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BLOCK 1: BASIC ELEMENTS AND BAYES RULES
Unit 1: Basic Elements
Unit 2: Bayes and Minimax Rules

Suppose, you want to buy a new mobile phone. How do you decide
which one is best for you and where to buy it? That is a decision problem. Now
suppose you have, anyhow finalized the mobile you are willing to have. Then,
Decislon theory is the study of the reasoning underlying this decision. It is
closely related to the well-known theory of games. In this chapter, firstly a
decision problem has been explained as a game problem. Then it is explained
from the perspective of a statistician. Various elements/components along
with some other topics of importance have also been defined In this section.
Next this chapter is focused on Bayes and minimax criteria and their
description.

1. Game Theory and Decision Theory:

Basic Elements: the elements of decision theory are similar to those of the
theory of games. In particular, decision theory may be considered as the
theory of two-person game, in which nature takes the role of one of the
players. The so-called normal form of a zero-sum two-person game,
henceforth to be referred to as a game, consists of there basic elements:

1. A non empty set, 8, of possible states of nature, sometimes referred to
as the parameter space,

2. A non empty set, a, of action available to the statistician.

3. Aloss function, L (6, a), a real-valued function defined on 8@ X a.

A game in mathematical sense is just such a triplet (8, a, L), and any such
triplet defines a game, which is interpreted as follows.

Nature choose a point 8 in 8, and the statistician, without being informed of
the cholce nature has made, chooses an action a In a. as a consequence of
these two choices, the statistician loses an amount L (8, a).[the function L (6,
a) may take negative values. A negative loss may be interpreted as a gain, but
throughout this beok L (8, a) represented the loss to the statistician if he takes
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action a when 8 is the “ true state of nature”.] Simple through this definition
may be, its scope is quite broad, as the following example lllustrated.

Example 1.1: Odd or even: two contestants simultaneously put up either
one or two fingers. One of the players, call him player I, wins if the sum of the
digits showing is odd, and the other player, player II, wins if the sum of the
digits showing is even. The winner in all cases receives in dollars the sum of
the digits showing, this being paid to him by the loser.

To create a triplet (8, a, L), out of this game we give player I the label “nature”
and the player II the label “statistician”. Each of these players has two possible
choices, so that 8= {1, 2} =a, in which “1" and “2” stands for the decision to
put up one and two fingers, respectively. The loss function is given by the
table 1.1,

Thus L (1, 1) =-2

L(1,2)=3,L(2 1)=3andL (2, 2) =4 itis quite clear that this is a game in
the sense described in the first paragraph. This example 1s discussed later, in
which it is shown that one of the players has a distinct advantage over the
other. Can you tell which one it is? Which player would you rather be?

Example 1.2: Consider the game (@, a, L) in which8 (8,,8,),a={(a,a,)
and the loss function L is given by the table 1.2:

(Table 1.2)
“statistician”

“nature” g, | 4 1
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In game theory, in which the player choosing a point from 8 i assumed
to me intelligent and his winnings in the game are given by the function L
(loss function of the statistician or gain function of the nature), the only
“rational” choice for him is f1. No matter what his opponent does, he will

gain more If he chooses &, than If he chooses 8;.thus it Is clear that the
statistician should choose action a, instead of actiona, , for he will lose only
one instead of four. This is the only reasonable things for him to do.

Now, suppose that the function L does not reflect the winning of nature
or that nature chooses a state without any clear objective in mind. Then we
can no longer state categorically that the statisticlan should choose action a,if
nature happens to chooses 8, , the statistician will prefer take action a,.

2, Decision Function: Risk Function:

To give a mathematical structure to this process of information
gathering, we suppose that statistician before making a decision is allowed to
look at the observed value of a random variable or vector, X, whose
distribution depends on the true state of nature, 8. The sample space denoted
as yis taken to be (a Borel subset of) a finite dimensional Euclidean space, and
the probability distributions of X are supposed to be defined on the Borel
subsets, B8 of x. thus for each 8 € 8 there is a probability measure Pydefined on
B, a corresponding cumulative distribution function Fy(x/8) which represents
the distribution function of X when 0 is the true state of the nature (the
parameter)

A statistical decision problem or a statistical game s a game (@, 3, L}
coupled with an experiment involving a random variable X whose distribution
Pydepends on the state 8€@ chosen by nature.

On the basis of the outcome of the experiment X=x (x is the observed
value of X), the statistician chooses an action d{x)e a .such a function d, which
maps the sample space X into 3, is an elementary strategy for the statistician
in this situation .The loss is now the random quantity L (0, d{x)).The expected
value of L (8, d(x)) when 8 is the true state of nature is called the risk function.
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R(B,d) E{L(8,d(0))]....oerrerrnen (2.1)

and represented the average loss to the statistician when the true state of
nature 6 and the statisticlan used the function d.

Defn, 2.1: Any function d{x) that maps the sample space X in to a, is called a
non-randomized decision rule or a non-randomized decision function,
provided the risk function R (8, d) exists and is finite for all 8e8. The class of
all non-randomized decision rules is denoted by D.

R(8,d) EpL(6,d(x)) JL{8,d(x))dPs(x).ccoureem (2.2)

With such an understanding, D consists of those functions d for which
L(ﬂ, d(x)) is for each 9¢@ a Lebesgue integrable function of x. In particular, D

contains all simple functions. On the other hand, the expectation in (2.2) may
be taken as the Riemann or the Riemann-Stieltjes integral.

R(6,d) EpL(6,d()) [L(8,d(x))dE, (x/8).o (2.2)

In that case D would contain only functions d for which L(8, d(x)) is for each
ge® continuous on a set of probability one under E.(x/6).

Example 2.1: the game of “odd or even” may be extended to a statistical
decision problem. Suppose that before the game is played the player called
“the statistician” is allowed to ask the player called “nature” how many
fingers he intends to put up and that nature must answer truthfully with
probability 3/4. The statistician therefore observes a random variable X (the

answer nature gives] taking the value 1 or 2. If 8= 1 is the true state of
nature, Pisc! 21— pXTE. Similarly BEZY 174=1- P27 There
are exactly four possible functions from ¥ ={1,2} in to, a={1,2}. There are the

four decision rules,

di(1) 1 di(2) 1 ;
d,(1) 1 d(2) 2 ;
da(1) 2 ds(2) 1 ;

de(1) 2 de(2) 2 .



(&)

Rules d,and d,ignore the value of X , ruled; reflects the belief of the
statisticlan that the nature is telling the truth, and rule dj, that nature is not
telling the truth. The risk table {2.1) is given as:

{Table 2.1)

1|—2 —3/4 7j4 3

2| 3 —9/4 5/4 —4
R(8,d)

It is a custom, which we steadfastly observe, that the choice of a
decision function should depend only on the risk function R(8,d) and not

other wise on the distribution of the random variable L(8, d(X)).

Notice that the original game (@, a, L) has been replaced by a new game
(8, D, R), in which the space D and the function R have an underlying
structure, depending on a, L, and the distribution of X, whose expectation
must be the main objective of decision theory.

A “classical” mathematical statistics consists three important categories:

1. a Consists of two points,a  {a,,a, }: decision theoretic problems in
which a consists of exactly two points are called problem of testing
hypothesis.

Consider the special case in which & is the real line and suppose that the loss
function for some fixed number &, given by the formulas:
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L if6>9
ie.e) {; if 0 <6, And

0 if9>6,
L(6,a2) {Iz if 6 < 6,

Where L and I, are positive numbers. Here we would like to take action
a, if 8 < 8; and action a, if 8 > G,.the space D of decision rule consists of
those functions d from the sample space in {a, @, } with the property that
Pold(x) a, ]is well-defined for all values of 8e®. The risk function in this
case is,

R(6,d) EL(8,d(x))

LPeld(x) a] if6>48,
LPgld(x) a;] if 9 <8,

In this case probabilities of making two types of error are involved.
For® > 8,,Py[d(x) a,]is the probability of making the error of taking
action g, when we should take action g and & is the true state of nature.
Similarly, for < 6 Pyld(x} a;] 1-—Pgld(x} a,]1,]1sthe probability of
making the error of taking action a, when we should take actiona, and 0 is
the true state of nature.

2. a Consists of k points{a, ,a; , ... ..a; },k = 3. these decision theoretic
problems are called multiple decision problems. For an example an
experimenter is to judge which of treatments has a greater yleld on the
basis of an experiment.

He may (a) decide treatment 1 is better, (b} decide treatment 2 is better, or (c)
withhold judgment until more data are available. In this exp. k=3

3. a Consisisofa realline, a (—,00).

such decision theoretic problems are referred to in a board sense as point
estimation of a real parameter. Consider the special case In which 8 Is also a
real line and suppose that the loss function is given by the formula,

L(6,a) c(6—a)?,
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Where, ¢ is some positive constant. A decision function d, in this case a real-
valued function deflned on a sample space, may be considered as an
“estimate” of the true unknown state of nature 8. It is the statistician desire to
choose the function d to minimize the risk function.

R(6,d) EL(6,d()

= cBy(0 — d())’,

The criterion arrived here is that of choosing an estimate with a small mean
squared error in some sense.

3. Randomization:

It is often useful to recognize explicitly that in any decision problem, the
statisticlan may wish to choose a decision from D by means of an auxiliary
randomization procedure of some short, such as by tossing a coin. In other
words the statistician may wish to make a mixed or randomized decision 5 by
assigning probabilities p,, 15, ... ... t0 the elements d4,,d,,...... of decisions
from D and then one of the decisions & on the basls of these probabilities is
chosen.

More generally, a randomized decision for the statistician in a game {8, a, L) is
a probability distribution overa (it is understood that a fixed o-field of
subsets of 2 containing the individual peints of a is given). If P is probability
distribution overaand Z is a random variable taking values is a.whose
distribution is given by P, the expected or averapge loss in the use of
randomized decision P is,

L8, P) EL(B,Z) oo (3.1)

Provided it exists. This formula is to be regarded as an extension of the
domain of definition of the function L(8,") from agto the sample space of
randomized decislons, for each element a € @ may, and shall, be regarded as
the probability distribution degenerate at a ,that is, the distribution giving
probability one to point a. the space of randomized decisions, P, for
which L{8, P) exists and is finite for all 8¢8 is denoted by a" .
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With this definition, the game (8,a*, L) is to be considered as the game (8, a, L)
iIn which the statisticlan i1s allowed randomization. a*contains all the
probability distributions giving mass one to a finite number of points of a.

By analogy, we may extend the game (8, D, R) to (8, D", R) where D" is a
space containing probability distribution over D. if § denotes a probability
distribution over D, R(&,5) is defined analogously to (3.1) as,

R(&,3) ER(0,Z) .cnnnn [3.2)
Where Z is a rv taking values in D, whose distribution is given by 5.

Defn. 3.1: Any probability distribution § on the space of non-randomized
function, D, is called a randomized decision function or a randomized decision
rule, provided the risk function (3.2) exists and is finite for all 8e®. The space
of all randomized decision rule is denoted by D* D* contains all the
probability distributions glving mass one to a finite number of point of D.

The space D of non-randomized decision rules may, and shall, be considered
as a subset of the space D* of randomized decision rules I} € D* by identifying
a point d € D with the probability distribution § € D* degenerate at point d.

One advantage in the extension of the definition of L (8, *) from € to @° and the
definition of R (6, *) from D to D* is that these functons become linear on

@"and D* respectively. In other words, if Pi€a’, Pea"and 0 <a <1
P aP+(l—a)Pea” and L(9,aPy+1—aP,) L(B.P) EL(82)

al(6,P) + (1 — @)L(B,P,) .omreereeen (3.3)
Similarly, if 8,ea*, §,ea® and 0 < o < 1.then
5 ad, +(1—a)b,eD’
R(0,8) ER(8,Z) aR(8,6))+(1—a)R(B,8;) .ccceen. (3.4)
Example 3.1: Let the game be defined as,

“11 a3 as
e g, |4 1 3
8, |1 4 3
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If nature choosesf,, action a, is preferable to action a,.if, on the other hand,
nature choosesf,, action a; Is preferable to actlon a, thus a; Is preferred to
either of the other action under the proper circumstances. However, suppose
the statistician flips a fair coin to choose between actions a, and a,; that is
suppose the statistician’s decision is to choose a,if the coin comes up heads
and choose a,if the coin comes up tails. This decision, denoted by 8§, is a
randomized decision; such decisions allow the actual choice of the action in a
to be left to a random mechanisin and the statistician chooses only the
probabilities of the various outcomes. In game theory & would be called a
mixed strategy. The randomized decision & chooses action g, with probability
1%, action a; with probability 4, action az with probability zero. The expected
loss in the use of § is given by,

L(6,F) EL(E,Z) 1/2L(8,a)+1/2L(6,az) + OL(8,a5)
1 1 s .
5.4 +E'1+0'3 ] :fO 91
_1.4 5
=2+3.1+03 ife 8,

Because it is understood that the choice between strategies is to be made on
the basis of expected loss only,d is certainly to be preferred toa; for no matter
what the true state of nature, the expected loss is smaller if we use d than if we

useds.

1 1 1 3 5
pGid R Gao)
4 1 3 9 .
L(g,P) :+;+: = ife 6,
1 4 3 12 :
:+;+: - ife 6,
L6,P) 4+21+03 T ife 6

3 5 23 .
2+24+03 2 9 8,

“If randomized decisions are allowed and the choice between strategies is
based on expected loss only, the statistician should never take actiona,.”
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Optimal Decision Rules: The fact that a best rule usually does not exist, two
general methods, which have been proposed for arriving at a declsion rule, are

frequently satisfactory.
Method I: Restricting the Avallable Rules:

Unbiasedness: suppose the problem is such that for each 8 there exist a
unique correct decision and that each decision is correct for some 8. Assume
further that L(8,,d) = L(0,, d) for all d wherever the some decision is correct
for both8,and ;. Then the lossL(#,d") depends only the actual decision
taken, say d' and the correct decision d. thus the loss can be denoted by L{d,
d') and this function measures how for a past d and d’ are. Under these
assumptions a decision function §(x) is said to be unbiased w.r.t. the loss L if
forall@andd’  EpL(d',6(x)) = Egl{d, 5(x)) .cconvreenne (3.5)

Where the subscript € contains the distribution w.r.t. which the expectation
can taken and where d is the correct decision for 8. Thus 4 is unbiased if on
the average 6(x) closer to the correct decision than to any wrong one.
Extending this definition, § is said to be L-unbiased for an arbitrary decision
problem for all 8 and &’.

ARG TE) =N 2T A G 1 9) — (3.6)

Example 3.2: In two decision problem, let wq and w, be the set of & values for
which dyand d, are correct decisions. Assume that

L(8,dy) 0 @Bew, L(6,d)) b @Bewy
=g few = fBewy

EoL{6',86(x)) L(¢",do)Pe[6(x) do] +L(6',d)Psl6(x) di]
aPy|8(x) dy) if 8'ew,
bPy[8(x) d,] if 8'ew,

So that (3.6) reduced to

aPel8(x) dol 2 bPel8(x} di] for Bew,
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With reverse inequality holding for few,

Since Pp[6(x) dy] + Peld(x) d;] 1 the unblasedness contains (3.6}
reducesto, Pg[6(x) d,] 5% for Bewy

And Pold(x) dyl =2 :ﬁ for Bew,

Example 3.3: In the problem of estimating the real valued function g{#) with
square of the error as loss, the condition of unbiasedness become,

Eg[5(x) — g(8D]? = Ep[6(x) — g(8))? Forall@ and @............ (3.7)
Eg[8(x) + Eg+8{x) — Eg-8(x) — g(80] 2 Ep[6(x) + Egd(x) — Egd(x)
— g(8))?

Let Ep5(x)  h(6)
Eg[8(x) — h(8) + h(6) — g(8)]? 2 Ep[5(x) — h(6) + h(8) — g(&)]?
[R(9) — g(8))])? = [h(8) — g(8)]* Forall8and &'

If g{#) is continuous over 2 and which is not continuous in any open subset of
[}, and that A(8) = Eyd(x) is continuous function of 8 for each estimate §(x)
of g(@) . Thus (3.2) reduces to,

g%(0") — 2h(8)g(8) = g*(8) — 2R()gy(8)
Or g*(8") — g*(8) = 2r(8)(g(8") — g(8))
[9(8) — g(8)][g(8) + g(8)] = 2h(B)[g(8") — g(6)]

If € 1s nelther a relative minimum or maximum of g(#) it follows that there
exist points &’ arbitrary chosen 0 both such that,

g(8" + g(0) < 2h(8) Henceg(8) h(B)
Thus &(x) is unbiased ifEyd(x} = g(@). Proved

Method II: Ordering the Decision Rule: two important and useful principles
are basic to the study of decision theory.
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1. Bayes principle: The Bayes principle involves the notion of a distribution
on the parameter space 8 called a prier distribution. Two things are needed of
a prior distribution T on 8. First we may able to speak of the Bayes risk of a
decision rule § w.r.t. a prior distribution T, namely

B(z,8) ER(T,5) cvreevenrne (3.8)

Where T is a r.v. over @ having distribution t. Second we need to be able to
speak of the joint distribution T and X and of the conditional distribution of T,
given X, the latter being called the posterior distribution of the parameter
given the observations. We denote the space of prior distribution as 8°.

Defn, 3.2: A decision rule 4, is said to be Bayes w.r.t. the prior distribution
e6if  B(,8) —LA ) (3.9)

8¢ D*

The value on the RH.S. is known as the minimum Bayes risk. Bayes risk may
not exist even if the minimum Bayes risk is defined and finite.

Defn, 3.3: Let € > 0. A decision rule 8, is said to be € — Bayes w.r.t. the prior
distribution t¢8" if
BT, 56) < s B(T,8) + € roveersmsrns (3:10)

2. Minimax principle: An essentially different type of ordering of the
decision rule may be obtained by ordering the rules according to the worst

that could happen to the statistician. In other words, a rule 4, is preferred to a
rule §; if

=LR(8,8,) < =ER(6,5,)
A rule that is most preferred in this ordering is called a minimax decision rule.

Defn. 3.4: A decision rule §, is said to be minimax if

sup inf sup
TER(0.60) G E R0, 8) s (311)

The value on the RH.S. of (3.11) is called the minimax value or upper value of
the game.
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Proposition 3.1: A decision rule §, is said to be minimax if and only if
R(8',80) SZZR(8,8) vurrrsrnrrn (3:12)

For all 0’e® and §D*

Proof: let R(¢',8,) < mR(ﬂ &)  Forall 8'¢® and 8D*

22 R(6',80) <SZR(6,8)  for 8eD*

Hence 8, minimizes the -==R(8,8)  for8eD*

; £
Thus, o 2R(0,8:) 5 eR(6,8) And &, s minimax.

Conversely, let %R(B, 5p) :;,::R(ﬂ 8)
2 R(8,8,) <ZIR(6,8) fordeD®
= R(6',8,) <3 =R(0,8;) S=ER(6,5) forall 0'c®,5eD*

Proved
Defn, 3.5: Let €> (. A decision rule d; is said to be € - minimax if

—LR(8,85) S LZER(B,8) + € rvmmersrerion (3.13)
More simply, &, is €E-minimax if for all 0’e® and §=D*
R(8',80) < ZFR(6,8) + € wverrrserr (3.14)

Defn, 3.6 A distribution 7,68* is said to be least favorable if
%r(‘ruﬁ) ’:pw —y(t,8) ... — %

The value on the R.H.S. of (3.15) is called the maximin value or lower value of
the game.
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Geometrical Interpretation for finite 8: we give a geometric interpretation
of the fundamental problem of decision theory in the case in which the
parameter space @ is finite.

Suppose that @ contains k points, & {8,,8,,......,8;) and consider the set §,
to be called the risk set, contained in k-dimensional Euclidian space Ej of

points of the form (R(8,,8),R(85.8). ............,R(B;,5)), where & ranges
through D*
5  {(vu¥z w oy )for some SeD%,y;  R(8,,68) forj 1.2,...k}
eemeeen (3.16)

If k=2 this set may easily be plotted in the plane.

DPefn. 3.7: A set S should be convex If when every {¥y, ¥, v s Vi)
¥ (V1Y% . .., ¥'y) are elements of 5, the point

ay+1—ay (ay+1—ay) ..., ayy+1—ay,) are also elements of §,
t<a<l.

Lemma 3.1: The risk set S is convex subset of Ej,.

Proof: Let y and ¥’ be arbitrary point of S. according to the definition of §,
there exist a decision rules § and &' in D* for whichy, R(8;,5)

andy; R(8,8')j=1, 2,... k Jet a be an arbitrary number such that

0<a<1and consider ; afé+1—ad’. Clearly §,¢ D". (as convex
combination of d.f is also a d.f)

R(6,8,) EL(8,6;) a«EL(6,5)+T—aEL(8,¢)
=aR(6,5} +1—ar(8,,8') Z
Z (21122: ------ lzk) € S M

Defn, 3.8: let A be a set. The convex hull of a set A is the smallest convex set
containing A or the intersection of all convex sets containing A.

Thus S defined above is the convex hull of the set §,, where
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S0 {On¥..-¥) y; R(6,d).deD,j 12,...k}.....(3.17)

Because the risk function contains all the pertinent information about a
decision rule as for as we concerned, the risk set 5 contains all the information
about a decision problem. For a given decision problem (8, D*, R) for @ finite
the risk set S is convex; conversely, for any convex set § in k-dimensional
space there is a decision problem, (8, D*, R) in which @ consists of k points,
whose risk set 1s the set S,

Bayes Rules:

let (py, 25, ... ... P ) be a probability distribution on 8. See points that
yield the same expected risk.

LapR(6.8) Zoyr .y (61.0) (3.18)

are equivalent in the ordering given by the principle for the prior
distribution(py, py, ... .., p). Thus all points on the plane ¥, p; y; = b for any
real number b are equivalent. Every such plane is perpendicular to the vector
from the origin to the points (py,p, ... ..., px) and because pjis non negative
the slope of the line of the interaction of the plane ¥ p; y; = b with the
coordinate planes cannot be positive. The quantity b can best be visualized by
noting that the point of interaction of the diagonal line y, = y; =..= y; with
the plane ¥ p; ¥; = b mustoccur at (b, b, ..., b)

,./r .'"-. Equfw ul r \

"' X x’" s\H

_ i{’

— P8
by b b/p, el

Fig (3.1)



(17}

To find the Bayes rules we find the infimum of those values of b, call it b, for
which the plane ¥ p; y; = b intersected the set S. decision rule corresponding
to points in the intersection are Bayes rule with respect to the prior
distribution (p,, p3, .-- -, Px)- There may be many Bayes rules or there may not
be any Bayes rules.

Righ, ]

\ i |

fl.-'l.«:.uJ'u'.'
q
Bayes rules \ / !
oo £ Minimax |
oy, ol

- —— B[, §) T

Fig (3.2) Fig (3.3)

The minimax risk for a fixed & ismax;y; max;R(6;,5). Any point
yeS that give rise to the same value of max;y; are equivalent in the ordering
given by minimax principle. Thus all points on the boundary of that set

Qe {0nyz e ¥lyy<c fori 1,.....k} for any real number ¢
are equivalent. To find the minimax rules we find the infimum of those values
of ¢, call it c,, such that the set @, intersects 5. any decision rule §, whose
associated risk point is an element of the intersection Q. N S, is minimax
decision rule. Of course, minimax decision rule do not exist when the set §
does not contains its boundary points.

A minimax strategy for nature which is otherwise called a “least favorable
distribution” may also be visualized geometrically. A strategy for nature is a
prior distributiont (py,ps, ... ,Pr) Because the minimum Bayes risk
infs Y (1,8) is by, where (by,by,....- ,be) in the intersection
of the liney, ¥; -~ ».and the plane, tangent to and below 5,
and perpendicular to {(py, Pz, v, i), 2 least favorable distribution Is the
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choice of (py,ps, ... ..., Pi) that makes this intersection as for up the line as
possible, It is clear that b, Is not greater thanc,, the minimax risk is ¢;. This
distribution must be least favorable.

Fig (34)
Since
R(6,8) ER(8,Z) whereZisar.v.taking valuesin D with «L.f 5.
if 8o issuchthat R(9,8,) infspR(8,5) then
R(0,8,) E R(0,Z) where Z is ar.v.taking values in D with d.f §,.
Obviously | R(8,8,)dr < [ R(8,d)dr foralldeD
Y(r,6,) [JR(8,68,)dr < infy pfi(z, d)
Yz, &) infpepB(r,8) € infy pBEd) v (3.19)
Also R(6,8,) ER(6,Z) Z 1s ar.v. taking values in D with d.f §,.
= [ R(8, Z)d8,
[R(8,8)dr  [[f R(8,Z)d5,]dr
= [[fR(0,Z)d]d &,
Y(z.8,) [JIJR(9,Z)d7]dd,
2= [linfaen J R(6,Z)d]d &
= infyepl(r, d)



Y{(1,8;p) = infaepB{T, d) covvnrrnrnem (3.20)
From (4.19) and (4.20)
Y{1,8p) infaepB{Td) cnniiniiinnnn (3.21)

Equation (3.21) states that none of the mixed strategy (randomized
decision rule) can reduce the risk below the minimum value which can be
attained from the non-randomized decision D. if Bayes risk Y(t, &;) is finite
and is attained for a randomized decision rulesd,, then it follows from the
above comments that this risk must be attained for some non- randomized
decision D.

Thus if a Bayes rule with respect to a prior distribution T exits,

there exist a non- randomized Bayes rule w.rt 1. Therefore, one definite
computational advantage that the Bayes approach has over the minimax
approach to decision theory problem is that the search for good decision rules
may be restricted to the class of non- randomized decision rules,

Example 3.4: Let #=a={0,1} and let the loss function be
L{0,0)=L(1,1)=0, L(1,0)=L{0,1)=1 Suppose that the statistician observes
the r.v. X with discrete distribution

PIX x/8] 27F K x+6 &k 123,.....

(D Describe the set of all non- randomized decision rules.
(ID) Plot the risk set S in the plane.
(11D Find the minimax and Bayes decision rules.

Sol: ¥ N  setofall non- negative integers
Let A be any finite subset of N. d:X —» a = {0,1}
D {d: d:X-a)}
Thus D contains only two types of functions
di(x) 1 {ifxed do(x) 1 ifxed
=0 if xed’ =0 ifxeA
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The cardinality of D is C

R(8,d) EL(8,d(X)) Iisriskfunctionofd.

R(0,dy) EL(0,d(X)) PIXeA]l mvvnmmrsimmensns (3.22)

R(1,dy) EL(1,d,(X)) P[XeA] wrvvrrrsscrennn (3.23)

R(0,d;) EL(0,dy(X)) P[XeA] o (3.24)

R(1,dy) EL(1,dx(x)) PlX2A] cwunesmwmsssssmsnn (3:25)

R(8,8) [R(B,Z)d5 Where Zis a r.v. taking values in D with d.f 5.

LetA {0},{01} ¢ N

R(0,d,) P[Xs4] 0,1/2,0 R(1,5) 1)

R(0,d,) P[X=A] 1,1/2,1 Y2

R(1,d,) P[X=A']l 1/2,1/41  (0,1)

R(1,d;) PlXeA] -.3,0 L,(0,2 S 1,9

0.1/2) , (1/21/4) , (O.1) {p1-

(1.1/2) , (1/2,3/4), (L.0)

§ {(ap)0<a=<l0<pf<1} (0,0 (1,0} L,
¥y =R(0%), y» R(L4d)

a R(0,d),f R(,d) deD Fig (3.5)

Thus minimax decision rule 4§, at point I}

ieline L, L; and intersection ofy;, ¥,

LineL, Lyis2y, +v, 1

1
Wherey;, =D (;,%)
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So corresponding to G,%) is G,%).

A Bayes decision rule which minimize (3.23) can be found.

To find a non-randomized rule:

i@ g

R (0, d) EL(U, d) P[XEA'] Zx=2'4'5"" P

LetA={1,3,5,7 ..}

™3
W

=gt

3
ol

-
Thus there exist a non-randomized Bayes decision rule such that(},3
point D with probability (2,2). A minimax decision rule is(2,1) choosing,
d;(x) O0ifx 0 withprobabilityZ and
=1 ifx=>1
d;(x) 1 x2 0withprobability:
This rule is also Bayes rule with (p,72) (3.3) (@1-p)as

2(-) —sw 1-pop ]

Example 3.5: consider the statistical decision problem.
‘ﬂ (611 9!) D (d'll dz) I‘(al d) as
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d 4, p(a)

8, | a; 0

Let «(8) P[6(x) d./8 6]

and B(8) P[E(x) di/6 8] = = @
a(d) and B(&) are the probabilities Fig (3.8) that
5 will lead to a decision when g 8,

and # 6 respectvely, suppose P[¢ 6] £
P[6¢ 8;] 1-%,0<E< 11sthepriorprobability.
A(r,8) [JfL(B,8)dF(x/8)dr(H)
J{L(8, &) P[6(x) dy/6] +L(8,d;)P[5(x) d;/6]}dx(6)
[L(61,d,)PISCx)  d1/6y] + L(B1,d)P[5()  dp/64]]E
+[L(8, dDPISG)  di/6;]+ L(62, d)P[6)  dz/6,]](1 — D
L(6y,d;)P[6(x) dz/64]5+ L(82,d\)P[6(x) d,/8,](1—%)
a,x(8)E+ a;A(8)(1 -5
ac(8) + bB(S) ....... (3.33) Where,a a.&,b  a(1—F)
Example3.6: 8 {8,,8;} a {a a3}

a a4
Lga) 6 |-2 3

6, |3 -4

A randomized strategy &ea®is represented as a number0 < g <1, with
understanding that
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@, is taken with probability q and a; with 1-q
S {(L(61,8),L(8;,8)), 6¢a")
L{04,6) EL(8,,2z) L(Py,a)Pp [z a4]+L(0y,a)Pp [z a;]
==-2¢+3(1—¢q) 3-5¢q
Similarly, £.(8,,8) EL(#,,z) 3q—4(1—q) 7q-—4
5 [((3—5q.79—4),0=<q<1} (Fig 3.6)

Which is nearly a line segment joining (-2, 3) and (3, -4) minimax strategy
occurs when,

(-2, 3}
3—-5¢ 79-—4 org 1—2
The minimax riskis (2, %)

Thus minimax rule is {2, X

And this is also Bayes rule since,
Inim ax strategy

L;E(_E) —1=p 3 s

If we choose 8, with prob. % (3,-4)

(Fig 3.6)
And6, with prob.Z (LX) is prior probability.

12" 12

Example3.7: & {1,2} a
di(1) 1 ,dy(1)
d(1) 1 ,dy{1)

ds(1) 2 ,d3(1)

d(1) 2 ,d(1)

B = B =



3
1|-2 -3
3

2 3 =

=

&
R(81,6) pyR(B1,dy) +p2R(61,d2) + paR(8y,da) + psR(61,dy)
=—2p — P +3Ps + I 1
R(0,8) Th,mR(82,d) 3pi—2p:+5ps—4ps

S {(R(6y,5),R(6;,8)):5ea"}

(Fig 3.7)
Line L, L; is y, —%3’1 —z_; R{028 i)
SY. +21y, +27 O !

b (-23)

Line PQ intersects L, L, at

27
Y1 —a,32 (—27)/26 Thus

The Minimax risk at (—z_z: ; —z_z:)

Thus &, corresponding to this

Minimum is attained by

3
au (%;E, O;D) . Rule Lz (_T,_Tg) L3(3,—4)
Thus &, is also bayes w.r.to

(E,z—sﬁ) ras‘T‘“(—%) -1=2(1-p)21 5p=>p Z

26

And minimum Baves risk y(z, ;) i:

Also d, is non- randomized bayes rule wr.to T as

y(t,d,) pR(G,,d))+ ({1 —-p)R(O;4d,)
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—42+15 27
26 26

=2 D+o03) =

Thus &, %,g, 0,0) is randomized Bayes rule and d; is non-randomized
Bayesrulew.rtot c—:,%)

Thus minimax Bayes risk is —E .

Given the prior distribution 1, we want to choose a non -randomized decision
rule deD that minimizes Bayes risk,

y(r.d)
J R(Z,d)dr where, Z is a random variable taking values

R(8,d) [L(6 d(x))dFy(x/0)

A choice of § by the distribution t (8), followed by a choice of X from the
distributionF; (x /@), determines a joint distribution of 6 and X, which in turn,
can be determined by first choosing X according to its marginal distribution,

Fe(x) [Fr(x/0)dr(6) .ovrrererreemiinnns (3.26)

and then choosing 8 according to the conditional distribution of 8, given X=x,
t(6/x). Hence by a change of integration we may write,

v d) [ L(6,d(x)) dT(8/x)] dFx(X) .oormmermmeenn (3.27)

Given that these operations are legal, it is easy to describe aBayes decision
rule.

To find a function d(x) that minimizes the double integral (3.27), we may
minimize the inside integral separately for each x; that Is, we may find for each
x the action, call it d(x), that minimizes

J £(8,d(x)) dv(8/x)

Thus, the Bayes decislon rule minimizes the posterior conditional expected
loss, given the cbservations.
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Suppose that the distribution of the parameter 6 in some decision problem
is T (8). Let a be a given constant (>>0), and let A{@) be a real valued function
over parameter space 8={), such that

f, M@)dr(8) < o

Consider a new loss function L, which is defined in terms of the original loss
function L by relation

L,(8,d) al(8,d)+A(8) Oe,deD ..ouue...... {3.28)

For any decision deD, let Y (1, d) denote the risk which results from the
priginal loss function L.

y(r,d) [R(@,d)dr [ [L(B d)dF(x/8)dr(@)...... (3.29)
Andlet yo(t,d) [ [Ly(8,d)dF(x/8)dt(f) ..owvreveen. (3.30)
Then for any two decisions d,and d,eD

Yo(t,di} £ wp(r,dy) ©Y(1,d)) <£Y(1,d;) ............... (3.31)

In particular, a decision d* is Bayes wr.to T in the original problem with loss
function L (8, d) if and only if d* is a Bayes w.r.to t in the new problem with
loss functionk,.

Now consider 2,(8) “t’;’; L(8,d)

If _fn Ag(8)dt(8) < oo ,We can replace L now by a new loss function L,
which is defined as,

Ly(8,d) L(B,d)— A4{6)
Then loss function L, has the following property

Lo(0,d) 20 forall 8 and d and

inf ] s [332)
gep Lo @) 0
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It has been found convenient in many problems to role with non-negative loss
function of this type, although the use of such function makes it appear that
the statistician must continually choose decisions from which he can never
realize a positive gain.

Defn, 3.9: A rule § is said to be limit of Bayes ruless,,, if for almaost all x

8,(x) — &6(x) (In the sense of distribution) for non-randomized decision
rules this definiton becomes d,, — d iIf d;{x) — d(x) for almost all x,

Def 3.10: A rule §;is said to be generalized Bayes rules if there exist a
measure T on @ (or non decreasing function on 9 if @ is real), such that
R(r,8) [[L(B,8)f(x/6)dr(0)takes on a finite minimum value when
d &

Def 3,11: A rule §;1s sald to be extended Bayes rules if 3, Is €- Bayes for
everye > 0.

In other words, 8, is extended Bayes rules if for everye > 0 there exist a prior
distribution 1 such that &, is e- Bayesw.rtoTie

Y(5,8,) < "‘;f Y, 5)
Example 3.8: let X~N (6,1) andlet 7(8) N(0,0%)
L(9,d) (6 — d)? The jointp.dfof (8, x)
h(8,x) exp[-E2t_ 2
R exp[ER - L de

[27(1 + ¢2)]= exp[

2{1+o%)

Posterior density of 0 given x,

flo/n) AT ity miyz)

(2ma?) 2
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~N (2 i)
1+g2’ 1+02
The Bayes rule w.r.to 1, is posterior mean i.e d,(x) %

The Bayesrisk, Y (r,,d;)  E[E(8 - d,(0)*/X] {55
Thus d(x)=x is not Bayes.
Butd,(x) — d(x) aso — o,

Theorem 3.1: for any constants a, b >0, let5*be a decision rule such
that 5"(x} d, if af;(x) > bfs(x)

=d,  if afi(x) <bfz(x)
where f; denote the conditional pdfofXforéd 8;,i 12

The walue of §*(x) may be eitherd, or d4;ifafi(x) bf;(x). Then for any
other decision function & we have

aa(8*) + bB(8*) < aa(s) + bB(S)
Proof letS; {x:6(x) d4}.,5, {x:6() d,} 5°
A {x:afi(x)>bfai{x)} B {x:afi(x) <bfp(x))

Then ax(8)+bp(d) a fgz fidu +b .[.gi fadu
a+ ,[51 (bfz — afi)dit wuniniiinnn (3.34)
(3.34) will be minimum if _[91 (bf; — af)du < 0

Thus aa(d*) + bE(S") < aa(d) + BR(S).
Finding a decision function § which minimize the linear combination

aa(d) + bB{6) is equivalent to finding a set 5, for which the integral
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_fsi (bf> — afy)du is minimized. This integral will be minimized if the set
§,includes every point x £ S (sample space) for which the integral is negative
and excludes every point x £ § for which the integral is positive.
Remark: the posterior distribution of 8 6, given X=x, denoted as a(X) is
given by,

a{x) P8 6,/X «x]

P[@=0x-h<X<x+h]
Plx—h<X=x+h]

= lim 549

Plx-h<X=<xth/8 =ﬂ!]P (E=BQ
Plx-h<Xsx+h]

Fx/00PO=0;)  af(x/0;) afi(x)
£ () A efitHi-an()

Provided limit exists, where

A(x)  f(x/8,) ,fa(x)  f(x/8,)
Posterior riskof d;  L(8y, dy)a(x) + L(85, dy)(1 — a(x))

= limp_,g

=az(1-a(x)} Simiarly, d; a,a(x)

We choose d; if (i.e d; is Bayes rule) posterior risk of d; < posterior risk
ofdy.ie

a,a(x) < a,(1- a(x)) or mafy(x) < 1= af,(x)
Thus ') dy(x) ifasafy(x) < a,T— afy(x)

2z} e ” 5
Let S, {x. s }a: G 1_")} then, §*(x) d;(x) ifxeS,

dy(x) ifxeS;"
Fortesting Hy:@ O,againstH;:@¢ 6,
d, oacceptH,,d, rejectH,,
8'(x) {0,1} l1e choosing d, with prob. 0 and d,with prob.1.
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Ord"(x) 1 if xS,
=0 If xe85;°
For each © we have a d.f. of r.v. X as F(x/8). Let G (8) 1s the d.f. of r.v. 6, Then,

PIRSZA-K<B<+K] 1. £ I Femyatan
K—0

P[8—K<B<0+K] I:_Tf fa(v)dr

Fx/8) limg,,

Provided such f(t,v), fa(v) exist and also limit exists. If £{t, v) and f3{v) are
continuous.

2R 5 Feemar

Where voe(8 — k,8 + k)

_ i of.8)dt

fa(8}

Since f(t, v} is assumed to be continuous, then

Fz/g) L2002 38 fo(6)

P[Xsx.0—R<0<h+K] JE rxwyde
Stmilarly F(x/8) lmo P[@-K<8<B+K] =T

The posterior density of & given x (when observation X=x is taken.)

f&8) s F(x/6)9(6)
Fx/8) 1@ Trwmas Troieg@as

This is a continuous version of Bayes theorem.

Baves Estimation Problem: the determination of a Bayes estimator is in
principle simple. First we consider the estimation before any observation is

taken.

Then @ has df A and the Bayes estimator of g (8) is any number which
minimizes EL(&, d) = | L(8,d) dA(#). Once the data have been obtained and
are given by the observed value x of X, the prior distribution A of 8 is replaced
by the posterior distribution i.e the conditional distribution of & given X=x and
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the Bayes estimator is any number &(x) which minimizes the posterior risk

E[L(8,6())/X «x].

Theorem 3.2: Let 8 has distribution A and given 8=0, let X have
distribution F{(x/8) ( or p.d. f f(x/8)), the following assumption hold for the
problem of estimating g(8) with non-negative loss function L(6, d)

() There exists an estimator &, with finite risk.
(b) For almost all x, there exists a wvalue §,(x) which minimizes

E[L{(8,8(X0))/X x] womunsnusinnn (3.35)
Then, 8,{x) is Bayes estimator.

Proof: let & be any estimator with finite risk. Then (3.35)} is finite a.e. since L is
non-negative. i.e

JTL(8,8(X))dF(x/8)dA < oo

[1f £46,800) dA8/%)dFy(x)] < ®
JL(8,8(X)) dA(8/x) < o

E[L(8,6(X))/X x| =E[L(6,6,(X))/X x| ae
E[E{L(6.5(X))/X «x}| = E[B{L(8,5,(X})/X «x}] a.e
B(A,8) EL(8,5(X) =EL(8,6,(X)) B(AS,)

This is true for all & for which risk is finite.

infgpe@(A,8) B(A,8,) thus 8, is Bayes estimator for squared error loss
function the non-randomized Bayes rule is the mean of the posterior
distribution. For L{8,d) = |@ — d| the Bayes rule is median of the posterior
distribution.

For L(B,d) O if|e—d|<c
1 ifle—d| >c
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Thus 8, (x) is the mid point of the integral I of the length 2¢c which maximizes
P[Bel fx]
Elg(8)— 8(x)]* Elg(8) — E(g(8)/x)]* + Elg(8)/x — 6(x)J?
> E[g(8)/x— 5(x)}I* E{[g(6) — 6(x)]*/x}
L.H.S will be minimized when 6(x) E[g(#)/x] similarly others.

Corollary: if the loss function L(8, d) Is squared error or more generally if it is

strictly convex in d, a Bayes solution &, is unique a.e. P where P is the class of
distributions Py, provided

1. Its average risk w.r.t. to A is finite.
2. If Q is marginal distribution of X given by

Q4) [ Py(xzA) dA(6)
Then a.e Q implies P.

Proof: To prove this, we have the following property of convex function. *
every convex function in an open interval (a, b) are continuous. Let ¢ be
strictly convex function defined over an interval I {finite or infinite). If there
exist a value ay, in I minimize ®{a), then g, is unique.”

Let L(8,d) w(8){g(8) —d)? where, w(f) > 0forall8=z0L
B(r,d) EL{6,d) [fw(@)g(®)—d):dF(x/6)dr(6)
= [f w(e)(g(8) — d)? dr(8/x)dFx (x)
JIf w(@)(g(8) — d)? dv(8/x)] dFy(x)
Minimized[ by Theorem (3.2)].i1f
J w(8)(g(8) — d)? dx(8/x) is minimized. Let us define

Ad) [ w(@)(g(8) — d)* dr(8/%)
Jw(@g*()dr(0/x) + d* [ w(0)dr(0/x) — 2d [ w(0}g(8)dr(6/x)

For maxima and minima, we must have
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ah D=d fwi)g(@)de(8/x} Elw(@)g(®)/x]
ad Jwid)de(8/x) E[wi(83/x]
Hence 6, B[w{8)g{B}/x]

E[w(8)/x]

But, w(8)(g(®)—d)? w(8)g*(6)+d*w(@) —2dw(@)g(@) is convex
(strictly) functon in d as, %w(ﬂ)(g(ﬂ) —d)? w(6) > 0hence, by the
property of convex function 4_ is unique Bayes estimator for g (9).

To see the a.e Q = a.e P. let the parameter [} is an open set which is support of
1(8)(= A(8)) and Py(XeA) is a continuous function of @ for any A. Thus
Q(N)=0= P,(N)=0 a.e A. If there exists Pa(N)>0,

then there exists a neighborhood w of 8; in which Pg{N)>0 for 8sw.

By the support assumption P;(w)}>0 contradicts this assumption P,(N)=0
a.e A. Hence Q(N}=0= P3(N)=0 for a.e 6.

Theorem 3.3: let © have a distribution function t. Let F denote the conditional
d.f of X given 6. Consider the estimation of g(@) when the loss function is
squared error. Then no unbiased estimator §(x) can be a Bayes solution
unless

B[8(x)—g(@)* 0 i (3.36)
Where, the expectation Is taken w.r.t. varlations in both X & 8.

Proof: suppose 8(x) is Bayes estimator, and is unbiased for g (9). Since § is
Bayes and loss is squared

8(x) E[g(8)/X x]with probability 1. ............... (3.37)
Since 8(x) is unbiased
Eglo(x)] g(8) foralld........ (3.38)
E[g(0)6(x)] E[6{x)g(8)/X x] E&* %) wvvcrreen (3.39)

And also,
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E[g(0)5(x)] E[g(9)5(x)/8] BEg*(8) wwmmum (3.40)
Thus,
Elg(®) - 6@)]* Eg*(8) + E&*(x) — 2E[g(8)5(x)]
= Eg*(6) — E[g(8)8(x)] + E&%(x) — E[g(DE()] cevrnsruneens (341)
By (3.39) & (3.40) = (3.41) =0.
#

Def 3.12: Denote the average Bayes risk of the Bayes decision rule 6, by
A(r8) [R(E&)dT(8) ¥ wonwnnnn (341)

A prior distribution t is said to be least favorable if ;. = ¥, for all prior
distribution 1’.

Theorem 3.4: suppose that t1is a distribution of & such that,
JR(8,8,)d1(8) supR(6,8;) «coerreernnn (342)
Then,

1. & is minimax

2. If 5, is the unique Bayes solution wr.t T, it is unique minimax
procedure,

3. tisleast favorable df of 8.

Proof: 1. Let § be any other decision rule. Then
supR(6,8;) 2 [ R(6,8) dv(8 )
= [ R(B,6,) drf As &, Is Bayes decision rule,
supgR(8,5,) by (3.11) &, is minimax.
2. Follows by replacing = by > in second inequality of the proof 1.
3. Let T be any other prior of 8 then,
B(Z,8,) [R(B,8:)dr < [R(8,5,)dr'(6)
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< supR(8,6.) [(r, 8.} Thus 1 is least favorable.
Corollary: if &, has constant riskR(#, 4.}, &; 1s minimaz.

Ex 3.9;: supposeX ~ b(n,8) and L(6,8) (0 — 6)?find a minimax estirnator
of 6.

Solution: let the prior distribution of & be B (a, b} (beta distribution) the
posterior d.f of & given x.

1(8,%) g (1-g)n*ga-1(1-g)2-1
g (ﬂ / x) fx(x) % f: §x+Ha~1(1 —g)N—x+b—1

gx+a-1(y _gyR—*+b-Ip(gipin)
Ma+x} rint+b—x)

Thus §5(x) E(8/x) —=

at+b+n
] ab
if x~B@bLER) [5var® s

2
R(0,8p) Eg(8—485)° Eg (ﬂ - a:::n)

(ab+binf-a-x)? o ((a+2)0—(x—nb)—a)”
0

o I a—— (atbtn)

{a+b)2 02 +var(x)+at—2a{a+b)o
{a+b+n)d

8 (1-8)+a2-2a?68-2ah8+a202+b202 4+ 2ab ]
{at+b+n)?

me(1-8)+a2(1-20+92)+p202-2ap8(1-6}]
{a+b4+n)2

ne{(1—8)+[a{1-6)-b81?]
{a+b+n)d

n8(1-8)+[a(1-8)—bo]

Thus R(8,35) Ty

If R(8,85) is constant &g is minimax. Equivalently the coefficient of 82 and @
equal to zero we get the value of a and h for which R(8, 85} is constant
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—n+a’?+b2+2ab O0=a+db n (asa>0,b>0)
n—2a2—-2ab 0=2a(a+b) n=a ‘? b

af n 1

{atb+n)E 42 4(1+/m)2

Thus R(8,55) Thus 6ghas constant Bayes

1

risk for this value of a & b. and the constant risk proywE .Thus by corollary
of theorem 3.4

x40 Xf vn 1 . ; s : g
Oz m ;( i + 21V is of constant risk and it is unique minimax
Bayes estimator of 6.

Def 3,13: let t,, be a sequence of prior distribution, and §,, the Bayes estimator
corresponding 7,,. Suppose that Bayes risk is [ R(8, 8, ) dr, = B,, and that
By 2B e (3.43)

Then the sequence {1,,} is said to be least favorable if for every prior t we
have M, < B&.

Theorem 3.5:

Suppose that 1, is a sequence of prior distribution with Bayes risk @,,
satisfying (3.43) and that & is an estimator for which supy,R(8,8) @ then,

1. & is minimax.
2. The sequence 1,, is least favorable.

Proof: 1. let & be any other estimator. Then,

supgR(6,8") = [R(8,0)dt, 2y, forvn
Hence supgR(8, 6N 2 im0 ¥n ¥ SupgR(0,8)
Thus & is minimax.
2.If T is any distribution then,
¥e [JR(B,8.)dr < [R(B,58)dr < supgR(8,8) vy
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Thus by definition {t,,} is least favorable.

Example 3.10: letX,, X ... yXpabe 11d rv from N (0, 1). LetL{8,d)
(0 — d)2. Let the prior distribution 8 be N (0, b?). Then show thatXis
minimax estimator.

Solution: &, — —r aso? 1

mgr P
1 1 1

var(8/x) =2 e as b = o
;] B

Thusy = R(.%) E@-%7? - supR(0.%) -

Thus by Theorem (3.5) X is minimax.

Example 3.11: let@ E,;}, L(,d) (P—d)?a (—oo,0)acolnls tossed

once and the probability of ‘H’ is 8. Find a non-randomized Bayes decision rule
which is minimax with prior distribution.

Pl 6] p 1—P[8 8,]
Solution: d:z - [0,1] wherez {H,T}
D {(x,v):d{H} xd{T} v} setof nonrandomized rules,
D=x=<1 l=y=<1
d{H} =x,we estimate & by x when H is abserved

d{T} vy ,we estimate 8 by ywhenT is abserved
R(Bj_r (xr }")) R(gll d) EﬂiL (911 d)

R G (x,y)) Eal G ("'3’))
(-2) P+ (-5) pud

G-=) +36G-»)

=L
3
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R(G») E(ey) EL(-@n)
(2-2) el + (-y) Palr)
2@-x) +3G-y)

The Bayes risk, B(z,(x,y)} E R{6,(x.¥))

PR (3. (9) + - R (L. )

- 3] a-nC-o 60

1 x2 2x 2 4 zx= 2x3 2
p_;+————4—y+£ ————— 4""] [+———+y——%’

p[-Z+E-24 T+ e “;‘ + § — 2. (344)

For that value of p foe which B(z, (x, ) ) is constant, we have

y:_xt_6x_ 3 N
C_Z4El geyr-(x2-20+1) O

2yi-(1-x)2 0ory* (1-x)?
Now we have to find that x & y which minimizes (3.44)

-2+ 81 0msf-3 i-

w2-p] Eox . (3.45)

Similarly,

2yl , 2y 4 2y 4
p[F+F-5 0=Fn-2 =y

The Bayes risk will be constant if only if,
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2 — 2 2 2 L] _ 2
y: (-0 > (3(1—::3) GED) 1-x 32-7)
or2-p +(1-p)=p ;

Thus the prior distribution G,%) onf G,g) is least favorable by Theorem
(3.4) and non randomized Bayes rule is,

d:x b/9,y 4/9(Thatis estimate 0 if 'H'turns up by 5/9, and by 4/9 if T’
turns up.)

Ifza & (0,1) in this caselet the
R(8,(x,7)) 88 —x)Y*+(1—6)(@ —x)*
8x% — 202%x + (1 — 8)y% — 26(1 — B)y + 92
For any prior distribution over 8. t{8)
B(z,(x,y)) x2E(8)—2xE0?%+ y2E(1—0) — 2yE9(1 — 6) + E§?
letm, E8 , E62 m,

B(z, (x,¥)) x2my —2xm, + y? —yimy —2y(my —m;) +m,

xim, — 2xm, + (1 — my)y? — 2y(my —my) + My e (347)
For minimum value of {3.47)
2xm, —2m, 0=>x E ererenssemnenne (3.48)
And 2y(1-m)—2(m,—m;) 0=y % S ¢ ¥ 1)

For the constant R(8, (x,y)) for all 8. We must have the coefficients of 82 and
.

(-2x+2y+1) 0, x2—y2-2y 0
Or 2x 2y+1, x2 y 42y
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2
(ZZ) s +2zy=47+4y+1 4y +8y

1
=y E&x 3/4

3

Thus for Bayes risk should be constant. E =

My—Mz 1 1
Or _{1—1‘?11] : =S m ; &m:

oW

1

That a prior distribution for which, £9 > ggz 2

1
A distribution satisfying this property is,8 ~ B e,i) E@ T—ii—T %
2 Z

E8? var(9) + (EB)? 6] +

-4}

1
E+

- |

3
a
Thus if,

e B G,;), Then the above estimator s minimax.

Example:3.12 Let X be a random variable with pmf
PX x) (1—-6)0*1x 12..m0<8<1
For the squared loss function (d — 8)2, find the minimax estimator for 6.
Solution: Letd(1) a,d(2) d(3) d(4) --. b.Then
R(9,d) Ep[d(X)— 6]
= Ep[d(X)]* — 28 Eg[d(X)] + 6°

R@,d) [dOPPEX 1) +I2dWPPX  x)-20{dWIPX 1)+
Zrold(x)]PX 20} +6°

=a?(1—-0)+ b20—-20[a(1—-0)+ b O] + 02
=a%+ 8(b%— a?®)— 208[a+ 6(b —a)] + 6
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=0%[1—-2b—a)]+ O[(b* - a®)— 2a] + &*

For a minimax estimator R(@, d) must be a constant that is coefficients of #2
and # must be zero. This implies that

3
:b I

]

1
(b—a) E.bz at+ 2a=a
Thus the minimax estimator is

Estimate&by%ifx 1is observed and by%ifx = 2. Let T be the prior
distribution of 8. Then Bayes risk is

(d) my[l—2(b—a)]+my[(b?— a?) — 2a]+ a?, where

m; E(@E*),my E (@)

For minima and maxima 2> ¢ and ':L: 0 =a =L p % Putting

da my—1

the wvalues ofaand b just obtained, we will havem, %,mz %. The

corresponding prior distribution of 8 is choose 8 %

With probability=and § 0 with probability:.

Problems :
1, Let X be arandom variable with pmf

PX x) 6(1-8*Lx 1,2,..x0<08<l.

For the squared loss function (d — 8)2, find the minimax estimator for 6.
2. Let X be arandom variable with pmf

PX x) #(1-0yx 01,2,..00<8<1.

{d—-8y
1-8 '

Under the squared loss function find the minimax estimator for 8.
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Example: 3.13: LetX and Y be independent binomial variates respectively
with b(n,p) and (n, 1 — p) . Show that the minimax estimator of p;, — p; is

- ¥in_[Xx
d lﬁ[;—:l—'],wherepi 1-p, p=>p—p, 2p—1

Solution: X~b(n,p),Y~b(n,1—p) = n—Y~b(n,p).Hence

Z X+n—Y~b(2n,p). We know that the minimax estimator having
constant Bayes risk for b(n,p) is (see example 4.9)

d* - ‘% + %] Thus for 5(2n, p)
- 1 4 11_ 1 Z 1
¢ oEEtrTEE T
vin Z | — 24" ¥Zn zZ 41
~ (1+vzn) zn z{1+JE) (1+/Zn)n  (1+/Zm)
2d*= ¥Zn FKin-Y + [x vZn 1
T (m) n (1+\*'2_ﬂ) (1+\’1_"} (1+\’1_ﬂ] (1+/2n)
2 X Y 2 X Y
o L ]+1=>2d‘ ¥2n ———] d
(1+vZm)ln = (1+vZn)ln =

Thus, the minimax estimator of 2p — 1is2d* —1 d*. The risk of d** under
squared error loss functionwith 8 p; —p, is

R RO B[ (R0 oy

2

B [ (G~ 3) ~ )]

X

B[l -0 - - m} - - Ir’z)]

2
= (1%2 Ey [(% = 3 - - Pz)] (1_'_1,.—)2 (1 — pa)*.

The product term will be zero as




(43}

. np  n{1-p)
BZ-3) T2 -1 m-n
2 X Y

R(d™) = (

—_—Varl|——— 2
(1+m)z ar z(pl P2)

n n) (1_“/5)
. [(p1 - + ZnVarG—E)]

_ 1
" (1+2m)

v Jz_“) —— [(p1 —p2)* + 2pq + 2pq]

—m [y —22)* + 2p:.(1 — p1) + 2p,(1 — )]

= f(prP2)

a2f
For maxima and minima’l 0 faoralli 1,2and Epf/ 1<0
apy P1ip,

Thus R{d"*) is maximum whenp,+p, 1. fT T(X,Y}is any other
estimator of (p; — p;), then

SupR(T) = Sup R(M=2 Sup R(d™) SupR(d™)

. P12t +02=1 P +e=1 ™M.pz
inf Sup R(T) Sup R(d"™")
T D4P: PLPz

Hence d** 1s minimax estimator of p; — p5.

Example: 3.14: If T(X)is a mionimax estimator of & then show that
h(X) aT(X)+ bis a minimax estimator under the squared error
loss function of a 8 + b, a == 0, b being constant.

Solution: Let g(X) # A{X) which is minimax estimator of 8.
Sup R(8,g) < Sup R(9,h)
) 8
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Sngg [g(X)— a8 —b]? < Sg;pEg[h(X) — af — b2
= SupEy[aT () + b — af = b]?
=SupEolaT(X) - af]*
Si;pEg [g(X) — a8 — b]® < a?Sup, R(6,T(X))

ﬂzsupEﬂ ’g(x) —b
g d

2
= e] S a?SupE,[T(X) ~ 01

glX)—-b

a

SupEq[(X) — 8% < a’SI;pEa [T(X) — 6]%, &(X)

Thus,
Sgp R(8, D) < StétpR(ﬂ,T)

This contradicts the fact that T(X)is minimax. Hence A(X)is minimax
estimator ofa 8 + b.
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BLOCK 2: OPTIMALITY OF DECISION RULES
UNIT 3: ADMISSIBILITY AND COMPLETENESS
UNIT 4; MINIMAXTITY AND MULTIPLE DECISION PROBLEMS

4. Admissibility of Decision Rul

Def4.1: Natural Ordering: A decision ruled,, is said to be as good as a ruleé,,
if R(8, 8,) < R({8,4;) for all 8 8. Arule §, is said to be better than a ruled,, if
R(8,6,) < R(B,4;) for all 0 8 and R(6, 8,) < R(H,8;) for at least one 8 6. A
decision ruled, is said to be equivalent to a ruled,, if R(8, 5,) = R(8, §,) for all
8 6.

Def 4.2: A rule 8 is said to be admissible if there exist no rule better thand. A
rule § is said to be inadmissible if it is not admissible.

We should note that in a given problem every rule may be inadmissible. For
example when the risk set S does not contain its boundary points.

Def 4,3: A class C of decision rules,C — D* is said to be complete if for given
any rule §sD*not in C, there exists a rule &§,=C that is better than &. A class C of
decision rules is said to be essentially complete, if for given any rule 4 (not in
), there exist a rule 8,£Cthat is as good as §.

Lemma 4.1: if C is a complete class, and A denotes the class of all admissible
rules, then AcC.

Proof: let 8,£4 anddsD”. Since &§; is admissible =

R(8,5,) < R(8,5) forall 0 e8{forall 5 D" + §; )
And R(8, &,) < R(@, &) for some DeB
By definition of completeness, 8,=C.

Def 4.4: A class C of decision rules is said to be minimal completes if C is a
complete class and if no proper subset of C is complete.

Similarly, a class C Is minimal essentiaily complete class If C Is essentially
complete and no proper subset of C is essentially complete.
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Theorem 4.1: If a minimal complete class exists, it consists of exactly the
admissible rules.

Proof: let C denote the minimal complete class and A denote the class of all
admissible rules. We are to show that C=A. Lemma 4.1 implies that AcC
because minimal complete class is complete. We must show that CcA. This is
done by assuming it to be false and arriving at a contradiction. Let 8§,&£C and
suppose thatd,; € A. We assert that there exists a §, £ that 1s better thané,,.
Becaused, is inadmissible, there exist a & better thand,. IféeC, we may
take, 8, &8.If & ¢ C,then because C is complete, there exists a, 4, £C that is
better thand, hence better thand,. In either case our claim is verified. Now
letC; € ~ {8,} We will show that ; is complete, contradicting the fact that
C is minimal. Let § be an arbitrary rule not inC;. If §=68,, then 4, &C; is better
thané. Ifd + &,, there exists a §=C that is better thand. ifd’ = §,, thend, £C, is
better than 8. If8’ +# 8, there exists a 8" € C that is better thand. In any case,
there exists an element of €, better than 4. Which proves that C,is complete.
This 1s a contradicton.

Admissibility of Bayes Rules

Theorem 4.2: Assume that® (8,,8;,...,8;) and a Bayes rule §; w.r.to the
prior distribution (p,, pa, ..., Py) exists. If p; > 0 for j=1,2,...k, then d,is
admissible,

Proof: Suppose thatd, 1s iInadmissible, then there exista §'¢D*
which is better thané,,. That is,
R(8;,6') < R(8;,6,) forallj
R(6;,8) < R(6;,8,)  forsome]
Because, all p; are positive
Z R(8,8)p; <Z7R(%:,%)

The strict inequality showing that 8, is not Bayes w.r.to (p,, 5, ..., P ). This is
a contradiction.
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The following counter example shows that 8, is not necessarily admissible if
the hypothesis p; > 0 for j=1,2,...kis violated.

Ex4.1: let® {7,,8;},L(8,a) as follows:

@ a; a3 0

L(8,a) 6 1 1 2 2

e; |0 1 0 1
d(0) a,, d(0) ag d(0) a; d(0) a,
R(gll {11) 1: R(EZJ al) 01 (LU L] R(Bll a-ll-) 21 R(BZJ aq.) 1

R(61,8) Xia:R(6y,a,) 1
S {R(8,,8),R(6,,0) &€D*} R(8,,0)

{Guy:): 1=y =205y, <1} Bayes rule w.r.to (1,0)
Let the prior distribution, p;, 1,p; 0O \.
Zic1pR(8,8) R(8,,8) » 5

R(6y,6)

1 2

Thus, any decision rule that minimizes }, p,R(8;,8) and that achieved the
minimum value =1=y, will be a Bayes rule w.r.to prior (1, 0).

Thus the rule R(#,,8,) R(8;,6;) 1isBayesw.r.to (1, 0).that g, and g, are
Bayes rules w.r.to (1,0}, But a; is not admissible since

R(6,,a;) = R(0,,a,) and R(85,a;) > R(0,,4,).

Def 4.5: A point 8, in E,(one dimensional Euclidian space) is said to be in
support of a distribution T on the real line if for ¥ £> 0 the interval
{8y — £,8; + £) has positive probability,

(0 —&,0;+&) >0
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Theorem 4.3: let 8#£E, and assume that R(#, §) is a continuous function of B
for alldzD*. If §, 1s a Bayes rile w.r.to a probability distribution t on the real

line, for which B(t, 8,) is finite and if the support of 1 is the whole real line,
then &, is admissible.

Proof: As before, assume thatd, is not admissible. Then, there exists
a & gD*for which

R(8,6") < R{8,6;) forall®.
R(By,6") < R(8y,8; ) for some 8,£FE;.
Since R(g, §) is continuous in & for all §. Let
1 R(0p.6,) — R(0,8") cvrrrrcemrersnen (£.1)
For |[8—8yl<e ,e>0

|R(8,8) — R(B,,06)| <3 whenever |@ — 8| <& for all 5eD*
Or —2<R(6,5)—R(E,5)<I |88 <& o (42)
Or  R(9.8) <R(6,,8) +7
R(8,6") 5ﬂ(su,3')+§ forall |8 — 8;| < &
R(8.80) — R(8.80) +R(65,8') +4

R(8,8,) — [R(6,8, ) — R(8y, 8y ) + R(Bo, 8, ) — R(6,,87] +7

R(6,80) — [R(6.8,) — R(80,89)]-[R(60, 85 ) — R(80,87] +7
SR@B,8)+5—n+7 R(6.8)-3
Thus, R(8,6") < R(8,5,) —g whenever |8 — 8,| < £

Letting T denote the r.v. whose dfist
m('faan)_m(f:m ER(T,SQ)—ER(T,S’)
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Bx;+1—fx,28 ,pyi+1— By e5; = 51s convex.

2. 0 & SForif0 € §, there could be pointx e S,y £ 85 such that
(x-y)=0 = x=y contradicts that 5; and 5, are disjoint.

3. From Theorem (4.6) there exists a vector P # 0 such that PTZ > ¢ for
allZ £5. ThusPT(x —y) = 0 for all x £ 5,y £ S, completing the proof.

Lemma 4.4: If 8 is a convex sub set of E; and Z is a k-dimensional random
vector for which E (Z) exists and is finite, then EZ€ES.

Propof: Let Y=Z-EZ and let S’ be the translation of S by E Z, ie¥§
{Y:Y Z-—EZ for all Z&S). Thus §' is convex P[¥£$'] = 1 and EY=0. We will
show thatQ € §’. We prove by Induction method, The Lemma Is trivially true
for k=0 in which case Y is degenerate at zero. Now suppose the Lemma is true
for k-1. We are to show that Lemma is true for k> 1.

Suppose 0 ¢ S’ then by Theorem (4.6) there exists a vector P # 0 such that
PTy>0for all ¥ £ §'. Let U=P7Y. The rv. U has expectation 0, and
PlUz=0] 1=P[U 0] 1,then with probability one Y lies in the hyper
planePT¥ 0. Let

§" S'N{y:PTY 0} Then S” is convex subset of (k-1) dimensional
Euclidian space for which P[¥sS"] 1 and EY 0

By the induction, 0s8”. Since $” c §' = 05’ which is contradiction of the
assumption 0¢ §'. #

Corollary: §is a convex hull of 5;,.

Lemma 4.5: (Jensen’s Inequality): Let f(X) be a convex real-valued function
defined on a non empty convex subsets of E; and let Z be a k-dimensional
random-vector with finite expectation E Z for which P[Z € §] = 1. Then

E(Z)eS and f[E(2)] = E[f(Z)] ...ccccen.... (4.8)
Proof: for k=1, the point (EZ, f (EZ)) is on the boundary of the convex set 5;.

5, {(Zl, Zay wis Zy 1) forsome xeS,xT (23,23, 00, Zy41)

and f(x) < Zk+1 }.{4.9)
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Hence there exists a supporting hyper plane (straight line) at
(Ez,f (EZ)).Callthisy mx+ ¢
Because (EZ, f (EZ)) is on this line. It may be written as,

Y f(EZ)+m(x—EZ) And because this Ine is never above the curve
y=f(x) we have, f(x)

f(x) 2 f(BZ)+m{x —EZ) for all x.
f(Z) = f(BZ)+m(Z—EZ) forZeS. (B

E(f(2)) = f(BZ) EZ '

Thus thecrem is true for k=1. Suppose theorem is true for k-1, we prove for
k= 1.

Since EZ e S, the point (EZ, f (EZ)) is boundary point of the convex set S,
defined (4.9) hence by supporting hyper plane theorem, there exists a(k + 1)-
dimensional vector P # 0 such that,

PTZ > PT(EZ,f (EZ)) or
TRz = X Py Ezy + pisd f(E2) for all(Zy, ..., Z,)T £S5, . (4.10)

We note that; py,4 can not be negative, for letting Z,  ; — oo the inequality
(4.10) will not be satisfied. Replacing Z .,

with f(Z),Z (Z,, ..., Z3)&S and 7 with random vector Z.

Prssf (EZ) < T4 py (2 — E2)) + Praaf (D) covvvnneennn (4:11)

If py.4 > 0 taking the expectation.

Pr+1f (EZ) < pr1 Ef (Z) = FIE(Z)] = E[f(2)]
Ifprsr 0 (4.11) = the random vector
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U Xp;(z;—Ez) P7(z- Ez)I!s non-negative and EU=0=sP[U=0]=1 that
gives all its mass to the (k-1) dimensional convex set S’ .S‘I"I[Z:Ep;(z; -
Ez;) 0} by induction method, theorem is proved.

Theorem 4.8: Let 4 be a convex subset of E; and let L {8, a) be a convex
function of a £ 4 for all 8 £ 8 there exist a £> 0 and a c such thatL(#’,a) >
£|a| + ¢, then for every P e 8% there exist an a,£4 such that L(8, ;) < L(8, P)
forallge®,

Proof: P £ 4* and Z be a random vector with values in & when distribution is
given by P. then EZ infinite since,

£E|Z| + ¢ < EL(8°,Z) L(8',P) < ¢o By definition of 4*.
L(8,P) EL(8,Z)=L(6,EZ) L(6,a,) Where,a, EZsA.

Remark: If the loss is convex we can always concerned with non-randomized
decision rules. The non-randomized decision rules form a complete class.

Exp4.2: & = 4 = [0,1], 4 is convex set.
L(8,a) (@ —a)? isconvex loss function.
X has b=(2, 8)
pix xl (Bera-ey=  x 012

di(x) 3 da(2) forallx 012

Plz &) ; PlZ 4] ;3

M| =

E[Z] di-;dz x—:l d

R0, d) EL(8.d(x)) E(@-27)7

— a2 +1y2 +
= 8% + E(C) - 26E(C))

= 8%+ L[Ex?+ 1+ 2Ex] — HE(x) + 1)
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=62 + 2[20(1 - 6) + 462 + 1 + 2.26] - 222

_ 1682+[28-20%+48% +1+46]-168%-88  [262-20+1]
16 16

Let dg be a randomized decision rule choosing d, with prub.% and
d;with prob. >
R(6,d) IR(B,d1} + R(6,d;)]
=i[l0(1-6) +5 (40240 +1)] (202 -20+1)

Chbvious, R(8,d) < R(68,d,) as

[202-26+41] - (202—28+1)
T 8

202—-20+120 1-26(1—6) =0
as the maximum value of, 8{1 — 8) 1/4. Thus the inequality is always true.

Complete class theorem:

Theorem 4.9: (converse of theorem 4.2): If § is admissible and 8 is finite, then
4 is Bayes w.r.to some prior distribution t.

Proof: If 5 is admissible, then @.NS {x} where
x  {R(8y,8),....... ,R(B;,8)}as 5cS = @,NS c QNS (x}. And x £ S. thus,
because@, -{x} and S are disjoint convex sets, there exlsts a vector Ps 0 such
that PTy < PTz for all y£Q, -{x}, and z e S. If some coordinate p; of vector P

were negative then by taking y so thaty; sufficiently negative, we would
haveP”y < PTx. Hencep; = 0 for all j. we may normalize P so that¥,p; = 1.
Because P is now a probability

Distrlbution over ® and X p; R{6,,8) < P"Zfor all Z ¢ S, § is a Bayes rule
w.r.to P.
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Theorem 4.10: (Complete class theorem): If for a given decision problem (8, D,
R} with finite 8, the risk set S is bounded from below and closed from below,
then the class of all Bayes rules is cornplete and admissible Bayes rules form a
minimal complete class.

Exp43:6 {6,,6,} 4 [01]
L(f,a) o? L(6a) 1—a
(Note that loss function is convex in a, for each 9)
Po,(HY §  Pg,{H} ;

1. Represent the class D rules as a subset of the plane.
2. Find the class of all non-randomized rules.
3. Find minimax Bayes rules.

Solution: D  {d:x— [0,1]} where x {H,T)

Letd{H) = x,d(T) = y with the interpretation that we estimate 8 to be x
when H is observed and y when T is observed.

D {(x,m):0=sx<s10sy<1}
This is a square in the plane (x, v).
R(61,d) EL(8y,(x,¥))
L(8,,x)P [Hggl] + L(8,,¥)P [T;EJ
x234+y%2 2+ 29D e (412)
R(6,,d) EL(8, (x.3))
= L(82, x)P |75, | + L(62,)P |75 |
=(1—xB+(1—y2 13— 2% — ) corrrreen (£:13)

Let (p) and (1-p) be the probability distribution & {£,,8,} ie
choosing®, with prob. (p) and choosing 8;with prob. (1-p).
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B(z(x.5)) ER(,(x 1)
= pR(01, (£,3)) + 1 - PR(82 (%.5))
Plx? +2y%) + 23 —2x — )
Bx? + 2y +2x +y —3) +3(3 — 2x — ¥) cwunnuen (4:14)
Set of Bayes rules which minimizes (4.14) will be obtained as,

(x+2)2-% 0=x =2 &

p_1 -p
Then the set of Bayes rules are,
B {(«%):0<asi}ch.
Now to find minimax Bayes rule, we should have (4.12) = (4.13) for
(.5 eB=>
, . 2a2, 1
=(a? +— §(3—2a—%’)

% 3-20-2=9a%+18a—24 0=3a’+6a—2 0

asag =0

a SHRE _g457 g9,

? 091=p 052 (approx.)

Hence (0.52, 0.48) is prior distribution function (0.91, 0.23) is Bayes rule and
since for this (x, y) risk is constant have {(0.91, 0.23) is minimax Bayes rule.

Example: 4.4
Admigsibility of X for estimating normal mean:

First proof: (the limiting Bayes method): SupposeX is not admissible, and
without loss of generality we may assume o6=1. Then there exists &* such that
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R(6,6")<_ forall®

! } (under the square error loss function)
<. for some @

R (8, 5) is a continuous function of 8 for every §, so that there exist
£ > 0 and 8, < &, such that
R(8,6") <_—¢ forallB, <8 <6, (asin Theorem 4.3)

Letyr be the average Bayes risk of §" with respect to prior distribution
T~ N{0,T?) and letyr be the Bayes risk of the Bayes decision rule with
respect to N(0, T2). Thus by exp. 3.11 for o=1
-z
Iyt epliulires)saas

E -¥r 1 T’a
n N 14T

o2
iy L T — (4.15)

By Lebesgue dominated convergence theorem, as the integral

—p2

gzr? - 1 As T- oo, the integral converges to(8, — 8,)and the

1 _a
RHS - oo #E—l oo thus there exist T, such that, y}, <yy, , which

contradicts the fact that y, is the Bayes risk for N(0,T5).
Second proof: (the information inequality method):
R(9,8) E(—&)? wvarg(8) +b%(8), whereb(8) Eg(6)-8@

2 b2(6) + 5@ by FCRbound. ..o (4:16)

In the presentcases? 1,I(6) 1
Suppose now § is any estimator satisfying
R(0,8) <2 Forall@....... (4.17)
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and hence, b%(8) + HECL < 2 for all € vuwnrninnns (4.18)

We shall then show that (4.18) = b(g) = 0 for all 8. i.e 8 is unbiased.

1. Since |b(8)| < 1 the function b is bounded.

2. From the fact that 1 + b'2(9) + 2b°(8) < 1 = F'(8) < 0 so that b is non-
increasing.

3. Next, there exists a sequence of 8; = o and such that b'(8;} = 0

For suppose that »'(#) were bounded away from 0 as § -0,
say b'(8) < —e for all 8, then b(@) can not be bounded

as §— oo, which contradicts 1.

4. Analogically it is seen that there exist a square 8; & —oo and such that
b'(8;) - 0.Thus b{f) - 0 as # —» 1o with inequality (4.18). Thus
5(#) = 0 follows from 2,

Since B =0=>b'(6) O0forallf = (416)asR(8,5) <
For all 8 and hence R(8,8) =

This proves that X is admissible and minimax. This is unique admissible and
minimax estimator. Because if & is any other estimator such thatR(g,5") = 1.

Thenlets* (3 +6")

R(6,8") <;[R(6,8) + R(6,8)] R(,6)
Which contradicts that & is admissible. Thus §=§&' with prob. 1.
T —

For the choice of prior densities on the parameter space, Raiffa &
Schlaifer discuss as important class of densities called Natural Conjugates.

If the conditional distribution F{x/6)has a mass function, we shall
denote by p(x/0), the prob. given O that the experimental results In x. If the
conditional distribution F(x/8) has a density function, we shall dencte by
p(x/8), the value of this density function at x for a given 8. In other case, we
should use the word likelihood to denote p(x/8) as a function of 8, for given x.
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we assumed that, for any fixed x in the sample space %, p(x/.) as a function on
& 1s continuous except for at most a finite number of discontinuities (which
may depend on x).

Def 5.1: The marginal likelihood of the experimental out come x given a
partcular prior density g (9) is given by,

pix/g} _fs p{x/@)g(0)do ................ (B.1)

and we shall say that x lies in the spectrum of g if p*(x/g) > 0.

Def 5.2: If the density function of 8 is g {8) and if K is other function of 8 such

thatg(8) —E& e (5.2
g(®) o (5.2)

That is if the ratio %’-nl is constant as regards O, we shall write
E@ xK(B) e (5.3)

and say that K is a kernel of the density of 0.

Def 5.3: If the likelihood function of x given 8 is p(x/8) and if p and K are
functions on ¥, such that for all x and 6,

px/8) K(x/0)p(x) s {(5:4)
That is if the ratio igﬁ:} is constant as regards 0, we shall say that K(x/8) is a

kernel of the likelihood function of x given 8, and p(x)is a residue of the
likelihood function.

If the prior distribution of the random variable 8 has a density function g
(8), and if the experimental out come x is finite in the spectrum of g, then it
follows from Bayes theorem that the posterior distribution of 6 has a density
function g{# /x) whose value at 0 for given x is,

g(0/x)= g(@)p(x/OINX) wumssnsmssersunns (5:4)
where, N(x) 1s simply the normalized constant defined by the condition,

J, g8 /x3d0 N [, plx/8)g(9)d0 1 .cwenn (5.5)
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Letting K’ denote a kernel of the prior density of @, it follows from the
definitions {5.1), that the Bayes formula (5.4) can be written as,

g@/x) g@plx/ON(x)

KOf, K@) kE/OpONE)
& K (B)K(2/B) eroererrrn e (5.6)
The value of the constant of probability for given x, that is,

pLON(x) [ LK '(6)dﬂ]_1 cah always be determined by the
condition, f g(6/x)d® 1

Def 5.4: A statistics T is said to be sufficient in Bayesian sense if for any prior
density or mass function g (8) and x in the spectrum of g,

ge/T t) g(B/X x) B({T(x),8) Where T=T() ...... {(5.7)

Theorem 5.1: A statistics T is said to be sufficient in Bayesian sense for a
family of generalized p.d. f's {f(./8),0£0}if and only if f(x/8), can be
factored as follows for all valuesof xexand B2 G

fx/8) plx/9) K({/9)p(x) ........... (5.8)
K(t,0)p(x)
where K(t,8) K(t/6)is a kernel of the likelihood function
K(x/8} and p(x) is the residue function.

Proof: First suppose that the facterization inducted in eqn. (5.8) is correct
then for any generalized p.d.f(gpdf) g (8} of @ and point x ¢ # and € £ O the
posterior gpdf of 8 is,

g(e/x) g(@)p(x/OIN(x)

OYk(t, )N (x x(6)9(8)
IOREOPDNG) U
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as p(x)N{(x) Uﬂ k(t, 8)g(8)do] ™1

k(t.8)g(6)
g§(8/x) Jo KtOYgEYaR 5.9

Since the R.H.S. of (5.9) depends on the observed value x only through the
value T(x) =t, it follows that T is sufficient statistics in Bayesian sense

ieg(8/x;) g(8/x;)ifT(x;) T(x;)xy,x,£x and any prior gpdf g (8).

Conversely that T is sufficient statistics. Let g (&) be any gpdf of 8 such
that g (@) > 0 at every point of 8. The posterlor gpdf g{(8/x) 1s specified at
any pointxexand 8¢ 9 as,

ge/x} g(@)p(x/N(x)

#(8)p(x/6) .
B N 9)p(x/8)de
lo 5O)0(x/0)I0 (x [f; 8®)p(x/8)de]

px/6) LLL[ g(8)p(x/0)d8

B(T(x).8)
—g0 Js 90)p(x/6)d8

as T is suf ficient in the Bayesian sense.

p(x/8) ki(t,6)p(x) #

Def 5.5: Let the kernel function k defined by (5.8} be a function k(t/.)
k(t,.) with parameter t on the state space (parameter space) 8. Let
p(8/t) NE(E/E) ... {5.10)

Where N is a function of t determined by

_fﬂ g{t/8)dé 1 The density function g(./t)on 8 will be called
Natural Conjugate Bayesian density (NCBD) with parameter t.

Theorem 5.2

Suppose that X, X,,....,X, Is a random sample from a Bernoulli
distribution with an unknown value of the parameter 8. Suppose that the
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prior distribution of & is a beta distribution with parameter a and f§ such that
o>0, B>0. Then the posterior distribution of 9 whenX; x;(@ 1.2,...n)isa
beta distribution with parametera + yand § + n— y,wherey XY x;.

Proof f(xy,%z, ., %,/6) 6E¥(1— )" 2
The joint p.d.f of (xy, X3, .., X)) and O is,
flxn %z v 20, 8)  fx1. %7, ... X0/6)g(8)
oc GL¥t (1 — g Lxge-1(] — g)f—L
= gatEn-1(] — g)+n-Lx-1
FOxy, Xz, ey Xy, 8) 0 8Y-1(1 — §)B+"-Y-1 Wherey Xz

The constant of probability is obtained as,
.rgf(gJ Ky weey x‘ﬂ)de 1.

Construction of the Coniueate famil

Consider again the example summarized in theorem (5.2) consider for
any positive constants a and #, g(./e, ) denote the p.df of a beta distribution
with parameter a and (.

Consider any  observational value x3,%3,...,%, of the
variables X,, X, ..., Xp. The conditional jolnt p.d.f £, (X1, X3, w., X5 /6)

of X,.X;, ..., X, is specified by,

F(%xy, o Xn/8)  0Y(1—6)Y where,y T2y e (5.11)

If this function is regarded as a function of 0, then it follows from the
distribution of a beta distribution that,

fu(xy, o 20 /O) X g(B/y + L, — ¥+ 1) e (5.12)

Therefore any cbserved value xy,X5, ..., X, the function £ (xy,...,%,/8)is
proportional to the p.d.f of beta distribution.
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If g(./ay, B1) and g(./az, ;) are the p.d.f's of any two beta distributions, then
there is an another p.d.f of g(./a3, f3) such that for 0<0<1,

g(8/as,B3) x g(6/ay, B1)g(8/az B2} wvnuiinmnnnns (5.13)
Or g(0/as, B:) x §%+e—2(1 —gyA+ba-2 _ (5.14)
(By the def. of beta distribution)

az o tay—1, B: Bith—1

A family of prior distributions is taken to be beta distribution g(8/«, #) then
the posterior distribution of 8 will satisfy the relation,

g(slxille vy xﬂ) o ﬁl(xi, ...,xnje)g(ﬂfu,ﬂ)
ot BJF+1—1(1 —_ H)n—y+1—1 9::—1(1 _ 9) g1
Or gety-i( — ﬁ)n+ﬂ—y—1
Or g/e+yn+p—y

Le 3(9/34112: Jx‘ﬂ) Kg(ﬂ/tz+ﬁ,n+ﬁ—y’)

This development suggest a method for determining a conjugate family of
distribution in any problem for which there exist a sufficient statistics of fixed
dimensional. The statistician need only to determine a family of p.d.fs of the
parameter € such that,

1. For any sample size n and any observed value xy,x3,...,x, the
conditional joint p.d.f f,(x,, ..., x,/8) regarded as a function of 8 is
proportional to one of p.d.f's in the family.

2. The family is closed under the multiplication.

Let T{xy, X3, .u, Xy) be the sufficlent statistics for the famlily of p.d.f's {f,(./0)}
by factorization theorem,

fu(xil lxﬂ,/g) ol k-u(t, 9) t T(xi, Xay wey zn) (515)

And assume that [ k,(t, 8)dv(8) < «
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_ __ka(t0)
Let  g(6/6m) Jp knit.O)dv
or there exists g(8/t,n) &% k(£ 8) winvmnsinnnn (5.16)

Consider the family of p.d.f's g{./t, n). For all possible sample size n and
all possible values of the statistics T(x;, x5, ..., &) it follows from the relation
(5.15) and (5.16) that £, (x;, ..., X, /%) must be proportional to one of p.dfs in
the family.

Now consider any two p.d.fs g(./s,m) and g(./t,n) which belong to
the some family. Thus there must exist observed values (xy, x5, ., X;) and
(¥1,¥2, -, Vo) of the sample sizes m and n such thatT, (xy, %5, ...,Xp) =
andT, (¥4, V3, ---,¥n) = t. If the observations are combined, then form a
sample size (m +n} and the p.d.f satisfy the equation.

frin (s s Xy Y1, V20 s Yod 18)  frn(Xas s 20 /8 (s s Y/ 6)
eeesseneenneens (5:17)

If we letbu Toppin (X1, X2s s Xns Y1: V2s o ¥y ) then It follows from (5.15) to
(5.17)

g(@/u,m+n) x g(6/s,m)g(8/t,n)
Therefore, family is closed under the multiplication.
Theorem 5.3:

Suppose that X;,X,,...,X,is a random sample from a Poisson
distribution with an unknown value of the mean 6, suppose also that the prior
distribution of 8 is a gamma distribution with parameters o and B, such that
a> 0, B> 0. Then the posterior distribution of 6 when, X;, x(z 1.2,..,n)
is a gamma distribution with parameters « + ), x; and B +n.

n E_a am

Proof: fu(zy, - tn/6)  TIha ™,

Fo(%1, ey X f6) ¢ @™ 100EX o MOgY  y=Fx,




(67}

Let g@ xeF%e1  gp>0
fa(8/%1, s 2) % fo (1, o, 20 /6)g(6)
e—uﬂ a¥e —fA8 ge-1
e—(ot+Pf)0gat+y-1
FB/%, v, x;) e~ @BBQEdY-1 _ Graty,n+pB) #
Theorem 5.4:

Suppose that X, X,,....,X;is a random sample from an exponential
distribution with an unknown value of the parameter 8, suppose alsc that the
prior distribution of 0 is aG(a, B).

Then the posterior distribution of 8 given, X; x(i 12,..,n)is
Gla+xB+y).yv=Lx
Proof: f(xy,..,%./8) [[f,e™®™0 oRe9Zn
F(xg, 0,2 /0) ox @M~ 8EX
g(8) x g*"1g=F?
f(8/%y, . 3} ¢ (%, s 20 /6) 9 (6)
oc getn-1—(B+Ex00 ., Gla+nB+Xx) #
Theorem 5.5:

Suppose that X,,X,,..., X, is a random sample from N(8,02),0f is
specified. Suppose alsc that the prior distribution of 8 isN{u, t2).

Lettlz o ﬁ . Then the posterior distribution is N(z', t° + nfl)
L]
;  Tuinag
Where, .

Proof: (%, .., %./6)  exp [~z Z(x; — 8)?]
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i
o exp [~ (8 — £)’]
As Y(x: — 0¥  I(x — B +n(x— 6)%]
F(0/x1, s X0} & fr(Xy, 0, %5/8) g (6)

m ¥
o exp [~ (8 — £)lexp [ (9 — )2

— nmm—n’:r'{ﬂ—nﬁl But,
fo a2
RO - B +T@— @) (= nl) + (6 - )7 + B
('—n@4e (8—p) | ne'BE—u)
f(glxla an) X €xp [_ 2 20 +nl) ]
ftni
x exp [~ 526 - 4)?] #

6. Baves S tial Decision Probl

Consider a decision problem specified a parameter € whose value are in 8
{parameter space), a decision space D, and loss function L. we shall suppose
that before the statistician chooses the decision in D, he will be permitted to
observe sequentially the values of a sequence of r.v's X;, X5, ... ... we shall
suppose also that for any given value =0, these observations are
independent and identically distributed. It is then said that the observations
are a sequential randem sampie. We shall suppose that the conditional p.d.f. of
each observation X; when @=0 is f(./8) and that the cost of observing the
valuesXy, In turn iIs C,

A sequential decision function or sequential decision procedure has
two components. One component may be called as sampling plan or stopping
rufe. The statistician first specifies whether a decision should choose without
any obhservations or whether at least one observation should be taken. If at
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least one observation is t¢ be taken, the statistician specifies, for every
possible set of observed values X; x,X; 1, X; x,(n21)

whether sampling should stop and a decision in D chosen without further
observations or whether another value X, should be observed

The second component of sequential decision procedure may be called
a decision rule. If no observations are to be taken, the statistician specifies a
decision dyeDthat is to be chosen. If at least one observation is to be taken, the
statistician specifies the decision d,, ( x4, ..., X }eDthat is to be chosen for each
possible set of observed valuesX; x,,X; =, X, x, after which the
sampling might be terminated.

Let § denote the sample space of any particular chservationX,. For n=1, 2..
We shall letS" SxSx...x§ (with n factors) be the sample space of the n
observations X;, X5, ..., X, and we shall let S™ be the sample space of the
infinite sequence of observations X,, X, ...

A sampling plan in which at least one observation is to be taken can be
characterized by a sequence of subsets B,zS™ (n=1, 2...) which have the
following interpretations:

Sampling is terminated after thevalues X; xy,.. X, 2,

have been observed If (xy,..,%,)28,. Another value x,., 1s observed
if( x4, ..., ;) & B,. If there is some value r for which B,, S” or more generally
if P[{ x4, ..., %X,) & B, ] for n=1, 2...r] 0 then the sampling must stop after at
most r observations have been taken. The specification of the sets B, for any
value of n such thatn > r then become irrelevant never the less, it is
convenient to assume that the sets B, will be defined for all values of n.

Each stopping sets B, can be regarded not only as a subset of $* but also
as the subset of S* for any value of r> nand as a subset ofS®. When B,, is
regarded as a subset ofS",r > n,B,is a cylinder set. In other words if
(X1, s Xp)eBy and if (3y,...,3) is any other set inS" such that,y;, =x;,
i=1,2......n then (v, ..., ¥ )&B, regarded as of the values of the final r-n
components.
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Suppose that at least one observation is to be taken with a given
sampling plan, and let N denote the random total number of observations
which will be taken before sampling is terminated. We shall [N=n] denote the
set of points ( x4, ..., X, )£S™ for which [N=n]. in other words, suppose that the
value X; = x,,.., X,, = x,, are cbserved in sequence,

then sampling will be terminated after the value x, has been observed (and
not before) if and only if { x4, .., %, )€[N n].hence [N=1] =B, and forn > 1

[N n] (BVBU..UB,,)nB,

Similarly we shall let [N <n] U{L,[N i] denote the subset of $™for which
N<n the events [N<n] and |[N=n] involve only the
observations X,, X,, ..., X,,. Hence these events are subset of ™. Also they can
be regarded as subsets of $7,r > n. further more, events [N >n] [N < n]¢
involve the observations X, X,, ..., X,;, and it can be regarded as subsets of §7
for any value of r, r = n.

For any prior p.d.f £ of 8, we shall let £, (./£) denote the marginal p.d.f of the
observations X;, X5, .., X,

FOw X /®) [, FC1/0), e, fCn/DE@)AV(E) wovrrrnn (6.1)

Further more, we shall let £, (./§) denote the marginal joint d.f of X, X5, v, X,
Hence, for any eventd c 5§,

[P 2| I - § % C P 5 E— (6.2)
We can write the following equation:

PIN<n] [, dE (x1,..,%,/E)=

I[N=1] dFy (x,/$) + J'[H] dF; (xy, 2 /5) + _f[N=3] dFy (x4, %5, %3 /E) + -+
Fogm @F (1, %2y s X £ csrrvrnes (6.3)
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The decision rule of a sequential decision procedure is characterized by a
decision rule d,eD and the sequence of functions 4;, §;, ... with the following
property: for any point({ x4, ..., x,)e5", the function 4,

satisfies a decision, 6,( x;, ..., %, )eD. If the sampling plan specifies that an
immediate decision in D is to be selected without any sampling then the
decision dyeDis chosen. If on the other hand, the sampling plan satisfies that
at least one observation Is to be taken and if the observed value ( xy, ..., %)
satisfies the condition ( %y, .., x;)e[N n], then sampling is terminated and
the decision, §,( %y, ..., %, )&D is chosen. The value of the function, §,, need
only be specified on the subset [N=n] cS®. A procedure involving a fixed
number of chservations n can always be obtained by adopting a sampling plan
in which [N=j] =®, the empty set for j=1... n-1 and in which [N=n] =5*. In
general we can also consider sampling plans for which the probability is 1 that
sampling will eventually be terminated. In other words, we shall assume that,

PIN<®] limpawPIN<n] 1. (64)

[It need not be assumed that there is some finite upper bound n such
thatP[N =n] 1]

Risk of a Sequential Decision Procedure

The total risk p(¢, d) of a sequential decision procedure which at least one
observation is to be taken is,

p(faa) E{L[slaﬂ(xlllxﬂ)]+ci+cz +'"+CH}
E‘:‘=1 -'.[H=‘I‘I.] fg L'[ga aﬂ.( Xl: J-xn)] (9/ X1y e ,x“)dv(ﬂ)dFﬂ( X1y lxﬂlf) +
TR (€ +Cat ot Co)PIN 1] e rsssaeerensem (6.5)

Here £(./ xy, v, xp )18 posterlor pdf of @ after the values X; %, .0, X, X,
have been observed. Alternatively,

P8 [ {[yang 26 8al Xy s )1 Ty £t/ 0)dGi)IE () v (0) +
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In the development of theory of sequential statistical decision problem we
shall have little need to refer to any specified value ¥ (6/ x4, ..., X,) of the
posterior p.d.f of 8. However, we shall often have to refer to the entire
posterior distribution as represented by its generalized p.d.f. therefore we
shall denote the p.d.f simply byf(x,,..., x,). If € is prior distribution of 6.
WhereX, x,.., X, %, 18E(xy, .., Xn).

For every p.d.f of 8. Let p, (®) be defined as follows:

po(®@)  infaep Jp LIB. d]2(O)AV(E) werrrruerursunnn (6.7

In other words py{®)is the minimum risk from an immediate decision
without any further observations when the p.d.f of 815 #(8).

A Bayes sequential decision procedure or an optimal sequential decision
procedure is a procedure § for which the risk p (%, §) is minimized. Wherever
a decision in D is chosen after sampling is terminated, that decision rule Bayes
decision against the posterior distribution of ©. For any such procedure &
which specifies that at least one observation is to be taken, we now have

PE8)  E[Po[E(ry, s 0). 1+ G + Gz + -+ Cx] covveernenn (6.8)

Further, more for the procedure §;, which specifies that can immediate
decision in I should be chosen with out any observations we must have,

PEES)  PolE) wcvcssmicnann (6.9)
Exp61:L(8,,d,) L(Bpd;) 0 & {6,810 {d,dy}
L(6,,d;) L(6zdy) B>D
Suppose X 1s discrete rv.'s for which
filx) P[X =z/0 o]t 1.2
Q) 1-a  £1(2) 0O, H(B) =« 0< e <1
(1} 0, £2) 1-a f3) a

Suppose the cost per observation is C, let the prior distribution of 8 is
P8 8] & 1-P[¢ 8,] §=<2
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Sﬂ]]]ﬂ on: f(ﬁ /x) I {31" E)P [8=F]

Plx=x]

1o,/ L2 4 £(6,/1) 0O

(—x)+0
7{3/6,)P[6=6,]
§(81/3) F(3/8,)P[8=8,1+F(3/0:)P[8=8,]
= £
of+a(1-%)

Similarly, £(8,/1) 0, £(6,/2) 1, £(8:/3) (1-%)

Thus after an observation has been taken, either the value of B becomes
known or else the distribution of © remains good as it was bhefore the
observation was taken.

po§)  infa{L(8y,d1)§ + L(62,d,)(1 — §.L(8,d3)§ + L(9;,d2)(1 — )}
= infy{b(1 — £), b} Without any observation is taken.
= b¥ since,§ <1
If the Bayes decision is chosen whenP[# 8,;] &, the expected lossis bt
If one observation is taken then the expected loss will be
E po(§(X)),where $(X) P[0 &8/X x]
Po(1}  po(§(1))
infy{L(6.,6(1))P[9 6,/X 1]1+L(6.8(1)P[8 6,/X 1]}
inf;{0,b} ©
Now, {6, 8())P[8 6./X 11+ L{6..5())P[6 6,/X 1]

0 ifs()  d,
=h ifé(1) d,

Similarly, po(2) 0 and py(3) bE
Ep,(X) OP[X 1]1+0P[Xx 2]+DbiP[X 3] bia



(74}

The expected loss Epy( Xy, ., X) = bEa™ when the Bayes decision is chosen
after n observations X;, ..., X, have been taken,

pn bia® + Cn Total risk for the optimal procedure when exactly n
observations taken, assume p (1) <p (0)

o) 0=n [ogPERptr . (610
and p(n*) ﬁh ST L) —— (6.11)

A sequential provides a set of stopping rules{R, (X, ... X,);n 12.... }
which are 8™ designate the Borel s-field on ™,

n-dimentional Euclidian space; assigning to (X,, ..., X,,) an integral value so
that ifR,(X;, .., X,) n,we terminate sampling after the n'® observation
otherwise, X,,,,is observed. Consider the o-field B, c B, < --- generated by
Xy, (X, o, Xp) 2 stopping rule R for a sequentlal procedure can be
conveniently described by a sequence of sets {(R,:n = 1,2, .... } where, R, £8,
for each n=1,2,.... Sampling is continued as by as consecutive vectors
(X, ...X,), n=12,.... do not enter one of the sets R,,. In another words, the
sample size N (a random variable) is N= least integral n, n= 1 such that

(Xy, ... Xp)eRy
R, ifn 1

Definesets, Bn  prnp-n..NR, ifn>2

The sets R,, is the set of all sample points which leads to stopping at N=n. The
estimation rule for estimating a function g (P, Py, ...) is given by a srquence of
functions gj, g3, ... such that g, £8,, for all n=1,2... and if N=n then the estimate
of gis g;.
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Lemma 9.1: [wald's equation]: let(X,,....X, ..) be a sequence of iid
random variables, distributed with some distribution, satisfying E|X| < oo, For
any sequential rule yielding EN< o

E(TX X)) E(X)EN e (9.2)
Proof: let (R, R;, ...) be the sequence of stopping regions. Then,
BT X)) Ty fo T 2 (T dF (%)) nmrnmn (9:2)
Now,EX; X, .Eg(xt) [T, dFx;

i fg;xi TGy dF () + Zos; .&;xi I, dF (xp)
E{XI[N < i} + E(X,I[N = i]}
Ynmt % Iiea dF () E{XI[N 2]} PN 2 {]B[X;/N 2 1]

Since [N 2= i] is 8;_, measure andB,; B, therefore X; is independent of
[N 2 1]. thus

B[X,/N =i] E(X)
Yot S % IEea dF (k) PIN 2 E(X)
oV B 1 11 4.4 — K )
Now from (9.1)

It J o % TR dF () B2y Ty Jo % Tliea dF (1) - (94)
(This is permitted as E|X| < o0}
Y P[Nzi]E(X) From(9.3)
EXY2 P[N=2i] E(X)EN
EGRE,X) E()EN #
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Alternative Proof; Define a r.v. ¥; such that
Y; 1,if no decision is reached up to (i — 1)th stage,l.e.if N> (i—1)
0 otherwise.
Clearly, ¥; depends only on X; X, ....., X;—, and does not depend on X;. Also

e ) XY,
n=1

Hence E(Sy} EQn-1X,Y,) (9.5)
Now,

Z E|X,. Y| Z E|X,|E|Y,| (because X, and Y, are independent)

n=1 n=1

E|X,| Zn=1E|¥a|l E|X;| Xn=1 P[N 2 n] (becasuseE|Y,| P[Y, 1]
P[N = n])

ElX) | Xn=12i=n PIN k] E|X|33=1nPIN n]
E|X,]||E(N)| < oo

Therefore, E(Sy) exists and we may change the order of operation of
expectation and summation sign in (9.5). Hence,

E(Sy) E (i XnYn) i E(X,Y,) B(X) i E(Y,)

EX ) Xa= PIN 2n]  E(X)EN)

Note: Lemma 9.1 holds if only we assume E(X,)) uand E(N) < o and the
assumption that X/sare {.1.d. s not necessary.

Lemma 9.2: Let(X,, ..., X,,) be a sequence of iid random variables, having a
common df. F(x) with mean zero and variance
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02,0 < o2 < oo for any sequential stopping rule with E(N)< oo, if
E{(ZL%))} < oo then E{(ZE, X))} 0%EN oo, (2.5)
Proof: As before,
E{(ZL. %)} Zo SO, ) TR, dF (xy)
T S (T 2 + 2RI B 2} Ty F ()
T S Gy %) TRy dF () + 2 oy (B Bferia 205) [T dF ()

02EN + 2 Xney f (T051 s %1%7) Ty dF () By Lemma 9.1
Now

Y1 .&;(E?-_ii Lieiv xx )} T, dF(x) I, 2111 o= .fn;xixj [T=, dF (xp)

But Yoo, fx_nxixj [T, dF(x;) PN = {JE[X(x)/N =i] for j<i, (i=1, 2, 3..)
as X is independent [N = i]

PINZiEX,E[X;/N=i] 0 forj<i (i 12,3..)
The rearrangement is guaranteed by condition E {(E{""=1|Xi|)2} <
Then £ {(ZX,X)"} o2EN #

Alternative Proof: LetY; be defined as in Alternative proof of Lernma 9.1.
Then

E(Sy)? E{CR, xH(ER, X51))
= (B2, X2Y2 + i T XV 4Y) (9.6)

E|S3| E(ix ¥7 +ZZIX=A}IYJ})

=1 =}
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=E(Zia1X:0)° < o (by assumption).

Hence the order of operation of summation and expectation in (9.6) can be
interchanged. Now

E (Z an—z) B(XD)E (Z YE) o2E (Z 11) G2E(N) (by Lemma9.1)

=1 i=1 =1
Again
- _— w -1
B ) > xxxy ZE(Z mxjri) 2) ) EXXY)
ey o bl =2 f=1

=25, D E{VEXX/Y)) 232, B EREDE(X,/Y)} 0

as X; and ¥; are independent of X;. #

Theorem 9.1: [wolfowitz]: Let(X,, ...,X,, ....) be a sequence of Li.d random
variables, whose commmon density f(x; #) with respect to measure p belong to
a familyy {f(.; 8): 88} on which the following regularity conditions are
satisfled:

1. © contains an interval in a Euclidian k-space.
2. f(x; @) is differentiable w.rto & on 8.

3. [|&f(x; 6) |du < oo for all 98,
4. 0 < [[Zlogf(x; 8)]'f(x: 8)du < oo for all eb.
5. Foreachn 1.2,......andall#
S %l]z [T, dF(x;) < o
or [[Xiy |foars o] [z, dF (x) < o

Let (R,,n 1,2..] be the sequence of stopping reglons assoclated
with a given sequential procedure. Let g(8) be an estimable and differential
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function on 8. Let §(X,, ..., X,,, ... ) be unbiased estimator of g(&) satisfying the
following conditions:

6. [1§Cs, s Xndlgg [y F(2y; ) 15=1 dua(x,) < oo for each
n 12..
7. Yo di,gn{s) converges uniformly on 8, where

gﬂ.(g) IR; g(xil "y xn) H¥=1 dF(xv)

then Varg{§(Xy, v Xn =)} 2 ZEL ..o (96)

for all 8, provided EN < oo
Proof: Let N be the sample size associated with the given sequential
procedure. Let S(X;; &) ;—Elagf(xl; @i 12..

These are iid rv's and 1-4 guarantee that E S(X;; 8) 0 and I{&)
E[S%(X;; 8)] < o by condition 4 and the assumption E(N) <=
by Lemma 9.1

E[ZL,5(Xi 6)] E(N)ES(X; 8) 0 foralld .. (9.7)
Furthermore according to condition 5

EZN.ISCX;: 8)[]2 < © wrereerenens [9.8)
E[{ZN,s(X; 0)*1 E(N)ES*(X,0) E(N)I(O)......[9.8)

Consider the expectation,
E{ﬁ(xll lxﬂ. ) 2?;1 S(Xi; 8)} De8

Where §(X;, ...) is unbiased estimator ofg(#). According to (9.7) and by
Schwartz inequality we have

E{ﬂ(Xi, JXH) zf;‘l S(Xﬁ 9)} = .
[B{(5Cx.. . x0) - 5@)) ) E{(EL, 5% )Y’
ForallBe®............ (9.10)
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The quantity E(g()fl, s Xy ) — g(&))z is the wvariance of §(X,,...,X, ....)
under the sequential procedure. Further 6 & 7 allow the differentiation under
the integral sign in,

GO I f Bt e %) By dF (23)
T fi 801 ons %) 55 [Ty £ i3 8) THy dpr()
Tt J §(xa, o 20 )i 55t08f (s 6)) Ty f (xs 0) dualxy)

Z'::=1 .rg; g(xp [LLF} xn)(z;—'l S(xi; 8)) m=1 dF(xE)
A1 10 PO A 5 X J.10 ¢TI ) | [P (-3 & §

From (9.9) (9.10) & (9.11)

E - s e
Varg§(Xy, ... .. ) 2 F 01 ﬁ;};ﬂ (X 8]

1. Subject to the condition Ey(N) <m (m is a fixed integral bound) for all
0, minimize the wvariance of the best unbiased estimator that
is, Eg(§% — g)? uniformly in & (if such an estimator exist.)

2. Subject to the condition
E(gy — g)° < v < oo{fixed finite positive value)for all 8, minimize
expected sample size Eg(N).

3. Minimizes the expected cost of sampling plus expected loss, that is,
CEg(N) + Eg(gn — 9)*

Generally there Is no sequentlal estimator that can satisfy 3 uniformly in 0. In
case 2, DeGroot(1959) and Wasan(1964) have shown that a fixed sample
size procedure in the binomial case does not minimize Eg(N) wrto all
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sequential procedure uniformly in 6, 0< 8 < 1 subject to the condition that
SuPg<s1varg(g) £

Let(X,, ..., X,) be iid r.v's with mean p and varianceo?, both unknown
as an estimate of p, we chooseX,, the sample mean. The problem now is to
choose n. Let us assume that the loss incurred is A|X, — u|, where A> 0, is
known constant and let each observation cost one unit Then we wish 1o
choose n to minimize,

EL()  E{AIZ, — o] 41} oo (9.12)
We have, Eyn 2l JE
. 3 k3
So that EL(n) AE (’%"ﬁ) Z+n

2
A = e M sasnnisannnnaninin (913]

Treating as continuous function n we have for minimax,

At the value n that minimizes (9.13), for this value of n

1

o) EL(n) A \Eu(fﬂ %)%
-2+ ()

A e o i
4&%%4: 3(52)" 30 e (9.15)
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So that the loss due to the error of estimation is thrice the size of the sample,
that is thrice the cost of sampling. Of course, this presupposes the knowledge
of . If we do not know o, we cannot compute n,;.

When ¢ is not known, we have the following sequential sampling procedure R:

2
N leastn,n=>2where nz (#%)3 OBV (.- . | |

D% 1
%:% =21 %

Where, s,2
We may write this inequality,

. zm
N firstn,n>2when Yo, (x,— %)% < = {n— 1nd ..... (9.17)
Lemma 9.3: Rule R terminates with probability 1.

Proof: It is sufficient to show that,

1 p o z
() Cong b e P (=) —no| <] 1

>e] O

o

Now i | () - (52)
(%)% = 1‘ > (%g z] merrnennn{9.18)

sics P21 > (' o] < e () o

As % ~ % therefore (9.18) tends to zero as n— oo,

z
Or  limy,P[| (=) —no

limg 00 P ’

Lemma 9.4: For any fixed n, X,, is independent of §2, 52, ...,52 and hence,
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P[v’_(_—){t/sz,. ,sn] _f_ —e =dx cernee (2.19)

Proof Definel; £ ¢ 12,.,n

Then UJ; ~ N{0,1) r.v's and independenti=1,2.....

Let us write,

by +ilp ety —itiggg . 1.2
Jlup unn

i e
Y. Vnu wherell EZ?L{H:

Uy t+iia+ +u‘:—ﬂf‘+1 Uy +Ug+ _ju+
cav(l’g, 1}) E [_m ; (1+1 ]
B [(IJ2+U;+ +Uy-iBUj,, i—i 0
JIGrDGHD
BUZ—12EUf, 1+?
EY, 0, var(Y;) iGi+1} i{i+1}

Yarel.i.dN(OL1}I 12,..,n

1 =
TS, WA

- 2 _
E—i _f—'.l 1? :_1 (Y'lz +t Yi'.—lz)l L 2131 T

It follows that ¥;, is independent of S? for i=2,...,n this is the same as saying X,
is independent of 2, 5%, ..., 52.

Let us now compute the average loss for R.
100 A [E
EL(N) Xn=2PIN n]E[LN)/N =]

=32,PIN nEAVR[ZE|Z4N/N n]

F
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=Zm,PIN n]JAE VN

Lokl 2 L N/N  n]+EW)
=PIV nl(4 25 + B

=A JE&'E (N7)+EW)

Il

2n§£ (N'%) + E(N)
Proposition: Forlargen, P[N <n] =

ba | =

Proofi We have, PIN<n|2P[Z+%2+ 4% < "‘;’;"’] for
nong
PIN<n] 2P[Y2 + V2 + -+ Yo a2 <ng—1]
= P|ifu-1y S0 — 1]
=P[Z?ﬂu—1} —m—-1< 0]

= P[Z < 0]

B |

Where, Z ~ N{0,1) #
Theorem 9.2: Let(Z,, ..., Z,) beiidrv'ssuchthat P[Z; 0] # 1set

S5, Zi+Z;.+Z;and for two constants O, C; with €, < C;, define the
randormn quantity N as the smallest n for which S, <C, or§, > G,
setN wifC,<5,<C forallin. thus there exist C>0and0<p <1
such that,

P[N >n] < Cp™ forallin. .............(9.20)

Proof: The assumption P[Z;, 0] #1 implies thatP[Z;>0]> 0. Let us
suppose that P[Z; > 0] > 0 then there exists & > O such thatP[Z; > ¢] &>
Oin fact if P[Z > &] 0 for V> & then in particular P |2 > | 0 for alin.
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1 . 1 .
butP [z > 2| 1 P[Z > 0] and we have0 1lim,P[Z >2]| P[z > 0] which
Is a contradiction.

Thus for P[Z; > 0] > Owe have P[Z, > ¢] 6> 0.......(9.21)
With C,, C; and ¢, there exist a positive integer m such that,

TE > CZ_CI e —— (9.22]

For such m we have,
NEalzy > g] € B2 Z) > me]l € X5 Z; > C—Cy] ... (9.23)
PIEXTAZ; > GGy 2 PINET.[Z; > £])
[Tim, P[Z; > €] = 6™, as Zs are independent .

Clearly,

Skem Z}‘:& [Zpn+s + -+ Zprym]
Nowweassertthat, ¢; <5; <G, 1 12,..km=

Zimpr T+ Zpym S 661, 1,2,k —1 ......... (9:24)

This is because, if for somej 1,2,...,2 —1we suppose that Zg, , + -+
Z¢jraym > €—C, , this inequality together

Sim > €, would Imply S¢;,13, > €3 , which Is a contradiction to the first part
of (9.24).

N2km+1]e[C, <S;<C,) 12,...km]

= [ij.'.-l + o Z{j+1}m S CZ_C]_]

PIN = km +1] < [1§53[Zmes + o+ Zg4ppm < GGy

< (1- 5™k



(86}

[(1 =i % ]m.t+:|.

Thus, P[N = km + 1] < (1 — 6™ )* — Cpm¥+t

1

—= p (1-8™)% 0<p<1L>0

Put €

thus, PN =z n] < Cp® #

Theorem 9.3: Let My(t) Myz(e™) be the m.gf of Z, and let it be assumed to

exist for all t, where Z log %men a necessary and sufficlent condition

that there exista (t  t, # 0) such that My(t,} 1isthatE4(Z) # 0and that
Z takes on both positive and negative values with positive probability.

Proof: To prove the sufficlency, we observe that

My"'(t} Eg(Z%e'?) > 0 Unless Z=0 [since My(t) exists for all t, it is
differentiable any number of times]. Thus M3 {t) is convex function of t Now
by assumption there exists a value Z'> 0Osuch that Pg[Z >2Z'] u >0,
therefore t > 0 Implies

Mp(t) Ep(et?) > et PplZ > Z'] uet? ... (9.25)

and consequently My(t) — oo ast — oo. A similar argument show that
Mg(t) » wast—> .

[Ma(t) > e ¥ Pg[Z > Z'] e¥'w
where FeZ > Z'] v>0,Z' < 0]

The My(f) assume a minimum value at the unique point t* for which
My(t*) OnowM4(0) E(Z)+0,so0 thatt" # 0 unless E4{Z) = 0. Since
Mg(0) 1and Mg(t*) < Mg(0) 1wherever

Eg(Z) # 0 It must follow that there exista ¢y # 0 such that Mp(t,) 1

To prove the condition Is necessary, suppose that Ps[Z2=0] 1 and
letPp[Z =0l =a < 1. Thus Pp[Z > 0] =1—aq,lett < Oforanyl <cs<1l—a
we can find positive number C such that

Py[0 < Z < €] < &. Then,
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@ <Mg(t) < Pg[Z O]+ 5 eZdF + [ e'?dF
—at+et+e{l—a—¢)
asP[Z>C] 1-P[Z<(C] 1-P[Z 0]-P[0<Z<(]
a<Mp(t) < [a+e€][l-a—cle®™ ........... (9.26)
And hence, aslime o Mp(t) S +¢

Since eis arbitrary, lim,...Mz{t) «

Mg(t+h)}—Ma(t—h)
i

and hence Mg(t) 1has no solution other than t=0. A similar argument
shows that, if Pa[Z2 <0] 1, P[Z 0] <1thenM'p(t) <0, for all t > O,
My(t) 1 hasno sclution other than t=0. #

Theorem 9.4: [Fundamental Inequality]:
For a given 8 and for all t such that My (t) > p, where p as in Theorem (9.2)

Weseethat Mp(t) limp,.,

> 0 forallt <0

E, [eﬁ"(Mg(t))_N] 1 eerereeereeeene (9:27)

and if Pg[Z > 0] > 0 and Py[Z < 0] > O,where Z log ;—E:':i;
20p.

then (9.27) holds for all t.

Proof: Let the sequential procedure is defined in Theorem 9.2. Then since,
Eg&ts“ Eg&t(z’-+"'+z“}

= [T, Ege*®t  [Mg(D)]® .corenene (9.28)
Egle™n[Mp(£)]™"] 1

1 Eple™¥[Mp(t)17"]
Xi=1 Po[N  JIE[e™F[Mp(etN™/N jl+
Py[N > n]Eq[e™¥[My(£)]™"/N > n]
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T PN J1E[e®™I[MgDI//N  j]+
Py[N > n]Eg [N [Ma(£)] /N > 1] woooeeeeeererrrrrennn (9.29)

Since E[e"[Ma(D)]™/N j1 E[e™Ms(DI7/N flas

;-Li Z; is tndependent of X1_;.17%;
Since for N>n, C; < §, < C, then by (9.29) and Theorem (9.2)
0s1-3%, B[N JIE[eSMyDIT/N  f] S —E—Eple™n/N >n]

Mg (O]
2\
) k®

Where k (t) is positive and for fixed 8 depends only on t. Letting as n —» co we
see that for all real t such that Mp(t) > p equation (9.27) holds,

Suppose now that Z takes on both positive and negative values so that M, (t)
has a minimum value which is assumed at t=t* then it follows from (9.29) that
forallt,

[Ma(0)]" [ ("
Py [N > TI] < W and Py [N > 'I"l] < W [930]

And hence

— 11 o [Mat)]" k{t)
0<1-Z%, B[N JIE[eMWI/N j]l <S55

Y | X 1 )

Thus n—» o0 0<1— Eg[e*[Mp(t)]™¥] <0 MI‘:({;} s

Or Eg[e®N[Mp(t)]™"] 1 #
OC and ASN function of SPRT

For brevity we denote by L (8) the OC {operating characteristic function} of

SPRT.
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Let us consider the sequence Z; of independent r.v's defined by Z;

log ﬁ:ﬁ‘; I 1,2,..satisfying the assumpton of theorem (9.2) them if EZ=0,

there exist one and only hy # 0 such thatE(e™?) 1;if E(Z) =0, this
condition hold only for hy Olet us assume thatE(Z) + 0. Since the
distribution of Z depends on €, Thus letus hy,  hq(0).

Mo(hs) M(hy(8)) EeZ® 1 ... (9.32)
= [eZhof(Z,8)dZ 1
Or TeZep(Z,68) 1. (9:33)
EgeSnio(@} TN EeZhel®) 1 . .....(934)

1 B aSnho(F)
L(B)Eqg{(e @ /5y < logB) + 1 — L(9)Eg(e5¥") /5, < logA)

..(9.35)
1=L{6) E} + [1 — L(®)]E" S - X: 1))

Where Eg, Eg* represent the conditional expectations when we accept and
reject the hypothesis respectively,

L(®) sai—sla ..................... (9.37)

We now find the approximate expression forL{#). Let us consider,
Sy logBandSy logA instead of inequality Sy < logB and Sy = logA.
ThusifS, IlogB

EglexpSyho(8)] = Eglexp(logB)h,(8)]
£z E;[B]"ﬂw} rs [B]Re(®)

Similarly, E5"[expSyho(6)] = E5"exp(logA)ho(0)] = [4]"®)

[APP @1
[A] 05— [F]RalE)

L(9)
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When, Eg(Z) O0,thenhy(#) 0 where 0 is value of & for which
Eg(Z) 0 0.Then,

. : [a]to(€}_q

(&_
ahot—y logA

im ——r s
6—»&:%& logA—logB

For any real hy(8), we can determine the point in the plane with co-ordinate
(6, L (8)). The locus of these points will be approximate graph of the OC
function.

Expected value of N i.e EgN or ASN (Average Sampling Number):
We know that for

EZ#0 Eg[eSs® [Mg(h)]~¥] 1 differentiating w.r.to h at h=0
Eo{Sne " [Ma(M)]™ — NeS** MW 1 (M "¢ (h)}p=0 O

Eg(s;
Eo{Sy —NEgZ} 0 EBg(N) %

Ep|Sy] Denote the conditional expectation of the r.v's provided Sy < logB and
Eg'|By] the conditional expectation of Sy provided Sy = logA.
Eg(Sy) L(B)Eg(Sx) + (1 = L(H))EE-(SN)

L(O)E3Siy+ (1 ~L(OYEF" (Sn)

Eg(N) o)

IfSy logBorSy IngA according as accepting and rejecting hypothesis.

L{tHiogB+(1-L{0)}logA

Eg(N) o)

IfEg{Z) 0 we differentiate the fundamental Identity twice, we have,

7 [ - e’ - e o]
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Taking the derivative at h=0 and using
Mp(0) 1LMg(0) E(Z) 0AndM”y(0) Eg (Z%) +0wehave
Eﬂr (Sﬂzf —N Eﬂ:z 2) 0

EgSh  L(8)SE+(1-LEES(SE)
gy N 2 N,
ﬂ'r Eﬂl (N) Eﬂr (Zz) Eal" (22}

_ L{ﬂ'}{mgs}+(1—:.(a’))(:agA]*
- Egi(Z?)

_ logA ___logA
= loga-10gs (098 ¥+ (1 TogA—1ogE a) (logA)*/Ee(Z*%)

__logAiogB
Eﬂl’ (Zz}

Theorem 9.5: [wald] If SPRT is defined by (logB, logA), where

0 < B < 1,0 < A < 1, then the error probabilities a, § satisfy,

A< B>E wWherea PO[Sy2ALB PO,[Sy = Bl

If we set A’ ﬂ B’ 1Lthen corresponding error probabilities &', 8’

satisfy, &' < — ﬂ 2 === ‘8 —andifa + § <1,then

a+ pf<a+f

Exp 9.1: Let(X,, ..., X;,) beiid r.v's having N (8, 1). The two simple hypotheses
":"II'E, H.u:g _I,Hl:e 1

f{x.1) —— 2x
¥4 Ioﬂxl} loge™ 2 e :z loge 2X

2
mgfof Xis, G(t) exp(%+6t)
mgfof 2Xis, M) et +20t

It follows that, h,(#) —@& thus,
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-8
L(6) —ga—z where,~b logB,a logA
3‘9“—1]

1 —
Eo(N) E[“W"' #—9a_gib

Fnan: g &u, H1: g 91,

n  fXiP1) ]
Zit @ 2

£0x85)
2 Ia7zey o7 ook

f (xl‘ﬂ:l.] z‘n .f (x:_ﬂn}l
=1" 5

i=1

6 -0)Tx +EEE 37,

We continue sampling as long as,

F:|

n({g3—6%)

(e5-61)n
A< dpslor @b | 208180) LX< (ﬂi—ﬂu) 26,89

Zy (8,—00)X, + @

(EE ;ﬂf) ; i 0,1

Eg(Z:)} (8,—80)6+

Ife .01, 95
A = loga’ where,a’ E
As=mloga —1.29667

B=logh logl log> logss 197772

FoZy —; —5,EZ 5

(1-g)A+aB  99(-1.29667)1+.01{197772} 283
BpZy -5 )

(1-B)A+8B
SEE 363

Nom iaf tive Pri

EﬂN =

E]_N =
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Because of the compelling reasons to perform a conditional analysis and the
alternatives of using Bayesian machinery to do so there have been attempts to
use the Bayesian approach even when no (or minimal) prior information is
available. What is needed in such situation is a Non informative prior, by
which is meant a prior which contains no information about 8 (or more
crudely which faros’ no possible values of 8 over others.) for example, in
testing between two simple hypothesis, the prior which gives probability 12 to
each of the hypothesis is clearly non-informative.

Exp: suppose the parameter of interest is normal mean 8, so that the
parameter space@ = {—oo, 0}. If non-informative prior density is desired, it
seems reasonable to give equal weights to all possible wvalues of 8.
unfortunately, if m(#) ¢>0 is chosen, the w has infinite mean
i.e [m(8)dd ooand is not proper density. Nevertheless, such m can be
successfully worked with the choice of ¢ is unimportant, so that typically the
non-informative prior clearly for this problem is chosen to be n(8)=1 this is
often called the informative density on R and was intersected and used by
Laplace{1812).

As in the above example, it will frequently happen that natural non-
informative prior is an jmptoper prior, namely which has infinite mass.

Exp: instead of considering 0, suppose the problem has been parameterized in

terms ofyy = €9, this is one-to-one information and should have no bearing on
the ultimate answer.

But if n (@) is the density of 8, then the correspondently for v is,

7'(7) # 'm(logn) Hence if the non-informative prior of 9 is chosen to be
constant, we should choose the non-informative prior of 1) to be conditional to
11 to maintain consistency. Thus we maintain consistency and choose both
the non-informative prior

Exp: suppose that x and @ are subsets ofR*, and that the density of X is of the
form f(x — @) i.e depend on(x — ¢). The density then said to be a location
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density, and 9 is called a location parameter. (Some times a location vector
whenk > 2). The N{8,02),0? fixed, is an example of location density.

To derive a non-informative prior for this situation, imagine that, insisted of
observing X, we observe the random variable Y=X+C. CeR* . Definen =@+ C

it is clear that Y has densityf 0_1 — ). If now

£ 6 R* Thus the sample space and parameter space for (Y, 1) problem are
alsoR¥. The (X, 8) &(Y, n) problems are identical and sensitive and it seems
reasonable to in sets that they have the same non-informative prior.

Letting ® and ©t* denote the non-informative priors in the (X, 8) and (Y, 1)
problerns respectively, the above arguments implies that ™ and n* should be
equal i.e

p"[0eA] p™ [neA]

For any set A inR¥. Since n=0+C, it should be true that
p* [nedl p™[¢ + Ced]l p™[0eA—C]

A—C {Z-—C:ZeA} then,
p~[0eA] p™[0eA —C] forall GeR* ..eeverereeeen (1)
Any m satisfying relation (1) is said to be Jocation invariant prior.
Assuming that the prior has a density then,
[, n(@)de [, n(8)do [, m(6—-C)d8  forall AcR*
7(@) w(@—C) forallfeb,or 7(C) =w(0) forall CeR*

This conclusion Is that m must be constant function. It convenient to choose
the constant to be 1, so the non-informative prior density for a location
parameter isn(8) 1

A one dimensional scale density is a density of the form, &~ f(Z) wherea > 0.
The parameter o > 0 is called a scale parameter. The
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N{0,02)G(a, £) , a known as scale density.

To derive a non-informative prior for this situation, imagine that, instead of
observing X, we observe the random variable Y=CX C> 0.

Definen  Ca, can easy calculation shows that the density of Yis

b . If =R or (0,0) then the sample and parameter space for the (X, a)

problems are the same as there for the (Y, ) problem. The two problems are
thus identical in structure, which again indicates that they should have the
same non-informative prior. Letting m and m* denote the priors in the (X, z)
and (Y, n) problem, respectively, this means that the equality,

p"[acAl p™ [ned]
Should for all A c (0,00). Since n= Ca, it should also be true that
p™ [ned] pTlaeC'A],
€71A {C'Z: ZeA}. Putting these together, it follows that nt should satisfy,
p*lacd] p"[aeClA] forallC >0
And any distribution « for which this is true is called scale invariant.
Jy w(@)da [, m(e)da [, n(Ca)C"'da forallAc(0,0)=
n(a) Cm(Cla) forallaleta C

7€) C'x (1). Setting for convenience, and nothing that above equality
must hold for all > 0, it follows that a reasonable non-informative for a scale

parameter ismae a~l.

For more general problem, various (some what ad hoe) suggestive have

been advance for determining a non-informative prior. The most widely used
method is that of Jeffrey’s method which is as follows:

If8 (B, ..,B8:) is a vector, Jeffrey’s suggest the use of
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n(8) [det.'@)]% ‘det’ determinant;
Where 1(8) [1;(8)] = I;(8) —Eﬂ%lﬂgﬂxlﬁ)]

Exp: A location-scale density is a density of the formo™1f (‘%") where
QeR,0 > 0 are the unknown parameters. N(9,02) is crucial example of
location-scale density Working withN (8, o2), 8= (9, o). Fisher informative
matrix is,
» (x-8)? # (x-8)*
. a8l p42 8080 202
I(t_':') Bo| x—8)? & (-6
80 8o 20t &pE  2g2

-1 2{0—x) 1

_g | # o3 = 0
8\ 2e-x) -3(x-8) 4 =2
o a* o?

1 a1l 1
MO [Goakes
This is actually the non-informative prior ultimately recommended by
Jeffrey’s non-informative prior is that it is not affected by restriction on the
parameter space. Thus if it is known that 8> 0, the Jeffrey’s non-informative
prior is still w (8) =1.

Exp: let (X,,..,X,) be a random sample from N (8,,6;) let the non-
informative prior of (6,,8;) be (6, Ez)ucai, and 8,& 0, assumed to

be independent . Find the posterior.d. f of £(6,/2) & f(8,/x).

x ; E(q-8,)*
S.Qll.ltlﬂn- f(xil "-lxn/s‘lng) o —q EXP_T

(e23Z
iz —0,y)2
f(all 'ﬂ!/xll lxﬂ.) o ﬁ%‘l exp = %Ell
1 ZE-81)% __n{z-8,)*

= —3— exp—
(05328 2 =



§2n-1 n{z-9,)
- 1 — 1
T o T 262

£(6:/x) = f:? exp — E(“;'af‘] do, Putgl; t=-% 2d
fz) 2

o 2

x [, tT exp—X(x—0,)%¢ % dt

= .f: 71 exp—t T(x; — 6,)2 dt
1 1 ~

2 E T
Ex-81) 127 [E{x-22+n(@-8,)2]2

1+ 4

1 1

o % il
4677 =
et [1+5]
Where, T~ t — distribution with (n — 1)degree of freedom.
-1 n{x -0, )
f(8:/x) ET” exp——= ", 22 g,
{9 J% n—-1s?
o r it
ot T 20
=1 exp- n—1 g2
@ z)“TH 282
Let w n__;’z dw __h! da,

Fw/z) o« -4, exp—7 —yexp—y

(62) 2 {82y 2

= —fr— EXp— X Xiy
ta;ﬂ_i

Highest Posterior Density Regions: (HPD Regions)
Def: A 100(1 — a)% credible set for 8 is subset of 8 such that,

1-a<P[C/x] [, aF™e/D(g)
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Jo n/(8/x)d8 for continuous case
Yeccn/(8/x) for discrete case

Since the posterior distribution is an actual prob. distribution on 8,
one can speak of the probablility that 8 is C. this is in contrast to classical
confidence procedures, which can only be interpreted in term of coverage
probability that is the probability that the random variable X will be such the
confidence set C(X) contains 8.

In choosing a credible set for 8, it is usually describe to try to
minimize its size. To do this one should include in the set only those points
with the largest posterior density i.e the most likely values of 8.

Def: The 100(1 — a)% HPD credible set (HPD region) for 8 is the subset C of @
of the form

€ {Beb:m(8/x) = K(2)}
Where K{a) Is the largest constant such that,
PlC/x] 21—«

Exp: let (X3, ...,X,;) be a random sample from N (@, 1). Let the prior p.d.f of &
be N (i, 72). Find the HDD regions for 8.

Solution: f(8/%y, .., Xp) el Ximn/Em(E)

JZ oo F .- 2n/ FyT(B}00
!ﬂj! nE—ﬁ!z (a g _ nE—ﬂ-!z -
erp ZEE 0 W% .C:.up— mﬁ’

£o p2-2x6 g 26 ;
J'_mexp [nﬁz"'z )_I_( 'H;: Ty da

exp (— (22 4+ 5) [T exp - 2[02 - 20 (% + &) + ] o)

exp (— (L +15) (7 ez 67 — 26 (x + 2) +4] do)
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exp (— (B2 + 1) [7 ez [67 — 20 (x4 &) + (%2 + L) - (=2 + L) + E] do)

xp (- -+ B) - 5 e [o- (4 B)] e )

Lety 0

J-m _ [nl"+B —2%8 + = d‘B
=m(¥—%’)!:m—%lﬂ'—ﬂ=dﬂ

=+2mexp - %(—nﬂﬂ_{z)

L o @xX8) 8% 1 %2
(8 /x) 7= XP - e (—n224X%)

ﬂ_“exp——[nxi + ng? — 2nx6 +——nx= x‘]

= Eexp — L-..-z [no%e? — 2nxev? + 02-%%¢?]

= —=exp — - [0%(1 + ot?) — 20%6?-%27]

n(8/x) N(u®), P'i)

w2 1 o

&) —ur P 52F 5 =
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