of the rigid body lying at 
distances from the  axis of rotation XY and having magnitudes 
of linear velocities   respectively.  If  is the magnitude of 
angular velocity, then 
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Linear velocity of the particle 

Magnitude of linear momentum of the particle 

Hence the magnitude of moment of linear momentum or angular 
momentum of the  particle  about the axis of rotation 

Similarly, the moment of linear momentum or angular momentum 
of the particle   about the axis of rotation 

Sum of the magnitudes of moments of linear momentum or 
angular momentum  of all the particles or 

……. (19) 

Where,  moment of inertia of the rigid body about the 
axis of rotation and L is the magnitude of the angular momentum. 

Vectorially  ωIL =               …….... (20) 

Example-7 

A particle has momentum  and its 
jyixr ˆˆ += . Find theposition vector at an instant is 

angular momentum of the particle 

(a) About the origin (b) about the z-axis. 

Solution: 

PrL ×=

(a) )ˆˆ()ˆˆ( jijyixPrL PP yx +×+=×=

kyPxP xy
ˆ)( −=

(b) Angular momentum about z-axis - z component of L

∴ yPxPL xyz −=

Example-8 

Calculate the angular momentum of the earth rotating about 
its own axis of rotation. Mass of the earth 

Mean radius 

Solution: 

Angular momentum ωIL =  

jiP PP yx
ˆˆ +=
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Taking the earth to be a solid sphere, moment of inertia of the earth 
about its own axis (a diameter) 

As the earth rotates once in 24 hrs. about its own axis, the 

Angular velocity 

Moment of inertia 

          Angular momentum ωIL =  

Self-Assessment Questions (SAQs) 
9. Calculate angular momentum of Neptune about the sum. Given,

mass of Neptune = 1027 kg ; its distance from sun is 5 × 1012 m and
period of revolution around the sun = 5 × 109 s.

10. A disc is rotating with angular speed ω . If a child sits on it, what
is conserved?

11. Can a body in translatory motion have angular momentum?
Explain.

12. Choose the right option: -

(i) Angular momentum is 

(A) Axial vector  (B) polar vector 

(C) scalar   (D) None of the above 

(ii) The moment of momentum is called 

(A) couple   (B) torque 

(C) impulse  (D) angular momentum 

(iii) Angular momentum of a body is defined as the product of 

(A) mass and angular velocity  

(B) centripetal force and radius 

(C) linear velocity and angular velocity 

(D) moment of inertia and angular velocity 
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(iv) The unit of angular momentum is 

(A) N m  (B) kg m-1 s-1 

(C) kg m2 s-1 (D) kg2 m2 s-1 

3.7 TORQUE OR MOMENT OF FORCE 

Torque is a physical quantity that measures the turning effect of a 
force. 

When you switch on a fan, it begins to rotate with increasing 
speed. The fan is experiencing a torque (applied by electric motor). since 
there is no acceleration of the COM of the fan, we know that the sum of 
all force on it is zero. 

This implies that forces may have zero resultant but non-zero turning 
effect. 

Figure-19 

Torque. If a force  acts on a particle at a point P whose position 

with respect to the origin O of the inertial frame is given by the 

displacement vector , the torque  on the particle with respect to the 

origin O is defined as )ˆsin( nrFFr θτ =×= , where θ  is smaller angle

between  and  ; n̂  is unit along   
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Figure-20 

Torque is a vector quantity. Its direction is normal to the plane 
formed by  and  and the sense is given by the right-hand rule for the 
cross product of few vectors. 

Units. The unit of torque is Newton metre (Nm). 

3.7.1 Expression for Torque in Polar Co-ordinate 
We know that, expression for torque in cartesian co-ordinate is 

)( FF xy yx −=τ                                                                        ….……… (19)

Let, the line of action of force F  makes an angle α with X-axis, 
Fig.21. 

∴ Fx = F cos α ……….(20) 
Fy = F sin α  ……… (21) 

If x, y are the co-ordinates of the point P, 

where rOP = and ,θ=∠XOP

then x = r cos θ 
……… (22) 
and y = r sin θ 
……… (23) 
Substituting these values in Equation (19), we get 

)cos)(sin(sin)cos( αθαθτ FrFr −=

]sincoscos[sin θαθα −= rF  
)sin( θατ −= rF

……… (24) 
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Figure - 22 

Let ɸ be the angle which the line of action of F makes with the 

position vector rOP = . 

As is clear from 21,  θ+ɸ=ɑ  or ɸ+θ=θ 
Putting the value in Equation (24), we get  

φτ sinrF=  ……… (25) 
Equation (25), is the expression for torque in polar co-ordinates. 

3.7.2 Power Associated with Torque 
We know that,  

work done (dW) in rotating a particle through a small angle (d  as 

………… (26) 

If this work is done in a small-time interval dt, then dividing both 
sides of equation (26) by dt, we get 

………… (27) 

Now, by definition,  the average power associated with 

torque. 

and average angular speed of the bod in this interval. 

From (27), 

i.e. power associated with torque is given by the product of 
torque and angular  speed of the body about the axis of rotation. 
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In linear motion, the corresponding relation for power is 

3.7.3 Relation between Torque and Force 

We know that, Torque is defined as the time rate of change of 
angular momentum. 

Torque dt
Ld

=τ
………… (28) 

but prL ×= ………… (29) 

Now dt
Ldrp

dt
rdpr

t
d

dt
Ld

××=×= )(

But 

Fr ×=τ ………… (30) 

Torque is the vector product of position vector  and force 

3.7.4 Relation between Torque and Angular Momentum 

As, we know that, 

The vector relation between angular momentum L  and linear 

momentum p  is prL ×=

Differentiating both sides w.r.t. time
,
 we get 

)( pr
dt
d

dt
Ld

×=

Applying the product rule for differentiation on the right-hand side, 

dt
pdrp

dt
rdpr

dt
d

×+×=× )(
………… (31) 

Now 
== v

dt
rd

velocity of the particle and vmp =  linear
momentum of the particle 
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,0==× vmvp
dt

rd
 as the cross product of two parallel vectors is 

zero. Further, as -- 
,F

dt
pd

=
 therefore, from (93), 

τ=×=× Frpr
dt
d )(

or 
τL

dt
d

=)(
………… (32) 

Hence the time rate of change of angul
a
r momentum of a particle 

is equal to the torque acting on it. 

Equation (32) is the rotational analogue of the equation 

,=)( Fp
dt
d

 ........… (33) 

Which represents Newton’s second law for the translational motion 
of a single particle. 

Example-9 

A force  acts at a point having position vector 

(i) Find the torque of the force about the origin. 

(ii) Find the torque of the force about z-axis. 

Solution: 

(i) 

(ii) z-component of  is known as torque about z-axis. 

(i) 

(ii) 

Example-10 

A force i.e., N acts at a point (2, 2)m. Find torque of the
force about the origin. 

Solution: 
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Example-11 

In the figure shown, find torque of force F about O. Given F = 
20N, d = 1 m. 

Solution: 

Figure - 23 

Component of force perpendicular to OP is 

OR, 

Angle between  and   is 60o. 

Example-12 

AB is a rod. Two forces of same magnitude F act at the two 
ends of the rod in opposite directions. Show that torque on the 
rod is same about A or B or any other point C. Such pair of 
equal and opposite forces are often known as a couple. 

Solution: 

Torque about C: 

Where L is the length of the rod. Thus, value of torque is 
independent of choice of point C. 

Example-13 Choose the correct option: 
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During paddling of a bicycle, the force of friction exerted by 
the ground on the two wheels is such that it acts, 

(A) in the backward direction on the front wheel and in the 
forward direction on the rear wheel. 

(B) in the forward direction on the front wheel and in the 
backward direction on the rear wheel. 

(C) in the backward direction on both the front and the 
rear wheels. 

(D) in the forward direction on both the front and the rear 
wheels. 
Solution: 

This problem is explored in detail for conceptual clarity. Let a non-
rotating  disc of radius r having initial velocity u be gently 
placed on the rough surface. 

Figure- 24 

Initial velocity of the contact point P,  is 
same as that of the centre C. Thus, P moves towards right relative to the 
surface. To oppose this, frictional force at P acts towards left (sec figure). 
The friction force retards the velocity of C i.e., v < u. (clockwise). This 
torque gives clockwise angular acceleration and disc starts 
rotating clockwise. If the coefficient of friction is sufficiently large then 
retardation and angular acceleration continue till . At this instant, 
velocity of P relative to the surface becomes zero, making f = 0. After it, 
the disc continues to roll without slipping. 
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Now, let a disc with non-zero angular velocity  and zero linear 
velocity (u = 0) be gently placed on a rough surface. Initial velocity of the 
contact point P, , is towards left relative to the 
surface. To oppose this, friction force at P acts towards the right (see 
figure). The friction force increases the velocity of C. The torque about C 
due to friction force is anti-clockwise. This torque gives anti-clockwise 
angular acceleration i.e., . If the coefficient of friction is 
sufficiently large then acceleration and angular retardation continue till 

. At this instant, velocity of P relative to the surface becomes zero, 
making f = 0. After it, the disc continues to roll without slipping. 

Figure- 26 

Now, consider the bicycle. The front wheel is connected to rest of 
the bicycle by a rod passing through its centre (axle). The torque on the 
wheel about its centre by the force coming from the rest of the bicycle is 
zero. Thus, paddling can give linear velocity to the front wheel but cannot 
rotate it. The situation is similar to the first case discussed above and 
friction force acts in the backward direction. The situation of rear wheel is 
different. The rear wheel is connected to the rest of the bicycle by a rod 
passing through its centre and a chain connected to the paddles (see 
figure). Pressing the paddle increases the tension in the upper portion of 
the chain. This tension gives rise to a clockwise torque and wheel starts 
rotating in clockwise direction. Thus, situation of rear wheel is similar to 
the second case discussed above and friction force acts in the forward 
directioAns.A 

Self-Assessment Question (SAQ) 
13. A constant torque of 500 N m turns a wheel of moment of inertia

100 kg m2 about an axis through it centre. Find the gain in angular
velocity in 2 s.

14. A flywheel of mass 25 kg has a radius of 0.2 m. It is making 240
r.p.m. What is the torque necessary to bring it to rest in 20 s? If the
torque is due to a force applied tangentially on the rim of the
flywheel, what is magnitude of the force? Assume that mass of the
flywheel is concentrated at its rim.
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3.8 ROTATIONAL KINETIC ENERGY 
The rotating blade of a fan has some kinetic energy due to 

rotational motion which cannot be expressed directly as 

since all the points do not have same speed. 

To find rotational K. E. we take the fan’s blade as a collection of 
different very small particles called elements. One such elements has mass 
dm and is at distance r from the rotational axis as shown. Its kinetic energy 
can be given as 

………………… (34) 

The rotational kinetic energy of the body is given summing i.e. 
integrating the kinetic energy of all the elements of the body. 

Figure -27 

          …… (35) 

Since  is same for every element of a rigid body so we take 
outside the integral. 

          …… (36) 

We get, 

 …… (37) 

where 

This is the expression for the rotational kinetic energy of a body. 

The above equation (37) is analogous to the  i.e. 

Kinetic energy of boy having translational motion. Here  is analogous to 
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I
KE L

2
=

2

v. Also, I is analogous to mass m i.e. I plays the same role in rotational
motion as that of mass in translational motion. In other words, as the 
inertia to the translational motion is due to the mass, inertia to the 
rotational motion is due to the quantity Moment of Inertia. 

3.8.1 Relation between Angular Momentum Rotational 
Kinetic Energy 
Let a rigid body of moment of inertia I rotate with angular velocity 

ω . The angular momentum of a rigid body is, L = I ω . The rotational 

kinetic energy of the rigid body is, KE = 1/2 ωI
2

. By multiplying the
numerator and denominator of the above equation with I, we get a relation 
between L and KE as, 

II
KE

ωIωI )( 222

2
1

=
2
1

=

   …… (38) 

This is the relation between angular momentum and rotational 
kinetic energy. 

Example-14 

Find the kinetic energy of Earth related to its rotation about its 
axis. Given: Mass of Earth = 6 × 1024 kg, Radius of Earth = 6,400 km. 
Assume that the Earth is a uniform sphere. 

Solution 

We know that, 

Angular speed of Earth is, 

h
radπ

ω
24

2
=

Rotational kinetic energy, 

ωIk 2

2
1

=

Now, 

Angular speed 
1510×3.7=

60×60×24
2

= rad
s

radπ
ω

MI of Earth about its axis 

23242 )10×6400(×10×6×
5
2

=
5
2

= MRI

23710×83.9= kgm UGPHS-101(N)/111



25372 )10×3.7(×10×83.9×
2
1

=
2
1

=⸫ ωIk

J2910×62.2=

Self-Assessment Question (SAQ) 
15. A particle performing uniform circular motion has angular

momentum L. What will be its angular momentum, if its angular
frequency is halved and kinetic energy is doubled?

16. Write an expression for the rotational kinetic energy of a body.

17. If angular momentum is conserved in a system, whose moment of
inertia is decreased, will its rotational kinetic energy be also
conserved? Explain.

3.9 ANGULAR IMPULSE – Momentum Theorem 
In linear mechanics, we used Newton’s second law to show that a net 
force acting on a system changed the momentum of the system. 

We can do the exact same thing in rotational mechanics by using 
Newton’s second law for rotation. In this case a net torque acting on a 
system changes the angular momentum of the system. The product of net 
torque and time is angular impulse. 

     ………(39) 

          ………(40) 

            ………(41) 

The above equation (41) is analogous to impulse momentum theorem in 
translatory motion. 

The L.H.S. term in the equation (41) i.e.  is termed as angular 
impulse and R.H.S. term is the change in angular momentum. 

Equation (41) is the relation between angular impulse of torque and 
change in angular momentum. 
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Example-15 

A fan has moment of inertia 4 kg m2 about its rotation axis. 
When switched on, its motor applies a constant torque of 10 Nm. Find 
the angular speed of the fan 4 s after it is switched on. 

Solution 

We know that, 

One can also find angular acceleration using  and then use 

Now, 

Self-Assessment Question (SAQ) 
18. State the mathematical relationship between the Angular Impulse

of a Torque and change in Angular Momentum produced by the
impulse.

19. What is an Angular Impulse?

3.10 CONSERVATION OF ANGULAR 
MOMENTUM 

Consider a system of n-particles. Suppose that the particles of the 
system are under the action of torques due to external forces acting on 
them. The internal forces between the particles do not contribute to the 
total torque on the system. If  is rate of change of angular momentum of 

the system, then the external torque acting on the system is given by 

In case external torque on the system is zero, then 

Or  = a constant vector 

If are angular momenta of the different 
particles of the system about the axis of rotation then 
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  a constant vector 

It is the mathematical form of the law of conservation of angular 
momentum*, which states that if no external torque acts on a system, then 
the total angular momentum of the system always remains conserved. 

Since angular momentum is a vector quantity; in absence of 
external torque, both its magnitude and direction must remain unchanged. 
For example, when a planet moves around the sun, the torque on the 
planet is due to the sun i.e. from within the system. As no external torque 
is acting on the planet, the constant magnitude of the angular momentum 
vector leads to the constant areal velocity of the planet (i.e. Kepler’s 
second law of planetary motion) and the fixed direction of the angular 
momentum vector points out that the plane of the orbital motion of the 
planet around the sun must remain fixed. 

It may be pointed out that if external forces do not act on the 
system, then both the linear momentum and the angular momentum of the 
system remain constant. 

3.10.1 Application of Angular Momentum 
The following are the Angular Momentum 

1. Deduction of Kepler’s second law of planetary motion.
Consider a planet moving around the sun in elliptical orbit. Let  be the 
position vector of the planet w.r.t. the sun and  be gravitational force on 
the planet due to the sun. Then, torque on the planet due to the force 
exerted by the sun is given by 

The force on the planet always acts along the line joining the 
centres of the planet and the sun and is directed towards the sun. As a 
result, the vectors  and  are parallel vectors and consequently  and 
hence . 

Therefore, for the planet moving under the gravitational force of 
the sun , 

or   = a constant vector 

As proved in section 2.11, the angular momentum of a planet is 
also given by 

, 
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where m is mass of the planet and  is its areal velocity. Since angular 

momentum of the planet is a constant vector. 

  a constant vector 

Therefore, areal velocity of the planet always remains constant. It is 
exactly what Kepler predicted about planetary motion in 1602, i.e. the line 
joining the planet to the sun sweeps out equal areas in equal intervals of 
time. It is known as the Kepler’s second law of planetary motion. 

2. The orbit of the planet always lies in a fixed plane. As discussed
above, when a planet moves in its elliptical orbit, its angular momentum 
vector always remains constant i.e. 

a constant vector 

Since the vector is perpendicular to the plane containing vectors 
 and m , the direction of angular momentum vector will remain 

unchanged, only if the plane containing the vectors   and m  remains 
fixed i.e. the orbit of the planet remains in a fixed plane. 

3. Variation of linear speed of planet in its orbit. Due to the effect
of the gravitational force of the sun, a planet moves along elliptical orbit 
around the sun. Since torque on the planet due to the zero, the angular 
momentum of planet is a constant of motion i.e. 

m v r = constant 

Now, the distance of the planet from the sun continuously varies 
along its elliptical path. Therefore, it can hold only, if the speed of the 
planet also varies accordingly. Therefore, the linear speed of the planet is 
not constant in its orbit. 

3.11 MOMENT OF INERTIA 

 Moment of inertia plays the same role in rotational motion as mass
plays in linear motion. It is the property of a body due to which it
opposes any change in state of rest or of uniform rotation.
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 Moment of inertia of a particle I = mr2; where r is the
perpendicular distance of particle from rotational axis.

 Moment of inertia of a body made up of number of particle
(discrete distribution)



 Moment of inertia of a continuous distribution of mass, treating the
element of mass dm at position r as particle

 dI = dm r2 i.e.,

 Dimension: [ML2T0]

 S. I. unit: kgm2.

 Moment of inertia depends on mass, distribution of mass and on
the position of axis of rotation.

 Moment of inertia does not depend on angular velocity, angular
acceleration, torque angular momentum and rotational kinetic
energy.

 It is not a vector as direction (clockwise or anti-clockwise) is not to
be specified and also not a scalar as it has different values in
different directions. Actually, it is a tensor quantity.

 In case of a hollow and solid body of same mass, radius and shape
for a given axis, moment of inertia of hollow body is greater than
for the solid body because it depends upon the mass distribution.

3.11.1 Physical Significance of Moment of Inertia 

Physical Significance. Moment of inertia plays the same role in 
rotatory motion as mass does in linear motion, i.e., moment of inertia is an 
analogue of mass in linear motion. 
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According to Newton’s first law of motion, a body continues in its 
state of rest or of uniform motion in a straight line unless some external 
force acts upon it. This property of matter is known as inertia. A body 
always resists an external force tending to change its state of rest or of 
linear motion. Greater the mass of the body greater is the force required to 
produce a given linear acceleration. 

Similarly, bodies possess rotational inertia, i.e., a body free to 
rotate about an axis opposes any change in its state of rest or of rotation. 
Greater the moment of inertia of a body greater is the couple required to 
produce a given angular acceleration. 

The moment of inertia depends not only on the mass of a body but 
also on the distribution of mass about the axis of rotation. 

3.11.2 Moment of Inertia of a System of Particles 

Let a system of a particles, having masses m1, m2, …., mi, …. mn 
which are situated at distances r1, r2, …., ri, …… rn respectively, from the 
axis of rotation, as shown in Figure 30. As the moment of inertia of a 
particle is a scalar quantity, the moment of inertia of the system of 
particles will be given by the sum of the moments of inertia of all the 
particles of the system. If I is the moment of inertia of the system of 
particles, then 

Figure - 30 

⇒ 
…………….(42) 

3.11.3 Expression for Moment of Inertia of Certain Regular Bodies 

1. Moment of Inertia of a Circular Ring

(a) Moment of inertia about an axis through its centre and
perpendicular to its plane. 
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Figure - 31 

…………….(43) 

(b) Moment of inertia about its diameter 

Figure - 32 

…………….(44) 

2. Moment of inertia of a Circular Disc

(a) Moment of inertia about an axis through its centre and
perpendicular to its plane. 
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Figure - 33 

…………….(45) 

(b) Moment of inertia about its diameter. 

Figure - 34 

…………….(46) 

3. Moment of inertia of a Thin Rod

(a) When the axis is perpendicular to the length of the rod and
passes through one of its ends. UGPHS-101(N)/119



Figure - 35 

……………… (47) 

(b) When the axis is perpendicular to the length of the uniform 
rod and passes through its centre. 

Figure - 36 

……………. (48) 

4. Moment of inertia of a Thin Rectangular Plates

(a) When the axis lies in the plane of the plate, is perpendicular
to its length and passes through its centre. 
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Figure - 37 

   ………. (49) 

(b) When the axis lies in the plane of the plate, is perpendicular 
to its breath and passes through its centre. 

Figure - 38 

………. (50) 

(c) When the axis is perpendicular to the plane of the plate and 
passes through its centre. 
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Figure - 39 

………. (51) 

5. (a) Moment of Inertia Hollow Cylinder

Figure - 40 

               ………. (52) 
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(b) Moment of Inertia Solid Cylinder 

Figure - 41 

               ………. (53) 

6. (a) Moment of Inertia Hollow Sphere

Figure - 42 

               ………. (54) 

(b) Moment of Inertia Solid Sphere 
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Figure - 43 

               ………. (55) 

3.11.4 Radius of Gyration 
Radius of gyration of a body about a given axis is the 

perpendicular distance of a point from the axis, where if whole mass of the 
body were concentrated, the body shall have the same moment of inertia 
as it has with the actual distribution of mass. 

When square of radius of gyration is multiplied with the mass of 
the body gives the moment of inertia of the body about the given axis. 

or 

………….. (56) 
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Here, k is called radius of gyration. 

Figure-45 

From the formula of discrete distribution 

I = mr1
2 + mr2

2 + mr3
2 + ………… + mrn

2 

If m1 = m2 = ……………… = m then 

I = m(r1
2 + r2

2 + r3
2 + …………… rn

2) 
………….. (57) 

From the definition of Radius of gyration, 

I = Mk2

………….. (58) 

By equating (56) and (57) 

Mk2 = m(r1
2 + r2

2 +r3
2 + ………………. + rn

2) 

nmk2 = m(r1
2 + r2

2 + r3
2 + ……………… + rn

2) 

Hence radius of gyration of a body about a given axis is equal to 
root mean square distance of the constituent particles of the body 
from the given axis. 

 Radius of gyration (k) depends on shape and size of the body,
position and configuration of the axis of rotation, distribution of
mass of the body w.r.t. the axis of rotation.

 Radius of gyration (k) does not depend on the mass of body.

 Dimension [M0L1T0].

 S.I. unit: Meter.
UGPHS-101(N)/125



 Significance of radius of gyration: Through this concept a real
body (particularly irregular) is replaced by a point mass for dealing
its rotational motion.

Example:  In case of a disc rotating about an axis through its centre of 
mass and perpendicular to its plane 

So instead of disc we can assume a point mass M at a distance 
 from the axis of rotation for dealing the rotational motion of the 

disc. 

Example-16 

Find radius of gyration of a uniform solid sphere about it 
diameter. 

Solution: 

We know that, radius of gyration of MK2 = I 

A higher value of implies that the mass is effectively at a larger 
distance from the axis. 

Example-17 

Calculate moment of inertia of earth about its diameter, taking 
it to be a sphere of radius 6400 km and mass 6 × 1024 kg. 

Solution: 

Here, M = 6 × 1024 kg 

R = 6400 km = 6.4 × 106 m 

As 

= 9.83 × 1037 kg m2

Example-18 

If angular momentum is conserved in a system whose moment 
of inertia is decreased, will its rotational kinetic energy be also 
conserved? Explain. 
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Solution: 

Here,  constant 

K.E. of rotation, 

As L is constant, ⸫ 

When moment of inertia (I) decreases, K.E. of rotation (K) 
increases. Thus K.E. of rotation is not conserved. 

Example-19 

If earth were to shrink suddenly, what would happen to the 
length of the day? 

Solution: 

If earth were to shrink suddenly, its radius R would decrease. The 
moment of inertia of earth  would decrease. As no 

external torque is acting on earth, its angular momentum 
 remains constant. As I decreases, T must decrease. 

Hence the length of the day will decrease. 

Self-Assessment Question (SAQ) 
20. Find the moment of inertia of a rod of length 0.5 m and mass 0.2

kg about an axis (a) passing through its centre and (b) through one
end of the rod, the axis being perpendicular to its length in both the
cases.

21. Calculate the moment of inertia of a ring of mass 2 kg and radius
50 cm about an axis passing through it centre and perpendicular to
its plane.

22. Fill in the blanks.

(a) Moment of inertia is a ……………. Quantity.

(b) The SI unit of moment of inertia is …………….

(c) The dimensional formula for moment of inertia is
……………. 

(d) The radius of gyration is a ……………… quantity. 

(e) The SI unit of radius of gyration is …………. 

(f) The moment of inertia of a thin, uniform rod of mass M 
and length L about an axis passing through its centre and 
perpendicular to its length is ……….. UGPHS-101(N)/127



3.12 THEOREM OF PARALLEL AXES 

This theorem states that the moment of inertia of a body about 
any axis is equal to its moment of inertia about a parallel axis passing 
through its centre of mass plus the product of the mass of the body 
and the square of the distance between the two parallel axes. 

If Ic is the moment of inertia of the body about an axis passing 
through its centre of mass and I is moment of inertia about a parallel axis 
at a distance  from it, then according to this theorem, 

I = Ic + Ma2 ………………… (59) 

where M is mass of the body. 

Proof Let AB be an axis through the centre of mass c of the body and A’ 
B’ be an axis parallel to AB and at a distance a from it, as shown in Figure 
46. 

Figure - 46 

Consider a particle of mass m at the point P, at a distance x from the axis 
AB. Then, the moment of inertia of this particle about the axis AB is mx2 
and its moment of inertia about the parallel axis A’ B’ is m(x + a)2. The 
moment of inertia of the whole lamina about the axis A’ B’ is 

………………… (60) 

………………… (61) 

Now, , as the body is balanced about its centre of mass, the 
algebraic sum of the moments of the weights (mg) of all the particles 
about an axis passing through its centre of mass must be zero. Equ. 61.  
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3.13 THEOREM OF PERPENDICULAR AXES 
This theorem states that the moment of inertia of a plane 

lamina about an axis OZ perpendicular to its plane is equal to the sum 
of the moments of inertia of the lamina about two mutually 
perpendicular axes OX and OY in its plane, O being the point of 
intersection of the three axes. 

If Ix, Iy and Iz are the moments of inertia of the lamina lying in the 
XY plane about OX, OY and OZ axes respectively, then according to this 
theorem, 

Ix, = Iy + Iz ………………… (63)

Proof Let OX, OY and OZ be three mutually perpendicular axes, OX and 
OY being in the plane of the lamina and OZ, perpendicular to it, as shown 
in Figure 47. 

Figure - 47 

Consider a particle of mass m at point P in the plane of the lamina, the 
distance OP being r. As is obvious from the figure, the moment of inertia 
of the particle about the x-axis and y-axis are my2 and mx2 respectively. 
The moments of inertia of the whole lamina about the x-axis and y-axis 
are, therefore, 

………………… (64) 

The moment of inertia of the lamina about the z-axis is 

………………… (65) 

Now, 

            ………………… (66) 
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Example-20 

The moment of inertia of a uniform circular disc about a 
tangent of the disc in its own plane is given by  where the 

symbols have their usual meanings. Using this relation, find its 
M.I. about an axis through its centre and perpendicular to the 
plane. 

Solution: 

If  is M.I. of the disc about its diameter, then from the theorem of 
parallel axes, we have 

or 

From the theorem of perpendicular axes, M.I. of the disc about an 
axis through its centre and perpendicular to its plane is given by 

Example-21 
A uniform thin rod has mass M and length L. Find its MI 
about an axis that is perpendicular to the rod and passes 
through it COM. 

Solution: 
We will use parallel Axis theorem, for solving: 

We know that, Moment of Inertia about an axis through one end 
and perpendicular to the rod is 
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Other axis is parallel to this axis and passes through COM. 

 gives 

⇒ 

Self Assessment Question (SAQ) 
23. State and prove the theorem of parallel axes.

24. State and prove the theorem of perpendicular axes.

3.14 WHAT IS ROLLING MOTION? 

A motion that is a combination of rotational and translational 
motion is called Rolling Motion e.g. a wheel rolling down that road. 

(Rotational Motion) 
Figure – 49 

(Translational Motion) 
Figure – 50 

(Rotational Motion + Translational Motion = Rolling Motion) UGPHS-101(N)/131



3.14.1 Types of Rolling Motion 
Rolling Motion is classified mainly two types: 

(a) Pure Rolling or Rolling without slipping/sliding or perfect rolling 
motion. 

(b) Impure rolling or rolling with slipping sliding or imperfect rolling 
motion. 

Rolling motion of a body can be analyzed by considering it as a 
superposition of translational motion of center of mass of body plus 
rotational motion of body about an axis passing through center of mass of 
body. 

(a) Pure Rolling Motion : If the relative velocity of the 
contact (between body & platform) is zero then the rolling 
motion is said to be pure rolling motion. 

Figure - 51 
(b) Impure Rolling Motion : In impure rolling motion, the 

point of contact of the body with the platform is not 
relatively at rest with respect to platform on which it is 
performing rolling motion, as a result sliding. For impure 
rolling motion, 

Figure - 52 

If platform is stationary i.e. then condition for 
impure rolling motion is 

For impure rolling, as 

3.14.2 Kinetic Energy of a Rolling Body 
When a body rolls on a surface, it has two types of motion – 

translational motion and rotational motion. Accordingly, it has two types UGPHS-101(N)/132



of kinetic energy – translational kinetic energy and rotational kinetic 
energy. If I is the moment of inertia of the body about the axis through its 
centre of mass and parallel to the surface and,  its angular velocity, then 

rotational kinetic energy ………….. (67) 

If m is the mass and  be the linear velocity of the centre of 
mass of body, then 

translational kinetic energy . ………….. (68) 

Hence, the total kinetic energy E of the rolling body is equal to the sum of 
its translational kinetic energy and rotational kinetic energy. That is,  

⇒    ………….. (69) 

This is the expression for the kinetic energy of rolling body. 
Therefore, 

As  it is clear from Equation (69) that the kinetic energy of a 

body when it is rolling is greater than when it simply slides with the 
velocity 

3.14.3 Condition for Rolling Without Slipping 
Consider a circular/spherical body of radius R rolling on a 

horizontal surface, as shown in Figure 10.31. Let the velocity of its centre 
of mass be . If  is its angular velocity of rotation, then the linear 
velocity of any point on its circumference due to rotation will be , 
its direction being different at different points on its surface. At the 
topmost point A, its direction will be parallel to , whereas at the lowest 
point, its direction will be opposite to 
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Therefore, the linear velocity of the topmost point A is 

and that of the lowest point B is 

If the body rolls without slipping, then its velocity at the lowest 
point, which is in contact with the horizontal surface, must be zero. 
That is, for rolling without slipping, 

⇒                  ………….. (70) 

The relation expressed by Equation 10.86 is the 
condition for pure rolling motion. 

Join the diameter AB and on this vertical diameter, take two points 
P and Q at distances  from the centre of mass O. Then, at point 
P,  and  are in the same direction. Hence, the instantaneous 
velocity of the point P is 

⇒ ………….. (71) 

Again, at the point Q,  and  are in the opposite directions. 
Hence, the instantaneous velocity at the point Q is 

⇒ ………….. (72) 

Obviously, velocity at the highest point A is 

………….. (73) 

and that at the lowest point B is 

………….. (74) 

The velocities at different point of the vertical diameter are shown in 
Figure 10.31 in magnitude and direction. If the motion of the body on a 
rough horizontal surface is not pure rolling, then the velocity at the point B 
of the body with respect to the horizontal surface will not be zero and 
work will be done by the frictional forces. 

We now consider the following two cases. 

1.  In this case, point B in contact with the horizontal 
surface will have a tendency to move forward and hence, a 
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force will decrease the value of  and will produce a torque in 
the clockwise direction, thus increasing the value of . At a certain 
instant, when  becomes equal to , the relative velocity of 
the point B in contact with the horizontal surface becomes zero and 
pure rolling results. 

2. In this case, point B in contact with the horizontal 
surface will have a tendency to move backward (towards left) and 
the frictional force will act towards right in Figure 53. The  
frictional force will increase the value of  and will produce a 
torque in the anticlockwise direction, thus decreasing the value of 

At a certain instant, when becomes equal to , the 
relative velocity of the point B in contact with the horizontal 
surface becomes zero and pure rolling results. 

In both the cases, therefore, pure rolling results after some time, 
whatever be the initial conditions. 

As discussed above, in pure rolling motion there is no sliding of 
the rigid body over the rough surface, hence no work is done by 
the frictional force. This is strictly true only when the rolling 
bodies and the surface over which they roll are perfectly rigid and 
no deformation occurs.  

3.14.4 Motion of a Rolling Body on an Inclined Plane 
Consider a body (hollow sphere, solid sphere, ring, disc, hollow 

cylinder or solid cylinder) of mass M, radius R, and moment of inertia I 
about the axis of rotation, rolling down an inclined plane of inclination  
with the horizontal, as shown in Figure 54. The forces acting on the rolling 
body are 

1. its weight Mg, vertically downward,

2. normal reaction Ɲ, by the inclined plane in the direction shown,
and

3. frictional force f, opposite to the direction of motion of the body
(that is, up the plane).
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The line of action of the weight Mg of the body and the normal 
reaction Ɲ, both pass through the centre O of the rolling body. Hence, the 
moments of the forces Mg and Ɲ about the centre O of the body is zero. 
These to not play any role in increasing the angular velocity  of the 
rolling body. The only force that may increase the angular velocity of the 
rolling body is the frictional force f whose line of action does not pass 
through the centre O. Its moment about the point O is f. R in anticlockwise 
direction and this increases the angular velocity of the rolling body. 

Figure - 55 
If the body rolls up the plane, as shown in Figure 55, then to 

decrease its angular velocity, the frictional force f on it at the point of 
contact with the inclined plane will act along the plane and in the upward 
direction. The moment of this force f, or torque, on the body in this case 
will be f. R in the anticlockwise direction which will slow down the 
angular velocity of the rolling body. Note that in either case, the frictional 
force acts up the plane. 

3.15 ACCELERATION OF A BODY ROLLING 
DOWN AN INCLINED PLANE

Consider a body of mass M and radius R rolling down a rough 
inclined plane, having an inclination  with the horizontal. Let the body 
start from point A as shown in Figure 56. As the body starts rolling down 
the plane, it gains kinetic energy, but loses potential energy. Consider a 
point B at a distance s away from the point A. If v is the linear velocity of 
the centre of mass of the body and, K, its radius of gyration, then 

gain in kinetic energy of the body 

and loss in its potential energy 
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where  is the height through which it falls in moving from 
point A to point B. Applying the principle of conservation of 
energy, we get 

gain in kinetic energy = loss in potential energy 

⇒ 

⇒               ……….. (75) 

As the body starts from rest point A, its velocity is given by 

  ……….. (76) 

where a is the linear acceleration of the body down the plane. 

Using equations 75 and 76, we get 

⇒               ……….. (77) 

This is an expression for acceleration of a body rolling down an 
inclined plane. 

Example-22 

A solid sphere starting from rest rolls 5.3 as without slipping 
along a smooth inclined plane 1 m in length, the angle of 
inclination being  What is the acceleration due to 
gravity at that place? 

Solution: 

If a is the acceleration down the plane, then 

(i) 

With this acceleration the body covers a distance of s = 1 m in time 
t = 5.3 s. 

Hence, using 

we get 

⇒             (ii) UGPHS-101(N)/137



Using equations (i) and (ii), we get 

Solving this, we get g=9.8m s-2. 

Self-Assessment Questions (SAQs) 
25. Calculate the kinetic energy of rolling ring of mass 0.2 kg about an

axis passing through its center of mass and perpendicular to it, if is
center of mass is moving with a velocity of 3 m/s.

26. A solid sphere is rolling down an inclined plane without slipping
of height 20 m. Calculate the maximum velocity with which it will
reach the bottom of the plane. (g = 10 m/s2)

3.16 SUMMARY 

In the present unit, we have studied about kinematics of rotational 
motion, angular velocity, angular displacement, angular acceleration, 
torque, moment of inertia, angular impulse, rotational kinetic energy and 
radius of gyration etc. 

Angular Acceleration: The rate of change of angular velocity. 

Angular Displacement: Rotational analog of change of position. 

Angular Velocity: A measure of the rotation rate of a rotating object. 

Radian: The natural measure of angle and, also, the official SI unit of 
angle; it is the ratio of the arc length to the radius on a circle or circular 
arc. 

Rotational Motion: Motion about fixed axis. 

Torque: The rotational analog of force; torque depends on force and 
where that force is applied. 

Translational Motion: Moving from place to place. (only linear 
direction) 

General Motion: Consists of both linear and rotational motion. 

In the unit, we have studied about moment of inertia and its Physical 
Significance with some practical afflictions. We have also proved theorem 
of Parallel and Perpendicular axes with some examples. 

These theorems make easy to find out the moments of inertia of certain 
regular bodies. We have contained several examples conceptual questions 
and self-assessment questions (SAQs) to check your progress. 
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3.17 TERMINAL QUESTIONS 

1. Write answers to the following questions.

(a) What is rotatory motion? Give two examples.

Ans. Rotatory motion - A body is said to be in a rotatory motion or
a circular motion if it moves about a fixed axis without changing
the radius of its motion.

Example- The blades of a fan, a spinning wheel.

(b) What is meant by circular motion? Give one example.

Ans. The motion of a body along a circular path is called circular
motion.

Example- A girl is whirling a stone tied at the end of a string in a
circular path.

(c) How does a rotatory motion differ from the circular motion?

Ans. (i) In rotatory motion, the axis of rotation passes from a point
in the body itself whereas in circular motion, the axis of revolution
passes through a point outside the body. Thus, the motion of earth
around the sun is the circular motion whereas the motion of earth
about its own axis is the rotational motion.

(ii) In the circular and rotatory motions, the distance of a point of
the body from a fixed point always remains same, whereas it is not
same in curvilinear motion.

(d) What do you mean by translatory motion? Give one example.

Ans. If an object like a vehicle, moves in a line in such a way that
every point of the object moves through the same distance in the
same time, then the motion of the object is called translatory
motion.

Example- The motion of an apple falling from a tree the motion of
a man walking on a road, the motion of a box when pushed from
one corner of a room to the other, are all the translatory motion.

(e) State the two theorems of moment of inertia.

(f) Write down the physical significance of moment of inertia.

2. Define moment of inertia and radius of gyration. What is the
physical significance of moment of inertia?

3. State and explain the following:

(i) Theorem of parallel axes

(ii) Theorem of perpendicular axes.

4. Define the terms torque and moment of inertia. Establish the
relation between these quantities.
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5. Define torque. Derive the relation between torque and moment of
inertia.

6. Establish the relation between kinetic energy and moment of
inertia for a rigid body.

7. Derive an expression for the rotational kinetic energy of a rigid
body rotating with an angular velocity  and hence define moment
of inertia.

8. What must be the relation between l and R if the moment of inertia
of the cylinder about its axis is to be the same as the moment of
inertia about the equatorial axis?

M.I. of a cylinder about its own axis

M.I. about equatorial axis is given by 

When both are equal i.e. I = I’ we get 

or 

9. A flat thin uniform disc of radius a has a hole of radius b in it at a
distance c from the centre of the disc {c < (a – b)}. If the disc were
free to rotate about a smooth circular rod of radius b passing
through the hole, calculate the moment of inertia about the axis of
rotation.

Let M be the mass of the disc of radius a and having a hole of
radius b at a distance c from the centre of the disc.

If the hole were supposed to be at the centre , then the moment of
inertia of the disc about an axis through O ad perpendicular to the
plane of the disc

Applying the principle of parallel axis, moment of inertia about an 
axis, passing through the centre of a circle of radius b at a distance 
c from the centre of the disc 

10. Explain the concept of angular momentum and discuss the physical
meaning of angular momentum.

11. Write down the relationship between the Angular Impulse of a
Torque and change in Angular Momentum Produced by the
impulse.
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(a) Angular Velocity 

(b) Uniform Angular Velocity 

(c) Angular Displacement 

(d) Angular Acceleration 

(e) Angular Impulse 

(f)  Moment of Force 

13. What is rolling motion. Write down the acceleration of a body
rolling down an inclined plane.

14. Explain different type of rolling motion.

15. Obtain expression for Kinetic Energy of rolling motion.

16. When a body is under pure rolling, the fraction of its total kinetic
energy which is the purely rotational is . Identify the body.

Solution: 
In this type of questions calculate the expression for moment of 
inertia I and that helps in identifying the body. 

Rotational 

Translational 

Total 

Given, 

or 

For pure rolling put 

or 

So, the rolling body is hollow sphere. 

17. Establish the relation between Torque and Force of a rigid body.

18. Derive the relation between Angular Acceleration and Linear
Acceleration.

19. Derive an expression for Angular Momentum of a Rigid Body and
Torque.

20. Draw analogy/comparison between Rotational Motion and
Translational Motion.
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21. Use the theorem of parallel axis to calculate moment of inertia of a
disc of mass 400 g and radius 7 cm about an axis passing through
its edge and perpendicular to the plane of the disc.

Ans. Given, M = 400 g ; R = 7 cm

M.I. of the disc about an axis through the edge and perpendicular
to its plane

22. A disc of mass 5 kg and radius 0.5 m rolls on the ground at the rate
of 10 ms-1. Calculate the kinetic energy of the disc.

Ans. Given, M = 5 kg ; R = 0.5 m ; v = 10 m s-1

K.E. of translational motion

and K.E. of rotation 

Therefore, total kinetic energy of the disc 

23. Is radius of gyration of a body constant quantity?

24. What is moment of inertia of a (a) ring (b) disc about its diameter?

25. Match the following:

Column A Column B 

(a) Circular Motion (i) a running fan 

(b) Periodic Motion (ii) a car moving in a market 

(c) Vibratory Motion (iii) revolution of earth around the 
sun 

(d) Rotatory Motion (iv) motion of wire of a guitar 

(e) Non-Uniform Motion (v) motion of pendulum of a 
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26. Match the following:

Column A Column B 
(a) Rotational Analogue of mass (i) Moment of Inertia 
(b) Moment of Inertia hollow sphere (ii) MR2 
(c) Moment of Inertia of the Rod (iii) 

(d) Rotational Analogue of Force (iv) Torque 
27. Write down the types of motion being performed by each of the

following:

(a) Vehicle on a straight road

(b) Blades of an electric fan in motion

(c) Pendulum of a wall clock

(d) Smoke particles from chimney

(e) Hands of a clock

(f) Earth around the sun

(g) A spinning top

Ans. (a) Rectilinear motion 

(b) Rotatory motion 

(c) Oscillatory motion, periodic motion 

(d) Non-periodic motion 

(e) Uniform circular and periodic motion 

(f) Rotatory motion, circular motion and periodic motion 

(g) Rotatory motion 

3.18 SOLUTIONS AND ANSWERS 

Self-Assessment Question (SAQ) 
1. Hint (Section – 3.3)
2. Hint (Section – 3.3.1, 3.3.2)
3. Hint (Section – 3.3.3)
4. Hint (Section – 3.3.5)

5. Given,
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Angle traced by the motor in the process is 

No of revolution 

6. Given,

Now, 

Also, the angle covered by the motor, 

Hence, the number of revolutions completed, 

7. HINT

Hands of a watch move uniformly. For uniform motion

For the seconds hand: 

For the minute hand: 

Note that angular speed does not depend on the length of the hands 
of the watch. 
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8. HINT

For the hour hand, angular speed is 

The tip of the hand rotates in a circle of radius 1 cm. 

3.19 SUGGESTED READINGS 
1. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl

Walker, John Wiley & Sons.

2. Elementary Mechanics, IGNOU, New Delhi.

3. College Physics, Hugh D. Young.

4. An Introduction to Mechanics Daniel Kleppner and Robert J.
Kolenkow.
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UNIT 4 

DYNAMICS OF MANY PARTICLES 

Structure: 
4.1 Introduction 

4.2 Objectives 

4.3 Centre of Mass 

4.3.1 Definition of Centre of Mass (COM) of a System 

4.3.2 Importance of Centre of Mass 

4.3.3 COM of a Rigid Body 

4.3.4 Velocity and Acceleration of Center of Mas 

4.4 Location of Center of Mass 

4.4.1 Two Particles COM 

4.4.2 Many Particles COM on a Straight Line 

4.4.3 COM of Three-Dimensional Distribution of Particles 

4.4.4 Position of Centre of Mass of Bodies of Regular Shape 

4.5 Center of Gravity 

4.5.1 Difference Between COM and COG (Center of Gravity) 

4.6 Laboratory and COM Frames of Reference 

4.6.1 Perfectly Elastic Collision in One Dimension 

4.6.2 Laboratory Frame 

4.6.3 Center of Mass Frame 

4.6.4 Velocities of Particles in COM Frame and Laboratory 
Frame 

4.6.5 Relation Between Final Velocities and Initial Velocities in 
COM Frame 

4.6.6 Perfectly Inelastic Collision in One Dimension 

4.7 Motion of Centre of Mass of a System 

4.7.1 Velocity of COM 

4.7.2 Acceleration of COM 
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4.8 Linear Momentum of a System of Particles 

4.8.1 Conservation of Linear Momentum 

4.9 Angular Momentum for a System of Particles 

4.9.1 Conservation of Angular Momentum 

4.10 Equilibrium of a Rigid Body 

4.11 Torque of a System of Particles 

4.11.1 Work done by a Torque 

4.11.2 Torque and Newton’s IInd Law for Rotation 

4.12 Kinetic Energy of a System of Particle 

4.13 Gravitational Potential Energy of an Extended Body 

4.14 Difference between Conservation Laws 

4.14.1 Conservation of Linear Momentum for a Particle and 
System of Particle 

4.14.2 Conservation of Angular Momentum for a Particle and 
System of Particle 

4.14.3 Applications of Conservation of Angular Momentum 

4.15 Summary 

4.16 Terminal Questions 

4.17 Solutions and Answers 

4.18 Suggested Readings 

4.1 INTRODUCTION 

In the earlier units, we Primarily considered the motion of a single 
particle. In this unit, we shall study objects consist of many Particles. In 
Principles, studying many – particle system is complicated by the need to 
consider all the forces acting among the Particles, as well as any forces 
applied from outside the system. This unit, we introduce the concept of 
centre of mass of a body, a concept that is essential for describing the 
motion of rigid bodies, and also deal with the centre of gravity, COM and 
laboratory frame of reference. In this unit, we have also covered concept 
of linear momentum, angular momentum, Kinetic energy, Potential energy 
for a system of Particles. In this unit, we also study different aspects of a 
of rotational motion of a rigid body. 
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4.2 OBJECTIVES 

After studying this unit, you should be able to – 

• Understand Concept of Center of Mass and Center of Gravity.

• Compute Numerical based on COM and GOG.

• Define Equilibrium of Rigid Body.

• Explain the Concept of Motion of Center of Mass of a System.

• Relate Comparisons Between Conservation Laws.

4.3 CENTRE OF MASS 

When we consider the motion of a system of particles, there is one 
point in it which behaves as though the entire mass of the system (i.e., the 
sum of the masses of all the individual particles) is concentrated there and 
its motion is the same as would ensue if the resultant of all the forces 
acting on all the particles were applied directly to it. This point is called 
the centre of mass (COM) of the system.  

The Point in the system, where, the whole mass of the system can be 
supposed to be concentrated, is called center of mass of the system. 

It is point in a system which moves as if whole mass of the system 
is concentrated at the point and all external forces are acting on it. Its 
positon is given by 

………….. (1) 

………….. (2) 

………….. (3) 
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Where 

CM – centre of mass 

Mi – mass of the ith particle 

Xi – x coordinate of the ith particle 

Yi – y co-ordinate of the particle 

Note: The concept of COM is very useful in solving many problems, 
in particular, those concerned with collision of particles. 

4.3.1 Definition of Centre of Mass (COM) of a System 
If we have a system consisting of n particles, of mass 

 with  as their position vectors at a given instant 
of time. The position vector …. of the COM of the system at that instant is 
given by : 

………….. (4) 

or 

Figure - 2 

Here,  M = and is called the first 
moment of the mass. 

Further, 

and 

So, the cartesian co-ordinates of the COM will be 
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Figure - 3 

or 

Similarly, 

and  

4.3.2 Importance of Centre of Mass 
The centre of mass (COM) of a system of particles moves as if the 
entire mass were concentrated there and all external forces were 
applied there. When a stick is tossed in air, each particle 
experiences its weight (  …..) as an external force. 
But, acceleration of particle of mass m1 is not g, because it 
experiences forces applied by neighboring particles also. 

Figure - 4 
The special point in the stick whose acceleration is decided solely by the 
external forces is called its COM. 

If mass of the stick is M = m1 + m2 + m3 + …., then net external 
force on it is 

          …………… (5) 

Acceleration of COM is 

          …………… (6) 
UGPHS-101(N)/151



For describing translational motion of the stick, we consider its entire 
mass at its COM and the sum of all external forces (  …..) 
acting at that point. 

4.3.3 Centre of Mass of a Rigid Body 

Mathematically, position coordinates of the centre of mass of rigid 
body are given by 

          …………… (7) 

4.3.4 Velocity and Acceleration of Centre of Mass 

Velocity of Centre of Mass 

The instantaneous velocity of centre of mass is given by 

          …………… (8) 

Where  is the total linear momentum of centre of mass 

Acceleration of Centre of Mass 

We know that,  

⇒           …………… (9) 

Differentiating equation (9)  w.r.t. time we get  as 

        …………… (10) 

If a force is applied along a line passing through the centre of mass of the 
body. All the particles of the body move with same linear velocity and 
acceleration. 

Figure – 5 

Where  is the vector sum of forces acting on the particles of 
system. 
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Example: 1 
What is the unit of Center of Mass? 

Solution: 
The unit of Centre of Mass is meter(m). 

Example: 2 
Write down expression for the position vector of the centre of 
mass of a system consisting of two objects in terms of their 
masses and position vectors. 

Solution: 

Self-Assessment Questions (SAQs) 
1. What is centre of mass of a system of particles?

2. What is the position vector of centre of mass of two particles of
equal masses?

3. Write down Importance of Centre of Mass.

4.4 LOCATION OF CENTRE OF MASS 

First of all, we find position of COM of a system of particles. Just 
to make the subject easy we classify a system of particles in three groups: 

1. System of two particles.

2. System of a Many Particles on a Straight Line.

3. Center of Mass of three-Dimensional Distribution of Particles

Now let us take them separately. 

4.4.1 System of Two Particles 

The given figure shows two particles of masses m1 and m2, placed 
on the x-axis, at co-ordinates x1 and x2 respectively.  
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The position of COM for the system of two particles is given by 

........…… (11) 

Where, M = m1 + m2 is the total mass of the system. The COM of 

a two-particle system lies somewhere between them on the line 

joining the two. 

Figure - 7 
If the origin is chosen at the position of mass m1, then x co-

ordinate of COM is he distance of the COM from the particle of mass m1. 
Let us assume this distance as r1 and let the distance between the two 
particles be r. 

or 

Distance of the COM from m2 is 

It is easy to see that 

⇒ 
……. (12) 

The last equation (12) leads us to conclude that the COM of the 
system will be closer to the heavier mass. 

4.4.2 System of a Many Particles on a Straight Line 
Particles of masses  are located on the x-axis at 

co-ordinates  respectively. The COM of this collection of 
particles lies on x-axis with x co-ordinate of COM given by 
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…..……. (13) 

 where, M is total mass of the system. 
If the position of COM is chosen as the origin. 

then …..……. (14) 

4.4.3 COM of Three–Dimensional Distribution of Particles 
When particles in a system are scattered in a three-dimensional 

space, then the position of COM is defined by three co-ordinates, given as: 

 ……. (15) 

We can also write the above relations in terms of a single vector 
relation. The position vector of the COM of a system of particles is given 
by 

Figure - 9 

        …… (16) 

Where,  are position vectors of particles of masses 
 respectively. 

and 

If we choose the COM of the system as the origin, then 

⇒         …………… (17) 
UGPHS-101(N)/155



4.4.4 Position of Centre of Mass of Bodies of Regular Shape 

Table – 1 

The table given below gives us the position of the centre of mass of some 

of the bodies of regular shape. 

S. 

No. 

Body Position of Centre of Mass 

1. Uniform hollow sphere Centre of the sphere 

2. Uniform solid sphere Centre of the sphere 

3. Uniform circular ring Centre of the ring 

4. Uniform circular disc Centre of the disc 

5. Uniform rod Centre of the rod 

6. A plane square lamina Point of intersection of diagonals 

7. Triangular lamina Point of intersections of the 

medians 

8. Rectangular or cubical

block

Point of intersection of diagonal 

9. Hollow cylinder Middle point of the axis of the 

cylinder 

10. Solid cylinder Middle point of the axis of the 

cylinder 

11. Cone or pyramid On the axis of the cone at a point 
distant 3h/4 from the vertex, where 
h is the height of the cone. 

Example: 3 

A particle of mass m is projected vertically up from a point 

with initial velocity 20 ms-1. Another particle of mass 2m is 

projected simultaneously from the same point, with velocity 20 

ms-1 at an angle of 30o to the horizontal. 

(i) Find the velocity of the COM of the system of two 

particles, one second after their projection. 
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(ii) Final acceleration of the COM of the system, one second 

after their projection. 

Solution: 

and  

(i) Velocity of the first particle after 1 s is 

Horizontal and vertical components of initial velocity of the 

second particle are (Horizontal-x and vertical-y-direction) 

and 

Velocity components after 1 s 

(ii) 

Example: 4 

Two blocks of masses m1 and m2 are connected by an ideal 
spring, having force constant k. The system is placed on a 
smooth floor, and pushed against a wall with compression in 
the spring equal to x. System is released from this position. 

(i) Find the acceleration of the COM of the system, 
immediately after its release. 

(ii) Find the acceleration of the COM of the system, after 
m1 breaks-off the wall. 

Solution: 

(i) The compressed spring pushed the block of mass m1 
against the wall. The wall applies a normal force on m1. 
This is the external force that causes the COM to 
accelerate. 

(ii) Once m1 leaves contact with the wall, there is no 
external force on the system. Now, 

(i) Spring force on the block of mass m1, at the instant the 
system is released, is kx.  
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Normal force exerted by the wall on the block of mas m1 is 
N = kx 

For the system Fext = N = kx 

(ii) As long as the spring is compressed, it will keep the block 
pressed against the wall. When the block of mass m2 moves 
to the right by a distance x, the spring attains its natural 
length. At this instant, the spring does not exert any force 
on the blocks. The normal force by wall on m1 becomes 
zero. The system leaves the wall. After leaving the wall, 
Fext = 0 

⇒ 

Example: 5 

If one of the particles is heavier than the other, to which side 
will their centre of mass shift? 

Solution: 

The centre of mass will shift closer to the heavier particle. 

Example: 6 

Does centre of mass of a sytem of two particles lie on the line 
joining the particles? 

Solution: 

Yes, always. 

Self-Assessment Questions (SAQs) 
4. Derive an expression for the position vector of the centre of mass

of a system consisting of two particles.

5. Two bodies of masses 1 kg and 2 kg are lying in xy plane at (-1, 2)
and (2, 4) respectively. What are the coordinates of the centre of
mass?

4.5 CENTRE OF GRAVITY 
We have discussed, the centre of mass, which is the point where 

the whole mass of the body is supposed to be concentrated. Now in this 
section (4.5) we will discuss the centre of gravity. 

The centre of gravity is that point of the body, where the whole 
weight of the body is supposed to be concentrated. 
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Consider a rigid body as shown in the figure given below. If  is 
the position vector of the ith particle of an extended body with respect to 
the centre of gravity of the body, then the torque about the centre of 
gravity, due to the force of gravity on the particle is given by 

           …………. (18) 

Now, 

The total torque about the centre of gravity is zero. 

           …………. (19) 

Therefore, we may define the centre of gravity of a body as that 
point where the total gravitational torque acting on the body id zero. 

is same for all particles. If the body is small them, we can take g out of 
the summition sign. Now since  is non-zero therefore in the 
above discussion we have taken  as the position vector of ith particle with 
respect to C.G. In the case of centre of mass we have discussed that if 

 this implies that centre of mass must lie at the origin, and now 
C.G. also be at origin. 

Figure - 10 

Thus, we conclude that the centre of gravity coincides with the 
centre of mass because the body being small,  does not vary from one 
point of the body to the other. If the body is so extended that g varies from 
part to part of the body, then the centre of gravity and centre of mass will 
not coincides. UGPHS-101(N)/159



Remember: Centre of mass has nothing to do with gravity, it depends 
only on the distribution of mass of the body. 

Concept of Centre of Gravity (with example) 

Let us take an irregular shaped cardboard and a narrow-tipped 
object like a pencil. You can locate by trial and error a point G on the 
cardboard where it can be balanced on the tip of the pencil. (The 
cardboard remains horizontal in this position). This point of balance is the 
centre of gravity (CG) of the cardboard. The tip of the pencil provides a 
vertically upward force due to which the cardboard is in mechanical 
equilibrium.  

Figure - 11 

As shown in the figure given below the reaction of the tip is equal 
and opposite to Mg, the total weight of (i.e., the force of gravity on) the 
cardboard and hence the cardboard is in translational equilibrium. It is also 
in rotational equilibrium. If it were not so, due to the unbalanced torque it 
would tilt and fall. There are torques on the cardboard due to the forces of 
gravity like m1g, m2g ….. etc, acting on the individual particles that make 
up the cardboard. The CG of the cardboard is so located that the total 
torque on it due to the forces m1g, m2g … etc. is zero. 

4.5.1 Difference Between Centre of Mass and Center of 
Gravity 

Table-2 

The table given below gives us the Difference Between Centre of Mass 
and Center of Gravity UGPHS-101(N)/160



Centre of Mass Centre of Gravity 
1 The centre of mass of a body is a 

point, where the mass of the body can 
be supposed to be concentrated. In 
fact, nothing exists at the location of 
the centre of mass. It is only a 
mathematical concepts. 

1 The centre of gravity 
of a body is a point, 
where the whole 
weight of the body 
may be supposed to 
act. 

2 It refers to mass of the body. 2 It refers to weight of 
the body. 

3 The concept of centre of mass is useful 
to study the complicated motion of the 
body. 

3 The concept of centre 
of gravity is useful to 
study the stability of 
the body. 

4 Centre of mass depends on mass 
distribution. 

4 Centre of gravity 
depends on 
acceleration due to 
gravity ‘g’. 

5 In case of small and symmetrical 
bodies where gravitational field is 
uniform, centre of mass and centre of 
gravity of the body coincide with each 
other. 

5 In case of extended 
and non-symmetrical 
bodies, where 
gravitational field is 
non-uniform, centre 
of mass and centre of 
gravity of the body 
does not coincide with 
each other. 

6 Centre of mass may or may not be 
inside the body. 

6 Centre of gravity 
always be inside the 
body. 

7 7 

Example: 7 
A metal rod of length 50 cm having mass 2 kg is supported on 
two edges placed 10 cm from each end. A 3 kg load is 
suspended at 20 cm from one end. Find the reactions at the 
edges. (take g = 10 m/s2) 
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Solution: 
AB is the rod, C is the centre of gravity and W is the weight of the 
rod acting downward and W1 is the weight of the load suspended at 
point D. Rod is supported at two edges E and F as shown in the 
figure. R1 and R2 are the reaction force at E and respectively. 

Figure - 12 

As the rod is uniform and homogeneous, 

therefore, G is at the centre 

AB = 50 cm, AC = 25 cm, AD = 20 cm, 

CD = 5 cm, AE = BF = 10 cm, ED = 10 cm, 

EC = FC = 15 cm 

W = mg = 2 × 10 = 20 N 

W1 = 3 × 10 = 30 N 

For translational equilibrium, 

R1 + R2 – W – W1 = 0 

{W1 and W act in the downward direction and R1 and R2 
act in the vertically upward direction} 

R1 + R2 – 20 – 30 = 0 

⇒ R1 + R2 = 50 ………….. (i) 

For rotational equilibrium, 

⇒ - R1(EC) + W1(CD) + R2(FC) = 0

⇒ - R1(15) + 30(5) + R2(15) = 0

⇒ R1 – R2 = 10 ………….. (ii) 

Adding (i) & (ii), we get 

2R1 = 60, R1 = 30 N UGPHS-101(N)/162



and  R2 = 50 – 30 = 20 N 

,  

Self-Assessment Questions (SAQs) 
6. Explain what is meant by centre of gravity.

7. Can the centre of gravity of a body be situated outside its material
of the body? Give an example.

4.6 LABORATORY AND COM FRAMES OF 
REFERENCE 
A reference frame is the space determined by a rigid body regarded 

as the base. The rigid body is supposed to extend in all directions as far as 
necessary. A point in space is located by the three co-ordinates taken with 
respect to the origin of the reference system. 

If the origin of the reference system is a point rigidly fixed to the 
laboratory it is known as the laboratory frame. 

The laboratory frame is inertial so long as earth is taken to be an 
inertial frame. 

Centre of mass system (Frame of reference). If the origin of the 
reference system is a point rigidly fixed to the centre of mass of a system 
of particles on which no external force is acting it is known as the centre 
of mass frame of reference. 

In the centre of mass reference frame the position vector of the centre of 
mass  as the centre of mass is itself the origin of the reference 
system. 

The velocity of centre mass 
……………. (19) 

and the linear momentum  of the system is also = 0. 
Hence it is known as a zero-momentum frame. 

Advantages of studying collision process in centre of mass 
system.  

(a)  In the absence of any external force the velocity of the 
centre of mass is a constant. In other words, the centre of 
mass reference frame moves with a constant velocity with 
respect to the laboratory frame. Hence the centre of mass 
frame is also an inertial frame. 

Various physical quantities measured in the two systems 
are related to each other by Galelian transformations 
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provided the velocity of centre of mass is small as 
compared to the velocity of light. 

(b) A system of two particles requires six co-ordinates to 
describe the motion in the laboratory system. Three co-
ordinates are required to describe the motion of centre of 
mass and three more co-ordinates are required to describe 
the relative motion. But in the centre of mass frame we 
require only three co-ordinates as the centre of mass is 
itself at rest in this frame. 

The discussion of a collision process, therefore, becomes 
much simpler in the centre of mass frame of reference than 
in the laboratory frame. 

4.6.1 Perfectly Elastic Collision in One Dimension 
In This section (4.6.1), we have discussed laboratory frame and 

center of mass frame. 

4.6.2 Laboratory Frame: 
Let m1 and m2 be the masses of the two particles  and  and , 

their respective velocities before and after an elastic one-
dimensional collision i.e., a head on collision along the line joining 
their centres, then 

According to the principle of conservation of linear momentum 

          ………….. (20) 

and according to the law of conservation of energy 

          ………….. (21) 

Rewriting equations (i) and (ii) and taking magnitudes only we 
have 

         …………... (22) 

and          …………... (23) 

Dividing (23) by (24) we have   or  

...............…(24) 

This shows that in an elastic one-dimensional collision the relative 
velocity with which the two particles approach each other before collision 
is equal to the relative velocity with which they recede away from each 
other after collision. 

Velocity after collision. From equation (24) we have 
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and  

Substituting the value of  in (22), we have 

or or

……. (25) 

Similarly,        ……. (26) 

Special cases. Case (i): One of the colliding particles is initially 

at rest. Let m2 be initially at rest, then . 

Hence   and ……. (27) 

Case (ii): The particles have the same mass. In such a case 

Putting the value in (25), we have  and putting the value in (26), 

we have      

Hence in one dimensional elastic collision of two particles of equal mass, 

the particles simply interchange their velocities after collision. 

If m2 is also initially at rest, then  and as before 

......…. (28) 

Hence the first particle of mass m1 comes to rest after collision and the 

second particle of mass m2 acquires the initial velocity of the first. 

Case (iii): The particle at rest is very massive. If m2 is very heavy as 

compared to m1 and , then and 

 and 

This shows that when a very light particle collides against a very massive 

particle at rest, the heavy particle continues to remain at rest and the 

velocity of the light particle is reversed. 

A familiar example of this is the dropping of a steel ball on an equally 

hard horizontal surface on the ground. This is in fact a collision between 

the light ball and the massive ground at rest. The velocity of the ball is 

reversed on impact. This is judged from the fact that the ball rises to the 

same height from which it was dropped. UGPHS-101(N)/165



Case (iv): Particle at rest is very light. If the particle at rest is 

very light 

and 

Putting the value in relation (27) we have  and 

This shows that the velocity of the heavy particle remains almost 

the same after collision and the light particle acquires nearly twice 

the velocity of the heavy particle. 

4.6.3 Centre of Mass Frame: 
When no external force is acting, the velocity of centre of mass is 

given by  

As the collision is the dimensional, therefore taking magnitudes only 

 Velocity of the particle of mass m1 before collision 

relative to centre of mass frame according to Galelian transformations is 

given by 

Taking magnitudes only       …….. (29) 

Velocity of the particle of mass m2 before collision relative to 

centre of mass frame according to Galelian transformations is 

given by 

Taking magnitudes only ……..….. (30) 

Velocity after collision. The velocity of the particle of mass m1 

after collision relative to centre of mass frame according to 

Galelian transformations is given by        
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      …….. (31) 

The velocity of the particle of mass m2 after collision in the centre 

of mass frame according to Galelian transformations is given by 

Taking magnitudes only 

      …….. (32) 

The centre of mass is at rest before and after collision relative to 

the centre of mass reference frame. 

4.6.4 Velocities of Particles in COM frame and Laboratory 
Frame 

(In Elastic Collision) 

Consider a particle mass m1 moving with a velocity  in the laboratory 
frame and let it suffer a perfectly elastic collision with a particle of mass 
m2 at rest. 

The velocity of centre of mass of a system of two particles relative to the 
laboratory frame is given by 

Since we have assumed the mass m2 to be initially at rest 

and 

This shows that  and  have the same direction. Let  and  be the 
initial velocity of the particles of mass m1 and m2 before collision in the 
centre of mass frame, then according to Galilean transformation equations. 

and  

[∵  = 0] 

We also i.e., the relative velocity between the
two particles in the laboratory frame and centre of mass frame is the same. 

Taking magnitude only       …….. (33) UGPHS-101(N)/167



      …….. (34) 

4.6.5 Relation Between Final Velocities and Initial 

Velocities in COM Frame 

Let  and  be the final velocities of the particles of mass m1 

and m2 after collision in the centre of mass frame, then  and 

 where  and  are the final velocities of m1 and m2 in 
the laboratory frame. 

In the centre of mass frame, the centre of mass is always at rest, therefore, 
the total linear momentum before and after collision is not only conserved 
but is also equal to zero. 

 and  

From the above relation we get and 

Taking magnitudes only       …….. (35) 

and       ……... (36) 

The negative signs indicate that  and  act along the same straight line 
in opposite directions. Similarly, and also act along the same 
straight line in opposite direction. 

We can say, in other words, in the C.M. system the two particles move 
towards each other before collision and away from each other after 
collision. 

As collision is elastic, the kinetic energy is also conserved. 

       ……. (37) 

Substituting the values of and from (35) and (36) in 
equation (37), we have 

or 

      …….. (38) 

Similarly       …….. (39) UGPHS-101(N)/168



In order words, in an elastic collision in the centre of mass 
frame, the magnitudes of the velocities of the particles do not 
change i.e., there is only a change in direction. 

4.6.5 Perfectly Inelastic Collision in One Dimension 
A collision is said to be perfectly inelastic if the two particles stick 

together after collision. We shall discuss the problem in the laboratory 
frame as well as in the centre of mass frame. 

(a) Laboratory frame. Let m1 and m2 be the masses and 
and  the velocity of two particles before collision. Since 
the two particles stick together on impact let their velocity 
after collision be V. 

Initial linear momentum of mass m1 moving with a velocity 
 Initial linear momentum of mass m2 at rest = 0 

Let the combined mass  move with a velocity  in the 
initial direction then 

Final linear momentum of the system 

According to the principle of conservation of linear 
momentum 

Kinetic energy of m1 before collision 

Kinetic energy of m2 before collision = 0 
[∵ ] 

 Total kinetic energy before collision 

Kinetic energy of combined mass  after 
collision 

As m1 < m1 + m2, T2 < T1 i.e. the final kinetic energy after 
collision is less than the kinetic energy before collision in 
the lab system. 
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Decrease in energy. The decrease in energy 

    ……… (40) 

, where  is the reduced mass. 

(b) Centre of Mass Frame. Velocity of centre of mass 

[∵ ] 

Velocity of m1 before collision in C.M. System 

Velocity of m2 before collision in C.M. System 

After collision the two particles stick together and the combined 
 moves with a velocity equal to the velocity of centre of 

mass with respect to the lab, system and is at rest with respect to 
the centre of mass system itself. Hence according to the principle 
of conservation of liner momentum  

[∵ The final linear momentum = 0] 

or 

Initial kinetic energy of m1 in C.M. system 

Initial kinetic energy of m2 in C.M. system 

  Total 41initial kinetic energy in C.M. system 

[∵  is at rest w.r.t. C.M. system] 

Decrease in kinetic energy. The decrease in kinetic energy 

[∵  = 0] 
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       ……. (41) 

, where  is the reduced mass. 

Comparing relations (40) and (41), we find that the 
decrease in kinetic energy after collision is the same in the 
lab, system as well as in the C.M. system. 

This decrease in K.E. may appear as excitation energy of the 
scattered particle. 

It may also be noted that decrease in energy of the combined mass 
in C.M. system is equal to the initial kinetic energy of the particles in the 
same system. 

Note: Reduced mass is a useful concept in dealing with bonded system – 
a system in which particles are bound to each other. For example, two 
blocks connected with a spring, two stars moving under mutual 
gravitational pull, H2O molecule, etc. 

In general, the reduced mass of a n-particle system is defined 
as 

Example: 8 

Two identical billiard balls collide. Just before collision, they 
were moving with speeds u and 2u in opposite directions. Each 
ball has mass m. 

(i) Find the momentum of each ball in COM frame before 
collision. 

(ii) Find the momentum of the system of two balls in COM 
frame after collision. 

Solution: 

(i) 

(ii) COM frame is zero momentum frame. 

(i) 
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(ii) Momentum of a system is always zero in COM frame. 

Self-Assessment Questions (SAQs) 
7. Obtain an expression Relation Between Final Velocities and Initial

Velocities in COM Frame.

8. Write shorts on Laboratory and COM Frame of Reference.

4.7 MOTION OF CENTRE OF MASS OF A 
SYSTEM 

We know that, Positin vector  of a system of a particles is 

………… (42) 

Differentiating the two sides of the equation with respect to time 
we get. 

………… (43) 

The rate of change of position  can be replace  with 

where is the velocity of the centre of mass. Similarly 

 can be replaced by  We have written 

the above equations by assuming that masses m1, m2, ……. mn do 
not change with time, hence can be taken out of the differentiation 
sign and can be treated as constants. 

Again, differentiating the above equation (44), we get 

Change in velocity is acceleration, so we get 

where a1, a2, …….. an are the acceleration of first, second, and 
…….nth particle respectively and  is the acceleration of the 
centre of mass of the system of particles. 

From Newton’s second law, we know that 

Therefore, the force acting on the first particle given by , 
is the force acting on the second particle and  is the force acting 
on the nth particle therefore equation (46) becomes 
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Thus, we conclude from equation (47) that the product of the mass 
of the system and the acceleration of the centre of mass is the 
vector sum of all the forces acting on the system of particles. 

Here you should remember that, when we talk about the forces 
 on particles of masses m1, m2 …. mn respectively 

then it is not a single force. Let us consider the force  acting on 
particle of mass m1 then, it is not a single force, rather it is the sum 
of all the force acting on particle m1. Similarly  are 
the sum of all forces acting on particles of masses m2, m3, ….. mn 
respectively and this “sum” include all the external and internal 
forces of the particles. 

Now from Newton’s third law, we know that internal forces occur 
in equal and opposite pairs and therefore, in the sum of forces their 
contribution is zero, as they cancel each other. Hence, only 
external forces contribute to equation (47) and we can rewrite the 
equation (47) as 

, where  is the sum of all external forces acting on the particles 
of the system. 

Equation (48) states that the centre of mass of a system of particles moves 
as if all the mass of the system was concentrated at the centre of mass and 
all the external forces were applied at the point. 

Note:  1.  To determine the motion of the centre of mass no knowledge of 
internal forces of the system of particles is required. For this 
purpose, we need to know only the external forces. 

2. To obtain equation (vii) we did not need to specify the nature of
the system of particles. The system may be a collection of
particles or it may be a rigid body.

4.7.1 Velocity of COM 

⇒ ………………… (49) 

………………… (50) 

………………… (51) 

4.7.2 Acceleration of COM 

………………… (52) 

………………… (53) 

………………… (54) UGPHS-101(N)/173



Example: 9 

A particle of mass m is projected vertically up from a point 
with initial velocity 20 ms-1. Another particle of mass 2m is 
projected simultaneously from the same point, with velocity 20 
ms-1 at an angle of 30o to the horizontal. 

(i) Find the velocity of the COM of the system of two 
particles, one second after their projection. 

(ii) Final acceleration of the COM of the system, one second 
after their projection. 

Solution: 

and  

(i) Velocity of the first particle after 1 s is 

Horizontal and vertical components of initial velocity of the 
second particle are (Horizontal-x and vertical-y-direction) 

and 

Velocity components after 1 s 

(ii) 

Example: 10 

In the arrangement shown in figure, the horizontal surface is 
smooth but there is friction between the two blocks. Coefficient 
of friction is . Mass of B is twice that of A. When a horizontal 
force F is applied to B, the two blocks slip on one another. Find 
the acceleration of the COM of the system of two blocks, A and 
B. Mass of A is m. 

Solution: 

Acceleration of the COM depends on external force only. 

Friction force between the blocks is an internal interaction when 
we are considering (A+B) as our system. F is the only unbalanced 
external force on the system. UGPHS-101(N)/174



Figure - 13 

Self-Assessment Questions (SAQs) 
9. Explain the concept of Motion of Centre of Mass of a System.

4.8 LINEAR MOMENTUM OF A SYSTEM OF 
PARTICLES 

 The linear momentum of a particle with mass m and velocity v is
defined as a vector p,

 p = mv

 With p and v in the same direction.

 SI unit: kilogram-meter per second or kg.m/s.

 Newton’s Second Law of motion in terms of momentum:

 The time rate of change of the momentum of a particle is equal to
the net force acting on the particle and is in the direction of that
force.

 In equation form:

 The linear momentum of an object can only be changed by a net
external force!

Substitute  into

Then 

…………(55) 

We Studied about in our previous section, we conclude that the centre of 
mass of a system of particles moves as if all the mass of the system was UGPHS-101(N)/175



concentrated at the centre of mass and all the external forces were applied 
at that point. Now, what will be the motion of the centre of mass if no 
external forces are applied? To answer this question let us discuss the 
linear momentum of the system of particles. Let us recall that the linear 
momentum of a particle is defined as 

and according to Newton’s second law. 

i.e. the rate of change of linear momentum of a particle is equal to the net 
force acting on the object.  

We know that, 

and 

L.H.S. is the summation of linear momentum of n particles of the 
system, which is equal to product of the total mass of the system 
and velocity of the center of mass of the system. 

So,  
…………. (56) 

Differentiating the above equation (56) w.r.t. time, we get 

…………. (57) 

Now, if the next external force on the system is zero, the 
linear momentum of the system, is conserved and he centre of 
mass will move with constant velocity. 

Thus, we conclude that if the total external force acting on a 
system of particles is zero, the velocity of the centre of mass 
remains constant. 

4.8.1 Conservation of Linear Momentum 
• Assume that the net external force on a system of particles is zero

(an isolated system) and that no particles leave or enter the system
(the system is closed).

UGPHS-101(N)/176



• If Fnet = 0 is substituted into  Eq. 57, then dp/dt = 0  

• P = constant (closed, isolated system)

• In words: If no external force act on a system of particles, the total
linear momentum of the system does not change.

• Known as: Law of Conservation of Linear Momentum:

- Pi = Pf (closed, isolated system) 

- [Tot. Lin. Momentum at a initial time ti] = [Tot. Lin. 
Momentum at a later time tf] 

For a system of n particles, each with its own mass, velocity, and linear 
momentum interacting with each other, the system as a whole has a total 
linear momentum P, which is defined to be the vector sum of the 
individual particles’ linear momentum. 

. 
…………. (58) 

We get, 
…………. (58a) 

(linear momentum of system of Particles) 

 This gives us another way to define the linear momentum of a
system of particles:

 The linear momentum of a system of particles is equal to the
product of the total mass M of the system and the velocity of the
center of mass.

 Differentiating eq. 58a with respect to time gives:

…………………. (59) 

 Comparing  eq.55, with eq. then: 

  system of particles)            …………………. (60) 

Example: 11 

Two particles of mass 1 kg and 2 kg are moving along the same 
line with speeds 2 m/s and 4m/s respectively. Calculate the 
speed of the centre of mass of the system if both the particles 
are moving in the same direction. 

Solution: 
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Substituting the value, we get 

Example: 12 

No external force acts on a system at rest. What is the velocity 
of the centre of mass? 

Solution: 

The centre of mass of such a system remains at rest. 

Self-Assessment Questions (SAQs) 
10. Two particles of equal mass are moving along the same line with

the same speed in the same direction. What is the speed of the
centre of mass of the system?

HINT

Solution: 

Let the speed of the particles be v and mass of the particle be m. 

11. Write short notes on the following:

(a) Linear Momentum of a System of Particles

(b) Conservation of Linear Momentum

4.9 ANGULAR MOMENTUM FOR A SYSTEM 
OF PARTICLES 

We know that, angular moment of individual particles. 

The angular momentum of the ith particle is given by , 
where  is the position vector of ith particle w.r.t. a given origin 
and  is the linear momentum of the ith particle. So, the 
total angular momentum of a system of particles is 

……………. (61) 
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As, we know the relation between the angular momentum ( ) of a 
Particle and Torque ( ). 

That is where is the rate of change of angular 

momentum of the ith particle and  is the torque acting on it. We 
can generalize the above equation for a system of particles and get 

and  is given by the equation          

      …………….. (62) 

The force  is the force acting on the ith particle, which is the 
vector sum of the external forces  acting on the particle and 
the internal forces  exerted on it by the other particles of the 
system. So, the torque acting on the particle can be internal or 
external. Hence, we may therefore separate the contribution of the 
external and the internal forces and can write 

      …………….. (63) 

      …………….. (64) 

From Newton’s third law we know that the forces between any two 
particles of the system are equal and opposite. But we know that 
equal forces which are parallel to each other can form couple 
(Torque) but these forces (internal forces) act along the line joining 
the two particles. So, in this case the contribution of the internal 
forces to the total torque on the system is zero, since the torque 
resulting from each action-reaction pair of forces is zero. We thus 
have,  and therefore 

Since, 

Thus, the time rate of change of the total angular momentum of a system 
of particles about a point is equal to the sum of the external torques (i.e. 
the torque due to external forces) acting on the system taken about the 
same point. The above equation holds good for any system of particles, 
whether it is a rigid body or its individual particles have all kinds of 
rotational motion. 

4.9.1 Conservation of Angular Momentum 
If the external forces acting on the system of particles is zero 

⇒ , hence 

      …………….. (65) 

or UGPHS-101(N)/179



Thus, if the total external torque on a system of particles is zero then, the 
total angular momentum of the system is conserved i.e., remains constant. 
According to the above equation  all are conserved,  and  
are the components of angular momentum vector  along x, y and z axes 
respectively. The statement that the total angular momentum is conserved 
means that each of these three components is conserved. The above 
equation is the rotational analogue of the conservation law of the total 
momentum, for a system of particles. 

Example: 13 

A body of mass m is moving with a constant velocity along a 
line parallel to the x-axis, away from the origin. Its angular 
momentum with respect to the origin. 

(A) is zero  (B) remains constant 

(C) goes on increasing (D) goes on decreasing 

Figure - 14 

Solution: 

We know that, 

As OA and v are both constant, the angular momentum remains 
constant. 

 option (B) 

Example: 14 

A particle of mass 1 kg is moving along the line y = x + 2 (here, 
x and y are in meters) with speed 2m/s. The magnitude of 
angular momentum of particle about origin is: UGPHS-101(N)/180



(A) (B) 

(C) (D) 

Figure - 15 

Solution: 

We know that, 

where 

option (B) 

Example: 15 

A particle of mass m is projected with a velocity  making 
angle of 45o with the horizontal. The magnitude of the angular 
momentum of the projectile about the point of projection when 
the particle is at its maximum height h is: 

(A) (B) 

(C) (D) 
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Figure - 16 

Solution: 

We know that, 

At the highest point, V = speed = V0 cos 45o

⇒ 

option (B) 

Self-Assessment Questions (SAQs) 
12. Obtain an expression for the Angular Momentum for a System of

Particle.

13. Write short notes on Conservation of Angular Momentum.

4.10 EQUILIBRIUM OF A RIGID BODY 

A rigid body is said to be in mechanical equilibrium, if its 
linear momentum and angular momentum are not changing 
with time i.e. the body has neither linear acceleration nor angular 
acceleration. This means 

(a) The total forces, i.e. the vector sum of the forces acting on 
the rigid body is zero, 

      …………….. (66) 

If the total force on the body is zero, then the total linear 
momentum of the body does not change with time. So, the 
above equation gives the condition for the translational 
equilibrium of the body. 
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(b) If the total torque acting on the rigid body vanishes i.e. the 
vector sum of the torques on the rigid body is zero, 

              …………….. (67) 

The total angular momentum of the body does not change 
with time. So, the above equation gives the condition for 
the rotational equilibrium of the body. 

Example: 16 

In the figure (17) given below, what is the equilibrium of the 
rod i.e. is it translational or rotational? 

Figure - 17 

Solution: 

As the forces are acting in opposite directions therefore 
hence the rod is in translational equilibrium. 

Self-Assessment Questions (SAQs) 
14. Write down condition for Equilibrium of a Rigid Body.

4.11 TORQUE OF A SYSTEM OF PARTICLES 

Torque is a quantity which measures the capability of a force to 
rotate a body. Torque due to a force is also known as the moment of a 
force. It is defined as the product of the force and the perpendicular 
distance between the line of action of the force and the axis of rotation. 
This perpendicular distance is known as the force arm. 
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Figure - 18 

Torque =  = (force) × (force arm) 

      …………….. (68) 

Units of torque are N-m. 

Torque is a vector quantity. Torque is clock-wise if the tendency of 
force is to produce clock-wise rotation and vice-versa. In vector 
torque due to a force F acting at a point A (whose position vector is 
r) is:

      …………….. (69) 

Taking magnitude, we can see that: 

⇒ 

⇒       …………….. (70) 

Couple 

A pair of two equal and opposite forces acting along parallel lines 
but having different lines of action constitutes a couple. 

Figure - 19 

Moment of couple or torque 

= (force) × (perpendicular distance between forces) UGPHS-101(N)/184



4.11.1 Work done by a Torque 
Consider a rigid body acted upon by a force F at perpendicular distance r 
from the axis of rotation. Suppose that under this force, the body rotates 
through an angle . 

Work done = force × displacement 

W = Fr. 

W =       …………….. (71) 

Figure - 20 

Work done = (torque) × (angular displacement) 

      …………….. (72) 

4.11.2 Torque and Newton’s IInd Law for Rotation 

According to Newton’s IInd Law of rotation: 

The rate of change angular momentum of a body is equal to the net 
torque acting on it. 

      …………….. (73) 

      …………….. (74) 

where, 

Remember: This important equation can be compared 
with Newton’s IInd Law of motion (F = ma). Hence in rotation, 
torque  plays the role corresponding to force in linear motion. 

Example: 17 

A grind-stone is in the form of a solid cylinder has a radius of 
0.5 m and a mass 50 kg.  

(a) What torque will bring it from rest to an angular 
velocity of 300 rev/min in 10 s? 
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(b) What is the kinetic energy when it is rotating at 300 
rev/min? 

Solution: 

Let 

(a) 

Torque required  

⇒ 

(b) Kinetic energy of a rotting body (RKE): 

R K E = 3084 J 

Example: 18 

Calculate the torque by an airplane engine whose output is 
2000 hp at an angular velocity of 2400 rev/min. 

Solution: 

Work done by torque 

= (torque) × (angular displacement) 

Power = work done per sec 

Power 

Self-Assessment Questions (SAQs) 
15. Calculate the instantaneous power of a wheel rotating with an

angular velocity of 20 rad/s, when a torque of 10 Nm is applied to
it.

16. Derive an expression of work done by a Torque.UGPHS-101(N)/186



4.12 KINETIC ENERGY OF A SYSTEM OF 
PARTICLE 

Consider a system consisting of particles of masses 
 and velocities  respectively. Let the 

velocity of the COM of the system be 

In reference frame attached to the COM, the velocity of ith particle 
will be 

⇒ 

kinetic energy of the system of particles in ground frame is 

       ……………. (75) 

[Since ] 

The third term is zero, since  is the momentum of the 
system in COM frame and it must be zero. 

       ............……. (76) 

 is the kinetic energy of the system in COM frame and 
is the kinetic energy associated with the translational 

motion of the system as a whole. 

If no external force is acting on a system,  will not change. 
Only  can change due to internal interactions. This has a 
very important implication. When no external force is acting on a 
system, change in KE in ground frame will be same as the change 
in COM frame. 

We can easily prove that for a two-particle system 

       …….……… (77) 

where and  
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REMEMBER: 

(a) COM frame is ‘zero momentum frame’. Linear momentum 
of a system in its COM frame is always zero. 

(b) In a system having two particles, the particles move with 
equal and opposite momentum in COM frame. Magnitude 
of momentum of each particle in COM frame is 

where , know as reduced mass and  is the 

relative speed of the two particles. 

(c) KE of a system in COM frame, for a two-particle system, is 

(d) KE of a system in ground frame is 

where M is the total mass of the system. 

(e) If , then change in KE in ground frame is same as 
the change in KE in COM frame. 

Example: 19 
Two identical particles, each of mass m are moving in 
perpendicular directions with speed v. Find the kinetic energy 
of the system in a reference frame attached to the COM of the 
system.  

Solution: 

⇒ 

Self-Assessment Questions (SAQs) 
17. Write short notes on Kinetic Energy of a System of Particle.

4.13 GRAVITATIONAL POTENTIAL ENERGY 
OF AN EXTENDED BODY 

The potential energy of a body is simply the sum of potential 
energies of its constituent particles. In the figure shown,  UGPHS-101(N)/188



Figure - 21 

the potential energy of the body can be written as 

[M = ] 

It means, we can assume the entire body to be a point mass 
placed at its COM, for purpose of writing potential energy. 

Self-Assessment Questions (SAQs) 
18. Write down an Expression of Gravitational Potential Energy of an

Extended Body.

4.14 DIFFERENCE BETWEEN CONSERVATION 
LAWS 

According to law of Conservation of momentum, angular & Linear 
Moments both should be conserved. 

4.14.1 Conservation of Linear Momentum for a Particle and 
System of Particle 

We know that,  

According to Newton’s Third Law of Motion 

Sum of linear momentum after collision = Sum of linear 
momentum before collision. UGPHS-101(N)/189



The Principle of Conservation of Linear Momentum and Newton’s 
Third Law of Motion are consistent with each other. 

• Suppose, that the net external force on a system of particles is zero
(an isolated system) and that no particles leave or enter the system
(the system is closed).

• If Fnet = 0 is substituted into            …………..(78) 

then dp/dt = 0

• P = constant (closed, isolated system)

• In words: If no external force act on a system of particles, the total
linear momentum of the system does not change.

• Known as: Law of Conservation of Linear Momentum:

- Pi = Pf (closed, isolated system) 

- [Tot. Lin. Momentum at a initial time ti] = [Tot. Lin. 
Momentum at a later time tf] 

For a system of n particles, each with its own mass, velocity, and 
linear momentum interacting with each other, the system as a 
whole has a total linear momentum P, which is defined to be the 
vector sum of the individual particles’ linear momentum. 

.            …………. (79) 

We get, 

           …………. (80) 

(linear momentum of system of Particles) 

 This gives us another way to define the linear momentum of a
system of particles:

 The linear momentum of a system of particles is equal to the
product of the total mass M of the system and the velocity of the
center of mass.

 Differentiating eq. 80 with respect to time gives:
……

……………. (81) 

We get, 

  system of particles)            …………………. (82) 
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4.14.2 Conservation of Angular Momentum for a Particle 
and System of Particle 

(a) For a particle 

Angular momentum about origin (O) is given as: 

Therefore, 

where  position vector of the particle;  velocity, 

⇒ 

where  perpendicular distance of velocity vector from O. 

(b) For a particle moving in a circle of radius r with a speed v, its 
linear momentum is mv, its angular momentum (L) is given as: 

(c) For a rigid body (about a fixed axis) 

Angular momentum of a rigid body (or any system of Particle) 
about an axis is the sum of angular momentum of individual 
particles. 

L = sum of angular momenta of all particles 

(compare with linear momentum p = mv in linear motion) 

L is also a vector and its direction is same as that of (i.e., 
clockwise or anticlockwise) 

In a nutshell, we can say if the external torque is zero, angular 
momentum of the system is conserved i.e. as  and 

⇒ 

⇒ UGPHS-101(N)/191



We know, 

Hence, 
………………….(83)  

The above equation (83) applies to many situations that we come across in 
daily life. 

(a) A circus acrobat performs feats involving spin by bringing his 
arms and legs closer to his body or vice-versa. This is because, on 
bringing the arms and legs closer to the body, his moment of 
inertia/decreases. 

Hence his angular velocity  increases. 

as I decreases,  (increases) so as to keep the angular momentum 
constant. 

(b) On the basis of conservation of angular momentum an ice skater 
performs the feats. 

Suppose an ice skater is rotating with her arms and legs stretched 
outwards. When she folds her arms and brings the stretched leg 
close to the other leg, her moment of inertia decreases and hence, 
her angular velocity increases, as shown in the given figure (22a) 
& (22b). As  and as I (decreases),  
(increases) to keep the angular momentum constant. 

Figure – 22a & 22b 

4.14.3  Applications of Conservation of Angular Momentum 
(a) A rotating disc picks up two particles that stick to its 

periphery 
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Figure - 23 

(b) An standing on a rotating platform starts walking on it. 

Figure - 24 

Let moment of inertia of platform be I and mass of the man 
standing at an edge be m 

The man starts walking with speed v in same sense w.r.t. the 
platform. The angular velocity of the platform becomes 

4.15 SUMMARY 

In the present unit, we have studied about centre of mass of a 
system and centre of gravity. We have studied about location of COM, 
zero momentum frame. In this unit, we have also established the relation 
between the angular momentum and torque. We have included examples 
and self-assessment questions (SAQs) to check your progress. 

4.16 TERMINAL QUESTIONS 
1. Fill in the blanks.

(a) The centre of mass of a body …………………. With the
redistribution of mass. 

(b) The centre of mass of a body ……………….. on the 
distribution of mass. 
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(c) The centre of mass of a thin uniform circular wire lies at its 
………………  

(d) The centre of mass of an equilateral triangle lies at its 
…………….. . 

(e) The acceleration of the centre of mass is given by 
………………….. . 

(f) In an elastic collision, the kinetic energy of the system 
remains …………… . 

(g) In an inelastic collision, the kinetic energy of the system 
……………… conserved. 

2. Write answer to the following questions:

(a) What is centre of mass?

(b) Define the term ‘ centre of gravity of a body’.

(c) State factor on which the position of centre of gravity of a
body depend? 

(d) What is the position of centre of gravity of a: 

(i) rectangular lamina 

(ii) cylinder 

3. Differentiate between the centre of mass and centre of gravity of a
rigid body.

4. Explain the equilibrium of a rigid body.

5. Obtain an expression for the position vector of the center of mass
of a two-particle system in one dimension.

6. Discuss the motion of centre of mass with the help of example.

7. Where does the centre of mass of a Uniform circular ring lie?

8. Give the location of the centre of mass of a

(i) Sphere

(ii) Cylinder

(iii) Ring

(iv) Cube

9. Does the centre of mass of a body necessarily lie on the body.

10. In the given figure, calculate the linear acceleration of the blocks.
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Mass of block A = 10 kg 

Mass of block B = 8 kg 

Mass of disc shaped pulley = 2 kg 

(take g = 10 m/s2) 

11. Two balls of masses, m and 2m, approach each other with a
relative velocity u and collide. After collision, they separate from
one another at a relative speed

Find loos in kinetic energy of the system of the two balls due to
collision.

12. A uniform solid hemisphere is kept on a horizontal table in two
ways – shown as A and B in figure.

In which case is the potential energy of the hemisphere higher? UGPHS-101(N)/195



13. (a) Find location of center of mass of this system from 2 kg
mass. 

(b) Two blocks of masses 3 kg and 5 kg are connected by an 
ideal spring and placed on a smooth surface as shown. A 
force of 40 N is applied on 3 kg block and it is observed 
that at an instant acceleration of 3 kg mass is 2 m/s2. Find 
acceleration of 5 kg mass at this instant. 

14. A flat car of mass M is at rest on a frictionless floor with a child of
mass m standing at the edge. If child jumps off from the car toward
right with initial velocity u, with respect to car, find the velocity of
car after the jump.

15. A flat car of mass M with a child of mass m moving at speed .
The child jumps in the direction of motion of car with a velocity u
with respect to car. Find the final velocities of the child and that of
car after jump.

UGPHS-101(N)/196



16. (a) Obtain an expression of Kinetic Energy of a System of
Particle. 

(b) Write down the expression of Gravitational Potential Energy 
of an Extended Body. 

17. Obtain the Relation between final velocities and Initial velocities
in COM frame.

18. Explain the concept of Angular momentum for a System of
Particles.

19. Deduce relation between Torque and Newton’s IInd law of
Rotation.

20. Discuss applications of Conservation of Angular Momentum of
Particle.

21. Write short notes on

(a) Velocity and Acceleration of the Center of Mass

(b) Conservation of Linear Momentum

(c) Motion of Center of Mass

(d) Center of Gravity

22. Match the following: (for a Body and Center of Mass).

Column A 

(Body) 

Column B 

(Position of Center of Mass) 

(a) Uniform Rod (i) Center of Rod 

(b) A Plane Square Plate 
(Lamina) 

(ii) Point of Intersection of diagonals 

(c) Hollow Cylinder (iii) Middle Point of the axis of the 
Cylinder 

(d) Cone or Pyramid (iv) On the axis of the cone at a point 
distant 3h/4 from the vertex, where h 
is the height of the cone. 

23. Match the following:
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Column A 

(Body) 

Column B 

(Position of Center of Mass) 

(a) Uniform hollow sphere (i) Center of the sphere 

(b) Uniform circular ring (ii) Center of the ring 

(c) Uniform circular disc (iii) Center of the disc 

(d) Solid cylinder (iv) Middle point of the axis of the 
cylinder 

4.17 SOLUTIONS AND ANSWERS 

1. Hint (Section 4.3)

2. It is the average of the Position vectors of two Particles.

3. Hint (Section 4.3.2)

4. Hint (Section 4.4.1)

5. Let the coordinates of the centre of mass be (x, y)

Therefore, the coordinates of centre of mass be 

6. Yes, the centre of gravity of a body can be situated outside its
material of the body.

Example: Centre of Gravity of a rign. 

7. Hint (Section 4.6.5)UGPHS-101(N)/198



8. Hint (Section 4.6)

9. Hint (Section 4.7)

10. Let the speed of the particles be v and mass of the particle be m.

11. (a) Hint (Section 4.8)

(b) Hint (Section 4.8.1)

12. Hint (Section 4.9)

13. Hint (Section 4.9.1) 

14. Hint (Section 4.10) 

15. 

16. Hint (Section 4.11)

17. Hint (Section 4.12)

18. Hint (Section 4.13)

ANSWERS TERMINAL QUESTONS: 

1. (a) changes

(b) depends

(c) geometrical center

(d) centroid

(e)

(f) conserved

(g) does not remain

2. (a) Hint (Section 4.3)

(b) Hint (Section 4.5)

(c) Centre of gravity of a body of given mass position depends
on its shape i.e. on the distribution of mass. For example: 
Uniform wire’s centre of gravity is at its mid-point. But if UGPHS-101(N)/199



this wire is bent to make a circle, its centre of gravity will 
then be at the centre of circle. 

(d) (i) The position of centre of gravity of a rectangular 
lamina is at the point of intersection of its diagonals. 

(ii) The position of centre of gravity of a cylinder is at 
the midpoint on the axis of cylinder. 

3. Hint (Section 4.5.1)

4. Hint (Section 4.10)

5. Hint (Section 4.4.1)

6. Hint (Section 4.7)

7. Hint (Section 4.4.4)

8. Hint (Section 4.4.4)

9. No, it is not necessary that center of mass of a body lies insides the
body.

10. Let R be the radius of the pulley and T1 and T2 be the tensions in
the left and right portions of the string.

Let m1 = 10 kg ; m2 = 8 kg ; M = 2 kg.

Let a be the acceleration of blocks.

For the blocks (linear motion) 

(i) 

(ii) 

For the pulley (rotation) 
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Net torque 

(iii) 

The linear acceleration of blocks is same as the tangential 
acceleration of any point on the circumference of the pulley which 
is  

(iv) 

Diving (iii) by R and adding to (i) and (ii), 

⇒ 

11. When no external force acts, change in KE of a system in COM
frame is same as the change in KE in ground frame.

KE of system in COM frame before collision is

KE in COM frame after collision is 

 Loss in KE in COM frame = Loss in KE in ground frame 
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12. For writing PE, we can assume that the entire mass is concentrated
at its COM.

Distance of COM from centre O is

 PE in position A is 

PE in position B is 

13. (a)

(b) As F is the only external force present

Accn of COM 

As we know 

14. By using Conservation of Momentum, we use23.

Column A 
(Body) 

Column B 
(Position of Center of Mass) 

(a) Uniform hollow 
sphere 

(i) Center of the sphere 

(b) Uniform circular ring (ii) Center of the ring 

(c) Uniform circular disc (iii) Center of the disc 

(d) Solid cylinder (iv) Middle point of the axis of the 
cylinder 
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5.1 INTRODUCTION 

In the previous units, we have studied about centre of mass and 
centre of gravity of a system. To simplify our study of particles, we 
consider extended bodies as rigid bodies. Ideally a rigid body is a body 
with a definite and unchanging shape. Since real bodies deform under the 
influence of forces therefore, no real body is truly rigid. Next, we 
introduced the concept of inertia tensor. Afterwards, some important 
properties of inertia tensor. In this unit, we shall also establish the 
relationship among angular momentum, moment of inertia and angular 
velocity in tensor form. 

5.2 OBJECTIVES 

After studying this unit, you should be able to – 

• Understand the concept of rigid body

• Relate equation among angular momentum, moment of inertia
angular velocity in tensor form.

• Define Moment of Inertia

• Explain the concept inertia tensor

• Understand what is meant by Precessional Motion

5.3 CONCEPT OF RIGID BODY 

5.3.1 RIGID BODY 
A body is said to be rigid if the relative position of parts of the 

body remains unchanged during motion or under the action of external 
forces. During motion the body as a whole move. It can also be considered UGPHS-101(N)/204



a system consisting of a large number of particles such that the distances 
between pairs of particles remain constant. That is, rij = cij, where rij is the 
distance between the ith and jth particles, and cij’s are constants. 

Next, we try find the number of independent co-ordinates needed 
to describe the position of a rigid body in space. A rigid body in space is 
defined by three points which do not lie on the same straight line. Each 
point is specified by three co-ordinates and therefore 9 co-ordinates are 
needed to specify a rigid body. But these 9 co-ordinates are connected by 
the 3 equations of constraints. 

and  

Hence, we require 6 co-ordinates to specify the position of a rigid 
body. Apart from the constraints of rigidity, there may be additional 
constraints on the rigid body; for example, the body may be constrained to 
move on a surface, or it may be allowed to move with one point fixed. 
These additional constraints will further reduce the number of independent 
co-ordinates. There are several ways of selecting the independent co-
ordinates. 

The two important types of motion of a rigid body are translational 
motion and rotational motion. The translation of a rigid body will be given 
by the single particle in motion. The remaining three co-ordinates are used 
to specify the rotational motion. 

5.3.2 LOCATION
Location of a rigid body tells us where it is placed and can be 

measured by position coordinates of any particle of the body or its mass 
center. It is also known as position. 

5.3.3 ORIENTATION
Orientation of a body tells us how it is placed with respect to the 

coordinate axes. Angles made with the coordinate axes by any linear 
dimension of the body or a straight line drawn on it. provide suitable 
measure of orientation. 

5.3.4 CHARACTERISTICS OF RIGID BODY:
The Characteristics of Rigid Body are Classified in the form of 

Translatory and Rotatory Motions 

The motion of a rigid body may be either translational or 
Rotational or the combination of the two. Translatory motion is a 
progressive motion while the rotatory motion is a kind of stationary 
motion. In translatory motion, every particle of the moving body moves 
with the same velocity at any time. On the other hand, in rotatory motion 
different particles of the moving body move with different linear 
velocities, however, the angular velocity of each particle is the same. 
Translatory motion is caused and altered by a single force or a set of 
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forces equivalent to a single force, rotatory motion, on the other hand, is 
caused and altered by a single couple or a set of couples equivalent to a 
single couple. In translatory motion the consequent linear acceleration at 
any instant is the same for every particle while the consequent linear 
accelerations of different particles in rotatory motion are different, yet the 
angular acceleration of each particle is the same. 

TRANSLATORY MOTION 

Figure -1 

ROTATORY MOTION 

Figure - 2 

COMBINATION OF TRANSLATORY AND ROTATORY 
MOTION  

Figure - 3 

Force and mass have opposite effects on translatory motion, the 
force causing and the mass opposing acceleration. In rotatory motion, the 
place of mass is taken by moment of inertia of the body about the axis of 
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rotation. Hence the rotatory motion is caused or altered by a couple and is 
opposed by the moment of inertia of the body about the axis of rotation. 

5.4 RELATION AMONG ANGULAR 
MOMENTUM, MOMENT OF INERTIA AND 
ANGULAR VELOCITY IN TENSOR FORM
Consider a rigid body rotating about a fixed point with angular 

velocity  Take the origin O at this fixed point and the three co-ordinate 
axes X, Y and Z as shown figure 5. 

The linear velocity of a particle i, having position vector 

If  is the mass of this particle, then the angular momentum of 
the particle i about the fixed-point O. 

Then, total angular momentum of the rigid body         …….. (1) 

where  represents summation over all the particles of the rigid 
body 

Using the vector identity 

  we get 

         ……. (2) 

If  are the Cartesian co-ordinates of the particle i and 
. The component of angular velocity  along the three co-

ordinate axes, then 

and therefore 

and  

Putting the values of  and  in component form in Eq. (2) 
we get 
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If  and  are components of  along the three co-ordinate 
axes, then 

  …….. (3) 

 ……... (4) 

and  ……… (5) 

We now substitute 

and 

Equations (3), (4) and (5) now become 

         ……. (6) 

         ……. (7) 

and          ……. (8) 

or ……. (9) 

……. (10) 

This equation shows that the angular momentum vector  is, in general, 
not in the same direction as the angular velocity vector  nor it is the 
direction of axis of rotation. 

Also, Equations (9) and (10) shows that the relation among the 
angular momentum vector, the inertia tensor and the angular velocity 
vector. 
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ωrm ii
i

L 2Σ= rm ii
i

L 2Σ=ω )( 2 lasL rml ii
i

== Σω

ωrv ii =

∴

Equation (6), (7) and (8) may be written in the matrix notation as 
under 

       ……… (11) 

Self-Assessment Question (SAQ) 1: Show that the
angular momentum L  of a rotating rigid body is : 

ωIL =  where, ω  is the angular velocity and I is the inertia tensor. 

5.5 EQUATIONS OF ROTATIONAL MOTION 
WHEN THE DIRECTIONS OF ANGULAR 
MOMENTUM COINCIDE

Let a particle P of mass m is going in a circle of radius r and at 
some instant the speed of the particle is v. For finding the angular 
momentum of the particle about the axis of rotation, the origin may be 
chosen anywhere on axis. We choose it at the centre of the circle. In this 
case r and P are perpendicular to each other and Pr ×  is along the axis. 
Thus, component of Pr × along the axis is mvr itself. The angular 
momentum of the whole rigid body about AB is sum of components of all 
particles, i.e 

vrm iii
i

L Σ=

Here,  

                                   or                               or                                         ........(12) 
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5.6 PRINCIPAL MOMENTS OF INERTIA

In vector notation the angular momentum  of a rigid body may be 

expressed as 

 where       ………. (13) 

is called the moment of inertia tensor. 

The nine quantities  and  are the 

components of the moments of inertia of the body about the fixed X, Y 

and Z axes. 

The diagonal elements  and  are the moments of inertia 

of the rigid body about X-axis, Y-axis and Z-axis respectively and are 

called principal moments of inertia (or principal moments). 

5.6.1 PROPERTIES OF MOMENTS OF INERTIA 
TENSOR 

The moment of inertia tensor is a symmetric tensor i.e. its off 

diagonal elements are  equal 

   ………… (14) 

As a result of this, there are only six independent components 

   ………… (15) 

As the products of inertia about the three principal axes zero, i.e. 

   ………… (16) 

Only three components are left and which are 

sometimes written as 

(i) Spherical top. A rigid body for which 

               ………… (17) 

is called a spherical top. In a spherical top all the axes are 

symmetric. A sphere  is an example of a spherical top. 

(ii) Symmetric top. A rigid body for which 
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   ………… (18) 

is called a symmetric top. A cylinder satisfies this condition. If the 
axis of the cylinder  is taken as principal Z-axis, then X and Y-axes are 
symmetric axes. But a cylinder is  not called a symmetric top. On the 
other hand all rigid bodies which do not have  cylindrical shape but 
satisfy the condition given above are considered as a symmetric  top. 
The earth flattened at the poles and bulging at the equator satisfies the 
above  condition and is taken to be a symmetrical top. 

(iii) Asymmetric top. A rigid body for which 

   ………… (19) 

is called an asymmetric top. A rigid body, in general is an 
asymmetric top. 

(iv) Rotor. A rigid body for which  

    and     ………… (20) 

is called a rotor. Example, a diatomic molecule. 

5.7 PRODUCTS OF INERTIA

 The off diagonal elements  and  are called 
products of inertia.  These occur I n symmetric pairs i.e., 

;  and     ………… (21) 

5.7.1 Importance of Product of Inertia 
The rotational behavior of a rigid body about a given point is 

determined by a set of  six quantities, the three principal moments 
of inertia and the three products of inertia. 

5.8 PRINCIPAL AXES OF INERTIA 

A set of three mutually perpendicular axes drawn through a point 
in the rigid body taken as origin, such that the products of inertia 
( ; ; ) about then  vanish i.e. each is equal to zero 
whereas ( , ) the principal moments of inertia are non-zero 
are called principal axes of inertia or simply principal axes. 

5.8.1 Importance of Principle Axis of Inertia 
In terms of principal axes, the angular momentum of a rigid body 

is given by  

   ………… (22) UGPHS-101(N)/211



5.9 INERTIA TENSOR

We know that, 

Then, 

   ………… (23) 

or 

The nine elements  of the (3 × 3) matrix may be 
regarded as components of a single entity I. This entity I is called inertia 
tensor. Since  etc., I is a symmetric tensor. If we denote x, y, z 
by x1, x2, x3 respectively, then in general any element of the inertia tensor 
is given by 

where 

5.9.1 Properties of Inertia Tensor 

Inertia Tensor is symmetric 

 The moment of inertia tensor is given by 

   ………… (24) 

It is called symmetric because its off diagonal elements known as 
products of inertia are equal i.e.  

;    ………… (25) 

Example 1: Consider a solid sphere of mass M, radius R with centre on 
the Z axis at a point distant I from the origin. Find the inertia tensor with 
respect to the origin. 
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We are required to find  etc. 

First, we find the inertia tensor with respect to its centre of gravity, 

This has the same form as the moment of inertia of the sphere 
about a line passing through its centre of mass (here the z-axis) 

So, 

similarly, 

and 

Because of symmetry, and  has the coordinates (0, 0, l) 

So,  

 Infact, 
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Example 2: Find the tensor of inertia of a uniform hemisphere whose 
mass is M and radius of base is R about the centre of its base. 

Tensor of inertia about the centre of base 

Set up the coordinates such that the origin is at the centre of its 
base 

(using an earlier result) 

This is the moment of inertia of the hemisphere about the y-axis. If 
we complete the sphere, the moment of inertia about the y-axis would be 

 where  is the mass of the whole sphere. 

And since moments of inertia are additive, the moment of inertia of 
the hemisphere is half the moment of inertia of the sphere. 

Thus,  where M is the mass of the hemisphere. 

, by symmetry about the z-axis. 

 {for every  there is a point  so, } 

So,   where 
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Self-Assessment Question (SAQ) 2
Find the inertia tensor for a uniform solid cube having edge a and 

mass M about a vertex. 

Self-Assessment Question (SAQ) 3: 
Calculate the inertia tensor for a homogeneous cube of density  

mass M, and side length b. Let one corner be at the origin, and three 
adjacent edges lie along the coordinate axes. 

First, we calculate the components of the inertia tensor. Because of 
the symmetry of the problem, it is easy to see that the three moments of UGPHS-101(N)/215



inertia  and  are equal and that same holds for all of the products 
of inertia. So, 

5.10 PRECESSIONAL MOTION 

One of the most interesting predictions of the vector torque-

angular momentum relation dtLd /=τ , is the phenomenon of 
precessional. This is defined as the cone-shaped motion of a rotational axis 
due to the action of a constant torque on a spinning object. Such motion is 
commonly seen in gyroscopes and tops. 

5.10.1  What is Gyroscope and Elementary Gyroscope 

Any symmetrical body rotating on an axis such that the axis can 
freely change its direction is called a gyroscope. 

An elementary gyroscope is a circular disc mounted on three 
gimbals or rings so that it can turn about three mutually perpendicular axes 
one gimble is mounted in the next gimble with the help of bearings. 

Figure - 6 UGPHS-101(N)/216



Figure - 7 

5.10.2 Concept of Precessional Motion 
Consider a circular disc spinning (or rotating) about its axis. Let O 

the centre of mass of the disc be the origin of the co-ordinate system. The 
axle of the disc lies along the YOY axis perpendicular to the disc and the 
other two axes. XOX and ZOZ lie in the plane of the disc. YOY is, 
therefore, the rotation axis. The angular velocity of rotation of the disc is 

 in a direction Z to X axis (anticlock wise). If I is the moment of inertia 
of the disc about the axis of rotation, then angular momentum of the disc 
(about the axis of rotation)  The angular momentum vector   acts 
along the direction OY. 

In now two equal and opposite forces   and   are applied to the 
axle of the disc along the direction OX and OX, as shown, then these 
forces will produce a torque   acting along OZ in the direction of Z-axis 
as shown. The Z-axis is, therefore, known as the torque axis. 

Figure - 8 UGPHS-101(N)/217



Figure - 9 

If the disc were stationary, this torque will bring about rotation of 
the disc about the axis ZOZ. But if the disc is rotating in the direction as 
shown, the disc as a whole rotates about the axis XOX in the 
anticlockwise direction i.e., Y end of the axis turns towards Z and Y and 
towards Z. This motion of the axis of rotation of the disc is called 
precession. Precession is, therefore, defined as under: 

When a torque is applied to a rotating body in a direction 
perpendicular to its axis of rotation the rotation produced in the direction 
of its axis of rotation, is called precession. 

5.10.2  Precessional torque. The torque which brings about the 
rotation of the axis of rotation (precession) of the rotating is called rate of 
precession or precessional angular velocity. 

5.10.3  Precessional angular velocity. The time rate of rotation of 
the axis of rotation of the rotating body due to precession is called rate of 
precession or precessional angular velocity. 

Units. The units of precessional angular velocity denoted as Ω are 
radian per second (rad s-1). 

Expression between angular velocity and Torque. Consider a 
disc rotating in the XOZ plane with constant angular velocity  in the 
anticlockwise direction from Z to X about the axis YOY’ perpendicular to 
the plane of the discs and passing through its centre of mass O (Figure - 
9). 

If I is the moment of inertia of the disc about the axis of rotation, 
then angular momentum of the disc (about the axis of rotation) 
The angular momentum vector   acts along the direction OY. UGPHS-101(N)/218



If now, two equal and opposite forces   and   are applied to the 
axle of the disc along the directions OX and OX’ as shown in Figure - 9, 
then these forces will produce a torque   acting along OZ in the direction 
of Z-axis. As a result of this the axis of rotation of the disc will turn about 
OZ in the XOY plane.  

The torque vector   acts along Z-axis and the angular momentum 
vector  acts along the Y-axis. Thus, the direction of the applied torque is 
at right angles to the direction of angular momentum . This torque, 
therefore, only produces a change in direction of   without making any 
change in the magnitude of   

Suppose the torque   acts on the disc for a small time  and 
changes the direction of angular momentum vector  through a small 
angle Let the vector OA taken along Y-axis represent the initial 
magnitude and direction of angular momentum vector then the 
magnitude and direction of the vector  after a small time is 
represented by the vector OB, where and angle 

. According to the triangle law of vector addition, 
represents the change in angular momentum vector. As  is a small 
length, it can be taken to be the arc of a circle so that 

      …….. (26) 

Also, torque  is the time rate of change of angular momentum 

        …… (27) 

Comparing relations (i) and (ii), we have 

or 

[∵ ] 

But  represents the angular velocity of precession (or rate of 

precession) Ω. 

Angular velocity of precession:                  ............(28) 

Thus, the rate of precession is 

(a) directly proportional to the torque applied 
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(b) inversely proportional to the moment of inertia of the disc and 

(c) inversely proportional to the period of precession is given by 

        …… (29) 

5.11 SUMMARY 

In the Present Unit, we have studied about rigid body, Location, 
Orientations, Inertia Tensor, Moment of Inertia and Product of Inertia. 

In this Unit, we have also studied about and derived the relation 
among angular momentum, moment of inertia and angular velocity in 
tensor form . 

We have contained examples and self-assessment questions 
(SAQs) to check your progress. 

5.12 TERMINAL QUESTIONS 

1. Write answers to the following questions.

(a) What do you mean by a rigid body?

(b) Define Moments of Inertia.

(c) Explain the term Inertia Tensor.

(d) What is Symmetric top for a rigid body?

2. Briefly explain the concept of a rigid body. Also, define translatory
and rotatory motion.

3. Establish a relation among angular momentum, momentum of
inertia and angular velocity in tensor form.

4. (a) A rigid body is in such a way that all particles in the body
have the same instantaneous velocity at all times. What do 
you conclude about the motion of the body? 

(b) A rigid body is moving in such a way that two particles in 
the body have the same instantaneous velocity at all times. 
What do you conclude about motion of rigid body? 

5. (a) Why spin angular velocity of a star is greatly enhanced
when it collapses under gravitational pull and becomes a 
neutron star? 

(b) Can a body in translatory motion have angular momentum? 

6. What is precession angular velocity? Establish a relation between
angular velocity of precession and torque.
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7. (a) Write down equation of rotational motion when direction of
angular momentum. Coincide 

(b) A solid sphered of diameter 2 cm and mass 50 gm has a 
pivot pin 5 mm long fixed normally to its surface. When it 
spins like a top, it makes 20 revolutions per second. Find its 
precessional angular velocity. 

8. Find the moments and products of inertia of a homogeneous cube
of side a for an  origin at one corner, with axes directed
along the edges.

9. Calculate the inertia tensor for the system of four-point masses 1
gm, 2 gm, 2 gm  and  4 gm, located at the points (1, 0, 0),
(1, 1, 0), (1, 1, 1) and (1, 1, -1) cm.

10. Find the tensor of inertia of a uniform hemisphere whose mass is
M and radius of base  is R about the centre of its base.

11. What do you mean by inertia tensor? Explain what do you
understand by   Principal axes and the Principal
moments of inertia. Write down the expression  of the
Principal moments of inertia of a rigid body.

5.13 SOLUTION AND ANSWERS: 

Self-Assessment Questions (SAQs): 
1. Hint (Section 5.4)

2. 

We may directly calculate 
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Similarly, 

2 

Thus, 

3. 

First we calculate the components of the inertia tensor. Because of 
the symmetry of the problem, it is easy to see that the three 

moments of inertia  and  are equal and that same holds for all of 
the products of inertia. So,  

ANSWERS: TERMINAL QUESTION 

2. HINT (Section 5.3)

3. HINT (Section 5.4)UGPHS-101(N)/222



4. 

5. (a) On collapsing under gravitational pull, size of star
decreases. Therefore, its moment of inertia decreases. As 
angular momentum )( ωIL = is conserved, and I decreases,
therefore, spin angular velocity ω  increases. 

(b) Yes, a particle in translatory motion always has an angular 
momentum, unless the point (about which angular 
momentum is calculated) lies on the line of motion. 

6. HINT (Section 5.10.3)

7. (a) HINT (Section 5.5)

(b) We know that,

Precessional angular velocity 

Here mass of the sphere = 50 gm. 

Diameter of the sphere = 2 cm. Radius of the 
sphere R = 1 cm. 

Moment of Inertia of the sphere 

Length of the pivot pin = 5 mm = 0.5 cm 

  Distance of centre of mas from the tip of the pivot r = 1 
+ 0.5 = 1.5 cm 

Number of revolutions per second n = 20 

   Angular velocity 

Here precessional angular velocity 

8. 

Where M is the mass of the cube. By similar arguments 
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9. 

Similarly, and  

Also 

Similarly, 

10. Tensor of inertia about the centre of base Set up the coordinates
such that the origin is at the centre of its base

(using an earlier result) 

This is the moment of inertia of the hemisphere about the y-axis. If 
we complete the sphere, the moment of inertia about the y-axis 
would be 

 where  is the mass of the whole sphere. 

And since moments of inertia are additive, the moment of inertia of 
the hemisphere is half the moment of inertia of the sphere. 

Thus,  where M is the mass of the hemisphere. 

, by symmetry about the z-axis. UGPHS-101(N)/224



{for every there is a point so, 
} 

So,           where     

and       

Thus, the inertia tensor I is 

11. HINT (Section 5.9)

5.14 SUGGESTED READINGS: 

1. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl
Walker, John   Wiley & Sons.

2. Elementary Mechanics, IGNOU, New Delhi.

3. College Physics, Hugh D. Young.

4. An Introduction to Mechanics Daniel Kleppner and Robert J.
Kolenkow.

UGPHS-101(N)/225



UGPHS-101(N)/226



BLOCK 

2 
GENERAL PHYSICS 

UNIT-6 Gravitation 

UNIT-7 Motion Under Central Force 

UNIT-8 Elasticity 

UNIT-9 Fluid Mechanics and Viscosity 

UNIT-10 Surface Tension 

 UGPHS-101(N) 
       Vector, Mechanics and 

General Physics 
Uttar Pradesh Rajarshi Tandon 

Open University 

229-246 

247-270 

271-290 

291-310 

311-330 

UGPHS-101(N)/227



Course Design Committee 
Prof. Ashutosh Gupta   Chairman 
Director, School of Science, UPRTOU, Prayagraj 
Prof. A. K. Rai   Member 
Professor, Dept. of Physics, University of Allahabad, Prayagraj 
Gorakhpur  
Prof. Ram Kripal  Member 
Professor, Dept. of Physics, University of Allahabad, Prayagraj 
Dr. Anjani Kumar Singh   Member 
Associate Professor (Retd.), E.C.C University of Allahabad, Prayagraj 
Dr. Dinesh Kumar Gupta  (Special Invitee Member) 
Academic Consultant, School of Science, UPRTOU, Prayagraj 

Course Preparation Committee 
Dr. Dheerendra Pratap SIngh  Author (Unit 1) 
Professor, RBCET, Bareilly 
Mr. Arvind Kumar Mishra  Author (Unit 2, 3, 4, 5, 6, 9, 10) 
Academic Consultant, Physics, School of Science, UPRTOU, Prayagraj 
Dr. Ajey Kumar Tiwari   Author (Unit 7) 
Asst. Professor, Dept. of Physics, DBNPG, Gorakhpur 
Dr. Pankaj Kumar  Author (Unit 8) 
Associate Professor, Bhavani Mehta Degree College, Bharwari, Kaushambi 
Prof. Ashutosh Gupta  
Director, School ofScience, UPRTOU, Prayagraj 
Mr. Arvind Kumar Mishra  Coordinator 
Academic Consultant, Physics, School of Science, UPRTOU, Prayagraj 

Faculty Members, School of Sciences 
Prof. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj  
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU, Prayagraj  
Dr. Marisha Asst. Prof., (Computer Science), School of Science, UPRTOU, Prayagraj  
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science, UPRTOU, 
Prayagraj  
Dr. Dinesh K Gupta Academic Consultant (Chemistry), School of Science, UPRTOU, 
Prayagraj  
Dr. S. S. Tripathi, Academic Consultant (Maths), Scool of Science, UPRTOU, Prayagraj 
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of Science, 
UPRTOU, Prayagraj  
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of Science, UPRTOU, 
Prayagraj  
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science, UPRTOU, 
Prayagraj  
Dr. Deepa Chubey, Academic Consultant (Zoology), School of Science, UPRTOU, 
Prayagraj 
Mr. Arvind Kumar Mishra, Academic Consultant (Physics), School of Science, 
UPRTOU, Prayagraj 

© UPRTOU, Prayagraj. 2021 
ISBN: 978-93-83328-50-5 
All Rights are reserved. No part of this work may be reproduced in any form, by mimeograph or any 
other means, without permission in writing from the Uttar Pradesh Rajarshi Tondon Open University, 
Prayagraj.

UGPHS-101(N)/228



UNIT 6 

GRAVITATION 

Structure: 
6.1 Introduction 

6.2 Objectives 

6.3 History of the law of Gravitation 

6.4 Newton’s law of Gravitation 

6.5 Gravitational constant ‘G’ 

6.5.1  Measurement of Gravitational Constant ‘G’ 

6.6    Acceleration due to Gravity (g) 

6.6.1 “Weighing” the Earth  

6.6.2  Variation in ‘g’ on the surface of Earth 

6.6.3 What is Gravity? 

6.7 Factors Affecting due to Acceleration due to Gravity 

6.7.1 Shape of Earth 

6.7.2 Rotation of Earth about its Own Axis 

6.7.3 Effect of Altitude 

6.7.4 Effect of Depth 

6.8 Gravitational Field 

6.8.1 Intensity of gravitational Field 

6.9 Gravitational Potential 

6.9.1 Gravitational Potential Energy 

6.10 What is Satellite? 

6.10.1 Geostationary or Parking Satellites 

6.10.2 Polar Satellites 

6.11 Gravitational Self Energy 

6.12 Orbital Velocity 

6.12.1 Energy of a Satellite in Orbit 

6.12.2 Binding Energy 
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6.13 Escape Velocity 
6.14 Weightlessness Condition 
6.15 Communication Satellite 
6.16 Summary 
6.17 Terminal Questions 
6.18 Solution and Answers 

6.19 Suggested Readings 

6.1 INTRODUCTION 

In Block-I, we discussed about vectors and dynamics of a particles. 
As we all know about Aryabhatt, the great Indian astronomer and 
mathematician, who first studied the motion of celestial bodies such as the 
moon, the earth, Mercury, Venus, etc., in 5th century AD and made it 
known that the different planets move around the sun not in circular orbits, 
but in elliptical orbits. About a thousand years later, Tycho Brahe and 
Johannes, Kepler studied by motion of planets and formulated laws which 
came to be known as Kepler’s laws of planetary motion. In the 
seventeenth century, Newton, after a number of observations on the 
motion of planets, came up with his famous laws of gravitation. 

6.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Understand the Concept of Gravitation and Gravity.

 Compute the Gravitational Constant G.

 Define Acceleration due to Gravity (g).

 Understand the concept of Escape velocity of body.

6.3 HISTORY OF THE LAW OF GRAVITATION 

The way the law of universal gravitation was discovered is 
often considered the paradigm of modern scientific technique. The 
major steps involved were. 

 The hypothesis about planetary motion given by
Nicolaus Copernicus (1473–1543). 

 The careful experimental measurements of the
positions of the planets and the Sun by T y c h o B r a h e (1 5 4 6 
– 1 6 0 1) .

 Analysis of the data and the formulation of empiricalUGPHS-101(N)/230



laws by Johannes Kepler (1571–1630). 

 The development of a general theory by Isaac Newton
(1642 –1727). 

6.4  NEWTON’S LAW OF GRAVITATION 

Newton's law of universal gravitation is usually stated as that 
every particle attracts every other particle in the universe with a force that 
is directly proportional to the product of their masses and inversely 
proportional to the square of the distance between their centers. The 
publication of the theory has become known as the "first great 
unification", as it marked the unification of the previously described 
phenomena of gravity on Earth with known astronomical behaviors.  

This is a general physical law derived from empirical 
observations by what Isaac Newton called inductive reasoning. It is a part 
of classical mechanics and was formulated in Newton's work  Philosophiæ 
Naturalis Principia Mathematica ("the Principia"), first published on 5 
July 1687. When Newton presented Book 1 of the unpublished text in 
April 1686 to the Royal Society, Robert Hooke made a claim that Newton 
had obtained the inverse square law from him. 

In today's language, the law states that every point mass attracts 
every other point mass by a force acting along the line intersecting the two 
points. The force is proportional to the product of the two masses, and 
inversely proportional to the square of the distance between them.  

The equation for universal gravitation thus takes the 
form:

 …………… (1) 

where F is the gravitational force acting between two 
objects, m1 and m2 are the masses of the objects, r is the distance between 
the centers of their masses, and G is the gravitational constant. 

6.5 GRAVITATIONAL CONSTANT ‘G’ 

The gravitational constant (also known as the universal 
gravitational constant, the Newtonian constant of gravitation, or 
the Cavendish gravitational constant), denoted by the letter G, is 
an empirical physical constant involved in the calculation 
of gravitational effects in Sir Isaac Newton's law of universal 
gravitation and in Albert Einstein's general theory of relativity. 

In Newton's law, it is the proportionality constant connecting 
the gravitational force between two bodies with the product of 
their masses and the inverse square of their distance. In the Einstein field UGPHS-101(N)/231
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equations, it quantifies the relation between the geometry of spacetime and 
the energy–momentum tensor (also referred to as the stress–energy 
tensor). The measured value of the constant is known with some certainty 
to four significant digits. In SI units its value is 
approximately 6.674×10−11 m3⋅kg−1⋅s−2. 

6.5.1 Measurement of Gravitational Constant ‘G’ 
Value of G was first measured in 1798 by a gifted English 

scientist, Henry Cavendish (1731-1810). Cavendish made many 
contributions to science but his measurement of G was the most prolific of 
all. The experiment required a very delicate set up.  

Figure - 1 
Two small balls, each of mass m, are attached to the ends of a light 

rod to form a dumb bell. The rod is suspended by a fine fiber or a thin 
metal wire. There is a small mirror attached to the wire, which reflects a 
sharp beam of light incident on it to the scale fixed at some distance D 
from the mirror. Initially, there is no twist in the wire. 

Two heavy spheres (A and B), of mass M each, are brought near 
the smaller spheres such that the centres of the four spheres fall on a 
horizontal circle. Let distance between the centres of a heavy ball and the 
smaller ball near it be r. 

Gravitational pull of larger ball on the smaller ball is 

 …………… (2) 

Torque on the dumb bell due to gravitational force is UGPHS-101(N)/232
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[2l = length of the dumb bell] 

This torque causes the dumb bell to rotate and the wire gets 
twisted. The twisted wire produces a counter-torque. After some time, an 
equilibrium is established with torque produced by wire balancing the 
gravitational torque. 

If a wire is twisted by θ, the torque it develops is given by , 
where k is a constant for the given wire, known as its torsional constant. 

If equilibrium is attained with wire twisted by θ, 

⇒  …………… (3) 

 6.6 ACCELERATION DUE TO GRAVITY (g) 

The gravitational pull of earth on a body is often referred to as 
gravity. Acceleration produced by this force is called acceleration due to 
gravity. When a body of mass m is near the surface of Earth, force of 
gravity acting on it is 

  towards the centre of earth 

Thus, acceleration due to gravity (denoted by g) near the surface of Earth 
is 

Figure - 2 
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          …………… (4) 

The above expression has been written assuming Earth to be a 
uniform sphere. 

Measured value of g near the surface of Earth is nearly 9.8 ms-2. 

Acceleration due to gravity (g) has the same value as gravitational 
field intensity due to Earth. 

6.6.1 “Weighing” the Earth 
Value of acceleration due to gravity (g) can be measured easily with the 
help of simple experiments. Radius of Earth (R) is also known. The day 
Cavendish measured the value of universal constant G, the mass of the 
Earth became known. It is often said that Cavendish was the first person to 
weigh the Earth. 

Putting g = 9. Ms-2, G = 6.67 × 10-11 N m2 kg-2, 

R = 6.4 ×106 m in equation (4) gives, the mass of Earth as 

M = 6 × 1024 kg  …………… (5) 

6.6.2 Variation in ‘g’ on the Surface of Earth 
Acceleration due to gravity at a point on the surface of the Earth 

differs from the value predicted by equation (4), due to various reasons. 
Prominent reasons are: 

(a) Non-Uniform Earth 

(b) Non-Spherical Earth 

(c) Rotation of the Earth 
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Gravitational pull on the ball is 

 …………… (6) 

 Weight recorded by the balance = mg’ 

Where g’ is the effective acceleration due to gravity at the place, 

∴

⇒  …………… (7) 

The above equation gives the value of free fall acceleration at the 
equator. It is less than the gravitational acceleration (g). 

6.6.3 What is Gravity 

Gravity is the weakest of the four universal forces which also 
include nuclear force, weak radiation force, and electromagnetism. 
Gravity is the force exerted by any object with mass on any other object 
with mass. Gravity is ubiquitous, omnipresent and causes objects to 
accelerate towards the centers of other objects exerting gravitational 
attraction (like the center of the Earth). When shuttle astronauts are in 
space, they experience gravity at approximately 80% of Earth's surface 
gravity. The missing 20% allows astronauts to float, "seeming weightless. 
Objects outside of the Earth's gravitational field are held in the Sun's 
gravitational field. Outside of the solar system, objects are held by the 
gravity of other stars and the galaxy. 

Weight is mass being pulled by gravity towards the center of the 
closest object exerting gravitational pull. Therefore, weight varies from 
place to place. On Earth, the difference is negligible. But in space, objects 
are continuously into another object's gravity well (such as the Earth, Sun 
or Moon) and experience free fall. In this situation, the objects are 
weightless. On other planets, the objects experience different intensities of 
gravity, and therefore have different weights. 

6.7 FACTORS AFFECTING DUE TO 
ACCELERATION DUE TO GRAVITY 

6.7.1 Shape of Earth 
Acceleration due to gravity g & infi; 1 / R2 Earth is elliptical in 

shape. Its diameter at poles is approximately 42 km less than its diameter 
at equator. UGPHS-101(N)/235



Therefore, g is minimum at equator and maximum at poles. 

Figure - 4 

6.7.2 Rotation of Earth about Its Own Axis 
If ω is the angular velocity of rotation of earth about its own axis, 

then acceleration due to gravity at a place having latitude λ is given by 

g’ = g – Rω2 cos2 λ 

At poles λ = 90° and g’ = g 

Therefore, there is no effect of rotation of earth about its own axis 
at poles. At equator λ = 0° and g’ = g – Rω2
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The value of g is minimum at equator 

If earth stapes its rotation about its own axis, then g will remain 
unchanged at poles but increases by Rω2at equator. 

6.7.3 Effect of Altitude 
The value of g at height h from earth’s surface g’ = g / (1 + h / R)2 

Therefore, g decreases with altitude. 

Figure - 6 

6.7.4 Effect of Depth  
The value of gat depth h A from earth’s surface g’ = g * (1 – h / R) 

Therefore, g decreases with depth from earth’s surface. The value of g 
becomes zero at earth’s centre. 
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6.8 GRAVITATIONAL FIELD 

The space in the surrounding of a body in which its gravitational 
pull can be experienced by other bodies is called gravitational field. 

6.8.1 Intensity of Gravitational Field 
The gravitational force acting per unit mass at Earth any point in 

gravitational field is called intensity of gravitational field at that point. 

Itis denoted by Eg or I. Eg or I = F / m 

Intensity of gravitational field at a distance r from a body of mass 
M is given by Eg or I = GM / r2 

It is a vector quantity and its direction is towards the centre of 
gravity of the body. Its S1 unit is N/m and its dimensional formula is 
[LT-2]. 

Gravitational mass Mg is defined by Newton’s law of gravitation. 
Mg = Fg / g = W / g = Weight of body / Acceleration due to gravity 

∴ (M1)g / (M2)g = Fg1g2 / Fg2g1

6.9 GRAVITATIONAL POTENTIAL 

Gravitational potential at any point in gravitational field is equal 
the work done per unit mass in bringing a very light body from infinity to 
that point. 

It is denoted by Vg. 

Gravitational potential, Vg = W / m = – GM / r 

Its SI unit is J / kg and it is a scalar quantity. Its dimensional 
formula is [L3r-2]. 

Since work W is obtained, that is, it is negative, the gravitational 
potential is always negative. UGPHS-101(N)/238



6.9.1 Gravitational Potential Energy 
Gravitational potential energy of any object at any point in 

gravitational field is equal to the work done in bringing it from infinity 
to that point. It is denoted by U. 

Gravitational potential energy U = – GMm / r 

The negative sign shows that the gravitational potential energy 
decreases with increase in distance. 

Gravitational potential energy at height h from surface of earth Uh 
= – GMm / R + h = mgR / 1 + h/R 

Figure - 9 

6.10 WHAT IS SATELLITE? 

A heavenly object which revolves around a planet is called a 
satellite. Natural satellites are those heavenly objects which are not man 
made and revolve around the earth. Artificial satellites are those heaven 
objects which are manmade and launched for some purposes revolve 
around the earth. 

Time period of satellite T = 2π √r3 / GM 

= 2π √(R + h)3 / g [ g = GM / R2 
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Near the earth surface, time period of the satellite T = 2π √R3 / GM 
= √3π / Gp 

T = 2π √R / g = 5.08 * 103 s = 84 min. where p is the average 
density of earth. Artificial satellites are of two types: 

6.10.1 Geostationary or Parking Satellites 
A satellite which appears to be at a fixed position at a definite 

height to an observer on earth is called geostationary or parking satellite. 

Figure - 10 

6.10.2  Polar Satellite 
These are those satellites which revolve in polar orbits around 

earth. A polar orbit is that orbit whose angle of inclination with 
equatorial plane of earth is 90°. 
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Height from earth’s surface = 880 km Time period = 84 min 

Orbital velocity = 8 km / s 

Angular velocity = 2π / 84 = π / 42 rad / min. 

There satellites revolve around the earth in polar orbits. 

These satellites are used in forecasting weather, studying the upper region 
of the atmosphere, in mapping, etc. 

PSLV series satellites are polar satellites of India. 

6.11 GRAVITATIONAL SELF ENERGY 

The gravitational self-energy Us of a uniform solid sphere is equal 
to the amount of work done in assembling together its infinitesimal 
particles initially lying infinite distance apart. 

Let us consider the sphere to be formed by continuous deposition 
of mass particles in the form of successive spherical shells around an inner 
spherical core of radius r until it becomes a full-fledged solid sphere of 
radius R as shown in figure. 

If ρ be the density of the material of the sphere and hence of the 
spherical core, 

we have mass of the inner core = mass * density =

And, if the thickness of the spherical shell deposited on it be dr , 
we have 

Mass of the shell = surface area*thickness * density 

4 π  dr ρ 

Therefore, change in self-energy of the core due to additional mass 
deposited on it  

dUs=Potential of the core (i.e. P.E. per unit mass × additional mass 

 G 4 π  dr ρ 

= 

=
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The integral of this expression for dUs, between limit r=0 and r=R, then 
give the self-energy of the whole sphere on being built from the very start 
i.e.,

Us=  =  R =  = 

 = 

Therefore, gravitational self-energy of the solid sphere, 

Us= 

Negative sign indicates that this much energy is actually evolved or 
released during the process of assembling the solid sphere. 

6.12 ORBITAL VELOCITY 
Orbital velocity of a satellite is the minimum velocity required to 

the satellite into a given orbit around earth. 

Orbital velocity of a satellite is given by vo = √GM / r = R √g / 
R + h 

where, M = mass of the planet, R = radius of the planet and h = 
height of the satellite from planet’s surface. 

If satellite is revolving near the 
earth’s surface, then r = (R + h) 
=- R Now orbital velocity, 

vo = √gR 

= 7.92km / h 

if v is the speed of a satellite in its orbit and vo is the required 
orbital velocity to move in the orbit, then. 

(a) If v < vo, then satellite will move on a parabolic path and 
satellite falls back to earth. 

(b) If V = vo then satellite revolves in circular path/orbit 
around earth. 

(c) If vo < V < ve then satellite shall revolve around earth in 
elliptical orbit. 

6.12.1 Energy of a Satellite in Orbit 

Total energy of a satellite E = KE + PE UGPHS-101(N)/242



= GMm / 2r + (- GMm / r) 

= – GMm / 2r 

6.12.2 Binding Energy 

The energy required to remove a satellite from its orbit around the 
earth (planet) to infinity is called binding energy of the satellite. 

Binding energy of the satellite of mass m is given by BE = + 
GMm / 2r 

6.13 ESCAPE VELOCITY 
Escape velocity on earth is the minimum velocity with which a 
body has to be projected vertically upwards from the earth’s 
surface so that it just crosses the earth’s gravitational field and 
never returns. 

Escape velocity of any object ve = √2GM / R 

= √2gR = √8πp GR2 / 3 

Escape velocity does not depend upon the mass or shape or size of 
the body as well as the direction of projection of the body. 

Escape velocity at earth is 11.2 km / s. 

Some Important Escape Velocities 

Heavenly body Escape velocity 

Moon 2.3 km/s 

Mercury 4.28 km/s 

Earth 11.2 km/s 

Jupiter 60 km/s 

Sun 618 km/s 

Neutron star 2 x 105 km/s 

Relation between escape velocity and orbital velocity of the 
satellite ve = √2 vo 

If velocity of projection U is equal the escape velocity (v = ve), 
then the satellite will escape away following a parabolic path. 

If velocity of projection u of satellite is greater than the escape 
velocity (v > ve), then the satellite will escape away following a 
hyperbolic path. 
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6.14 WEIGHTLESSNESS CONDITION 

It is a situation in which the effective weight of the body becomes 
zero, Weightlessness is achieved 

(a) during freely falling under gravity 

(b) inside a space craft or satellite 

(c) at the centre of the earth 

(d) when a body is lying in a freely falling lift. 

6.15 COMMUNICATION SATELLITE 

A communications satellite is an artificial satellite that relays and 
amplifies radio telecommunications signals via a transponder; it creates 
a communication channel between a source transmitter and a receiver at 
different locations on Earth. Communications satellites are used 
for television, telephone, radio, internet, and military applications. There 
are about 2,000 communications satellites in Earth's orbit, used by both 
private and government organizations. Many are in geostationary 
orbit 22,236 miles (35,785 km) above the equator, so that the satellite 
appears stationary at the same point in the sky, so the satellite 
dish antennas of ground stations can be aimed permanently at that spot and 
do not have to move to track it. 

The high frequency radio waves used for telecommunications links 
travel by line of sight and so are obstructed by the curve of the Earth. The 
purpose of communications satellites is to relay the signal around the 
curve of the Earth allowing communication between widely separated 
geographical points. Communications satellites use a wide range of radio 
and microwave frequencies. To avoid signal interference, international 
organizations have regulations for which frequency ranges or "bands" 
certain organizations are allowed to use. This allocation of bands 
minimizes the risk of signal interference.

6.16 SUMMARY 

 Gravitational Force: It is a force of attraction the two bodies by
the virtue of their masses.

 Acceleration due to Gravity: The acceleration produced in the
motion of a body freely falling towards earth under the force of
gravity is known as acceleration due to gravity.

 Orbital Speed: The minimum speed required to put the satellite
into the given orbit around earth is called orbital speed.

 Satellite: It is body which revolves continuously in an orbit around
a comparatively much larger body.UGPHS-101(N)/244
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 Polar Satellite: It is satellite which revolves in polar orbit around
the earth.

 Geostationary Satellite: It is the satellite which appears at a fixed
position and at a definite height to an observer on earth.

6.17 TERMINAL QUESTIONS 
1. Fill in the blanks:

(a) The gravitational force is an ……………………. force.

(b) According to Newton’s law of gravitation, F =
……………… . 

(c) In the Newton’s formula for gravitation, G is a …………… . 

(d) The dimensional formula for gravitational constant is 
………………….. . 

(e) The gravitational constant and the acceleration due to gravity 
are related by ………………. . 

(f) The value of acceleration due to gravity at the poles is 
……………….. . 

(g) The gravitational field at a point is a …………………. 
quantity. 

(h) The gravitational potential at a point is a ……………….. 
quantity. 

(i) The escape velocity is given by ……………………… . 

(j) Moon is the natural ………………… of the earth. 

2. Write Newton’s law of gravitation.

3. Define gravitational constant G. Why is it called universal
constant?

4. Distinguish between gravity.

5. Define gravitational field at a point.

6. Explain Escape velocity.

7. Explain Newton’s law of gravitation. Hence, define gravitational
constant and give its SI unit. On what factors does the gravitational
constant depend?

8. Define Weightlessness in an artificial satellite.

UGPHS-101(N)/245



6.18 ANSWERS TERMINAL QUESTIONS 

1. (a) attractive / conservative

(b)

(c) Universal Constant

(d)

(e)

(f) maximum

(g) vector

(h) scalar

(i)

(j) satellite

2. Hint (Section 6.4)

3. Hint (Section 6.5, 6.5.1)

4. Hint (Section 6.6, 6.6.3)

5. Hint (Section 6.8)

6. Hint (Section 6.13)

7. Hint (Section 6.4, 6.5, 6.5.1)

8. Hint (Section 6.14)

6.19  SUGGESTED READINGS 

1. Concepts of Physics, Part I, H. C. Verma.

2. Modern Physics, Beiser, Tata McGraw Hill.

3. Fundamental of Physics, David Halliday, Robert Resnick, Jearl
Walker, John Wiley & Sons.

4. College Physics, Hugh D. Young.
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UNIT : 7 

ELASTICITY 

Structure: 
7.1 Introduction 

7.2 Objectives 

7.3 What is Central Forces 

7.3.1 Characteristics of Central Forces  

7.3.2 Central Conservative Forces  

7.3.3 Conservative Force as Negative Gradient of Potential 
Energy 

7.4 Reduction to one Body Problem 

7.5 Conservative Angular Momentum 

7.5.1 Expression for Transverse and Radial Acceleration of a 
Body Moving under Central Force 

7.6 Expression for Total Energy  

7.7 Inverse square law force 

7.8 Prof of conic orbits  

7.9 Kepler's laws 

7.9.1 Law of Gravitation from Kepler's Laws 

7.10 Summary  

1. INTRODUCTION
In block I, the basic concepts of mechanics have been discussed in 

detail in which one of the important aspects was gravitation. Gravity is a 
conservative force. and there are many others. Elastic (Hooke's Law) 
forces. electric forces, etc. are conservative forces (which only depends on 
their initial and final positions and not on the paths followed to reach from 
initial to final position). It has also been mentioned that these forces are 
central forces. Now, the basic question arises (i) What are central force 
and why is it so special? (ii) What are the properties of the central forces? 
and (iii) Is three any physical world application of this forces? Now in this 
unit the main forces will be on central forces. All these questions have 
been answered at appropriate place. UGPHS-101(N)/247



In the early 1600s. Johannes Kepler summarizes the carefully 
collected data of his mentor Tycho Brahe which describes the motion of 
planets in a sun-centered solar system in the form of three laws of 
planetary motion which are called as Kepler's Law. Kepler's efforts to 
explain the underlying reasons for such motions are no longer accepted: 
the actual laws themselves are still considered for an accurate description 
of the motion of any plant and any satellite. Kepler's laws and their 
applications are discussed in detail in this unit. 

In this unit. we shall first understand conservative and non-
conservative forces and show that the conservative force can be 
represented as gradient of potential energy. We then discuss about central 
forces and their properties. Then we move on the reduction of two body 
central problem to one body problem. We also show that the angular 
momentum is conserved which results in the restriction of the motion of 
the particle in a plane perpendicular to the angular momentum. In SEc. IX 
we deduce the form of velocity and acceleration in central force field and 
show that the equation of motion can be written in component form. In 
Sec XL. we study the inverse square law in detail and derive the equation 
of the orbits which are analyzed in detail. Keplar's law are studied in Sec. 
XIII. Finally, the law of gravitation has been derived with the help of 
Kepler's law. 

Objectives: The complete study of this unit will help you in. 

(i) identifying and understanding the central forces. 

(ii) solve problems by applying the properties of motion under central 
conservative force. 

(iii) determine the possible orbits under a given inverse square central 
conservative forces. 

(iv) understanding the nature of the orbits physically. 

II.  CENTRAL FORCES  

A central force is by definition a force that points radially and 
whose magnitude depends only on the distance from the source (that is, 
not on the angle around the source). If interaction between any two objects 
is represented by a central force. then the force is directed along the line 
joining the centers of the two objects. Equivalently. we may say that a 
central force is one whose potential depends only on the distance from the 
source. That is if the source is located at the origin, then the potential 
energy is of the form v( r ) = v(r). Mathematically it is represented as 
F=f(r) r ,from a fixed point. Unit vector is a vector radius vector r  of the 
particle with respect to fixed point. UGPHS-101(N)/248



III. EXAMPLES

Some of the well-known examples are:

1. The gravitational force acting on a particle by another particle
which is stationary in an inertial frame of reference of reference is
a central force. which is always directed towards the Sum.

2. The electrostatic force acting on a charged on a charged particle by
another. The electron in Hydrogen atom moves under a central
force which is always directed towards the nucleus.

3. Certain two-body nuclear interaction such as the scattering of α -
particles nuclei.

4. A particle attached to one end of a spring whose other end is
stationary in an inertial frame of reference. The spring always pulls
towards the fixed end.

Many more such examples can be found in physics that are governed by 
this force which suggest that these forces are ubiquitous. that is they are 
found everywhere in the physical world. Hence, it is better to learn how to 
deal with them, however dealing with them is much easier than one might 
think, because crucial simplifications occur in the equations of motion 
when V is a function of r only. these simplifications will become evident 
in the following Sections.   

IV. CHARACTERISTICS OF CENTRAL FORCES

If a particle moves in a central force field then the following
properties hold: 

1. Central forces are long range forces.

2. It acts along the line joining the centers of the two objects.

3. It is conservative force, that is F×∇ .

4. It can be written as V–F ∇= ( r )=0.

5. The path of the particle must be a plane curve, i.e., it must lie in a
plane.

6. The angular momentum of the particle is conserved.

We will describe these properties in detail. and prove it, in
appropriate sections.

V.  CENTRAL CONSERVATIVE FORCES: 

A conservative force is a force that acts on a particle. such that the 
work done by this force in moving this particle from one point to another 
is independent of the path taken. In other words, it can be said that, the 
work done depends only on the initial and final position of the particle. 
Now we will show that the central force is conservative in nature. 
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For this purpose, let us consider a central force that is either 
directed towards or away from a fixed point which is called of force. This 
can be expressed in mathematical form as. 

                                     F–F = r            (1) 

where is a unit vector pointing from the center of force of the 
particle as shown in the FIG. 1. The center of force of the particle 
P is represented by O. As noted earlier in the 

 

   

 

 

 

 

 

 

FIG. 1: A particle moving under a central force 

case of electrostatic or gravitational forces, F depends only on the 
separation between the center of force particle. Hence. Eq. (1) can be 
rewritten as. 

                                     f–F = (r) r .           (2) 

 The aim here is to prove that Eq. (2) is conservative in nature.  

 For this purpose. Let ns consider points A and B which are 
connected by two random path say path and path 2. These paths are 
intersected by two hypothetical parts of radii r and r + dr as shown in 
Fig.2. 

 

 

 

 

 

 

 

 

FIG. 2. Work done on a particle moving from A to B 
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Consider two forces 1F  and 2F  are acting on particles on particles 
P and Q due to which there is a displacement 1rd . and 2rd  along path 1 
and 2 if 1θ and 2θ   are angles between F1 and 1rd and F2  and 

.2rd respectively, then we can wrife. 

F1 1rd = F1 1rd ,cos 1θ      (3) 

F2 2rd = F2 2rd ,2cosθ  (4) 

It is evident from Fig. 2 that the magnitude of central forces is equal. that 
is F1=F2 as P and Q are at the equal distances from O. Therefore, the 
projection of 1rd  and 2rd  on F1 and F1 will be equal. It means.

F1 1rd = F2 2rd  (5) 

Integrating Eq. (5) throughout the path that is from A to B we get 

2
B

A
2

B

A
1 rd.Frd1F ∫∫ = (6) 

Equation (6) implies that the work done during both the paths are smae. 
that is 

rd.Fdw
B

A∫=  (7) 

This it can be concluded that the central force given by Eq. (2) is 
conservative. 

SAQ1 : Show that the curl of conservative force is zero. 

SAQ2 : Show that the work done around the closed path is zero. 

VI. CONSEVATIVE FORCE AS NEGATIVE GRADIENT OF
POTENTIAL ENERGY.
Consider a particle acted upon by a conservative force with

corresponding potential energy V(f). The work done by in a small 
displacement from to is: 

.dzFdyFdxFrd.F)rdrr(W 2yx ++==+→  
(8) 

where Fx, Fy, Fx are components of force along its axes. 

The potential energy of a body or the system of bodies is infact a 
form of stored energy which can be recovered force such into kinetic 
energy, which is represented by V. When a body under conservative force 
such as gravitational force of elastic force is taken from one position to 
another. then the work done in this process is stored as potential energy in 
the body. The difference in the potential energy of the body at two 
different positions is defined as the work done in moving the body form 
one position to the other in the absence of frictional forces. Hence, we can 
write. 

)].r(V–)rdr(V–[dV–)rdrr(W +==+→  
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  = )]z,y,x(V–)dzz,dyy,dxx(V–[ +++ (9) 

We know from the definition of a derivative that 

.dx
dx
df)x(f–)dxx(fdf =+=  (10) 

This suggests that the potential energy can be written as 
)z,y,x(V–)dzz,dyy,dxx(VdV +++=

= .dz
z
Vdy

y
Vdx

x
V

∂
∂

+
∂
∂

+
∂
∂ (11) 

where the derivatives of V are now partial derivatives with respect to 
x,y,z, Hence from Eqs. (9) and (11) 

.dz
z
V–dy

y
V–dy

x
V–dV–)rdrr(W

∂
∂

∂
∂

∂
∂

==+→   (12)

Comparing (8) with (12) we get 

F = .V
z
Vz–

y
Vy–

V
Vx– ∇=

∂
∂

∂
∂

∂
∂   (13) 

where the operator 
z

z–
y

y–
x

x–
∂
∂

∂
∂

∂
∂

=∇   is pronounced "grad". That is 

conservative force is the negative gradient of potential.  

SAQ3: Show that the force zrz2yxx)zry2(F 22 +++=  is conservative. 

VII. REDUCTION TO ONE-BODY PROBLEM
Consider in isolated system consisting of two particles of masses

m1 and m2 with their corresponding position vectors as 1r and 2r  as shown 
in Fig. 3 Let 1r

  and 2r
  be their position vectors with respect to the centre 

of mass (CM) and R  be the position vector of the centre of mass. Here the 
only forces are due to an interaction potential V. From the Fig. 3 it is clear 
that. 

FIG. 3: Co-ordinates of the two-body system 

,r–rr–rr 2121


==  (14) 

11 rRr
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.2rR2r


+= (16) 

Now the centre of mass can be defined as 

21

2211

mm
rmrmR

+
+

= (17) 

with .rmrm 02211 =+
 which on solving on solving provides 

2

112
m

rm–r =
 (18) 

Equations (14) and (15) upon simplification gives 

21

2
1 mm

rm
–r

+
=

 (19) 

In a similar way one can write 

21

1
2 mm

rm
–r

+
=

 (20) 

Utilizing Eqs. (15), (16) and (20) one can wrie 

21

2
1 mm

rm
Rr

+
+=

 and 
21

1
2 mm

rm
–Rr

+
=

 (21) 

As mentioned earlier the forces acting are directed along the line joining 
the masses. The kinetic energy of the system can be written as. 

⇒

⇒

⇒

⇒  (22) 

Here the quantities M and are defined as 

M=m1+m2  and  ,
mm

mm

21

21

+
=µ (23) 

where µ is called as reduced mass of system. Thus, the kinetic 
energy is transformed to the form two effective particles of mass M and 
µ . Here, µ is the mass of the orbiter and M is the stationary central mass. 
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Thus, the central force motion of two bodies about their center of mass can 
always be reduced to an equivalent on body problem.  

VIII. CONSERVATION OF ANGULAR MOMENTUM

Angular momentum an important aspect of central forces because
it is constant over time For a point mass, the angular momentum L is 
defined as. 

.prL ×=  

L depends on r , so it therefore depends on where the origin of the 
coordinate system has been picked. Note that L  is a vector, and that it is 
orthogonal to both r  and p  by nature of the cross product. 

Theorem 1: If a particle is subject to a central force only. then its angular 
momentum is conserved. That is, If V( r ) = V(r), then .

dt
dL 0=

Proof: From Eq. (24) we have. 

),pr(
dt
d

dt
dL

×=  

,
dt
pdrp

dt
rd

×+×=  

= ,Fr)u(u ×+× µ  

.0=  

The second term is zero because rFα  and the cross product of two 
parallel vectors is zero. Hence it can be written that 

L =constant. 

That is, the angular momentum L of a body under the action of a central 
force is conserved. Next consider the dot product of L  with r  

.r).rr(r.)rr(r.L
.

0=×=×= µµ  

It means that the angular momentum L  is normal to the vector r . 
In other words, throughout the motion, the radius vector of the particle lies 
in a plane perpendicular to the angular momentum. That is, the motion is 
confined to a plane which is perpendicular to L  as shown in Fig.4 Thus, 
the problem has been simplified to a motion in two dimensions instead of 
three dimensions. 
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FIG. 4: Conservation of angular momentum implies that the relative 
motion occurs in a plane 

IX. EXPRESSION FOR TRANSVERS AND RADIAL
ACCELERATION OF A BODY MOVING UNDER CENTRAL
FORCE.

In the previous section. we have seen that the motion under central
forces lies in a plane. Hence it will be much easier to work with polar 
coordinates rather than Cartesian. For this we briefly discuss some 
relevant aspects of polar coordinates. 

To start with let us consider the motion in (x,y) plane such that the 
angular momentum points in the direction of z. Then we can write. 

,ŷyx̂xr +=          (28) 

where x̂  and ŷ are unit vectors in the direction of Cartesian axes 
and x  and y are the components of the vector. Here we will use polar 
coordinates as it is convenient in this case. Let the polar coordinates are 
specified by r = r  and the angle θ  between r and ,x̂ see Fig. 5. The 
relations between the polar and Cartesian coordinates are given as. 

FIG. 5: Polar coordinate system associated with a particle moving 
in the xy plane. 

x = r cosθ         y = rsinθ  (29) 

A. Vel
ocity 

To find the velocity in central force motion We need the 
derivatives of vector expressed in polar coordinates. Thus differentiating 
Eq. (38) with respect to 't' we get 

..
,rrrr

dt
rdr +==   (29) 

Here in Eq. (39) the form of is not known. To find this we proceed 
as follows 

θθθθθθθθθθ
θ


=+=+=== )ycosxSin(–ycosxsin–

dt
d

d
rd

dt
rdr

.
         (40) 
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From Eqs. (39) and (40) we arrive at the form of velocity as 

.rrrrr
.

θθ +==  (41) 

Her, velocity is sum of two components given as 

(i) Rad
ial velocity: It is defined as the component of velocity along 
the radius vector and is given  

(ii) Tra
nsverse velocity: The component of velocity perpendicular 
to the radius vector is defined as transverse velocity and is 
given as  

B. Acc
eleration  
To find the acceleration of the particle we differentiate Eq. (41) 

once 
..

rrˆrrrrrra θθθθθθ 
 ++++== . (42) 

It is to ben noted that the only new derivative appearing in (42) is 
which can be found by differentiating (37) once. That is 

.r̂–)ŷsin–x(cos
.

θθθθθ  ==  (43) 

Using Eqs. (40) and (43) in (42) and simplifying we finally get the 
form of acceleration as. 

.)rr(r)–r(r̂a θθθθ  22 ++==  (44) 

Here again we see that the acceleration is sum of two components 

(i) Rad
ial acceleration: It is defined as the component of 
acceleration along the radius vector and is given as. 

2θ r–rar = (45) 

(ii) Tra
nsverse acceleration: The component of acceleration of 
acceleration perpendicular to the radius vector is called as 
transverse acceleration and is of form. 

θθθ
 rra 2+=  (46) 

EQUATION OF MOTION 

Let r  and θ  be the polar coordinates of a point where a system of 
particles of reduced mass µ is situated. The radial and transverse 
accelerations are given by Eqs. (45) and (46) Now. from Newton's 
law the equation of motion along r  can be written with the help of 
(45) as. 
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).r(F,=µα  

).r(F)r–r( =⇒ 2θµ  (47) 

Similarly, the equation of motion corresponding to transverse 
component of acceleration becomes (using (46)) 

.a 0=θµ  

.)r–( 02 =⇒ θθµ  (48) 

SAQ4: From equation of motion for transverse component show that 
angular momentum is conserved. 

Solution: Let us consider a particle of reduced mass at a distance r. the 
separation distance between tow particles. If the origin be the centre of 
force then the motion of this particle is equivalent is equivalent to a two-
body motion. For such motion we know from Eq. (48) 

.)rθ( θθµ =+ 2  

.)r(
dt
d 02 =θµ⇒   

.)r(
dt
d 02 =⇒ θµ   

,ttanconsr =θµ⇒ 2

.ttanconsrIwL =θµ==⇒ 2 (49) 

where we have used I= and Hence it is clear that the angular momentum is 
conserved in a central force. It is also another form of first equation of 
motion corresponding toθ . 

X.  EXPRESSION FOR TOTAL ENERGY 

To find the total energy of the system we need the kinetic and 
potential energies of the particle of reduced mass in central force field. 
The kinetic energy can be written with the help of Eq. (41) as. 

).v.v(vT µµ
2
1

2
1 2 ==  

.
r
rvT

.IwvT

r

r

2

242
2

22

2
1

2
1

2
1

2
1

µ
θµµ

µ


+=⇒

+=⇒

.
r

LrT 2

2
2

2
1

2
1

µ
µ +=⇒   
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Now if the potential energy is the total energy of the system can be 
written with the help of Eqs. (50) as. 

).r(V
r

LrVTE ++=+= 2

2
2

2
1

2
1

µ
µ   (51) 

Equation (51) is the expression for total energy under central 
forces. It is known as second equation of motion corresponding to polar 
coordinate. 

A. Effe
ctive Potential 
Consider a particle of mass subject to a central force describe by 

the potential V(r), Equation (51) looks like the equation for a particle 
moving in one dimension under the influence of the potential. 

).r(V
r

L~)r(Veff +2

2

2µ
 (52) 

Here, is called as effective potential. Since the effective force can 
be written with the help of Eq. (52) as 

)r('V–
r

L)r(Feff 3
2

µ
=  where 

'dr
dv–'V = (53) 

Which agrees with ).r(VF '
effeff = This effective potential concept 

says that if we want to solve a two-dimension problem involving a central 
force, then we can recast the problem into a simple one-dimensional 
problem with a slightly modified potential. 

B. Con
servation of total energy  
We know that for conservative force 

dr
dV)r(F = (54) 

Substituting Eq. (54) in (47) we get 

.
dr
dV–r–r =2θµµ 

.
r

L
dr
dV–r 3

2

µ
µ +=⇒  











=⇒ 2

2

2 r
L

dr
d–

dr
dVr

µ
µ  where ,rL θµ 2=  











+=⇒ 2

2

2 r
LV

dr
d–r

µ
µ 

Multiplying both sides of above equation by r  we get 
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.
r

LV
dr
drrr 










+= 2

2

2µ
µ   

.
r

LV
dt
d–r

dt
d











+=






⇒ 2

2
2

22
1

µ
µ  

0
22

1
2

2
2 =










++⇒ )r(V

r
Lr

dt
d

µ
µ

.ttancons)r(V
r

Lr =++⇒ 2

2
2

22
1

µ
µ  

.ttancons)r(V
r

LrE =++=⇒ 2

2
2

22
1

µ
µ (56) 

XI. INVERSE SQUARE LAW FORCE

The most import ant type of central force is the one in which the
force varies inversely as the square of the radial distance. that is. 

,
r
k–)r(v

r
k–)r(F =⇒= 2

 (57) 

where k is a positive constant for an attractive force and negative 
for a repulsive force. The two most important cases under this category are 
gravitational force and coulomb force. For the gravitational force 
k=Gm1m2 where G is the gravitational constant. 

To understand the central force motion quantitatively, we need to 
solve the equations of motion given by Eqs. Eq. (49) and (51). which is 
nothing but the conservation of L and E statement, that is 

.Lr =θµ 2  (58) 

.E)r('V
r

Lr =++ 2
2

22
1

µ
µ  (59) 

There are following two possibilities of solving above equations of 
motion.  

(i) We 
can solve for r and θ in terms of t. This method has an advantage 
of immediately yielding velocities and in turn provide the 
information of the particle at any time t.  

(ii) We 
can solve for r in terms of θ However. this method shows explicitly 
the form of the trajectory in space. even though we do not about its 
rate of evolution in space. 
Here, we will focus on second approach as it will provide the form 
of the trajectories under various circumstances. For this purpose.  
Eq. (58) can be rewritten as 
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'r
L

dt
d

2µ
θ

=

∫ +=⇒ ,dt
r
L

02 θ
µ

θ (60) 

Where, 0θ is an integration constant. Now, Eq. (59) can also be 
written as  











=

)r(V–
r

L–E

drdt

22
2

µµ

(61) 

Substituting this value of dt in (60). we get 

( ) .o
r/L–V–E

dr)r/L( θ
µ

θ += ∫ 222

2
 (62) 

Let us consider 

.duu–dr
r

u 21
=⇒= (63) 

Substitution Eq. (63) in Eq. (62) and simplifying we get 

∫=
222 uL–)V–E(

duL–o
µ

θθ (64) 

If 
the form of the potential V is known further integration can be 
done to find the explicit form of θ .   

Substituting Eq. (57) in Eq. (64) and simplifying we get 

[ ]∫
+

= 21222 22
/

u–u)L/k()L/E(

du–o
µµ

θθ (65) 

The integral on the right side of equation (65) is a standard one of 
the type  










 +
=

++∫ 21
1

212 142
12

1
1

/
–

)/( )'–(
x'cos

–')rxx(
dr

αβ
β

βα
(66) 

Comparing Eqs. (65) and (66) we get 

22
22
L

k.
L

E µβµα ==        and    .–` 11 =  (67) 
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Keeping the values of βα , and 1`  in mind and integrating Eq. (65) 
with the help of formula given by (66) yields 















+
=

)k/EL(

–k/uLcos–
.

–
o 22

1

21

12

µ

µθθ

)k/EL(

–k/uL)–cos(
.2221

12

µ

µθθ
+

=⇒












+==⇒ )–cos(

k
EL

L
k

r
u . 02

2

2

211 θθ
µ

µ (68) 

which is the equation of the orbit. it may be noted that only three 
( LandE,0θ  ) of the four constants of integration appear int he 
orbits equation. The fourth constant can be obtained by finding the 
solution of the other equation of motion. that is, Eq. (58) Equation 
(68) can be rewritten after simplification as. 

).cosc(
L

k
r

θµ
+= 11

2  (69) 

Where 

2

221 .k
EL

µ
+=∈ (70) 

is the eccentricity of the particle's motion, Equation (69) is the 
general equation of a conic with one focus at the origin. Hence, the 
basic motion of objects under the influence of gravity, which takes 
care of virtually all of the gazillion tons of stuff in the universe is 
given by Eq. (69) 

Limits on r in Eq. (69) : To understand Eq. (69) completely we 
need to know the maximum and minimum values of r. It will give 
an idea of the region in which the motion of the particle is 
restricted and in turn will provide the nature of the orbit. 

(i) Value of rmin: The minimum value of r is obtained when the 
right-hand side reaches its maximum value. This is possible when 
cos .1=θ  In this case the value of rmin is 

rmin = 
)(k

L
∈+µ

2 (71) 

(ii) Value of rmi : The answer depends on whether ∈  is greater 
than or less than 1 
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(a): If ∈<1 (which corresponds to circular or elliptical orbits, as 
we will see in the Subsec. (A) then the minimum value of the right-

hand side of Eq. (69) is )–(L ∈12
Ωµ

Therefore. 

rmin = 
)(–k

L
∈µ

2 (72) 

(b): If ∈ 1≥  (which corresponds to parabolic or hyperbolic orbits. 
as we will see in the Subsec. A). then the right-hand side of Eq. 
(69) can become zero (when )/–cos ∈= 1θ  = –1/) Therefore. 

rmin ).if( 1∈≥∞= (73) 

A. The Orbits 

From Eq. (69) it is  clear that the form of the orbit will depend on 
which is given by (70) Hence in this subsection we will examine the 
various cases for  

Case (i) : Circle )( 0∈=   

If 0∈= ,then Eq. (70) says that .
r

–E 2

2

2
µκ

= The negative E 

means that potential energy is more negative than the kinetic 
energy is positive. It implies that the particle is trapped in the 

potential well. Equations (71) and (72) give rmin = rmin = ,
k

L
µ

2
 which 

suggests that the particle is moving in a circular orbit with radius 

,
k

L
µ

2
It is to be noted that Eq. (69) is independent of r and θ . 

For a given L, the energy – ,
L
k

2

2

2
µ  is the minimum value that E 

can have due to Eqs. (58) and (59). This is true because to achieve 
the minimum. we certainly want r = 0. This can be shown that by 

minimizing the effective potential 
r
k–

r
L

2

2

2µ
we get the same value 

for E If we plot Veff (r), we have the situation shown in Fig. 6. The 
particle is trapped at the bottom of the potential well, so it has no 
motion in the r direction. 

Case (ii): Ellipse (0 < ∈  < 1) 

If 0 < ∈  < 1, then Eq. (70) implies the condition 
2

2

r
k

µ
µ

<E<0.

Moreover. form Eqs. (71) 

UGPHS-101(N)/262



FIG. 6: (i): Position of rmin  and rmin.  (ii): Orbit of the particle 

and (72) we get different values of rmin  and rmin. However, is not 
sufficient to conclude that the resulting motion is an ellipse. For 
this purpose, we proceed as follows: 

Equation (70) can be rewritten as 

.
k
EL

.2

2212
µ

+=∈  

).–(
L

kE 1
2

2
2

2
∈=⇒

µ  (74) 

We know that for an attractive force, energy is negative. Hence 

E < 0 ⇒ )–(
L

k 1
2

2
2

2
∈

µ < 0. 

.– 112 ⇒∈<⇒∈  (75) 

From this it can be conclude that the path is an ellipse, 

If we plot V, we have the situation shown in Fig. 7. The particle 
oscillates between and rmin  and rmin The energy is negative, so the 
particle is trapped in the potential well. 

Case (iii): Parabola ( 1∈= ) 

If 1∈= , then Eq. (70) says that E = 0. This value of E implies 
that the particle barely makes it out to infinity (its speed 
approaches zero as r ∞→ ). Equation (71) gives rmin = .m/L α22  and 
Eq. (73) gives Again, it isn't obvious that the resulting motion is a 
parabola. We'll demonstrate this below.  
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If we plot Veff(r),  we have the situation show in Fig. 8. The particle 
does not oscillate back and forth in the r direction. It moves inward 
(or possibly not, if it was initially moving  

FIG. 7: (i): Position of rmin  and rmin (ii): Orbit of the particle 

out ward), turns around at rmin  and rmin = ./L κµ ′22 then heads out 
to infinity forever.  

Case (iv): Hyperbola ( 1>∈ ) 

FIG. 8: (i): Position of rmin  and rmin  (ii): Orbit of the particle 

If 1>∈ ,. then Eq. (70) says that E > 0. This value of E 
implies that the particle makes it out to infinity with energy to 
spare. The potential goes to zero as .r ∞→   so the particle's speed 
approaches the nonzero value µ/E2 as .r ∞→  Equation (71) 
gives and Eq. (73) gives rmax = .∞  Again, it isn't obvious that the 
resulting is a hyperbola. We'll demonstrate this below. 

If we plot Veff(r),  we have the situation shown in Fig. 9. As 
in the parabola case. the particle does not oscillate back and forth 
in the r direction. It moves inward (or possibly not. If it was UGPHS-101(N)/264



initially moving outward). turns around at and then heads out to 
infinity forever.  

FIG. 9. (i): Position of rmin  and rmin  (ii): Orbit of the particle 

XII. PROOF OF CONIC ORBITS

To prove the Eq. (69) describe the conic sections as discussed in
Subsection, A. let us consider.

.
k

l
µ

δ 2
≡  (76) 

Substituting Eq. (76) in Eq. (69) and using cos θ = x/r gives 

.
r
x

kr






 += 111  (77) 

Multiplying Eq. (77) through by kr, we get 

.x–krxr ∈=⇒∈+=α  (78) 

Squaring above equation yields 

.xex–yx 22222 2 ∈+=+ δδ  (79) 

Now we will discuss various cases for. 

(i) Circle ( 0∈= ) : In this case, Eq. (70) becomes 222 δ=+ yx . 
we have a circle with radius .mk/L2=δ  with its center at the 
origin (see Fig. 6). 

(ii) Ellipse (0 < ∈  < 1) In this case. Eq. (79) can be rewritten 
after rearranging the terms as 
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,
b
y–

a
–

rx
11

2

2

2

2
=









∈
+

δ

 where ,
–

a 21 ∈
=

δ  and 
21 ∈

=
–

b δ (80) 

This is the equation for an ellipse with its center located at the 
semi-major and semi-minor axes are a and b, respectively. 

(iii) Parabola : )( 1∈= In this case Eq. (79) becomes 
222 δ=+ yx which can be written )./–x(yas 222 δδ= This is 

the equation for a parabola with vertex at ).,/( 02δ So we have 
a parabola with its focus located at the origin (see Fig. 7). 

(iv) Hyperbola: )( 1∈=  In this case, Eq. (79) after completing the 
square for the x terms and simplifying we get. 

,
b
y–

a
–x
rx

11
2

2

2

2
=







 +

δ

 where 
12 –

a
∈

=
δ  and 

12 –
b

∈
=

δ (81) 

This is the equation for a hyperbola with its center located at 

XIII. KEPLER'S LAWS

Based on the detailed astronomical data of Tycho Brahe, kepler
enunciated three general laws regarding planetary motion. They can be 
stated as follows: 

Law of orbits: Planets move in elliptical orbits with the sun at one focus. 

Proof: We have already shown this in Sec. XII. 

Law of areas: The radius vector to a planet sweeps out area at a rate is 
independent of its position in the orbit. 

Proof: This law is nothing but another way of writing conservation of 
angular momentum. The area swept out by the radius vector during a short 
period of time is 2/)rd(rdA θ=  because is the base of the thin triangle in 
Fig. 10. Therefore. we have (using L=mr2 .θ ) 

m
Lr

d
dA

22

2
==

θ (82) 

which is constant, because L is constant for a central force. 

Law of periods: The square of the period of revolution about the sun is 
proportional to  
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FIG. 10: (i) Area swept by a radius vector r in time dt (ii) Area swept by a 
radius vector r in time period T. 

the cube of the semi-major axis of its orbit. Mathematically, it can be 
written as  

.
mGm

T
21

3242 απ
=  (83) 

where a is the semi-major axis. 

Proof: In the case of ellipse, the perihelion )rr( min=1  and 
)rr( min=2 aphelion distances are the values of r when and respectively: 

Now from Eq. (69)  

)(C
rrmin ∈+

==
1
1

1     .
)(C

rrmin ∈+
==

1
1

2  (84) 

Then one can write the semi-major axis as 

)–(C
rra 2

21

1
1

2 ∈
=

+
= (85) 

Let T be the time period of an elliptical orbit. Then integrating Eq. (82) 
over the time of a whole orbit gives. 

.
m

LT
m
L

dt
dAA

T

O

T

O 22∫∫ ===  (86) 

The area of the ellipse is also equal to ,abA π=  where b is the length of the 
semi-minor axis.  

Then comparing Eq. (86) with ,abA π=  we get 

.
L
abTabLT µππ

µ
2

2
=⇒=  (87) 

From the properties of ellipse, we know that 

21 ∈= –ab (88) 
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From Eqs. (85) and (88) we get 

)t–(C
)t–(

)–(C
)–(a 22

2
22

22

1
11

1
11 =

∈
=∈ (89) 

.
aC

– 11 2 =∈⇒  

Substituting (89) in (88) yields 

.
k

aL
C
ab

µ

2
2 ==  

Substituting (90) in (87) provides 

.
)mm(G

aT
21

3242 π
=  

which is the statement of Kepler's third law. 

The third law can be written in an alternative µ by form by 
(m1m2)/(m1+m2) and k by its value Gm1m2 as.  

.
)mm(G

aT
21

3242 π
=  

These three laws describe the motion of all the planets (and asteroids, 
comets, and such) in the solar system. 

XIV. LAW OF GRAVITATION FROM KEPLER'S LAWS

To obtain the law of gravitation from Kepler's law let us rewrite
Eq. (59) as 

).r(Fr–r =2θµµ   (93) 

Let us consider then 

2

2
uL

r
L

µµ
θ == (94) 

and  

.
d
duL–

dudt
du

uudt
dr

θµµ
θ

θ
===






= 

22
111  (95) 

Similarly, we can get the second derivative of r as 

.
d
dLu–r 2

22

θ
µ

µ 







=  (96) 

Substituting Eqs. (94) and (96) in (93) and simplifying we get 

.
u

F
uL

–u
d

ud






=+

1
222

2 µ
θ

 (97) 
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Now, re-inverting the above relation in the form of yields 

).r(Fr
L

–
rrd

ud 2
22

2 11 µ
θ

=+





  (98) 

Equation Eq. (69) is  

.
L

kC)cos(C
r 211 µθ =+=  (99) 

Replacing 1/r on the left-hand side of (99), we get 

).r(Fr
L

–)cos(C)cos(
d
dC 2

22

2
11 µθθ

θ
=∈++∈+  (100) 

)r(Fr
L

–C 2
2

µ
=⇒  (101) 

ttanconsCL'K
'r
'K–

r
CLr(F ====⇒

µµ

2

22

2 10 (102) 

The negative sign indicates that the force is of attraction. Equation (86) 
can be rewritten as. 

22
2

2242 ba
L

T µπ
= (103) 

Since, Substituting this value of b2 

'K
aa

CL
T

32
322 4

2
4 µπµµπ == (104) 

Comparing this with (92) we get 

.
)mm(Gmm

mm
)mm(G'K 2121

21

21

11
+

=⇒
+

=
µ  

.mGm'K 21=⇒ (105) 

With this value of Eq. (102) reduces to 

r
r

mGm
–)r(F 

2
21=  (106) 

which is gravitational force of sun of planet. 

XV. SUMMARY

 A central force is by definition a force that points radially and
whose magnitude depends only on the distance from the distance
from the source. It is represented mathematically as

rFF =

 Central force is conservative in nature and hence it can be
represented as negative gradient of potential. that is.
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 In central force motion of two bodies about their center of mass
can always be reduced to an equivalent on body problem.

 The angular momentum L is conserve in central forces due to
which the motion is confined to a plane perpendicular to.

 Conservation of and E provides two equations of motion and they
are also known as integrals of motion.

 The equation of orbit for an inverse square law, that is is
represented by a conic equation as

).cos(
L

k
r

θµ
+= 1

2
1  (109) 

where .
k

EL
2

221
µ

+∈=  

 For repulsive central 
conservative force, the orbit will be a hyperbola whereas for 
attractive force its shape depends on the form of .∈  

Terminal Question 

1: Find the components of the force on the body when it is in position 
(–2,0,5). if the potential energy is given by where V is in jule and 
in meter.  
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8.1 INTRODUCTION 

In Block-I, we studied about rotation of the bodies and then 
realized that the motion of a body depends on how mass is distributed 
within the body. We restricted ourselves to simpler situation of rigid 
bodies. Rigid bodies don’t bend, stretch, or squash when forces act on 
them. But the rigid body is an idealization. All real materials are elastic 
and do deform to some extent. In the present unit we will introduce the 
concepts of stress, strain, Simple Principle called Hooke’s Law that help 
us predict what deformation will occur when forces are applied to a real 
kind of (not perfect rigid) body. 

8.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Define Elasticity

 Understand the Concept of Stress and Strain

 Explain Poisson’s Ratio

 Related Poisson ratio and elastic constants

 Understand Elastic Potential Energy

8.3 WHAT IS ELASTICITY 

If the distance between any two particles in a body remains 
unattired whatever the external forces applied to it, the body is said to be 
rigid body. In practice it is not possible to have a perfect rigid body. 
Everybody gets deformed under the action of forces to a smaller or larger 
extent. The property of the body by virtue of which it tends to regain its 
original shape and size on the removal of external (deforming) forces is 
elasticity. 

If a body recovers completely is original shape, size or volume as 
soon as the deforming forces have been removed, it is said to be perfectly 
elastic body while if it completely retains its altered size and shape, it is 
said to be perfectly plastic body. In general, there is no perfectly elastic or 
plastic body, actual bodies the between the two extremes. The nearest 
approach to a perfectly plastic body is putty and perfectly elastic body is a 
quartz fiber. 

8.4 STRESS AND STRAIN 
When an external (deforming) force acts upon a body, relative 

displacements of its various particles take place and consequently the body 
gets deformed. Elastic body offers appreciable resistance to the deforming 
force inside the body. These internal forces are equal in magnitude and UGPHS-101(N)/272



opposite to the deforming force so long as there is no permanent change 
produced in the body. Finally, these internal forces, restoring forces 
restore the body to its original form when deforming forces are removed. 
The restoring per unit area comes into play inside the body called stress. If 
the force F is acting on the area cross section a, then 

If stress is normal to the surface, it is called normal stress e.g., 
stress is normal in case of a change in length of a wire or in change in the 
volume of a body.  

Figure – 1a 

Figure – 1b UGPHS-101(N)/273



Figure – 1c 

Figure – 1d 

Figures: (a) Cylinder subjected to tensile stress stretches it by an amount 
. (b) A cylinder subjected to shearing (tangential) stress deforms by an 

angle θ. (c) A book subjected to a shearing stress (d) a solid sphere 
subjected to a uniform hydraulic stress shrinks in volume by an amount 

The normal stress may be either compressive or expansive (tensile) 
according as decrease or increase in volume takes place. When the stress 
is tangential to the surface, it is called shearing or tangential stress. 

UGPHS-101(N)/274



8.5 HOOKE’S LAW 

There is a simple relationship between stress and strain discovered 
by Robert Hooke in 1676. According to this law, stress is directly 
proportional to strain for small deformations i.e., within elastic limit. 
Mathematically, 

Stress × Strain 

or Stress = E. Strain: E is a constant 

⇒ 

The constant E is called elasticity coefficient or modules of 
elasticity. The value of coefficient of elasticity depends upon the nature of 
material and also the condition to which it has been subjected after 
manufacturing. The S.I. unit of coefficient of elasticity E is N/m2. 

8.6 KINETIC MODEL FOR SOLIDS 
 (F – r and U – r graphs) 

Solid is one of the fundamental states of matter. A Solid is 
characterized by structural rigidity and resistance to a free applied to the 
surface. In solid, the intermolecular forces are very strong and the 
constituent particles are closed packed. Hence, solids are incompressible 
and have high density. These interatomic forces give an explanation of 
some of elastic and thermal properties of a solid. 

If U is the potential energy of two molecules separated by a 
distance r, the force between them, . The variations of potential 

energy U of two molecules and force F between them with their separation 
r have been shown in Figure-1.  
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Figure – 1e 
There are two forces act between the molecules – repulsive force 

and attractive force. We can see from the graph that when the molecules 
are close to each other the repulsive force predominates while at larger 
distance, the attractive force is large. The resultant force between the 
molecules is repulsive from O to A, attractive from A to B but increasing 
with distance and, attractive from B to infinity but decreasing with 
distance. There is a position A on the graph, where the two forces balance 
other. This is the equilibrium position for molecules in solid. The potential 
energy is minimum at this point. Any disturbance from this position 
produces a force tending to return the molecules to A. 

8.7 BEHAVIOUR OF A WIRE UNDER LOAD 

Let a wire be clamped at one end and loaded at the other end. If the 
stress or load is increased continuously until the wire breaks down, we 
observe the following behaviour of the wire as shown in Figure-2. The 
figure shows the variation between stress and strain of a loaded wire and is 
known as stress – strain diagram. 

Figure - 2 

The part OA of the curve is a straight line which shows that stress 
is proportional to strain upto the point A. Hooke’s law holds good only for 
the straight-line portion OA of the curve. The point A is called the limit of 
proportionality. If stress is further increased, a point A’ is reached, which 
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is known as elastic limit. Below the elastic limit the body regains its 
original position or shape or size when deforming force is removed. 

8.8 POISSON’S RATIO 
Poisson’s ratio is “the ratio of transverse contraction strain to 

longitudinal extension strain in the direction of the stretching 
force.” Here, 

 Compressive deformation is considered negative

 Tensile deformation is considered positive.

Symbol Greek letter ‘nu’,ν 

Formula Poisson’s ratio = – Lateral strain / Longitudinal 
strain 

Range -1.0 to +0.5 

Units Unitless quantity 

Scalar / 
Vector Scalar quantity 

8.8.1 Poisson’s Ratio Formula 

Imagine a piece of rubber, in the usual shape of a cuboid. Then 
imagine pulling it along the sides. What happens now? 

Figure - 3 

It will compress in the middle. If the original length and breadth of 
the rubber are taken as L and B respectively, then when pulled UGPHS-101(N)/277
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longitudinally, it tends to get compressed laterally. In simple words, length 
has increased by an amount dL and the breadth has increased by an 
amount dB. 

In this case, 

The formula for Poisson’s ratio is, 

where, 

εt is the Lateral or Transverse Strain 

εl is the Longitudinal or Axial Strain 

ν is the Poisson’s Ratio 

The strain on its own is defined as the change in dimension 
(length, breadth, area…) divided by the original dimension. 

8.8.2 Poisson Effect 
When a material is stretched in one direction, it tends to compress 
in the direction perpendicular to that of force application and vice 
versa. The measure of this phenomenon is given in terms of 
Poisson’s ratio. For example, a rubber band tends to become 
thinner when stretched. 

8.8.3 Poisson’s Ratio Values for Different Material 
It is the ratio of transverse contraction strain to longitudinal 
extension strain, in the direction of the stretching force. There can 
be a stress and strain relation which is generated with the 
application of force on a body. 

 For tensile deformation, Poisson’s ratio is positive.

 For compressive deformation, it is negative.

Here, the negative Poisson ratio suggests that the material will 
exhibit a positive strain in the transverse direction, even though the 
longitudinal strain is positive as well. 

For most materials, the value of Poisson’s ratio lies in the range, 0 
to 0.5. 

A few examples of Poisson ratio is given below for different 
materials. 
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Material Values 

Concrete 0.1 – 0.2 

Cast iron 0.21 – 0.26 

Steel 0.27 – 0.30 

Rubber 0.4999 

Gold 0.42 – 0.44 

Glass 0.18 – 0.3 

Cork 0.0 

Copper 0.33 

Clay 0.30 – 0.45 

Stainless steel 0.30 – 0.31 

Foam 0.10 – 0.50 

8.9 DERIVE THE RELATIONSHIP BETWEEN 
THE ELASTIC CONSTANTS, I.E. E, K AND G 

Figure - 4
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Consider a solid cube, subjected to a Shear Stress on the faces PQ 
and RS and complimentary Shear Stress on faces QR and PS. The 
distortion of the cube, is represented by the dotted lines. The diagonal PR 
distorts to PR’. 

(a)  Relationship between E and G 

Modulus of Rigidity, 

From the diagram, Shear Strain 

Since Shear Stress = τ, 

 ………………….. (1) 

From R, drop a perpendicular onto distorted diagonal PR' 

The strain experienced by the diagonal  (Considering that PT 

≈ PR) 

 ………………….. (2) 

Strain of the Diagonal 

Let f be the Direct Stress induced in the diagonal PR due to the 
Shear Stress τ 

Strain of the diagonal  ………………….. (3) 

The diagonal PR is subjected to Direct Tensile Stress while the 
diagonal RS is subjected to Direct Compressive Stress. 

The total strain on Diagonal PR would be 

     ………………….. (4) 

Comparing Equations (III) and (IV), we have 

Re – arranging the terms, we have, 
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 ………………….. (5) 

(b) Relationship between E and K 

Instead of Shear Stress, let the cube be subjected to direct stress f 
on all faces of the cube. 

We know, 

Since 

 ………………….. (6) 

Also, by the definition of Bulk Modulus, 

Equating (6) and (7), we have: 

     ………………….. (8) 

(c) Relationship between E, G and K 

From the equation (5), 

From the equation (8) 

Equating both, we get, 

Simplifying the equation, we get, 

This is the relationship between E, G and K. UGPHS-101(N)/281



8.10 ANGLE OF TWIST 

 Deformation of a circular shaft subjected to pure torsion

(a) Fix left end of shaft

(b) A moves to A’

(c) ϕ = angle of twist (in radians)

 What are the boundary conditions on ϕ?

(a) ϕ (x) = 0 at x = 0

(b) ϕ(x) = ϕ at x = F

 For pure torsion, ϕ is linear.

Figure - 5 

8.11 ANGLE OF SHEAR 
A form of stress resulting from equal and opposite forces that do 

not act along the same line. If a thick hard-bound book is lying flat, and 
one pushes the front cover from the side so that the covers and pages no 
longer constitute parallel planes, this is an example of shear. 
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The angle of deformation on the sides of an object exposed to 
shearing stress. Its symbol is φ (the Greek letter phi), and its value will 
usually be well below 90°. 

8.12 CONTILEVER

When a beam of uniform cross section is fixed horizontally at one 
end and can be bent by a load applied at or near the free end, the system is 
called a cantilever. When the free end of the cantilever is loaded by a 
weight Mg, the beam bends with curvature changing along its length. The 
curvature is zero at the fixed end and increases with distance from this end 
becoming maximum at the free end. Taking X-axis horizontally in the 
direction of the length of the unbent beam, Y-axis vertically downwards, 
let us consider the equilibrium of a transverse section of the beam at a 
point P whose co-ordinates are (x, y), if the beam is of length l the 
distance of this section at P from the applied mass at the free end is (l × x) 
and hence the moment of the external couple is evidently equal to Mg (l × 
x). For equilibrium of the section, this moment of the external couple must 
be equal to the bending moment at the section. 

Figure - 6 

Hence 

or 
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Now the radius of curvature R of the neutral axis at P distant x 
from fixed end and having depression y is given by 

Thus 

Integrating once, we get 

when 

Hence 

Integrating again, we get 

when 

Hence 

This gives the depression of the beam at distance x from the fixed 
end. 

At the loaded end when x = l, the depression is maximum and is 
given by  

If the beam is of a rectangular cross section (breadth b and 
thickness d), the geometrical moment of inertia 

Therefore, 

For beam of circular cross section of radius r,  
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Therefore, 

8.13 ELASTIC POTENTIAL ENERGY 

In natural state of a body, the molecules settle in their equilibrium 
position and the potential energy corresponding to this position is 
minimum (Refer to the graph given in section 2 of this chapter). When 
deformed, the molecular separation changes and potential energy 
increases. This happens due to appearance of an internal forces, against 
whom work has to be performed to deform a body. The increase in 
potential energy when body is deformed is known as elastic potential 
energy. 

Let us calculate the elastic potential energy of a wire, which is 
stretched by applying a force. 

Consider a wire of length L and cross-section A. we pull it so as to 
stretch it slowly. When extension is x, the tension force is such that 

[Assuming a to remain constant] 

⇒ 

Where 

Tension (F) changes with stretch (x) just like spring force. [Fact is 
that we assumed that an ideal spring is one which obeys Hooke’s 
law; implying that ]. 

Therefore, the elastic potential energy of the wire, when its length 
is increased by  is given as 

This may be written as 

⇒  (stress) (strain) (volume of wire) 

Energy stored in unit volume of the wire is known as elastic energy 
density (u) 

∴
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Unit of energy density (u) is Jm-3. 

It can also be written as, 

 (maximum value of stretching force) (extension) 

8.14 BENDING OF BEAMS 

A rod of uniform cross section whose length is much larger 
compared to its other dimensions is called beam. When a beam gets bent 
by two equal and opposite couples applied at its ends, its longitudinal 
filaments are lengthened on the convex side and subjected to tension while 
those on the concave side are shortened and compressed. Following are 
some definitions connected with bending of beams. 

Figure - 7 

8.14.1 Neutral Surface 

When a beam is bent, its filaments on one side are elongated while 
the filaments on the inner concave side are compressed and get shortened. 
In the middle of the beam there will be layer of filaments in which they 
are neither shortened nor elongated but remain constant in length. This 
layer of filaments is known as the neutral surface and the filaments lying 
on this surface are called neutral filaments. 
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8.15 BENDING MOMENT 

When a beam is clamped at one end and a load is applied to the 
other end, it is bent due to the moment of the load. Now, when bending 
occurs, the filaments of the beam above the neutral axis are lengthened. 
Consequently, they must be in tension. The filaments of the beam below 
the neutral axis are shortened. Consequently, they must be under pressure. 
These forces of tension and compression constitute a restoring couple. In 
the position of equilibrium, the internal restoring couple is equal and 
opposite to the external couple producing bending of the beam, the 
moment of this balancing couple formed by forces of tension and 
compression is called the bending moment. 

Figure - 8 

8.16 GEOMETRICAL INERTIA 

Bending moment is 

The expression  is called the geometrical moment of inertia 
of the strained transverse section of the beam. 

8.17 FLEXURAL RIGIDITY 

Flexural rigidity of a beam is defined as the external bending 
moment required to produce unit radius of curvature. Thus, quantity Y 
Ak2 is called flexural rigidity. 
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8.18 SUMMMARY 

 Elasticity: Elasticity is that property of the material of a body due
to which the body opposes any change in its shape and size when
deforming force are applied on it and recovers its original
configuration partially or wholly as soon as the deforming forces
are removed.

 Stress: It is defined as the internal restoring force per unit area of
cross-section of object.

 Strain: The change in dimensions of an object per unit original
dimensions is called strain.

 Hooke’s Law: For small deformation, the stress is proportional to
strain.

 Shear Modulus: It is ratio of shear stress to shearing strain.
 Poisson’s Ratio: The lateral strain is proportional to longitudinal

strain within the elastic limit and the ratio of two strains is called
Poisson’s ratio.

8.19 TERMINAL QUESTIONS 

1. Define Elasticity.

2. Define the terms:

(a) Stress

(b) Strain

3. Derive an expression for the elastic potential energy of a wire
under stress.

4. State Hooke’s law in elasticity.

5. Prove that elastic energy density

6. Write short notes on:

(a) Angle of Twist

(b) Angle of Shear

(c) Cantilever

(d) Poisson’s Ratio

ANSWERS TERMINAL QUESTIONS 

1. Hint (Section 8.3)

2. (a) Hint (Section 8.4)

(b) Hint (Section 8.4)UGPHS-101(N)/288



3. Hint (Section 8.13)

4. Hint (Section 8.5)

5. Hint (Section 8.5)

6. (a) Hint (Section 8.10)

(b) Hint (Section 8.11)

(c) Hint (Section 8.12)

(d) Hint (Section 8.8)

8.20 SUGGESTED READINGS 

1. Introduction to Solid Mechanics, H. Shames, Prentice Hall India.

2. Strength of Materials, G. H. Ryder McMillan, India Ltd.

3. College Physics, Hugh D. Young

4. Concept of Physics, H. C. Verma.
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9.1 INTRODUCTION 

In Block-I, we studied about Mechanics and dynamics of a Particle 
in depth. As, we know Mechanics is the oldest physical science that deals 
with both stationery and moving boundaries under the influence of forces. 
In this unit, we shall study about Fluid Mechanics, which deals with 
behavior of fluids at rest or in motion and the interaction of fluids with 
solids or other fluids at the boundaries. This unit also cover classification 
of fluids and equation of continuity. 

9.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Define Fluid Mechanics

 Understand classification of fluid

 Derive Poiseuille’s law and Equation

 Explain Application of Stoke’s law

 State and derive Equation of Continuity

9.3 WHAT IS FLUID MECHANICS? 

Fluid Mechanics is the science that deals with behavior of fluids at 
rest (fluid statics) or in motion (fluid dynamics) and the interaction of 
fluids with solids or other fluids at the boundaries. 

9.4 CLASSIFICATION OF FLUIDS 

Classification of Fluids are as follows: 

Figure – 1 UGPHS-101(N)/292



Figure - 2 

(a) Ideal fluids and Real or Practical fluids. 

(b) Newtonian fluids and Non-Newtonian fluids. 

9.4.1 Ideal Fluids: 

Ideal fluids are having following properties. 

(a) It is incompressible. 

(b) It has zero viscosity. 

(c) Shear force is zero when the fluid is in motion i.e. No resistance is 
offered to the motion of any fluid particles. 

9.4.2 Real or Practical Fluids: 

(a)  It is compressible. 

(b)  They are viscous in nature. 

(c) Some resistance is always offered by the fluid when it is in motion. 

(d)  Shear stress always exists in such fluids. 

9.4.3 Newtonian Fluids: 

In Newtonian fluids a linear relationship exists between 
the magnitudes of shear stress τ and the resulting rate of deformation 
(du/dy). i.e. the constant of proportionality μ does not change with the rate 
of deformation. 
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Example:  Water, Kerosene, 

The viscosity at any given temperature and pressure is 
constant for a Newtonian fluid and is independent of the rate 
of deformation. 

9.4.4  Non-Newtonian Fluid: 
In Non-Newtonian fluids, there is a non-linear relation between the 

magnitude of the applied shear stress and the rate of deformation. The 
viscosity will vary with variation in rate of deformation. They do not 
obey Newton’s law of viscosity. 

The Non-Newtonian fluids can be further classified into five 
groups. They are simple Non-Newtonian, ideal plastic, shear thinning, and 
shear and real plastic fluids. 

Simple Non-Newtonian has already explained. 

In plastics, up to a certain value of shear stress there is no flow. 
After the limit it has a constant viscosity at any given temperature. 

In shear thinning materials, the viscosity will increase with rate of 
Deformation (du/dy). 

In shear thinning materials, viscosity will decrease with rate of 
Deformation (du/dy). 

Example:  For Non-Newtonian fluids are paint, toothpaste, and ink. 

9.5 CRITICAL VELOCITY 

Critical velocity is defined as the speed at which a falling object 
reaches when both gravity and air resistance are equalized on the object. 

The other way of defining critical velocity is the speed and 
direction at which the fluid can flow through a conduit without becoming 
turbulent. 

9.5.1 Critical Velocity Formula 
Following is the mathematical representation of critical velocity 

with the dimensional formula: 

VC=Reηρr 

Where, 

Vc: critical velocity 

Re: Reynolds number (ratio of inertial forces to viscous forces) 

𝜂𝜂: coefficient of viscosity 

r: radius of the tube 
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⍴: density of the fluid 

Dimensional formula of: 

• Reynolds number (Re): M0L0T0

• Coefficient of viscosity (𝜂𝜂): M1L-1T-1

• Radius (r) : M0L1T0

• Density of fluid (⍴): M1L-3T0

• Critical
velocity: Vc=[M0L0T0][M1L−1T−1][M1L−3T0][M0L1T0
]

∴ Vc=M0L1T−1

SI unit of critical velocity is ms-1 

9.5.2 Reynolds Number 
Reynolds number is defined as the ratio of inertial forces to 
viscous forces. Mathematical representation is as follows: 

Re=ρuLμ=uLν 

Where, 

⍴: density of the fluid in kg.m-3 

𝜇𝜇: dynamic viscosity of the fluid in m2s 

u: velocity of the fluid in ms-1 

L: characteristic linear dimension in m 

𝜈𝜈: kinematic viscosity of the fluid in m2s-1 

Depending upon the value of Reynolds number, flow type can be 
decided as follows: 

• If Re is between 0 to 2000, the flow is streamlined or laminar

• If Re is between 2000 to 3000, the flow is unstable or turbulent

• If Re is above 3000, the flow is highly turbulent

Reynolds number with respect to laminar and turbulent flow 
regimes are as follows: 

• When the Reynolds number is low that is the viscous forces are
dominant, laminar flow occurs and are characterized as a
smooth, constant fluid motion

• When the Reynolds number is high that is the inertial forces
are dominant, turbulent flow occurs and tends to produce
vortices, flow instabilities and chaotic eddies.
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Following is the derivation of Reynolds number: 

Re=maτA=ρV.dudtμdudy.A∝ρL3dudtμdudyL2=ρLdydtμ=ρu0Lμ=
u0Lν 

Where, 

t: time 

y: cross-sectional position 

u=dxdt : flow speed 

τ: shear stress in Pa 

A: cross-sectional area of the flow 

V: volume of the fluid element 

u0: maximum speed of the object relative to the fluid in ms-1 

L: a characteristic linear dimension 

𝜇𝜇: dynamic viscosity of the fluid in Pa.s 

𝜈𝜈: kinematic viscosity in m2s 

⍴: density of the fluid in kg.m-3

9.6 STREAMLINE FLOW 

A streamline flow or laminar flow is defined as one in which there 
are no turbulent velocity fluctuations. In consequence, the only agitation 
of the fluid particles occurs at a molecular level. In this case the fluid flow 
can be represented by a streamline pattern defined within an Eulerian 
description of the flow field. These streamlines are drawn such that, at any 
instant in time, the tangent to the streamline at any one point in space is 
aligned with the instantaneous velocity vector at that point. In a steady 
flow, this streamline pattern is identical to the flow-lines or path-lines 
which describe the trajectory of the fluid particles within a Lagrangian 
description of the flow field, whereas in an unsteady flow this equivalence 
does not arise. 

The definition of a streamline is such that at one instant in time 
streamlines cannot cross; if one streamline forms a closed curve, this 
represents a boundary across which fluid particles cannot pass. Although a 
streamline has no associated cross-sectional area, adjacent streamlines 
may be used to define a so-called stream tube. This concept is widely used 
in fluid mechanics since the flow within a given stream tube may be 
treated as if it is isolated from the surrounding flow. As a result, the 
conservation equations may be applied to the flow within a given stream 
tube, and consequently the streamline pattern provides considerable 
insight into the velocity and pressure changes. For example, if the 
streamlines describing an incompressible fluid flow converge (i.e. the UGPHS-101(N)/296



cross-sectional area of the stream tube contracts), this implies that the 
velocity increases and the associated pressure reduces. 

Figure – 3 

9.7 TURBULENT MOTION 

Turbulent Motion is a flow regime characterized 
by chaotic property changes. This includes rapid variation 
of pressure and flow velocity in space and time.  In contrast to laminar 
flow the fluid no longer travels in layers and mixing across the tube is 
highly efficient.  Flows at Reynolds numbers larger than 4000 are 
typically (but not necessarily) turbulent, while those at low Reynolds 
numbers below 2300 usually remain laminar. Flow in the range of 
Reynolds numbers 2300 to 4000 and known as transition. 

9.8 COMPRESSIBLE FLUID 

All real fluids are compressible, and almost all fluids expand when 
heated. Compression waves can propagate in most fluids: these are the 
familiar sound waves in the audible frequency range, and ultrasound at 
higher frequencies. Thermal expansion gives rise to heat convection, 
especially in the presence of a gravitational field: hot air rises and cold air 
sinks. 

In general, heat transfers and fluid motions are coupled and should 
be treated together by using the equations of fluid dynamics along with 
those of thermodynamics and heat diffusion. However, the coupled 
equations are complicated, and we will start with the simplified 
assumption that fluid motions occur either isothermally (at constant 
temperature) or adiabatically (with negligible heat transfer), as a first 
approximation. 
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In order to use thermodynamics, it must be possible to define a 
temperature T(r, t) that varies with position r and time t, in the same way 
as one defines other hydrodynamic variables such as the mass 
density p(r,t), the pressure p(r,t) and the fluid velocity v(r,t). One must be 
able to consider a volume V that is large enough to be macroscopic (it 
contains many particles) and small enough to be infinitesimal with respect 
to variations of T; in addition, the particle velocities within V must be 
given by the thermal equilibrium distribution, when viewed in a frame 
moving along with the fluid with the local velocity v(r,t).  

Figure - 4 

We will not treat variations in the chemical composition of the 
fluid, so that in effect we can suppose that the 
volume V contains N particles of average mass m, and we also assume that 
the fluid is uncharged and non-magnetic. Then the first law of 
thermodynamics (just energy balance) can be stated as follows: the heat 
transfer dQ to the fluid element containing N particles causes a change of 
the internal energy E and of the volume V according to 

dE = dQ - pdV 

An infinitesimal heat transfer dQ corresponds to a change of the 
entropy S, according to dQ=TdS: thus, an adiabatic volume change (dQ=0, 
no heat transfer) is also isentropic (dS=0). In thermodynamics, the 
advantage of introducing S is that a system contains a well-defined amount 
of entropy, but not a definite amount of heat (since work can be turned 
into heat and, to some extent, heat can be used to do work). The 
entropy S also has the important property that it never decreases for a 
closed system (second law of thermodynamics). For simplicity, we do not 
use the second law in this chapter, although we will often refer to the 
entropy content of the fluid. When we need to carry out a derivation 
involving S, we assume that the fluid is an ideal gas, work up to the final 
formula, and then simply quote its general form for any fluid. 

9.9 INCOMPRESIBLE FLUID 

Incompressible Fluid: The fluid whose density doesn't vary in any sort 
of flow is considered as incompressible fluid. UGPHS-101(N)/298



Incompressible flow does not imply that the fluid itself is 
incompressible. 
Example of incompressible fluid flow: 

The stream of water flowing at high speed from a garden hose pipe. 
Which tends to spread like a fountain when held vertically up, but tends to 
narrow down when held vertically down. The reason being volume flow rate of 
fluid remains constant. 

Figure – 5 

9.10 EQUATION OF CONTINUITY 

Continuity equation represents that the product of cross-sectional 
area of the pipe and the fluid speed at any point along the pipe is always 
constant. This product is equal to the volume flow per second or simply 
the flow rate.  The continuity equation is given as: 

R = A v = constant 

Where, 

 R is the volume flow rate

 A is the flow area

 v is the flow velocity

9.10.1  Assumption of Continuity Equation 

These are the assumptions of continuity equation: 

 The tube is having a single entry and single exit

 The fluid flowing in the tube is non-viscous

 The flow is incompressible

 The fluid flow is steady

9.10.2  Derivation of Equation of Continuity 

Consider the following diagram: UGPHS-101(N)/299
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Figure - 6 

Now, consider the fluid flows for a short interval of time in the 
tube. So, assume that short interval of time as Δt. In this time, the 
fluid will cover a distance of Δx1 with a velocity v1 at the lower 
end of the pipe. 

At this time, the distance covered by the fluid will be: 

Now, at the lower end of the pipe, the volume of the fluid that will 
flow into the pipe will be: 

V = A1 Δx1 = A1 v1 Δt 
It is known that mass (m) = Density (ρ) × Volume (V). So, the 
mass of the fluid in Δx1 region will be: 

Δm1= Density × Volume 

=> Δm1 = ρ1A1v1Δt               …………..(1) 
Now, the mass flux has to be calculated at the lower end. Mass 
flux is simply defined as the mass of the fluid per unit time passing 
through any cross-sectional area. For the lower end with cross-
sectional area A1, mass flux will be: 

Δm1/Δt = ρ1A1v1 …………..(2) 
Similarly, the mass flux at the upper end will be: 

Δm2/Δt = ρ2A2v2 …………..(3) 
Here, v2 is the velocity of the fluid through the upper end of the 
pipe i.e. through Δx2 , in Δt time and A2, is the cross-sectional area 
of the upper end. UGPHS-101(N)/300



In this, the density of the fluid between the lower end of the pipe 
and the upper end of the pipe remains the same with time as the 
flow is steady. So, the mass flux at the lower end of the pipe is 
equal to the mass flux at the upper end of the pipe i.e. Equation 2 
= Equation 3. 

Thus, 

ρ1A1v1 = ρ2A2v2 …………..(4) 
This can be written in a more general form as: 

ρ A v = constant  …………..(5) 

The equation proves the law of conservation of mass in fluid 
dynamics. Also, if the fluid is incompressible, the density will 
remain constant for steady flow. So, ρ1 =ρ2. 

Thus, Equation 4 can be now written as: 

A1 v1 = A2 v2 …………..(6) 

This equation can be written in general form as: 

A v = constant   …………..(7) 

Now, if R is the volume flow rate, the above equation can be 
expressed as: 

R = A v = constant  …………..(8) 

This is the derivation of continuity equation. 

9.11 POISEUELLI’S LAW AND EQUATION 

Consider a solid cylinder of fluid, of radius r inside a hollow 
cylindrical pipe of radius R. 

Figure – 7 

The driving force on the cylinder due to the pressure difference is: UGPHS-101(N)/301
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 …………..(9) 

The viscous drag force opposing motion depends on the surface 
area of the cylinder (length L and radius r): 

           …………..(10) 

In an equilibrium condition of constant speed, where the net force 
goes to zero. 

We know empirically that the velocity gradient should look like 
this: 

Figure – 8 

At the centre 

 r=0 

v is at its maximum. 

At the edge 
 r=R 
 v=0 

From the velocity gradient equation above, and using the empirical 
velocity gradient limits, an integration can be made to get an 
expression for the velocity. 
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rewriting 

…………..(11) 

Which has a parabolic form as expected. 

Now the equation of continuity giving the volume flux for a 
variable speed is: 

           …………..(12) 

Substituting the velocity profile equation and the surface area of 
the moving cylinder: 

Poiseuille's equation 

           …………..(13) 

9.12 STOKE’S LAW FOR VISCOUS FORCE 

Stoke ’s Law is a mathematical equation that expresses the settling 
velocities of the small spherical particles in a fluid medium. The law is 
derived considering the forces acting on a particular particle as it sinks 
through the liquid column under the influence of gravity. The force that 
retards a sphere moving through a viscous fluid is directly proportional to 
the velocity and the radius of the sphere, and the viscosity of the fluid. Sir 
George G. Stokes, an English scientist expressed clearly the viscous drag 
force F as: UGPHS-101(N)/303



Stokes’s law finds application in several areas such as: 

 Settling of sediment in freshwater

 Measurement of the viscosity of fluids

In the next section, let us understand the derivation of Stoke’s 
Law. 

Stoke’s Law Derivation 

The viscous force acting on a sphere is directly proportional to the 
following parameters: 

 the radius of the sphere

 coefficient of viscosity

 the velocity of the object

Mathematically, this is represented as 

F∝ηarbvc 

Now let us evaluate the values of a, b and c. 

Substituting the proportionality sign with an equality sign, we get 

F=kηarbvc                 …………..(14) 

Here, k is the constant of proportionality which is a numerical 
value and has no dimensions. 

Writing the dimensions of parameters on either side of equation 
(14), we get 

[MLT–2] = [ML–1T–1]a [L]b [LT-1]c 

Simplifying the above equation, we get 

[MLT–2] = Ma ⋅ L–a+b+c ⋅ T–a–c            …………..(15) 

According to classical mechanics, mass, length and time are 
independent entities. 

Equating the superscripts of mass, length and time respectively 
from equation (15), we get 

a = 1            …………..(16) 

–a + b + c = 1            …………..(17) 

–a –c = 2 or a + c = 2            …………..(18) 

Substituting (16) in (18), we get 

1 + c = 2 

c = 1              …………..(19) 
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Substituting the value of (16) & (19) in (17), we get 

–1 + b + 1 = 1

b = 1             …………..(20) 

Substituting the value of (16), (19) and (20) in (14), we get 

F=kηrv             …………..(21) 

The value of k for a spherical body was experimentally obtained 
as 6π 

Therefore, the viscous force on a spherical body falling through a 
liquid is given by the equation 

F=6πηrv            …………..(22) 

9.12.1 Application of Stoke’s Law 
Applications of Stoke's law are as follows: 

(a)  Rain drop do not acquire alarmingly high velocity during their free 
fall. If this does not happen a person moving in rain would get 
hurt. 

(b)  While jumping from an airplane, parachute helps us to land safely 
on the earth. 

(c)  It is used to determine the value of charge on an electron. 
(Millikan’s oil drop method) 

9.13 TERMINAL VELOCITY 

A falling object in the air, which is not influenced by wind or other 
sideways forces, has a maximum of two forces acting on 
it: weight and air resistance (also known as drag). The weight does not 
change. The air resistance is zero when the object is stationary 
but increases as the object speeds up. 

The resultant (net) forces the falling object experiences is equal to 
the force of gravity minus the air resistance. [𝐹𝐹=𝑚𝑚𝑔𝑔−Drag] [F=mg−Drag] 

Newton's Second Law states that the acceleration of the object 
is proportional to the resultant force on the object when its mass 
is constant. 

 The longer the object falls for, the faster it falls (due to its
acceleration),

 So, the greater the air resistance, which increases with speed.

 Eventually, the air resistance upwards will equal the force of
gravity downwards. UGPHS-101(N)/305



 At this point, the resultant force is zero,

 hence, the velocity remains constant. This is called the terminal
velocity of the object.

An object with a constant force acting on it in the direction it is
travelling and a frictional force (related to the object's velocity) acting in 
the opposite direction, will reach terminal velocity given enough time. 
This is true for cars driving along a road, or for an anchor falling through 
water towards the seafloor. 

9.14 BERNOULLI’S THEOREM 

Bernoulli’s principle states that 

The total mechanical energy of the moving fluid comprising the 
gravitational potential energy of elevation, the energy associated with the 
fluid pressure and the kinetic energy of the fluid motion, remains constant. 

Bernoulli’s principle can be derived from the principle of conservation of 
energy. 

Bernoulli’s Theorem Formula 

Bernoulli’s equation formula is a relation between pressure, kinetic 
energy, and gravitational potential energy of a fluid in a container. 

The formula for Bernoulli’s principle is given as: 

Where, 

 p is the pressure exerted by the fluid

 v is the velocity of the fluid

 ρ is the density of the fluid

 h is the height of the container

Bernoulli’s equation gives great insight into the balance between pressure, 
velocity, and elevation. 

Bernoulli’s Equation Derivation 

Consider a pipe with varying diameter and height through which an 
incompressible fluid is flowing. The relationship between the areas of 
cross sections A, the flow speed v, height from the ground y, and pressure 
p at two different points 1 and 2 is given in the figure below. UGPHS-101(N)/306
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Figure - 9 

Assumptions: 

 The density of the incompressible fluid remains constant at
both the points.

 Energy of the fluid is conserved as there are no viscous forces
in the fluid.

Therefore, the work done on the fluid is given as: 

dW = F1dx1 – F2dx2 

dW = p1A1dx1 – p2A2dx2 

dW = p1dV – p2dV = (p1 – p2)dV 
We know that the work done on the fluid was due to conservation 
of gravitational force and change in kinetic energy. The change in 
kinetic energy of the fluid is given as: 

The change in potential energy is given as: 

Therefore, the energy equation is given as: 
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Rearranging the above equation, we get 

This is Bernoulli’s equation. 

9.15 SUMMARY 

In this unit, we introduced and discussed some basic concepts of 
fluid mechanics. 

 A substance in the liquid or gas phase is referred to as a fluid.
Fluid mechanics is the science that deals with the behavior of
fluids at rest or in motion and the interaction of fluids with solids
or other fluids at the boundaries.

 We also studied in this unit equation of continuity.

9.16 TERMINAL QUESTIONS 

1. What an Ideal fluid?

2. Explain Newtonian fluids and Non-Newtonian fluids.

3. State and Prove Bernoulli’s Theorem for a liquid having stream
line flow. Give one practical application.

4. Derive equation of continuity for steady and irrotational flow of a
perfectly mobile and incompressible fluid. What conclusion is
drawn from it?

5. Explain the terms:

(a) Stream lire flow

(b) Turbulent Motion

6. Derive an expression for Poiseuille’s law.

ANSWERS TERMINAL QUESTIONS 

1. Hint (Section 9.4.1)

2. Hint (Section 9.4.3, 9.4.4)

3. Hint (Section 9.14)

4. Hint (Section 9.10, 9.10.1, 9.10.2)UGPHS-101(N)/308



5. (a) Hint (Section 9.6)

(b) Hint (Section 9.7)

6. Hint (Section 9.11)

9.17 SUGGESTED READINGS 

1. Mechanics of Fluids, Bernard S, Massey and John Ward – Smith.

2. An introduction to Fluid Dynamics, G. K. Batchelor.

3. Physics Part-I, Robert Resnick and David Halliday, Wiley Eastern
Ltd.

4. Concepts of Physics, HC Verma, Bharati Bhawan, Patna.
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10.1 INTRODUCTION 

In the previous unit, we studied Bernoulli’s equation, which is 
applicable for steady flow of ideal fluids. In the present unit, we introduce 
the concept of Surface Tension. A Liquid Surface has properties very 
different from its bulk. Surface of a Liquid is like a stretched membrance 
it is under tension. Surface tension of water – the most abundant liquid is 
higher than most other liquids. Many small insects live in a world 
dominated by surface tension of water. In this unit, we also study about 
capillary action. 

10.2 OBJECTIVES 

After studying this unit, you should be able to – 

 Understand the concept of Surface Tension.

 Define Adhesive and Cohesive Force.

 Solve Problems based on Surface Tension.

 Distinguish between Drop and Bubbles.

 Explain the Concept of Capillarity

10.3 WHAT IS SURFACE TENSION? 

The cohesive forces between liquid molecules are responsible for 
the phenomenon known as surface tension. The molecules at the 
surface do not have other like molecules on all sides of them and 
consequently they cohere more strongly to those directly associated with 
them on the surface. This forms a surface "film" which makes it more 
difficult to move an object through the surface than to move it when it is 
completely submersed. 

Surface tension is typically measured in dynes/cm, the force in 
dynes required to break a film of length 1 cm. Equivalently, it can be 
stated as surface energy in ergs per square centimeter. Water at 20°C has a 
surface tension of 72.8 dynes/cm compared to 22.3 for ethyl alcohol and 
465 for mercury. 

Figure – 1a UGPHS-101(N)/312
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Figure – 1b 

Figure – 1c UGPHS-101(N)/313



Figure – 1d 

Surface tension is the tendency of fluid surfaces to shrink into the 
minimum surface area possible. Have you noticed when you fill a glass up 
to the brim with water, you can still add a few more drops till it spills out? 
Or have you ever broken a thermometer and observed how the fallen 
mercury behaves? By understanding the concept of surface tension, all 
these questions can be answered. 

Surface Tension: 

Surface tension is the phenomenon that occurs when the surface of a liquid 
is in contact with another phase (it can be a liquid as well). Liquids tend to 
acquire the least surface area possible. The surface of the liquid behaves 
like an elastic sheet. In physics, 

Surface tension is the tension of the surface film of a liquid caused by the 
attraction of the particles in the surface layer by the bulk of the liquid, 
which tends to minimize surface area. 

Given below in a table is the surface tension of various liquids: 
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Liquid Surface Tension (N/m) 

Hydrogen 2.4 

Helium 0.16 

Water 72.7 

Ethanol 22.0 

Sodium Chloride 114 

10.3.1 Causes of Surface Tension 
Intermolecular forces such as Van der Waals force, draw the liquid 

particles together. Along the surface, the particles are pulled toward the 
rest of the liquid. Surface tension is defined as, 

The ratio of the surface force F to the length L along which the 
force acts. 

Mathematically, surface tension can be expressed as follows: 

T=F/L 

Where, 

 F is the force per unit length

 L is the length in which force act

 T is the surface tension of the liquid

What is the Unit of Surface Tension? 

The SI unit of Surface Tension is Newton per Meter or N/m. 
Check other units in the table provided below. 

SI Unit N/m 

CGS Unit dyn/cm 
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Dimension of Surface Tension 

As we know, surface tension is given by the formula, 

Surface tension = F/L 

We know that F = ma, substituting the value in the equation, we 
get 

=ma/L 

Equating the fundamental quantities into the equation, we get 

=MLT-2L-1 

Solving further, we get 

=MT-2 

Hence the dimensional formula of surface tension is MT-2. 

Examples of Surface Tension 

Water strider, which are small insects, can walk on water as their 
weight is considerably less to penetrate the water surface. 

10.3.2 Application of Surface tension 

 Insects walking on water

 Floating a needle on the surface of the water.

 Rainproof tent materials where the surface tension of water
will bridge the pores in the tent material 

 Clinical test for jaundice

 Surface tension disinfectants (disinfectants are solutions of low
surface tension). 

 Cleaning of clothes by soaps and detergents which lowers the
surface tension of the water 

 Washing with cold water

 Round bubbles where the surface tension of water provides the
wall tension for the formation of water bubbles. 

 This phenomenon is also responsible for the shape of liquid
droplets. 

Example: 1 

Compute the surface tension of a given liquid whose dragging 
force is 7N and length in which the force acts is 2m? UGPHS-101(N)/316



Solution: Given, 

 F = 7N

 L = 2m

According to the formula, 

T = F/L 

⇒ T = 7/2

⇒ T = 3.5 N/m

10.4 ADHESIVE FORCE 

Adhesive forces come into play when two different substances are 
brought in contact. When we pour water on a glass plate, the plate 
becomes wet because the molecules of water stick to the molecules of 
glass under adhesive forces. In order to try the wet plate it should be 
wiped by a substance whose adhesion for water molecules is greater than 
of glass, for example rough dry cloth. Silken and nylon cloths cannot be 
used to dry wet glass plate because their adhesion for water is less. 

Figure – 2a 
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Figure – 2b 
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10.5 COHESIVE FORCE 
The effects of cohesive and adhesive forces are observed in daily 

life. It is due to the cohesive force that two drops of a liquid when brought 
in mutual contact coalesce into one. It is difficult to separate two sticky 
plates of glass wetted with water because quite a large force has to be 
applied against the cohesive force between the molecules of water. The 
definite shape of solid substances is also due to the cohesive force present 
between its molecules. In general, we cannot adhere to pieces of solid 
simply by pressing them together. The reason is that ordinary pressure 
cannot bring the molecules of the two pieces so close (10-9m) that 
cohesive force may become effective between them. But if their surfaces 
in contact are melted by heating, the molecules in the liquid state fill up 
the space between the solid surfaces. Then, on cooling, the surface adhere 
together. This is the process to join metals by welding. However, by 
special machines two pieces of metals can be pressed to an extent that 
their molecules come within the molecular range and stick together. This 
is called ‘cold welding’. 

Figure – 3a 
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Figure – 3b 

10.6 ANGLE OF CONTACT 

When a liquid is in contact with a surface, various surface tensions 
come into play along various interface. 

These are: 

-along liquid -air interface 

 -along solid -liquid interface 

   -along solid -air interface 

Here angle of contact is important in the context that it decides the 
shape of the liquid surface near its plane of contact with another medium. 

The angle of contact is defined as the angle that the tangent to 
the liquid surface at the point of contact makes with the solid surface 
inside the liquid. 

The angle of contact depends on the nature of the solid and the 
liquid in contact.at the point of contact, the surface forces between the 
three media must be equilibrium. 
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Figure - 4 

10.7 EFFECT OF TEMPERATURE AND 
IMPURITY ON SURFACE TENSION 

In general, surface tension decreases when temperature increases 
because cohesive forces decrease with an increase of molecular thermal 
activity. The influence of the surrounding environment is due to the 
adhesive action of liquid molecules that they have at the interface. 

Example: 2 

The lower end of a capillary tube of diameter 2 mm is dipped 8 
cm below the surface of water in a beaker. What is the 
pressure required in the tube to blow an air bubble at its end 
in water? Given that surface tension of water = 73 × 10-3 
N/  and  = 105 Pa, g = 10 m/ • 

Solution: 

we know that, 

=2T/R 

=  +  +0.008 ×1000×10 

=1.00946× Pa 

10.8 DROPS AND BUBBLES 

10.8.1 Why Water and Bubbles are Drops? 

 Whenever liquid is left to itself it tends to acquire the least possible
surface area so that it has least surface energy so it has most
stability.

 Therefore, for more stability they acquire the shape of sphere, as
sphere has least possible area. UGPHS-101(N)/321



Spherical Shape 

Figure - 5 

10.8.2 Difference Between Drop, Cavity and Bubble 
 Drop: - Drop is a spherical structure filled with water.

(a) There is only one interface in the drop.

(b) The interface separates water and air.

Example: Water droplet. 

Water droplets 
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 Cavity: -Cavity is a spherical shape filled with air.

 In the surroundings there is water and in middle there is cavity
filled with air.

 There is only one interface which separates air and water.

 Example: - bubble inside the aquarium.

Figure - 7 

 Bubble: - In a bubble there are two interfaces. One is air water and
another is water and air.

 Inside a bubble there is air and there is air outside.

 But it consists of thin film of water.
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Soap bubbles 

Figure - 9 

10.8.3 Pressure Inside a Drop and a Cavity 

 Pressure inside a drop is greater than the pressure outside.

 Suppose there is a spherical drop of water of radius ‘r’ which is in
equilibrium.

 Consider there is increase in radius which is Δr.

 Therefore, Extra Surface energy = Surface Tension(S) x area

 = Sla x 4π(r+Δr)2 – Slax4πr2

 After calculating

 Extra Surface energy=8πr Δr Sla

 At Equilibrium, Extra Surface energy = Energy gain due to the
pressure difference

 8πr Δr Sla = (Pi - Po) 4πr2xΔr

where Pi= Pressure inside the drop and Po = Pressure outside the drop. 

After calculation Pi - Po = 2 Sla/r 
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Figure - 10 

10.8.4 Pressure Inside a Bubble 
 Pressure inside a bubble is greater than the pressure outside.

 As bubble has 2 interfaces, Pi-Po=2Sla/r x 2

 Therefore, Pi-Po=4Sla/r

Figure - 11 

10.9 SHAPE OF MENISCUS 

The free surface of a liquid in a large container is always 
horizontal but when liquid meets a solid surface, the surface of liquid near 
the place of contact becomes, in general, curved. The nature of curvature 
depends upon the nature of liquid and the solid surface which are brought UGPHS-101(N)/325



in contact. Referring to figure (  ), let AB be the liquid surface and CD the 
plane surface of the solid in contact with the liquid. Considering the 
equilibrium of a molecule A of the liquid on its surface and in contact with 
solid surface, there are three forces acting on it; viz. 

(i) The weight mg acting vertically downward. 

(ii) Adhesive force P due to attraction of molecules of the solid acting 
normal to CD. 

(iii) A resultant cohesive force Q of the liquid molecules acting at an 
angle of 45o to tangent plane to liquid surface and towards its 
interior. 

Resolving the force Q horizontally and vertically these three forces 
are equivalent to two forces - 

(a) A horizontal force directed towards the 
substance of the solid or the liquid according as 

 and  

(b) A vertical force  acting downwards. 

10.10 IMPORTANCE AND APPLICATION OF 
CAPILLARITY 

10.10.1 What is Capillarity? 
 Ability of a liquid to flow in narrow spaces without the assistance

of, and in opposition to, external forces like gravity 

 Capillary action is sometimes called capillarity, capillary motion,
or wicking 

EXAMPLES 

 Drawing up of liquids between the hairs of a paint-brush

 Drainage of constantly produced tear fluid from the eye

 Observed in thin layer chromatography

 draws ink to the tips of fountain pen nibs

 moving groundwater from wet areas of the soil to dry areas

 Capillarity is a physical phenomenon in which liquids flow without
the help of gravity.  Liquids even rise to a height against gravity,
through narrow tubes.

 Capillary action is due to the phenomenon of Surface tension of
liquid as well as adhesive forces between liquid molecules and

UGPHS-101(N)/326



molecules of the narrow tube. Surface tension is due to cohesive 
attraction among liquid molecules. 

 Derivation:

 When a thin (open or closed at the top) tube is inserted into a liquid
in a container, the liquid inside the tube rises to a height h above
the liquid surface outside.  Let the diameter of the tube be D.  The
density of liquid be ρ.  The surface tension of the liquid be S.

Figure – 12 

 Weight of liquid column acting downwards = m g

 W = ρ (πD²/4) h g     --(1)

 The surface on the top liquid inside the capillary tube has a trough
(cup) like shape. Assume the angle of contact with the walls be Ф.
Surface tension is the contact force per unit length along the
circumference of top surface. This force pulls the liquid vertically
upwards.

 Force upwards = S * πD * CosФ ----- (2)

 =>    h = 4 S CosФ / (ρ D g)

10.10.2 Types of Capillarity 
 Capillarity are of two types

(a) Capillarity rise

(b) Capillarity fall
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10.10.3 Capillarity Rise 
 Tendency of liquids to rise in tubes of small diameter in opposition

to, external forces like gravity

Figure - 13 
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10.10.4 Capillarity Fall 
 Tendency of liquids to be depressed in tubes of small diameter in

opposition to, external forces like gravity

10.10.5 Application of Capillarity 
 Lubricating oil spread easily on all parts because of their low

surface tension.

 Cotton dresses are preferred in summer because cotton dresses
have fine pores which act as capillaries for sweat.

 Dirt get removed when detergents are added while washing clothes
because surface tension of water is reduced.

 The absorption of ink by a blotting paper is due to capillary action,
as the blotting paper is porous. When it is placed over the ink, the
ink raises into the pores.

            Also rise of oil in the wick of a lamp is due to capillary action. 

 If one end of a towel is dipped into a bucket of water and the other
end hangs over the bucket, the entire towel soon becomes wet due
to capillary action.

 Supply of water to the leaves at the top of even a tall tree is
through capillary rise.

 A fabric can be waterproof, by adding suitable waterproofing
materials to the fabric. This addition increases the angle of contact,
thereby making the fabric waterproof.

10.11 SUMMARY 

In the present unit, we have studied about Surface Tension, causes 
of Surface Tension, Angle of Contact, Shape of Meniscus and Capillarity. 

 Surface Tension: The Property of liquids due to which their free
surface behaves like an elastic stretched membranes is called
Surface Tension.

 Capillary Action: The Phenomenon of a Liquid rising or falling
through a tube of very fine bore (capillary), is called Capillary
action.

10.12 TERMINAL QUESTIONS 

1. Define Surface Tension.

2. Explain the Cause of Surface Tension. What are the units of
Surface Tension?
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3. What is Capillarity? Establish a relation among the height ‘h’ of
Water column in a glass capillary tube, the diameter ‘D’ of the
tube and the Surface Tension ‘S’ of water.

4. What are Cohesive and adhesive Forces.

5. Explain the difference between Cohesive and Adhesive Force.

ANSWERS TERMINAL QUESTIONS 

1. Hint (Section 10.3)

2. Hint (Section 10.3.1)

3. Hint (Section 10.10)

4. Hint (Section 10.4, 10.5)

5. Hint (Section 10.4, 10.5)

10.14 SUGGESTED READINGS 

1. Mechanics and Thermodynamics, G Basavaraju Dipan Ghosh,
Tata McGraw Hill Publishing Company Limited.

2. Concept of Physics, H. C. Verma.

3. Surface Tension and the Spreading of liquids, R. S. Burdon.

4. Fluid Mechanics and Surface Tension, S. R. Stanley.
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