MASTAT-10

Printed Chandrakala Universal Pvt Ltd, 42/7 J.L.N. Road Allahabad

MASTAT-10/1



MASTAT-10/2



Reliability

The reliability R(z) of a unit at time t, is the probability that the unit performs its intended

function up to time t under the stated operating conditions.

Let X denote the lifetime of the unit, then the reliability of unit at time t is given by

R(t)=P(X >1).

Hazard Rate

The hazard rate is the instantaneous rate of failure. We can think of the hazard function as

an item’s propensity to fail in the next short interval of time, given that the item has

survived to time t.
1. Increasing failure rate (IFR): the instantaneous failure rate (hazard) in-
creases as a function of time. We expect to see an increasing number of
failures for a given period of time.
2. Decreasing failure rate (DFR): the instantaneous failure rate decreases as
a function of time. We expect to see a decreasing number of failures for a
given period of time.
3. Bathtub failure rate (BFR): the instantaneous failure rate begins high
because of early failures (“infant mortality” or “burn-in” failures), levels
off for a period of time (“useful life”), and then increases (“wearout” or
“aging” failures).
4. Constant failure rate (CFR): the instantaneous failure rate is constant for
the observed lifetime. We expect to see a relatively constant number of

failures for a given period of time.

The following figure shows four of the most common types of hazard functions.
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Different plots of hazard rates. Dotted lines represents the bath-tub hazard function.

Relation between Hazard rate and Reliability

h(z) = lim U9 = F(0)
x—0 xF(t)

Since lim Fle+x) = 1) = f()
X

x—0

Therefore, we have

h(t) = % 1)

Integrating, (1) we get

PGy = |7 W = —1og F(¢)
0 o R(u)

or
F(1) = oxp {— }h(u)du}.

System Reliability

In reliability analysis, we often model systems graphically. This provides a
visual representation of the components and how they are configured to form
a system. One of the most commonly used system representations in risk

and reliability analysis is the reliability block diagram .
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Series system: A system that functions if and only if all of its components are func-
tioning is series system. Figure below shows the reliability block diagram for

a series system.

T {F

Suppose that a system with lifetime T consists of n component C;, Cs, ..., C,, are arranged in

series network and Ty, T,, ..., T,, denote their respective lifetimes. Then the reliability of "
component at time t is
Ri(t) = P(T; > t)

Since components are arranged in series, we have
R(t) = P[T > t]

= P[min(Ty, Ty, ..., Ty) > t]

= P[T, > t]P[ T, > t]...P[T, > t]

=[x, P(T: > ©)

= ﬁRi(t)

That is system reliability equals the product of reliability of all components.
Reliability of Series System in terms of failure rate:

Let r;(t) denotes the hazard rate of i component at time t, then
t
Ri(t) — e—fo ri(uw)du

The system reliability is

R(t) = ﬁRi(t)

e—fotr(u)du — 1_[ e—fotri(u)du

i=1

That is

t t
e—fo r(wdu _ e—fo r o riwdu

Thus we get

n
r(t) = Zi_ln(t) MASTAT-10/5



If failure rate is constant, that is r;(t) = A;

Then R;(t) = e i)
thus
n
R(t) = 1_[ eH®) = =TI, 1i(®)
i=1

Thus reliability of system is
R(t) = e*® where Y1, 4; = A.

o0 o0

1
MTSF = f R(t)dt = feﬂ@dt =~

0 0

Parallel system : A system that functions if at least one of its n components is functioning
isa parallel system . Following Figure shows the reliability block diagram for a parallel
system.
Suppose that a system with lifetime T consists of n component C;, Cs, ..., C,, are arranged in
parallel network and Ty, T,, ..., T,, denote their respective lifetimes. Then the reliability of im
component at time t is
R;(t) = P(T; > t)
The system reliability is

R(t) = P[T > t]
=1-P[T < t]
=1—P[max(Ty, Ty, ..., Tp) < t]
=1—-P[T, <t]P[T, <t]..P[T, < t]
=1-J[L,P(T; <)
=1-JIL,1-P(T; >t)

R(t) = 1— 1_[(1 _Ri(1)).
i=1

If failure rate is constant, that is 7;(t) = A;. Then

Ri (t) = eli(t)
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Thus, the system reliability is

R®=1-| [a-r)

n
=1- 1_[(1 — eti®)
i=1

If the components are identical, that is 4; = A, then
R;(t) = e*®
Then
Rt)=1-(1—e*O)n
= (M e 2® 4 (M) e~220) 4 ...
= (1) e+ (p)e O+

n

_ Z(_l)r+1 (’7’}) 0}

r=1
MTSF = f R(t)dt = f 1—(1—e*®)nqge,
0 0
1(1-y"
= —f Y dy
Al —¥)

o]

1
= Zf(l +y+y2+ . +y D)y
0

—1<1+1+1+ +>
) 2 2 T

If the components are identical each having same reliability p(t), then the system reliability
R =1-(A—-p)"
That is
nlog(1—p(t)) =log (1 — R(¢))
Thus
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log (1 — R(t))
n= )
log(l - p(t))

This formula can be used to find the number of component required to achieve the system

reliability R(t) when the component reliability is given as p(t).

k-of-n systems: Series and parallel systems are special cases of k-of-n systems.
A k-of-n system functions if at least & of its » components are functioning. If k =n,
we have a series system; if k=1, we have a parallel system. Figure below shows

the reliability block diagram for a k-of-n system with k =2 and n = 3.

n

Figures: Parallel and k-out of —n systems.

Suppose that the reliability of each of n components, at time t, is p;, that is

Ri(t) = p;
Then using Binomial law, the probability that out of n components, any k components

survive is
n -
= () ok —pon*
Now the probability that at least k survive is
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n

R®) =) () @' - p)"

i=k
If failure rate is constant,

Then
p(t) = ei®

Structure Function: Structure functions provide another way to summarize the relationships
between components in a system. Consider a system with » components. Forthe i
component and time t, define a random variable x, = X, (¢), so that
1 if the ith compenent is functioning

YT {0 if the ith compenent is failed .
We can summarize the state of all of the components by a vector X = (x4, X5, **, X,,). Some
of the 2" states corresponds to a functioning system ; some corresponds to a failed system.
The state of the system is thus a function of X. We call this function the structure function

and define it as

1 if the system is functioning

$(X) = {0 if the system has failed.

Consider a series system, which functions if and only if all of its n components are
functioning. Thus ¢p(X) = 1ifx; = x, = -+ = x, = 1, and is 0 otherwise. We can write the

following three equivalent expressions:

1ifx; = 1foralli
0 ifx; = 0 for any i,

B0 = {
= min(xq, X5, *** Xy,),

— n
= 1lj=1%;-

A parallel system functions is at least one of its components in functioning. Thus, ¢(X) = 0
ifx; =x, =+ =x, =0, and is 1 otherwise. We can write the following three equivalent

expressions:

_(1lifx; =1foranyi
$X) = { 0ifx; = 0 foralli,

= min(xy, Xo, =+, Xp), MASTAT-10/9



A k-of-n system functions if k or more of its component function. We can write

C(Lif YR, x>k
$X) = {0 if YiLix <k,

=2 (HiEAj Xi) [HiEAj.(l - xi)]:

Where 4; is any subset of {1,2,---,n} with at least k elements , and the sum is over all such

subsets . For example, the structure function for 2-of-3 system is

¢(X)=Z Hxi 1_[(1—951')

J \I€4; ieAj-
= 21X (1 — x3) + x1x3(1 — x2) + x5x3(1 — x1) + X1 %53
== x1x2 + x1x3 + xe3 - lexZ.X3.

Coherent System: A system is coherent if its structure function satisfies the following
conditions:

1.¢(0,0,...,0)=0,

2.0(1,1,...,1)=1,

3. ¢(x) is nondecreasing in each argument.

Minimal Path and Cut Sets

In addition to reliability block diagrams and structure functions, we can use minimal path and
cut sets to represent the structure of a system. We call any x for which ¢(x) = 1 a path vector
for the system, and any x for which ¢(x) = 0 a cut vector for the structure. The set of
component indices corresponding to the functioning (failed) components of a path vector (cut

vector) is a path set(cut set ).

We denote by y <x if for all i, yi <xi, and for some i, yi <xi,i=1,...n.
A path vector, x, is a minimal path vector if for every y < x, @(y) = 0. The minimal path set is

the set of components in a minimal path vector that are functioning; that is, a minimal set of
MASTAT-10/10



components such that if they are all functioning, the system is functioning, but if one of them
fails (and all of the components outside the set have failed), then the system fails. A cut
vector, X, is a minimal cut vector if for every y > x, ¢(y) = 1.

The minimal cut set is the set of components in a minimal cut vector that are failed; that is, a
minimal set of components such that if they have all failed, the system has failed, but if one
of them is functioning (and all of the components outside the set are functioning), then the
system is functioning. We can determine the structure function of a coherent system from
either its minimal path sets or its minimal cut sets. Suppose that {a;, a5, . . ., an} 1s the
collection of all minimal path sets of a coherent system, with x; being the state variable of the
ith component. The system is functioning if all of the components in one or more path sets
are functioning. We can think of this

as a parallel arrangement of m sets of components in series. In terms of the minimal path sets,

the structure function of the system is

#x) =1-[10- [1x)
A similar result holds for cut sets. Let {b;, by, . . ., b} be the collection of all minimal cut
sets of a coherent system, with xi being the state variable of the ith component. The system
fails if all of the components in one or more cut sets fail. We can think of this as a series
arrangement of k sets of components in parallel. In terms of minimal cut sets, the structure

function of the system is

Example Using path sets and cut sets to determine a structure function.

Consider the system in fig. Given below. The minimal path sets are a, = {1,2},a, = {1,3}.

Using above Eq, The structure function for the system is
pX)=1- H?=1 (1 - HiEaj xi)
=1—(1 = 2x3x)(1 — x1x3)
= X1X2 + X1X3 - xlex?)

The minimal cut sets for the system are b; = {1} and b, = {2,3} . Using Eq.5.4, the structure

function for the system is

X) = TT=1(1 = [ien, (1 — %)) MASTAT-10/11



=(1-1-x))(1-1-x)(1~x3)
= x1(xy + x3 — x3x3)

= X1Xy + X1X3 — X1XpX3.

b

Fig. System with minimal path set a; = {1,2} and a, = {1,3}.

Relative Importance of Components

For a given coherent system, some components are more important than others in
determining whether system functions or not. For example, if a component is in series with
rest of the system, then it would seem to be at least as important as any other component in

the system.
First suppose we are given the state of each of the remaining components, (*;, X). Then we
would consider component i more important if
¢, x)— 40, x) =1 (1)
rather than
¢(1;, x) =1=9(0;, x) or ¢(l;, x) =0=¢(0,, x).
When (1) holds, we call ¢(1,, x) a critical path vector for i™ component.
Let 77,(i) = X‘XZ“;I [¢(,, x) —@(0,, x)] denotes total number of critical paths.

Then, the relative importance of i" component is

g@=§fm@
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Example: Determine the importance of various components in following structure.

Here, the structure function of the system is @(x) = x, (x,V x;).

Since among four outcomes 100, 101, 110 and 111, there are three critical path vectors for

component 1, given by (101, 110, and 111). Therefore relative importance of component 1 is

1 3
1¢(1):2—23:Z

However /,(2) = 2—121 = i, since among four outcomes 010, 011, 110, 111 the only one

critical path vector for component 2, is 110.

Modular Decomposition

Definition: The coherent system (A4, y)is a module of the coherent system (C, ¢) if

$x) =ylr(x"). 2" ],
where y is a coherent structure function and 4 < C. The set 4 < Cis called modular set of
(C. 9.
Intuitively, a module (A4, y)of (C, @) is a coherent sub-system that acts as if it were just a
component. Knowing whether y is 1 or 0 is as informative as knowing the value of x, for
each iin A, in determining the value of ¢. In the usual performance diagram of a system, we

can identify a module by the fact that it is a cluster of components with one wire leading into

it and one wire leading out of it.

Example: Consider a coherent system (C, ¢) where @(x) = x,(x,V x;)(x,V x;) and
C={1,2,3,4,5}. Amodule of (C, §)is (4, y)where 4=1{2,3}and y(x")= (x,v x;). We
may write

d(x) =wlr(x™), x" 1=x. 7 .(x,v x5).
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Exponential Distribution
A positive valued random variable X is said to follow exponential distribution if its
probability density function is given by
1 X
f(x;0)=—exps——¢; x>0,0>0.
(o (o

The reliability function, at a mission time t, is

R(t)=P(X > 1)
1
il 2

1
Let = vy then —dx = dy. Thus
o o

t

R(t) = Ie‘ydy —e .

o

1.0 15 20
1

Dansity

0.5

0o

t

The probability density function of exponential random variable with o = 2.
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The reliability function of exponential random variable with o = 2.

The hazard rate is

1 t
NG :aexp{_o} 1
R(?) { t} o

CXp —;

. 1
Therefore h(t) is constant = —.
o

Mean life=E(X)= Mean life = E(X) = J-x 1 exp {— £}a’x
, O o

=Tye_ydy=0'.
0

Maximum Likelihood Estimation

Let x =(x,, X,, ..., X,,) are iid observations from exp( o). The likelihood of o given the

observations x can be written as follows.

L(p,olx) = ﬁf (x;)

SUERI

1 1
—eXpy—— DX, -
o o MASTAT-10/15




Taking logarithm, we get
1 n
log L(0'|)_c) =-nlogo—— Zx[
(O

To obtain MLE, we solve the likelihood equation
Olog L(0|§) 0
oo
That is

1 n
n/oc——>x=0
o
Which gives the MLE of o
.1
o=—) X
n;’

Using the invariance property of MLEs, the MLEs of reliability function, hazard rate are

R(t)=e ¢ and };(l‘) = lA
)

Weibull Distribution
Definition: A positive valued random variable X is said to follow Weibull distribution if its
probability density function is given by

P

f(x;p, G)ZE)CP’1 exp{—x—}; x>0, p,o>0.
o o

where p is shape parameter and o is scale parameter.
The reliability function is

R(t) = P(X > 1)

®© p
= jﬁx”_l exp{— x—}dx
O o

xP p-1
Let — = y then
o

pX

dx =dy. Thus

0 P

R(t) = _[e_ydy —e °.

P

o
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The hazard rate is

£ Z‘p_1 e)qj {_ tp}
h(t)=f(t) -2 Ol Py
R(?) { t? } o

CXp4 — ;

Therefore:

When p>1, h(t) is an increasing function of t.

1
When p=1, h(t) is constant = —.
o

When p<lI, h(t) is an decreasing function of t.

Cumulative Distribution Function Prabability Density Function

F(t) . Ht)

4
3 I 7 B n
h(ty 2 K B — 0.8 1
I R __[ 1.0 1
o= 1.5 1

Fig. CDF, pdf and hazard rate functions of Weibull distribution (p = S, o =n).

ks P
Meanlife=E(X) = jx P yp exp{—x—}dx
, O o

:Tal/pyl/p efydy
0

oo LH,1
1/ -
— o pjyp edy

0

= ai/pr(—p hl 1}
p
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Maximum Likelihood Estimation

Let x =(x,, X,, ..., X,) are iid observations from w(p, o). The likelihood of (p, o) given

the observations x can be written as follows.

L(p, o) =] f(x)

n p
1 {E 7 o {_ X_H
-1 | O o

() enl-2 81
(O 1-1

o
Taking logarithm, we get
1 n n
log L(p, o]x) =nlog p—nlogo——> x,” +(p—-1)D_logx,
o 1

Case I: When p is known
We differentiate (1) with respect to o the likelihood equation is

@bgLU%Gk)_O
oo
That is

1 n
nloc-—>yx"=0
o
The MLE of o is

G=—>x" ()

Case II: When both parameters are unknown.
Then we have
5bgLUL0E)_O
p

That is
n_
p
We substitute the value of o from (2) and get

lix[p logx +ilogxi =0
O 1

(1)
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anplogx
2 43 logx, — =0 3)

p 1 P
21) :

Equation (3) can be solved through Newton-Raphson method. Using the invariance property

of MLEs, the MLE of reliability function, hazard rate and mean life comes out to be

MLE of mean life = &”pr(pf”}
b

Gamma Distribution
We consider the gamma distribution with pdf given by

p-1

S (x:p, 0)=%p)xap

The reliability function is

R(t)=P(X >1)
1 TxP! x
_Tp), o exp{— g}dx

Let ~ = y thendx = o dy. Thus

O
. t
ko= ! " T(p) F( j

Which is an incomplete gamma function.

The hazard rate is

exp{—i}; x>0, p,o>0.
o
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I {_f}
o tp e Pl o

=0 1 ‘
— T p,—
I'(p) (p aj
7! { t }
= expy——
o’ F(p, tj o
o
Therefore

When p>1, h(t) is an increasing function of t.

1
When p=1, h(t) is constant = —.
o}

When p<lI, h(t) is an decreasing function of t.

) 1 = x! X
Mean life =E(X)=——[x exps —— pdx
I'(p)o o o

Let ~ = y thendx = o dy.
o

1
o’

E(X) = [(@)" ey
(p)o

Maximum Likelihood Estimation
Suppose that 7 units are put to test and the lifetime of each unit follow gamma distribution

with parameter p and o . Suppose that test is terminated after the failure of all the units. Let

the sample x = (x,, X,, ..., X, ) is observed. The likelihood of (p, o) given the observations

x can be written as follows.

L(p, olx) = ﬁf (x;)
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1-1 r(p) o’ P o

11 1 o o
‘o a3 e

Taking logarithm, we get

log L(p, olx) = —nlog T(p) — nplog o — 3 x, + (p - 1) logx, (1)
(O 1

Case I: When p is known

We differentiate (1) with respect to o the likelihood equation is

dlog L(p, ojx)
oo -

That is

np 1
-——+—)> x;,=0
o GZZ‘ ’

The MLE of & is

Case II: When both parameters are unknown.

Then we simultaneously solve

dlog L(p, ox) dlog L(p, o]x)
=0 and =

oo op
Here
dlog L(p, o]x)
op

= (0 implies that

—nilogr(p)—inloga+ilogxi =0
dp 1 1
We substitute the value of & from (2) and get
- nilogl“(p) — in log(zj + ilogxl. =0
dp 1 p 1
Or

d 1 n n _
—logI'(p) —log(p) = — Y logx, — > log(X)
dp n- 1

2

€)

(4)
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Now for small values of p can be solved using inverse interpolation and ML estimate of p can

be obtained. Further, for large values of p, we can use the following approximation.

d 1

——log['(p) = log(p) - ——

dp 2p
Then substituting this in (4), we get

1 1 n n _
log(p) - — —log(p) =~ > logx, - X log(x)
2p n- 1

That is
1

Z{Zn:log()?) —iilog xl}

after obtaining value of p, we can get value of & from 2.

p=

Log-Normal Distribution

Consider the lognormal distribution as a model for failure time data. The lognormal
distribution’s connection with the normal distribution follows from : if X has a normal
distribution, then T = exp (X) has a lognnormal distribution. Whereas the normal
distribution is symmetric about its mean, the log normal distribution is skewed, which makes
it potential model for failure times that often exhibit a skewed distribution. The probability

density function for a lognormal failure time t is

f(t:1,0) = == exp (— [log(t) — ]?)
(4.12)

Where u and o are the mean and statndard deviation of the distribution of the log failure time
x = log (t). We can express the hazard function and reliability function for the lognormal
distribution as
_r®
h(t) = RO and

(4.13)

R(t) = [ f()dx = 1 — ¢{[log(t) — u]/},
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Where f(x) is the lognormal probability density function given in Eq. 4.12 and ¢ (*) is the
standard normal cummulative distribution function. Note that neither the hazard nor
reliability functions have closed forms. Historically, the lack of closed form functions is a
very measure reason why reliability analysts did not regularly use the lognormal distribution.
Today, however software packages routinely evaluate these functions using numerical
algorithms. One features of the lognormal distribution is its unique hazard function; the log
normal hazard function increase initially and then decreases and approaches zero at very log
time. Despite a distribution with decreasing hazard function at long times being untenable;

the lognormal distribution has been useful in many applications.
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Classes of Distributions

Increasing Failure Rate (IFR)
Suppose F(x) is the distribution of X.
Definition: F'is Increasing Failure Rate (IFR) distribution, if for a unit of age t
F(t+
F(x |t) = Fltx) is decreasing in £ > 0.
F(2)

Consequently, we obtain

r(t) =lim 1 {1 - F(_H_ x)} = j:(t) is increasing in ¢ > 0.
X0 x F(?) F()

Definition: F' is Decreasing Failure Rate (DFR) distribution, if for a unit of age t
F(t+
F(x | )= £t x) F o) ®) | is increasing in £ > 0.

Consequently, we obtain

F(£) = lim 1{1—F(_”x)}= S
F(1) F()

is decreasing in ¢ > 0.
x=0 x

Definition: F' is Increasing Failure Rate Average (IFRA) distribution, if for a unit of age t
1 —
——log F'(?) is increasing in ¢ > 0.
t
Or

F(at)> (F(n))' O<a<l.

Definition: F' is Decreasing Failure Rate Average (DFRA) distribution, if for a unit of age t
1 —
—;logF(t) is decreasing in ¢ > 0.
Or

F(at)<(F(n))' O<a<l.

Lemma: Let 4(p) be the reliability function of a monotonic system, then
h(p“)=h"(p) O<a<l. (1)

a a a [04
where p~ =(p;, Py s Dy) O<a<l. MASTAT-10/24



Proof: We prove the theorem by mathematical induction.

When n=1, h(p )= p,then

We have pe ={p},
and (1) holds.

Now, we assume that (1) holds for all monotonic systems of (n-1) components. Then for the

monotonic systems of n component, we have by pivotal decomposition formula
h(p®)=p; h(Q1,, p* )+ (1= p;) h(0,, p*)

Since A(1,, Ba )z h“(,, p) [Each component is [FRA]

and

h(0,, p" )= h*(0,, p)

Hence
h(p™)=p; h*(1,, p)+(1=p) h*(0,, p)

Now for 0<a<1,0<A<1and 0<x < y,we have

Xy A=A 2 [Ay+(1-A)x]%. (2)

Taking A =p,,x=h(0,, p), y=h(l,, p), we obtain using (2) that

h(p®)=p, h“Q,, p)+0-p)h*O,, p)
>[p, h(1,, p)+(1=p,) hO,, p)I*
>[h(p)]°.

Now we prove IFRA closure theorem.

Theorem: Suppose each independent component of a coherent system has an IFRA
distribution, then the system itself has an IFRA distribution.

Proof: Let F denotes the system life distribution, while F;denote the lifetime distribution of

h

i component.

For O<a<1

F(at) = h[F\(at), Fy(at), ..., F,(at)]

Since F, is IFRA then F,(az) > F“(t). Also h is increasing in each argument, thus
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F(a)=h[E“(2), E*(1), ..., (1] (i)
But we know that

HIE (0, (@), s B“ (02 W TE (1), By(0), s F (1] (i)
From (i) and (i1), we have

F(at)] 2 h*[F(0), Fy(t), ..., F, ()]
That is

F(at)> F“(2).
Thus F is IFRA.

Classes of distributions applicable in replacement policies

(NBU) New Better than Used class of distributions
A distribution F' is NBU if

F(x+y)<SF(xX)F()
Or

F(x+y)

Foo <F(y)

That is the conditional survival probability F(x + )/ F (x) of a unit at age x is less than the

corresponding survival probability 7 ()) of a new unit.

(NWU) New Worse than Used class of distributions
A distribution ' is NWU if

F(x+y)=F(x)F(y)
Or

F(x+y)_ =
TR 2 F(y)

That is the conditional survival probability F (x + y)/ F(x) of a unit at age x is more than

the corresponding survival probability F'()’) of a new unit.
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NBUE (New Better than Used in Expectation) class of distributions
A distribution F is NBUE if

(1) F has finite mean.
(ii) J.F(x)dx <uF(t) fort>0.
t
1 t=
Where 11s the mean life of a new unit. We note that F) IF (x)dxrepresent the
t t

conditional mean remaining life of a unit of age t. Thus (ii) indicates that used unit of age t

has smaller mean remaining life than a new unit if F is NBUE.

NWUE (New Worse than Used in Expectation) class of distributions
A distribution F'is NWUE if

(a) F has finite mean.
(b) J.F(x)dxz,uﬁ(t) fort>0.
t

The second condition Indicates that used unit of age t has more mean remaining

life than a new unit if F is NBUE.

Hazard Transform: For a coherent system of n components, Let F;be the life distribution
of the i (i=1, 2, ...,n)component. Then the hazard function of component i is

R,(t) = —log F,(¢). Let R be the system hazard. Then the function 77, expressing system

hazard in terms of component hazard R(=R,, R,, ..., R,)is called the hazard transform

R=n(R).

The hazard transform is increasing in each argument. It is continuous and finite and it is super

additive, that is,

n(R™ +R?)>n(R")+n(R™).

Theorem: If each component of a coherent system has an NBU distribution then the system
itself has an NBU life distribution.

Proof: Let R, be the ith component hazard and R the system hazard. If F;is NBU then by
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F(s+1) <F()F(1)
That is

exp (=R, (s +1)) < exp (= R,(s))exp (- R, (1))
Implies that

R,(s+1)> R.(s)R,(¢)
Since 77 is increasing then

R(s +0)]> n[R(s) + R(1)] (1)
Also 7 is superadditive, then

nR(s) + R0)] 2 n[R(s)]+n[R(1)] @)
From (1) and (2)

R(s +1) =7[R(s + )2 n[R(s)]+ n[R(6)] = R(s) + R(2)
That 1s

R(s+1)> R(s)+ R(?).
o F(s+D<F(s)F (1)

That is system lifetime distribution is NBU.

Mixture of Distributions
Suppose that an important quality characteristic of a product being manufactured depends on
the amount « of impurity present in the raw material, specifically, the probability

distribution of the quality characteristic is F,,. Suppose « itself is random with distribution

G(ax). Then the resultant distribution F of the quality characteristic is given by

F(x)= [F,(x)dG(a).
The hazard transform of the mixture F'(x) = I F,(x)dG(a)is

1w =~log [ "dG(a).

where the vector u has elements u, 0 <u, <00, —00 < ¢ < 0,

Moreover
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R(¢) =n(R(?)) = —log ]Oe—Ra<’>dG(a); 0<t<oo.

Where R, (¢)is the hazard function of F, .

Theorem: Let F(t) be the mixture given by F(x) = I F,(x)dG(a), then

(a)lf each F,is DFR, then F is DFR.

(b) If each F, is DFRA then F is DFRA.

Proof: (a) Let R be the hazard function of F),. Since each F, is DFR, it implies that each
R, is concave. So we may prove that is each R, is concave then R, the hazard function of F

will also be concave.
In this direction, we first prove that the hazard transform of the mixture is concave.

By Holder’s inequality, we have for 0 <u, <0,0<v, <oo,—c0o<a<ooand 0<a <1,

Or
—log [ e 1" )dG(a) > —alog [ e “*dG(a) — (1-a)log [ e "*dG(a)
That is,

nlau+(1-a)v]=an(u)+(1-a)(v) (D
Which implies that 77 is concave.
Since R, is concave then

R [at+(1—-a)'1=zaR,(t)+(1—a)R (1)
And R has elements R, then

Rlat+(1—-a)t'|=n[R[at+(1-a)t']]

> nlaR(0)+(1-a)R(t')

> an(R@))+ (1 - ayn(R(@"))
> aR(t)+(1-a)R(t")

Implies that F is DFR.

Proof (b): Ifeach F, is DFRA, we have for 0 <a <1, MASTAT-10/29



F(at)< F(¢).
exp(—R, (a)) < exp(~aR, (1))
R (at)zaR, (t)
Thus, we can say that we are given (2) for each R_and we have to prove it for each R.

Consider

R(at) =n[R(at)] = nlaR(?)]

Choosing v =0in (1), we get

nlaR(an)] = anlR(t)] = aR(?)
Therefore

R(at) = aR(1)
That is, F is DFRA.

In order to study the various properties of failure rate r(t), it is useful to consider the
polya frequency of order 2 (PF, ), which are of considerable independent interest
(Karlin, 1968).

Definition : A function h(x), -0 <x <0, is PF; if

a) h(x)>0 for -oo <x <o and

b) for all —00 < X1, Xp <owand —0< Y,y <0,

h(x=y1)  h(x—y2) S
h(xy—y) h(xa—y)|

OR
b") log h(x) is concave on (-00,0)
OR
b") for fix A >0, h(x + A) /h(x) is decreasing in x for a <x <b where
a=infy(,)50 ¥, b =supy(ys0 -

Since F IFR is equivalent to F(t+A)/F(r) decreasing in -oo < t < oo for each A > 0. Thus by
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equivalent to F PF, .

Convolution : Let / and F, be distribution (not necessarily confined to positive half axis) of
x,and x, respectively. If x, and x, are independent then the distribution F of x;+ x, is given

by
F()= j Fy(t-x)dF ()

—00

We say that F is the convolution of fand F, .

Addition of Life L.ength :

When a failed component is replaced by a spare, the total life accumulated is obtained by the

addition of two life length. Suppose the life of the component 1 is denoted by x,having
distribution F and life of component 2 is denoted by x, with distribution 7, . Moreover if

component 1 fails at any time x preceding t, while component 2 fails during the interval of

time (t-x) remaining then F, the distribution of x,+ x,, is given by

FO) = [ R(-xJF
0

t
Theorem : if F, and F,are IFR , then their convolution F(t):IFl(t—x)sz(x) is IFR.

0
Proof : We know that IFR is equivalent to 7 is PF, . To prove this , we write for 7 <z and
H < Hy.

po|Fti—m) Flo-pm)
F(ty—w) Flty— 1)

If £ has density f, and 7, has density f, then
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b=t L=t
Fi-m)= [F=m=0f0ds= [Fl=5p06-m)ds
0 0

@ X =S =X =85 — 14 del =dS1

[Rt-91p26=mds [Fit=910-um)ds
[R2-51p6-m)ds [Fiter =516~ s

*

We use a result by Karlin (1968), known as basic composition formula. According to
this formulae,
Ifw(x,z) = [ u(x, y)u(y, z)dy converges absolutely, where( ), Then

vy,z1) A v(p,zy)
M (6] M

V(yn’zl) A v(ymzn

u(x, ) A p(x,yy,)
M (6] M

“xy,y1) A p(x,3,)

wlx,z1) A w(xg,z,)
M (0] M

w(x,,z1) A w(x,,z,)

*

do(y)K do(y,)

N<A<y,

L=ty
Fl—m)= [F-u=xdFo( = [R5/ - ds
0

Ou+x=s=>x=s—u

y

51<82

Salsi =) folsi— )
So(sa =) folsy— i)

1_?1(11 =s1) 1_?1(11 -57)
Rty —s1) F(ty—s3)

*

dSZdSI

Integrating the inner integral by parts, we have
D= -U‘ [ falsi—m)  folsi— 1)

F(f—s)) St =s2)| J: f:
Fy(sy— ) Fo(sy— i)

R(ta—s) fi(ty=s3)

jldSZ dSl

Now the sign of first determinant is

F(=s)filty=s)) _ ’ﬁ(tz —s)/, (1 =s2)
R —s)F @ty —s)  Fl—s)F 6 —s)

Which will be same as,

Silb=s9) _ /ithi=5) OR same as
Rty -s1)  Ft—-s) ’
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Ji(t, _SZ)E(tZ —55) _ Ji( _SZ)E(tl —5;)
E(tz _Sz)Fl(lz —5) E(t1 _SZ)E(tl —51)

fl (, =5,) > jj(tl =52) @if F is IFR then ratio L2 will be increasing
F(tz s,)  Fi(t —s5) F@)

Also fite=s2) , Al =s)) © if F is IFR then £¢%) will be decreasing
Fi(—s)  F—s) F(@)

Thus the first determinant is non negative. A similar argument also holds second

Which implies F is IFR.

Theorem : Let F be the convolution of distribution £ and F, given by,

F(t) = TFl (t — x)dF, (x)

0

Then if F, and F, are NBU, then F is NBU.

Proof :

a) we write

F(x+y)=]gf2(x+y—z)dFl(Z)
Tﬁ (x+y—z)dF, (z)+jF (x +y —z)dF,(z)

Tﬁ(x+y—z)dF(z)+jF(y—t)dF(xH)

But /& F, NBU, see that F(x + y) < F(x)F(y).

Then we have F,(x+y —z) < F,(»)F,(x - z).
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O ey

Fy(x+y—2)dF,(2) < F,(»)| F,(x = 2)dF, (2)

=FIF(-2)F ()] - [ F(2)F,(x - 2)dz
0

=F,(»)[F,(x) - F()]
= F,(0[F(x) - F (x)

Now,

([ Ry = 21 Fi e+ 2)

g

=Fz<y—z)ﬂ(x+z>\;°—Iﬂ(xn)fz(y—z)dz

= (- DE0) - [ R+ a0 - 2)ds

- RGFl - R@)- - Ae oo - 2
=E<y)E(x>+F2<y)—zf2<y—z)dz+zﬁl(x+z)fz(y—z)dz

SRR+ E0) - BO)+ [Fot ) faly - 2)de
- RO+ F0IF0) - B0

{ Since Fis NBU = F, (x+ ) < F,(0)F, ()}

Thus,

F(x+y) < F,(WF(x) - F,()F,(x) + F,()F,(x) + F,(0)F (v) ~ F, () F, ()
= F)F(y) - FQF () + By (x)F(x) + F,0)[F(») - F, ()

= F(0)F(y) - F@[F(») - E,(0]+ F0)[F () - F,(»)]

= F()F () - [Fx) - F[F(») - F, ()

<F(x)F(y)
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Repairable System :

A repairable system is a system which, after it has failed to perform properly, can be restored
to satisfactory performance by any method except replacement of the entire system. For

example, air conditioning equipment in an aircraft, a system of generators in a main vessel.

Frame work and Notation :

Consider a repairable system, Let Ty T, Tj, ... be the times of failure of the system and let

X,(i=12,3,K)be the time between the failurei-1and failure i, where 7, is taken to be zero. The
7;and x; are random variables. Lets and x; be the corresponding observed values and let N(r) be

the number of failures in the time interval (0,7].

The behaviour of x;is of particular interest in reliability. Ascher and Feingold (1984) speak of

happy and sad systems in which the time between failures are tending to increase and

decrease, respectively. Thus the detection and estimation of trends in the x;is a major

concern. For example, it may be vital to weed out sad system which might disrupt a

production process.

ROCOF (The rate of occurrence of failures) :

The ROCOF is defined by
d
v(t) = EE{NU)}

A happy system will have decreasing ROCOF and a sad system will have increasing
ROCOF. However note that just because a system is happy(sad) does not necessarily mean
that, in practical terms, it is satisfactory (unsatisfactory). For example — A system with very
low ROCOF may be perfectly satisfactory for its planned useful life even though its ROCOF

is increasing.

Note that the ROCOF, which sometimes is called the failure rate, should not be confused
with the hazard function, which is also sometime known as failure rate. It is possible for the
each of the x,for a system to have non-decreasing hazard and for the system to have a
decreasing ROCOF.

A natural estimator of v(r) isv(s) , given by
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no. of failures in (t, t + ot)
ot

v(t) =

For some suitable §t, the choice of 4t is arbitrary. But as with choosing the interval width for
a histogram, the idea is to highlight the main features of the data by smoothing out the

‘noise’.

Non-Homogeneous Poisson Process Model :

A stochastic point process may be regarded as a sequence of highly localized events
distributed in a continuum according to some probabilistic mechanism. If we take the
continuum to be time and the events as failure, it is clear that this is the natural framework for

repairable systems.

Whilst it is possible to postulate a variety of point process models for the failure of a
repairable system, we shall concentrate on the non homogeneous poission process (NHPP).
This model is conceptually simple, it can model happy and sad systems and the relevant

statistical methodology is well developed and easy to apply

The assumptions for a NHPP are as for the poisson process except that the ROCOF varies

with time rather than being a constant. The assumptions of Poisson process are

1. Failures occurring in disjoint time intervals are statistically independent.
2. The failure rate (number of failures per unit time) is constant and so does not depend

upon the particular time interval examined.

Consider a NHPP with time dependent ROCOF v(¢) (this is sometime called intensity function

or Pril rate), then the numbers of failures in the time interval (s,z,] has a Poisson distribution
—Jz.v(t)dt|:t

X
with mean 1= —e " jzv(t)dt:|
x! 4

Thus the probability of number of failure in (1,,7,) is exp { tfv(r)dz} )

4
By choosing a suitable parametric form forv(r), one obtain a flexible model for the failures of
a repairable system in a ‘minimal repair’ setup; that is, when only a small proportion of the
constituent parts of the system are replaced or repair.
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Suppose we observe a system for the time interval [0,¢,]with failures occurring ats,z,,z,.K 1, .

The likelihood may be obtained as follows:

The probability of observing no failures in (0,7), one failure in (1,4 + &), no failures in (4 +&.z,),

one failure in (z,,, +&,) and so on up to no failures in @, + &,.z,), (for small &,5,,K &,) 1S :

4 ty to
exp{— Iv(l)dtﬂv(tl Yo {exp{ J'v(t)dtﬂv(tz Yo, K {exp[ J‘V(t)dtﬂ
0 t+ t,+ot,

Dividing throughout by &.,.K &, and letting & —0 (i =1,2K ») gives the likelihood function

v=l 0

L= {ﬁ v(t,-)} exp[— Jo'v(t)dt} (D)

and the log likelihood is thus,

n to
logL = ;logv(tl-) —J&(r)dz @)

Another possible scheme for observation of a repairable is to observe the system until the nth
failure. Expression (1) and (2) still apply but withs replaced by:, Sometimes, the failure
times are not observed and only the number of failures within non-overlapping time intervals
are available. Suppose, for example, thatn,n,,n;,K n, failures have been observed in non-

overlapping time intervals (a5} (a5.5, K . (a,,.5,, ] then the likelihood is,

Iv(t)dt

a a

by " b, tm
" {jv(z)dt} b, [ J.v(t)dt]
L= exp[— Jal—' A exp[— Iv(t)dtJa’"T

m

b, "
) [Iv(z)dz}
- exp{— z Jv(t)dl}H%n—J

i=l1 a; i=1

Thus the log-likelihood (apart from additive constant) is
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m b; b,
logL = Z{ni logjv(t)dt— jv(l)dt} (3)
i=1 4

Therefore, once v(r)has been specified, it is straight forward to use the likelihood based

method to obtain ML estimates for any unknown parameters inherent in the specification of

v(t). We shall concentrate on two simple choices of v(s) that give monotonic ROCOF:

1) Log-Linear ROCOF

vi(t) =exp(By + Hit)

2) Weibull process

v =y3°"; ¥>0,6>0

NHPP with Log-Linear ROCOF :

Vi) =exp(fy + Bit) 4)

it gives a simple model to describe a happy system (5 <0) or a sad system (g, >0). Also if g, is

near zero v,(r) approximate a linear trend in ROCOF over short time period.

Here we discuss some likelihood based statistical methods for fitting a NHPP with v,(¢) to a set

of repairable system data.From (2), we have
n )
logZ=" logu(1;) - jv(t)dt
i=1 0
Substituting the value of v(r), we have

n ty
loglL = Z(ﬂo +Bit;)- jeﬂﬁﬂﬂdf
i=l1 0

n fy
=npy +ﬂ12t,~ —eﬂOIeﬂ'tdt

i=1 0

n 81[0
z B, !e —1)
= I’lﬂo"rﬂl l‘[—e 0

P B

To obtain ML estimate of g,and g, , we have
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ologL _ 1 p, (eﬂlto 71)
Po b

op Bt

B __ "B
€ ieﬂllo -1 ’

from (1), putting the value of ¢/ in (2), we get

Bito _ :BIZ

ie.
Bit
erno

-1
t; —nf + =0
E i ”0(—)eﬂl‘0—1 np
Le.
1
E t,-—nto{l—e_ﬁlt"F +nﬂfl=0

610gL _ Zti _eﬂoliﬁleﬂlm[o - (eﬂ]lo _ 1)*1j| o

(D)

2)

Solving this equation we can get the value of g, and by putting the obtained value of g we can

get lo

NHPP with ROCOF v,:

Ifv(r) is of the form
vty =ya®!

then putting this in equation(2)
n fy
1.€. logL= Zlogv(ti) - J-v(t)dt
i=1 0

from (*) & (**)

*)

**)
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n fy
logL= Zlog(y&ﬁ*)— J' ya%

n }/&0571
- n10g7/+n10g5+(5—1)21:10gti I
p=
o-1
Vo,
- n10g7+n10g5+(571)210gti ,OT

=nlogy+nlogs +(6-1)_logh; — 1,

OlogL _n

S ~
—to :O:>]/:
oy 7

g%lx

Now

OlogL
06

or

n
E+Zlogt,~ —nlogty =0

n K _
g-s-Zlogti - logty =0

=6=

n
n
nlogtO—ZIngi
i=1
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Accelerated Life Tests :

Suppose that under the constant application of a single stress7;a device has an exponential

failure distribution given by,

S, 2)=Ae

Where 4, is constant hazard rate under the stress7;. If ¢,=1/4 , then ¢,is the mean time to failure

under the stressv;.

We may have following relationship between 4, and ;.

1.

The power rule model :

It is a device via consideration of kinetic theory and activation energy and may be
applied to paper-impregnated dielectric capacitors.
Inv;'s model, we have

1
—:i;c>0
A vE

=4 :lVip
C

Where1;,is voltage and p and c are estimated.

The Reaction Rate Model : (closed for semiconductor)

Here ,
B
A= exp(A - V,J

Where 1, is temperature stress. A & B are to be estimated.

The Evring Model :

B
A=V exp[A _ZJ

Where;is temperature.

Here,
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Conducting Accelerated Life Test :

Suppose that k values of stressy;, ;=124 ., are chosen randomly that are to be applied on a

device which has under a stress 1; has an exponential failure distribution with scale parameter

A;=1/0; . Further suppose that while applying each stress¥; letn; devices are put to test and the

test is terminated after failure of », items, thus the data (7;,5,.5.6,) , where 6, is an estimator of¢; .

It is known that MLE as well as UMVUE of¢4,, 6, is given as

iz

"

SR '

Hi:__zt‘ji"'(ni_rz’)”i'l
Jj=1

The pdf of 6,is a gamma density with shape parameter r,, so that

g<éi):%[gj(éi)f‘ xp[THJ

Estimation under power rule model :

c

()

k
where 7 =] 7 % Is weighted geometric mean of 7, ’s.

Here 0; =

X7

i=1

i=l1

The likelihood function for C & P is

s Tl a(nY " b (VY
L(C,P/e)—];[ﬁ{g(;j ] (ec)exp{—7(7j ]

where 6=[4.6,K 4]

(1)

)
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k
InL = Z[(—logﬁ)+ r{logri —-InC+ Plog(%\}ﬂ+(ri —1)1néi —r’—g’[

i=1

.]P

— S

A P
= Z[—log) r+rnr - lnC+rl-Plog£%]+(ri —l)logé?i —r’—g’[ij

7

7; NaAY
ome_ 2 1 s
oC C c?

The above equations can be solved simultaneously by any appropriate numerical method.
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