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LINEAR ALGEBRA

In the 19th century a iot of innovation 1ock place in algebra. Many: new syslems were
being studicd. These included flields and vector spaces, iround which lincar alpebra has
been buiit up. Arthur Cayley, an English mathematicinn (1921-[#95), was respansilile

. fora lot of creativity in this area, Now vecror spaces have become very imporiant, One
P

reuson is that, if you want 1o study madels of real life situations, you may need to know
something about vector spaces. This and some allied concepts are also helpful in

studying various aspects of physics, chemistry, economics or psycholopy.

For quite some time there as been a feeling smong mathematical educationists all over
the world thal some lincar algebra shonld be studied by nny undergradunte who wants
lo study mathematie. Keeping this In mind we have designed the present course,
assuming that you have studied mathemalics in schook for 12 years.

The course is divided into four block4 as given in the programme puide. 1a the first
black we start with recalling basic concepts like sets wnd functions. Thén we introduce

“you 1o fields and vector spaces, the building blocks of lincar algebra. 1n'the second

" block we discuss linear uamform.moqs and watrices, and the close relationship

belween them. You will study eigenvedtors and eigenvatues in Block 3. To obtain them
you must familiarise yourself with delumm.lnl\ which are defincd ad chiscussed in
Biock 3 also. The st block discusses inner pmduct spades.and some applications of
lingar atgebra to gecometry.

. 1 - I. o 1
After studying this course you will beiin a better posilion 1o appreciate our course
or aoslract algebra. This course witl 'Jlso iiclp you in sludying our laler caurscs on
numerical analysis :md diffcrential equations.

Whilc going through lhc units you will find that they have hecn divided into sections,
Since the material in the-different units is heavity interiinked, we will be doing aTot of
cross-refercncire. For this we will be uum, thie notation Sec x.¥ (o mean Section y of
Unit x.

In each block we will give a block introductio, lollowed by atist of symbaols used in the

bleck, and then the.units of the block. Every unit has exercises interspersed with the

text. These excreises arz meant to help you check your propress. Afler every exercise
we leave a space [or you 1o write your solutions in. The solutions or answers (o the

cxcrcises in a unil are given at the end of the unit. Alter yau finish going through a

unit, please go back to the objectives of the unit (given al the beginning) and check
il they have been achieved.

During your study of this course we will send you three assignments, They are alsa
meant to be learing ajds, We have also made’s vidoo cassetie “Lincar I'ransformations and

“Matrices” which you can see ag your sidy centre, You will find the media note

wccompanying this programme at the end of Block 2 of s course.

We will also be making an audio programme refated to this course, ahout the utility
of linear algebra,

If you feel like rending more than whal we give in our course, you muy consult the
following books:-

. An Introduction to Linear Algebra by V. Krishnaaurthy et al. , (ALl liated
East-West Press), ,

2 University Algebra by N.S. Gonalakrishnan, (Wciw Eastern Led ). .
* Theg
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The st of all x such that x satisfies property P.
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docsnothelongto .

- contained in (is properly contain€din) .

is not contained in

The union ol the sets A and B )
Theintersectionolthesets Aand B -
Acomplemant B

The set ol natural numbers

The set of integers

The licld of rational numbers
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Bela
Gamma
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Epsilon
Theta
Lambda
Mu
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BLOCK I VECTGR SPACES

In this block we wil! present the basis of some maihematics that wiz developed o the
18th and 19th century.

We start this block with Unit 1. in which we recail the deflinitions of sets anda clated
concepts. We alsa briefly discuss fields, an algebraic structure that you wil) use
throughout this course. .

In Unil 2 we give a detailed discussion of the two- and three-dimensional spaces 107 and
R*. This unit shows the link between geometry and linear algebra, K leads us very
naturaily to a general veclor space, an algebraic structure that we introduce o YOUL I
Unit 3.

In Unit4wedigalittle deeperinto the properties of the elementsof o veclor space. We
discuss the concepts of linear independence, basis and dimension.

Since the material covered in Units 3 and 4 form the loundation of the course, we advise
you 16 be absolutely sure of your prasp of the concepts given in them hefore YOU 2o any
further.







UNIT 1 _SETS, FUNCTIONS AND FIELDS

Structure

1.1 Introduction | 7
Qbjectives . ] .

[.2 Scis 7

Subscts. Union, Iniersection
Venn Diagrams

1.3 Cartesian Product of Sets . 13
I.4 Relations 14
1.5 Functions 17
. Composition ol Funclinns
Dinary Operytion .

1.6 Ficlds ' : 23
[.7 Summary . . 2%
1.8 Solutions/Answers o . 26

1.1 INTRODUCTION , .

This unit seeks to introduce you 1o the pre-requisites of linear algebra. We recall the
concepts of sets, relaiions and functions here. These are fundamental 1o the study of
any branch of mathematics. In particular, we study binitry operations on i set, since this
coneept is necessary for Lhe study of algebra. We conclude with defining a ficld, whicly
is a very important algelraic structure, and pive some examples of it

Ohjectives :
After studying this unit, you should be able to
© identify and work with seis, relations. funetions and binary operations;
@ recopnisce a field;

e give examples of finite and infinitc figlds.

1.2 SETS

Weshall recall that the term set is used 10 describe any well defined colleclion of objecis.

thatis, every setshould be so deseribed that given any object it should ke clear whelier

the given object belongs to the set or nol.

Forinstance,

#) the cdllection N of al! natural numbers, itnd

b} the collection of all positive integers which divide 48 (namcly, the intepers
1.2,3.4.6.8.12,16,24 and 48) arc well defined. and henee, are sels.

But the collection of all rich people isinot a set, becpuse 1here is no way of deciding
whether o human being is rich or nat.

IS isaset, anobject ain the collection S is called an element of 5, This factis expressed
insymbolsus a€ 8 {read “aisin $" or "y belongs to §7). 1M is nol in S, we write
4¢S. Forexample, 3€R, theserof real numbers. Byt VelgR. '

There are usually two ways of describing a scl (1) Rosler Melliod, and (2) Set
Builder Method, '

Roster Method: In this method, we list all the elements of the sel wilhin braces. For
instance, us we have mentioned.abave. the collection of ali positive divisors of 48
containg 1,2.3.4,6,8.12.16.24 and 48 as itselements.. So this sef may be wriiten as

{1.2.3.4.6.8.12.16.24 48).

In this description of a set. the following two conventions ave fullowed

Convention |: The order in which the clements of the sy i e e e g

The Greek letzer epsilon, ¢,
denotes *belongs 10

W e




. Veclor Spacts Conventlon 2: No element’is vitten more han ohce: that is, every element must be
written exactiy once, :

For example, consider the set § of all integersbetween 11-_ and 4%. Obviously, these

integers are 2,3 and 4. So we may wrilc 2
§ ={2.3.4}.

We may also write S = {3,2,4}, but we must not write S = {2,3,2,4}. Why? [sn’t this
what Convention 2 says? ' '

The roster method is sometimes used Lo list the elements of 3 large sct also. In thiscase
we may not want to list all the elements of the set, We list some and give an indication

of the test of the clements. For example, the set of integers lying bétween 0 and 100 is
{0,1,2,....,100}.
Another method that we can use for describing a sét is the

St Builder Method: In this method we first try to find a property which characterises
the clements of the set, that is, a property P which all elements of the set possess, and
which no other objects possess. Then we describe the set as

{x | x has property P}, or as

{x : x has property P}.

This is to be read as “'thc set of all x such that x has propetty P*'.

1

Forexamplec, the set S of all integers lying between 1%— and 42 canalsd be written as

1 1
3 < X< 14}.

Example I: Write the set N by the sct builder method and the roster method.

S ={x:xisanintcgerand |

Soluiton: By the set builder method we have the se.
N = {k | x is a naturai number}.

By the roster method we have N = {1,2,3.....}.

E  EI) Write the following sets by the roster method.
A = {x| xisaninteger and 10 <k < 15}
B = {x| xisan cven integer and 10 < x < 15}
C = {x | x is a posttive divisor of 20}
D= [p/ql p.gtegersand | = p < q <3}

£ E2) Write the following sets by the sct builder method:
P={789} Q={1.235711) R={369..}.

==~y = o h]
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Let us now laok at some sels that can be obtained from given sets,

1.2.1 Subsets, Unions, Intersections -

Consider thesets A = {1.3,4} and B = {1,4}. llere every clement of B is also an
element of A Tn such a case, thatis, when every clement of B s an element of A, we
ity lh'n B isa subset ol A, and we write B S A,

ILis obvious that il A is any set, then every clement of A is certainly an clcm-.nt of A.
So.foreveryset A;ACA.

Consider tisesets Q= {1,3,5,15} and §={2.3.5.7. Is QC5? Na, becuse not every
elementof QisinS; forexampie, 1€ Q but 1£5. Is $<€Q? No. because, for
example, 25 but 2¢ Q. Therefare, there do exist pairs of sets. A and B. such (hat

“neither of them is contained in the other. This is written s A Z8 and BEA (¢

denoles “is not a subset of'.)

Noic that if Bisnotasubsei of A, there musi be an etement of B which is not an element
of A. In mathematical notation this epn be written as "I x € 3 such that x £ A"

We can now say thit two sels A and B are equal (i.c,, have precisely the same clements)

_ffandanly if ACHB and !H CA.

E3) Which ol the Tollowing statements are truc?
B NCZ b)) ZEN ) {MC{123 ) 2.4.69{2.4.8
We now give ane way of obtaining a new set from two or more given scts,

Unlon: If we have two sets A and B. we can calleet the elemens of both to pet a new
sel. This setis called theirunion. Formally. we define the wnlon of A and B 1o be the set
of all those clements which are in A arin B or in hoth A'and B. The union of A and B

is denoted by A U B, Thus,
AUB = {\'x € AorxeB). )

F.xample 2: Find AUB when
A ={1.2}and B = [4,6,7}.
b)A =1{1.2.3d}and B = {24,6.8}.

- Snlulmn. ayAUB={],2,46,7}.

b) AUB = {1.2.3.4.6.8}. Observethat2and darcinbotir A and B, but when we wrile
A U B, we write these elements only once, in aceordance with Convention 2 given
earlier. ‘

Can you see that, for anyset ALAUA = A?

Ed) Show lhat. if ASCand BS C.then AUBSC.

The definition of union can be immediately extended to define the union of more than
twosets. If Ay, A, Ay dre kosets, their union A U A, UL oU A is the set of
clements which belang (ol {east one of these sets, Thal is.

ArUAU ... UA, ={x}x €A, forsameisi=12. ..k}

k
The expression A UALU ... U A, isoftenabbreviatedto U | A
1=

Now let us laok at anather way of obtaining & new set from Lwo or mare given sels.

Sets, Functlons mnd Flelds
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Vectar Spaces

A sct laving no elements is calied
an emply sed or noll sel, and is
denoted by &b, the Greek ketler phi.

1

Intersectlon: If A and B are two sets, then the (ntersection of A and B (denoted by
A N B) is the sct of elements common to A and B. So,

ANB={xi{xcA and xe}. .

Thus, if P = {1.2,3,4} and Q= {2,4,6,8], then PN Q = {2,4}.

Can you see that, foranyset A, ANA = A?

Now suppose A = {{,2}and B = {4,6,7}. Then whatis ANB? We observe that, in this
case, A und B have no common elements, and so A 11 B = ¢, the empty set.

When the intersection of two scts is &, we say that the two scts are disjoint (or mutually
disjeint). For example, the two sets {1.4} and {0,5,7,14} arc disjoint.

The définition of inlersection can be extended to any number of sets. Thus., the
intersection of ksets A Ag.. Ay s

ANANLNA = {x]xeA; foreachi=1.2...k}
L
Theexprassion A, N A, NN A, isabbreviatedio _ﬂli\.-.

Example 3: I A'CB, whatis A NB?
Solution; Since A € B, wc know that every element of A is an element of B.
Then ANB={x|xeA and x € B}
,=={x |x € f\, = A,
Exampled: For cvery scl A, show that ¢ £ A.

Solution: We have altgady made the remark that if B is not a subset ol A, there must
be an element of B which isnot anelememt of A, So il d is not a subset of A, we should
be able te produce an element in s which is nai in A. Can we do so? Obviously not!
Because ¢ his no clements ai all. We are therefore foreed to the conclusion that ¢ € A.

ES) For every set A, showthat dUA = A and dNA =4,

E6) State whether the foliowing are true or false.

a)[f ACB and BEC, men ACC.

DYIT AEB and BEA, then A and B are digjoint.

c} A ¢ (AUB)

d) B € (AUB)

ILAUB =4, then A=B:= 9.

E7) Suppasc A = {a,b,c}, B ={ab,piq} and .C = {a,p.r.s}. Find ihe following
sCis:

aAAUB, BIBNC, agAumncC, H{ANC) U (BNQ).

What do you gucss from your answers (o (¢) and (J4)?

BAUB) N C={ANC) U (BNC)? Check vanr guess by making your owa choice
fer AL amed O ’




‘Apart from the operations of unions and intersections, there is another operation on
scls, namely, the operation of taking complements.

Complements: When we are working with clements and subscis ola single set X, we say
that the set X is the universal set. Suppose X is the universal setand A € X, then the
setofall elements of X which are not in A iscalled the complement of A and is denoted

by
A’ A" or X\ A. Thus.
A={x|xeX,x¢d A).

If X ={a,b,p.q.r} and A = {a,p.q}, then clcélrly At = {br).
E8) Why are the following statements truc?

a) A and A° are disjoint.i.c., ANAS = .

by AU A" = X, where X is the universal sct.
(A=A .

Certain propertics of the complements of sets have been stazed ax De Morgsn's Laws,

We give them as a theorem,

Theorem 12 [f A and B arc subsets of X, then

2)(AUB)Y = AN .

M {(ANB) = A“UB* _

(in words. "complcment of union‘is interseclion of complements’ and “complenent of
“interscetion iy union of camplements”.)

Proof: i) Two sels P and Q are cqual. ifand oy il PSSO and QCP, (hal . l(nnq
onlyif XeP== xeQ and xe Q => xep. -

Thus. to prove (a). we musl prave thal
x€ {AUB)E == xe A' N D and xe AN BY == % (A (VR

Sete, Fusctms aad Fiekls

=>"denoles “implics'
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Vertar Spoces’

'o=="denntes “implies and is
impliéd Ly* or ‘if and only if*-

Now

XeE{AUB) = x¢AUB
=> x¢A and x¢B
== x€A° and x€B°
== x € AN B*

Conversely,

Xe ASNB° =2 xeA" and x€B°
= x¢fA and x¢B
= x¢ AUB
== x€(AUB)

Nole that in both parts of the proof, the various steps are the same but only in reverse
order. When this is the case, both parts can be combined as follows.

XE(AUR)Y == x¢y AUB
= x¢.A and x¢B
<> x€A° and_x€B°
<> %€ A°NB°

E9) Try and pi'ove (b) (of Theorem 1) now,

So far we have looked at sets algebraically. Now let us look at thern pictorially.

1.2.2 Venn Diagrams

Some results about sets.can be casily undersiood and visualised by using Venn
diagrams, named after the English logician John Venn (1834-1923). In a Venn diagram
the universal set is usvally represented by a rectangle and its subsels by circles or other
closed figures in its interior. For example, if A, B apd C are subsets of X, this fact is
represented by the following diagram (Fig. 1). '

©

AN

Flg-.\

The idea is that points in the interior of lhc:rcclanglc represent the clements ol X and
the points in the interior of the closed figures, A, B and C represent the elements of
A, B and C, respectively. Notice that the subsets of X can be of any shape.

Ir X =‘{a-.h.c.p,q.r.5]. A = {abpr} and B = (p.q.r}, then this can be represented by the
lfoltowing Venn dingram (Fig. 2).

AT RTINS

i




Fig. 2

Then, AU T isthe shaded ponion in Fig.2,and (AUB)" is the unshaded portion of
the diagram.

E10) Use Venndiagrams to demonstrate the truth of the lollowing resulis. Here
ALB.C arc subsers of X, ' )
N{AUB)NC = (ANCIU(BNCQC)

bI(ANB)UC = (AUC)N{BUC)

We will now talk of the product ofsels, of which the coordinale system is a special cuse.

1.3 CARTESIAN PRODUCT GF SETS

AN interesting set that ean be formed from ‘wa given seis is their Carteston preduet,
namcd after the French philosopher and mathematician Rene Descartes {1390 -1650)
He also invented the Cartesian coordinate syslem.

Let A and B be two sets. Consider the pair (a.b), in which the first cicment is from A
and the second from B. Then (a,b) is called 2n ardered pitir. In an ordered pair, the
order in wnich the two clements are writlen is important. Thues, (a,b) and (h.a) are
different ordered pairs. Two ordered pairs (at) and (e,d) e suid o be U] OF sumte,
ifla=candb=4d,

Definition: The Cartesian preduct A X B, of the sets A and B. 15 the set of all possible
ordered pairs (a,b), where a € A, beB,

Thatis, A x B = {(a,h): ae A, beB).

Forexample. if A = {1,2,3}. B = {4,4}, then
ACE = (1) 0E6Y (240, £2.08). (3.4). (3.6)}

Srts, Funclinmy kad Fie

Rene Desearges

'
X

T iy e =

= e




Vecinr Spaees

14

Also note Lt

B A= {000 4.2 0600060, (6.2), (6:3}), ind AxB # BxA, .

We can also define the Cartesian product of more than two setsin asimilar way. Thus, °
if Ris the set of all real numbers. then

R>xR = l(i||. H:) HHTR 4 i i c R}.

RXRXR = {(a. 01 eR)

andsoon. Itis cuslomary to write R for R X Rand R"forR % ............ % R ({ntimes).

Since every paint in o plane bietwo coordinates, x and y, and every ordered pair (x.y)
of real numbers defines the coordinates of 4 pomt in 1he plane. we say R” represents 4
plane, Thus, R is the Carlesian product of the x-axis and the y-axis. In the same wiy
R" represents three-dimensional space, and R” represents n-dimensianal space, for any
n =1, Nate thal R represents a line

Ci)IfA={250LB = {23 lind AXB, BXA, AXA,

EI2YITA x B =1{(7.2).(7.3). (7.4).(2,2). (2.3), (2.4)}, determinc A and B.

E E13) Prove thal (A UB) x C = (AXC)U (BxC)..

Let us now taok al subscls of certain Cartesion products,

1.4 RELATIONG

You are already familiar with the concept of a relationship between people. Far
cxampie, a parent-child relationship exisis between A and B if and onty if A isa parent
of Bor Bisaparentof A, -

[n mathematics, o relaton R on o set S is a relitionship hetween the elements f S, 1f

a e Sisrelaled 10 bES by means of this relation, we wrile a R b, of (a,b) €R. From -

the latter notation we see that R'E SxS. And this s exactly how a (hinary} relation
on a st is defined.

=T e P
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I' {Inition: A relafion R on o set § is a subsel of $x8. Srls, Functions and Fields

wexample, if N is the setof aatural numbers nad R s e relaiion tis a muliiple of,
.uen ISRS. bul nel SR1S Thatis. (15,8) e Rt (3,15} ¢ . llere REN x N.

Agiin. ll'tht.scl of abl ratianal numbers and R ix the relation tis preater than'. then
‘iR’ (bl’.‘t.lu\t, 3 > 2). In fact, for any number n>1, nR{n- 1}.

E|4) LetN be the set of all nattral numbersand R 1he relation isa divisor ol on
‘the set N. State whether the following are trie or faise.
Ca)2R3

MaRn.¥neN
nRmandmRn=tm=n

W now look st some particulir kinds of rebtions.
Definition: A relation R defined on o set S is said 1o be

i reflexive if we-have i Ra¥ael.
ii) symmetricifa R b =2- hRa¥ i, h €5.
i) transitive ify Rband b Re =2 aReMalees.

To et used 1o these crincc'plﬁ consider the followmp cxamples.

Example §: Let h he the set of all natural numbers, We define the relaton 1 on N s
follows: : :

anRbifandonlyifu=b

Dectermine whether R is reflexive, symmetric and rransitive.

- Snluliun Since a > a1 wot true Ls0a Roais not true, Hence, R s noi reflexive.

If a > bihen u.rl.nnly h>a is nottrue. That is. a R b does notimply b R a. Hence, R
is not ﬁymmclnc.

Since a > b and Ir ¢ mlplu.a a>C. we find thit a R, bRe mimplies a R,
Thus, IR i lr.'mt.uwc. .

E15) The n.Idunn R. C N X N i (Icrlm!(l by (.| h} € RIS divides (n—b}. Is R
reflexive, symmclru. or transitive?

The relatianship in E 15 is reflexive, symmetric and transilive. Such a relation is called
an cqulvnlcnce reloation. '

A very important prop:.rly of an cquw.llt.ncc relation on i sel S is that it divides S into
a2 number of mutually disjoint subsets, (hat is. it partitions S. Let us sce how this

happens.

_ - ' the cat © [ a1 ng L, Then tha cat
L-L.l I\ m, |t..i.|u|vnu.m.|.. TLANEIIT W LW s e

S, ={b|beS.aRb} iscalicd the equivalence classof ain S. Itisjust the set of elernents
in S which are related to a. For instance, for R given in E15 what is the equivalence

class of 1?

' This is

N,={n|tRa. neN}
= {n | ne Nand S divides | ~n}
= {nineNand3 divides n—1}
=11.6.01.16.3 ...} . u Rt

R
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Veclnr Specoe

Similarty,

N, = {n{n€Nand 5 divides n—2}
={2,7,12,17.22,.....}

N, ={3,8,13,18,23,....}

Ny = {4,9,14,19,24,....}

Ns = {5.10,15,20,25,....}

N, ={1.6.11,16,21,.... )

Ny = {2.7.12,17.22,....} .ctc.

Note that ,

1} N = N; ¥ N; UN;UN, UNg, and the sets on the nght hand side are mutually
disjoint. :

ii) N, and N, are not disjoinl. In fact, N; = N,,. Similarly N, = N, and so on.

These observations will be proved in general in the following theorem.

Theovem 2: Letl R be an equivalence relation on a set S. For a € §, let S, denote the
equivitlence class of a. Then,

0s= s,
B)Ifabes then 5,N8, = dor§, =5,

Prool:a)Since S, €SSV ae§, .'!Js S, E S (sec E 4).
Conversely, let x€ 5. Then, x €8, (asx Rxistrue.) And S, is one of the sets in the

collection {S, | a € §}, whose union is .LJS S,.
Hence, x¢ .gs S8,. So SEMS S,
Thus, S € ,Q,'S, and _lf_Js 8, €8, proving (a).

b) Suppose 8, NS, & . Let xe§, NS,

Then, x €8, and x €5,
== aRxand bRx
=2 aRxind xRb (since R is synvnetric)
== aRb (since R is transitive)

Using this we shall prove that 8, = §,,. For this, take ve§,. Then aRy, which is the
same as yRa. We havi also shown that aRb. This gives us yRb, since R is transitive
Thatis, DRy, whichmeans that y€5;,. Thus, §,€8,,. Similarly, it can be proved that
S, €8, Thus, §,=S5;. and (b) is proved.

Note thal, in the above theorem, beeause of {b), distinet sets on the right Hand side of
(a) are all disjoint from onc anather, Therefore, (a) expresses S as a union of mutually
disjoint subsets of §; that is we have a partition of § info equivalence classes.

F16) Show that*aRbirandonlyif a = b'is anequivalence relation on Z. Whalis Z,?

B
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. EI7) Lét S=A U B U C wherc A,B,C are mutually disjoint, dnd R is the $au, Funciions and Fleids
relation defined on S by:
aRbifwhengver a€ A,be'A or whcncvcr aeB, beB, or uhenever aeC, be C

Prove that R is an equivalénce rcl:mon on 8. For beB, what is Sb.

[n the next scction we discuss a famitiar concept that also Jeads to same relations.

: -1.5 - FUNCTIONS

. Recall Ihal a funcuon flroma set A to asct Bisarule whn:h associates with cvery
clementofAcxactlyoneelcmcntofB Thisis writtenos £ A — B. Il associates with
a€A. the clementb ol B, we write [(a) = b. Ais called the domain of [ and the set
{f{a)|ae A}is called the range of f. The r.m},c of {i§ a subset of B. Ris called lhu -
co-domain of f.

Note thag :

i} Foreachelement of A, we ts'aor.mlc same element of B.

ii) For cach clement of A, we associate only one clement of B.
i) Two or more, dcmcnlq of A cuuld be .muu.m.d with the same element nr R,

For example,.fet /\ ={1.2.3}.B = {1.2.2.4.5.6,7.8.9.10}. Define f: A — I by
i(1)=1,1(2) =4,1(3) = 0. Then (isa function. 6 (his case we canalso write f(x} = x°
for cach X€A. The doma.in of [is A and the range is {1.4,9}.

choujd .JI\.oh'wcwmlcnlhcdcﬁmlmnnl’l"wl' A—RB: f(x)—x WLWI”OrILn use . .
this, nulalmn for defining any function. X '
Id

[l'wc defineg: A= Bbyp(l) = 11202y = |.g(3) = d. then gis also g funclmn Thc
domiin of g remains the same. namely..A. The range of gis {1.4}. ~ ~ ’ o -

A function I': A — Bis said (0 be pne-one (or injective) if different clements of A are’ 'fisone-oac’ can also be wrilten as
. T : y . ’ Tis l=7"

assaciited with d:l’fcrcntclcmcntsufli peil g as €A anda £, then [(ay) £ [(a,).

11 the fordaning examples, the functies N ane-onc, The function g is 6o one-one

hccuusc Lol 2 are distinet elements of A, I pil) = g(?.)-

Now cnmndcr another exanipte of sets and Tunctions,

LetA = {I 231 8 = {py.r). Let fA ~ B he defined by (1) = q. f(") =r, ru) =
Then fisa function. Here the range of f = B = co-domain of I, Thisis an example of an
- onto functior, as you shall sce. ‘ :

Dcl'nmon A function ; A—B n.:\.nd 10 he onln (ur surjective) |F|I1L ranpeof fis B, i.e.,
if, for cach h € B, thereisan it e A such that I{a) = h, - -

If a function is both anc-one and onto it is called hijective, Thc eX; |rn|1lc of ian onto
function yvun above is also |-1, uml henee, bijective, - 17
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E18) Let f:N — Nbe defined by f(n) = n+5. Prove that [is onc-one butnot onto.

E19) Let f:Z— Z be defined by f{n) = n+5. Prove that fis both one-one and onto.

E20) Let A = {1,-1.2.3). If f:A — R isdefined by f(x) = x?—5x+6; find the range of {.

T

Two functions that you will often come across are
i} theldentity function [5:A — A:f(a) =aVaeA,

ii) the constant function f:A — B: [(a) = c ¥ a € A, where c is a fixed.element of B.

E21) a) Can you show that the identity function is hl]ccuvc ' :
b} What must X be like for the constant function f: X ~ {c} 1o bcqnjeclwe"

Pt et | TR R TR PO T
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L5;1: Composition of Functions

If f: A — B and g:C — D arc functions and il the range of {is a subset.of C, thereis
natural way ol combining g and f to yicld a new function h: A=D. Furcach x€ A, h(x)

is defined by the for mula hix) = £(f(x}). (Notc that f(x) is in the- rangc of f, sothat

f(x)eC. Thcrcforc p(f(x)) is defincd and is an clement af-D. ) This finction h-i¥

- called the composllloumfg and fand is wrilten as gol. The domain of.gof is; A and its

,‘codomam 5D, , .

l'.ullnplei. Letl: R —sRand g R-rlbedcflncd by T(x)=x* and g(r} = x+l What
is gof? Whal i fop? _ o L .
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Solution: We observe.that:the range of fis a subset of R, the L'Iu:.n..m ol ¢, Thorefore, Sets; Functlans a0 Ficld:
. gef is défined.- By-definition, ¥ x €R,
f:A = Band
_guf(x) =-*'-g(f(x)) =f(x)+1= X+ 1. R F:C—- D are equul
Now, iet us find fog. Again, itis c_azsy to see Lh:tt fag is defincd, Ir;:; :;:;i_n A
-x ¢ R, fog(x) = f(g(x)) = (g(xN* = (x-+1)".
Thus, gof-# fog.
Example 7: Let-A = {1,2 3} B={p,q,r}and C = {x.y}. Let :A - Bbe defined by
() =p.f(2) = p,f(3) =r. Let g:B — C be defined by g(p) = x, g(q) =y, gr=y.
Delermineif: fng and gof can be: defined. ‘ -

“. -Solution: For fag-lo:be defined, it is necessary that the range of g should be a subscl of

" - the domain of £. In this case, the range of g is C and the domainof fis A. AsCisnot a
subset-of A, fog cannot. be-defined.

Since the range off .which.is {p,¥). is a subset of B, the domain of g, we sce that gof is
dcfmcd

Alsogof: A— Cissuch thul

- pef(1) = g(f(1))-= a(p) =x :
' --gof(Z) = g(f(2)) = glp) = ¥ .
2ol(3) =-{i(3)) = glf) =y y

o In thi".s example notc-'thnl'-g is surjective, and so is gof,

EZZ) In cach of the follow:ng questions, both f and g are functions from RtoR. : _
' _Dcflne fog and gof, whcrwcr meaningful. :

a) f(x) = 5%, g(x) =x+5
- By E(x) = 5x, g(x) = x/5
- ) f(x)= x?, g(x)=sinx +3
CA R =Xl p0) =6

: Rema_rk: Functions can lead 1o relations. How can this happen? Given a [unetion -
f:A’=> B, can you define.a relation? What abhout REA X B, “where (a,b)€R .
iff b ="((a)? This is.a relation that.arises from [.

We now come to atheorem which shows us that the identity function behaves like the
number [ e-R-does for muftiplicition. That is, if we tuke the’ composition of any
function ['with-the suitable identily function. we 2cl the same function f. - . T 19
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Theorem 32 For evesy lunciion 1A — AL we have feby = Fand [yol-= €.

Proaf: Siitee Batly § iond 1, ave defined [rom A ta AL both the compositions ol . and Tyef
are detined. Moreover, %X € AL ’

[l (3) = (b)) = (%) 80 Tl g = [

Also. ¥ x e A,

],\"r (\] = ],\(’-{x)) - [(x). K0 I,\'"f = l‘- .
On the lines of this theorem you can try the nest exereise,

E 23 0Bisanysctand @B — AL prove (hitl J o = gand polyy = g.

I (he ease of real pumbers. you know that given any veal number x # (), Iy & Osuch
that xy = 1. y is called the inverse of x. Similarly, we define an inverse function lor %

a given [unclion.

Definitions LLet [: A — B be 2 given function, [T thare existsa function p:B— A such thal
fup = Ly and ol = 1. then we say that g is the inverse of o and we write ¢ = 1
Forexample, consider R — R defined by i(x) = x+3 WwedefinegR—Rbyg(x) =
x=3, then fop(x) = {(p(x)) = g(x)3 = (x—3+3=xVxel. Hence. Tug = (4.
Similarly. g.f = Iy (verily). So g=1" ! .

Noté that, iii lbe above example, f adds 3 tox and g does (he opposite—it subtracts 3 form X. -
Thus, the key ta {inding the inverse of 2 given function is : (ry 10 retrieve x from {x).

For example let :R — R be defined by [(x) = 3x + 5. How can we retrieve X from

Ix 4 57 The answer is “first subtract S and then divide by 37 Sawetrvg(x) = ___x;:\.

And we Tind

! . )-S5 -5) -8
pof(8) = w(Ii(x)) = ﬁ.-‘_]._;.....- = .@.’E..'_{_-_)__'J = % E
Also. by 0) = 3gis)) + 5 = 3P s = o ver, ,
o t
E  E2What is the inverse of iR —» R:f(x) = 32
'

Do alt funclions have an inverse? No, as the (ollowing pxample shows. -

Example 8: et f: R — Rbe given by l'(x)' = | % ¥ € R. What is the inverse of [?

Solution: 17 { has an inverse g:R — R we have fog = Ty, i.c. ¥ X €R, fug(x). =x. Now
take x = 5. We should have fop(5) = 5, t.e., f(g(5)).= 5. But F(g(_S)) = 1, since f(x) =
" { % ¥ W reach a contradiction. Therefore, [ has na inverse.

In view of this example, we naturally ask for necessary and sufficient conditions forfto
have an inverse. The ruswer is piven by the following theorem.




.

Theorem 4: A-function f:A — B has an jnversé if and only if [ is bijective.

e
Proof: First suppose f is bijective. We shall define a function g:B — A'and then prove,
that g = {1, o :

- Let beB. Since fisonto, there issomt.‘: a€A suchthatf(a)=b,and, asfisonc-one,

thereis 6nly onesuch a€A. Weuke this unique clement aof A as g(b). That is, given
beB, wedeline g(b) = a, where f(a) = b. '

Note thal.since fisonto, B ={f(a)la€ A}. Then,wcare simply defining g:B— A by
g(f{a)) = a. This automatically ensures that gof = 1,,.

Now. for-this g, we prove tnat g = f~'. Let 0 € A. Then gof(a) = g(f(a)) = a. by the

- definition of g, sothat gof =1,

Next,lct be B. Then, if g(b) = a, we must have . ' ;
'I(2) = b (by the definition of g), so fop(b) = f(g(b)) = [{a) = b.

Hence, fog = Ip.
This proves that g = 7!,

Conversely, suppose f has aninverse and et g =f~" We must prove that f is onc-one
and onto. ’

Suppose f(a)} = f(a;) then g(f(a;)} = gif(a,)).

= gof () = gof (ay) '

=>a; =2 because gof = 1,

So f is one-one,

Finally. given be B, we havefog = I, 5o that feg(b) = I(b) = b. .e... {(z(b)) = b. So.
Biven beB, thereis g(b)€ A such that f(g(b)) = b. Thal is. f is onto,

Hence the theorem is proved.

* E25) Consider the foliowing fungtions from R to R. Far each determine whelher

it has an inverse and, when the inverse exists, find it.

a) f(x) = %2

by f(x) =0 .
) f(x) = 11x + 7

We now come to a particular kind of function; namely, a binary operation.

L.5.2 Binary.Cperation

You arc familiar, with the operations of addition and multiplication on the set of réal
numbers. Addition-is a function which associates with (a,b) e.R? the element a + b of
R.So,itisafunction from R X Rto R. Can you seg that multiplication is also'a function
from R X R'to R? These funclions can be performed on any two clements of R, They

* arc examples of binary operations, which we now define,

Definition: A binyry operation on a non-empty set S is a function from S x S tn &,

Thus, a binary operation on S associates & unique element in S to each pair of elements
in . The word ‘binary’ means irivolving pairs. It is customary to denote a binary
operation by asymboi such as +, ., 0, *, cle. :

Sets, Funelionn sud Fickds
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. As mentioned earlier, + and X are binary operations on R.

a+b

Anotherexampleiss«: RX R R:axb= 3

Some binary operations can have special properties which we now define.

Definition *. A binary opcrauon w onaset 8issaidtobe
a) closed o asubset Tof Sift) » LeETH 1, eT.

b) commuuiativeifax b=bx a'Fa, beS,

c} assoclitlve if (axb)x ¢ = an{bxc) V-a,b.ceS.

For cxample the operations of addition and multiplication on R are commutative as

well as associative, But, subtraction is neither commutative nor asseciative on R, Wh}’f
Is a—b=b-—a, or (a-b)~¢=a—(b—c)¥a,b,c€R? No.Forexample, ] =2#2-1
and (1~2)~3 # 1—-(2-3). Alsosubtractionisnotclosedon NER,because 1 €N,2€N
but I-2 ¢ N,

Note that a binary.operation on § is always closed on S, but may not be closedona
arbsetof 8,

tn calculations you must have often used the fact that' a(b+cy = ab + ac and (b#c)a,

= ba + ca % a,b,c € R.. We say that multiplication distributes over additionin R, In .
general, we have the following definition. .

Deflnitlon: If o and * are two binary operations on a set §, we say that & s distributive
overoif ¥ a.b,ceS, we have
ax(boc) = = (a» b)o(axc), and (boc)a = (bxa)o(cka).

Example9: Letaxb= -J'*—-;—'-b— “a,h € R, Prove that the opération of muluphcntlon
in R distributes over #,

Solution: We have o seo whether a(bac) ='ab ¥ ac and (bxc)a=ba x ca.

(b+c}) alr 4 ac

Nowa(bxc)= a 5 = ey = ab ¥ ac.
Also(b*c)a = (b;—:c) a= ba;—ca = ba w ca.

Hence, multiplication is distributive over #.

Now, go back to E10. What docs it sny? It says that the intersection of sets distributes
over the union of sets and the union of sets distributes over the intersection of sets.

Lzt us now look deeper at some binary operations. You know that, for any
a€R,a+0=aand0+a=aanda+(—a) = (~a)+a =0. Wesay that Ois the identity
clement for addition and (—a) is the negative, or additive inverse,of a, In eeneral, we
have the following definjtion.

Definition: Let » be 2 binary operation on a set'S. If there is an clement ¢ € S such that
YaeS awe=aandesa=a theneis called an identity ¢lement for ». .

: , ! .
Forae§,wesaythat beSisaninverseofa,ifa wb = candb » a = e, In.this case,
we usually write b2 g~}

-t

In the following theorem we will prove the uniqueness of the identity element fos x,
and the umqueness of the inverse of an element with respect to , if it exists.
Theorem 5: Let & be a binary operation on a set 8. Then

a) if * has'an identily element, it must be unique:

b) if % is-associative and. s.€ S has an inverse with respect 10 *, it must bc umque

Proof: a) Supposc eande are both identity clcmcnts for h
Thene = ¢ % ¢’, since €' is an identity element
=e',sincecis an :dent:ty element,

That is, e = ¢’ Hence, the identity ~lement is'unique,
p .

m= 'Txx

e




b) Suppose there exista,be Ssuch thats xa=¢=a x sand
s % b=-¢ =b % 5, ¢ being the identity element for &. Then
a=qxe = aw (sxb)

= (a#s) * b, since « is associative
=cxb=Db

Thatis,a=b.

Henee, the inverse of s is unigue,

This theorem allows us (o use the identity ¢iement and the inverse, hencelorth,

Example 10: If the binary operation @: R X R— R is defined by a@b = a+b—1,
prove that (D hasanidentity. If x € R, determine the inverse of x with respeetto (D,
if it cxists, , ' : '

Solytlon: We are looking for some ¢ € R suchthat a@®e = a = :@a V-0 € R, Now,

a@e=a+ec—1. Sowewant e€R such that a+e—1 = AV aeR.

.Obviously, e=1will satisfy this. Also, 1 @ a=a%aeR. Hence, 1isthe identity

clementof @,

For x € B, if b is the inverse of x, we should have b@®x = I,

i, b+x—1=1, sob=2—x

Indeed, 2-x)@x=2-x)+x—1=1, and x@ 2~x%) = x+2-x~1=1,
So x7=2-x.

E26) Far the following binary operations defined on K, determme whether they
are commulative, associative or have identity clernents.

A x@y=%x+y—-5

b) x wy=2(x +y)

c) x.f.\.y:-":zl

Now that 'you are familiar with sets and binary operations we will study sets with
particutar types of operations. This course is built on such sels. -

1.6 FIELDS

You must be familiar with the sets

_ Q, of all rational numbers

R, of all real numbers

C, of all complex numbers.

In this scction you will discover that these seis are exampies of ficlds. Q and R were
known 1o Euclid. way back in 300 B.C. "Fhe complex number field. C. s relatively new,
N wiy developed in ihe 18k cenlury.

Sels, Functlons wid Flelds
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A set F for which AT-A3 hold is
called u group with respect 1o +

Fis called o ring with respect 1o +
and - if il salisfics Al1-Ad, M|
and D~

All fields need not be infinite sets. You will also come across fields with only a fidite -
number of elements, These finite (ields were Sllldlcd by Gauss in his book
Disquisitiones Arithmeticae.

In the following definition we will talk of pmpcrtics of the binary cperations denoted
by ‘+'and '-'. Do 1ot confusc these with the usual addition and mudtiplication in R
(though these operations in R do satisfy the properlies given, as you can check for

) yourscll as we go along).

!
Definition: Let + and - be two binary operations on a non-cmply set F. The set F is

called a field il the following 9 properties hold ¥ a,b.c € T,
Al) + is associalive: (n+b)+c = a+{b+c)

A2) 3 an identity clement with respect o +, denoted by :
a0 = O+ = (013 called the zero clement).

A3) Every clement of F has an inverse with respecl o +; lorany e e I, 3 b € F such
that a+b = 0 = b+a. b is wrilten as (=a) and is cailzd the inverse of a with respecl
lo +.

AdY + is commulative; a + b= Db+ a,

M1} - is associative: (a-byc = a(be)

M2)3 an identity clement-with respect to; denoled by e
ae=ea=.

M3) Every clement of IF\ {0} has an inverse with respe.: o @ : for ony a € R\{0}
I b e F\ {0} such that a.b = ¢ = b-a. (b is written ag a7Y)

i
M4) - is commutative: a-b = b-a

D) - distributey aver + :
(a+byc=wc+beanda-(b+c) =ab+ac

The operation that satisfies A1 —Ad iscalled addilion, anditsinverse operation is called
subtraction. The other hinary operation is called muitipliention, and its inverse
operation is called division. Thus, subtraction and divi‘;ion are defined by
a—Db=a+{-b), anda+b=ab" forb£0.

Nole that a fickd is closed under the basic operations of addmon subtraction and
multiplication. The set of non-zero clements of a field are closed under division. Can
you sce that both Q and R are ficlds? You just need to checek that they satisfy the 9
propertics for the usval operations of addition and multiplication. The system Zisnot
a ficld betause, for example, 2 € Z docs not have a multiplicative inverse in Z., This
violates property M3.

E27) Show that the system C of complex numbers is also a field, the operations
beiug piven by '

(n+ib) + (c+id) = (a+c) + i(b+d), and )

(a+ib) - (c+id) = ac — bd +i{be+ad) ¥ a,b,c,deR. (i=V—1.)
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An important property ol every field is expressed in tle following resull.

Theorem 6: 1(T is a ficld, then % a e, a-0 =)
Proof: Leta-l=b.

Thenb =a-0=a{0+0)  {becausel +0=0) ' ' ) ‘
=ud-knl . (distributive property)
=h+h- '

Thatis,b=Db4+ D
Hence0=b + (=b) = (b+b) + (=)
= b+({b+{—D)) {Associative property)
=h4+0
=D '
Thus.b=0ic.,a0=0
So larwe have only given cxamples of infinite liclds. Now we give an example of a finite
field. - '

Example 11; On the set Zy.= {0,1,2} we define the binary operations @ and () as
follows: '

X @y = remainder left onydividing 5 + y by 3.

x (O y = remainder left on'dividing X ybyl

X, yeZy -

Show-that Z, is a field. It is called the fleid of integers modulo 3.
Solutlon; It can be ensily verificd that both the operillions are commufistive and
. associative. Qand I are the additive and multiplicative identities respectively. The

" additive inverse of 0,1.2, are 0,2 and 1, respectively. The multiplicative inverses of 1
and 2 are | and 2, respectively. You can also verily that multiplication is distributive

over addition. So Z; is a field. Note that Z, is a [inite field since it only has 3 elements. -

Ingeneral, given any prime number p, we get a finite ficld Z,. The underlying set aofZ,
is {0,1,2,..,p- 1}, The binary operations on Zg arc @ and (O defined as (ollows:

X @ y = remainder left on dividing x + y by p.
Xy = remainder Icft on dividing x-y by p.
Mxyel,
" Tliese fields are called prime ficlds.

E2R)IfR = {a/b|abeZ. bodd}, is R fickl?

Belore ending this sectron we wilt definc an important trait of a field, numely, s
characteristic, : -

- Definition: If, for a ficld F,3n €N such that na = 0% aeF. then the least such
positive integer n is cafled the ‘characteristic of the Field F,

. 1f no such positive integerexists we say that the field is of characteristic 0.
o4 .

- i
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Exﬁmplc 12: What are the characteristics of
al Q. R, C?
b) the prime ficld Z,,. for any prime aumber p?

Solution: a) Forany ne ™ and x € Q,nxy = 0 == x = 0. .". . the characteristic of
Q is zero. Similurly, the characieristics of R and C are zero.

b} The characteristic of any prime ficld 2, is p. Why? Well, what.happens il you take
anclement X € 7, and divide px by p? The remainderis zero. Thatis, p&x = 0, for
any xe7Z A]m ifyoutake any natural numberm, 0 <m<p,thenm&1l=m # 0.
I‘hcrcfnrt. pisthe least positive integer such that pQx = 0% x e Z,,. Thistells us that
the characteristic of Z, is p.

it can he proved ihat il a field is not of characteristic zero then its characteristic has o
he a prime numlwer,

When you po (o the next unit you will realise how important it is to be theroughly
familiar with fields, Do make sure that you are quite ai case with this section,
Now let us brielly go through the points hroaght up in this unit.

1.7 SUMMARY ' ,

We conclude by summarising what we have covered in this unit. We have

1) studied the conceprs of sets, subsets, complements, unions and intersections of sels.

2) shown you liow to represent sets by Venn diagrams.

3) defined the Cartesian produet of sets, as wcll as relations and equivalence rclallons
o a sct.

4) defined the notions of a functio, composition of functions and inverse functions.

5) studied the possible properties of binary operations on‘a set.

6) defined and seen many examples of ficlds, both infinile and finite.

7} defined the characteristic of a [ivil.

1.8 SOLUTIONS/ANSWERS

El) A={11,12,13,14} C —{I.E.'..“- 10,24
B={12.14} D = {1/2. 1/3.2/3}
E2) P={x{xisanintegerand 6 < x <10}
= {x | xis an intcger and 7 = x = 9}
Q ={x]x = | orxis a prime number less than 12}
(A prime number is a number whose anly factors are [ or itsc i)
= {x | x is a multiple of 3}

““E3) (a)and (d)

Ed) For xe AUB, wehave-x€ A or x€B. Incither case x € C. Therefore,
AUBCEC.
E5) $ UA={x|x€ % or x¢A)
= {x1xeA}, xince ¢ has no clements.
= A
9 . since § SA.

)

$NA
E6) a) True b) False ¢) False d) True ¢) True
E7) a)fabepal byl o fapt &) ap)
(AUBINC=(ANCIU(BNC) alwavs, as vou will see in E10).

E8) a) Since xe A if and onty if X ¢ A" we lind that A and A are disjoint.

1 o T LR T
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b) Forany x€X. x€ A Or X€ AS. Therefore, AU AT =X.
¢) Let x€ (A°‘)‘. Then x ¢ AS, sothat x € A. Thus,
(A € A. Ontheother hand, if x € A, then x ¢ A%
Hence., x&{ASF. . CAS(ATS. . byihe definition of equality of sets we find
(A9 = A. '
9) xe(ANBYF <= x¢ AND <= Xx¢gA or x¢ 3= xe A or xeB°
<> xe AU B"

EI0) a)

A UB isall the shaded portion, (A U B) N Cis the double shaded purtion, As
you can sce from the figure, (his is the same as the union of A NC (the double
shaded portion in A) and B N C (the double shaded portion in B).

b)

(AN B)U Cistheshaded portion. From the ligure you can see that itisthesame
astheset (AUC)N(BUC).
Ell) AxB ={(22),(5.2).(23), (5.3}
Bx A ={2,2),(25) 3.2). 3.5}
Ax A ={(22),(25).(5.2), (55
EI2) Sinee the first element in cach pair has 1o be in A, we gel
As={1,2). Similarly, B ={2.3.4}. '

E13) (x,y)e(AUB)XC <> x€¢AUBand yeC.
"« %eA or x€B and yeC
' " (xy)EAXC or (xy)€BXC
<> (y)€(AX QU BXC)
£14) ) F BT T o :
Bi5) K is reficxive since 5 lg-a=0/1loranyach '
R is symmetric because, if 5 |a—b, then 5| b-a, forany a,b€N.
R is transitive because, if 3 La-band $1b=c, then '
5| (a=b) + (b—C), thatis, 5 | a—c, for any u,b.c €N,
EIG} Risrclickive,sinceaRa HacZ.
R is symmetric, since a R b => b Ra YabeZ
R is transitive. sincca Rb, B Rc==>aR cxabhce?

Z|={X€Z

x R 1} = {1}

Sets, Funclions and Flelds




\';‘ﬂnr Sres

El7)

" EIR)

19}

£20)

B21)

E23)

E24)
E25)

L26)

E27)

E2R)

Ris clearly reflexive and symmetric.

Now. ilaRhandae A, thenbe A. Again.ifh Re, then,sincche A, wepgetce A,
So we find that w hcnc\'c,r a€A . ceA Similarly,ifoeB.ceBand |f.1 €eCc eC.
ThusaRb, bRc =2 a R ¢, That is, R is transitive.

Iorhcli.bh-—{xeS]x Rb}={xeSlxen)=

Let ‘m, neN such that i{m) = (n). Then m+5 = n+5. Thercfore, m = n. This
means (hat m #£ n = {{m) « {(n). Therelore, fis 1 = 1, .fis not onto because
thereisno neN such that f(n) = [. Why? Well,if [(n) =1, then n+5=1,
and hence, n= -4 ¢ N.
fis'1=1. just as shown in E18,
Now fis onto because givenany z€Z, 3z ~ 5€ Z such that {{z—5) =z.
{f(x) | x € A} '
{f(1), f(=1), 1(2), £(3)}
= {2, 12,0} )
) TatA— Als]—=1(sincea, #a; => [,(a,) # [A(t2)), and is onto (since the
range of I is A). '
b) Suppose X has at least two clements, s.ly xandy. Then [(x) = ¢ = i{y), but

x #y. This means that fisnot | = |, which is a contradiction, T} herefore,
Xalso has 1o be asingleton, that is, have only one clement. iffistobe 1 — 1.

Therangeof T

A

"2} Both fog and gof can be defined.

fog (x) = f(g{x})) = Sg(x) = 5{(x+5) ¥ x e R.
gl (x) =p(l()) =1f(x)+ 5= ﬁx + S’v‘-xc R
Note that fog # pof.
b) (fop) (x) = 5(x/5) = x¥-x€R.
{gol) (x) =d5xr'5 =x¥xeR,
In this case fog = gof,
¢) (fog) (x) = (sinx + 1)-‘1nd (e (x) = sin x* + 3.
d) (fop) (x) = [x]* and (gof) (x) = IxJ7.
[ this case fog = gof,
Since I5n:A ~ AL Lxogis defined: Similarly, goly, is defined. Now, (Targ) (hj =
Iag(b)) = p(b) ¥ beB.
Lolavg = p
Similarly, goly = g,
Define £:R — Rig(x) = 3x. Then fog = I = gof. )
a) fis not I—Tsince [(—1) = £(1). ."., [is not bijective and {™' does not exist.
b) fis not onto, and hence £~ does not exist.
¢) fisDbijective, and heace [~ exists. Tn fact f":R-?R: ~'(x) = 3"—17

1
1) Sincex @y = y@® x forany x,y € R, @ is commutntive,

Sincc (x@y) @2 =x@ (y ®2) for any x,y.2 € R, @ is associative.
Since x@5=5@x = x. we get 3 1o bethe identity element fur(-:i-)

b} * is commulative. nol associative and has no identity clement.
¢) A.is neither commutative nor associative. and has no identity element.

Cisaflicid because "+ satislics A1~ Adl, the zero being ) + i) = 0, and the inverse

of it -k ib being {—a} + i(~b). " satisfics Ml = M4, the identity being-1 + 0 = |

and 1he inverse ol (a4 ib) being “'..:_'Ih, . 3 is itlso satislicd.

Hin 1
Overheve + iukd -« are the usuid -+ and - in Q. Therefore, Al - A4 are satisfied,
the zero heing 71 {or 0 or any odd b1y, M1, M2, Md and I arc also sutisficd,

U multiplicative identity being 171, But M3 is not bdllsflt,d since /1 has no
inverse in R,

r
H
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2.1 INTRODUCTION

This unit gives the basic connection between linear algebra and geometry. Linear
algebra is builtup around the concept of a veetor. Tn this unit we shall assame that you
know some Euclidean planc geometry, and introduce the cancefpt of vectars in a

geometric way. For (his, we begin by studying veetors in twa - and three- dimensional:

spaces. These are called plane veetors and space vectors, respectivcly,

Vectors were first introduced in physics as entitics which have both o measure and a
definite direction (such as [orce, velocity-etc.). The properties of vectors were later
abstracted and studied in mathemalics.

Here we shall introduce a vector as a directed line segment which has length as well as
a direetion, Since vectors ore line segments, we sholl be abte 1o define angles belween

vectors, perpendicular {or orthogonal) vectors. and so on.

We shall then use all this knowledge 10 study some dspccts of the gcometry of spacc.

Since the concepts given in fhis unit will be generalised in future units, you musr study

this upit tharonghly.

Objectives

After stpdying this unit, you should be able to

® define a vector and calculate jts matgnitirde and divection;
@ obtain the angle between two vectors;

o

perform the oporations of addition and buaiwl nruiitpiicadion on piane veciors as weli

as space vectors,

obtain the scalar product of two plane (or space) vectors;

@ express a vector s a iinear combination of a set of vectors that [orm an orthonormal
basis; :

@ solvesimple problems involving the veetor equations of & line, a planc and a sphere.

@

2.2 PLANE AND SPACE VECTORS

How would you find out the position of 2 point in a plane? You would choose a sel of

coordinate axs and fiz the point by 1ts x and y coordimares {ses Fip. 7).




Yorcdor Sphices

P(x v}
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Similarly. 1o pinpoint the position of a point in three-dimensionid space. s lase o give
ihree numbers, 1o do this, we ke three mutually pecpendicular lines Gixesyn space
which intersect in a paint O (see Fig. 2(a)), O is eolled 1he origi. The pexily
directions. OX. QY ind OZ on those lines are so chogen (hat il i right-himded serews
(Fig. 2(h)} placed af O is votated from OX 10 OY, it moves in the hirection ol 07,

b

‘\lf

#x

Fig. 2 D)

To i the coordinates of any point P i space. we take the foot of the perpendicular
from P on the plane XQY (Fig. 3). Call it M. Let the coordinatesof M in the plane XOY
be (x.v) and the leagt of MP be iz Then the coordinates of P are (x.y.2). where jz] is
the Length of NP, v s positive or negative accarding as MP is in the positive direction
OZ ar not, :

&
ya
1P (%y2)
| .
|
I
1
el
|
-+ i
9] i Y
! -l
1 ’4-
1 4o
1 ”I h
__ e ...._.L-’
¥ M

Fig 3

S, Tor cach point Pinspace, there isanordered lriiﬂc {x.v.2) of real numbers, i.e..an
clement of R (see Unit 1), Conversely. viven anardered miple of real numhcrs Wy can
easily find 2 paint P in the space whose coordinates are the given lrlplc So there isa
ane-one correspendence between the space and the st R’. For this reason. the
chree-dimensionad space is often depated by the svmbol R*.:For a similar reason a plane

wepoted by 17 e e by R

S =
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In R=or R we come across entities which have magnitude and direction. They are Proand Three-Dimensinnal Spuces

called vectars, The word *vector® comes from p Latin word that means ‘ro citery”, Let oy
sce what the mathematical definition of a vector is,

—_— - '

- . 3 1. . f . . .
Definition: A vectorin R7or R7is adirecied fine segment AR with an initial point A pnd
a wermmal point B 1is length, or magnitude, is the distance hetween A and 33, and is

" '-_.) e _9 L} ' . . - ) _.>
-denoted by 'AR . Every vector AB hasa direelion, which is from A to L In Fig. -4 A,

CD . OI:, CF arc examples of vectors with different directions. JAB | is read us ‘modulus of A’

4
Z

A
Fig. 4

Now, iI'.-’TI-B) isq planc vector and the coordinates of A are (a,. a5) and of Bare (b, b,),
then in;i = iﬁl =/ (a,=b))% + (5a—b) . Similarly, if A = (a,,82.0,) and

B.= (b,ha,by) are two points in RY, then the length of the space veelor !-\_I—g is

|mi = “ﬁf = S (0= + (a3~ ba )l + (aa=Dy)".

— —
The vector AB is called a unlt vector if [AB} = 1.

— — z
Definitlon: Two {plane or space) veclors AB and CI are called parallel il the lines . /E
AB and CD are-parallel lines. If the lines AB and CD coinzide, then AB and CID are
suaid to be in the same line, . / o
From Fig. 3, you can see that two parallel vectors or twa veclorsin the siume line may €
have the same dircction or opposite dircclions. Also note that parallel vectors need ol

have the same length.

T

Fig. §
= . —
Definition: If AB and CD havc the same length and the same direction, we say AT3 s

_equivalent to CD . 1T A and C coincide. and B and D coincide, then we say A-ﬁ and CD

Note that equivalent vectors have the same magnitude and dircction hutl myay have
different inittal and terminal points, In geometricapplications of vectors, the initial and
lerminal points do not play any significant part, What isimportant is lhe magnitude and
direction of a vector, Therelore, we may regaed two equivalen] vectogs as equal
vectars. This means that we are free 1o change the initinl point of a vector (but not its
magnitude or direction),

Because of this. we shall always agree to let the origin, Q. be the initial ppint of all our

- vectors. Thal is, given uny vector AB, we shitdl represent it bysht cquivalent vecior 3

1




Yeotnr Spaces

—_— . _—
OP, for which |OP| =
_ the terminal pmnl P, compleiely determines Lthe vector, Ilull is. lwo (I:fﬁ.rl‘nl points

— e — . . )
|AB{and OP and AB have the same directions (sec Fig.6). Then

“Pand O in R (m %) will give us two different vectors OI’ ind OQ

'Y

Z

¥

0 "

X
Flg 6

E ENInFig. 4 we have drawn 4 vectors. Draw the vectors which are equivalent to

P(x.y)

them and nave O as their initial points.

As we have noted, a veetor in R or R” is completely determined if its tegminal point is
known. Thereisal—1 correspondence between the vectors in R*(or R} and the points
in R? (or RY). This correspondence allows us 1o make the following definition. '
Definitlon; a) A plane vector is an ordered pair (a,,35) of real numbers,

h) A space vector is an ordered triple (a;,a,,a3) of real numbers.
Note that we are not making any distinction between a point Pin the plane

- . — 9
" {or P(a,,az,a,) in space) and the vector OP in R™ (or R%).

We may often use a single letter v or v for a vector. Of course, w or v shall mean a pair
or a triple of real numbers, depending on whether we are l'ﬂkmg aboul R* or R?,
Forexample, u = (1. 2) v ={0.5-3), clc.

Pefinitlon: The veclor ({] 0} in the plane, and the vector (0,0,0) in space are ca][cd lhc
sero vectors in R™ and R, respectively.

Now, il b= (x,y), then can we obfain its magnitude in terms ol x and y? ch we

cint, [1s magnitede in given by [u | = \W as you can sec from Fig.7 (and applymg the
Pythagoras Theorem!) ) ' .

Similarly.if v = (x.v.2), then vl = Vst vt 22

L.t us consider the following exampies.

) MWe=(3,12),lnf= /5°+12* =13
—e

i) Mu = (=0, Yyl = y (—=672+ 12 = 37

i) ifv= (1,2,-1), then |vj = 12+ 274(=1)° = g
W) Ify = (I’V3 1/V3, [!\/_) then v is a unit vector because |v] =

v) Ifw -(ln 172V 23736), shen wois a unit veelor b ssp fwd = 1




As we have mentioned earlier, two vectors in R® are equal if their terminal points
_coingide (since theirinitial points are assumed o be atthe origin}. Thus, in the ianguage
ol ordered pairs and triplets, we can give the lollowing definition,

Definition: Two plaiie vectors (ay,4;) and (by by} arc said 1o be egual if 2, = b, and
4z = by. Similarly, two space vcctors (a,,a2,2;) 'md (by,by,b {} are said 10 be equal if
. a| = b|, s = h-l (l'q, = b

For cxample (a.b) = (2,3) if and only ifa=2andb =3 Alsa(x.y.l)= (2.3.a) il and
onlyifx =2, y=3onda=1, '

E2) Fill in the blanks:
)(ZU)—(.xy}—-‘;-xw .................................... and y = ..o
B}(1,2)=(2,)isa......... Leerereenr e raarteener e ine e . statenuent,
(123 =(l.22) =2 i e

Now that you have got used 1o plane and space vectors we go abead anl dcfmr. some .
opcraunns en these vectors,

2.3 OPERATIONS ON VECTORS

You are familiar with binary operations on R (Unit [}, We use these to define
operations on the vectors of R and RY, . -

2.3.1 Addition

Two vectors in R? can be added by considering each as an ordered pair, rather than as
o directed line segment. The advantage is that we can easily extend Lhis delinition 10
vectors in R,

_ Dedlnltion: The addition of (wo phane vectors (x, .yl) and (:h-.,y ) is defined by

(i) + Gizya) = (0+xg, Yihya). _ _
Sirpilarly, the addition of twa space vectors (x,.¥1.2,) and (X5.92,23) i8 defined by

(xuynz) + (X222} = (G +x,y 0y 21+2).

'Ihe geometric inlcrprt.tnlion'of 'l(lditinn in R? is casy Lo scc. The sum of two vectors
OP and CB in R?, is the vector OR where ORis the dngnm] ol the p.lr.:llclounm
“whose adjdcenl sides are OP and OQ (Fig.8). Note that QR is equivilent (o OP

R(x, +X 5,y +v3)

‘ [}
Y Q(%,,¥,) E
)
]
I
' : !
/ (X -}'|) . i )
' I
-------- ‘- .
Oy Ty Ty

Let us look at an cxample of addition in'R? and R?

. Example 1: Find the sum of
a}(4,~3)and (0,1), B)(1,~1.2)and {-1,2,-5).

Twn-and Three-Minentions] Spaces




Yeclar Spaves

.

Solution: a} (4,~3) + (0.1) = (440, =3+1) = (4.=2)
(L= 12)+ (=12, =8) = (1~1, —142.2=-8) = (I,1,-1)
{tis abvious that the sum of 1wo plane (or space) veetors isa Pline {or space) vector, so
thal vector addition is a bizary operation on the set ol plane vectors and on the set of
space vectors. The sct of all space veetars. RY, satisfies the follewing prapertiss with
respect to the operation of veclor addition. For any (a,,02.a). (h,.5a.by). (c).c)
ing .
i} veclor additiom is associmive:

() + {(bbabad F (o eaaey )

= (i) + (b+oy . bateas bykey)

= (0 + (b +c) s + (Dakea). o+ (b))

= {(a+Db)) + oy (agkba) + otk by 4 ey

= [(np.aaia) + (by b b} + (coneed)

Note that inthe above proal we hivee matle wse of the fact that the a; 's. by's. c,'sure

vead numbers, and that, far real numbers, addition is associative.

veotr dditiou is eommutatlve:
(i 1) k(b hadby)

Cha s Bt by, astby)
= (hy+u ba+ o, hotay)
= (hybabad + () 20000)
it identityclement exists for vector addition: :
Vansider the veciar (0.0.0). We have (ay.in.00) + (0000 = (a, 40, a3+0, a +01) =
Cag i), Similarly, (0.0.0) + (a).2,83) = (a;.02.0,). So (8.0.0) is the identity
viement Tor veetor addition. We denote this vector by 0. (Now you know why 0 is
called the zerovector!) -

1) every space veetor has an inverse with respect to addition:
Chiven (a).;.05). consider (=a;,—0y,~a,). Then clearly
Cirparaan) & (=ap . —=np.—a3) = (0.0.0} and
=afoinae—iy) e (agaasaag) = (0.0,0).
So he (additive} inverse of (ag.aa,ay) is {(—1,,—8z,~a3). Thatis. ifn = (a;.22.a1),
thep —n == (—a;, —a,, —a,).

E E3)Show that praperties (i) - (iv) hold good for R,

e bt

e




Nuw that we have discusied the properiies of veetor addition, we are re udy 1o define Twn-and Three-Iimensional Spaces

winsthey operalion on veelors,
2 Scalur Nh:!tiplication

We now consider e multiplication of any pair or (riple by a real number. *Scalar* means number.

Defipition: If ae R and (a),a;) is a plane veclor. we define the multiplication of
(a5} Dy the sealac « to be the plane vector {4y, et a;),i.¢.,

el ) = {ey. o)

Similarly, a (a,.82.00) = (e iy, @0, o ;). .
Wh.ﬂ docs scilar muhiplication mean gcomunc.uliy" To understand this we mkc o
. a,ifla=
OP avectorin R, and & ¢ R, Then a- OP is a vector whose length is |af 1OP| and lal={ —a, ifa <0
whase direction is the same as that of OP, if a > 0, and opposite Lo that nt‘OP.
. - . ey g 2
ifa < @, For example, Fig. Y shows us 3 vectors, OP, QQ and OR .in ®°. Here,
. — —> Y
G0 =2 OPF and OR = —(12)0P. o
' . F1s R
Now, for any plane veclor u = (a;.a,). and forall o« € R we will alpebraicatly show 3
that |aul = e |u]. 2t Pi2.2)
Sinccau = (o ay, @0,), we get |au| = o' al+u1T§_ Rl
= !a[\/’a‘l'-i-a = |a| ]ul ’ -1 01 2z 3 4 X
Re1e1
Ed) For a spice vector u, prove that |aua| = [l lul. e R.
Flg. 9

Now. for any plane (or space) vector v, we define ~viobe (=1} v. Then
u—v=u+{-v). for any two planc or space vectors u and v. THus we have defined
subtraction with the help of scalar multiplication. ’

We now give, with proofs, 3 propertics of planc vectoss, related to sealar
multiplication. For this, let «,8 € Rand u = (aj,a:), v = (b1.b;) be any two plane
veciors. Then
Da{utvi=cu+av
Proof:a{u+v) = fa [(a;.a3) + (by,ba}] .

= (3, + b, 8z + by) ‘

= (& {a,+b;), @ {a;+by))

= (atd) + ab;, agy + abyp) .

= (qa,, aaé) + {ab,, c:sz -

= a(a.a;) + alb.by)

=oau -t ay

Scatar multiplication distributes
aver veclor addition.

ii) (o« + B u = au + Pu . .

Proof: {x + P}u = (x + @) (a;. a3) ) : .
={{a+ P an(a+B)a) -
= (o) + B, aas + Bay)

= (aa, aay) + (Ba, Pay)

= a(ag.a;) + Bla).az)

=gqu+puo

T
A




Vectnr Spaces i a (P u) = (i) u
Proof: o (Pa) = a(Pa, ) = c(Bay. Baz)
= (ap ay, «ff ax) = ab (a,.1)
= (nB) w '
Similarly.
B (au) = (BeJu = («B) u

iv)l'u=u

Prond: 1-u =1 (i,a,) = (1a,.tas) = (agay) =

v} it = 0, the zero veclor in R2.
Praol: 0ru = 0 (ay,a2) = {a, O.ag) = (0.0) =

E  5)Provethatthe propertics (i) to (v) given ahove also hold for the setof all space
VICTOTS.

. ]

- Now that you arg familiar with the operations of addition and scalar multiplication al
vectors, we intraduge the coneept of lingar combinations, (You will study mare about
this in Unit 3.)

Definition: A planc (or space] vector x i said (o be a linear combination ol the non<zero
plane {on \pase) veelon iz, il there exist sealars Qye.atty,. which are not
wll 2era, such lh.ll X w0y 0y ok oasuy oL oy,

For examiple. the veetor {3.5) is o lnear cambination of the veetors (1.4) and (0.1)
because (3,55~ 30N + S0, 1). ‘»umllrlu (1.1.2)is n lincar combination of e vee tors
G U beenaee (11 20 = (10000 + (1B + 2(0.0,1),

N RSN s

[ AT AL \
FAheg, \

—

E }?(\]Shtl'-vlhnlc\CI'_\'\'cC!L‘_ﬁL(E!.l‘I}ER: i linear comination of the vectors {1,0)
i (0,1, ot
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We end this section with mentionizg that the sel of ail planc vector, sdene sirh ihe Twn-and Three-Dinienslazal Spaces

operalions of veetor addition and scudar multiplication defined whove. torms an
algebraic structare entled a veclor space. { We will glefine the terns v space’
Unil 3.) Similarly. the set of all space vectars, along with vesinr adid g aned sealar
muliiplication diined above, forms u veefor space,

Let us now [ook a1 oae way of multipiying two vectors.

2.4 SCALAR PRODUCT

You know thal every vector has it direction, Thus, it niikes sense fo speak about the

angle between two vectors, You must have fearnt, in Buchulean peomenry. thatany tw o

n . » . 1 a 0 . ._.>

intersectinglines determine n plane. Thus, given any two disfinct non-zero vegions or ’
- ) —

and Cﬁ , we get a plane in which these two vectors lie, Then, the angle between OF and

—
Q@ is the radian measure of £POQ which is interior Lo APQO in this pline (see

Fig. 10).
-9
Z )
’ Z
nisihe
ingle
. belween
Q U_I?nmi 0-6)
> T
/" b _
T 70 Y Y
: B
1
!
1
#x
(1) {b}
Fig. 10

-y )
[fOP and OQ have the same direction, the angle between them s defined 1o be 6, and
il they have oppasite. directions, the angle betwesn thewm i detined o he . Inany other
case the angle between OP dnd 6(3 will be between Oand . Thus, the angle U betwsen
any lwo non-zero veclors satisfics the condition thit
ez b=
Su [, we have seen how 1o obtain the angle bettveen veetors by using the geametrical
representation al vectors. Can we also eahtain it il we use the ardered pair (or riple)”
representation of veetors? To answer [his we definc the scalir product of two veetors,

an ' B e T A Py sy
Pl Mubiall PO UL VI LR Tl

Deltnitior: The sealur product {or dot product, or nner praduct) al the 1o vectan
. . . ascadar.
g = (u.a0) and v = (b.by) is defined to be the real number by &g, 1s e
denoted by o - v, Thus,

1w = ayby kaghs

Similarly, the seafar product ol u = (2,050} and v = {la; g} s
u-v =0+ aaba + a3b1

Remark: Since the dot product of lwo vectors is a scalar, we call it the scali product.
: 3 : vl K] 4 :
Note that the scalar product is not a binary operation on R or R7, However. 1t has
certain usefu! properties. sume of which we gise i the following theorem 37
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Veelor Spaces

Q(bj1 i1 3)

/Pu,..x.iaJ}

$(0,0,0) .

Fig. 1}

The Cusine rule VS !h.\l lor
A ABC bulow, ¢ —[l 4 -

Jab cosb}

£

Theorem 1: IT uv,we R (or R7) and o€ R. Lhen

a) vu = lult, sothat wu =y

by uu=0i{fu=10 :
c) uv=vu

) u{v4w) = uv + uw

¢} (o) vy = (uv) = 1 (rev)
Prool: We shall give the proof for RY. (You ¢an do 1he proofs for R simifarly.)
Lety = (4)as.ay). v = (bybaba) and w = (¢p.c5,eq), Tlien,
2 1 A ]
a) uw = aykay+ s = ol
B) u=0=>un=0 siowea; = 0.0 = 0,4y = 0. Conversely,

3 A .
vus=0l= a-i + a% +aja 0= ay =0, 32 =0, 320, since the sum of non-negalive
real numbers is zero if 2nd ondy i cach one of Biem is zere.

¢) u = aglyg ok aghy+ rhh-; = iy b+ iy = viy
Yo .Ion | yattry linisking the prool of the thearem now! That” swh.nl we su_vln E?.

£7) Prave (d) and (¢) of - Thenrem |,

i

Now we are in a pusitian to obtain the angic hetween two vectors algebraically, We
hive the lollowiny theorem,

Theorem 2: 1T u = (ab0i0) and v = (by,ba.by) are non-zere space vectors, and ifais
the ‘mnh, between them, then jif ivi cos 8 = w-v, that is,
N = cos™" (u-v/ul Ivl}.
Proof: Let u = OP .md ¥ o= OO 50 the courdinates of P and Q arc (3;,32,33) and
(n; nb" h"a)
First suppose O["' OO nre nal ps 1r.:l|-..l (see Fip. 11).
3y the cosine rule appfied wo APOQ (in the plane dclcrmlnud by 0? and O—d)
FQ* = OP* + QQ* ~ 0¥ - 0Q con 0, e,
20P-00Q cosh = QP +0Q - PO L
= (1% + :l{ + .1:} + 'lh‘: 4 r' + |1;:] - ;['|1—h,)2 12 {il:‘-hz}: + (:’l_\—h_-.]:}.

O}" JL‘:i cus B~ Zpagly i aghs Fade) = 2aey {becanse OP = ;61-‘! and

o0 = 1001h.

Thus, juify|cos v - u-v. _ )

So we have proved Thcorem 2 in the case whenaand v are not paralfet.

ffuund v are parallel then v = au forsome ltEr{(\u. Sec. 2.3.2). Now, we have two

possibitities o = Oand « < 0.
o~ theatl = Dandeosih = 1. %50,

I N N | LY oot S| ol 1y L refl = UV

LSRN




lic <0, then jn! = —a and cos 8 = —~ . Hence, Jui lv! cos 6 = —[uf Jv) = ~iu] Jau! =
=12 '

—Jof " = a {yw) = w an = yev.

This, the theorem is true in these 1wo eases also. and heace, s true 1or all nor-zerg

YCCTOrs W ang v,

i EB)Provethat ini jvicosf = uvfor any two pliine veerors o aned v, where B s the
angle between them,

Let us laok at some examples now,
Example 2: Find the angle 8 between the vectors u = (2.0) and v = (1.1).

Solution: ¢ satisfies 0 =< 0= ar and
wy T (2xl4+0x1)

cosit =
llvl 22400 AT+0?

,N

.2

T

J2
so that 8'= =/4,
* Exampled: Prove'that the vector v = (1/V'3, 27V3) is cqually inclined to u = (1.0} and

Ttow = (-3/5, 4/5),

- Solution: Note that fu] =1 = ivi = 'w|. _
If the angles between u and v and between v and w be « and B, respectively, then
cosa =AY —yy =15 .

: o uf vl

andcos B = v-w= —3/5v/ 5+ 8/5\V5 = ITAYEY

Since0=a=7m,0=P 5 and cos « = cos B, wepcta =,

E E9}-Prove that the vectorsu = {1,2,3} and v =,(3.0,— 1) are perpendicular.

Twnaand ThreeDimencionol Spaces

3
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%

E EI0)H the vectors v and v in each of the following are perpendicular, find a,

G u={la2).y=(-121)
b} u=(2.-5.6).v={(l A.a)
) u = (1.2, ~1).v = (3.0.5)

£ Fly Prove it the angle berween (1.0) and (- 3.4) s (wice the angle o
(1.0yand 113,27 3)

L
We go b 1o prove another property of the dot product that is very often used in the
study of inner product spaces (which you will read more about in Block 4). This resull
is called the Schwarz Ineqoality.

‘Thearem 3; For any lwo veclors u,v of R® (dr R), we have Ju-v] = jul v

Proof: Il citherar = 0 or v = 8, then bath sides are zero and the inequelity is true. So
suppose u # 0 and v # 0. Let 8 be the angle between a and v, Then, by Theorem 2,

cas 0 = —2Y_ This implies that
[ul Jvi )

fury|

eos ) = .Bulfeos 0] = 1.
w v

i ju-vi i

Thus, -= 1, thut is,

lurf {vi

vt = o

Note:

uv| = ju| {v| holds if either

i} uarvis the zero vector, or

ii) Jecos 0] = 1,i.c:,if0 =0crm,

So-the wwo sides in Schwarz iequality are equa for non-zero vectors u and vifthe
veclors have the same or oppoaite directions;

[n 1he next section we will see ow we canquse the dot proauct to write any vector as a
hiear combination of seme mutually perpendicular vectars,

=

Y-




Twi-and There-Rimensioaal Spares

2.5 ORTHONORMAL BASIS

We have seen how o caleulate the angle between any two vectors. I the angle between
two non-zeroe vealors wand v is w/2 then they are siid {0 be orthaogonal. Thatis , ifu and
vare metually peipendicular then they are orthopenal, Now. il and varcorthogonal,
thea, by Theorem 2,
ury .
D= eos w2 = ———- == wv = (],
Illr Vi
Convenelyoluviae nen-zeroand if v = 0 then the @ngle d between them salishics

. 1 -
costi = —i; =osathai= 57,
ut v
Thus, [or non-zeva veetors wind v, u-v = O§ll v and v are octhagonal,

Animportant serof orthogonal veclors in RY s (i) (see Fip. 12(0)), where § = (1,0) and
J = (0.1). Thus, i and jare unit veetors along the x and y axes, respeclively, They arc
orthopanal hecause i = [0+ 0-1 = (),

Sinularly. in R i = (1.0 = (0,1.0).k = (0.0.1). are mutuallvurlhnguml Thi veetors i, 1,¢.... are callad

{se¢ Fig. LZ(D)). since mudually arthoganal il eacli ol
them is onhoponal o each of the

y=10+0-1+00=0,jk = (-0 + §-0+0.] =0and ki = (014 00 - 1:00) = (b, athers.

Fy - 24
Y
A0 T
il 0 > -
—> —p . Y
O iy X i
ey . ()
X
“Fig. 12 .

Nolte that, Tand jin Rz. and i,j,k in R*, are not only mutually orthogonal, hut each of
them is also a unit veclor. Such a set of vectors is called an orthonormal sysiem.

Definition: A set of vectors of R* {or RY) are suid to form an orthonornial system if eacl
vectorinthesetisa unit vectar and iny 1we veetors of Lhe set are muually orthogonal,

An orthonormal system is very important because every vector in R (or ’R%) ean be
* expressed ac a tinear combination of the vectors in cuch 3 syaem, in the following

thcorem we wilt prove that any vec;or in R is a lincar combination of the erthogonai
system {i j,k}. ) - -
Theorem 4: Every vector in i is a lincar combinacan of i,j k.
Proof: Let x = (x..x3.x1) be any space.vector. Tuen
X = (Xpx2.X3) = X0(3.0.0) F 2(0.1.0) + x5(00.1)

= X0+ X+ xak,
Thus, our theorem is proved,

Note: In the prool above, x; = X-I; X2 = x-jand Xy = 57k, 41

e AN o




Vectnr Spaces

Fig. 13

-

Ea fact, if {u.v.w} is any erthonormal system in L7, then every space vector X can be
expressed asa lisear vennbinabion of o,y w a8

%= (x-n)u 4 (v)vF (xew)w

Since the praai of this is u litthe complicated we will nul give it aver iere,

Remar Kk: The resuft given in Theoren 4 also halds goog ioa n*, if we replace {i,j.k} by
= (109,05 = 001 [k alse true that every veotor in R? can be wrilten as a fincar
combination of an arthanoemal system h, vy in R

Since three orthonormal vectors in R* have (he praperty that all vectors in R* can he
wrillen in n.rms of these, we say thal these vectors form an erthonormal basis for the
veeror space R (We explain the ters ‘hasis' later, ll"l“l.:'l” 4.) Similarly, two
orthnnormat vectors o &7 fonm an onthanarnial hasis of R?,

Vxwmpple 41 eowee it

wo - o k)

vy TN i kg,oond

S ETARRIN RS

to;m au orthonorgal doon ol RY Fxpress x = i+ 3§-F4k as a linear combination of

UV, W,

Sobution: Since '} = 1 = fv' = iwl pad wry = uew = wev = 0, we see that {u,v,wlisan

. | R . - - .
orthonormilsystemin R Therefore. it foriis an orthonormal basis of R*. Thus, from
whatl you have just read, you know iz xesn be wrilteo as

(x-uluot (x-v)v + (vwd e Now

xn = (N (=iF34+1K) G -7 r k)
= (IVMI)  (-i-i -3+ Sk k)
= (IWFY (-1 -3+ =0

Nexl

xov = {1V BH—1+ 3j+4k) (2i+] o

= (VA (=243~-d) = - ¥\ and
(VA72) (=i + 3} + 4k, (j + 1) ' -
OV 2)(3+4)=TNV 2.

]
-
=
I

"Hence,

x=(=3VE v+ (V2w

E12) If x = 31 — j — &, express x as a linear comhination of u,v,w of thc example
above.

Let us now see how to (ind the angle that a space vector makes with each: of the axcs.
Youknow thal. forany vectoryin R x = (xei)i + (x-))] + (x-k)k. Also,ij.klie :llong
the x,y and z axcs. respuectively. Suppose » makes angles of a, . v with the x,yand z
axes respectively (see Fie. 13, Then, by Theorem 2,

1 _ xi

T
Il o

T e —m .




: ‘ x| K e - .
Sinularly,cosp = —i] end cos 7 = TT Fhese quantities are ealled the direction
: i X

. . . . ==
cosines of x. Thes. the casines of the angles Tormed by x = OF with the positive
dircetions.of the three axes are its direction cuxines. ’

We bave just scen that:

If % iy & nop-zero veetar in R, then ils diveetion casines are
xi X xk

—. .

ixl sl I

Far example, the direction cosines of  are 1,0.0 beciuge
1 P i

Moy Mg ik

b il

Similarly, the direction cosines of u = (a,.41;.45) are

! 2 and s
This is becausc,

vl _ (@pazaa)(1.00) _ - a

uf Jaitai+ s Jraltay

Similarly,

j . A, u-k 8y

|u] \fa%":j?_:':;? l uj J;ﬁ-'r;;_::_

E13) Find the direction cosines of the veelor i + i

-

e

W now pive novery nice property perlainmg o dircetion cosings.

Theorem $: IT cos a. cos B. cos 1 arc the direction cosine< of a non-z¢ro vestor u, then
3 ; 1

cos“a + cos’B + cos’r = |

Proof: You have just scen that the direction cosines of
u = (ag.ila,0,) ure .

- iy
COsS o =

a ] a3
’ Jitpas+ a3 .

il ’ '

3 ] ]
Jar+as+ a3

::_q
CORT = —m—— -

Y o e
aTHan ooy -

"cosPB =

from which it is obvious tha! - .

2 - h] =
Cos"c + cosf +cosTT= [
This theorem ends our discussion of the seilar product of veetors,

- - . . 1
Befare going further. we mention ancther kind of product of two veciors in R naiely.
the cross product. The cross product of two veetars 3 and b in R densted by axb. is

Twounnd Theee-Dimewsivnal Spaces
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Flp. 1S

The posillon veelor of a point P is
@l

44

defined 10 be e veetor whaose direetion is perpendicular o the plane of g and b, and
magnitude is ‘a* b sin &, where #15 the angle herween aawd b {see Fig, 14),

Ex

Fiz 14 ~

Thus, n x b ={jal [b]sin 0} n, where nisa unit veclor perpendicular 1o the plane of
aandb. :

Forexample.ix j=k, jXk=iandk xi=}

Note that this way of multiplying two vectors is not possible in R”

Now let us try Lo represent same geometricil concepts by using vectors.

2.6  VECTORS AND GEOMETRY OF SPACE

In this section we wiil obtain the equations of a line, a plane and a sphere in terms of
vectors.

2.6.1 Vector Equation of a Line
) U_) ' . .
Lel A be a point in R*and OA be denoted by a. Let u be a given vector in R*. Then the
equation of the line through A and parailel to u is
r=01+ au,

where o is a real parameler.

This mcans Lhat the position vector r, of any point P on sueh a line, satisiies r = a + o,
for some real rumber . Conversely, for every real number a, the point whose posilion
veelor is a + auis on this line (see Fig. 15).

The vector equation v = a + au. of 4 line, correspands to the Cartesian cquation

NoXy _ ¥~V 2
[ ] ]

Example 5: Find the equation of the line through the point A(l.~1.1) and parallet 1o
the line joining B{1,2.3) and C(=2,0.]).

Solution: The posilion vectar aof Ais (1,—=1.1).

.. =2 —> —r
AISODBEC = Q0 — O3

(-2.0.1) - (1.2.3)
={(~3 =-2.=-2
Hence.u = (-3,=2.-2)
Thus, the veetor cquation of the line through A and parallel to BC is
=atau=(l,-1.1)+al(-3,-2,-2)
={l.—1,1) + (~3a, —2a, ~2a)
=(-3a+ 1l ~2a -], -2a+1)

[T im o)




s

Resaric: Whatever hizs been discussed above is also true for R, That i, the cquating - Tueranil Three-Dimenslonad Space
of any line in R* that passes through & = (ar.aa) and is paradiel 1o o Eiven vcuur o=
(Ups) is F=a+ rn, we R,

i . . . DX — v -y
This correspsnds ta rive Cariesian cquation ——-—l-x'—' SN Sl |
HO
[14) Find 1he vector cauation of the line passtap through a -2 (1003, and paralict

10 tire ¥- uxis.

Now how du we ucl ll.l. uulor Lqmilmn ‘of a straight line in R®, which passes through
points A and B. whose position vectors are a.and b. respeerively? ’

Since AL = OB ~OA =b —a (see Fig, 16). we want thie equation 0t a line pilssing
through A and parsllel to the veetor b~ -
Hence the desired equalion is

r=a-+alb-a).

Thes cauation corresponds (o the Cartesian cyuation
X=X ¥~y _-z—-z

XX ¥a—¥ Z3=F)

Fig. 16.

of the Iiric.passing through (x,.y),2;) and-(Xa.ya.z2}.
Remurk: The vector equation ofany tine in R? passing through a = (it;.a,) and
b= (0;.ba)isr=a4- a{b—

Example 6: What is the vc:.tor equatjon of 4 line passing through j = (0,1.0) and
k={0,01) -

Seintion: Now j — & = (0,1.0) - (0.0.1) = {h1,-1).
Thus, the required equation is
=kt al - ) = (0.00) € «(0,1,~1)

=(0,a, 1 —«)

E15) Fiod the vector cquation of the line passing phrough i and | + § + k. Wha
Are Lhe direction cosines of the vector on this line waich correspondstothe value a = 1?7

Mow let us see how to oistain the equation of a plane in terms of veclors.

2.6.2 Vector Eguation of 2 Plane

Let A B,Cbe non-collinear points in B> with position vectors a.b,e, respeetively. Then,

from Euclidean geonetry you know (hat the three potnts ALLC dctumm-. 4 upique

plane. The vecior equatiea of the plane delermined by A B.Cis

r=a+a(b~a)+ p{c—-a), where o, stre any real numbers. Why is this the equation? wis the Greek letler my™ 4%

e

=T

i




Vecior Spaces-

Well, supposc you tuke any paint Pin the plam. determined by A.B and C. Then, since
A,B and Care not collinear, thc veotor A P iso Imc'\r combination of thc vcctorq A?

-l

andm(sccﬁg 17). That s, AP =x Al -+ p.AL ua, € R. Now, ('Tlg OA +AP =
n+ aAB + ;\E = a + a{b—n) + plc—a).

Fip. 17

We can rewrite the cquation of the plane containing the points A,B.C as
r={l—a-platab+pe, )
This shows us thal r is a lincar cothbination of the vectorsa,b and.c.

Example 7: Find the vector equation of the plane determined by the points ((_14.1)3."

(2,1,-3) and (1,3,2). Also find the point where the line
r=(1+2a) i + (2-3a)j — (3+5«)k intersects this plane,

Solution: The position vectors of the thren given points are

J 4K, 2+ ) — 3k, |+ 3 + 2k,

Tlierefore, the equution of the. plane is
P =]+ Kk s(20 — 4k) + t {f 4+ 2)11), thot s,
=25+t + {1+ 2t) j + (1—4s + 1) k, where s, t are real pnramctcrs

The second part of the question requires us o find the point of intersection of the given
line and the plane. This point must satisfy the cquations of the plane and this line. Thus.
§,t and a must satisfy

B4+ 0=14+2c,1+2t=2- 30, |—4ds + 1 = =3—3a.

When these simultancous equations are solved, we pets =2, t=—1,a =1, Putting this
value of & in the equation of the line. we find the position vector r, of the point of
intersection is

re=3i-)- 8k,
so that the required point is (3.~ 1, —8).

E16) Find the ¢quation of the rl g p.w.uu_ through i, _I and k.

We will now pive the vector vquithen of 1 plane when we know that itis perpeadicular
to it fixeed unil veetor i, nd we hmsw the diskoee of the origin romitised.

The required coualion is

r'n=d

Mote that d =0 always, being the i tanee Trom the orlgln,

mon




The equation rr = d corresponds 10 the Caricsinn cquation ax + by + ¢z = d. of u
plune. .

Exnmple 8: Find 1he dircction cosines of the pespendicular from the origin ta the pline
Ol -3 -2k + 1 =0,

Solution: We rewrite the given equation as

re(6l—3j—-2k)y=-1 .

Now [6] = 3f — 2k} = V36 + D +'d = 7. Thus,

[—g-l--%—,l--%kl=l and -%—l——‘%—j—-%—k iz a unit vector, Then

=i+ 35+ 2 =L
r(.? l+?‘]+?k) 7
is the equation of the given plane, in the form - = d, with d = D and n being 4 unii
~vector. This shows that the perpendicular unit vector from the origin to the plane is

= -—.?--i + :g'.i-j + %—k. Its direction césincs are what we want,

-6 3 2,
They are i ‘
E17) What is the distance of the origin from the plane

r.(i+j+k) +5=07

Let usnow look al the vector equation of a sphere,

2.6.3 Vector Equation of a Sphere

As you know, a sphere is the locus of a point in space which is al a constanl Jistance
from a fixed point. The constant distance is called the radius and the fixed poinl iscalled

the centre of the sphere. If the radius is a and the centre is (cy.ca.€a). then the Cartesian
equation of the sphere is :

(x—c))’ + (Y= + z—ci) =%

The veclor equation of the same sphere (see Fig, 18)i6 lr—¢| = a, where ¢ = {c1.0a.03).

In pdrtii:ul_ar. the vector equation of a sphere whose centre is the origin and radius isa -

is r] = q,
We give the following example.
Example 9: Find the radius of the circular section of the sphere 'rs = 3 by ihe pln;w

r(i+j+k) =3V73 '

Solution: The sphere Ief =5 hascentre the origin, andradius 5. The plane v (i+j+k) =
3V 3 canbe rewritter as F{NTY (i +j+l)= 2 inwhich{1/V 1) (i4j+k) s a4 ounis

vector. This shows that the distance of this plane from the cviginis 3. So the plate and.

the spherc intersect, giving a circubitr section of the sphere. in Fig, 190OP = 5. 0N = 3.
Hence, NP? = OP? ~ ON® = §% ~ 3% = 4% Su. the required rhdius, NP = 4. -
C

Two-nitd Three-Dimenalonal Spaces

Fig. 19




Veclor Sparca

E

E1R) Find the radius of e cireular seetion of the sphare || = 13 by the plane
r.(2143]+6k) = 35.

Lot us finally recapiulate what e have ¢i-r¢ oy this unit.

2.7_SUMMARY

We znd this unit with summirising what we hisve covered in it, We have
1) defined vectors os directed line segmenss, and as ordered puirs or tnples,

- . . . . . . - 3
2Y introduced vou to the operations of vector addition and seator cnltiphication in R”
1
and R,

3) defined the senlar products aof vectors, amd used this coneepi far oot divraction
cosings of veotors.

ay piven the veotor coquatinns of a line, i plane ine o spthere,

2.8 SOLUTIONS/ANSWERS
o} 3

AN
d
f
3
i
OF = AR
-Ov\ / 00 = CF
h vf CTﬁ:CF')'
\.\ 1}

P
,/.5( R
E2) )il B false N

13) The proof s the same as that for R, except that you wiil deal with ordured pairs

instead ol ordered triples,

— e e

= T ]

14 betw= fbes Vhendvw = Goma a b +a™c” = jal jaf.

125) The prooi i~ the same as toat {or 1, excepl that you witl deal with triples, instead
of pairs '

Vo bt By be any plaie vector, Then (abh)=agt0) + {0, and hanee, is o linear
combination of (1,0} and (G,1).

EN) u{vtw) = {a00:) b 4o bares, Byt
) ~ ay (by beg) b (o) + g (hyeica)
oLy by R aabed agha) B (e b iats 0aCa)

ESE 1 L i
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I9)

E10)

£11)

£12)

E13) .

El4)

E15)

L16)

E17)

E18)

e) (qu).v = (aa|, aay, afy) - (by,by.ba)

= ga;b, + aazb; + ailybi

= o (U.v)
You can similarly show that {(au).v = u.{av).
First consider any two vectors u and v, which are not in the same line. Lel
u = (a;,3z) and v = {b,,bs). Then, us in Theorem 2, |u} lv| cos 0 = u.v, Next,
consider the case when o and v.are in the same line. Then v = av. for « € Ry
Then, as in Theorem 2, you ciun again prove that [uf fv[cos 0 =u.v.

Supposc 0 is the angle between them, Then

cosl= =0, Also 0 = 0 < . This gives 0 = =/2, thatis v and v are

o0 T
perpendicular.

Now u and v are perpendicular iffu.y =0,

AUy =0=1X{~1)+axXx2+2X]|=0=14+2a=1

~2-

b)a=3, cyu=1

Letu=(1,0),v=(~3,4),w=(I/V5,2V5 ). Let the anples between u and v

and u and w be « and 8, respectively.

Then we have to show that o = 2B, Now, cos ¢ = —=— = =3
. fullv] 5
andcosB= L 1L SN ._1_
[ullw] V5

A result from trlgonnmctry is

cos 26 = 2 cos? 0 —1, for any angle 6.

Therefore, cos2B = 2(1/5)—1 = ~3/5 = cosa. Since cos Bis positive, § < B < /2.
Therefore, 0 < 2 < m. Also 0 < o < 7, and cos 2B = cos a. Hence, 208 = a.

x = (x.u)u + (x.v)v + (x.w)w ’

Now, x.u= (1/V3 ) (31— j— k).(i~j+k) = 1VV3 (3+i-1)=Vv7T.

ALV= VE andyw=-—V2
Therelore,x = V3 u+ V6 v~ VZw.

Since |I+j| = V'Z, we get the dlrccuon cosines 10 be UVT,UVTE0.

j = (0,1) is a vector along the y-axis. Thus. our line should be paratlel to J.
Therefore, the required equation is ¥ = a+ o j = (1,0) + « {0,1) = {L.a). x €R.
The required equationis F =i + a (i+j+k—i) = i '+ « (j+k)

= (1,0,0) + & (0,1,1) = (Lx,a), cw €R.

When a = 1, we get the vector (1,1,1). Ttsdirection cosines are TAVAR TAVER
pIAEN

The required equationis r = i + s(j—1) + 1{k—1), where s, t € R. This gives us
r=(1,0,0y+ s (—1,1,0) + 1(—1,0,1) = (T—s—1,5,t}.

First we put the equation of the pianen the form r.n = d, where nis a unit vecior
and d = 0. Now |i-+j+k] = V3. Therefore, |/ VI (i+3+k)| = 1, and hence,
1V3 (G j+k)isaunitvcc!o‘r s (—1/V3) (14+§4k) is also a unit vector. Now

lllb &IVDH }Jlllll¢ & L!.ILILI.IIUII Ib r \I'T'_']'T‘K} — _..l'

= 5 (—=1/V3) (1+]+k) = 5/V3,
Thus, the required distance isd = 5/V/3,

The centre of the sphere is (0,0,0), and radius is 13. The given planc is
r. (?fh +3/7§ + 6/7k) = 5, in the form r.n = d. Therelore, the radius of (he

cwcularsccnon is J13% ~ 52 =12,

Two-asd ThreeDimesslonsl Speces
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3. l INTRODUC FIO‘\‘

I this unit we bepin the study of vector spaces and their properties, The cancepts thal
we will discuss here are very importast, since they form the core of the rest of the
cowrse, In Unit 2 we studicd R* and R*. We also defined the two nperations of vector
addition and sealar multiplicagion on them along with éertain properties. This cun be
done in s more peneral seiting, That is. we may atart with any set V (in place of R or
RY and convert Vinlo s veelor spave by introducing “addition™ and “scalar
vubliplication™ in sucl o way that they have il the basie properties which veztor
addition and scalar maltiplication have in R und R, We will prove a number of results
abimt the general veetor space V. These sesulls will be true for all vector spaces — ou
putter what the elenieats are. Tadilustzare the wide applicability of our results. sz shall
also pive several exaniples of speciig veutar spaces.

Wz shall also study sul:sets of a veelor spave whicl are vectar spaces temselves, They

e catled subanaves, Finally, usine subspaces, we will obtiin new vector spaees i
[N RIS

Sinee this unit farms part of the hickbone of the course, be sure that you undersland
citch coneepl in il. )

Ol:jectives

Adter sludving this unit, you shosad booople 0

& deline and recogmse a vetiar sping.

v gownde variety ol eximples of vogton apaces)

& deierming wheilier s given subset of 1 vectur space is a subspace or nogs
& evplain s hat the lipear spase af i subset of o veeler Spitce is:

6 dilfe, st bebween the sam amf ks lirect sum ol subspices

¢ cdefine and give caamplex of coses iad qualient spaces.

33 WHAT AKE VECTOR SPAGES? ﬁ

You have aleginly come aeross the pebraic struciure ealled a field in Uait 1. We now
build anprher alpebraic siructure frome aset hvdcfmmgnu11ihcopcmuon:.o.’.uddumn
and nzultiplication by clements ol afighd, This isa veclorspace. We give the definition
af iy ectorspace now. As yau read through it you can keepin mind the example of the

L - .
vector spiee R over R (Uni 2},

A

[ 1o ]




Deflnifion: A set Vis called a vector space over a field F il il has two operations, name!, Veclor Spacan
zddition (denoted by +} and multiplicalion of clemuenizal Vi clements of T (denoted
by -), such that the lollowing properiies hald:

VEI) 4 is o binary operition, e, u + ve V5 u, ve V.

VS2)  + is ussociative,i.e,, (u + vj e gk v w) R v, W E Y,

V83)  Vhosan identity element with respeel o &, i,
F0eVsuchithal0+y=v=v +li¥veV

V84)  Everyclement of V has an tnverse with respect fo - Foreveryne V. Ave V
smléll_[hﬂl g+ v = 0. v is called the sdelilive iverse of u. and is written as -,

‘\’55) + is commutalive, ... u+ v=v - udu, ve V.

VER) -1 F X VeuW (o) = a.v iva well defined gperation, i.e.,
YueFundveV, a.ve V.

V87) MaelFandun.ve Vo, (u+v) = au+ a.v,

V88) MafelandveV (o+Bjv=av+fv

V8D o feFandveV, (aff).v=uw(f.v)

VS10) L.v=v, forallv GIV. : &

When V is a vector space over R. we also call it a real vector space. Sinilarly, if V is
defined over C, it is also called a complex vector space.

The produst of a ¢ F and v eV, inthe definition, is olten denoled by ey instend of

a.v. Note that this product is i vector, This operation is called sealar pwltiplication, :
becausc the elements of F are called sealars, Elements of Voare called veutors,
Now that the additive inverse ot a vector i defined {in V84), we can grve anoiher
definition.
Definition: I7 u,v belong to a vector space V, we define their difference u — v to be
u+ (—v).

. e} -
Eor ecxample, in R® we have (3.5} — (1,0) = (3.5) -+ (~ | ) = {2.5).
After poing through Unil 2 and the definition of o vecto: space it must be clear to you
that R” and R*, with vector addition and sealar nauliiy..oation, sre vector spaces. ~
We now give saome more examples ol vector spaces.
Example 1: Show that R is a vector space over jtxelf.
Solutlon: *+" is associative and commutative in R, The adilitive identity is 1) and the 3
additive inverse of x € R is —x. The scalar multplication is the ordinary muhiplication
in R, and satisfics the properties Y§7-VS10, :
Example 2; For any positfve integer 1, show that thy s E
R" = (%), Kav vereee K0 1% € R b aveetor space over R, 3T wealeline veetor addiBon | o oy fretd 1. ;

and scalar multiplication s : F's= fiage. ox,) 1, € B
Bvery cement of 1Py called an

LTI SURIPTATION 19 100 (YI".\"E' TN R TR TR T R n-tuple af chomenie of
t‘l()ﬂ. Koe vivaas f x") = (C(Jh.-ﬂxg. B TS P T O

Selution: The properties VS — VE10 are casily checked. Sinee =17 i assosative and

commutative in R, you can cheek that "k is associative and commutative in K" also

Further. the ideAtity for addition s (D0, ... ) Reciise

ST ST : Negd (0.0, i

= 0 H0o X+ =(x v x

The additive inverse of (). ... AT TP — X, -

Fara B e Roa 4 BY (85 coermic X0 - o 5 B Ngn e for 4 3) X} .

= {oX), + Pxyoonn crX, b Ry ‘

= (uhy, e, WXal b L3N . e [53,,)

=y ... LT B N i 51
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E EI) Prove that properties V87, V59 and VS10 hold for R".

Cautlon: The symbot '+ on the left hand side of ,
(xthr ------ |xn)+(}'h Yar oo Yn)=(xl +yx; +yz-"':"xn+}’n)
and the same symbol on the right hand sicle is used for different operations. On the left,
we are adding two vectors so it is used for the addition operation in R™; on the right, we
are adding only two real numbess, x; and y, or x; and y;, and so on. So, on the fght, +

indicates the addition opcration inR.

Example 3: Consider the set C of all complex numbers, Prove that C is a real vector
space. - .

Solutien; Addition of two complex numbers has been defined in Scc. 1.5, and satisfies
V81 — V85, . . o

If a € R and u € C then a ind u are both elements of C, since RS C. Thus.au € C,
so that scalar multiplication is also defined. Can you see that this operation has the
propertics V86 — VS10? Once you answer this question you will see that C ig o real
vector space. .

Note: C is also a complex vector space. This can be shown on the lines of Example [.

Example 4: Let P be the set of all polynomials in x with real coefficienis, i.e.,

n C
P= {E a, x'|n is a positive integer, o t'-.-R}

wai)
Show that P is a real vector space.
Solution: The sum of two polynomias is a potynominal (for example, (x* + 1) +
(2x 4 3) = x* + 2x + 4,) This addition operation on P is commutalive and associative;
the polynomiaf 01s the additive identity and, given a polynomial *
p(x) = ag+a;x +,.... + a.v". its additive inverse is

n :
“~p(x} = ~8g =X ~ ... ~a.x". For a€R and 2 ax' € P, define '

im0 -

'@ id;x‘= nz (on)x!. -

=0 i=0
(For exampie, 3+(¢* + 4) = 3x% -+ 3.4 = 3x* + 12

This scalar multiplication has all the requisire proparties V56 — VS10. Thus, the st P
of all polynomials is a real vector space.

Example 5: Consider the sct S, of alf functions from R to R. Define addition on § as
follows: :

If €8, geS, thenl + gis the function defined by
F+g) () =1(x) + g(x) ¥xeR.
(This is called pointwise additica,)

rEan
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& ,'-_-‘,3) chVbcl}wwimolcomq}icx nuaskeard pives by

E2) Check that V56 ~ V510 hold truc for the set S in the eximple above.

Defino scalar multiplication as follows:

‘For eeR, fe8§, let af bethe lunction given by

{(af) (x) = a-f(x) ¥ x €R.
Show that S is a real vector spice. |
Solution: The propertics V81 — VS5 are satisfied. The addilive identity is the [unction

0 (x) such that 0 (x) = O for ali xe R.
The inverse of [is —f where (=0 (x) = —[{(x)] ¥ x € R.

Example 6: Lct V C R¥be given by

={{x.y)[x,y€R and y = 5x}
We define addition and scalar multiplication on V 1o be the same as in R e
(X1, y1) + (X2 ¥2) = (% + X2, y1 + yz) and

a (x.y) = {ax, ay). for a € R.
Show that Vs a fgal veelor space.

Salution: First-note that addition is a binary operation on V. This is because

(R1s Y1) €V, (82, Y2) €V =2y = 51,3 = 5o =2 ) + y2 = S(x( + %)

= (x| %Xz, y.+y,_) €V,

The addition is also associative and commutative, since it is so in R%. Next, the additive
~ identity for R?, (O, O) bclongs to V and is the additive identity for V. Finally, if
(x.y) € V7i(i.e., y = 5x), then its addilive inverse = (x3y) = ( X, —y) € R%

Also =y = 5(--x). S0 that, —(x,y} € V. '

That s, (1 v) eV=>—(xy)€V.

-Thus, VST — VS5 are satisfied by additionon V,

As for scalar multiplication, if aeR and (x,y) €V, theny = 5x, 50 that a:;l = 5(ax).

S, a(xy)EV.

Thal is, V50 is eatiafied.
The propertics V87 — V§10 akso hobd good, since they do so for RZ,

-Thus V bacomes a read veator space.
Check your understanding of vector spacks by trying the foliowing excreises.

= {x + ix| x e ®&}.
Show that, under ths wsaal addidbon of coussley numbers and scalar mmup.uulwu
defined by ox + k) = ax + f(a.l) Vkum&w:pace

Vecinr Spacres
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Legzor Bpaees

E EdDLaQ={ax +bx4einb.ceCl e,

- Q is the set ol allcomplex polynomials (i.e.. polynomials with complex coellicients) of
depree at most 2. Under the usual operations of addition and sealar mrultiplication.
prave that Q is a complex veelar spice.

E ESLaQ ={w’ +bs+clu#0.abee C)
Why is Q" not o camjex veetor spice wneler e ususl operatioms?

£ E6)Let vV € Rbe given by
V= {(xyz)ux + by ez =0 Jorfixed abceR)

Prove that V is & real vector spice.

[ .




Veclor Spuces

B E7) Show that C" is a complex vector spoce.

. ST J

Note: We otlen drop the mention of e underiying ficld of a vector spaee il il is

understiood. For example, we may say that "R%is g vector spaee”™ when we mean thal
“K" is a vector spage over R,

Naw lel us [ook more closely ot vester spaces.

3.3 FURTHER PROPERTIES OF A VECTOR SPACE

The examples and cxercises in the last section illustrite dilferent vector spi.zes.
Elements of a vector space may be directed line segments, or ordered pairs of real
numbers, or polynomials, or functions. The one thing that is commaon in all these
examples is that each is i vector space; in cach there is an addition and a sealar

PN
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multiplication with the same basic properties V81 — VS, In this section, from these
properiies we develop some other usefu: properties which all vector spaces have.

Befare we proceed, let us make a remark about notation. For a veclor space V over a
field I, its additive iclentity will be called the zero vecior and, will be denoted by 0 (in
bold face), 1o avoid confusing it with the clemen( 0 in F, which is a scalar.

We will now state and prove sonie properties of 4 vector space.

Theorem 13 et V be any veclor space over I Then
a) a0 =0, for all scalars e,

b) Ov=_0forallve V.

¢} (~a)v= ~(av)aeF, veV.

Proof: a} By V§7. % u,ve V, :-ln(l weF,

a{u+ v) = au +.av,

In particular, «(0 + 0) = «. 0 + o . D.
But 0 4 0 = 0, 0s 0 is the additive identity of V.

Henee, . 0 +ald=a.0.

Adding the additive inverse —(x.0), of «.0, 1o both sides we get .0 = 0.

by As(a + ) v=av+ |3‘-;, - scalars @ B pnd Vv € V, we see that, VY ve V,0v =

(0 + 0)v = 0.v + O.v. Adding - (0.v) 10 both sides, we pet 0 = 0.v,

¢) By V88, foranya € Fandve V, (a 4 (—a)) v = av + (~a)v. Also, by (b) above,
(o + (~a)) v = O.v = 8. These two equations give us av 4 (~a)v = 0. Thus, by V84,
(=) v = —(av). .

Using Theorem 1 we prove the following result.

Corollary: Prove that, fora e Fandue V, au = 0if and only if cithera =0 oru = 0.

Proof: Suppose o = 0, then au = § by (b) of Theorem 1. Suppose v = & then au = .
o.0 = 0by (a) of Theorem 1. Hencea =loru=0 = au=0.
Conversely, suppose a.u = 8. Ifa = 0, there is nothing (o prove. If a # 0, then 1/ exists

and is a scalar, and we have
u=1lu=(Va.a)u= la{ow) = lia(@) = 0.

Thatis,au=0=>a=00ru=0.
We give some more properties in {he form of exercises for you to try.

EL) Prove that, in a veclorspace V, W ue V, (= 1) {(~u) = u.

A

E9) Prove that ¢ u, v in a vector spice, —i—~v = —{u+v)

I




e

el

2

' E10} Prove that ~(—u) = u, % u ini a veclor space.

£11) Prove that afu—v) = uu —ay tor all sealars ecwndd % u, v ina veclor §pace.

[ :
| m —

f.ct us now look at sorae suhaets of the underlying sew of veelar spacey

3.4 SUBSPACES

In E3 yousawthat V, asubset of C, waz also a vecior space. You'also saw, in Example
6. that the subset

= {(x.y) e R¥y = 5}
of the vector space R*, is uwl; aveciorspace under the samic operations as those in R?
in these cases V is a subspace of R, Let us sec what this weane.,

- Definition: Let V be 2 vectar xpace and W € V. I W is also a vestor space under the

same operations as those in V. we say that W is a subspace of V.

The following theorem vives Lhe criicrion for a subset 10 be a subspace.

Theorem 2: A non-empty subset W, o7 avéclor space Y over a field T, is v subspace of
V provided

a) wy W W N w wa e W

b) aw eWN-welFandwe W,

¢) 0. the additive identity ol V, als» Leiongs to W,

Proof: We bave ta show that the groperties YST — VS0 hald fur W,

V81 is true becpuse of (a) giver above.

V32 und VS5 are true fnr cicnents of W because they ure true for elements of V.
V53 is true bacause of {c) atn .«

V&l is true bacause, if w e W iher 1 -{) v = —w e W, by (b) above.

V5h is true because af (1) above.

V57 to VS10 hold true because they are true for V.

Therefore, W is a vecior space in its own right, and hence, it is a subspace wl V.
The next theoren says That condition (¢) in Theorem ” > unnecessiTy.

Theorem 3: A non-empty subsel W, of aveetorspace V over aficld Fis asubspace of
Vil and anly il

2) w, e W w e W =2 w +wat W -
M xc Fowe W= qows W

Proofs 1 Wis .uhqpncc then obyiously () and () are satisfivd,

Conversely, sapposce {(a) and (h) ave satisfied. To show (hat W is a subspece of V,
Theorem 2 says thal we only need o prove that 0 ¢ W, Since W is non-emnty. there is
some w & W, Then, by (D), we W ic, 0 W,

This campletes Lhe proof of the theoren.

Veclor Spaces

Aonon-emply subset ol e

ez e oo snheeanee 1500 s fles
e asnlnanne

under veslor addition ard scalas
muitiphzato.
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Actually both the conditions in Theorer 3 can be merged to give the following compact
result.

Theorem 4: A non-empty subset W, of a veclor space V over the ficld F, :s a subspace
of ¥V if and only if

aw) + Bw; € W g, BGF'mdw,,szW

Proof: Firstly, suppose Wisa subspace of V. Then, by Theorem 3, forany «.BEF and
w), Wy € W, we have uw, ‘Wand f} w, g Wosothataw + Bwye W,

. Conversely, suppose a w, + B v e W a,BeFandw,, w2 €W, Then, in pamculnr‘

fora =1=p (remember ! €¥), w, + wy,e W, Also, liweput P=0inaw + Bw,, we
Belaw €= YaeFandw eW, .., by Theorewm 3, Wisa subspace,

Hence, the theorem is proved.

. Let us use this thcorem to obtair somse rore examples of-vector spaces,

- Example 7: Prove that the subset

W= {(x, 2x, 3x)|x € }}
of R*is a subspace of R®.

Solution: If we take x = 0, we sce that (6,0,0) ¢ W, sa W # @..(Remember @ denotes
the empty set.)

Next, wy € W, wy € W = w, = (x,22,22), v, = (,2y,3y], where x €R, y € R. Thus

cawy = {arx, 2ax, Jox) and Bwy = (fy, 28y, 313y), fora, B € R.

=5 aw + fw; = (ax + By, 2{ox + By), 3(ax + By)}
=2 aw + Bw; = (2,22, 37), wherez =ax + By £ R. -
= uwl + B_“l'z €W,

Hence, by Theorem 4, W is & subsace of 727,

Example 8; Which of the foliowisg subsets ¥/ of 12 ave subspaces of R*?
1110 setofallw= (il,xz.a:{...,u i R H A \ztuz

a) X, = 0, (b) A = 1, (C) 4y = U. (C‘:}'}:.ZI - :,..,1 = (.

" Solution: a) Here, W = {(0,¢; x;,xd}‘lxz.xs.xéﬁ %}

Obviously, W # $as((:0,0,0) e W
Next,wy, wo € W= w) = (G, }\-,,J\.;,Jf,.u. HEW forl 234,
Wy = Oz 3,ya) & R, fori = 23,4,

= aw, = (0, ax;, axs, ax,)and Bwz = (0, 3y, Bys, Bys) «.BER. ’

== aw) + Bwz = (0, axy + PByg, wxy + By, axy 'k Bys) € W
Hence W is a subspace of &t°.

(b) Hcrc! W= {(xlnl ax:hxd)l x|'x;l|x-! L9 R}
Again W 9as ([,1,1,1) ¢ W,

Now vy € W, wy'e W b w; = (ip] oo s <= (90,L.92.74)
=2 wy + Wy = (% ¥y 2,8 5 s, K )

=5 w, + wy g W

So W is not a subspace of R*

Note: An easier proof for (b) would be;
we= (U.0,0,0j gV, L Wisnota subé;:acc.

C) Hm—! W= {(xlrxllxj':m‘l}[xi € ﬂ: < 0}
Then W # 4, a5 (0,0,~1,0) ¢ W.

= U e o T T




" Now, w = (0,0,—1,0)¢ W, but (=1) w = ~w = (0,011 U)gw Vetior Spaces -
Therefore, W is not 4 subspace of R®. '
d) Now, W = {(x, X2, X, Kol € B, 2y + Siny = O}

Obviously (0,0,0,0) e W, sa W # 4. Next,
Wi EW, Wy € W =2w, = (Xgifg,Xauky) with 2y 35%, = 0

" and wy = (Yy2.ya.Ya) with 2y, + 5y, =0 _
=> witwy = (XXt YaXatya, ety D Z0ns 4y ) 5(%ava)

= (2X, + 5xa) + (2y, +Sya} = 0 +0=1.
= Wyt waeW,
Flnally, .
eER, weW=aeR, w= (x,,xz,x1.x,) with 2x|+5xd =0.
= 0w = (0%, 0Xg,0X3,0%4) With 2(ax, )+ 5(ecty) = ex(2, +5x) = 0.
= awe W, -

So Wis a subspace of R%.
Note: We could have. also solved (d} by using Theorem 4 as follows: .
For «,3 € R and (x..xz;x3.x.,), (yl.yz.ys.y‘,) in W we have

Ca(Ri.XpX3,Xa) + B(Y1Y2YaYe) = (X +By) .o+ Byz,og+ Bys.aXe+BYa)
with Z(ux1+By1') 4 5(axg+ Byas) = (2% + 5rg) + By, +5y4) = 0.

"Thus, a,B€R and w;,wy € W => ow, + B, ¢ W.
: "h_lis shows that W is a subspace of R%.  ~

_ E_xampl_e 9: Let V be a veclor spscc_ovc;:!{am! vEV, All scalar muhipluuhﬁud '
‘Show that the subset F v = {avia € F} is a subspuce of V. vector form s subagace.

Solutian-Fv-# ¢bec¢lusc(}v—0€ﬁ?v
Now,lfavandBVEthheno-v+ Av = (o + B)vebv
Also,c€F,andBveFvy = a (Bv) = (aB)Y v € Ky, smccuBcF.

.Thus, by Thoorem 3, Fvisasuospace of V.

‘Nn:tc: The subspace Rv, of R", représ-cnts a line in n-dimensional space.

' E12) Prove that W = {(X;.X,X3) € R°|2x; + 5, — %, = 0} is a subspace of R

» El13) Fipr each of the following subsats " of °, determine whetlier it is a subspuce

of RY: -

W is the st of those vectors (x;, %5, 7y) in 227 such (hat .
(@)X = —x (b) €= 0; (c) iy =05 (d) gy bxgtxa = 1, . . 59
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E E14) Show thit {0} is a subspace of the vector spiice ¥ over I,

In Example 9 you saw that an clement v € ¥ gives rise to a subspace of V. In the next
section we look at such subspaces of V, whicl grow out of subsets of V that are much
“smaller than the concemed sul:space.

3.5 LINEAR COMBIMAYIONS

In Unit 2 you'came across the fact that any element of & could be written as
a-l+ b-j + c-k. where a,b,c ¢ H. In this section we wili generalise this. Consicer the
. following definition. '

Deflnition: If vy, v, ......, v, are cieraents of a vecior space over F, and g, 23, «.....
o, € F, then the vector

@V vy ko 1w,

ts called a linear combinatiou of the vacrors Vi Yaee Yy, orof tie set v va,e o, vpd
For instance, since _

(2,4,3) = 2(1,~1,0) + 3(0,2,1), (2.4.3) is a lincar combination of (1,-1,0) and {0,2, N
We are now ready to generalise the result of Hzample 4.

Theorem 5: If v vy, ..., ¥, belong to a vectar space V over a field 7, then

W= {ov, + agvs + ... + eV ley are scaiors)
&0 is a subspace of V.




=

o

Proof: Firstly. (His i scabar and 0wy + Ova + 00 + v,
=0+04 ... + 0
=0, -

SolGeW.andW £9

Sccondly. w; € W, w1 €W

L)
=owy =g Vb aava b koY= E‘ av.meF

ICE]
' n
:md Wi = B|V| + B:V: + ann = 2 Bivi e F.
i=1]
= w, +w,=(a; +BJv+....F {a, + Bay v, = w; + wye W'
Finally, if o is a scalar, and w € W, we have
W=,V F ..+ QVa. where o is a sealar ¥4 = L,oon.

= aws= (aey) v, F (maa) va + o+ (o),
=p o WEW

This proves the theorem.
We often denote W (in Thcorem 5} by Fy, + ... + Fv,,

Let us look al the vector space R”, over R. In this. we sce that every veetor is a linear
combination of the nvectors e, = (1.0,....0), ¢ = (0. 1.0, .., ¢, = (0......0.1).
This.is becausa (x;...... Xa) = X,¢q ok Kady + o+ XaS, X, € RoIn (his case we say that
the set {e...-.&q} spans R", Let ui see what sp‘mning meaas,

Definition: Let V be a vector space over F,and fet § € V. The linear span of Sis
defined Lo be the set of all linear combin ations of a finite number of elements of S. itis
denoted by [S]. Thus., '

n
[5i=1 E a; v;|n positive integer, v €S, & sealurs}
sl
We also say that S generates [S].
Note that S is only asubsct of V, and not necessarity a subspace of V. Also note that [§]
is the set of finite sums of the form ayvy + ... + v, wherea; € ¥ and v;€S.

Example 10: Suppose S €R%, § = {(1.0), (0, 1)}. What is [8)?

Selution: [S] = {«(1.0) + B(0.D)|a,B € R}.i.c.,
[ = {{a,)}ux.B € R}

In this case, the linear span of S is the *hole of R4 Thus, {(1.0}, (0,1} gencrates R

"Example 11: Suppose S& R, S = {(i,—1,0)}. Whatis[S]?

Solutlon:,[S] = {a(1,—1.0)|x € R}.
= {(x, -, )| € R}

Exnmple 12: Lel P be the vector space of real polynomials, and
= {xx3+ 1, x* =1} EP. What is|S]?

Sululmn 5] -{nt-l [.iu\ +1) 4 9(x* —l)|a B,1€eR}
= {rx> + px° + ax + (B— 'r)!c: B TER}

%t o i ubset of Pin the examnle abave. Does 2x +3x" € 18]

Vector Spares
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" The'lineur span of §is the smatlest
suhspuice of V cortaining S.

{7

Inthe examples given above youmay fizess aosiiced that §5] is a subspace af V. We prave
this fact now,

Theorem 6: 11S is it ien-crnty sibsei af a veetar space ¥ over Fothen [$] isasubspice
of V.
Proof: Since S # dand SC{S). [5]+# &. Also.since SEV, [S]EV.
Now, s, € [S]. s, €{§] ' -
=5 =gy v ol v, forvie S, e FFund

Sp= Bywy o+ Bawy + o+ BW.. forw, €8, B, € F.
Thus,fora.feF, as) = r; vy + eoavs + .0+ V.
Bsa = PR, + BPawg + ... + BBmWm
= %) + o = 'rfu,v, T Fagyy, v BRW T o + BB W, With v, w, £.85.
and an, € F, AB; € I'. This shows that as, + (i85 isa lincar combination of a (inite number
of clementsof §. Thus. as) + Bsy € [S). Therefore. by Theorem 4[8)is a subspace of V
Theorem 6 shows that the [incar span of S i a subspace containing $. In fact, it is the
smallest subspace of V containing 8. as vau wiil sce now.
Theorem 7: If § is a subscl and T a subspace of the veclor space V over F, such that
SCT, then [S]ET.
Proof: Lets € (S], then

n
av,. where v, €5, o, el

I
ipA

As ST, vie TH¥ = [, AsT'is a subsjruce and v € T for
n

all i.z v eT, ic., seT.
il

We have proved that s€[S] =»> seT.

Hence, |S]ET.

An immediate corollary 10 Theerem 7 follows.

Coroltary 1: If S is a subspace of V, then [§] = §

Proof: Since $ is o subspace containing §, Theorem 7 gives us

[S]E€S. ButSE[S) alwiys. Therefore, {S]'=S.

The theorems sbove say thar we can form subspaces from mere subsets of a space,
Givenasubsct S of aveetor spaee V, if Sis not asubspace of V., what is the *minimum'
that we muost add to § to make it # subspace? The answer is ~ alf the finite lincar
combinations of veclors of §.

Look ol the I'ollumnu'; eximples. _
Example 13: Let S = {(1,1,0), (2030 € R Determine whether the following vectory
of R* arcin [S].
(2Y (0.0A0); (D) (1.2.3): (¢) (73, 1,010,
Solution; {s| = _{n(l;l-.l)) + B2 A)ja B € R}
= (o 2B, w4 §. 33N B e 1)
(a) (.0,0) € [S], since [S] s a suhspacc and (0.0.0) is the additive identity of R°.

fhYy {F 27
LI Le )

']

‘ { } o Chn :h'u.:Cn fJEn T HEN {l'.l.'r Zﬁ, a - ﬁ, 3]23}- (i.Z,S),
leha+2f=la+p=23p=),
Nowdf = da=m o andthep, o v i =5 =maw |,
Bultheno + 2= ) 4 2= 3at chcv LLh¢S).

ey (3. 01.0)elS)ife + ZB—dﬂ n+ =1, ?B— 1 forsomcct BeR.

“These equalions are satisficd if B = 1/3, o = 2/3,
So (4/3,1.1) ¢ [S].

oTEm
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E16) IfS ={(1.2.17. (2.1.M} € R, determine whether the following vectors of R
arein [S]. .
(") (53.), (®y=.1.0). () (4.5.2).

E17) Let P be the vector space of polynomials over R and § = {x,x"+ 1, x*—1}.
Determine whether the following polyinomials are in [5].
()x*+x+1, (bY2x"+x%+3u+2,

Now that you have got used to the concept of subspaces we go on to construct new
vector spaces from cxisting ones:

3.6 ALGEBRA OF SUBSPACES -

" In this section we will consider the union, interscction, sum and direet sum of veclor
spaces.

3.6.1 intersection

Tf U and W are subspaces of-2 veclor space V over a ficld F, then the set UNW is a subset
of V. We will prove that it is actually a subspace of V.

Theorem B: The inlersection of two subspaces is a suhsp::_'cc.

Proof: Let U and W bc iwo subspaces of o vector space V. Then 0e U and Oe W
Thercfore, 0 € UNW; hence UNW ¢ &,
Moxt ifvi e UNW, and v, e UNW, then v, s U, vae U vy e W, v e W

Vector Spaces ™
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Thus, forany «BeF, av, + Bvae U .o, + [n, € W
(as U and W are subspaces).

Snavy + By e UNW,

This proves that UNW is a subspace of V.

Example 14: U = {(x.2x,3x){xc R} and
W = {(0,y.(3/2)yly € R} arc subspaces of R*. What is UNW?

Solution: Any element of UNW is of the form (x.2x.3x) and of the form {0.y.(3/2)y).
Thus, the only possibitity is (0,0,0). Therefore, UNW = {{0.0.M}. By E 14 you know
that this is a vector space.

Example 15: U = {(x.y.Ojtx,y € ) and

W= {(0,y,2)ly.ze R} are subspaces of R®, Whatis U N W?

Solution: U N'W s the set {{0,y.0)ly ¢ R}, _
Inthis example note that U is the xy-plane, Wis the yz-plancand UNW isthe y-axis.
Ei8}If U = {(x.y,2x}|x.y e R} and W = {(x.2x,v)Ix.y € R}, whatis U N w?

Note: It can be shown that the intersection of ny finite or infinite family of subspaces
is a subspace. In particular, if V,,Vs,...... .V, are all subspaces of V, then
VINV,yN..... NV, isa subspace of V.

Let us now look at what happens to the vnion of two or more subspaces.

3.6.2 Sum

Consider the subspaces U and Wof R” given in Lxample 15. Here vi=(1,2.0)e Uand
v2 = (0.2,3) € W. Therefore, v and v, betongtoU UW. Butv, + v, = (1,4,3) is
neitherin Unorin W, and hence, notin UUW, So UUW isnota subspaceof R*
Thus, we see that, while the interseciion of two subspaces is a subspace, the union of
two subspaces may nol be s subspace. However, if we take two subspaces Uand W, of
avector space V, then [U U W], the finear span of UJ U W, is a subspacc of V.

What arc thie elements of [UUW]? They arc lincai combinations of clements of
UUW. So,forcachve [UUW], thercare vectorsy,,va,..... Ve € UUW of which
visalinear combination, Nowsome (orall) of the v...... Wyarein Uand the restin W.
We rename those that are in U as Up,Ug,...-., u; and those in Was w; wy,....., wy
(=0,k=0,j+k=n). :
Then, there are scalars oy.,...... & 8., By such that
v == U b Faup + Bwy L Powy

=u 4w,

where u = oquy + ... + o5 € U, since cach u; € U, and
w=Bwy o, + Bewi € W, since each w, ¢ W. (ITj = 0, we takew = 0y il k = 0, we

take w = 0.) So what we have praved is (hat every cicment of [UU W] jsof the type

utw, v € U, we W. This motivates the following definition.

Beflaition: I A and B arc subsets of a vector spacé, we define the sel A + B by
A+ B={ntblue A beBl.

Thus, each elemeni of A + B is the sum of an element af A and an element of B.

Enmﬁ}c 16: If A= {(0,0}, (1.1}, (2.—-3)} and B = {{~3.1)} arc subsets of R?, find
A+ B.

T
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Salutlon: A+B = {(~3,1), (—2.2), (—1,—2)} because, for example,
(1,1) + (—3,1) = (-2,2), etc.

Exsmple 17: Let A = {(0,y,2)ly,z €R }und B = {(x,0,2)[x.z€ R ].
Prove that A+B =R,

Solution: Since ACR?, BER?, so A+BEZR’. Itis, therefore, enough toprove that
R’CA+B. Let{a,bc)c R>. Then

(a,b,c) = (0,b,c/2) + (a,0,c/2), where (0,b,e/2) € A and (8,0,c/2) €5.

So(a,bc)e A+ B. '

Thus, R’EC A+B.

Hence, A + B =R’

Note that in the discussion preceding the definition of a sum of subsets, we have actually
proved that if U and W arc subspaces of a vector space V., then [UU wjcuU+ w.
Indeed, we hove the following theorem.

Theore'9: If A and B are subspaces of a veetor space V, then [AUB]= A + B.

Proof: We have alrcady proved (see above) that A U BI € A + B. So it only rcmains
to prove that A + B €[A U B). :

Letve A+ B thenv=a+b,ac A, beB. Nowa€A=r a€cAUB =>ue€ [AUB).

. Similarly, beB => be AUB => be[AUB]. As[AUB]J isavectorspace and

abe [AUB], wescethata+-be[AUB)i.c.,ve[AUB]. Thiscompletesthe proof

of the theorem,

Since [A UB] is the smotlest subspace containing A U B, we see, from Theorem 9
that A+ B ig the smallest' subspace of V containing both A und B.

E19) For the subspaces A = {(x,0,0))x € &} and B = {{0,y,0)jy€R} of R*, find

. [AUB].

[

We congider s special kind of sum of subeets wow.

3.6.3 Direct Sum

i A end B aree subspaces of a veclor spece, You kupdw thint every veotor vin A+Bisof
{Lic form a+b, where a €A, b e B, Butin buw cieny ways can a given ve€ A+B be
expreased in the form, a + b? ) )

-im Example 17 we have expicssed (8,b,c) & 22 I tst form a+b by writing

(8,5,¢) @ (0.b.c/2) + (2,0./2).
But we coeld also write

{o,b,2) = {0,b,0) +(a,0,c)

o7 (2,0,¢) = (0,b,c} + (2,0,0}

ot {a,b,€) = (C.b,c/3) + (3,0,2/3).

Tedeed, fo any real number B we can wiiss (.. = {,5,3) + (u,0.c—8). Hote that,
in cick caie, we have exprezsed (a,b,c) 03 8 s6am &f vestoy frow A and a vecter Trem B.
o, v ks ease, there are infinitely muay ways of witingve A + B in tite form a+b,
withe¢ A,beB

Vector Spaces
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A [unction [ ;'R — R is called on
even fanction if f{x) = f(—x) "
UxE R, and an 0dd Lumetion il
{—x) 2 «fx)xe R.

ae

But there are some cases in which every vevtorve A+ H canbewritteninone and only
onewavasa+b.a € A, b€ B. Forexample. suprese A = {(.y.0)x.ye R} and B =
{(D.0.7)|z € R}.

Then.-for any (p.q.r) € R* we can write
(r.q.1) = {p.q.0) + (G0N ¢ A + B.

It follows that A + B = R". But here (1p.g.r) can be wrilten in only one way as a+b,
namely {p.q.0) + (0,0,r), because, if we wrile (p.q.r) = (x.y.0) +(0.0,2). then
{(P.q.) = (x.y.2).sothat x = p, ¥ = q. z = r, This means-Lhat (x.y.) = {p.q.0) and
(0.0,2) = {0,0.r).

Now, note that in this case AND = {(0,0,0)}. u.ht,rc.'tv. in the earlier example

ANE = {10.0.2)|z € R} # {(0,0.0)}

Itis this differcnce in ANB that is reflected in & unigue or a multiple represcnlauon o
v in the form a+b,

Definition: Let Aahd Bbe 5ubspdcc'a of a vector space. The sum A + Bissaidtobethe
divect sum of A and B (and is denoted by A@ B)if ANB = {0]

We have the following result.

Theorem 10: A sum A + B, of subspaces A and B, is a direct sum A@ B if and onlyif
every ve A+ B is uniquely cxpressible in the forma + b.a€ A, be B

Proof: First suppose A + Bisa direct sum i.v:., ANB = {0}, If possible, supposec v has
two representations,

v=a +biandv =2+ b, ;€ A, b, e B.
Thena  + b, = :11'4- ba, ie., a—w; = hy~h,.
Nowa;.2;e A =>'a;—a, e A. Similarly, b,—b, € B, that is,
—a;€B(since s ~ a, = by ~ b)).
Thus,a) — 2,6 ANBE => a,—a; = § =>4, = a,.
Andthen, by = b.. ]
This means thit a, + b, and a; + b, are the same representationsof vasa + b,
Conversely, suppose every ve A+B hs exactly one representation as s+b, We mus?
prove that A N B = {0},
Sincr_: Aamd B are subspaces, 0 € A,0€B. ,-. {6le ANB.
If ANB # {0}, then there must he some v # 0such that ve A N B.

Then, v has twa distinct representations as a+ b,
namely, v+ 0(ve A 0eB) and 04v{0€ A, veB). Thisisa conlrndlctlon So
ANB = {0}. Hence A+B is a direct sum,. .

Example I8: Let A and B be subspaces of R” defincd by
A={xy2)eR)x =y =12}, B ={(0.y.2)ly.zeR).

Provc that R = A @ B. _
Solution: First notc that A + B CR*, Secondly.if(a.b )€ ANB, thera=b=rc anc
a=0soa=0=beyg,ie., (ab ;.} = {0,0,0). Hence, thesum A + Bisthe direct sum '
A®B. Nextgivenany (a,b,c)e R, we have (a,b,¢) = (a,a .a) + (0,b—a, c—a), where

f:‘lﬂ a\FAand‘m bea, f\—u\cu thie proveg that Nl A mn

n AT B, "."here.'o:c,
R = AQ@B.

Example 19: Let V berthe spice of all functions from R to R. and A and B be the
subspaccs of V defined by

"{W&)=K-ﬂ'vﬂ
= {f|f{~x) = ={(x), ¥ x} - :
i.€., A is the subspacc of alt cven functions and B is the subspacc of all odd funcnons
Show that V = A@ B.
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- Bolution: First, suppose e ANB. then ¥ x € R, f{—x) = {(x) itnd "[(--x) = --T{x).

Son R (N) = —1(x), Dl M, [fy) =0, Thus, (s the zero function, 214
ANB = {n. '

" Next,let fe V. define

a(x) = .—.’,—{-I’(x} + [(—x}}. and

h(x) = -41x) = F(=x)).

“Tiren, () Hx)=gla) +h(xi**xeR, e, f=yg-h

(i) g(—x):--;-{r(—x} + {{x)} = 8(X), ., peA.

(i) h(—x) =-.]):{1'(—x} ~ f(x)} = —=h(x).. . heB.

vhus, forcach Fe V. f=g+h, forsame pe A heB.
== V= A+, and, us ANRS = 10}, we pot
V=AGDD3
Note: Example 19 says that every tunction (rom R to R can’be uniguely written as the
sum of an even function and an odd function.
220) Let A B,C be the subspaces of R given by
A ={{x.y.2)} € RYx+y+z = 1),

B ={xy2) eRx =2, C = W)y e 1)
- Prove that R* = A+Cand RY = B4-0

Which of these sums iviare direct?
Sy

LA

E21) Consider the realvector space C. oGl compiox numbers {Exampic.s). it A
and B are the subspaces of € gives av A ={a+iidineR) 1B = {ibh 2, prove that
C=A@®RB.

i . |

Now, we will Iook it vector «hces that are obtained oy “taking the miagent” of u
veLlor space by a subspice.

.
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Fromavecton space ¥ and iis subspace Wowe will now create a new veclor space. For
this, we Tirst define the concepl of o cosct,

3.7.1 Cosets

Let W be ssubspiwe of VoL ve V. the sty + W, defined by
vl W= vk waw e W)

is called a coset of Win V,

Example 20: Consider the subspace W = {{a 0w e R of RV
Letv = (1.0.2). Find the coset v 4 W. I it a subspace of ™

Selution: v + W = {v4wiw £ W)

= {(10L2)  (a0), 0)] 4 e R)

w a1, 0.2 e R}

Thus, v - W = {(2,0,2)]a e R}.

{because, s a rakes all the reat values, a + | also takes all the real values. so that we

may replice i+ 1 hy a),

v+W is not a subspace of RY o LODO) ¢ v W,

Observe shateach clement s of v yiekls a coset v + W of W. Every coset of Win V is
asubset ol V, but it may not be a subspace of V., us you have seen in Exampic 20,

Example 21: With W as in Example 20, and v = (2.0.0), prove that v+ Wis a subspace
and. in fact. v+ W = W,

Solution: Here v + W = {(2.0.0) + (2.0.0)a e it}

={(+2,0,0,]ueR)

={(p.0.0)jp € R}

=W
Observe that, in the example above v & W whereas in the previous example. v W. iIn
thu next theorem we subsiantiale thisv ohservalion.

Theorem 11z Let W be a subspace of a vector space V. Then vé Wil and only if
VAW = WALk, iy ¢ Wothen v+ Wit nol a subspace of V. '
Proofl: We first prove that ve W = v+ W = W. For this letu € v + W, Then. far some
we W, u=v 4w This implies that u € W, as both v,w € W. This means that

v+ WawW,

Alsp, we W = w—v e W.sinccve W,

= w = y+(w-viev+ W, sothat WS v+W,

This proves thal v + W = W,

Nowletus prove the converse, nanely, v--W = W = ve W, For this we use the fact
- thal 0 e W. Thenwe have v = v evi W m Wea ve W,

Lasity, we prove that, if v W then v+ W is nota subspace of V. Iy 4+ Wis a subspace
vtV isneubspace of of Vithene v + W, Therelore, forsome we W.ov 4 w =0, i.e., w=—v. Hence.
Veesiave W, —v e W and, oy Was a subspace, ve W.

Thus. v 4 Wisasubspaee ol V== ve W. So, ve W =2 v + Wisnot asubspaceof V.

B E22) Let W {ix) € PII(TY = O be & subspace of P, the 1cal vector spuce of all

polynomials i e variable x,

a) [fv = (x—1) (x"+1}, what is v + W?

b Ifv = (x=2) (x*+ ). whatis v + W?

-




Now we ask : Given avecior Apace Yot asuhspnee W, can we zet Vback if we know Vectar Spaces
als the cosets ol WT The answer iy given in (e Sllowing theorem.

Theorem 12; 1T W is o subspace of V., the union ol @l the cosets of Win Vis v,
Proaf: iy ¢ ey cosei of Win Visasibseief Vodhe union is cevtainly a subset of V.
Caonvemely. pivenve Vv - v riie v+ W s 06 W)L Thus, every v € Y helomas to some
goretnt Win Vo i enee s gontained in the nnion ol all the cosels of Win V., Henee,
the thenrem iy errenlishad,
We may wrile the statereent of Thes tom 12 43
v U vs w
v Y i
A very speeial property of coseis i givenan the following heerem.
Pheorem 13: Tawo coseis vy + W= vy, + Win V are githar coquai or disjeiar, [ Tact,
v|+W = \"3 - W il“-’l - ‘-"_1_ [ \V. rllf ‘-'|.\'_~ € V
Prool; We have to arove that. for vy, va & Veather (v +W)N(v,+ W) = {Olor vy + W =
v,+ W Now, suppose (v;+W)il(vat+ W) £ {0}, Thenthey have a common non-£cro
elerent v,say. That is, v == vy = vyiw,, [or some wy v, € W, '
Thenvy —vy=wa-wieW. ... ., {h
We want to prove that vy + W = v+ W, For this we prove thal v, + W vy + Wand
vit WSy, + W,
Now, nev, +W = u =v +w, whero w, ¢ W
= U=V, k(W W)+ w,, by (1)
= v + w, where woe W
= ue v, W
Hence, vy + W& v, + W,

We can similarly show that vy + W v, + W,

Henee, vi + W = vy + W. Nole that we have shown that

Vi—vzeW=mv, +W=v, + W,

E23) Inhthe proof above, we hitve essentially proved that vy — v € W =2 vi+ W =

vy + W. The converseof this iv also true. Prove it,

i+ We v+ W
v~V EW

Notc: The last two theoress (¢! uy that if Wis a subspace of V., then W partitions Vinlo
mutuaily disjoint subscis (namely, the cosets of Win V).

Com.idcr the following example in which we show how a vector space can be parti]ioned
oy casets of a subspace.

Exampie 22: Consider the 1ub~.pa\.r_ V7 = {a(1,0,0lac R) of R Howcan you wrile R
as the union of disjoint cosets of W? -

Solutinn: Nolc that W is just the x-axis in 3-dimensional space.,
Any cosct of W is of the form

ab,e) + W= {fa,b.c) + (aiMagR} = {{a+a, b.o)e e R,

Now, forany {a.b,c) € R, ta,b’.c] —{0.0,0) = (u.0.0) e W.

ﬂlcréfor:;: (abey+ W = (0,b.c) «~ W, Also, tite cosels . '
(0,b.c) + W and (O1".c") + W are the same Hf b= b’ and ¢ = ¢". '
Thus, {(0,b,c) + Wib,c €R} is the st of disjoint cosets of W in R, .
And R® = U{(0,b,c) + W|b.c'cR ).

Geometrically, the coset (0,b,€) + W represents a line (in the plane determined by the
point (0,b.c) and the x-axis) which is paralle] t6 the x-axis and passes lhrough the point

{0.b,c). Thus, R? is the union of all such distincl fines. ) 69




Vert.. . aacys E  E2d) WriteRasa tlisjoint union of the cosers of

a) the subspace {(0.0)}, ) the subspace R?,

l

Before we procecd. fel us stress that our notation for a cosel of Win V has i peculiarity.
A coset v + W can also be written as v, + W provided v — v; € W. So the same coset
can be writlen in many different ways. Irid- od, if Cis a coset of Win V. then

C=v+ W, forany vector vin C. ]

Let us now see how the set of all cosets of W in V t:‘un form i vector spice.

3.7.2 The Quoticent Space

We have pointed out that generally a coscl v+ W ol 4 su bspace W of a vector space V

is nat itsell a subspuce of V. We shall now prove that il we 1ake the set of all cosets of
Win V, this set can be made into a vector space by defining rddition and scalar
mulliplication suitably.

Notation: Let Wbc a subsp:ﬁ:c of the vector spuce V. Wr denote the set of all coscts of
Win V by V/W, Thus, V/IW = {v4W|ve V],

Consider the following cxamplc.

Example 23: Let P be the vector space of real polynomiasinx and W= {fif ¢ P, f{0) = 0}
be the subspace of P consisting of all thosc potynomials whose constant term is zero. |
Show that P/W = {a4-Wla e R).
Solutlon: Since ne P4 ¢ R, certainly a - Wis g coset of Win P, So a+W e-Prw
YaeR. Conversely, take an element of /W,
say f(x) + W, where [(x) is a polynomial, Supposc
) =ax"+a..x" "+, + %7+ a,x + ag, a,€R,
Then f(x) = ag+g(x), wihere ox) = apx+a-x + .+ ax".
Sinceg(0) =0, ge W,
Hence, [ = ag + g, where g € W,
Thus, (+W = ay 4+ W (Theorem 13).
Hence, f+W € {a+Wla ¢ R},
This campleles the proof that /W = {a+Wla e It}

E E25) If P denotes e veelor space of zll polynomials, of degree = n. prove that
Py/P; = {ax™+ Phjue R ). "
(Hint : For any f(x) € Py, JaeR such that f{x) - gx" g 1,.)

i,




We now proceed o introduce two opcr.aliuns cn the set VIW, namely, addition and
scalar multiplication,

Defiaition: Let W be » subspuce of V. We deline addition on VW by

(vi+W) + (7 F W) = (v +va) -+ W,

o & R, v+ W € VIW, thea we clefine scalar multiplication vn VIW by

- (v+W) = {av) + W, -

Note that our definitions of ndditton and scalar multiplication seem to depend on the
way in which we writz 1 coset. Let us explain this. Suppose C; and C; ure twa cosels.

What Is C| + Ca? Ta find C| + C, we must 2xpress Cy as vy + Wand C; as vy + W,
Having done this we can then say that

C|+C:='-'(\'| +V‘1_)+\V.

But C, can be written in the form v + W in many ways and the same is true for C;. So

the question anises : Is C; + Ca dependent on the particular way of writing C, and C,,

or is it independent of it? [n Gther words, suppose Ty = v, + W = v;' + W and
Co = va b W = vy +W. Then we imay say that
Ci+Cy = (vi+W) + (§'3+W) = (v,+v;} + W; bul we may also say that
Ci+Ca={v"+WY+ (vy'+ W)= (v, + v, ) + W, .
Are these two answers the same? I they ar: tuy, which one is ta be C,;+C,? A similar
question can arise in the case of nC where o is a sealar and C a cosel, These are
impertant questions. Fortunatety. they have simple answers as shown by the following
theorem. E
Theorem 14: Let W be a subspace of a vector space V. ITvi+W = v+ W and
vadt W =v,"+ W, then
a)(Vi+v) F W= (v + v )+ W
Also, if a is any scalar, then
b} (av;) + W = (av,) + W
Proof:a) Forv,, v vy, va’ e Vv + W= v 4+ W v, + W= vy + W
= v, ~ v €W, v, — vy’ €W (hy E23)
== {vi =)+ (vi— v eW
=2 v+ vy) ~ (v v eW
= (vi+va) + W= (v’ + v;") + W (by Theorem [3).
Thus, (n}is true.

b) Foranyscalaraandv).v,"€V,v| + W=v/ '+ W=>vy -v/'eW
=2a{v,—v,')eW
=rav, —av'eW
= avi+W=ov' +W
Thus (b) is also proved. .t
Theorem 14 assuves us that the sum and seafar muitiplication of cosels is independent

‘of the particular way in which a coset is written, We express this by saying (hat addition
and scalin ihutiipiication of goseis ure weii defined by ihe way we iieve defined them.,

This also means that when adding two cosets ar when multiplying o sealar and a coset
we arc frec Lo use ay representation for the concts involved,
We now come to the actual proof that V/W is u veclor space.

Theorem/15; Let V be a vectdr space over a field IF, and W be asubspace. Then VAW is
a vectorapace over F.

Prooly We will show that VS1 — VS10 hold for V/W where ihe operationsre addition
and scalar muitiplicalion as defined above.
i) VS is true since the sum ol two cesciy s i cosel.

Vector Spaces
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Vestor Spaces 11) For vy, va, vy in Vwe know that (5 & vh - ve s g -k (vp+vs).
Therefore,
{v AW (va+ WD) o vy + W) = {(vidve) + Wt {vy + W)
= v+ va) vy W v e (v v b W
= (v + W)+ {{va + va) + W}
= (v; + WY + {{ve + W) 4 (vi + W)}
“'Thus, V82 istrué.

iii)  Weclaimihat the coset 6 + W = W (since & € W) s the identity element for VIW,
Forve V, W + (v W) = (04 W) + (v+W) = (04)+W = v+ W.
Similacly, (v-+W) + W = (V-E-W) 4 (0 W) = v+W. Hence Wis 1he ‘zero’ of
VAY, and V53 is true. )

iv)  The addilive inverse of v + Wis {—v)} 3 W, because
(v W) {(-v) + W)= (v (~v)] + W= 0+ W =Wand
(=v) + W + (v W) = (—v+v)+ W =0+ W =W, This proves that V34 is true.

v) - We note that addition in V is afecady commutative because Vis a vector Space. So
Moy V2 E Vv vy = v v,
Flence (v, W) - (Vo t W) = (vy+vp) + W
={vatv)+W
= (VZ + “f) + [‘-'l + W)
Thus VS5 holds for VIW, '
~vi)  VS6istree becavse. fora € Fandy + WE V/W. o (viEW)=av + W e VW,

vil) To prote that VS7 holds, leree € Fand u,v ¢ V. Then
a{(u+W) + (v+ W) = o {(ud-v)+WV)
=afu+v) + W
= (autuv) + W
= {ou+W) + (v + W)
= au+W) | alv+W).
viii) Foranya.p € Fand v € V you can show, as above, that (4B} (v W) =
o (v+ W) + B (v-F W} Thus, V58 holds.
ix) Foranya,B €F andv eV we have
a(B (u+W))= a (Bu + W)
~(af)u- W
= (af) (U+W)
Thus V59 is true for VW,

- x) For ueV, wehave 1. (u+W) = (l-u) + W=u+W.
Thus, VS10 holds far V/W.

The vector space we have just obtained has n name.

Definition: [f W is « subspace of ¥, then the vector space V/W is called the quoticnt
space of V by W.

The name quotient is very apt beeause, in a sense. we quotient out the elemetyts of W
from those of V. '

Example 24; Let V be a vector space over Fand W = {0}, What is V/W?

Salution: VA = v+ Wive V)= {v + {0}jv € V)
72 = {V!‘-:;E V=V

. -
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E  E26) Let W = {x(0. D] € R} Whant is RYW?

E27) Farany \rcclnr-snucc V. showthar ViV hasonly [ element, namely, the coset 'V,

And now. let us see what we have done in this unit.

. 3.8 SUMMARY

Let us conclude the unit by summarising what we have covered in it.
/

In this unit we have

1) defined a general vector space,

2} piven several examples of vector spaces.

3) -proved some important propertics of gencral vector spice.

4} defined the notion of a subspace and piven criteria 10 identify subspaces.
5) introduced the idea of the lincar span of a set of vectors. -

6) shown that the intersection ofsubspdcu of i vecior space is a subspace.

7) defined the sum and direct sum of subspaces of 1 vector space and shown that they
are subspices also. )

B) defined casets-and a quuticnt space.

»

¢

3.9 SOLUTIONS/ANSWERS"

El} % a € Rand (x;.... ,,) {¥y0¥) € R,
af (81 0X0) + (y: ¥l = aliF Y atyae X dy,) .
= (Ct(hl"")l) 0(-‘“"'}’2) s a(X,ty,)) '
= {ax; + ay, akz + ¥, QX qyn)
= (o, @itae. o ax,)) + (ay), ayan...,ax,)
= 0Ny X2, %) + u’(y, Yayorein Yol wiuch proves V57,

Also. for &,B € R. {aB) (%1......%,) = {(«B)X}, (@B)xa,.... (cf)x,)
= (e(3 xi), a{Bxa).......a(Bx,))
= alBxy. Bz Py} = alBlxyone, X)), which proves V§9,

Finnlly, 1-(x,...... X = (%0 %000 004,) = (X Xa). which proves V8§ 10,

Yurior Spuces
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Porimy e e R b Soad i function fram R o 1. Thos. VS is salistied,
Toshow thn V97 VST e satisficd ke any o € Rund [Lo€ 5. Then. for
ANy N E R Jan b i) =l wdixd = ol lin) - g(n)) = al{x) + wpls) = (al){x) +
Coepd (N} = tel 5w gx) ’ .

Therefore, ofls2) - nd = ap that s, V8T i true.

You can simitariv show taat (@ + B) M= of + Bl, () M= afflyand |- = 1, (hus

showing that VSR -- VE1G are also (rue.

Sinee (81ixd = (V] (R e ey andea(x+in) = (ax)}-i{ax)

M- e Roand w0y (v vivie VL owe see thar VST and VS6 are lrue. VE2 and
VRS foliow (rom the same properticsin R, 0 = 04 itk ihe additive identity for v,
and (~x) + 1 -x) s the additive inverse of § + iy, x € R,

Also Torany a3 € R, and {x + ix). (v + iv)in V the properties VS7 — VS0 can
be casily shown 1o be true. Thus VST -~ VSiflare alt true {or V.

Asldition is u binary operation on Q. since fax” 1hxag) -k (dx:+c.\'+ )=

(rd} 7+ {brekx k erf) M abedel e C
Scalur muliplicationTrom C % Q to O isalso well defined sinee o (ax® -+ bx+¢) =

wax? + abhx o ¥ e ihoe € G Now on the lines of Example 4. yeu can show

Iis)

£6)

that Q 15 a complex vector space.

Note that Q7 s a subset of Qin F4. .-‘fdditinn 15 closed on Q. but not on QQ°,
because. for example, 2x° & Q" and (-7 e . bul 2x° + (—Z)x_“_f.O'. Thus, b"
can’t be a veclor space under the usual operations.
Now {(x.y,2). (x,,y.2,0 8 V

== ax -kby + ¢z = 0and ax, + by, + ¢z, = (I,

=2 a(x+x)) + b{y+y)) + clubz,) =il

= Nk ¥y 2z €V = VS s rue fur V.
Also, fore e Rand (x,y.z) e V. afx.y.z).= (ax. ay. az) € V.
This is because ax + by + ¢z = 0 =2 a(uax 4 by + cz) = 0,

= alax) + blay) + clwz) = (. Thus, V86 is rue for V.
(0.0,0) € V and is the additive identity lor v, Thus; Y83 istrue..
For(x.y,z) eV, (—x,~y,—2) € V, and is thé addiive inverse of (x,y.z}. Thus, V&84
is true. V82 and VS5 are true for ¥, since they are true for RY, V§7—-VS9are true

for V, since they are true for R1l VSI10is lruc(h_v definition of scalar

multiplication.

ENC"= {(x,,x;,......-x,,)lxi € C}. This problem can be solved on the lines of

Examplc 2.

E8) From Theorem 1 you know that (~aju = ~ () Mael. In particubar,

(—1u=-u
Therefore, (— 1) (=u} = (=D [(=1)uj
= [(=1) (=1} u, by V§9.

= 1-u o

E9)-Now, (u+v) +{-u—v) = (v+u)+(~u-=v), by VSs

= fv+{u+{~u))} + {—v), by V52
=(v+0) +{(~V)=v+ (-v)="0
Thus, by VS4, —(u4v) = —u —v.

E10) —(—u) = (—1) (—u) by Theorem 1.

= u, by EB.




) atu-v) = a(u+{~v)} = au 4 a{- V) = ou bl Piv R nd Ll v Veclar Spaces
= ] - AV
212) Thisis a particular case of the véctor space in B pwitha =20 Loe- L
Mo, BeRand (g X2 X3) (¥ y2. o) € W.ohen wlx,Naax) o Rlvny,yd =
(ax; +By;, wiaBya, axatBya). Also. :
2ax, + By} + (ax; + Bya)} — (exa+8yal
= o (25 +x2—X2) + By A ya—ya) = 0. since
2%y + X3 — %3 = 0 and 2y + ya = ya=10),
Thus, & (X, .%2 xa) By YA e W
Hence, Wisa suhsp'ch of R
313 a) W= {(x;, —x, :h)|\,.,\ e R} W £¢ .since (0. 1 ) e W.
Fora,p € R and {x,.~X),.X2). (y1.= ¥: \r-)EW we hive adxy —x ) 4
B {y).—yiya) = (ax;+By,. —(ax +8y}. o b By e W o Wssvelorspike
b) W = {(X, %) € R = 0}
Since A7 = 0% x, e R, we sce that W = R*, and hence s o vector spuice.
) W == {(x},%2,%3) & RP{x %z = D).
W # ¢, since {0,0,0) e W,
Now, (1,0.0) ¢ Wand (0,1,0) € W, but (1.0.0) + (0.1.0) = (1,1,0) ¢ W,
., W is nol a subspace of R*.
Cd) W = {(x,.X2,%) € R'xi+x+xa = |}
Now. (1.0,0)dnd (01,0 € W. but (1,0.0) 4 (0.1.0) = (11 n)gw
since 14 140 = 2 # 1.7, Wis not a subspace of k.
E14) Firstly, {0}is non-empty. Secondly, 4+ 0=0ei0}anda0= 00} forans wel.
Thus, by Theorem 3, {0} is a subspice of V.
EI5) [S]= fa+bx-+ex’nb.ce RE . 2%-+3x" ¢ {S).

E16) [S]= {«(1.2.1) + B(2,1,0)la,B € R}
= {{a+2p, 20+B.)ja,B € R}

a) (5,3.1) € [S) <= J a,p € R suchthal a+2f = 5, 2arf =3, a=1.
Now,a=]and a+2f = S =3 = 2. But then 20+ = 2 + 2=43+3.
' (5.3,1) ¢ {S]. o '
b) (2,1,0) € SE{S]. ... (2.3.0) [S) - _
) (4.5.2) €[9) ‘
L17) [S] = {ax + b(x +I) +o(x"=1)fa,b,c € R}
= {cx® + b + ax+ ln--c)!a.b,c e R}
a;azw-hi}C[S},:."'r:i"b‘:—!.b=1_,-':=0 )
b) 2% + x* + 3x + 2 ¢[S],since b =1, c = 2and b—c #.2.
E!8) If (x,y,2) € UNW then (x.y.2) € Yand {x.v.z) e W,
Now, (x,y,z) € U=z = 2x, and
{Lyz)eW=>v=2%u o Ve
., Any element of UNW is of the form {x,2x,2x), x € R. That is, UNW =
{(x,2x,2x}|x € R}
E19) [AUB]=A+B={(x0{H+ (0,y.0)ix. v e R}
={{xx0)xve Ry ) ) 75
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ll‘.:!U-] Fachof A + Cand B +-Care subspaces of R, Naw, for any (a.b.c) £ R
(a.be) = {a.b,—a—h) + (lJ Oa+b-tcye A -+ C, and,
(a.hc) '(1 I).l)v((]ﬂ\,-—.l)cli + L.
Therefore, R* = A+Cand R = 1i+C
Now ANC = {{x,y.2) € RYx+y+2 = Dand x = O-= y}
= {G0ML A+ Cls n-(lircct sum,
Ao BNC = {{xy e R =zandx =0 = y}

= {00}, ", B-+C is also a direct sum.

E21) Firstly, A+BEC.
Secondly, ANB = {x-riyly=0andx = 0} = {0}. Thismeans that thesum, A+ B,
is a direct sum. Finally, take any clement x + iy € C. _

Thenx + iy = (x+i0) + iyc A + B S
Therefore,C= A @ B. '

E22) a)SinceveW, v+ W=wW
by v+ W = {x—2)(x*+1) + f(){I(x) e Pand (1)} = 0}
E23) vi 4+ W = vy+W =V EVy b Wy, 4+ W
=2V €V '+ W=>v| = v, 4+ w, forsomewe W
'_))V! _Vﬁv—\VEW‘-—‘ ¥ _V'zE W.

E24) a)Any cosct of {(0,0)}in R?is (a,b) -+ {{0,0)} = {({a,b)}. Thus two cosets (»,b) and
(c.d}are disjoint, iff {(a,b) # (c,d), i.c.,iff (a,b) and {¢,d) are distinct clements of

R". Thus, R* = U{(a,b) + {(0.0}} [a,b e R} =UU{(s b)} a,b &R}

b} Any coset (-1 b)4 R*= R', since (a,b) € R”. Thus, the only cosct of R® m R®

is R* iself. So the dISJOlnl union is only R%.

25) Po/P; = {{ax +bx? +cw+d) + P,la,b.c,d € R},
Now, {ax*+P- Ja€ R} STPyPy Conversely, any clemént of Py/P; is
{ax? + bx? +ex+d) + P1 where a, h c.d € R. Now (ax* +bx¥+ex+d) ~axt =
bx*-+cx -+l € I,

Therefore, (ax' - bx*-Fex <) + Py =ux® + Py (by Theorem [3)
€ [ux" - Py i e R),

Thus, Py/P, = {ux’ + Pafa € R}.
E?.G) Firstly, note thal W is a subspace of R, and hence RYW is mc.tmngful Now
RYW = {(a,b) + W|a,b e R}
" Forany (a,b) € R?, we have.
(b)) — (0,0 = (0,b) e W\
Jo(ab) + W= (a,0) + W )
Therefore, RYW == {(a.0) + Wa € R}

E27) VIV=[v+VIve VI Rtv+V=Varue V| WV -V
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41 INTRODUCTION

In the last unit you saw that the tincar span [8) of & non-empty subset S of a vector space
Visthe smallest subspace of V containing S. In1his unit we shall consiiter the question
of finding a subset § of V such thal § generates the whole of V.i.e., [§] = V. Ofcourse.
oncsuch subsctof Vis Vitsell, as {V] = V. But there also sire smaller subsets of V which
span V. For example. if S = W{0}. then [S] contains 0, heing a vector space. [$] also
contains S. Thus, it is clear that [S] = V. We therefore nsk; What is the smatllesi
(minimal) subset B ol Vsueh that [13] - V? That i, we arce looking for p subset B ol V
. whichgenerates Vand. if we take wny proper subsct Cof B, then [C] 4 V. Such a subsel
is called o hasis of V,
We shall see that if V h"|'. one hasis (3. which is a finite set, then all 1he bases of V are
flinite and all the bases have the same-number of clements. This number is ealled the
dimension of the vector space. We shail also consider relations between the dimensions
of various types of vector spaces.
Asinthe case of previous units, we suggest that you go throuph this unit very earefully
“because we will use the concepls of “hasiy” nnd “dimension” again i again,

Objectives

After studying this unit, you should be able 1o

® decide whether a given set of veclors in a vector space is linearly independent or not ;

¢ determine whelher a bwcn subset of a veclor spaee is a basis of the vector space or
not;

® construct a basis of a linite-dimensional vector space;

°© obtoinand use formulae for the ditensions of the sum of 1wo subspaces, intersection
af two subspaces und quotici spaces,

4.2 LINEAR INDEPENDENCE

[]
‘\'Ll\ll '\ I_l?\ll\ L'I!'\Ll\"

InScetinn 3 S we d th alin )
at the following two sulm.ra of P, the real veetar space of all pnlynummh nimely,
Si={l.x.x%.....x" and &, = {[..\~. x* + 5}, Consicler any linear combination of
clements of §; ey, -k X 4 X7 L +o s where e R¥ i =01, ..., n. This
sum s eguil Lo zeroifand only il cach ol the s iszera, On the other hand, cansider
the linear combination of elements of Si: By + Byx* + B2+ 5),
where i, = 5.8, = I, B, = ~ 1. This sum is zero. What we laive just seenis that the
clements al 8, e lineurly independent. white thase of S.are linearly dependent, o

undersiand what this micans et us consiler U hl“n\\lll" deliniticns.,
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Definition: 1TV is a vector spoce over a field P and if vy, ..., v arein ¥V, we say that
they arc lincarly dependent over Fil there oxist clements o, ..., &, in F such (hat
@V, 4 et ey, = 0, with o # O for some i,

If the vectors v,. ... v, are pet lincarly dependeny over F, they are said to be luearly

indepentlent over .

tole: [For convenivence. we coptract the phrase “bucarly independent {or dependent)
over F e linenrly independeat {or dependent)’if there is no confusion about the fietd
we are working with.

Note that linzar independence and lincar dependence are’mutually exclusive
properlics, i.¢..no set can be bolh lingirly independent and linearty dependent. Tt is
also clear that any sel of n vectors in a vector space is either fincarly independenl or
lincarly dependent.

You nust remember thal, even Jor a lincary independent set v, ... cvo.thereis
linear combination :
Oow, F0v, + e + (v, = 0, in which all the scalars are zero. In fact this is the

only way that zerd et he written as a linear eombinatton of linearly independent
veclors: )

We are. therafore, led to assert (he feliowing eriterion tor lincar independence
A sel, ¥,y ¥y, oaeey vy s linearly independent i

g, oy, o by = = = 040

We will ull'.n use this eriterion (o establish the lincar mdcpcnd{.mc of a se1.

Thus, o check whether v, v, 18 lineatly indepensdent or Imc.lrly dependent, we
usually proceed as [ollows:

n
[} Assume Lhat 'z e v, = 0w, sealars,

=
2) Tryto prove thal cuch e = 0.

I (his can be proved, we can conciude that the given setis linearly independent. Butif,
n

on (he other hand, we can lind e, s, ..o natadl zero, such that E o v, = 0. then
. =1

we sl conclude that v ... v s lineary dependent.

Consider the {ollowing examples!

Example 15 Check whether the lollowing subsels of R or R! (as the case may be) are
lincarly independent or not.

)y {u=(1.0.M.v=(0.0.--3)}

by {u={—106.=12).v=(" ~3.6)}

¢y  {u=(1.239).v=(432.1)

Salution: a) Letau-- by =0t abeR,

Thcn al1.0.0) + b (0,0.-3) = (0.0.0)
0,0y + (D —5b) = (0,00) -~
(a0, —5h) = (0,0,0)

La=0,=5b=0ic.a=0b=0

. {u.v} s lincarly independent. '

i':i'.

e

b Letpu+byv=0abeck
Then (=a. 60, --12a) -+ (l-_?. —3h. ey = (0,0, - .

fe.o—a+ {;.: 0, 6 — 3= 0, =120 4 b = 0, Fach ol these uululﬁnm is eequivalent 1o

20 — b o= 0, which is snlisficd by many non-zero vitlues of aand by (e.g..u= [ b =2}

Henece, {uv? is linearhy depemdent.




¢) Suppascau+ bv=0,a,beR. Then ' . Tasds s Dhnensive

(a + 4b. 2a + 3b, 30 + 2b. da + b) = (0.0.0.0)

e, a+dbh =0........ e (N
2a+3b=0............... {2 '
Ja+20=0..........000ees (1)
da+b =0, (9

Subtracting (2) from (3) we get a — b =0, i.e..a = b, Putling thisin (i), we bave
3b=0...,b=0,andso,a=Db=0 Fence, {v.}slincarly independent,

Example 2: Inthe real vectar space of ali functions from R to R, determine whether (he
set {sin x, e*} is lincarly independent.

Solution: The zero elemerni of this veelor space is the 2ero funclivn, i.e., itis the lunction
Gsuch that O(x) = 0% x e R. Sowe have tedetermine o, b e R such that,
¥ xeR,asinx+ ber=0,

In particular, puiting x = 0, we get a.0 = b.J == 0, i.c., b = £ Se our equatien reduces
. N .

to asinx =0, Then puttibg x = w/2, we have a = . Thus. i = {1, b = 0.

So, {sin x, e*} is Jincarly independent.

You know that the set {1, x, x2, ....., x"} & I is lincarly indepeiident. Vor larger and

larger n, this set becomes a larger and larger linearly independent subssel of P. This

example shows that in the veclor space P, we can higve-as large a linearly independent

setas we wish. In contrast to thissituation look at the following cxample. in which more

than two vectors are not linearly independent.

Exmmple 3: Prove that in R? any three vectors from a linearly dependent scl.

Solution: Letu = (a,,a,}, v =(b,. by}, w = (c,.c,) € R Ifany ol these is the zero vector,
suy u = (0,0), then the linear combination b.u 4+ Qv + U.w, of u.v,w, is 1he zero vector,
showing that the set {u,v,w} is linearly dependenl. Therefore, we may. suppose that
u,v,w, are all non-zero. '

We wish to prove that there are real numbers «, 8, 7. not all zero, such that
ol + Bv + rw = 0. Thatis, au + Bv = —5w. This reduces (o the pair af equations,

an, + Bk, = —1¢,

aily -+ Bb, = —71¢,

We can solve this pair of equations 1o pet values of o, 3 in termsof a,n,,b by, ¢, cand
7iff a\b, — a,b, # 0. So, il

1(bc, ~ bae))

H bs_l« 'I& ' t =
s,b,—ab, #0 we get a A

(et — ey}
ah, —ih,

- .._:! fr "1
Lo | e

—— LYy ~ L
ey i

Thaen, we ean preg ot the eorresponding valucs ¢

e an rra 1rar el o -
DR TR LR TN St bR AL

Cifa,b, — #,by # 0 we sec that {u,v.w} is o lincarly dependent set.

Supsinie. a:b: - alb‘ = 0. Thenane of a, and a,is non-zero ginee v & Similarly, one
0: 0 and by # 0. Let us suppose that a, + 0,1, # 0. Then, abserve that

b, (4. 1) — a, (b, by) '

= (b,u,. byi,) ~ (a;b, a,b,)

= (0,0)

he bu - av+{w=tand,a #0, b # 0.

Hence, in this case also {u,v,w) is a lingarly dependent set.

== o




Veclwr Spoees

Try the following exercises now.

121) Cheek whether cach of the following subsets of R% is li;;cnrly independent.
ay (123,250, (53,1.0))

by {{1.2,3).42.3.1}, (-3.-4.1)}

) =270, (41720 (5.~ 2.1))

dY {(=2.7.0). (4.37.2)}

=

= ST




~

E2) Prove that in 1he véctor space of all functions Lrom R 10 R (he 5ot Iasis undt Dimensln

{sinx, cos x} islinearly independent, and the sct {sinx, cos x, sin (x 4 w/6)} is lincarly

dependent.

E3) Determine whethereach of the following subsets of Pis | ineatly independent ,

or nok.

a) =2 8° +1)

b) {x*+ F.ox¥4 11.2x° - 3}
¢} Box+t.x 8P+ 2x + 5}
d) {1, XU X3+ 1)

Let us now look more closely al the concept of lincar independence.

~




Yeelor Spaces

4.3 SOME ELEMENTARY RESULTS

In this section we shall study some simple conscquences of the defimition of linear
independence. An immediale consequence is the following theorem.

Theorem 1: 1f0 e {v . v,, ...... v,}, a subset of the vecior space V. then the set

{vi, v, ..., v,} is linearly dependent. .

Proof: 0 is onc of lhe v,'s. We may assume that vi=0.Then Ly +0v, + Oy, + ... +
Qv, =00+ ... +0=0. Thal is. 0is a linear combination of v, Vi ooien, v inwhich
all the scalars are not zero. Thus, the set is lincarly dependent.

Try 1o prove the following result yourself,

E  E4)Show that. if vis a non-zero clement of a vecior spice V aver a field F, then
{v} is lincarly indcpendent. _— .

The nextresullis also very elementary.

Theorem 2: ) If S is & linearly’dependent subset of a veclor space ¥V oyer F; then any
subset of V containing S is fincarly dependent,

h) Asubsctofla linearly independent seis lingarly indcpendent,

Proof: a) Suppose § = {u), u,, ..., u,} and S€1 € V. We want 10 show that T is
lincarly dependent: '

IT'S = T therc is nothing ta prove, Otherwise, s T = 5U (v, .v, )

= (U up g, v v} where m > 0

Now § is linearly dependent. Therefore. for some sealars Q. sy veee, oL 0L all zero,
we have

k

E an =0

=l )

But then,

ity Uy F o aguy + 0y Oy ROy =0 with some ; # 0. Thus, Tis

lincarly dependent.

b) Suppose TEV is linearly independent, snd § CT. If possible, suppose S is not
linearly independent. Then § isklincarly dependent, i then by (a), T is also linearly .
dependent,since SET. This is a contradiction. Hence. oursupposition is wrong. That
is. 5 15 linearly independent.

Now, whal happens if one of the veelors in a st can be written ¢§ a linear |, -

combination of the other veclors in the set¥The next thearem states that sich a set is

linearly dependent.

Theorem 3: Lot § = (Vi v } beasubsetafavector space Voverafield F. Then §

is lincafly dependent if and only if some vector of § is a linear combination of the rest
82 "ol the veetors of §. - : .

=rats fm T

i




Proot: We have to prove wo statements here: -

-

i) Isome v, say v, isalinearcombination of vy, ... v, thenSis lincar ly lit,"ll.lldt.ll[

ii) 1 S is linearly dependlent, then some v is a lincar combinalion of the other v,"s

[.et us prove (i) now. For this, suppose- vy is a lincar combination of vy, .., Vi,
i.e.. v,=mv,+. +o:v . . \ 3

-Z ay,. where o; € F ¥, Then v,.— a,v, — Wy = oV, = 0,

je:2

which shows that § is lincarly dependent.

We now prove (i), which.is the converse of (i). Since S is Imcarly dependent, there exist,

‘w; € F, not all zero, such that _ -
u,v|+u:v:-_l-..... +oav, =0, )

Since some «; # 0, suppose o, # (). Then we have

CILVI‘ = - vl"" _u.'h—l “'k_'l —Gk+lvk_| [rrree —unvh'

Since uk # 0, we d:wde Ihrbughout by crk and gel

2 ﬂlvl' BI =

|d|;

Vk=(—a—k)\'| ..... )

Thus, v, is a lincar combination of v, V¥ .occ. Vi _1a ¥4y veres Ve

Theorpim 3canalso bestated as: Sislincarly dcpéndcnl il and onlyil some vectorin S
is in the linear span of the rest of the vectors of S. .

Now, let us look at the situation in R¥where we know that i. jarelincarly independent.
Can you immediately prove whether the set {i, j. (3.4.5)} is lincarly independent or .
not? The following theorem will help.you to do this.

Theoremd4: IfSis lincarly indcpcndcnl andvg [S]. then SU {v}is linearly independent.

Proof; LetS = {v,) vy ...i, v, }and T =8 U- ’v} —
If possible, suppose T is linearly dependent, then there exist smhrna 0. e e O
not all zero, such that ‘

avt+av,+ .o day, =L

.Now, if & = 0, this implics that there exist sealars

L I » oy not ail zero, sucl,i that

oV + o, F oy, =0, ’

But thirt is impossible as S i; linearly independenl: Henee-

o # 0. Bul then, T . ' ‘
ED L e

V LETITTOT
o

I.c.. visa linear combination of v, v,, ..... v,.i.¢.. v€1[S]. which contradicts our
assumption. ' :

‘Therefore; T =S U (v} must be lincarly lnd\.pcndcnl

Using this theorém we can immediately sce that the set {i. j, (3,4,5)} is lmcarly
indcpendent, since (3,4,5) i is nol a lincar combination of fand ] .

Now try the followmg CXereises.

ES) Given a linearly mdcpendcm subset 5 ot‘a vector space V, can we always gef
a set Tsuch that SET and T,is linearly independent? o
(Hint : Consider lhe real space R?and the set § = {{1,0), (U ])} J

Hlaplx and mensbon

LR o
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Victnr Spacos -

iryou've dane E5 you will have lound that, by adding a vector wralincarly independent -
set, it may not remain lincarly independent. Theorem 4 tetts us that il to a finearly
indeperident set, we add a vector which is not in the linear span of the sel,' then the
augmenied st will remain linearly independent, Thus, the way ofgencraiing larger and

larger linearly independént subsets of a non-zera veclor space Vis as follows: ' y
1) Start grith any. Imcarly independent set S, of V, for example, §, = {v,} where !
0% v, eV, -

2)-IfS, generates the whole vector space V. i.e.,if[S,] = V.thcneveryveVis alincar
combinationof§,.So § U {v} islincarly dependent forevery ve V. Inthiscase
S, is a maximal [|nc1r|y mtlcpt_mlt.m sct, lh'\l i5, no larger set than S, is linearly
lndependcnl '

3) I [S,]# V., then there mustbe a v, € V' such that v, £8,. Then, $, U {v,} =
{viiva} = S: (sny) is linenrly independent. Tn this case, we have [ound a set larger .
than §, which is linearly independent, namely. S,.

4) If[S,] = V. the process-ends. Otherwise, we can find a still larger set S, which is
linearly independent. Tt is clear that. in this way, we cither reach a set which
generates V orwe po on getting farger and larger linearly independent subsets of V.

»

So far we have only discussed lincarly independent sets §, when § is finite. What
happens if § is infinile?

Definltion: An Infinile subset of a vector space V is said lo he Ilne.lr[v independent |l'
every finite subset of § is linearly independent.

Thus, an infirite sct S is lincarly indcpcndcnl if, for cvery finite subscl {v,, vs, ..... v}

of S, dscalarsa,, ..., « suchlh‘ﬂZav -0—->a = {} 41,

Consider.the following example. .

Exampled: Prové that theinfinite subser 8 = {1, x, %2, .... }, of the vectorspace Pofl all
reai poiynomiais in x, is tineariy indcpendent. -

Solution: Tuke any linite subset T of $, Then 3 non-negative distinet integers
a1, ..., 4, such that

T = {xn, %, ., x%).

Now, suppose
k
2 ax® = 0, where «; € R V.

= .

inP.0isthe zero polynomial, all of whose coeflicicnts are zero, . o; = 0%i. Hence
* T is lincarly independens, As every finite subset of § §s hncorly independent. so is §,




-
[
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E6) Prove that {f, x+1. X+ 1. %% + L. .... }isatincarly independent subset of
the veclor space P

And now to the scetion in which we answer the queslion raised in Se¢. 4.1

4.4 BASIS AND DIMENSION

We will now discuss two convepts that go hand-in-hand. namety. the tinsis of a vecior
space and the dimension of a vecior space.

4.4.1 Basis .
In Unit 2 you discovered that any vector in Ris o linear combinitian of the Lwavectors

(1.0) and (0,1). You can also sce that a(1,0) 4- B(0.1) = (0.0} imphes thit e = 0 and
p == 0 {where . B € R}, What does this mean? 1t means that {(E.0}, {01)} is a lincarly

independent subsct of R?, which gencrates R2.
Similarly, he vectorsi. j. k gencrate R* and are lincarly indepenc s

In facl, we will see hit such sets can be found in any vector space, W el such sersa

“basis” of the conceraned vector space. Look at the follawing definitinn.

_Definition: A subsct B,.of a vector space V. is called a basis of V. il

i) ‘B is lincarly independent, and
ii) B pgenerates V. i.c., [B]=V.

Note that (i} Implics that every vector In Vis a lincar combination of a finite pumbus
of veetors from B,

Thus, BEV isabasisof Vil B is linearly independent and every vector ol Veivalinear
combination of a linjite number of vectors ol B, '

You have already seen that {i = (1.0}, = {0.1)} is 2 busis of R
The following examnle shows that R* has more than onic bisis.

Example §: Prove that B = {v,, vy} is A basis of R, where vy = (118 0= R

- Solufion: Firstly, for . B € Roav, + Bv, =10

=2 (a, o)+ (—B, B) =(0.0) = u-p=0a+p=0"
= = B = . ) '
Hence, B is lincurly independent.

Sccondly, given (a,b) € R?, we can wrile

b4a b—a
v, + —— v,
3 | 1

{(ab)= - )

ik and THmenslon

Plural of hasis is ‘Lases”
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- Veclur Spuees Thus. every vector in R* is a lincir combination'sf v, and v,. Hence, Bisalso a basisof -

R

Another important characteristic of a basis is that no proper subset ol basis can
gencrate the whole vector space. This is brought out in the following example.

Example 6: Prove that {i} is not n basis of R,
(Herei = (1.0))

Solution: By E4, since  # 0, {i}is lincarly indépendent.
Now, [{i}} = {oi | ¢ €R) = {(c. ) | c € R}

S (LI ()]s s0 [1)] # R2.
Thus, {i} is nol a basis of R
Nate that {1} is o proper subsct of the basis {i. |} of R*.

E E7) Provethat: . C :
1) B = {i.j.k} is a basis of R3, where i = (1,0.0).j = (0,1,0), k= (0,0,1).

_h) B= {u.v.w} is a basis of R*. where
u={F2.0.v={21.00.w={00.1)

& E8)Provethat {1 x,x%x* ... }isahasisof the vector space, P, of all polynomials
" overafietd F.

_ B E9)Provethat {1Lx+1, x4 2x}is a basis of the vector space, Py, of all
°, . -8 . palynemials of dearee foss than or equal 1o 2,




E= _E10) Prove tlia_l {I.x + 1.3x = 1. x?} is not a basis of the veclor space P,.

-

We havé already mentioned that no proper subsct of a basis can gencrate the whole

" -vector space. Wewill now prove another important characteristic of  basis, namely, no
Jineerly independent subset ol:ii-ifectorsphcc can contaln more vectors tham a basis of the
vector space. In-otherwords, &basis contains the maximum possible number of lincarly
independent vectots,

, ,:-'Thebrem 5: B = (v, va , v,} isa basis of a vEeLor spuce V over a field: ¥, and
© 8 =-{w,, Wy, ..., W} is a lincarly independent subset of V, thenm = n. )

_ Proof: Since B is a-basis of V and w, € V, w, is a linear combination Of V|, Yoy vy ¥
Hence, by Theorem 3, '

" 8," =1{w|, ¥, ¥, voepa V,} I8 linearly dependent. Since [B] = Vand B £35,', we have
[8,'}= V. Asw, is ailinear combination of v,, V3, ..., ¥, We hive

- -n
wi= Jiov e eFRi=1, on.

- i=1

Now, & # 0-for somp i, ,(Because,-othervl?igc w, = 0. But. as w, belongs to alincarly

‘independent:sel, w, #0.)

‘Suppose a, # 0. Thep-wecan just reorder the elements of B, 50 that v, becomes v, This
..does not change any characteristic of B. It only makes the proof easicer Lo deal with since

we can now assumedhat «, #°0. Then

-1 O
W= — W —V¥n
Q) =2 | ,
that is, v, is a linear combination.of w, ¥,, vy, ....., ¥, So. any linear combinationof
V, Vs, o1en ¥, CONalsO.be-written as a lincar combination of w,, Vo, ....., v,. Thus.il

'8, = {W,y Vs Vg, e Voo then[S] = V0

Notethat we have been able to replace v, by w, in B insuch a way that the newsct stilt
generates V. Next, let :

S = Wy Wy Ve Vi e v}

" Then,.as above, S,"is linearly dependent-and [S,'] = V.
Also w, =B, + By vy + o Bo¥p BEF Wi = 1 in.

'zﬁtgain;-v[’?.i:»‘E 0 ll'or-somé i, singe w, # 0. Also, it cannot happen that B, # 0and 8, = 0
i = 2, since {w,, W,} is.a lincarly independent set (by Theorem 2(b) ). Sa §; # 0 for

some i=2. -

Buls and:Hmenalon -
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" Yerior Space:

‘Apain, for convenience, we may assume that 8, # 0. Then

v,=-—-——w,——ﬁ—wl—-ﬁ— Vi— - - B“ v
= B 2 B, B,
'! -
This shows that v, is a lincar combination of w, w,. vy, ... Yy Henke, if -

S, = {wyw, vve Vo lothen [S,] =V

S0 we have replaced v, v, in B by w, w,, and the new set generates V. It is clear that
we can continuc in the same way, replacing v, by w at the ith step.

Now, suppose n < m. Then, after n steps, we will have replaced all v;'s by corresponding

w,'s and we shall have a sl

S, = (W Wyqe oo Wy, W} With [§,] = V. But then, this means lhat w,, €V = [S"]. .
Clenw,isa lincdr combination of w|,w,. ..... w,, ‘This implies that the sct
Ty e W, W4 }is lincarly dependent. This umtradicts the fact that

{Wy, Wy, ..croy Wy} is dincarly independent. Hence, msn - Co L e

Animmediate coroliary of Theorem 5 gives us n very quick way of dctcrmlmngwhelher
a piven sel is a basis of a given vector spice or not.

Corollary 1: 1{B = {v,,va......, v, } isa basis of V, then any set of n linearly independent
veciors Is a basis of V. ‘

" Proof: IfS = {w, w,, ..., w } is a lincarly independent subset of V, then, asshownm

the praof of Theorem S, [Sl V. As S is linearly independent and[S] =V¥,Sisa
basis an

The followmg example shows how the coro]!drv is 'I.ISLfU]

.Exampie 7: Show that (1,4} and (0,1) form a basis of R-:ovcr R.
Solution: You know that (1,0) and (0.1} form a basis o R? over R. Thus, to show that

" ahe giver set forms.a basis, we only have Lo show that the 2 vectors in it are linearly

independent. For this, consider the equation

(1,4 + B, 1) = b, where «.. B € R. Then (e, da + B) = . (0,0)=2a=0,8=0.

Thus, the set is Imcarly independent. Hence. it forms a basis of R?,

E211) et V he o vector space over F, with {u,v,w,t} as a basis.

a) Is {u,v +IW. w o+ 1,0k u) abasis ol V7
b) 1% {u, t} o basis of VY

We now give two resulis thal vou must always keep in mind when dealing with vector
spaces. They depead on Theorem 5.

Thearem 6: 17 one hasiv of o vecior space contats n veelors, then alb its bases contain
n veeloTs.

Proof; Suppose B, = v vy v band By = {wiowaaw )

are hoth bases of V. Ax B, is abasisdnd B3, is lincarly independent, we have m = n, by
Thicorem § - On the ather harl, sinee By s whasis and By is tincarly independent,

a =L Thus, m o= .

L




Theorem 7: 12 basis of a vector space coatains n vectors, then any set containing more
than n vectors is linearty dependent,

Proof: Let By = {v|,......v,} beabasisof Vand D, = {w,......w, ) heasubsetof Vo
Suppose B, is lincarly independent. Then, by Coroliary 1 of Theorem $, {w,, ..., w,}
is a busis of V. This means that Vis generpiled by wy, .., w,, Therefore, w15 alinear
combination of w, ....., w_. This contradicts our assutnption that B, islinearly
independent. Thus, B, must be lincarly dependent.

E12) Using Theorem 7, prove that the subset
S={1,x+41,x% x3+ 1,x3 x2 + 6} of P, the vector space of all real polynomials of
degree = 3, is linearly dependent.

So far we have been saying that "if a vector space has a basis, then ........". Now we
state the following theerem (without proof).

Theorem 8: Every non-zero vector space has a basis.
Note : The space {0} has no basis.
Let us now louok at the scalars in any linear combpination of basis vectars.

Coordinates of a vectar: You have seen thatif B = {v,, ..., v } is a basis of a vector
space V, then every veclor of V is 4 linear combination of the clements of B. We now
show that this lincar combination is unique. ,

Theorem 9: I B = {v,. v,, ..., v, } is a basis of the vector space V over a field F, then
every ve V cun be expressed uniquely as a linear combination of vy, ¥y, 110, V.

Proof: Since {B} = V and v ¢ V, vis a lincar combination of {v,, %, ..., v,}. To prove
usliqueness, suppose there exist scalars «,, ..., o, B4, ...., B, such that

vEav ooy =8vi+ L+ By
Then (a, = B v, + (e, =B v+ oevie + (o, = f?.n) v, =0
But {v,, v, ...., ¥} is lincarly independent. Thercfore,

a,— B, =010 ie,q=08"Vi
This establishes the uniqueness of the linear combination.

This theorem implies that given a basis B of V, lor c\'ﬂ:ry v € ¥V, there is one and oruy one
way of wriling
n
ve=3 oy witha € EY-,
i=l

Definitlon: Let B = {v,, vz,l .y ¥, } bE 2 basis of an n-dimensional vector space V.
Let ve V. If the unique expression of v as a linear combination of v, v,, ) v, is
veEaV o+ av,, then (o), ay, ..., o) arc called the coordineles of v relative to
the basis B, and'u, 15 called the i* coordinate of v,

The coordinates of a vector wiil depend on the particular basis chosen, as can be seen .

in the following cxample,

Example 8: For R, consider the two bases

Hy= ((1.0) L0}, By = {(1,1),{(~=1.1)} (sce Exampie 5). Find the coordinates of the-
(ollowing vevters in R relative 10 both B, and B, '

(a) (1.2) () (0.0) () (p.q).

Hacls and (e rusban
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Sedulion sfa) Now C12) = Loy = 2oy,

Phvrclore, the eosrdinates of ¢F, 25 ielative (o Jboare (1.2),

7

Al CL2) = 3200y 12 Dy Therehone, Lhe coordiniates of (1.2) rebative o 1.
are (A1) .

FL0.0Y = L) (0 and (.0) = 00 ) 1Y 5 Of--1,1).

[+ this case, rlie coordinges of (0.0) relative to bty it and B3, are {tha)),

LVl - et e oty il

([-I I |

\
1
-{-1.13

. (-
gl - thy+ =
Tleretore the coordinates ol {pay) relative to I are fpag e the caordinates of (p.q)

o Jipo g--p
Il.'l:lll\.L'll'l].)a..'IIL' (5= =5 )

Note : The bawis B = {ij; lus the pleasing propenty gt for afl vectors (pigYe R the
coondizates of (pg) relarive 1o By e (pag . Tor his reasan 15 s called the standard
hasis of R°,and the coardinates of a veetor relative 1o the standard basis are called
stinnetard conrdinates of the vector. [n fact, Uhis is the hasis we normally use for ploting
points in 2-dimenssonit) spaee,

[0 general, the hasis

B (01, 0y (0o, ..My, ... (N .0 0 of R over Risealled the standardd
Mosin of 15, . :

fExampic ¥z Let V be the veetor space of all ceal polvaomials of degree af most | in the
vartable x. Consider the basis B == {3, 3x) of V. Find the coordinates relative to B of

Ahe lollowing vectors,

fu) 2x 4 | {b) 3x-5 {c) i1 (d) 7x,

Solution: a} Let 2x4-1 = a(5) + A(3x) = 3z + Sav, -

Then 3 = 2, 5re == |. So. the coordinates of 2x + | relative (o Bare (1/5. 2/3). .
b dx =5 =alS) + B(x) == a =~ = |. Henee. the uﬁswcris (=11

¢} 1 =a(8) + BOs) == a = 115, 8 = (. Thos. the answer is {11/5, ().

) 7% = a(5) + B2x) =< o = U, B = V3. Thues. the answer is (0,7/3).

F=13) Find o stanclird disas Tor RYand for 1he vecior space P.olall polynomiats of
depree = 2.

|

[RERLs LTt R o L TN

[214) For the basis B = {{1.2.0), (2,10, (0.0.1}} of R, {ind the coordinacs of .
(=3.5.2).




N
- EI3) Prove that, lor any basis B = jvova v alavector spaee Vo (e Msis atel Minreesr
‘Coardinates ol hare (000 .. 0. : i
¢ E16) Forthebasis 3 = {3.2x + 1.x¥=2} ol the vector pace P.ofall pitynomiale
- ofdegree = 2, find the coardinates of
() 6x + 6 {(h) (x+1)" fc) x°
LY
i E17) Forthe basis B = {u.v} ol R2, the coordinates ol (1,0) are (172, 1/2) and 1he
. coordinates of (2,4) are (3.—1). Find u.v, :
: 3
We now continue the study of vector spaeds by ok
directly related 10 the basis of a vector space.
4.4.2 Dimension :
!
So far we have seen that. iFa vector space has a basis ol n vectors, then every basis has i
nvectors in it. Thus, given a veetor space. the number of elenments in its diliceent hases
Temains constant.
Definition : 1f o vector space V over the ficld I has i basis cantaining n veclors, we say
that the ditension of V is 1. We write dimg ¥V = n or, il the underlving fiekl is
understood, we write dim ¥V = n. .
) a3
Ir'V = {0}, it has no basis. We define dim 0 = 0. '




Verlor Spaces o [fa veetor space does not bave a finte hasis, we siv that iCis infinite-dimensionat.
In EXL you hive seen that P is infinite~-dimensiona!. A o E9 siys that dimg Py = 3.
Lardier you have seen that dimy, R? = 2 sind dim,, #W5= 3,
InTheorem 8. you read thin every nonszero vegtor space [ basis, The next theorem
gives us a kelptul eriterion for obtaining a basis of 4 finite-dimensional vector Sprasew.
Theorem 10: 1 there is a subset § = {v,, ... v, } olu non-emply vector space 'V such
that'[$) = V. then Vis finite-dimensivnial and $ containg o basis of V.
Proof: We may assunie that 0 ¢S beciuse, if 6 € S. then §3 {0} will still satisfy 1he
conclitions of the theorem. 1S is linearly independent then, sinee [$] = V| Sitself is a
basis of V. Therelore, Vs linite-dimensional (dim V = p), If S is lincurly dependent,
then suine vector of S is alinear combination of the rest {Theoremn 3). We may assume
that this vectoris v Let S, = {v . vy, ... v )

Since [S] =V and v, s a lincir combination of Yu - ¥ S = V.

IS, i lincarly dependent. we drap, from 5. thit veetor which is o lincar combination
of 1he rest. and proceed s before. Lvenunlly, we get a lincarly independent subset

5= {vove v}
of S.such that [ ] = v {This must happen because {v, } is cerainly limenrly
ndependent.) So S, £ 8 ivubinis of Vand dim V = n—r.

Example 10: Show that the dimension of R is 1.

Selution: The set of it vectors )
(1000, 000,00, ... (0.0.0....0.1)} spans V and is obviousty a basis of R

E E18) Prove that the eeal vectar spice C ol all complex numbers has dimension 2.

W T

E El19) Prove that the vector space P ool all palynomials of degree at most n, has
dimensionn 4 |, '

a

We now see how 1o obtain o basis once we have a tincarly independent sel.

4.4,3 Complelion of a Lincarly Independent Set to a Basis

We have scen that in an n-dimensional veetor space. o sinearly independent subset
cannot have mare thun n vectors (Theorem 7). We now ask: Suppose we have a lincarly
independent subset S of an v dimensional veclar space V. Further, supposce S has

m {< n} veelors. Can we add some veetors to S. so that the enlarged set will be a basis
of V? In other words, can we exicend & linearly independent subsct to get a basis? The
answer is yes. But, how many vectors would we have (o add? Do you remember
Corollary 1 of Theorem 5? That gives the answer: n—m. Ofcourse, any {n—n} vectors
won'tdo ihic joby. The vectors have 1o be careful ly chosen. Thatis what the next thcorem
is about,

Theorem 11: Let W= {w  w., . W, e aticarly independent subset of an
n-dimensional vesior \iee Vo Suppose e n, Thes e INIEYCCTOrS v V., Ly

2 , ; : C s
92 eVauch thin B = fw,. w.. | I TTIL TP N B P N (HIN TV U




. . . . . . Besi iR
Proof’: Since m < n, Wis not a basis of V (Theorem 6). Henee. [W]+# V. Thus, wecun ' and Dimension

find a vector v, € V such that v, ¢ {W]. Therefore, by Thearem 4, W, = WU {v,} is
lincarly independent. Now, W, contains m + I'vectors. If m-+1 = n, W, isa lingarly
independent scl with n vectors in the n-dimensional space V. so W is a busis of ¥V
(Theorem §, Cor. 1). That is, {w. ...... w v }isubasisol V. IMm-+1 <o, then (W}
# V, 50 there is A v, € Vsuch that v, ¢ [W,]. Then W, = W, U {v,) is lincarly
independent and contains m+2 vectors. So. ifm+2 =1, then

W, =W, U {v,; =WU (v, vo} = (W Wae e W vy v,}

is 2t basis of V. Il m-+2 < n, we continue in thiz fashion. Eventually, when we have

adjoined n—m VECLOTS ¥y, Va, <orvs Vo 10 W, we shall get a linearly indepundent set

B (W), Way e W Vi Vo e \ ¥, .} containing n vectors, and henee B willbe a

basisof V.

Let us see how Theorem 11 actually works.

Example 11: Complete the linearly independent subset S = {{2,3. 1)} of R*to a basis of
R
Solution: Since S = {(2,3.1)},
[5} = {«(2.3,1) |« € R}

={(2a, 3¢, o) |xeR}
Now we have to find v, € R3such that v, ¢ [S], f.e.. such that v, # (2 «, 3a, o) for any
«eR. Wecanlakev, = (1,1,1}. Then§, =S U (3,4, 00} = {(23.1), (1.1.1)} isalincarly
independent subsct of R* containing 2 veclors. :
Now [S,] = {a(2,3,1} + B(1.L1} e, B R}

= {(2n+[3.3tx-|jﬁ.|:<+{5)lu.ﬂell}

Now select v, € R¥ such that v, ¢ {S]. We can‘take v, = (3,4,0). How do we ‘hit upon’
1his v+? There are many ways. Whal we have done here is Lo take w = 1 = 3. then _

Yo+ P =3, 3a + B =4, + p =2 50(3,4.2) helongs Lo ISi| Then, by changing the

third component [rom 2 ta 0, we get (3.4,0), which isnoLin[S,). Since v, £1S,].5, U {v}
is linearly independent. Thatis, §, = {(2.3.1).(1.1,1), (3.4.0)} is a lincarly
independent subset of R, Since S, contains 3 vectors and dimy R*=3.5,isabasisol R,
Nate : Since we liad a large number of choices for bath v, and vy, jtis abvious that we
couid have extended S to pet a basis of RYin many wiys.
Example 12: For the vector space T, of all polynomials'of degrec =< 2, complete the
lincarly independent subset S = {x+1,3x-+2} to forma basis of P, '
Solution: We note thal P; has dimension 3, a basisbeing {1, x, x} (sce E19). So we have
to add only ene polynomial to'S to get a hasis of Py,
Now [S] = {a (x+1) + b (3x + 2) |a,beR}

= {(a + 3b)x + (0 +2b) n, bER).

This shows that [S] does nnt contain any polynomial of degree 2..50 we can choose”

. hl
~ x*€P, because x'§ [S]. So Scanbe extended o {x+1,3x+2.x}, whichisa basis of P,

Have you wondered why there is no constant ierm in this basis? A constant term is not
necessary. Qbserve that 1 is a lincar combination ot X+ and 3x+2Z, naniciy.
t = 3(x+1) =1 3x+2). So. | €[S] and henee, ¥ a €R, a.l =€ {s}.

E20) Complete § = {(—3, 1/3)}} to a basis of R*.

AR
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¥Yrctor Spaces

E:21) Complete §'= {(1.0.1), (2,3,— [}} in two dilferent ways to get two distinct
bascsof RY.

E22) For the vector space Py, of ail polynomials of degree = 3, complete
1) S= {2, x4 x, 3"

by 8= {x¥+ 2, x¥=2x}

lo get a basis of Py,

Letus now look at some properties of the dimenstons of some subspaces.

4.5 DIMENSIONS OF SOME SUBSPACES

In Unil 3 youlearat whitt a subspace of a space is. Since it is o vectar spage itself, it must
have a dimension. We have (he leliowing theorens.

Theorem 12: Lel V he a veetor space over a flield ¥ such that dim V = n. Let W be a
subspace of V., Then dim W := n.

Proul: Since W is i vector space over F iy its onen right, il has a basis: Suppose

dim W = m. Then the number of elements in W's basis is m. These elements form a
lincarly independent subset of W, and henee, of 'V Therelore, by Theoremn 7. m = n,

Remarks: If Wis usubspuee of V such thai dim W = dim V = n, then W =V, since the
basis of Wis aset of lincarly independent etementsin V, and we can appeat to Theorem
3, Cor. I. ' '

LExample 13: LEL V be a subspace of R, What ire the possible dimensions of V?

Solution: By Theorem 12, since dim 7 = 2, (he only possibilities for dim V are 0.1
and 2.

W dim V = 2 then, by the remark above, V = R?,

[Fdim V = 1, then {(B,. B,}} is a basis o V, where (3,, $,) € R%. Then

Vo (GI{B“B_.)]&ER}. . . Y

This is a straight line that passes through the origin (since 0 € V), -

Ifdim ¥ = 0, then V = (i},




Now try Lhe following exereise. thasis st Dimension

[£23) Lel V be a subspace of RY. What are the 4 passibilitics of it structure?

Now letus go Turther and discuss the dimension of the sum ol subspaces {see See. 3.6).
If U and W are subspaces of a vectar space V. then so are U+ W and UNW, Thus, all
these subspaces have dimensions, We relale these dimensions in the following theorem,

Thearem 13: 10 Uand W are lwo subspaces of i finile-dimensional veetor space V over
ilicld I, then !
dim (U+W) =dim U 3 dim W ~ dim (UNW).

Proof: Werecallthat U+ W= {u+wlue U, we W},

Letdim (UNW) =, dim U = m. dim W = n. Wc have to prove that dim (U+W) =
m-+n-r, ’ -

Let{v,, vy, ..uus v,} be o basis of UNW. Then {v. v, ... v,} is a linearly independent
subsel of U and also of W. Flence, by Theorem 1L, il can be exlended (o form o basis
A= {v VoV U U e U OF U and a basis

- ' P !
B= {VI' Vau e Yo W W e w r:’ of W.

Now, note that none of the u*scanhe a w. For,ilu = w thenu € U, w, € W, sothatu,
€ U N W. But then v, must be a linear combination of the basis {v, ... v,} af UNw.

This contradicts the [act that A is lincarly independent. Thas,

AUB = {v,, Var e Vi g e U Wy e W B, contains r+(m—r1) + (n—r)
veetors. We need 10 prove that AUB is & basis of U-+W. For this we Lirst prove that
AUB is lincarly independent, and then prove thit every veetor of U+W is @ linear

combination of AUR. So lct

r m n’ i

Do vt S B+ Y mw, = 0 wheré o B, 1 € F Y Lk,
=1 _j=r-l‘l k=ikl
Then

r m n

Z(xivi+ Eﬂiul = —ETLW't ................ {n
i=| j=r+l k=r+l

The veclor an the leit hand side of Equation (1) is a lincar combination of {v,, ...... v,

U, ..
ST AR
. - . i . . . .
on both side of the cquation are in UNW, Buot {v,. ...... v }is & basis ol UNW, So the
vectors an both sides of Equation {1} are a lincar combination of the basis {v . ......vr}
uf UNw,

That is,

i“i"i -+ :S:B]ujz gﬁi‘v;. ......... oo (2)

i=| J=i+l
and
n 1 - .
ETLW'I\.:EBIVI' """"""" {3}
Lorrl =i

where d e F-i=1. ..., r . - 95
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vectar Spave C (D gives E (= By, F X R =0, ‘
But {v,....... Vool ge conn Undis linearly independent, so
o = Band By = 04 0.
Similarly, since by (1)
Ehv,+ Enowim (),
we pet §, = (4% i, T = 0%k

Since, we have already oblained «, = 8 V=i, we pel o = 051,

Thus. Xy, 4+ X B+ Srw =0

= o = 0B = 07, = 0%ijk

So AUB is lincarly independent.

Next. letu +we Uk W,

Then u = X apv; + X gy,

ind w = I By, + 21wy,

i.e..utwis a lincatr combination of AURB,

Coo AUB is abasis of U+ W, and .

dim (U+ Wi=m+ n- r=dimU+ dim W - dim (UN W)
We give a corolliry to Theoren 13 now,

Corollary: dim {UEW) = dim U -+ dim W.

Proof: The direct sum U@W indicales that UNW = {0}. Therelore, dim (UNW) = 0.
Hence, dim (U+W) = dim U + dim W.

Letus use Theorem 13 now,

S

Exawmple 14: Suppose U and W aresubspacesofl V,dimU = 4, dimW =5, dimV =7.
Find the possible values of dim (UNW). '
Il ’ Solutlon: Since Wis asubspacc of U+W, we must have dim (U+W) =2dimW =5.i.e.,
1 dim U + dim W — dim (UNW) 2 5§ => 445 — dim (UNW) = § =» dim (UNW) =4.
‘ ’ On the other hand, U+W is a subspace of V, so dim (U+W) = 7,
= 5+4 — dim (UNW) =7
=i dim (UNW) = 2
Thus, dim (UNW) =2, 3 or 4.

Example 15: Let V and W he the following subspaces of R":
Vo= {GLb.cil) | b-2c+d =0}, W = {(a,b.c.d) |a = d, b = 2¢} . )
Find bases and the dimensions of V, W and VAW, Hence prove that R = V + W,
Solulion:. We observe that
{(abecd)eV <= =2c+d=0.
<= (u,b,c,d) = (a,b,c.2c—b) . i
_=(a,0,0,0) -+ (0,b,0,—b) + (,0,c,2c) :
=4(1,0,0,0) 4 b (0,1,0,—1} + ¢ (0,0,1,2)
This shows that every vectar in V is a lincar combination of the three linearly
_ independent vectors (1,0,0,0), (0,1,0,~1), (0,0,1,2). Thus, a basis of V is
- A={(1,0,0,0), (0,1,0,—1).10,0.1,2)} ' )
Hence, dim V= 3.

Next, (a,be,d)eW<=a=4d,b=2
<= (a,b,c,d) = (a.2¢,c,0) = (a,0,0,a) + (0,2¢,¢,0) [
=4 (10,00} + ¢ (0,2,1,0), . ) _

which shows that W is generated by the lincarly independent set {(1,0,0,1), (0,2,1,0)}.

- - ."., a basis for Wis

B'={(1,0,0,1}, (4,2,1,0)},

anddimW =2, ,

Next, (a,b,c,d) € VAW <=> (a,b,c,d) € Vand {u,b,c,d) e W

<=>b-—-2ct+d=0,a=d,b=2¢c

05 « = (a,b,od) = ({00.2¢, ¢,0)-= ¢ (0,2,1,0)




Henee. a basis of VOW is {2, 1.1} and dim (VOW) = |
Finally. dim (V+ W) = dim ¥V + dim W = dim {YOW)

=321 =

Since V + W is o subspace af 1Y and hoth have the sione timensian,
1 .
R =V + W,

E24) If U and W are 2dimensianad subapaces of R shaw that UNW £ 4,

E25y 17 U and Ware distinet 4-dimensional subspices ol a d-done nsioid vecinr
space V. find the possihle dimensions ol Linw,

E26) Suppose V und Ware subspaces of R such thatdim V' = Adim W= 2oProve
that dim (VOV} = tor 2.

I

E£27) Let V and W be subspaces of R" deflincd as follows
V={nbc)| bi2c =0} :

W = {(a.b.c) | a+b+c =10}

a¥ Find bases and dimensions ol V.W.VNW

) Find dim {V +W).

Nk s SHensiun -
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Letus nowlook at the dimension of a quotient space, Belore going furtherit may help
lo revise Sec. 3.7, '

4.6 DIMENSION OF A QUOTIENT SPACE

In Unit 3 we defined the quotient space V/W for any vector space V and su;b'space W,
Recall that VIW = {v + W | ve V). ‘

We also showed (hat il is a vector space. Hence, it mist have a basis and a dimension.

The {ollowing thcorem tells us what dim V/W should be.

Theorem 14: If W is a subspace ol a finite-dimensianal space V. ther

dim (V/W) = dim V - dim W.

Proof: Suppose dim V = nand dim W = m. Let {w,.w-...... w,, $ be u basis of W. Then
there exist veetors vy, va...,., v such that {wy, Wa,...., Wi, ¥1, Vae evros v}

is 4 basis of ¥V, where m + k = n (Thearem !1).

We claim that B == {v, + W, v + W, (..., v, + W}is a basis of Y/W. First, let us show
that B is lincarly independent. For this, supposc

k
z o (vi +- W)= W, where oy, ..., o are scalars

1

(note that the zero veclor of ViW is W).

" _ :
Then 2 v+ W=W

k
2= (Y )+ W=w
= ;s

==

1
" .
= Ea,- vieEW
ial
But W = fwy, wa, oo v}, s0
k m

2 o, = 2 B,w; lor some scalars B, ... Ben -
i=| )=
= Iaqv—LBw=0




1avis

b= 0,0 =0 ]l

Thus, ’ . - .
::Gi(\'i“l‘W):W'@Gi:O'V'i.. sl
0Bis l'incnrly indcpendent.

Jext, to show that B gencrates V/W, let v+W € V/W. Since v e Vand {wy, ..., Wy,
N, e, Vi) is abasisof V,

-t

n k

- —4 "

r= 2 v F Z B; v;, where the o s and B; . 5are scalars.
1 T -

(herefore,

v W= (Ei:uiwi+ ; ﬁjvj) +W
={(SemyrWhH(S Bw)+ W)

k
=w.+2ﬁj("'j+W),Siﬂcczuiwigwl
|

k ,
=S B;(v;+ W), since W is the zero clement of V/W.
=

Thus. v + W is a linear combination of {v; + W, i=1.2, im0 k.
So;v+W e |B). ‘

Thus, B is a basis of V/W, -

Hence, dim V/W = k = n—m = dim V — dimi W.

Let us use this theorem to evaluate the dimensions of some familiar quotient spaces.

Example 16: If P,, denotes the vector space of all polynomials of degree =< n, exhibit 2
sasis of Py/P; and verify that dim P,/P, = dim P; — dim P,

Solution: Now P, = [ax’ + b_x"_’ + ex? + dx + ¢ | a,b,c,d,c € R} and
P, = {ax* + bx + ¢la,b, c € R}.

Therefore, P,/P, = {(ax* + bx") + P, |a,b € R},
Now (ax* + bx”) + P»

= (ax" + Py} + (bx’ +Pp)

= a(x* + Py) + b (x* + Py}
This shows that every element of P,/P; is a linear combination of the two clements
(x* + Pa) and (% + P2). : '
These two clements of P4/P, arc also linearly independent because if
a(x® + Py} + B (X° + Py) = Py, thenox” + Bx* ¢ P2 (0, PeR).
CL,oaxt + Bx> = ax* + bx + cforsomec a.b.c€R
=a=0,p=0,a=0,b=0,c=10.
Hence a basis of Py/Py is {x" = P5, x* + Py},
Thus, dim (P4/P2) = 2. Also dim (Pg) = 5, dim (Py) = 3, (see E19). Hence dim (Po/P2)
= dim (P,) - dim (P} is verificd, '
Try the following excrcise now,

E28) Let V be an n-dimensional real vector space.
Find dim (V/V) and dim V/{0}. )

Baasls and Dlmtn.sian
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We end this unit by summarising what we have covered in it,

4.7 SUMMARY

Tn this unit, we have

[} introduccd the important concept of linearly dependent and independent sets of -
veclors.

2) definc® a basis of a vector space.

3) deseribed how 1o obtain a basis of a vectorspace frami a linearly dependent or a

iinearly independent subsel of the veetor space,

4) defined the dimension ol s vector space.
5) abtained formulae for obiiining the dimension of the sum of (wo subspaces,

interseclion ol two subspaces and quoticnt spaces.

4.8 SOLUTIONS/ANSWERS

E1) ay a(1,2.3) - (2.3, 1) -+ ¢(3,1.2) = (.0.0
== (020,200 4 (2b,3b.b) + (3e.e2e) = (0,0.0)
= (a4 2bh -k 3el 20 4+ 3b 4 e, Ja + b+ 20) = (0,0,0)

vz g4 2hle=0 e (1}
2u+dheco=0 0 {2)
And b e 00 (1

CThen (1} (20~ (3) pavesdb 4 Qe = O0e., ¢ = <20, Putting Lhis V:l“lllill([)
wepetick bl = e, o = 4b Then (2) gives 8b 4 3b — 2b = 0, j.e.,
b =0, Therefore. a = h = ¢ = (). Thercfore, the gjven set is lincarly
independent. ’
DY a( 2.3 3 BI2G) 9 o =3=du0) = (0.0,0;
<=0+ 2h3e, 20 4 3h=dg, 3a + b 4 ) = (0.0,0)
<= - 2h - Jo= 0
Za+5b—de=10
A boAc=0,
Onsimultaneonsly solving 1hese equations you will find that a,b,c can have
many non-rerovaiies onc ol them beinga = — 1, b=2.c=1.. __thegiven
selis incarly deperaent.
¢ Linvarly dependgi.

d) Lingarly independent,

B2} To show that {sin x, cox 5} is linearly independent. supposc ol € R such thdl
k i

asiny -k beosy =10,

-+ Punting x = 0in this cquation. we get b - 0. Now, take x = 572,
We getio » 0 Therelore, the set i linearly independent.
Now, conskbes e oo,

con e o e L

T




Ed)

Since sin (x + wb) = sin X cos 7o + cos X sin /6

"= V/3Psinx -+ L2 cosx. takinga = — V312, b= 112, c = 1. we g2l a lincar

-combination of the set {sin x, cos X, sin (x + 7/6)} which shows that this sct is

" linearly dependent,

n) ax- +b('< +1)-—”=>(ll+b)’{ +b=0=a+b=0,b=0
=32 =0 b=0, .., thegivensttis lmmrlylnclcpcndcnt

" b) Linearly dupendcm because. for example,

L4)

: ES)

E6)

—S(x + 1)+(x +ll)+2(2'«; -3=0L
¢) Linearly dependent.
d) Linearly dependent.

Suppose a € F such that av = 0. Then, from Unit 3you know thala = Qorv=0. - .
Butv & 0. .., &= 0,und {v}is lincarly independont. ‘

The set § = {(I 0), (0 1)} is a linearly independent subset of R*, Now, suppese

3 Tsuchth 1t S ST CR? Let(x.y) € Tsuch that (x,y) ¢ S. Then we cin always

find a.b.c € R, not all zero, such that a(1.0) + b(l} 1)+ e{x.y) = ([) 0. (Take
a=-X.b=-y.c= [, for example.}

SS U {(x.y)) islinearly depcndcm Since his is contained in T..T is lincarly
dcp-..ndunl

, Llhe answer to thc question in this cxercise is "No'.

Lel T be a finite subset of P. Suppose 1 ¢ T. Then, asin Example 4, 3 non-zero

Agpennens a, such thdt
T={"+1, o+ 1)

k
Suppose S a; (x + 1) =0, where o € R ¥-i.
PPRO;
=

Then XM + ..+ aX™ + (ay +az+ o + o) =

=5 g = 0= o = ... = . 50 thal Tis hnt, irly |ndt.pemh.nl
H-1eT, thenT= {l.x"l + 1. .. X"+ [Hor some Ron-zero g, ... Wy
Suppose,
X .
S Bt 2 B:(x"i+ 1y=0, where fo By ... By € R.
i=1
_Then (Botf + ... + Br) Bt 3 B¢ =10
o P 2y e B =05 =0= Br= o
= fo=0=p,= .. =B

E7)

E8)

£9)

== T is lincarly independent,
Thus, gvery finite subset of {1, x+It....;mhnnrlymdcpcndonl. l"hcrcfnru.
{l,x+1,...}Is lincarly independent,

a) B is lincarly independent and spans ®.

by B s lincarly I|1d|.pmuh.|11.
For my (abee it _
we have (a.b.c) = 2028 (1,2,0) + &2 2‘“*‘ ( 1.0) + ¢(0.0.1).

Thus, B alse spans R
Firstly, any clement of Pas ofthe formi, - a, X+ i) X 4. Fa,xt o e RVEL
This is a linear combination of {1, x. ... X"}, a finite subset of-the given set.

, the givenset spans . Secondly. Fxample 4 savs that the given st is fincarly
,indcpc'ndcnt. .

il is a basis of P,
The sel {1.x+1, \ + 21} is linenrly independent, 10 niso spans Py, since any
clement ag + .1,x+.\;x e P enn be weritten fs G, -y - iy - 7t|1)[\-l 3]
B . '

+ a5 (x* 4 2x). Thus, the set s a busis of P,

Pacis and Dimension
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E10) The sctis lincarly dependent, since d-3 {x-k1) 4 (3x — .1} + 0-x% = 0.
- it can't form a basis of P2,
Ell) a) We have to show that the given sct is Imc.irly mdcpcndent
Now au + b (v + w) + c(w+t) > d(t+u) =0, fora,b,c.d €F.
== (a4-d)u + bv + (h-+c)w + (c+d)t =
= a-td=0b=0btc=0andc+d = 0 since {u,v,w t}:slmearly
independent. Thus,a=0=b.=¢c=d.
..y the given set is linearly independent. Since it has 4 vectors,.itis a.
basis of V. _
b) No, since [{u.t}] # V. For exampie. w ¢ f{u,t}] as {u,w;1} is a lincarly
independent sct by Theorem 2. .
E12) Youknow that{l, x, x%.x*} is a basis of Py, and contains 4 vectors. The given sei
contalns 6 vecters, and hence, by 71" heorem 7, it must be lincarly dependent,

E13) A standard basis for R®§ is {(1.0,0). (0,1,0), (G,0,1)}. {1,x xz} is 8 standard basis
for P, beeause the coordinates ofany vectorag + u; X 4+ apx? ,in P2,is (4, a,, az) .

E14) (—132- -311-)

E15) Since @ = 0.v; + 0wvy -+ ... + 0-v,, the coordinates are (0 0, ..., 0).
E16) a) 6x + 6 =.1.3 + 3[2;. + l) + 0-(x2-2}. .".. the coordinates are (1,3.00
b) (2/3,1,1)
<) (2/3,0, 1).
EI7) Letu = (a,b), v = {c,d). We know that
' (1,0) = s (ab) + a(ed) {f’—;“—" , b_;_“.)

and (2,4} = 3(a, h)-fcd}- (3a—-¢, Ib-4).

wA+Ce=2b4d=0,3u-¢c=2, ‘ib-u~4 Solving these equations gives
woa=lb=lc=t,d=~1 :

Sell=(12), v (1, ~2),
E18) C = {x+iy| xly € R}:" Consider the set § = {1 +i0, 0+il). This spansiC and is
linearly indepéndent. .., itisabasisol C. .., dimgC = 2,

E19} The set fl,x, ...... " } is a basis,

E20) Weknow that dimg R*=2. ."., wehave toadd one more v ector to 5 to obtain’
a b.msorn" Now{S} = {(~ 3c: fa)] aeR}.

So (LD e(S) ., (=3, 143), (1,00 |s1ba5|s.ofR2

E21) To obtain a basis we need t0 add one clement. Now.
{S] = {a(1,0,1) + B(23,~N!a,BeR}
={(a"+ 2B, 28, a=P) | a, P R
Then (1,0,0) ¢ [$] and.(0,1,0) ¢ [S]. .
< A(1L0,1), (2,3,- 1), (1,0,0) and {(1.6,1), (2,3,—1), (0.1,00} ave two dickinct
bases of k™. ' '

E22) a) Check thatx ¢ [S). .". SU{x}is a basis,

BY T#[S). LetS, = SU(1}. Then x> ¢ [S,]: Thus, a basis is {1, x* + 2,5 = 3x; x™).

E23) dimVeanbe 0,12 0r 3. dmV =0 = V = {6}.
dimV =1 =2V = {n{f3;, fa, Ba){ x € R, for -Omc(Bth-Ba)ER

[TrraprEe
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This 15 a line in -dimensional space.

Jim Vo= 2= W gencrates by wvelinearly independent space vectors, Thus, V

tva planz.
gim Vo= 3 o= Vo= 1
E24) im0 - 2 = dim W, MNow U--W is o subspace of RN
Lodim (U4+Wr = S e dim U dim W o dim (UNAW) = 3,
Lo, dim {UNW) = | 0 UNW# )
£25) dimV = 6, dimb = 4= dim Woand U # W. Then dim (U-+W) = 6

== 4.+4 — dim (UﬂW) = == m (UNW) = 20 Also, dim (W) = dim U

Yo dim {UNW) = 4, .".. the possible ditrensians of UNW ire 2,34,

E26) Since VW is a subspace of RY, dine { ¥+ W) = 4.

Thatis, dim ¥V + dim W — dim (VW) % 4.

Jo o dim (VOW) 2 L

Also VAW is a subspace of W. ., dim (Vﬂ\.U) = dim W = 1,

S = dim (VW) = 2.
E27) a) Anyclement ot‘\} isv = {abe)warkh+2e =0,

v = (20 = a(1,0.0) # e —-2.1).

., abasisof Vis {(1.0,0}, (0,-2,1}. ... dimV =2,
Any clement of Wis w = (a,b,c) witha+b+¢ = 0.

Joowe=(a,b,—a=-b) =a{l,0,-1) + b(t,1,-1)
., ow basis of Wis {(T,0,-1), (0,1,-1)}.

S dimW =2, ,
Anyelementof VOW isx = (a,b,c) withb+2c = Dand a+b%c = 0.

C. o x=(a,=2¢,e)with a— 2¢% c= 0, thalis, a= c.

Joox=(e,—20.¢) =¢(1,-2,13. ... abasisof VAW is {1,- 2,1}.

oL, dim (VAW =1,

b) dim (V+W) =dim V + dim W — dim (VAW)=3, ., V+ W =R>,

E£28) 0, n.
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BLOCK 2 LINEAR TRANSFORMATIONS
AND MATRICES

In the last block we intraduced you 1o the basic algebraic structure il this course is built
on, namely, veetor spaces, In this block, consisting of 4 taitw ¢ will sludy cerlain
functions between vector spaces. as well as matrices associuted with these [unclions.

Functions, whose domain and co-domain ar¢ vector spirces, and have an added property of
lincarity, are called linéar wransformations, linear operaters ar lincar mappings, In Units 3
und 6, we define and discuss some properties of such functions,

in Um: 7 we define o concept closely linked 1o linear ttnslormations, ninely, & matris. We
introduce you 10 variaus kinds of malrices, and show you how 10 oblzin matrices associnted
with-linear operators. We go on 1o introduce you to matrix multiplicalion, a concept that
you may require (o spend some time on, to preperly digest il This unil may 1ake you a litile
longer 1o 1ake in, but don't let that warry you, Do spend as much lime as you need, because
the ideas that we have dealt with in it are interesting and applicable in mathematics, as welt
as the olher sciences.

In Unit & we defline 1he rank of a matrix and relale ir Io the rank ol ils assnciated linear
transformition. You will also learn the technique of reducing a malrix 10 echelon form for
solving o system of linear equations.

Al the end of the block we have given the media note Accompanying our video
programme ‘Linear Transformations and Matrices’. Please do go through the note
and view the programme at your study cenire.

In the next block you will be needing a thorough knowledge of the inateriat covered in this
~ block. So, go through this block carefuily.

A piece of advice before yau get to grips with the uniis, Whenever a reference (o an eorlier
section or result is made, it is best to pause, po back to the result referred to and carchally ry
to sce the cannection.

oy i
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NOTATIONS AND SYMBOLS

dim, vV

difi ¥V

RiT
cKer'T

L vy

ALV}

V!

SiIT

-8,
F[x]
deg t
p{T)

NI““T‘(.F} h
M, (F)
[Tl .0,

ITl,,
p (A)
min{m.n}

[S)
R,(AY(C,(A)

R (8} (A) (C, () (AD)

R, () (A) (€ (a)AY)

ARB
AP AE Al

dimension of V over'F

dimension ol V over F (F is understood here)
range spice of the operator T -

kernel ol 1he opcru-lurT

set ol akl linear irnsformations from U 1o V
Li{V. V)

L (V! F), where V iy a vector space over T
composition of the mappings Sand T

is ixomorphie to

‘Kronecker delia function

sel of all polynontials in x with coeflicients in F
degree of the polynomial 1

the operalor obfiined by substituting. T for x in the
polynomial pix)

set ol il mx n matrices over F

set ol @l n x n matrices over F

matrix of ‘T with respect to the bases B, und B,
matrix of T with respec to the bsis B '
runk ol the malrix-A

minimum of mangd n

lingar span of the st S

clcmem'ury operalidn of interchunging the ith and
jth rows (columns) of A

clementary operation of multiplying the ith row
{column) ol A by

clementary aperation of adding 4 times The Jih row
tcolumn) e the ith-row. (column of A
apply operation R on A to get i

Conjugate ranspose of the square matrix A




UNIT 5 LINEAR TRANSFORMATIONS - 1

" Structure

-8 Introdluglion 5
Ohjectlvey

52 Lincur Transformalions

3.3 Spuces Assockated with a Lincar Transformation 11
The Range Space snd the Kernel I ’
Runk and Nullity

5.4 Some Types of Linear Transformations : 16
5.5 Homomormhism Theorems 20
5.6 Summary 22
5.7 Solulions/Answers : 23

3.1 INTRODUCTICN

You have already learnt aboul a vector space and several concepts related to it. In this unit
we iniliate the study of certuin mappings between two vector spaces, called linear
transformations. The importance of these mappings can be realised from the Fact that, in the
culeulus of several variables, every continuously differentiable function can bo replaced, 10 a
first npproximation, by a lincar ooc. ‘This fact is & reflection of a general principle that every
problem on the change of some quantity under the action of several faclors can be reparded,
to a first approximation, as a linear problem, It.often turas our that this gives an adequate
resull. Also, in physics it is important 10 know how vectors behave under a'change of the
coordinate sysiem. This requires a study of linear transformiations,

In this unit we siady linear transformations and their properties, as well as two spaces
associated with a linear transformation, and their dimensions. Then, we prove ihe existence
of linear ransformations with some specific propenies. We discuss the notion of an
isomorphism between two veclor spaces, which allows us to say that all Mnite-dimensional
vector spaces of the same dimension are the 'same®, in 21 ceriain sense.

Finally, we state and prove the Fundamental Thesrem of Homumorphism and some of its
corollaries, and apply them to various situations.

Since this unit uses concepts developed in Units 1, 3 and 4, we suggesl that you revise these
unils before going further.

Objectives
After rending this unit, you sheuld be able to

verify the lincarity of certain muppings between yeetor spaces;

construct linear transformulions with ceriain specified properties;

calculale the rank and nullity of a linear operaror;
-prove und apply the Rank Nullity Theorem;

define an isomorphism betwoen two vector spaces;

show thit twa vector spaces are isomomhicif ongd only if they houe s samic diension;
prave and use the Fundamental Theorem of Homomorphism.

eGSR

5.2 LINEAR TRANSFORMATIONS

In Unit 2 you came across the vector spaces R? and I8, Now consider the mapping
2= R f(x,y) = (x,y.0) (sce Fig. 1}

fis & well defined function. Also nolice that
) f((a,b) + (c.d)) = f{(a + Chb+dy={4c b+ M= b0+ (e dy oo — o

s by e da e [N

A
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Flg. 1: f transforme ARCD 10 A’B'C'D
ii) forany xe Rand(ab)e R, f (a{a.b)) = M{oa. b)) = (o, b, 0) = a (a.b.0}
= arf{(a,b).
So we have o funciion [ between lwo veclor Spaces such that (i) and (ii) above hold true.
{i) says that the sum of 1wo plane vectors is mapped under ['to the sum of their inages
under f. {ii) says that a line in the plane R? is mapped under f to a linc in R%

The properties (i) and {ii) together say that [ is linear, a term that. we now define.

Definitlon: Let U and V be veclor spaces over & field F. A lInear transformatton (or linear
operator) from U to Vis a function T: U — ¥, such that

LT Tiy, +v,) =Tt + T}, for 1;,. u, € U,and

LTD T(ou)saTwforae Fandde U

The conditions LT} and LT2 can be combined to give the following equivalent condilion.
LT} T(ou, +au, )= o T} + aJT(u,)'..for o, 0 e‘ Fandu,u € U. -

What we are saying is that [LT} and LT2) &L T3. This can be casily shown as follows:.

We will show that LT3 =3 LT} and LT3 = £T2. Now, LT3 is true ¥, € F. Therefore,
it is gertainly wrue for &, = 1 = &, that is, LT1 holds. '

Now, to show that LT2 is true, consider T{ow) lor any O & F and u e U. We have T{m}) =
Tiou + 0.0) = aT() + 0.T(u) = oT(u), thus proving that LT2 holds.

You can try and prove (hg ¢onverse now, That is what the following exercise is all about!

El) Show that the conditions LT1 und LT?2 together imply LTI,

Before going further, let us note twWo properties of anﬂinear transformation T:U - V,

which follow from LT} (or LT2, or LTH -

LT4) T(0) = 0. Ler’s see why this is true. Since T(D) = 10 +.0)=T(0} + T(0) (by LT}, we
subtract T(0) from both sides to get T(0) = 0. :




LTSy Te-ud = =T Afu e L, Why a2 this s0? Well, since 0z 1l = Ty ~ o)
=Ty o+ Tr-n, we pel Te-u) = -Tig). '

E Fo2i Canovon show how LTS wnd LTS will follow from 1,122

Now el us lauk al some common linear rrinsiormalions.

Fxample 13 Consider the vevtor space U over o field T, and the foneyrn T 13— U defined
a

by Tan = ntor all w11,

St thay T is a linear icinsformarion. (This s lormiatios s eallee rhe identity

transformatiom and i denoted by Ioe just LT the andidving veepor AIIRTR TN
undersioa, )

Solution: Forany . B e I apd UL, 2 U we have

T (o, + Pusi = cu, + Bu. =BT + BT uy).

Hence. LT3 halds, and ¥ 15 a linear translormation.

Example 2: Lot T2 U = V be defined by Tiu)= @ forailue [

Cheek thad T s & linczr transfonnation, theis called 1he null or 2era transfurniation, ind is
denuled by )
"%ululiun: Farany o. e Fand u,.u, & U, we have
T 5 -
A

1
Tow, + Pu) =0 = + B0 =¢Tru) + fTtu,).

Therelore, T is o linear transformution,

Example 3: Consider the function 1, D R* 5 R, defined by Pri(s .o il =, Show tha
this is a linear iransformation. (This is called the prajection on.the first coordiiate.
Similarly. we van deline pr: R* — B by [ [ S, T R S A= 1o be the

projection an the i epordinate for j = 2, ... For inkance, pr.:R'=> 1T Prdx,y.sl =y

Soletion @ We will use 172 (o show that Py is i dinear operior, Fora, e R and

X et X WY ¥ i BT, we have

I %) + BUY i 3]

=pr, {ox, + By, ax, + By, oeene. ax, HRy,) = ax, o+ Py,
= apr [ix,....... 53+ []prI (¥ ¥

Thus pr, (and similarly pr,) is a lincar transformition.

Before poing to the next exumple, we muke a remark about projeciions.,

Rewmark @ Consider the function p:R* = R?; p(x.y.z) = (x.y). Thisis a projectionTrom R?
on (o the xy-plane. Similarly, the functions f and 8. from R* — B2, defined by

Foeye)'= (x.2) and g(x,y.2) = (y.z) are projections from R onle 1he xz-plane and the
yz-plane, respectively. )

e A

In geacral, any funclion 5 : K* — R {n > m), which is definad by dropping any (n —mj}
coordinates. is 0 projection map,

Now let us see anather cxample of a linear transformation that is very geometric in nature,

Examp;le 4: Let T: R* = R¥be defired by T(x.y) = (x,~y) V-x'.y cR.
Showthat T is a linear transformotion,

(This is the reflection in the x-axis that we shaw in Fig, 2. '

Linear Tronsformations - 1

YJI.
2
O X
; e Yol

Fig. 2: Q ls the reflection of P ip

the x-axls,




Lincar Transformiations and Solution: For o, f € R and (x,.ylj. (x,y,) € Rl we have
Malrices :

Tlatx,y,) + Bx,y )l =T (ax, + Bxy ay, + By,) = (@x, + Px, ~ oy, —By,)
Y % =X, ~y )+ mx:'"y:) :

= aTls,y,) + BT,y
Therefore, T is a lincar transformation. )
A Y Sa fur we've given examples of linear transformations. Now-we give an examplc of a very
4 f-m==n important function which is not Jinear. This example’s importance lies in its geometric
1A A e B applications.
1 ]
4 é’:"'" JD" Example 5: Letu,, be a fixed non-zero vector in U. Define T; U - Uby
I e D Ttu) = v+ uu & U. Show that T is not a linear wransformation. (T is called the transiation
ininteial muntt B B Ul ¥ by u,. See Fig. 3 for a peometrical view.)
0l 12 3 4 X " ‘ ‘
: Solution: T is not u linear transformation since L'T4 does not hold, This is because

- T(0) = u, = 0.
Fig. 3: ATBCD s the ) )
Leawsiation of ANCD by 11, b, Now, Iry the following exercises.

E E3 LaT:R®— ¥ bethe reflection in the y-axis. Find an expression for T as in Example
4. s T a lincar operator?

E4) For a fixed vector (a,, 2., a,) in R, define the msj p.ig T R’= Rby
TUX, Xye X,) = 3, + 8,8, + a4y, Show that T is a linear transformation. Note that

T(x,.%,.x,) is the dot product of (x %%, and (3, 0y, a,) (ref. Sec. 2.4).

Y

£ L5 Show that the map T: R? - R* defined by
Tix,, X %) = {X, + X, =~ Xy, 2%, — X, X, + 2x,) is a linear operator.

Yo.u c:m:u: across the real vector space P, u;’ all palynornials of degree less than or equal to
n. in Unit 4. The next exercise concems il

ol

E6) Letfe P begivenby
fxy=a, + &x+ w- +axhoeR Wi

We define (DN (xy=0 +2ux+...+n o X"




Show that 21" ' P_is a fincur ranstomuution, (Observe that DF is nolhing but the
decivative of T D is callzd the differentiation operafur.)

Lincar Transformations - |

I Unit 2 we introduced you 10 the conceplt of a quotient space. We now define a very useful
lineiy ransformayion, using this concepr. -

Example 6: Let W be a subspace ol a veetar space U over a feld F. W gives rise 1o the
yuatient xpace UAW, Consider the mup T:U — UAY defined by T(n) =u + W,

T is called the quotient map or e natirra! map.

Show thut T is a linear transformation.

Solution: Forw. e Fand U, € Uwe have
Tlau, + fu,) = (u, +Pu)+ WL (qu, + W)+ {Bu, + W)
=afu, + Wi+ e, + W)
=aTw,) + fT,)
Thus. T is a linear transformarion.
Now solve the faliowing exercise, which\is about plane vectors.
ED) Letu, = (l.=1.u,= (2 -1). 0= (4=3), v, = (1.0), v, = (0, Y and v, = {1, 1) be 6

veclors in R% Can you definc a linear transformation T: R? ~» R? such that
T)=v, i=1,2,37

(Hint: Nole that 2u, 4 v, = u,and v, + v, = ¥y)

You huve already seen hat a lincar transformation T:U = Vsl satisfy Tlau, + onu,) =
o, Tiu,} + . T(u,). lor 2.0, Fandu, u, € U, More generally, we can show that,

LT6 T, + v v ) = o Tl) + o+ 0 T(0 ),

wherea, € Fundu e U.

Led us show this by induction, thit is, we assume the above relation for n = m, and prove i
tor m + 1. Now, ;

Tou +..+au +a u ) S )

"o ms 1 mel

=Teve, ) where u=@u, + e + @0

ek el

=Tl + e Ty, ) since the result halds for n = 2

Ml
= T lrxlul * o ¥ c‘m“m} + ﬂnnl T{unul]
So T+ oo T )+ o, T ) since we hove assumed the result for n = m.

Thus. the result is true for n = m + §. Hence. by induction. it holds true for all n.

Lt us now come 10 3 very impartant property of any linesr transformation T:U - V. In
Unit 4 we mentioned it every vecloy space has it basis, Thus, U hus a basis, We will now
shew tat Fis compleieky derenmined by sis vithues on a busis of 1, More precisely, we hive

Theorenr 1 Let S and T be two Lincar vansfarmations Trom L 10 V. where dimy, U =n. Let
LR ¢.J be a basis of U. Suppuse Ste)) = Tie) iori= 1, .....n. Then ’

Sur=Tiwm lerallue L) . )

LT

-
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Proof: Letu € U. Since e, ...... ¢,] is a basis of U, u can be uniquely written as

u=ge, +..+ o, where the o are scalars.

Ther, S(u) =S (g, + ... +a c)
=a,S(e,) + . +o, 8() by LT6
= o, Tle) + e + o, Tee)
=T (e, + ... +a,c) by LT6
=T (u). '

What we have just proved s that once we know the values of T an a basis of U, then we can
find T(u) lor anyu e L. t

Note: Theorem | is true even when U is not finite-dimensional. The proof, in this case, is on
the same lines as above. ’

Let us see how the ides of Theorem | helps us to prove the following useful result.

Theorem 2: Let V be a real vector space and T:R =V be a lincar transformation. Then
there exists v € V such that T} =av Yae R,

Proof: A basis for Ris (1], Let T(})=v e V. Then, forany c € R, T(@) =aT(i)=av.

Once you have read Sce. 5.3 you will reatise that this theorem says that T(R) is a vector
space of dimension one, wl}ose basis is {T{1)}.

Now try the following exercise, for which you will need Theorem 1.

ES) We define a linear operator T:R? = R%: T(1,0) =(0,1) and T(0,5) = (1.0). What is
T(3. 5)F What is T(5,1)? '

Now we shall prove a very useful theorem about linear transformations, which is linked to
Theorem 1. -

Theorem 3: Let e, ..., c | bea busisof U and let v, ....., v, be any n vectors in V. Then
there exists one and only one linear transformation T:U = V such that T(¢) = v,

i=1,....0 “
Proof: Let u € U, Then u can be uniquely wrillen as u = o€, + ... 0L, {sec Unit 4,
Theoremn 9).

Define T(u) = av, + ... + ¢ v,. Then T defines a mapping from U to V such that Tie) = v,
Mi=1, ..., n. Let us now show that T is lincar, Let a, b be scatars and v, w” € U, Then 3

: . - f o :
. sealars Oy e @ By B such thatu = gty + o + 2 € andu =B, ¢+ e ¥ PC

Then au + bu’= (aet, + bB,) e, + ... +{ac, + bB)e.
Hence, T (au + bu’) = (aq, + bB ) v +...... + (ae., +bB)v =al, v, +.. +OV) +
bB,v, + o +Pv,) =aT(w) +bT(w), '

Therefore, T is a linear transformation with the property that T{¢,) = v, ¥&. Théorem | now
implies that T is the only lincar transformatlon. with the above properties.

Lat's see how Theorem 3 can be used.

- Example 7: ¢, = (1,0,0), e, = (0, 1,0)and e, = (0,0, 1) form the standard basis of R', Let

(1. 2), (2,3} and (3.4) be three vectors in R?. Obtain the linear transformation T: R* = R?
such that T(e ) = (1.2), Tie,) = (2,3) and T{c,) = (3,4).

Solution: By Theorem 3 we know that 3 T : R? R? such that Tie,) =11.2). T(e,) = (2,37

-and T(e,) = (3.4). We want to know what T(x) is. for any x = (x,. x,. %,} &€ R Now,

X =X+ X8+ X 0.
Hence, T(x) = x T(e,) + x,T{c,) + x,Tle,)
= x,(1.2) + x,(2.3) + x,(38)
=(x, + 2%, +3x,, 2x, + 3x, + 4x )




Thel’cfurc-. T X X,y = (6, 2%, 4+ 352 - I+ d st detinition of the Jinear ~ Lanear Transhirmatlons - 1
transformation T, " '
E E9} - Cansider the complex field C. 11 iz a vecton space over B
ay What is s dimension over R? Give o bamis 2! £ ov sy Ko
by Leto, B e R Give the lincar transfemution wli . o s basts elensens nf ¢,
obiained in {x}. onto ccand [3. respectivety,

R \
Let us now fook al some vector spaces st are redaied 10 g linear aperator ’

5.3 SPACES ASSOCIATED WITH A LINFAR
TRANSFORMATION

in Lnit 1 you found that given any Sunciion, there is o sel asanciated wath i ramely. it
range. We will now consider 1wo sels which are associated with-any Jmear (ransformation,
T. These arc the range aud the kernel of T,

5.3.1 The Range Space and the Kernel

" Ler U and V he veclor spaces over a field F. Let T:U — V be a linear translormation. We
will define the range of T as well as the kernel of T At Tirsl. you will see them as seis. We
will prove that these sels are ilso veetor spaces over F.

Definition: The range of T, denoted by R(T), is the sct {T(x}| xe U).
The kernel (or nult space) of T. denoted by Ker T, is the set [x @ U| T(x) = 0).
Note that R{Ty &= V and Ker T U.

To clarify these concepts consider the following examples.

Exnmple 8: Let I: V — V be the identity transformation (see Example 1. Find R(1) and
Ker L. :

Solution: R(L =[l(vilveV] = [vlve V] = V. Also, Ker1 = [v e V] §tv) = 0} =
[ve Viv=0) =0}

Example 9: Let T:R' — R be detined by Tix,. A ) =00 x, + 25, Tind R(T) and,
KerT. ~ '

Solution: R(T) = [x € Rl 3 x,,x,,x, € R with 3x, + x,+ 2x, = x.
For example, 0 € R(T).since 0= 3.0+ 0+ 2.0 = T(0.0.0

Also, | & R(T), since 1 =3.1/3+ 0 +2.0="T(1/3.0.0). or
1=30 + 1+ 20=T(0,1.0.0r | = T0.0.1/2), or | = Tt Ha, 1/2.00,

Now can you see that R{T) is the whole real tine R? This is breise, for any o € R,

a=al=aT1300=T{2, 0.0} R(T).
. Vi ; -

Ker T = Hx, x.x,) ¢ R Ix x4 20, =0,

Forexample {0000 e Ker T. But (1.0,0) « Ker T, - KeeT = It', In fact. Ker Tis the plane
3x, +x,+2x =t inR.

Example 10: Let T2 R* - R* be defined by
T XX =0~ X, + 2%, 2K + X, = %, = 2%, + 2X,).
Find R{T) and Ker T.
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- Solution: To find R(T). we inust find conditions on y,. y,. y, € Rsothat{y, y,. y,) € R(T)

i.¢.. we must find some (x,. %, x,} € R'so thal (y,. v, y) = T(x X, x,) =
(X, = %, + 0 2%, + Xy m X~ 2:._ +2x)).

This means

X=Xy +2x, =¥ (1)
2%, + X, = Yy e (2)
NG F DK E Y (3)

Subtracling 2 times Eguation (1) [rom Equation (2) ahd.adding Equations (1) and (3) we gel

D3 — Ak =Y - 2y ()

and
A dx =y Y, end5)
Adding Equamions (4) and {5} we get

Sy 2y by, Hy,=00thatis y, oy =y,

Thus, (¥, ¥y ¥y € R(T)*‘.» Y, Y, =Y,
On the ather hand, lf ¥y, +¥,=Y¥,- Wecan choose
Y2~ Y, 2=, _ ¥itYs

2'-=—-—-3—-—-amix|=yl+ 3 = 3

Then, we see that T (X, %, X,) = (y,. ¥, ¥,)-

Thus, y, + ¥, =Y, = (¥, Yo ¥,) € R(T),

Hence. R(M) = { (y,. ¥» ¥, € R | ¥y, =yl

Now {x,.%,, x,) & Ker T if and only if the following cquaﬁons-are frue:
K=K, +2x,=0.

2%, + x,=0

-X, - 2K, + 2%, =

Of course x, = 0. x, = 0, x, = (is a solution. Are there other solutions? Te answer this we
proceed as :n Ihl.. first purt of this example. We see that 3x,— 4x, = 0. Hence, x, = (3/4) x,.

Also. 2%, +x, =02 %, ==X, /2,

Thus, we cin give arbilriry values to x, and calculale x, and x, in 1erms of x,. Therefore,
KerT= i(—ajz o (e :ae RL

in this examplc we see that finding R{T) and Ker T amounts to solving a sysiem of
cquations. In Unit 9, you will learn a sysiematic way ol solving a system of linear eguations
by the use of matrices und determinants

The following exergises will help you in geiting used 10 R{T) and Ker T.

EI0) LetT be the zero transformalion given in Example 2. Find Ker T and R(T), Does
1 €R(T)? ' )

|
|

El1} Find R(T)and Ker T for cach of the following operators.
TR R Tix v o2y =t v
TR - RT(x.y,2)=z2
O TR 5 R TR, Sy X0 = (8,4 X, + X0 X, # Ky + X0 X + %y # X,),

(Note that thejoperators in (a) 1nd {b) are projections onto the xy- planc and the
2 axis, respectively.) ’
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Now that you are familiar with the sets R{T) and Ker T, we will prove thal they are veetor
spaces,

Theorem 4: Let U and V be vector spices over a lield I Let 'FU = V be o lincar
transtormation. Then Ker T is o subspuce of U and R{1) s o 2ubspace of V.

* Proof: Lel x|, X, € Ker TS U apd . a, € T Now, by definilion, T(xl}[ =T (x,) =0,
Therefore, o, T(x ) + 12,T(x,) = 0 '

CBuroy T(x,p+ o, Tx,) = Tlogx, + @, x,),

Hence, T ('czlx, + o) =0

This means that al;:, + X, € KerT. )

Thus, by Theorem 4 of Unil 3. Ker T is a subspace of U,

Lety,y,& R(TY= V, and &, &, € F. Then. by definition of R(T). there exist X, x;€ U .
such that T(x,) =y, and T(x )} = y,. '

So. @y, + ay, = o, T(x )+ a,T(x,)

=T(ox, +a.x,).

Therefore. oy, + a,y, € R(T), which proves that R(T) is a subspace ol V.,

Now thal we have proved that R(T) and Ker T are veclor spaces. you kuow, fram Unil 4,
. that lhey must have a dimension, We wiil study 1hese dimensions now,

5.3.2 Rank and Nullity

Consider any iinear transformation T:U — V, assuming that dim U is finite. Then Ker T,
being a subspace of U, has finite dimension and dim (Ker T)< dim U. Also nole thit
R(T) = T(U), the image of U under T, 4 fact you will need ta use in solving tlie following
CXErcise. :

EI2) Letfe....c | be n basis of U, Show that R(T) is generated by {Te, ) v Tl D L

From EL2 it is clear that, if dim U =n, then dim R(T)< n.
-Thus, dim R{T) is finite, and 1he following definision is meaningfl.

Definition; The vank of T is defincd 10 be the dimension of R(T). the sange space of T. The.
nulity of s defined to be the dimension of Ker T, the kernel for the null space) of T.

Thus, rank (T) = dtm R(T) and nuliity 1) = dim Ker T
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We have already seen that ranw (T4 dun U and nullity (T)< dim U,

Example 11: Led T:U = Vb e 2o zansfonnation given-in Example 2, What are the
rank and nulljly of 17

Solution: In E10 you saw that R(TY = {0} and Ker T = U. Therefore, rank {T) = 0 and

nullity(T) = dim U,
Naote that cank {T) + nullity {7} = dhisr U, in this cnse.

Eid) IfTis 'hc mcnuw O]V‘r.'l 07 0n 1.’ ﬁnd mnk (T) nnd nullity (T).

Eld) Lcl D e the dllfcrl..nlmllon opcr'\lor m L6 Give a basis for the range space of D and
for Ker D. What are rank (D) and nullity (D)?

“Hence.a e, v .. +ae & Ker T, which is gencrated by [e,. ... e ).

in e ubove example and exercises you will find that for T: 11 = V, rank (T)+
nuility {T) = dim U. In fact, this is the most imporiant result about rank and nullity of a
lincar operator. We will now state and prove Lhis resull. :

L

Theorem 5 Lcl U and V De vector spaces over a ﬁc!d FenddimUs=nLetT:U=Vbea
lincar operator. Then renk (T + nollity {T)=n.

Proof: Let nullity {T) = m, that is, dim Ker T=m, Lst (e, ] be a basis of Ker T. We
know that Ker T is a subspace of U. Thus, by Theorem 11 of Unit 4, we can extend this
basis to oblain 2 bisis {¢ . 2 e €, of U. We shall show that (Tee, ) -oee T

is a basis af R{TY. Then, our result will follow beeause dim R{T) will be
n—m = - nullity (T).

Let us first prove that (Tee,, ). .- T{e )| spans, or generates, R(T): Lety € R(T). Then,
by definition of R{TY. there exists x & U such thal T(x) = .
Leta=ce, #atc e +C 0+ #Ce.C € F ¥i

prot el

Then | :
y=Tx) =g Te)+ .. +e, Te )+ e Te, I+ .. +e T,

=¢ Tle, )+ ..+cTie), )
becinse Tle) = .. = T{eul) =0 since Tle) e Ker THi=1, .. ,m. an): yE R(T) is a linear
combangtion o1 Tee 3, ngr)!' Henece R(T) is snannid by le{_’ \l e TR,
1 reninns (o show shat e ser | Tée_, ). ... Tte )} is dingarly mdcpcndcnt For this, suppos.e
(t. Y.+ a Tie) =

toreevisia e € Fovathae T

me |

Toen, Ta_ e+ +vac) =i

o mel

al m

Therefore, there exist a, ... »a_ & Fsuch that

nmn crrnl ot nncn = ill'lcl Tk ﬂmCI“-
== al) [‘T + & + {_nm) Cln + a'n',“--l.'r:rr.fl-'. -t +Iancn = 0- . --
l

Since ie . .., ¢_J is a basis of U, it follows that this set is linearty independeni. Hence,




=0,..,a, =01nparticutar, a_,, = ... =& =0, which we wanted

mel

~u,=0, -2, =0,a
to prove. .
Therefore. dim R(T) = n—m = n=nullity (T} that is, sunk {T) + nullity (TY = n.
Let us see how this theorem can be useful. '

Example 12: Let L:R* = R be the map given by L{x, v. 2)=x + ¥ + 2. Whal is nulity (1.)?

Solutlon: In this case it is casier to obtain R(L), rather than Ker L, Since L. (1.0, M =1t20,
R(L) # [0}, and hence dim R(L) # 0. Also, R(L} is a subspace of R, Thus, dim Ras

dim R =1. Therelore, the only possibility for dim R(L}) is dim R(L}) = 1, By Thearem 5,
dim Ker L +dim R(L) =3,

Hence, dim Ker L = 3—1 =2, That is, nuility (L) = 2.

E ElS) Give the rank and nuility of each of the lincar transformations in Ei 1.

= E16) Let Uand V be real vedtor spaces and T:U — ¥ be 4 linear transformation, where

dim U = 1. Show that R{T) is eilher a point ar a linc,

Before ending this section we will prove a resuli that tinks the rank (or nullity) of 1he
composite of two tincar osperators with the rank (or nullily) of each of them,

Thearem h: el V be a veclor space over a ficld I, Let § and T be linear operators from V
lo V. Then ’

o} rank (ST) = min (rank (S). rank (T))
b} nullity (ST} 2 maox (nullity (S}, nuliity (T))

Proof: We shall prove (a), Note that (ST) (v) = S{T(v)) forany v € v (you'll study more
_ about compositions in Unit 6). '

Now, forany y € R (ST), 3 v.e V such that,
Y ={STH(V) = 8 (T(YS) corrmn 1)

Now, (1) = y € R(S).

Therefore, R(ST)  R(S). This implies that rank (ST) < rank (5).

Again, (1} = y e S (R(T)). since T{v} € R(T).

~RSTYE S (R (T)), so that .
dim R (§T) Sdim S (R (T)) < dim R (T (since dim L (11} < U, for any lincar operator L).
Therefore. rank (ST} < rank (T).

Thus. rank (ST} < min (rank £S}, rank (T)).
The nroof of this theorem will be compléte, once you solve the following exercise.

w

Lineor Transformafions - 1
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E E17) Prove (b) of Theorem 6 using the Rank Nullity Theorem.

We would now like to discuss some lincar operators that have'spegial propertics.

5.4 SOME TYPES OF LINEAR TRANSFORMATIONS

Let us recall- from Unit 1, thar there can be different types of functions, some of which are

- one-one, ente or invertible. We can also define such types of linear transformations as

follows. -
Delinition: Let T: U — V bé a linear lransformation.

a} Tis called onc-one {or injective) if, for W u, € Uwithu #£u,, we have T {u,) ;}T (u). If
T is injective, we nlso say Tis 1< 1,
Note hat Tis I-1if T (u) =T (u) =y, =y,

b) T is ealled onto (or surjective) if, for cnch ve V,Jue'U such that T {(u)'= v, that is,
R(T)=V.

Can you think of examples of such funclior_ls? _

The idenlity operator is both one-one and onto, Why is this s0? Well, : V —» Vis an

operator such that, if v, v, € V withv, % v, then ] (v)#l(v) Also. R()=V,sothatlis
onlo,

E 18) Show that the zero opcratorlo: R — R is not cne-one.

An important resuit that chardcterises injectivity is the following:
Theorem 7: T: U — V is one-one if and anly if Ker T [0].

Proof: First assume T is onc<ene. Let u € Ker'T. Then T (u) = 0 = T (0). This means that

u =0. Thus, Ker T = [0]. Conversely, lct Ker T = {0}. Supposc u,u; e LFwith .
T )= T(u,)::»T(u ~u)=0=u-uv,eKerT=u-u, —(]=>u | = Uy Thcrcl'ore.

Tis1-1.

Suppose now thut T is a one-one and onto lincar transformation frorn a vector space UJ lo a

vector space V. Then, from Unit t (Theorem 4), we know that T~ exists.

Bui ia T linen? The nmswer 1o this question is’yes’, as i shown in the mlibwing theorem.

Theorem B: Let U nnd V be vectar spaces ovet n field ¥, Let T : U —» V be a one-one and
onto linear transformation, Ther T V — Uss a fincar transformation.

In fact, T is also 1% and onto,

Proof: Lety,y,€ Vind o, o, € F. Supposc Ty} = x, and T (y,) = x,. Thien, by
definition, ¥, =T {x }and y, = T (x,).

Now, oy, + oy, =, T(x)+dzT(x2) Tle, %, + o, x, ¥

Hence, '_I"‘(a Y+ oY) =0 X 1 F X

so, T (y)+o, T (y,)




v This shows that T is a linear transformaiion, ) Linear Tramsforeuiieass « 1

We will now shiow that T™is | - 1. For this, sppose ¥, v, € V such thar T"(y,} =T (¥,
Let x,= T (y,) and %, = T (y,) -

Then T(x) =y and T (x,) = Yy We know that x| = x,. Therefore, T (=T (x,). that is,
y: = y:. Thll.‘i. we have shown [hﬁ‘l.T-l(yIJ = qul (y:) =h yl = )':' pro\ri“g thint T--Il.‘r' [~ 1.

T is also surjective becanse, foranyue U, 3T (0)=v e V such that T™ (v) = a1,

Theorem 8 says that a one-one and onta Kinear transformarion is invertible, and the inverse
is also a one-one and onto linear transformation,

This theorem immediately teads us 0 the {ollowing definition.

Definition: Let U and V be veriar sprees over o Reld I and lei T: U ~+ Ve a one-one and
onto lincar transformation. Then T is called an isomorphism between Ui and V.

In this case we-say that U and V'are isomorphic vector spaces. This is denoted by U =~ V.

An cbvious example of an isomorphism is the identity operator. Can you think of any ather?
The following exercise may help,

El19) LaT:RR’: T,y 2 =(+y,v,2.15sTan isomorphism? Why? Deline T,
il it exists.

E20) LetT:R'S R:T (. y,2)=(x+y. y+2).1sTan isomorphism?

In all these exercises and cxamples, have you noticed (hat if T is an isomorplisn: berween U
- =I. - -
and Vthen T is an tsomormphism between ¥V and U9

Using these properties of an isomorphism we can eed some uselut resalts, like the following.

Theorem 9: Let T: U — V be an isomorpliisin, Supgose [e)sene | is &t hasis ol 1). Then E
T (e T {e)}] is a basis ol V,

Proof: First we show that the set [T(e)... T (e)] spans V. Since T is ants, R{Ty=V,
Thus, from E]2 you know that T e ..., T{c )] spans V.

Let us now snow that {T (el)....: T{c )} is lineurly indepandeat. Suppose there exist scalars

Cpmm Cp such thute, T (e ) + ... + ¢ T {e)=0......., ()

We st show that € == =g,

Now, (1) implies that

T(c e +..... + ¢ e)=0.

Since T is one-one and T () = 0, we conclude that
& T e =0 _

Bul [, e, fis Hnearly independent, Therefore,
= =g, =0

Thus, we kave shown thn {T(c,).......T(cn}] s itbasis of V.,

Remarle: The argument showing the linear independence of IT ()., T e} in e aboy

theorem cun I used 1o prove that any onc-one tinear transformation T 1 — v nps
any liacarly indepeadend subsel of onto afinearly independent subsct of V {see 223,

We now give un importin result equating ‘isamorphism® with ‘1 - 1* and with ‘onig’ in the
lnite-dinw nwaenal cise. 17
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Theorem 10: Let T ¢ U <=3 V he a inear transTormation whereU, V are of the sume finite |
dimension. Then he Iéllowing siatcments are cyuivalent.

wTis 1 =1,
1} T ix onlo,
) T is an isoasorphisnt,

. Proaf: To prave the result we will prove (ay = () = ()= (a). Letdim U =dim ¥V =n.

Now (u) impliex that Ker T = (0} (from Theorem 7} Hence, nullity (T) = . Therelore, by

Theorem 5. vank (T) = n, that is.dim R (T) = n = dim ¥. BulR {T) is a subspace of V. Thus, -

by the remark following Theorem 12 of Unit J. we gel R (Ty = V, ie, Tis onto, i.e.,
(b is true. So (a) = {b). .

Simitarty. if {b) holds then rank (T} = o, and hence, nullity (T} = 0. Consequently, Ker T =
{0}, and T is onc-oae. Henee, T is one-enc and onlo, i.c.. T is an isomorphism. Therefare,
(by implies {©). )

That () follows Lrom {¢) is immediate: from the definition of an isomorphism.
Hence, our result is proved,

Caution: Theorem 10 is true for findte-dimensional spaces U and V, of tne same
dimension. 1t is not true, otherwise. Consider the following counier-cxample.

Example 13 (To show that the spaces huve to be finite-dimensional): Let V be the real
veutor space of all polynoniials, Lei D: vV — ¥ be delined by Dia,+a,x+..+a 8=+
2+ .+ rax ! Then show that D is'onto but not 1 - i

Solution: Nole that V has inlinite dimension, a hasis being (1. %, xL...). D is onlo becuuse

i a ,
any élement of ¥ is of the forma +a, x + ... +a %" =D(aux + -il-x R - E:'_‘ : x" ')
Dis 0ot 1= | because. for example, [ 2 0bui D(1)= D (0)=0. -

The following cxercise shows that the statement of Theorem 10 is false if dim U = dim V.

E21)  Defline a linear operator T : RY -+ R?such that T is onto but T is not I - 1. Note that
dim R' = dim R, ' :

[ _

l.et us use Thearems ¥ and 10 to prove our next resak.

Theorem 15: Let T: ¥ = ¥V be a linear transformation and let {e..ejbeca basis of V.
Then T is one-one and onto il and anly i {71 (e ). T (e )] is linearly independent.

Praofr Suppose T is one-one and? onto, Then Tisan isomorphism. Hence, by Theorem 9,

Conversely. suppose { T (€, )..... T (e }) is linearly independent. Since [e,....e,] is & basis of
Vo ddim Vo= o0 Therefurs, any linearly mdependent subser of n vectors is a busis of V (by

O P n 1
Visol the lorm v = 2, e Tie 1= T L e, }
(] L=l

onto. and we can use Thearem 10 o say Dud T 1s an isomorphism.

where ¢, ¢, are scalars, Thus, T s

Hele ire suime eXeITIses now.

E ExNoaw) Lot U= Vobe a one-one linear ransformation and let [ul...., uh! he a linearlff

independent subser of U, Show that the set [T(u,), ... T is lingarly
independent. -

BY Ixat trne phat every linear tramsformation mans every lincarly independent set of
seviues e o lineagly eulependent set!




¢) Show hut every linear transformation maps a linearly dependent sot of vactors
onto a lincarly dependent sct of vectors.

B E23) LetT:R'— R*bedefined by T (x, Xy X)) = (X, + XX, 6 Xy X, 4 ) I8 T
invertibte? If yes, find a rule for T like the one which delines T.

We have seen, in Theorem 9, thut if T: U = V iy uin isomarmphisny, then T mapy a bisis ol U
onto a basis of V. Therciore, dim' U = dim V. In other words. it U and V* amre Bmmsorphic then
dim U = dine V. The natwral question arises wheiher ihe converse is alo trae, That is. it
dim U = dim V, both heing finite. eun we say (Kat U and V are ixomorphic? The tallow ing
thearem shows that this is indeed 1he cise.

Theorem 12 Let U und ¥ be finite-dimensional vector spaces aver F. Then Uiand Ve
1isomorphic ifand anly it dim U = dim V.

Proof: We have alrcady seen that if U and V are isamarphic then dim = din V'
Converseiy, suppose dim U = dim V = n. We shall show thi 1. anh N are omerphy, . Ll

{e,...e,} be a basis of U and Hieoef) be a basis of VO By Theorem 3. tere e o1 ey
transtommation T: U — ¥ such hat T {fei=!.i=1{..n

We shall show thap Tis 1 =1,
Lelu=ce +..+c e be such that T (w1 = 0,
Then0=Tiar=c Tile}+..+¢ Tic)

BT FE W YUN |

n ot
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Thie sheorzin is called the
Fundumenial Theerem of
Ruaiomerphism.

-

Binee {10 U as a basis of Vowe conelude that ¢ = ¢, = o= ¢ = 0. Hence, u = 0. Thus,
Ker'T = 00 and, by Theorem 7,7 s ane-ehe,

Theretore, by Theencin 10T s an isomorphism, and L' =V,

An gt consequence ol s theorem tollosws,

Corollarsy s Ler Y Be ol tar comple st sectar spage ol dimensian n, Theit'Vois isomorphic
o R e O, especinely .

Proof: Stice im i = o= dim Vo owe per Vo= R Simifarly, ifdim V= n,then V = C~,

¢
We pencratise this corollury in the follow ing remiark.

Remavk: Let V be avector space over Fand et V= {e... e | beabasisal ¥V, Each v e V

cian T oniguely eapressed as v = ‘{i e ¢ . Recalb that ez, ....ax_are called the coordinates of
vwilthespect 1o B (refer 10 Sec. -ll_lll 1. -
Deling 0: V= F* B (v s (e, .:..ah‘a. Fhen Gis i isomorphism from V to F This is
bevidse 8 s 1 - Loxinee the coordinites of v with respect 10 B are uniquely determined.
Thus, ¥ = F".

We end this seenon wath i evercise.
220 Ler ToU - Vobe aone-one lineir mappisg. Show that T is onto if and only if

dim U =dim V. (O ourse, you must issume 1hit U and ¥V are linite-dimensional
Sncesd

“How letas look al issmorphisms betwveen quotient spaces.

5.5 HOMOMORPHISM THEOREMS

Lineur transionmauons s wlse called vector space homamarphisms. There is a basic
theorem swhich uses the progerties of homemarphisms to show the isomorphism of certain
quotient spaces (red Ui 33 simple 10 prose. bul is very imnorians because it is always
heing vsed 10 pros e more advaneed thaoremis on vectos spuces, {o the Abstract Algebra
course we witl prove thes thearem in thesetimg of groups and rings.)

Theorem 13 Lot ¥ amd W be vecior »p:u_'c:\ over a lield Fand T: V —= W be a linear
Iranslformuation, Then V/Ker T = R (T,

Proof: You hoow that Ker T is a subspiice of V, sathat ViKer T is a well delined vector
space over F. Ao R (T) = {T (11l v € V. To prove the thearem let us deline
0:V/KerT = RiTyby B(v + Ker Th= T (v),

Frestly, wee muost show that 8 is o well defined Tunction, shit s, 1f v + Ker T= v+ Ker T then
BveRerTi=0¢"+ Ker e, Tivi= T v,

Now, v+ Ker T=v.+ Ker T = (v=v9e Ker T (see Linit 3 E2Y)

=T v = vy=8-2 T v) =T (") and hence, 0 is well defined, '

Neslowe cheek that 8 is a licear reangYormating, Forthic lara he Eand v v 2 V. Th

Riawv+KerTi+bv + Ker T
B fiy, + by’ + Ker Ty (ret. Unit 1y
=T tav + by

=aTiv)+bT (v, since T is linear.
=al (v + Rer T+ p@ (v + Ker T
Thus, @15 a lwear ranstomusion,

Weemtihe proct by shewing that € is an isomomliism 8is | - 1 (because 8 {v+KerT)=
e Pir=d=a g Ker Vv« Ker T =000 ViKer TS




Thus, Ker8= [01)

8 is ante (hecause any element of R (Tyis T (vi=0(v+ Ker T)),

So we have proved that 0 js an isomorphism, This proves that V/Ker T = R (T).
Let us consider an immediite nseful application of Theoreny 13.

Exaniple 14: Let V be o finite-dimensiona! space and fet S and T be tinear iranslormatinns
(rom V (0 V. Show that
rank (ST) = rank (T) = dim (R (T3 Ker S
Solution: We have ¥V —L v -5 v, §T is the composition of the operastors S and T,
wwhich you have sirdicd w Unit 1, ind will also sutly in Uni 6. Now, we apply Theorem {3
te the homomarphism 8 : T (V) — S§T¢V) : 9 {Tevy) = (8T) ().
Now, Ker 0= {x & T(VIS (x)=0) = KerS ~ T (V) = Ker § m R(T)
Also R(0) = ST (V). since any clement of ST (VYIS (ST () = 6 (T (v, Thus,

T(V} '
___._f_.:__._ =§T(V)
KerSNT(vy °

Therefore.
T(V) .
"m= dimST (V) _
Thatis, dim T (V) = dim (Ker§ ~ T (V1) = dim ST (V3 whicli is what we Il 1oy shiow.,

dim

25) Using Example 14 and the Rink Nuility Theorem, show that
niiflity (ST} = nullity {T) + dim (R (T} ™ Ker S).

Now let us see another application of Thearem | 3.
. Example 15: Show that R* /R = R*

Solution : Noie that we can consider R as a subspice of ' for the following reason: any
clement o of R is equated with 1he element {000, ol RY, Now, we define a function
RS R Floe fBoyo= B, v Then £is o dinear lansfarniition and

Kerf={({e 0. 0 ez Ri=1. Ao tis anle. sinee iy clement (o B ol 182 s 10, o, P
Thus. by Theorem 13, RYR ~ R*, :

Nole ¢ In generat, for iy n2m. JUR™ =R, Similarly, C" = CVC" for n 2 m.
The next resulis a corellary to the Fundamenial Theorem of Homoamorphism,
But, before studyrng it read Linit 3 Tor the delinition of the sum of spaces.

Coroltary L: Let A and B be subspaces ol veclor space V. Then A 4 [3/13 = AA N,
A+B
B
T is well defined because 1 + B is an clement of A+ B

by T () = o+ 8,

Proal; We define a linear function T: A=

fsincea=a+0e A +DQ),

T s a linear trnsformation becihnse, lor a0, i Fangd il #in AL we have
T o vaa)=e a +aa +B= o, G Bl o+ B)

=0 T+ e, T Gy
. . I — A . .
Now we will sivow that T is surjective. Aay efemen nfé\—IT--j- solthe Torza s b+ 13,
wheica e A andbe I3 ?
Nowa+b+B=a+B+b+B=u+B+B. ance b € B,
A+DB

>

=i Bosinee Bis the sero clement of
=T ), proving that T is surjective,
A+ R

SRETy= S

We will now prove that Ker T= A A .

Linear Transformadiong, - 1
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A% B

Ifae KerT.thenag Aand T (8) = 0. This means that a + B = B, the zero element of-—-§—

Hence. a € B (by Unit 3, E23). Therefore, a & A N B. Thus, Ker T< A N B, On the other
hand,ne An B=>ae Aandae B=ae Aanda+B=B=uaec Aand
T@=T{@=0

=ae KerT."
This proves that A B =Ker T,

. Now using Theorem 13, we get

. AfKerT=R (T).
That is, A/(A N B)=(A + B/ B

. E26) Using the cerollury above, show that A ® B/B = A (@ denotes the direct sum defined
in Sec. 3.6).

There is yet another interesting corollary to the Fundamental Theorem of Homomorphism.

Corollary 2 Let W be a subspace of a vector space V. Then, for any subspace U ol V
contuining W, ;

VW
U7 ML

Proof: This time we shall prove the theorem with vou. To start with let us define a function
T:V/W- VU (T (v + W)y=v+ U, Nowtry E27.
E27) a) Check thar T is well delined. .

b) Prove that T is a linear trunsformation.

¢} What are the spaces Ker T and R (TY?

Sa, is the theorem proved? Yes: apply Theorem {3 to T.

We end the unit by summarising what we have done in iL.

5.6 SUMMARY

In this unit we have covered the following points.

£y A lincar transfarmation [ram o vector space U over F 10 a vector space V over [Fis d
function T: U =3 V.such that,




LTOT (e +u) =T+ T(u) Yuu, e Uoand
LT2) T (e = T(u), foreee Fandu e 1.

These conditions are egnivalent 1o the single condition

LT3)T (ew, + fu,) = aT (uj + RT tugforiafie Fapdu,n,e 1),

Given a lincar transfomuation 1': U — V,
i) the kernel of T is the vector space Jue UT T (0 = 0] denoted hy ker T,
i} the range of T is the veclor space (T ()l ue LY deanted hy R{).

§ii} The rank of T = dim R(T).

3)

4}

5

iv) The nullity nf T = dim cKer T.
Let U and ¥ be finite-dimensional vector spaces over 1and T: U — ¥ he o dineiir
transformmtion. Then rank (T} + nullity (T} = dim U,

Let T: U ~ V be a lincar transformalion. Then
iy Tis one-onc if T (u)) =T (u,)=>u, =, duu.e U

ii) Tisontoif.foranyve V3 ue Usuchihat T (uj = v,

iii) T is an isomorphism for.is invertible )il it is onc-one and onto, and then U and v
arc called isomorphid spaces, This is denoted by 1 = V. .

T:U~ Vi
i) onc-one if and only it Ker 1'= {0]

i) onloifund only if R (T = V,

6)

7

- B)

1
Let U and V be finlte-dimensionat vector spaces with the same dimension. Then
T: U= Vis i~ 1iff Tis onto iff T is an isomomhism.

Two finite-dimensinnal veetor spaces U and V are ispmorphic if and only il
dim U=dimV ¢

Let V.and W be vector spices over a field F, and T : V — W be 4 linear transformution.
Then ViKer T = R{T).

5.7 SOLUTIONS/ANSWERS

" El)

Lineur Transformatinns - 1

_ _ ]
Farany o, 0, € Fand u,, v, € U, we know that e,u, € Tand o, u, € U. Therefore, Y }
" by LTI, B : -
T oy, + 04 u,)=T(o, u)+T (e, u,)
=0, T{u.) + o, T (u). by LT2, Q (-1,2) 4= =~ b= == P (1,2)
Thus, LT3 s true. ’
E2) ByLT2,TQ.u)=0.T @) foranyue U. Thus. T (0} = 0. Similarly, foranyu e U,
T(-w)=T(- ) =(= BT (u)==T{).
EJ} T.y)=(=x y}¥(x. y) € R (Sec Ihe.geometric view in Fig. 4.3T is a linear T J >
operator, This can be proved the same way as we did ip Example 4 . ‘1 O 1 X

BA) T (Ce %y %) % (¥, ypu y,)) = T (X, o y,. X, 4,0 X, % ¥,)

=, x, +y)+ a!(xz+yz) +a, (x, +y,)

=(a, X+ X b2 x )+ {2y +a, y,*ay)

=TXE A X))+ Ty, y,y) ¢

Alfo, forany e R,

T, x,xN= :i, 0 X, +a, X, + a0,
=, X+, x, + b, x,) = &T (x,, X, X,)-

Thus. LT and LT2 hold lor T. .

ES) We will check if LTI and LT2 hold. Firstly,

T x50 %)) + (y, Yy y)) = T“(xl'+ Y Xt yp &y}

Flp. 41 Q Is he reMeetion of P
In the y-axis.
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E 6)

L7

E®)

E9)

=%, 4 Y, b Ky Yy Ky = Y 2K+ 2y, Xym Y X B Y,k 26,4 DY)

= (X, + X, = Xy 2% — ¥y Xy 2"3) Y, = Ve 2y T e )
=T k) +T Uy, y, ¥ showing hat LT1 holds.

Also, lorany o e R,

T (0 (%, %, 5,0 = T (0%, 6x,, 0, 3

={0x, + Ux, OX,0 20K~ OX,, 0%, + 20X, )

= o, + X=Xy 2% - ’{... x, ¥ Zx,} ol (:. %o, X, showing that LT2 holds.
We wunt (o show lh"ll D (oxf+ Bg} oD (i} + PD (g) forany o, feRand f. g & P
Now, lel f{x)=a,+a, % +q, Xk Faxtand g (x} = by+ b, x+..+b x"
Then (el + Bg) (x) = (ga, + B+ (cea, +0b) x + ..+ (o a,+Pb ) x"

(D (e Bedl () = (aay + Bb) + 2 (o, + Bb)x+ .. +1nlua + b)) x!
= (o 20,54 .k 0 AT (b, + 2byx A+ b x)

e g (D (X)) + B (D) () = (D D) (x)

Thus, D (ot + Pg) = oDF + g, shawing st D is i lingar map.

Nao. Because, if T exists, then
T @k u)=2T (u,)‘+ T{(u,).

But 20, + u, =y, =~ T (0, +u)=T)=v,=(L 1

On the other hand, 2T {u) 4 T (0} = 2v 4 v, = (2,00 + (0.1

= ’2.1) 2V,

Therefore, LT3 is violated, Therefare. o such T exists.

Note that [{1,0}, {€.5)} is a bauis for R

Now (3.5) =3 (1. ) + (0,5).
Therefore, TGS =3T 1O+ T{0. 5 =300+, h=(1,3).
Simifarly, (5,3)  =5(10)+ 345 (0.5).

Therelore. T (3,33 = 5 (0,10 + /5 (1,0y = (3/5, 5).
Note that T (5,3} = T (3.5) -
2) dim,C =2, a basis leing {1, ijoi=N -

By Let T:C o Rbesuchihat T (= o, T (:) = .
Then, for any clement x +iy e C(x.y € R) wehave T +iy)=xT () +yT (i) =x

& yPB. Thus, Tis delined by T (x +iy) = x o+ yp¥*x +iye C.

EINT:U— V T =04 ve U

v KerT={ue UT@=0]=
RM={Tu) ve U] =1{0}, ~1¢ R (T

ELD 2 R(TY= 1T .y al xy. e il-‘l = ({x. v} (xy.2) e R} =R

KerT={{x,y, 22| Ty =08 =[x, y.2¥ (x, yy=1(0,0)}
= [{(0.0.2)] ze R)
., Ker T is the z-axis.
b) Rm* (|l (x, vy, & R} =R
Kee T={(xy. 01 x.ve Ri=xy - plne in R

-y Ry =[(x, y. 2 tel CE I P W K:.‘.uclnhalxr-x;-i-x?-i-xJ:y:?.}

= [{xxx) e RY o=x b x, b x) Tor somg 8, X, X; € R}
= [{aax)e RY s e R
Legause, forany x & R, (4%, x) =T (x. 0,0}
- R{T) is generated by [(LLDL
KerT={(x %, ol X, * %, -+ x, =0}, which is the plane x, %xz +x,=0,in R

E 12} Anv element of R{TY is of the form T(1), v & U, Since {e,.....e ) generales U, 3
k \ W1 L

sculisrs ..., O, such hitu=@e, + ...+ ¢
Tiea Ttuy=c, Tle}+...+0 T (c Y that i, T (u} is in the linear span of
(TC& o T ()1

W AT{e ) ... T (e )} penerates R(T).




El3) T: Vo V: T(v)-v SinccR(TJ Vand Ker T =10}, we see that rank (T) = dim V.,
nuliity (T) = 0. .

El4) R (D)= {a,+20x+ .. +mx] a..a e R}
Thus, R (D) S P,_,. But any element by + b, X + ... + b X in

. P,_is D(ba'x +--13-2’-, PR PE LSS
Therefore, R(D) =P_,, ‘ : .
*r+ @ basis for'R (D) is 11, X, x™7), and rank (D) = n.
KerD={a,+ax+..+2a x|a +2ax+...+ na x™'=0,q € R¥)

={a,+ax+..+a x°f 2,=0,2,=0....0 =0, & R4
= {a_]nl 13,€ RI=R
'+, 0 basid for Ker D is {1}.
= nullity @) = 1. _
E13)a) We have shown that R (T) = R .- rank (T) = 2.
Tagrefore, nullity (T) = dim R’-
b rank(T) = 1, nullity (T) = 2.

¢} R (T)is gencrated by {(1, 1, I)}. -,
< onullity (T)y'= 2,

x")e R (D). .

1

rank (T) = 1,

E _16J' Now rank (T) + nullity (T) = dim Y=L
Alsorank (T} 2 0, nulhlym 20,
., the only values rank (T) can take are 0 and 1. If rank (T)=0, lhcn dim R{T) 0.
Thus R (T} = [0}, that is, R (T)is a point.

If rank (T) = 1, then dim R(T) = 1. That is, R(T) Is a veclof space over R genernied by
a single element, v, say. Then R(T) is the line R, ="[ev] xe R}

2 I7) By Theorem 5, muillity (ST) = dim V-~ rink (ST). By (a) of Theorem 6. we know that
= rank (ST) 2 - rank (8) and ~ rank {ST) = — mnk (T).

. nullity (ST) 2 dim V—~ rank (S) and nullity (8T) 2 dimsV— rank (T,
Thus, nullity (ST) 2 nullity (S) and nullity (ST) = nullity (T). That is,
nullity (ST) 2 max Inu]llty {S) nultity {T)j.

i18) Since I *®2, IJmO,(I)—O(Z}—O we find that 0 isnot 1 - I,

i19) Flrslly note that T is a linear lransf'orrn'mon Secondly, T is 1 ~ | because T (x, y, 7)
=Ty, )= x, y.2) = (x', vy, 2 .
-Thirdly, T is onlo because any (x.y,z) € R can be written as T (x_— Yoy E)

4. Tis an isomorphism. . T :R— R? exists and is defined by T~ (x. y.2) =
(x=y. ¥, 2). :

20) T is not an isomorphism becausé T is not !~ 1, since (1, — |, 1} € Ker T

21} The linear operator in E11) (a) sufiices.

22) &) Let .., 0, € Fsuch that a, T () + .. + o, T(u) = 0,

= T(ogu, + ..+ g u)=0=T({
= o+ oy, =0,since Tis 11— |,

=, =0,., 0 =0,since fu,....u } is linearly independent
“ AT (0 e, T (U} is lincarly independent,

b) No. For example, the zero opcrator maps cvery {inearly independen| set o [0,
which is not linearly independent.

-¢) Lel T U — V bea linear operator, and (. b be o linearly dependent o) of
veetoss in U, We have 10 show Ihat {T(u, ) l(u }] is lincarly dependent. Since
[”1- wall ] is lincarly dependent, 3 scalars At ROL all zcro, such that

a]_u|+....+.1 u =0
non
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E23)

E24)

[£25)

E26)

E2N

..-.'I"Wx.y.:;:[

Thena, T )+ +a Th)= T (D) = 0. so that [T(u ... TGu M is lincarly
dependeni. .

T is o linear translomation.Now, il (x, y. ) € Ker T. thenT(x, y. 2) = (0. 0, 0L
~ox+y=O=y+zr=xrr=mR=ll=y=x2

=5 Ker T = [ (0, 0.0}

=Tl —L

., by Theorem 10, T ks invertible.

Todefine T R' = R'suppose T (x. y. 22 = (a b o).

Then 1 (b, ) =05y, %)

=p {y b, b4c,a+C) =1y, %)

= a+b=xb+eazyat+tt=2

L XAy oxt+y-4 o ytr-X
=Hu= 5 , b= > LU= 5
X+t-y Kty-7 y+ti-—X
2 ) 2 ' 2
T:U-> Vis | =}, Supposc T is onto. Then T is an jsomorphism and dim'U = dim v, !
by Thearem 12. Conversely, suppose dim U = dim V. Then T is onto by Theoren (0.
The Runk Nultity Thearem and Example 14 give )
dith V= nullity (ST) = dim V= nullity (T) = dim (R (T) ~ Ker 8)

=> nullity (§T) = nullity {T) + dim (R(Ty Ker S)

) for any tx. y.z) € R

In the case of the direct sum A® B, we have An B = [0},

ASDB
B
B

a) viW=v+Wav-y'e WS Uay-velU=aveU=v+U
= T{vaW) =T (v + W) ‘
- T is well defined.

by TForany v+ W, v’1+ Win VAW and sealars a, b, we have
Toalv + W)+ b v+ Wn=TGiv + '+ Wi=av+ by + U
zav+ U+ b (v + Uy=aT (v+ W)+ bT (v + W),
=, T is a lincar operator,

¢) KerT=(v+W | v+U=U} ince Uis the “zera” for V/U.

=lv+Wlve Ul = UMV

RtTi=(v+ U} ve V] =V/
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6.1 INTRODUCTION

In the last unit we introduced you to linear transformations and their properties. We will
now show that the set of all Jihear ransformations from & vectar spice U 1o a veclor spice V
forms n veetor space itself, and its dimension is (dim U) (dim V). In particular, we define
and discuss the dual space of a vector space:

In Unit [ we defined the composition of 1wo functions. Over here we will discuss the
zomposition of two lincar transformations and show that it is again a linear operitor. Note
Ihal we use the terms “inear ransformation’ and ‘linear operator” intecchangeably.

Finafly. we study polynomials with coeflicicnts from u field I, in o linear operitor

F:V = V. You will see that every such Trsatisfies a polynomial equation g(x} = 0, Thal is,
f we substiwute T for x in g(x) we get the zero transformation. We will, then, define the
ninimal polynomial of an operator and discuss some of ils prapertics. These ideas will crop
1p again in Unit 1].

fou must revise Units [ and 5 before going further.

Jbjectives "
After reading this unit, you should be able 10

prove and use the fact that L (U, V) is a veclor space of dimension (dimy U) (dim vV
use dual bases, whenever canvenient;

oblain the compasition of 1wo linear aperators, whenever possible:

obtain the minimal polynomial of a lincar transformation T V = V in some simple
cascs; . .
obrain the inverse of an isomorphism T: V =3 V if its minimal polynomial is known.

—- o W W

.2 THE VECTOR SPACE L (U, V)

¥ now you must be quite familiar with linear operators, as well as vector spaces, En this
iction we consider the set of all lincar operalors from one veclor space to another, and
10w that it forms a vector space.

et U, V he vector spaces aver 2 figld F, Censider the sct of alt

i bansformaiions from

to V. We denole this se1 by L (U, V). :

'e will now define addition and scalar mtilliplicnlion in L (L, V) so that 1, {U, V) becomes
vector space. - ' “ o

1ppose S. T e L (U. V) (that is, S and T ave linear operators from U 1o VY. We define ' _ R
+Ti: U= Vby ’

+TO=S{)+T(u) Yue U

wifor.. & Fandu, e, € U, we have . . N
- 21
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Tt S 42,3 )
=Sta,u Fau)+ T o +a,u,)
=a,Su+asSwa+a Tap+aTw)
=, (S )+ T (u ;'.:(S(u_.j +T (.
=a, S+ ThHu)+a, (S + Dy
Ftence. S+ T L (U V), . .

Next. suppose § 6 1 (U. V) and & & 1. We defline o Sy —; Vv as tellows:

(S =S Yue U '

'_'\Is @S a lmear u[:cr:uor'."'l‘u answer Lhis |uke:ﬂ:. B,e Fand v, 4y € U. Then,
(oS (P, v, +B.u=aS (B u, +E_, u,) = alf, S+ B, S (uy)]

=B, (uS) (u,) + B, (@8 ()
Flence. @S e L{U. V).

. So we have successTuily defined addition and sealar mudtipication on L (U.V).

E E1)- Show mal the sei I (U VYis a vector space aver F with respect to the operations of
addition and muliplication by scalars detined abave. (Hint: The zero vector in this

space is (he zoro transformation. All the conditions VS§1 = VS10Q (of Unit 3} have to be

verilied.)

25 Notation: FFor any veclor Spﬂ(‘c. V we denote L(V.V} by A(Y).




¥

Let U and V be vector spaces over F of dimiensions rn ang n, rexpectively. We have aiready
abserved that L(U,V} is & vector space over F. Therelore, it musl have a dimension. We now
show thar the dimension of L{U, V) is mn.

Theorem 1:.Let UV be vector spaces over i ficld F of dimensians m and n, respeclively,
Then L{U,V) is a vector space of dimension mn.

Praaf: Let {e,, ... ¢, | be a basis of U and [T £ ) be a basis of V. By Theorem 3 of Unig
5, there exists a unigue Iinear transformation E, € L{U, V}. such that
EI’I (cl} = rl' EII_(cJ) = 0' """ EI| {clrI] = n'

Similarly, E,, € L (U, V) such that
Eple)=0,E,(e)=1.8,(e)=0. ..., E, (&)=

In general, there exist Eje IL{U.Vifori=1, e T j =1,y o m. such that E, (e)=1 and -
Eij (c)=0forj=k.

To get used to these E, try the following exercise before conlinuing (he proof,

.E2) Clearly defin¢ E,,, E.andE_.

Now, let us go on with the p'roof of Theorem 1.
Hu=c e +..+c e  wherec & F ¥, then E (W=cf
We complete the prool by showing that IE.,i i=h.,nj=ton,mbisa basis of LU, V.

Let us first show that this set is linearly independent over F. For 1his. sSuppose

L LgE =0 ()

i=l j=I
where ¢; € F. We must show that ¢ = O'for all i.j.
(1) implics 1hat

n m
2 cijEijfck)=0Vk=l, ..... m.

isl jel

Thus, by definition of the E's, we get
n .
_Z & =0,
i=l
Bat {T,, ..., L } is a basis for V. Thus, c,=0foralli=1...n
Burthis is true forall k = 1,~.., m-

Hence, we conclude tiu c,=0 i, §. ‘Fherefore, the set of E,'s is lincarly independent,
Next, we show Lhat the set [E|J| i=lieaij= 1, mb sprns L (U, V). Suppose

Tel{U, V) .

Now, foreach jsuchthal [ £j€m, T (c)e LV. Since [, ... f ] is a basis o V, there exist .
scalarsce, , ..., ¢, such that

{2}

1s
1

T(e )= {
(e)=2 «c

We shall prove 1un

T=2
=1

c E. - (3)
| [

By Theorem i pf Unit 5 it is enough 1o show ity for cach K with § 2k € m,
Tfe } = Y, :
I‘c;\) = JS‘_ C-jE-j [c»)

Now.

Linear Transformotions - 1)
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Recall that Fis also a veclor space

vver F.

e

2 3 k)= ZI ¢, T, = T(e,). by (2).This implics (3).

im] jul
Thus, we have proved [hat the set of mn efements _IE'.j| i= 1, n, je=l,a,m] is a basis for

L(U, V).
Lct us see some ways of using this theorem, . S e

Example 5 Show that L(R?, R) is a plane.

'%Iul:on L{R2, R) is a real vecior space of d:mcnsnon 2x1=2,,

Thus, by Theorem 12 of Unit 5 L{R?, R} = R, the real plane.
Example 2: Let U, V be vector spaces of dimensicns m and n, respectively. Suppose Wis a
subspuce of V of dimension p (< n}. Let -

= [Te L(U, V:Tule Wiorallue U}

Is X a subspace of L (U, V) ?1f yes, find its dimension.
Solutlon: X = [Te L (U, V) | 'T(Uy & W) = L ¢U. W). Thus, X is also a vector space. Since
it is a subset of L(UJ, V). it is a subspace of L(U. V). By Theorem L. dim X =mp.

E3) What can be a basis for L(R2, R), and for L (R ; R*)? Nolice that both these spaces -
have the sume dimension over R. )

" After having looked at L{U, V), we now discuss this vector space for the particular casc

when V= F.

6.3 THE DUAL SPACE _

The vector space L{U, V). discussed in Sec. 6.2, has 0 particular name when V = F.

Definition: Let U be a vector space over F. Then the space L(U, F) is called the dusl space
of U, and is denoled by U".

In this section we shall study some basic properties of U'.

The elements of U’ have A specific name, which we now give.

Delindtion: A lincar rransiormation T;U - Fis calted a linear-functional. _

Thus, a linear functional on U is a furiction T:U — F such that T (a, u, + oty u,} = o, T(uJ +
a, T, fora, v, € Fand u,u, e U.

- Forexample. the map ER*— Rif(x], x,, X )—1 X, +n X, + 0, X,, where 2, a,. 2, € Rare’

fixed, is alinear functional on R*. You h-we. alrcad)r seen this id Unit 5 (54)'.

E4) Prove thal any linear lunctivnal on R'is of the form given in the example above.

We now come 10 a very imporiand aspect of the dual space.




We know that the space V', of linear functionils on V, is a vector space. Also, if dim V =m, Linear Transformations - [1
then dim V™ = m, by Theorem 1. (Remember, dim F = 1))

Hence, we see that dim ¥V = dim V', Fram Theorem 2 of Unit §, it follows hat the vector

spaces V nud. V7 are isomorphic.

We now construct a specinl basis for V5. Let {e,, ... e} be o basis of V. By Theorem 3 of

Unit 5, for cachi = 1. ... there exists a unique linear funclional £ on V such that
[1. =] ‘ _* The Kronecker Sclta funcyion is
fie))= . o
0. il v . 6*-[].'=J
=8, 5 lo.iej
y
We will prove that the lineur Tunctionuls {2l construeted above, form a basis of V.
"Since dim V = dim V" 5 m. 1 I enough o show that the set {1, ... f ) is lineurly
independeni. For this we SUppose €1,..,Cn€ F such that ¢ fy t ot Cplpw 0.
We must show tha ¢, =0, lornlli.
Now z cf.=0
)i
i=t .
n
=Y o f, [(e,)=0. for each i.
(=i '
=:ch (f (e))=0Vi
j=l
i |
=2¢8 =0Visc =0Vi
i=l
- ““‘“ . n x L)
Thus, the set {f. ..., {_} is 4 set of m linearly independent elements of a vector space V' of .

dimension nu. Thus, from Unit 4 (Theorem 3, Cor. ). it forms a basis of V©.
Definition: The basis {f,....., [} of V" is called the dual basis of the basis {¢,,... .cm} of V.

We now come (o the result that shows the canvenience of using a dual basis.

Theorcm 2: Let V be a vector space over I of dimension n, (e....e | he a basis of V and
{r,. [} be the dual basis of {e e, }- Then, foreach Fe V',

1'= zi'(ci)f.I

i=l
and, foreachv € V..
v= z M (vle,

i=l

Prnol' Since [f,, ...[,) 15 a basts of V*, for f € V' there exist scalars ¢ ...c, sueh that

f= E ¢ f.
Therelore,

f(eJ):_il c,f ¢,

- .

=-i}_:| ;8 . by definition of duni hasis.

=cC.. -
]

n
N Ol Fac e = A ahamn
i Kl 5] e

Ffm hna s 1
By vany AL L RARE _'r, I Y € v, inuio

™. e —
11 ul!].nlsa L \.. - I\I: Firn =

exist scalars a,, .nn such that

no-.
V=Zﬂi¢.l

Hence, f (v)= Z a, f (e;)

=l
n

2 a
i=1

a,. b 3
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and wc oblain

v-*zf{v)c

1=1
Lel us see an example of how Lhis theorem works.

Lxample 3: Consider the basis ey = (1, 0, - 1), e3= (1, 1), ¢ = (1, 1, 0) of C over C.
Find the dual basis of {e, 3, &4}.

Solutlon: Any element of Clis v=(z), 2, 22), m € C.'Since {ey, ¢, c,} is a basis, we
have ay, az, ¢ € C. Sipce lhal

v=lz, 2.0 =0e +ae + 0,8,

= (ou oy + 0, 0 + 0 — @, + Q)
Thus, ay+ i+ a; = %

o, +c =2,
-, k0, =7,

These equations can be selved (o get
U, =2, - 4.0, =2 -7 % ?._‘.ul:_er._,—z, -7,
Now, by Theorem 2,

v=f (vye +1,{v) e, + 1, (v) e, where [[,, T, [} is the dual basis. Alsov=a, ¢, +a,c, +
e, -

Hence, [, (M) = . [,(v)=a,. [ {v)=q, ¥ve C*
Thus, Ihc dual bns:s of {&, &3, e;} is {f, f1, I',} where [y, [, f3 will be delined as {ollows:

!(? Zy ?)—a_? -,
r:(zl.z:. 2=, =7 —7, +E,

filz 2uzg=0a,=22, —2,- ¢

£5)  What is the dual basis for the basis { 1. x, x?] of the space

P,={a,+ax+a,x [a € R)?

Now let us look 3t the dual of the dual space. IT you like, you may skip this portion and
go siraight to Sec. 6.4.

1et V be an n-dimensional vector space. We have already seen that V and V* are isomorphic '
bcc'unc dim V = dim V*. The dual of V' is called the second duul of ¥ end is denoted by
", We will show that V =V ™
Now any element of V™ is a lincar transformation from V10 F, Also. forany v e V and
{c V. f(v)e F.So we define a mappine 4 ° V = V7 v — d v, where (§v) ()= f(v) for 2l]
(¢ V' and v e V., (Over here we will use 8 {v) and §v inlerchangeably.)
Notz that, for any v ¢ Vv is a well defined mappng from V — ¥, We have 1o cheek that
it s o linecir mapping.

Mow, forc.c, & TMand I‘l. lLe V7,

T o, M+ . Dy=(c 1+, (V)

= c| I-I {v) + C! r: (\.)
= ¢ UV e (G}
ahve LIVLIF EVT Sy




‘Furthermore, the taap @ : V = V* is linear. This can be seen as follows: for¢,. ¢, @ Fand Llnear Trancformations - 10 .

Vv, 6V,

glc, v, + ¢, v} (D =1(c, VG, v,)
=c, f(vl}-;-czf(vz}
=¢,@v) D+, (sv) 0
=(c,Bv,+c, ¢ v, (f).

This is true %' V", Thus. o (c, itovlscadv)eco(v,),

Now that we have shown that o is linear, we want to show that i1 iy actually an isomorphisim,
We will show that 0 is 1 - . For Ihis. by Theorem 7 of Unit §, it suffices 1o show that
¢ (v)=0implies v =0. Lel lf,. .. f,1 be the dual basis of a basis [ e,lof V.

L’o'y Theorem 2. we havev = il i'irv .
"Now o tv)= 0 = (ov) (T) ={;-N‘-i =lhown
SEvi=03i=1,..n
=v=Efivie=0 .
Hence. it follows that 8 is }—I. Thus. ¢ is an isamorphism (Unit 5, Theorem 10},
What we have just proved is the following theorem. ‘

Theorem 3: The mapa:V — V7, defined by (sv) (F) = fivi¥ve Yandfe V', isan
isomorphism, .

We now give an important coroilary 10 this theorem.

Corollary: Let y be a linear functional on V- (..., ye V™),

Then there exists a unique v & V sich that

y(f) = ftv) forall fe V-, "y"is the Greek feter “psi.

Proofl: By Theorem 3, since @ is an isomorphisin, it is onlo and 1 — 1, Thus, there exists o
tnique v & V such that @ (v} =y, This, by definiiion. implies that

WD =(av)(D=1(v)forallie V"

Using the second duat try 10 prove the Follmv-ing cxoicise.

E6) Show that each basis of V' is the dual of some basis of V. " !

- [

In the {ollowing section we iook a1 the composition of linear operators, and 1he veciar space-
A(Y), where V is n vecior spuce over I,

6.4 COMPOSITION OF LINEAR TRANSFORMATIONS

Do you remember the definition of the composilion ol functions, which you studied m Uil

17 Let us now consider the particular ease of the compasilion of twa lmear transfomintions

Suppose T:U = Vamd S: V = W are 1wo Hear trinsfarmations. The composition of § i

TisaTunction SoF: U — W, defined by 33




" Lincar Transfarmatlons and ST (u) =L (']‘ (u)) Yauel
Matrlces

This is dingrammatically represented in Fig. 1,

The first question which comes 10 our mind 1s whether SoT is linear. The affirmative answer
is piven by the follpwing resuft. ] '

Thearem 4: Lot U, V. W be vector spaces over F. Suppose Se L (V. Wland T e L (U, V).
Then SoT & |, (U, W)

Proof: fil we need to prove is the linearity of the map SoT. Let @, a. € Fandu, u, & U.
Then :

SoT (ot + o3 ua) = S(T(e, u, + o, u))
=81{e, T{u,}+ &, T (u,Nrsince T is linear.
Fig- 1; g;’; il.:nl‘li'u_:r-:mnpoilllnn =6, 8§ (T )+ e, 8 (T (u,)h since S s linear
= ¢, SoT (u)} + &, SuT (uy)
This shows that SoT & L (U, W)
Try the following exercises now.

E E?) - Ler T be the identity operator on V. Show that Sol = .S =S forall S & A (V).

£ E8) Provethat Sa0=0cS = 6 forali S € A (V), where 0 i the null operator,

We now make an observation.

Remark: Lat 1V — Ybe an inventible lincar iranslormalion (rel. Scc. 5.4). that is. an
isomorphism. Then, by Unit 5. Theorem 8, §7 ¢ L (V. VI= A (V.

Since $7eS (V) =vand Sa5' M = v lorall ve V. .
SuS™ = §78 = 1,, where 1, deaotes the identity transiormalion on V.
This remark leads us 10 1he VYollowing interesting resule

Throrem 52 Let V b a verlor space over 5 field FUA linear translammation $ @ A (V) is an
romorphism il und only it 3T & A {VYsuch that SoT = [ = TuS.

- Preof: Let us fiest assume thas S is an isomorphiso. Then, the remark abeve 1elis s that 3
§'e A(Y)such thar So87' = 1= 8708, Thus, we have T (= §™') such 1hut SsT = ToS = 1.
Conversely, suppose T exisi in A (V) sueh that §uT = 1 = ToS. We want wo shaw hat S is
1 - vund anm,

We first show thar S ix 1 - Libar iz Ker S = [0, Now.x g Ker8 =S (x)=0=2Te§ (x) =
TH=0=3{x =0 =5=0 Thus. Ker S = [0},

¥ext we show tht § is oneo. bt is, forsny ve V. 3w e V such that § ()= v_ Mow, for
ayve ¥,

vl ST =8 (T} =% (u), wherew =T (v) & V. Thus, S is onfo.
Hence, $1s 1 - § and onto, that is, § is ar isomorpnjsm,
Use Thearem 5 10 solve the loflowing exercise.

' E E9 Lors(x.x)=(x, =) and T (x, %)= (~ %, x,). Find SoT and TeS. 15 § (or T)
inverijhle? ] :




| L]

Now, let us look at some examplas invblving tiic composite of linzar aperators.
Example 4: Let T: R? . R and $:R? — R? be defined by
T{x,u %) = (X0 %5 X, + %) and S (2, %, X} = (%, %), Find 8aT and TeS,

Solution: First, note that.T € L (RLRMand § & L¢RY B2, = ST and TS are poth well
defiried linear operators. Now,

ST (x,, ) =S (T (X, X, =8 (X, 0 %, +X,)=(x,. %,).

Hence, SoT = the identity transformation of R¥ = R

Now,

ToS (x, 7 6y = TS (X X x N =T (X %) = (R 0 X+ X, 5

In this case SaT e A (R, wln[c ToS € A (RY). Clearly, SoT # TuS,
Also, note that SoT = I, but ToS 2 1.

Remark: Even if 80T and T?S both bcmg 10 A (V). SoT may not he equal w TuS. We give
such an example below.

Example 5: Let S, Te A (R) badefined by T (X X b= 0Kk %y ~ Kpand 3 (A, x,) =
(0, x,). Show that SoT = ToS.

Solulion; You can check that SoT (-“:- X2 = (0 %, —xdand ToS (x5 ={x, -x,) Thus,
3 (x,. %} & R¥such that SeT-{x,,x,) # ToS {x,, x,} {for insiance, SoT {1, 117 TeS {}.1)). That
is. SoT =108,

Note:; Befurechecking whether 50T is a well delined linesr operator. You mustbe sure that both
S and T are well defined linear opernlors. -

Now try.to solve the following exercises.

Ei0) "Let T(x. x;3=(0.x,,x,} and S {x, X, ,) = {X, + X,. X, + k), Find ST and TS, When
is SoT = Tod?

ElD) Let T{x,. X)) =(2x,, x, +2x Jlor(x,x)e R, and 8 (x, X, 2 ) = (!;. +3x,, 3%, - x,, x,)l

for (x,, %, x,} € R Are SoT and ToS defined? If yes, fi find them,

.

El2) LetU,V, W,Z be vector spaces over ¥. Suppoze T € L(U ViLSe L,{'V,W)and
Re LW, Z) Show that (ReS) of = Ro (SoT) .

Linear Transfornations « Il
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E

E13) Le1 S.T e A{V)nand S be invertible. Show that rank (ST) = rank (T5) = rank (), (ST

means SaT.)

So far we have discussed the composition of linear transformations. We have scen that if S,
Te AtVihen 86T e A (V), where V is a vector space of dimension n. Thus, we have
introduced another binury aperation (see Sec. 1.5.2) in A {V}, namely, the composition of
openilors. denoted byo. Remember, we already have the binary operalions giverin Sec. 6.2.
In the following thearem we state some simple properties lhat involve ali these operations.

Theorem 6: Let R.S. T € A(V)andleto € F. Then
HY Ri {q’l'T) oS + RllT 1”(1
(5 +717418 = SR + TuR,

by (SeTY = o 50T = SeeT.

Proof: ) Forunv v e V,

ReS+THWI=RS+TY (M) =R (S(¥)+ T (v))

=R (S(v)+R (T(v))
= (ReS) (¥} + (ReT) {v)
={RaS + ReT} (¥}

Hence, Ru {S+T) = Ra$ + RuT.
Similarty, we'can prove that (§4+T) oR = SuR + ToR

biloranyvve V, o (SeT) (V) = o (S(T(v])

={uS) (T(v))

= (0SeT) (v)
Theretore, ¢ (S0T) ='¢ SoT.
Similarly. we can show that e (SoT) = soaT.
Motation: In'tuture we shall be wriling ST in place of SoT. Thus, ST (u) = ST = (5-TH u
Also il Te A (V), we write T'=1, T' =T, T? = ToT and, in general;, T* = T'oT = ToT",
The propertics of A(V) stated In Theorems 1 and 6 are very important and will be used

implivitly ngain and aguin, To get used to A(V) and the operations in it iry the following
eACICises, s

El4)  Consider 8, T:R? ~ R* defined by S (x,, %) = (x,, =X} and T (x,, x,) =
(%, Xy %=X,). Whot aro § + T, ST, TS, Se.(S—-'I‘) and {S T)hS?




EI5) LetSe A (V).dim V =nand rank (S) = 1. Let Linear Translormatians - i
M={Te A(V)[ST=0),
N={Te AW TS =0},
_a) Show that M and N are subspaces of A (V).
&) Show that M = L ¢V, Ker 8). What is dim M?

By now you musi have got used 1o handlipg the elements of A {V). The next section deals
with polynomiuls that are related to these elements.

6.5 MINIMAL POLYNOMIAL

Recalt that a polynomial in one variable x over F is of the form p(x) =a, +aX + ... +a_x",
whereaa,...... a e F.

If a, # 0. then p (x) is said to be ol‘dcgrcc n.ifa =1, then p (x) is called a monic
polynomial of degree n.*For'example. x* + Sx + 6 is 1 monic potyromial of degree 2.

The set of all polynomials in x with coefficicnts in F is denored by F [x].

Deiinition: For i polynomial p, as above, and an operalor T € A {V), we define |
pTy=a, 140 T+.. +pT" '

Since each of [, T..,. T" & A (V). we find p (T) & A (V). Wesayp(The F[T].

if o is another polynomial in x over F. then p Ty (T)=q (T)p (T, that is, p(T)and q(T)
Lommute with cach other. This can be seen as follows:

Letq{T)=b,t+b, T+..+b T" :

Thenp(Thq (T)= (@, l+a, T+ .. +a, TIRI+b, T+...+b_T™)

=g By D R o, D T+ a, DT ,

=, 1+b, T+ 4b, T +2, T+  +a T"
=g {T)p(T).

.

El6) Letp,ge Fix| sﬁch that p {T) =0, ¢ (T) = 0. Show that {p + ¢} (T} = 0. {(p+q)(x)

means px) -k gix).} : .

37
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l\.‘:nc::r Transformationsand | [E17) Cheek that (21 + 38 + §%) commules with (S + 28%. for § € A (R").
~alrices N

‘e  deaotes degree of the

polynemiad 1,

We now go on 1o prove that given any T e A (V) we can find a polynomial g € F [x] such
thau

g (T) =0, that is, g (T) (v) = 0%V e\\(

Theorem 7;-1et V be a vectar spice ogér F of dimension nand T € A (V). Then there
exists a non-zero polynomial p over F such thai g (T = 0 and the degree of g is at most n.

Prool: We have already seen thal A {V) is a vector space of dimension n?, Hence, the set -
(LT, 7% .., T" 1 of n? + t vectars of A {V), must be linearly dependent (ref. Unit 4,
Theorem 7). Therelore, there must exist iy, 0,y 0z € T (not all zero) such that

a,bea T+ ko TV=0.

. Let g be yhe polynominl given by

OO =a 42X+ .+ 22 X"
Then g is & potynomial of degree at most n?, such that g (T) =0,
The following exercises will help you in gewting used 1o polynomials in x and T.

E I8) Give un exampie of polynomiuls g (x) und h (x) in R [x]. for whi;:h B (l)'= 0 and
b (0) = 1), wirere [ and 0 are the identity and zero transformations in A (RY).

E 19} LetTe A (V). Then we have a map o Irom T [x] 1o A{V)piven by a (p)=p ().
Show than, Jora.be FFand p.gy € F[x}. .

m glp+ i:)q} =ap (p) + b (g},
b) o (=P oy

In Thearem 7 we have proved that ther exists some g € F [x] with ¢ {T) = 0. But. if

g (T =0, then (ag) (T = O, torany e F. Also, ifdep p < n?, then dep (o) S 0. Thas,
there are indinitely many polyromials that sutisty the conditions in Thevrem 7. Bul if we -
insist on some more conditions on thg polynomial g. then we cnd up with one nd only onc
polynomial which will satisty thexe conditions and the conditions in Theorem 7. Lel ux sce
whal the condilions ure.

Theorem 8: Let Te A (V). Then there exists 2 unique monic polynomial p of smaliest
degree such that p(T) = 0.

Prool: Consider the set 8 = {g ¢ F|x] | £ (T} = 0}. This st is non-cimpty since, by Theorem
7. there exists a non-zere polynoniial g, of degree al most o°. such tha g {Ty = @. Now
coansider the se1 D = Jdep, il re st Then D is o subset of N U {0}, and ilerelore, it must




have a minimum element, say,mtleth € S such thn deg h =m. Then.-h (TY=0anddegh<
degg wge S

Ifh=a +a x+..+a_x™a_ =0, then p =a _""h is n monic palynomial such 1hat

P(T)=0. Alsodeg p=deg h <depg g4eg ¢ S. Thus. we have shown that there exists 3 monijc
polynomial p, of least degree, such that p{T) =*0. :

We now show that p is uﬁiquc. that is, if q is any monic polynomial of smallest degree such

that q (T) = 0, then p = g. But this is casy. Firstly, since deg p S deg g wp e S.dep p < deg q.
Similarly, deg q S degp. .. deg p =deg q. o

Now suppose p (x) =2, +a % +.F+a_x™' & x andq(x)=b, +b x +..+h x4+,
Since p (Ty=0andq(Ty =0, wepet (p-@ (T =0.Butp-q=(a ~b)+..

(a,_,~b,_ )%™ Hence, (p - q) is a polynomial af degree strictly less than the degree ol m

such that (p - q) (T} = 0..Thatis, p—q € S withdeg (p ~ ¢) < dep . This ix a comtradiction
to the way vve chose p, unless p~q =0, that is, p=q. ..p is the unigue polynamial

satisfying the conditions of Theorem 8. ' ’

This theorem immediately leads us 1o the following definition.

Definition: For T e A (V), the unique monic polynomin! p of smallesi degree such that

. P(T) = 8 is called the minimal polynomizl of T,

Note that the minimn! polynomial p, of T, is liniqucly delermined by the following three
propertics,

I p is a monic polynomial over F.

2p(M=0.

NIfge F(x)with g (T)=10, then deg p < deg .
Consider the following example and exercises.

. .
Example 6: For any veclor space V, find the minimal polynomials for 1, the identity
transformation, and 0, the zero transformation,

Solutlon: Letp{x)=x ~ fandg () = X. Then p and q are monic such that p(J) = 0 and
g (0) = 0. Clearly no non-zero polynomials of smaller degree have the above properties.
Thus, x — | and x are the required polynomials. ’

E20) DefineT:R*->R: T (X, %, x,} = (0. x, x,}. Show that the minimal polynomia) of T
is x*,

]
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£22) Let T:R* — R be defined by }
T (8,0 X3,%0 = (x, 3, = %, 2%, 4 X+ 50 Show that (T = D(T=3N=0 Whn is
the minimal potynomial af T?

We will now stale and prove a criterion by which we can obtain tie minimal polynomial of a
Yinear opzrator T, once we know any polynomial f-€ F{x] with [(T) = 0. It says that the
minimal patvnomial must be a factor of any such I

Théorewm 9: Let T @ A (V) and tet p{x) be the minimal polynomial of T. Let f (x) be any
polynemial such shat £ {T) = 0. Then there exists @ polynemial g(x} such that f(x) = pladg(x).

Prool: The division algorithm stales that given f(x} and p(x). therc cxist polynomials g {x)
and h {x) such that f {x) = p (x) ¢ (x)+ b (x), where h (x) = 0 or deg h (x) < deg p (x}. Now,

0=F(T)=p(T) g (M +h (T =N (T)sincep(T)=0.
Therclore, il (x) 2 0. then h Ty =0.und dep h (x} < deg p (xX)

“This contradicls The fact that p (x) is the minimal palynomial of T: Hence. h(x) =0, and we

uei T ix) = p{x) g (x)




Using this theorem, can you abtain the minimal polynamial of T-in £22 more casily? Now Linear Tronsformationy - 11
we only need locheck if T-F, T+ Tor T=31are 0,

Remark: If dim V=nand T e A (V). we liave seen that the degree of the minimal
polynemial pof T £n? In Unit 11, we shall see ihat the degree of p eannot excced n. We
shall also sindy o systematic meihod of finding the minimal polynomial of T, and some
applications of this palynomial. Bul now we will only illustrate one applicalion of the
concepl of the minimal polynomiad by proving the following 1heosem,

Thearem 10: Let T '€ A (V). Then T is invertible if and only if lhe constant term in 1he
minimul polynomial of ‘T is not zero.

Proof: Letp (x) = o, + a x +.... + ,X™" + x™ be the minimal -polynomial of T, Then a b+
8T+ .+ g T® {-I— T® « 0. _

T2 Ty e (1)

Firstly, we wil! show that i T~ exists, then 4,# 0. On the contrary, suppose a, = 0. Then (1)
implies that T (al+... « T"'-') = 0. Mulliplying both sides by T “on the Jeft, we pel

als .. +T" =0, )

This cquation gives us a monic polynomial Qx)=a,+ ...+x™" such that q (T) = 0 and
deg g < dleg p. This contradicts the Faer {hat p is the minimai polynoratal of T. Therefore, if
T exists then the constant'ierm in the minimal palynomial of T eannot be zero.

ST+ ta,)

Conversely, suppose Ihe constant e i the minymal palynomial of T is pot zero. thal is.

8, # 0. Then dividing Equation (1) on boi sides by (=i}, we ol

T-afa) L+ (~1fa) TP Da |,

Lel §=(~a,fu)l + .. + (= l/a) TV !

Then we have ST =1 and TS = L. This shows, by Theoremn 5. thal T-chists and T™' =8,

E23) Let P be the space of all pelynomials of degree < n, Consider the linear operator
D:P, = P, given by D (@0, x+0,x) =1 + 2a. (Nate thal I is just the
dilferentintion operator.) Show thai D = 6. What is the minjmal pelynomial of D7 [g
D invertible? ’

. E24) Consider the reflection transfonnatian given in Unit 5, Gxample 4. Find its minimal

polynamial. Is T invertible? It so, find its inverse.

E25)  Let the minimal polynomial of S e A (V) be x", n 2 I, Show thal there exists v, eV
such that the set {v,, S (¥, 871 (v,)) is lincarly independent. :
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We will now end the unit by summarising what we have covered in.it.

6.6 SUMMARY

in this imit we covered the following points.

1y L{U. V). the vector space of all linear transformalions from U 10 V is of dimension
(dim U) (dim V).

23 The duxt space of a veelor space V is L (V. Fi=V*, and is isomorphic to V.

- n
3 Mie. .. e b is a basis of Voand [f,.... £ ] is its dual basis. then f= Y, f(c.l)I'iV fe v*
n i=1 b -
andv= 2 [ (vieVveV
) rel .

4)  Tvery vector space is ixamorphic to its second dual,

5y  Suppose S € L{V.Wiand Te L (U, V). Then their composition 8aT € L (U, W}

6} Se A (V)= LY. V)is an isomormhism il and onty if there exisls T e A (V) such that
SiT=1=Tus,

7)  ForTe A (V) there exists a nan-zero polynomal ¢ € F {x). of degree at most n’. such
that g (T} =0, where dim V= n.

&)  The minimal polynomial of T & A (V}is the monic polynomiat p, of smallest degree.
such that p (1) =0,

9)  If pis the minimal polynomiai of T and f is a polynomial such that T (T} = 0, then there
exists a podvaomial g (x) such that F(x) = p (x) g (x).

10) LetT e A (V). Then T cxists if and only if the constant tenm in the minimal
polynomial of T is not zero. '

~I
)
()
rl
c

6'

E1}  We bave to check 1hat VE1—VE10 are satishied by L(U, V). We have already shown’
that ¥51 and V86 are 1rue. :
¥S§2: Forany L, M, N e L (U, V). we have yfu € U, [(L+M) + N] (u)
= (LMY (o) + N (u) = [ {u) + M (uif + N ()
=L (u) + [Mu) + N (u), since addition is associative in 'V,
= [L+ M+ N}
AL+ MY+N=L+(M+N).
V§3: 0: U—V: B (u) = 0 3u e Uis thezeso element of L (U, V)

3




VS§4: Forany Se L (U, V), (=) S =8, is the addiiive inverse of S.
VS85: Since addition is commutative in V, § + 71 =T + §%8, Tin L (U, V).
V8T voe Fund 5, Te L (U, V),
C{S+T)H(wy=(aS + ¢T) (v) vue L.
s oS+ T)=aS +aT.
VS8, BeFandSce L(U. V), (¢ +P)S=0aS + 35
V89: o, fe Fand S e L (U, V), (afs) S = a (BS).
VSI0: ¥Se L(U. V). 1.5 =S.

E2) E, (e, )=FandE, (¢)=0forimw
E, (e,)=f,andE,, (¢)=0fori=2.
E"m (ci) = fm‘ ifi=n

0 olherwise
E3) Both spaces have dimension 2 over R. A basis for . (I3 R is I|E,,, E,,}. where

E,(1LO)=1LE (0, H=0.E,(1,0)=0,E, (0, 1) = L. A basis for L (R, R?) is
(B, Ep)s wherc E;| (1) = (1, 0). E,, (1) = {0, ]).

E4) Letf:R? - R be any linear lunctional. Let ¢!, 0,0} = a, O, 1,0 =a,1(0,0,1)=
a,. Then, for any-x = (X0 Xy %), we have x = x, (1,0,8) + %, {0, 1,0)+ x, (0.0, 1). '
AF ) =x 710,00+ %, 1(0,1,0) # x, £ (0.0, 1)

=2, X, b, X, + A, X,

ES) Let the dual basis be [f,, F,, ). Then. for any v € P, v = £, (v).1 + 1, (v)x * f, (v).x-
Saifv=a +ax+a xtthenl (V) =a,. [ (v)=a,(, (v} =a,

Thatis. f, (@ +ax+a,x)=a, (o, +ax+a x)=a,0(a,+ax+ a, x%) =a,, for
anya,+a,x+a,x e P, )

E6) Let {f..... ) be a basis of V*. Let its dual basis be [0, ...., 8106 cV' leteeV

such that ¢ (¢;} = €, (ref. Theorrm 3) fori =1, ... n.
Then [c,, ..... ] is a basis of V, since 97! is an isomorphism and maps 2 basis to
{¢, e |- Now (c,) =¢ () ()= Bj (f) = 5}., by definition of a dual hasis,
oAl e £ b is the dudl of (e, e ). |

E7) ForanySe A (¥)and forany v e V,

Sol (v) =8 (v) and JoS (v) =1 (5(v)) = § {(¥).
~Sel = § =168,

E8) ¥SeA(V)andveV,
S0 (v)=5(0)=0, and
0SS (VI=0(S(v))=0. '
=820 =08 = 0.
E9} Se A(R?),Te A(RY),
SeT (x;. %) =8 {=x,, X)) = {x, x,)
ToS (0 x,) = T (X, =) = (x,, X,)
-v-(xl.-xz} e R4 .
v.8aT =TeS =1, and her_lcc, both S and T are inveriible.
El10}) Te LRV R, Se LR\ R SaT € A (R?). ToS € A(RM.
» 80T and ToS can never be equul,
Now, SoT (x,, x,) = § (0, X X, = (X, %, 45 WX, %) € RY,

Als0, ToS (X Xy X3 = Tolx, + %, %54 X,) = (3 %, o+ Xy, 5, + X,) 4 (X, %, X ) € RS,
El1) SinceTe A (R?)and Se A (R, ST and TS ¢ not defined,

E12) Bath (RS} oT and Re (SoT) are in L (U, Z). Far any n € U,
[(RoS) oT] (u) = (ReS)T(U)] = R[5(T(u))) = R [{SuT) tu)| = [Ro (8cT}) (U}I.
A (RnS) wi = Ro fSnT).J
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El3) By Unit §, Theorem 6, runk (8oT) £ rank (T).
Also, rank {T) = rank (IoT) = rank ((§™'08)aT)

=rank (570 (S¢T)) £ rank (50T {by Unit 5, Theorem 6).
Thus, rank {8eT) £ rank {T) £ rank (SeT).

- rank {SoT) = rank (T).
.Suml.lrly you cun show that rank (TeS) = rank (T)

El4) S+ y)={x. -+ (x+y, y—x)=(2x + y—x)
STE. Y =S K+y, y—xX)=( +y,x=¥y)
TS {(x.y}=T(x. ~y) = {x = y. —(x + ¥)}
[So(§-TH &, V) =S -y, x = 2y) = (~y, 2y — x) _
(S ~T)oS X ¥} = (S T) (x, =y) = (%, y) = (x=y, ~(x + ¥)) = (. 2y + x) S
V(x.y)e R . .
E15) a) We first show that if A, Be Mand o, § € T, then otA + B € M. Now, -
* So (oA + [IB) = SotzA + SofiB, by Theorem 6.
= ¢ (SuA) + B (SuBB), ngain by Theorem 6. ’ g
= ol + (0. since A, B e M.
=0
S0 A+ BB e M oand Mis a subspace of A (V). - :
Similarly, vou can show thar N is a subspace of A (V). :
b) ForanyTe M,ST(v)=0 ¥ve V. . Tv}e KerS¥ve V.
& R (T the range of T, is a subspace of Ker 8.
“TeL(V.Ker3). » MSL(V, KerS).
Convcrs;ly forany Te LV, Ker$).Te A(V)suchthat S(T(v) =0 ¥ve V.
S 8T=0. . TeM.
L(V. Ker Sy S M.
-~ We have proved that M = L (V, Ker 8).
& dim M = {dim V) {nullity §), by Theorem 1.
=0 {n ~r), by the Rank Nullity Theorem.

EIG) (p+q) (T =p(T)+q(T)=0+0=0.
BE17) (21438 + 8% (S + 28" = (21 + 38 + §1S + (2[+35+8) (28 )
= 2§ 4 38T 4 §% & 4514 65° 4 257
=25 + 357 + 55" + 685 + 287 '
Also, (S+25%) (21435+8" = 25 + 357 + 584+ 65° + 28
(S + 287 (2143S +-5Y) = (20 + 38 + S (S + 259).

E18) Consider g (x) =x~t € R{x]. Theng ) =1-1.1=0. Co
Also,ifh{)=xthenh (M= 0. i )
" Notice that the degrees of g and hare both 1 < dim R ) Cooe

El9) Lc'l-p ZqF X+ o+ XN =by +bX + . kb xm
a) Thenap+bg=2aa,+ aa.x + ... +aa_x"+ bb, +bbx +... +bb_ x™.
~v{ap+b)=al+aaT+ .. +oa T+ bb |+ bb, T+ ...+ bb_T™

=an iTY a b (7 2 Ak ind e At
o SR =T N T oAy

).

DY P =(ag+ ity X+ ok X by b x4 L4 b X

-.1"bu+('\ by+a,byx+. 40 b xm

S ) =a bl b+ a, b)) T+ +a b T
o=@l Te s a T+ b T+ . +b T
= ¢ (P oy
E20) TeA (RY. Letp {\] = &% Then p is a monic polynomial/ Also, p (T) (%) % X} = .

T (5% A= TN ) =T (0. 0. x, J=0.0,0 ¥(x,x x) e R -
SpATY=Al I




E2I)

E22)

E23)

E24)

Eéﬁ}

' Applying 5" *ta bath sidles we geta, =0 Inthicemywonsip =04 i =1

We musl also show that no monic polynomial q ol smuller degree exists such that Linear Transformations - 11
gq(Ty=0. .
Suppose 4 = a+bx + x*and g (T} = 0. »

Then {al +bT + TY (x,.%,, x,) = (0.0, 0)
< a(X,, X %) +b (0, x ) x,) + (0,0, %)= (0,0,

' & ax, =0, ax, +bx, = 0,ax, + bx, + x, = 0%(x. x,, x ) € R".

=a=0,b=0qand X, = 0. Bul x, can be non-zero.

»» q does not exist. ,
.~ pis a minimal polynomial of T.

Consider p (x) = x™. Then p(T) = 0 and no non-zere polynomial g ol Jesser depree
exisis such that q (T} = 0. This can be checked on the jines ol the salution of 1324

(T*-T) (T-3D) {x,, X5 %)
={(T? = 1) ((3x,, %, =%, 2%, + X, % X,) — (3%, 3%, 3x,))
=(TT =10, x~4x,, 2%, + x,~2x,)
=T {0, =x, + 4%, 3x-3x,-2x,) ~ (0, x,—4x,, 2%, + X, -2x,) _
= (0% ~4x,, 2%, + x,—2x ) — (0. %, ~dx,, 2%, + X,2%0) .
={0,0,0) ¥(x,, 5, x,) € R".

S AT -D(T-3D) = 0
SuppOSe 3 q =a+bx + x? such that q (T) = 8. Then q{Ty{x, x,. x,)=(0.0,0) ag )
L xx) e R, This means that a+3b+9 = 0, (b+2)x, + (a—b+T) L=0.2b+9)x, +
bx, + (n+ b+ 1} %, = 0. Eliminating a and b, we find :hnt these cquunom cin be
solvcd provided 5x — 2x, - 4x, = 0. But they should be true for any (x. x,, x) € .
., the equations can't be solved, and q does not exist, .., the minima! nolvnomial of
Tis (=1) (x~3).
DY@, + ax +a,x) = D? (a, + 20.x) = D! (23,) = D0} = 0 ¥, +ax +apxie P,
o DI=0.
The minimal polynomial of D can be D, D, D' ar DY, Check thal D' =0, but 12° £ 0,

. the minimal polynomial of D is p (X} = x%. Smcu.. p has no non-zero constan lerm,
D is not an lsomorphlsm

T:R? = R% T(x.y) = (x, ~y).
Clieck that T~ { =
<. the minimal polynomial p must divide x?—1.
~p (x) can be x—1, x+1 or x*-1. Since T—I aeo and T+ [ 0, we see that p(x) = 82-1,
By Theorem 10, Tm invertible, NowT 1=

~T (—-T) =1L =-T.

Sincc the minimal polynomial of S isx", 8" =0andS" "% 0., - 3 ve€ V such that
{v)#0. Lera, q, &, € F such tha

BVt 4, S (V) 4 a8 (v) = 0. (1)

Then. applying §"™'10 both sides of this equation, we gel 8,8
..|| I(VU) =
.l s"' (vn) -0 sinee §'= 0 §™'=,, =™

=ua,=10,

Now(l)reduccqlo'uS(vH +1S (v)-—.

(v, )+, S (v 3 o+

EA

s The set (v, S (v )re 8 1('.r'"}] is I|ncnrty independent.
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7.1 INTRODUCTION

You have studied linear iransfomations in Units 5 and 6, We will now study a simple means
of representing themy, namely. hy matrices (he plurad form ol "matrix’). We will show tiar,
given a lincar transformation, we can obtain i matrix asseciated o i1, and vice versa. Then.
as you will sce. certain propentics of a lincar wansiormation can be studied more easity if we
study the associsted matris instead. For example. you will see.in Block 3. (hat 1l is often
easier L obtain the chiracleristic roots of a matrix thaseof a linear ransformation,

Matrices were introduced by the English iathematician, Arthur Cayley, in 1858. He came upon
this nolion in conneerion willt linear substilutions. Matrix theory now.occupies an inyporiant -
position in puee as well as appligd mathematies. In physics one comes across such lems as
matrix mechanics, seatlerng matrix, spin matrix, annihilation and cregtion matrices. n
economics we have the imput-ouipwt matrix and the pay oflmatrix; in statistics we have the
transition matrix; and. 1n engineering, the siress marn X, strain matrix, and many other

'mutriccs.

Matrices are intimately connécted with linear ransfornitians. In this unit we will bring oul
this link, We will first deline mairices and derive algebraic aperations on matrices [rom the
correspanding operations on lincar ransformations. We will also discuss some special Lypes
of matrices. One Lype. a triangular matrix, will be used ofien in Unit 8. You will also study
invertible matrices in some detail, and their conneetion with change of bases. [ Block 3 we
with ofien 16ies iu ihe soaterial on Change of bascs, so do apond somc time on Sea. 7.6

To realise the deep connection between miatrices and linear transformations, you should go
buck 1o the exact spot in Uniis 3 and 6 o which frequent reterences are made.

This unit may tike you a little longer Lo sludy. than previous ones, bul don’t let thal warry
you. The muterial in.itis actually very simple.

Objectives
After stpdying this unit, you should be able 1o

& define und give eximples ol various Lypes of mairices;
& obuain a matrtx assaciated 1o grven finear ranstormuuion:




define a tinear iransformation, if you know its associated matris;

evaluate the sum. difference, product and scalar multiples of matrices;

abtain e franspose and conjugate of & matrix;

determune il a given matrix is invertible;

obtain the inverse pl a mairix:

diseuss Ihe eltect that the ehange of basis has on the matrix of 2 linear iranxlormation.

e 6L e

7.2 VECTOR SPACE OF MATRICES

Consider the following system of three simuliancons cyuations in four uiknowns:

X=Jy~+de+1 =0
X+1y +11t=0
Jy-52. =0

The cocfficienls of the unknowns, X, ¥, z and 1, can be arranged in rows and coluning (o form
areciangular array as follows:

i =2 4 ] {coclficients of the first cquition)

I 12 0 I (cucfTicients of the second equation)
)

0 3 -5 0 (coetticients of the third equation)

Such a rectangular irray (or arrangement) of numbers 15 called a BE. A matrix is usually
enclosid within square bruckets [ | or round brackets ()ax

I =2 4 1 le 4
5 0 dfer 1 7 0 i
0 3 -5 ¢ 0 3 -5 oy *,

The pumbers appearing in the various posilions of o matris are called the entries {or
clements) of the matrix. Note that the sume number iy appeay al bwa or more difierent
positions of i musrix. For example, | appears in 3 dillerent positions in (he matrix given
above.

In the matrix; above, the three horizontal rows of eniries have 4 elements cich. These are

. cilled the rows of this matrix. The four vertical rows ol entrics in the matrix, having 3
etements cuch, are catled its columns. Thus, this matrix his three rows and four columns,
We describe this by saying that this is a matrix of size 334 ("3 by A or 3 cross 47, or that
this is 2 3 > 4 matrix. The rows arc counted frem top to boltom and the columns are counled
from lett w right. Thus, the first row is (1, =24, 1), the second row is (1, L0, 113, and so
on. Similarly, !

1 . -3
the first column is || |, the second column is = [, and 50 on.
0 ¥

Note thal cach row is a 1 x 4 matrix and each column is 1 2 x L inatrix,

We will now define a matrix of any size.

7.2.1 Definition of a Matrix

Let us see what we mean by a matrix of size m % 1, where m and n are any Lwe natural
numbers., :

Let F b a field.

A rertananlar arraw
\ reclanguliar amray
1
DT 4
R A3
al'l!l am! g

of mn elements of F arranged in m rows and o columns is called a matrix of size mx n, or
an m x n matrix, over F. You must remember that the mn entries need not berdistinet,

Muirlees - I
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The clement a1 the intersection ol the uh row sud the puh colunn is called thwe G. s 1h

. . . - -0 .
clement. For example. in the m o n matrix above, the (2, n} 1h element is Ny which is the
intersection of the Ind row and the pih cotumn,

A brief nolation lor thix matriy is Iais! e OF SIMPlY |:|”l. i m and n need not be stressed.
We also denote matrices. by capilal Teders A, B, C. .., ete. The set ol all m x n matrices over
Fisdenoted by M (FL

Thus. {1, ¥Z le M, (R).

If m = n, tken the matrix is called ;1 square madrix, The set of all n x n mairices over I is
denoted by M_ (F).

In an m x n malrix cach row is a | x n malrix and is also called a row veetor. Similarly,
: - Lo
euch column ix an m X | mawrix aid is slse called a column veclor.

Let ss look at a situation in which a marix can arise.

Example 1: There are 20 mate and,5 female students in the B.Se. (Matl. Hon'sy [ year class
in 3 certain college, 15 male andt 10 female students in B.5¢. tMath. Hon's) 11 year and 12
male and 10 lemale students in B.Sc. (Math. Hon's) 11 year, How does this inlonmation pivs
rise o o matrix? :

Solution: One of the ways in which we can arrange Ihix information in the form of o malrix
is 15 follows:

n.se. | B.Sc. Il 0.Se. I
Male k1] 15 12
Female 3 10 ]
This is a 2 % 3 masrix,

Another way could be the 3 x 2 malrix

Female Mate
B.5c 1 5 ' e
n.Se. 11 T 15,
HICTRI]] T !

Either of these malrix representationsimmediately shows us haw many male/fenle
students there are invany cliss.

To gel used-1o matrices and their elements, you cun try the following exercises

1 23 151
EfjLerA=(y 5 Qand B=t5 1 1 §
007 03 20

Give the
a) (1, 23h elements of A and B,
b} third row af A.
¢) second column of A and the [irst column of B,
d) Tourth row af B.

E2} Wrile 1wo difTerent 4 x 2 matrices. et

N

T P




. How did you'solve E 2? Did the (i, j)th entry of onc diff_e':,r from the (_iJ)lh entry of the other
tor some i and j? {1 not, then they were equal. For example, the two 1 x | matrices [2] ond
£2] are equal. But [2] ¢ {31, since their entries at the (I, |} position difter.

Definition: ‘Fwa matrices are said 10 be equal i

i) they have the sume size. that is, they have the same number of rows as well as the same
number of columns, and i :

i) their elemenis, at all the corresponding positions, are the same.

The following example will clarify whal we medn by ecqual matrices.
y
3

Solution: Firstly, both matrices are of the same size, namciy, 2> 2. Now, for Lhese matrices
10 be equal the (i, j} th elements of both must be equal A&, ’j. Therefore, we must have x = I,
y=0,2=2,

'E 3) Are [1] and [:] cqual? Why?

‘ 1 0] [x
Example 2: lf[., 3J =[: ] then what are x, y and z?

- Now that you ar: familiar with the concept of a matrix, we will tink it up with lincar
Irapsformalions. .

7.2.2 Matrix of a Linear Transformation

We will now obtain a matrix thal corresponds to a given linear transformaticn. You will sce
low casy it is to go from mairices to linear wransformations, and back. ..
Let U and V be vector spaces over a field I, of dimensions n and.m, rgspectivély. Ler

B, = [¢,. wiei e ) be an ordered basis of U, and L
B;: {Flaveems o[} be an ordered basis of V. (By un ordered basis wp"ﬂié:'m that Lhe order in
- which the elemenis of the hasis are written is fixed. Thus, an ordered bitsis {e,. e, } 15 no
equal 1o an orderad basis {e,.¢,).) ' '
Given a linear ransformation T:U — V, we will asseciate a matrix to it. For this, we

consider T (e,}, ......., T (e,), which are all elements of ¥ and hence. they arc linear
combinatiens of F,,..., T_. Thus, there exist mn scolars ¢, such thar

Tle)=a, [+, f+...+a T

[ | ml “m

L T R e P e P P LI T L LI T LI L LI iL]

Ty =0y i+, [+ b oy 1

EFFFRa Iy RN RN s P IR PP PR PR NN S P PR PP b PPN
Tle)=a, fi+o, f+. ..+
From these n equations we form an m x n matrix whose first column consists of the

coefficients of the first equation, second column consists of the coefficiznts of the second
-equatioh, and so on, This matdx.

%, G In ) T ,
oy o, - o«
A=l ~° - 2n -
] (™
La."i . C(mz 5- ' aIIIIJ -

. is called the matrix of T with respect to the bases B, and B, Notice thal the coordinate
veclor of T {el,} iz the jth column of A,

We use the notation ['T]B| . for this matrix. Thus, to olitain [T]IJI s, e considef
- -B
T(e) 'V-éi € B,, and write them as linear combinations of the elements of B,.

If Te L(V,V),Bisabasis of V and we take B, = B, = B, then [T], , is cafled the matrix
of T with respect to the basis B, and can also be wrill[r.'.n as [T]". .

Remark : Why do we insist on ordered bases? What happens if we inierchange the oraer ot

L

Lo, e
-t

-

/

r.a

Mauirlces - 1

49




Linear Tronsformatlons and
Malrices

- 50

the clements in B 1o {2, €1 1 17 The matrix I'I‘]‘L alse changes the last column -
'.l
becoming lhe ﬁra! column now, Sim:hrly, if we.change the positions of the fi's in B:- the

rows of [T,y will get interchanged.

Thus, o eblain a unique matrix conesponding to '}, we must insiston B, and B, being
ordercd bases, Henceforih, while discussing the matrix of a lincor mopping, we will
always assume tha! our bases are ordered ages.

We will now give an example, follnwcd by some exercises.

Example 3: Consider the Imc..v.r opcralor

T:R'— R T{xn wz)=(x, y) Choose baacq B, and B, of R? and R?, respectively. Then.

obtain [T |“' iy

Solutien: Let B, = le.c.c,l, wheree, =(1, 0 0).(: =(0,1,0), c]—(O 0. 1). Let
B,=[f.1,], whcrcl‘ ={I 0y, [, = (0 I) Note lhnlB and B, arclhcslnndard bases ofR’
and R2, respectively.

Tie,)=1.01=1=1F +0lT,

Tle)=(0, )= t';, =0.F, + LI,
T{e,)=(0.0)=0f, +0r,

e 1 o of
S .
s, [T, 0t 0
E 41 Choose two other bases B and B, nl R andt R, respectively. (In Unit 4 you came
across a lot of bases Dl'bolh these veelor spices.) For T in the example above, give

the matrix [T|n_ o

What E4 shows s is il the malrix of a dranslormanon depends on the bases that we use for

ablaining it. The next lwo exercises adso bring oul the same fact.

- E E5)  Wrile the matrix of the Vincar transformation T: R* - R* ;T (x, y. z) =

(x+2y+2z, 25+3y+42) witl resnect (o the standnrd bases of RY and R?,

1]

]
i

E E6) Whatis the mairix of T, in E 5, with respect to the bases

B ={(1,0,0), (0, 1,0), (1,-2, 1)) and
CB (1, 2), (2,007




.- T 1 .
The next exercise is about an operalor thai you have come across oflen.

E7) Let V bethe vector space of polynamials over R of degree € 3. in ihe variable 1. Let
D: V = V be the differential operator L,wcn in Unit 5 (E6, when n = ‘l) Show that the

matrix of D with respect to the basis {1, L 1Y) is
01 00
0 0o 2 0
0 00 3
0 00 0

So far, given a lincar tmnsformation. we have obtamcd 8 matrix from it. This works the
other way also. That is, glven o matrix we can define g Ilncur transformation corresponding
foit.

Examplc 4: Dcscribe T:R* = R* such that

Il 2 4
ITlg=[2 3 1|, where B is the standard basis of R
31

Solution: Let B = {c,.e,.¢,). Now. we aré given that:
Tle,)=le + 2e,+3e,

T (e,))= 2.&:; +3e,+ l.c‘,‘
_T {(e)=4d.e +lec, + 2e,

You know that any efement of R is (x. y, z) = xe, + ye, + ze,.

Therefore, T(x, y.-z.:) =T (xe, + ')'f’-; +2¢e,) .
=xT{e) +yT (e,) + T (e,). since T is lincar. ;
=X(e, +20, + 3e) +y (2, + Je,+¢) + 2 (de, + g, +2¢)}
= (x+2y+dz)e, + (2% + 3y + z) ¢, + (31X + y+ 22) c,
=(x+2y+4z, 2x+3y+z, Ix+y+2z)

.. T R' = R*is defined by T (x. y. 2} = (x + 2y + 4z, 2% 4 3y 47, 3k + y + 2z)

"Try the following exercises now,

E8) Describe T: R — R* such that

I i .
[Tl,,_ m = [0 : ?]. where B, and B; arc the standard bases of R* and R?,

Tespeclively.

" Maoirlces
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E E 9} Find the lincar operator T C - Cwhose m.urn wilh respect (o the basis |1, 1) is

!

L h 0] (Mot bt C. the field of complex numbers, is a vector spdcc over

R. of dimersion 2.3

Now we are in a position 10 define the sum of matrices and multiplication of a matrix by a
scalar.

7.2.3 Sum and Multiplication by Scalars

In Unit 5 you studied about the sum and scaldr multiples of linear transformations. In the
follgwing theorein we will see whal happens to the matrices associated with the linear
transformations that are sums or sealar multiples of given lineir transformations.

Thearem I: Lei U and V be vector spuces over F, of dimensions n and m, respectively, Let
B, and B, be arbitrsry bases of U and V, n.t;p-.cuvcl;, {L.e1 us nbbreviate ['1‘]u 8,10 (T)

during IhIIS theorem.) Let S, T & L{U, V}anﬁ a € F. Suppose [S1= [au],[T] [b ] Then
' [S +T) = fa, +b,], and
(@8] = [oa,)

Proof: Suppose B, = |¢,, ¢y 2, ) and B, = [, I, ..., £_}. Then all the matrices o be
considered here will be of size m X n. _ :

Now, by our hypolhcsis.

1

S(e)= Eau f,’v‘;l =1,....0 and

TTe)= Lby =1
il

S +T)(e) =5 (e) + T (¢} (hy definition of S+ T)

-Ea f‘+2b,ji

i=l 1=
o= ig;(alj + bij )f:

Thus, by definition of the matrixX with respect to B, and B,, we get [S + T =[a, + bl
Now, (aiS) (e)) = o (S(ep) (by definition of 0:S)




i‘-:lun

m . - ' Matrices 1
= rr[ Sa f.] :

In
vy (flilli W
rul
Thus, |a8] = [een, )
Theorem ! molivates us 1o define the sum of 2 nuatrices in the (otlawing wan

| wer mattiees can be adided if and

Definition: Le1 & and B be the fallowing twa m X 1 natrices, '
i only il they are of the sume vice

ill'll i.II.E-. v "'hl
a-.“ a?! v uZ"
A=,
Bt oy ““‘"_
by, by by,
by, b, b,,,
B=
;b:nlh bn-'.‘ t bnmJ
Then the sum of A and B is defined to be the matrix
|—all + ), Byt by, R A
A+B= Aty - By thy “3,_.“-’:“
l-ll'rxl-'-l:,ml amz +bmz t amn +bmn

-Inother words, A + B i the m % n matrix whose (i, j) th element is Ihe sum of the (i;j} thelemem
" af A and the (i, j}th element of B. :

Let us see an example of how two matrices arc added.

l s | 45 0| 0]0
Examp.lcs. Whnl:_slhcsumof[o I 0] and [l s sl

Solution; Firslly, nolice that both the matrices are of the same size (otherwise. we can't add
them). Thelr sum is

[14'-_0 4+I-.5+0:|_|:l 5 s]
O+1 1+4 0+5 L1 5 5
E 10) What is the sum of

a) [1 2] und[?]?

o) Jua[-) o |

Now. let us define the scalar multiple of a marrix. egain motivated by Theorem 1.

Definltion; Let ¢ be ascalar.ie., te F,and o1 A = (a,}
of the matrix A by the sealar ¢ to be the marix

. Then we define the sealar mulliple

men
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1 o)y oR,

03y @2y, oz,

aA= -
mml mm! o mlm

In othier words, ttA is the m x n malrix whase (i, ) th efement is o times the (i, j) th element
of A. !

t/id 113
Example 6: What is 2A, where A = [”2 f / ]..,

o 0 0

Solution: We must mubtiply ench entry of A by 210 gel 2A.

Thus,

o o,
24'[0 0 o]

suncsm {10 s,

‘Remark: The way we have delincd the sum and scalar muliiple of matrices allows us to wrile
Theorem | as follows:

S+T)y o = 18Ty o+ [Vl 4
(0Slg o =Sy o

The following exercise will help you in checking il you have undersiood the contents of

Sections 7.2,2 and 7.2.3.

E12) Define SRS RY: Sty =tx0yyand T: R 2 R*: T(x.y) = {Oxy) Lx:tB and B, be
the standard-bises for R* and R, respectively.

Then what are (S i“. u.-r”n,_n.- [S+Tly u. S l“.-“-‘ forany a e R.




We now want to show that the set of all m x n mairices over F is actually a vector spice
- over I, '

7.24M  ({F)isa Vector Space

Afterhaving defined the sum and scalar nltiplication of mazices. we enumerate the properiies
of these operations. This will ultimately Tead us 10 prove that the serof il mx b mairices over
Fis a vector space over F. Do keep the propecics VS 1:VS 10 (of Unit 3) in ming.

Forany A = [ﬂ_j]. B= [b).C= [C-;l € MW" (INand . B & F, we have

i) Matrix addition is associative: '
(A+B)+C= A +(B + (), since
(a;+by+c, = u,+ (b +c,) ¥-ij. s they are elements of a ficld.

iy Additive identity: The matrix of the zero iransfarmation (see Unil 5), with respect 1o

any basis, will have 0 as alt its entries. This is called the zero matrix. Consider the
zero matrix 0, of size m x n, Then. forany A € Mm_n ().
A+0=0+A=A,
since a;+0 = 0+a, =a, ¥i.j.
Thus, @ is the additive identity lor M (F).

iii}  Additive inverse: Given A'e M, (F) we consider the marix (-1)A. Then
A+(-DA={-DA+A=0 °~
This is because the (ij)th clement ol (=1 A is 1 . and ¥ () =0= (=) + 0 ¥,
Thus., (—1) A is the addilive inverse of A, We denote (—11°A by —A.

iv)  Mutrix addition is commutative:
A+B=B+A
This iy true because g, + b =bMba Acig.

v) o (A + B) = oA + uB.

vil (a+PIA=0A +PA

vii)  (af)A = a(BA)

viti) 1LA=A

E 13) Wrile out the formal prools af 1he properties (v) — (viii). given above,

These eight properties imply thai M‘mn (F} is & vector space over F. ‘

Now that we have shown that Mm,"-(F) is a veclor space over F, we know it must have a
dimension. '

7.2.5 Dimensien ol M,  ®overF

Whais she dimension off M (Fy over 7 Tuanswer this question we prove the
following theoiem. But. belore yau go Tpnhier, cheek wheiber you remember the delinition
of it vector spuce isomorphism (Uit 54,

Thearem 2: Lei U and V be veetor spaces over I ool dimensions n and w. respectively, Let

B and B. be apair of hases oF U and V' respectively, The mapping ¢ ; LUV - Mmm(F].

givenby o (Ti=|T] Is i AeClor apice isamorpiism. '
.

- Martrices - )




Linear Tkansfurmmlurh any’ Proof: The Tact that ¢ is a lincar transFormation follows from Theorem 1."We proceed 16
Malrices - .t show thit the map is also | ~ 1 and onta. For the rest of the proof we shall denote (S ], b
by IS} only. and take B, = {e .. e, b By = {1, £ ) )

pis]-1I: Suppo.*.u.. S, T e L(U,V) be sucl that ${S} = ¢(T),

Then [S) = [T). Therefore, S(e) = T(e) ¥-¢; € B,,

Thus, by Umir 5 (Theorem 1), we have S=T.

disono: Il Ae M , (F)we want to construct T & L{U,V)

such thut & (T) = A. .Sur"-usc A= [“i,-]- Letv,...v € V such that _

L1} -
v'_.z"lulr for j=1,..... n. .

Then. by Theorem 3 of Unit 5. there exists a linear transformztion T & L(U.V) such that

T(cj}= ;= ‘:".lu f..

icl
Thus, by delinition, &(T) = A,
Therefore, & is a vector space isomorphism,
(M.

A corollury Lo this theorem gives us the dimension of Mm .

Corollary: Dimension of M __ (F)=ma.

Prooft Theorem 2 tells us that Mm , (N is isomorphic to L(U,V), Therefore, dim,
ann(F) = dim L{U.,V) (by Theorem 12 of Unit 5) = mn, from Unit 6 (Theorem 1).

" Why do you think we chose such a roundabout way lor obraining dimMm , {F)? We could

is weH have tried to obtain mn lincarly independent m x n matrices and show that they
_penerale Mm «n (F). Bul that would be quite tedious (see E16). Also, we have done so much

work.on L{U.V) so why not use thit! And, docsn't the wiy we have used seem nent?
Now for some exercises related to Theorem 2.
E E 14) At most, how many marrices ¢an there be in uny lincarly independent subset
of M, (F)?

-

E B 15) Arc the martrices [1, 0] and [1, -1] lincarly independent.over R?

E Elo) L E,; be an mxn matrix whose (i,j)th element is | and the other elements are 0.
Showthal |Ez 1 Si<m. | <] Shi is a basis of M (F) over F. Conclude that

dim, M __ {T‘) mn, !




'ow we move or to thie next section, where we see some wiys of getting new matrices from
iven ones.

.3 NEW MATRICES FROM OLD

iven-any matrix we can abtain new matrices from them in different ways, Letus see three
"these ways,

3.1 Transpose

. i 0 9
|]:|posuz'.aﬂ\=[2 5 9]

om this we form a matrix whose first and second columns are the first and second rows of
respectively. “That is, we obtain

1 2
=10 5}
9 9

en B is called the transpose of A. Note that A is nlso the trungpose of B, since thie rows of
tre the columns of A, Here Aisa2x3 mairix and B is a 3 % 2 malrix.

general, il A =_[a“,] is an m X n matrix. Then the n X m matrix whose ith column is the ith

vof A, is called the transpose of A, The transpose of A is denoted by A* (The nolation
1A is also widely used.) :
le thay, if A = [aﬁ}m. then A' = [bu]m where bll is the intersection of the ith row and the

columin of A™. .. b, is the intersection of the jth row and ith column of A e, i
(92 118 :
] Ji

7) Find At where a = B 3]

now give theorem that lists some properties of the tanspose,
wrem 3; Let A, Be M __.(F)and o.e F. Then,
A+B)=A"+B '

XAY = Al

Ay = A

i)

Matrices-1
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Every square mairix cin be
cxpressed as the sum of o syminetric
and ¢ skew-synimetric pariz,

Proof: a} Lel A= l.l | and B = lb l Then A+ B= [alj + b_j].
Therelore. (A +B) —-icii where

e, = lhe ilth element of A+B =2, +b,
= sum of the (j.i)th elemenis of A and B
= sum of the (i.)th clements of: A'and BY.
= (ijith clement of A’ + B
Thus, (A + B)' = A'+ B'
We leave you 1o complete the prgpf of this thearem. In fact 1bat is what E |18 says!

E 1®) Prove (b and () ol Theorem 3,

E 19) Show thal. it A = Al then A must be asquare MALrix,

E 19 leads us lo some defimitions.

Definitions : A syuare malrix A such thul A'= A is caMed a symmetric matrix, A square
marix A such that A'= AL is cailed a shew-symmetric matrix.
For example. the matrix in E'17, and

1 2 - . .
[_‘ l . are both symmelne inalrices,

o 2. e L
[ 0 is un example of a skew-synmernc iz, $ice

bl

E 20y Take a2 x 2 nuprix A, Calculale A + A and A ~ A'. Which ol these is symmetric
and which is skew-symmetrie?

T

What you Imu. Jyown 1 20 s true ToT L square matrix of any si2¢; namely. for any
Ae M lI LA+ i aympuciic andd A=A isshew- u)mn'n.lrlc




We now give another way of getting a new matrix from a given matrix aver the complex " Mairices - I
fietd. -

7.3.2 Conjugate
I A is & matrix over €, then the matrix obtained by replacing each entry of A by its complex

y T d jugale ardd is denoted by A
conjugale is culled the conjugate of A, and is denoted by The complex conjugate af u+ih @ €

Three propertics of conjugates; whicl are similar 1o those of the trunsposc, are is o-i,
) A+B=A+B,forA,Be M, (C)

b) ﬁ:&ﬂ,forae CandAe ik
) A=AforAe M _ (O

Let us seo an example of obtaining the conpugaie of a mawrx,

)

m=n

na Il(

. 1 :
Example 7: Find the comjugate of [2 41 -3-2 i]

Solutien: By definition, the requircd maltrix will be

'I:Z-Ii' —3_Jiréi]

/ 1"
Example 8: What is the conjupale of ’72 3] ?

Solutlon: Note that (his meurix has oniy read entries. Thus, the complex conjugate of cich
entry is itself. This means that 1he conjugate of this matrix is itself.

This example leads us to muke the following observation.
Remarks A = A if and only if A is a real matrix.

Try the following exercise now.

E E 21) Calcuiate the conjugale of I:; 12]

We combine what we have feamt in the previous two sub-sections now.

7.3.3 Conjugate Transpose

Givenamatrix A € M_.. .(F) we form a matrix B by taking the cenjupaic-of Al, Then
B =AY is called the conjugniec transposc of A.

Example 9: Find A' where A =[ ! , i ]
- 241 =3=2i

Solutien: Firstly,

] 2+i
A _[i -—3-2i:|' Then

-1 ! 2-5'[
AE[—'@ - 343l

Now, note a pcc@liar.occup-cncc.-!f wc_ﬁr::l Ealculatc A and then 1ake-its trnspose, we get
the same matrix, namely, A", That is, (A)' = A',

0 general, (A) = A'¥A e M_"(CJ.I'

£ E22) Show thit A= A' =» A s a squarc matrix,
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';' is also denoled by A® ur A,

L 22 leads us Lo the [ollowing delinitions.

Delinitions: A square marix A Tor which A' = A is called o Hermitian matrix. A squure
nuurix A s called o skew-1Iermifian matrix il A=A,

. | i .
For example, the outrix [ L is [ermilian, whereas the
: -i 2
T L4+-i, - .
ll]illl'l\L i is a skew~Hermitinn matrix.
— -l.l

2 _
Note: A =[|2 a] then A = A' = A' (since the entries are all real). = A is symmetric as

welbas Hermitian. In fact, Tor o real marrix A, A is Hermitian i A is syometric. Similarly,
A ts skew-Hermition ifT A is skew-symimelric.

We will now discuss two imporlant, and often-used, types of square marrices.

7 4 SOME TYPES OF MATRICES

In Lhis section we will deltne a dingonal matrix and a trizmgalar matrix,

7.4 Diagonal Matrix

Let Uand V be vector spaces over FF of dimension n. Let B, = [e,.....e, ] and B, = [[......f |
be based of U und V, rccpcclivcly Letd,....d_& T Consicler the ransformation
T:U-osVTiae, r.+ae)=adl+.. +adl.

Then T(e,) = 4,1, 'l"_(cz] =d 0. Te)= dnl'n.

4. 0 0

BB, "

~[T]
lo o .. d
Such a matrix is eatled sudsagonal matris. et us sce what this means.

Lot A = [a '| be i square matrix, The entres o, ity yereene it are Called the dingonal entries of
A. Titis is because they lie alony the diagoial, from lclt 1o right, of the matrix. All the other
entries of A are catled the off-diagonal entries of A.

A square matrix whose ofl-disgonal entries are zero (i.e.cu, = 0 A # ) is called a dingonal
matrix. The dingonal mitrix

is denoted by diag (dy ..o L d)

Note: The d;"s may or may nol be zero. What happens-if all the d's are zera? Well, we et
the n % n zero matrix, which corresponds to the zero operator.

1ol o .U.' L IRTIN el idar ianridmie | fram | ocbie b ot !
o= = -. LI I R ll, TIM LWl AR RUIVETHRE AFRHE By By WAL 1y TG uni diie [}
undt.r'.tnml)

£ 23) Show that I, is the matrix associated (o e yaentity operator frorn R™ 1o 'R

ffae ¥, the linear operator al: R*— R gl{v) =« v, (orall v ¢ R", is called a sealar

operator. Tts matrix with respect o any basis is ol = ding (e @, ... ... , ). Such 2 mairix is
called a scakar matrix, Itis a dingonad marrix whose disgonal entries are all equal,




With this much discussion on diagonal matrices, we move onto describe trinngular matrices.

7.4.2 Triangular Matrix :

LetB = (e, G0 e m e_) be a bosis of a vector space V. Let S € L(V,V) be an operator
such-thot

S(e)=a,pe, ,
S(e,) =a,,¢, + 8,6,

Se)=12,¢ Ty, € +ota o,

Then, the matrix of § with respect to B is

0 0 0 = Bqn
Note that 2, = 04 > |

A squitre matrix A such that 4, = 0 %4 » | is eatfed an vpper (rlungular matrix, if
f,= 0% 2 J. thon A |5 culled strictly upper trinngular,

.F_or example, [B . g],[{l) g], [B {l}] are all ﬁppcr trisngulor. while [g 3] is strietly
upper triangular, '
Note that every strictly upper triungular matrix is an upper triangutar mutrix.

!&

Now Tet T : V = V be an operator such that T(c,) is a linear combination of ) By B,
The matrix of T with respect 10 B is '

b, 0 0 _, .0

b,, by, ! .. 0,

T}, =

b b.b... b

nl nl “n}d 't m '

Note that b, = 041 < j

Such amatrix is called u lawer triangular matelx, If by« 0 for all i S §. then B ls aald to be
o strictly tower triangulor matrix.

The matrix
0 0O 0 0
2 0 00
-1 =1 00
| 0 5 0

is a strictly lower trianguigr maotrix. OF course, it is also lower triangular!

Remork:If A Is an upper triangulie 3 x 3 motrix, sny

I 2 2 1 1 0 O .
A=|0 4 §]. then A-={2 4 0|, aloweririangulag matrix,
0 0 6 } 5 46

In fact. forany n % aupper tiungulur matrix A, its transpose is lower triangular, and vice versa,

E24) [fun upper trisnpular matrix A is symmetric, then show thut i indst be o dingonn] matrix,

Mmtrices - [
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The product of an m % n and an

n X § MAlTiX is tn M X p matrix.

O

E E25) Show that the dizganal entries of a skew-symmetric matrix are all-zero, but the
gonverse is not true.

Let us now see how-1o define the product of two or more malrices.

7.5 MATRIX MULTIPLICATION

We have already discussed scalar multiplication. Now we sée how te multiply two matrices.

Again, the motivation for this operation comes from lincar transformations.

7.5.1 Matrix of the Composition of Linear Transformations

Let U, V.and W be vector spaces over F. of dimensions p. n and m, respectively, Let B, B,
and B, be bases of these respective spaces. Let T € L (U.V) and § € L (V,W). Then
ST(=8T)e L (U, W} (sce Scc 6.4).

Suppose [T}, B B={b,l
and [Sl[h. B: T A=[a lj]mm
We usk : What is the matrix [ST_]R"_ l,"?

nEp

To onswer this we suppose

B =le.e...... ‘crl
Biz ([ fly creenes )
RS T 8.l

"
Then, we know that T(e, )= _ijk [ ¥k=12 . P.

_ 'mdS(fl)- Ea g¥j=1.2..

Therefore, ST (e,) = S(T{e, })= S[E b f|= by S (Y +b, Sif)+----- +b S (f)

S LU RO Y RN N

= E(“n bl #8;3by #eoreokay b 08 on collectihg the
“coefficients of g.

Thus' [STIB o = Ic;.-_]‘_‘_';_:‘.'l ‘Uhere c, = z a, bn.‘-

"% e

We define the matrix [c, ] 1o be the product AR,

So, let us see how we obtoin AB from A and B. |

Lot A= [ayln Be= [Uy]ay, be two matrices over F of sizes m X n and n X p, respectively.

We define AB 1o be the m x p matrix C whose (i,k)th entry is

Za b., =a, b +a, bn."' ----- +a b

ik 1 in

In order to obtain the (i.k) th element of AB, 1ake the ith row. of A and the kth column of B




They are both n-tuples. Mu'hiply their cofresponding elements anik add up all these products. Mutrices - |

For example. if \he 2nd row of-A =[1 2 3|, and the 3rd colurmn of
- 14 g
B=(5[, thenthe (2, 3)entry of AB = | x4 +2%5+ 3% 6 =32,

Note that two matrices A and B cun only be multiplied if the number of columns of A = fie
number of rows of B. The following IIIUledllﬂn may help in explaining what we do to obtain
the product of two matrices.

-

-~}
-
=}

- ] - |— 3 I___ —— - — -
ali a, a, b'|| bn " bll'. : Ip ¢ €y » Cp = ;p .
b W ! “
1 o) &, 2 bzz 1 h:z | » Cy €y Cy cla
. . " [ r wl I o L] N . - N - .
:— e e e e I 1 = I-——.—;
H Ilu ll.u - 81. : . " " . : s c“ cﬂ. « elk I c|p
"* L] .: v .: N 4 ) , - l L] I L1 " .L -
" 1 . .l - L 1 L] L]
| ﬂml Bm (1) . um -b“ b.l'll an L _h:E I 1] bnp | cllll cm! " cmt - cmp

where ¢, = za.j ik
Note; This i |s a very new kind of operation 5o take your time in trying to understang it.

To get you used Lo matrix multiplication we consider the produ¢t of a rgw and a ¢olumn

matrix.
b,
. b, . .
LetA=(e),a, .., 4] be aixn matrix and B=| %[ be an nx] matrix. Then AB is the 1%!
matrix :
by
[a,b+ab, +--uue +ab ).
E26)Whatis{t © 0] [2} ?
43
" Now for another example.
1 0-0 2 1
Exomple 10: LetA=|7 0 8|, B=[3 5
00 9 4 0

Find AB, I is defined, _
Solution: AB is defined because the number of columns of A = 3 = number of rows ol B,
[E2+03+04 Li+os+00] [2 1)
AB=| 7.2+ 03+ 84 7.|+0.5+-ROJ=[46 ?J
L2+Q3+94. 01 +05+90 v 0

Notice that BA is not defined Lecause the number of ¢ofimns of B = 2 # number of rows of
A. Thus, if AB Is defined then BA may not be defined.

In fact, even tf AB and BA are both defined it is possible that AR # BA. Congider the
following example.

11 ¢ 01
Example 11: Let A=[0 ] ] B=jl [ IsAB=BA"?
1
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Solution: AB isa2x 2 mawis. BA is o ) x Y mris.

So'AB and BA are botl delined, but (hey vre of dilTeren sizes, Thus, AB 2 BA.

Anoiher point of difference between multiplicatior of numbers and matrix multiplicition is

that A #0, B = 0, but AD can be zero.
Forexamplc.il‘,q:[l ']_ B.—.[ ' 0].

[ -1 -0
X1 1¢=1) 1xo+|xo]_[nn]
Ix1+1(=1) 1x0+1x0}"L0o0f

So you see, the product of two non-zero matrices cin be zero.

then AB =[

The following exercises will glve you some practice in matrix muliiplication.

e tancly ool 1

Write AB and BA. if defincd.

. 0 1
11 Q
E28) Let C=[0 | 0]. D=1 1].

Write C + D.CD ond DC. il defined. Ts CD=DC?

E 29}- With A, B as in E 27, calculate (A + B)?and A” + 2AB + B, Arc they equal? (Here
A% means A.AL) ) .

— bd b

]. b, deF. Find A",
~db db

E 30 L.elA:[

LI s [




1

0 X 1
E31) Caleulate [0 2 Ojl y fand.[x ¥ 2][0
0 0 3]z 0

o

Matrices. [

O e
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E32) Take 3 X2 mairds A whose end row consists of zeros only. Multiply it by any 2 x 4
matrix B. Show that the 2nd row o' AB vonsisis of zeros only. (In fact. for any two
matrices A and B such thut AB is-defined. if the ith row of A is the zero vector, then
the ith row of AB is wlso the zero veetor, Simifarly. it the jth column of B is the zero
vector, then the jth colomn of AB is the zera vector.)

We now make an observation.

Remark: If Te L{U. V)and § € L (V. W), then
{ST)s,-n, » {S)e,-s, [Tlo,-n,, where By, B;, B; are the bases of U, ¥, W, respectively.
Ler us jllustrate this remark,
Example 12: Let T : R* — R be & linear wrangformation such that T (x. y) =
(2X +y, x +2y, x +¥). Let §: R*= R* be defined by S {x. y. z) = (~y + 2z, y=z). Obtain the
matrices [T]B' B {S)g g+ and [SuT]B , and verify that
1" R | 1

[SnT]BI= [Slg, B, (T) B0 , where B, nnd B, are the standard bases in R* and RY, -
respectively. i )
) Solution : Let B, = e, ¢,), B, = |f.f.f.}L

Then T (e,) =T (1,0) = (.1,1) = 2f, 4 f, + 1,

Tled=TO )= (121 =1, +2f, +1,

Thus,

21

Also,
S{f) =5 (1,0.0) = (0,0) = 0.c, + O.c,
S(f) =S (10} =(-1,1)=~¢, +¢,
S() =S (001)=2,~1) =2, e,
Thus,

1,

Also, SoT () =S (2x +y, X+ 2y, X+ ¥)
={—X -2y +2x +2y, x+2y—x~¥)

=(x.y) 65
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Thus, SoT = I, the identity mop.
This means [S°T]“| =1,
Hence, [SoT], ; = (8] ) -B|[T1“| 0

. E E33) LaS: R -»RISE 2= % Yh and T: R*~» R: T (X, y.'z)= x,0.¥)
: Show that [3oTY, = [S}, [T],, wheic B is the standard basis of R,

we will now look a Hitle gloser at inetrix witiplication,

7.5.2 Properties of  Matrix Prodnet
We will now state S propeities concerning mairx multiplication. (Their proofs could geta
Jittle technical, and we prefer nat 1o give them here.) : -

(1)  Ascoclative Law: If, A, B, C arema m,nxpand pXq malrices, respectivily, over
F, then (AB) C = A (BC), i.¢., matrix multiplication Is nssoclative,

(2) Distributive Law: If A is an mx n matris and B, C are n x p mattices, then A (B + C}
= A} + AC.

Similarly if, A aad B are m X n matrices, and C s ar n X p matrix, then
(A+BYC=AC+ BC.

(3) Multiplicsilve Tdentity: In §cc. 7.4.1, we defined the identity matrix I . This acts as
the muitiplicative identity for matrix raaltiplication. We have Al = A, [ A=A, for
every m X n matrix A.

(&) IHoe F andA,B are mxnand n X pmatrices over F. respectively, then & (AB) =
{(A) B = A (oB).

(5) If A, B aremXn, nxpmatrices over &, respectively, then (AB) = B! A", (This says
that the cgeration of taking the tran3pose of a matrix i5 anti-commutative.)

These properties can help you in solving the following exercises,.

£ E34) Show that (A + BY = AT+ AB + BA+ BY, for any twon X nmatrices A and B. .

: 2 -1
-7 -
£ E35 ForA=| 1 O lsmd B = i . g], show that 2 (AB) = (2A) B.

: _

-

- ——

et m




2 "'.l D 1 - A 0
"B E3) LetAm|t 0 ~3| Bm|2 -t 3§
: 6 0 o i 0 -2

Find (ABY and B' A", Are they equal?

)

E EST LetA,B betwo symmetric n % n matrices over F. Show that AB is symmetric if ang
only if AB = BA,

The following exereise is a nice property of the product of diagonal matrices.

E E38) Let A, B be lwo diagonal n X n matrices over F. Show that AB is also a diagonal
malrix.

Novr we shall go on to intreduce you to she concept of an invertible mattix.

7.6 INVERTIBLE MATRICES

In this section we will first explain what invertible matrices are. Then we will see what we
mzan by the matrix of a change of basis. Finatly, we will show you that such a matrix must
be investible.

7.6.1 Inverse of a Matrix

Just as we defined the operalions.on matrices by considering them on linear operntors first,
we give a definition of invertibility for matrices based on considerations of mvemb:hu of
linenr aperators.

I may Lelp you to recali what we mean by an invemidle Jincar ransTommation, A linesr
runsformation T : U < V is invertible if

a) Tis -] and onto, or, equivalently, )
} there exists 4 linear transformation §.: V—» U such that SoT = 1, TeS =1,
In particular, T e L(V, V) is saidto be inverible i3 % L{Y, Visuch tha: ST=TS =L

Motrices . |

67




Linenr Transiormations and
Malrices

We have the Tollowing thearerm involving the malrix of' s invertible linear operator.

Theorem 4t Let V be an n-dimensional vecior space over a field 1Foand 13 be a basis of V.
Let T e L (Y, V).'F is inveniible {7 there exisis A e M, (I such that [Ty & =1, = A [T,

Prool: Suppose Tis invertible Then3d S & L{Y, V) such that TS = ST = 1. Then, by Thearem 2,

(TS], = [ST}, = L That is, [V}, 1S), = {S], [T], = 1. Vake A ={S],. Then [T], A =1 = AT},

Conversely, suppose 3 a manrix A such that [T] A =A [T, = 1.
Let § e L1V, V) be such that [S], = A, (8 exisis Because of Thearem 2.} Then [T}, [S], =
(81, IT), = = 1), Thus. (TS], = (ST, = D1,

So, by Thevrem 2, TS = 8T ='1. That is, T is invertible.
Theorem 4 molivides us lo.give the following definition.

Definilion : A matrix A € M_ (F) is said to be invertible if 3B € M, (T) such \hat
AB=BA=I, ,

Remember, Gnly a square matrix can be inverible.

1, is an exumple of an inverdble matrix. since 11, = 1. On the ather hand, the n % n zero
malbrix { is not inverlible, since 0A =0 = 1, for any A,

Note thal Theoren <l says that T is inverlible il {1'], is invertible.
We give anasher example of an inveriible matrix now.

. T RN

Examgle 13: 1A = o 1) inveriihic?

Solutinn: Suppose A were invertible, Then 3B= [: :J such thit AB =1=BA. Now,

'AB=|=>LI,1 :JLI :]=|_:1 ‘IJJl

__‘>|':1+c ll+(r|=[| '[)]ﬂl::(l. d=l.a=1b=-1
L. d J AU

. fo-1
ok =[ 0 il Now you ¢an also check 1hat BA = 4.
Phereine A iy invertible,
We o s LR E an ipverse of i nsairis exiats, i0must be unigue,

Theored £ : Suppose A € M, (F) is idvenible, There exists a uniguie mairix B e M_(F)

- suchthat AB=BA =1,

Proof: Suppose B, C e M_{F) are two maices such ihat Al = BA = [, ael AC = CA =L
Thea B = Bl =B (AC=(BA)C=1C=C
Because of Theorem 5 we van make the following definition.

Definition : et A be an invertible matrix, The maigue matrix B suehhal AB =BA =Tis
catled 1hye inverse of A and is denoted by AL

Lef us 1ake an example.

Eaample 14: Caleware the product AB, where

. ioal Py b
N = "ToBeil .
Ln 1} o1y
e tiris 3o cidenlate A7
o T1oallt bi J1r a+bj
Solution ; Now AlR= i_‘lr} ]lJ U, :‘J =l:0- l | ‘I:

Now, how can we tae this © obiin A7 Well i AR =1, then a+b= 0. So. if we iiaxe

B:“} "ﬂ.

-

we el AR = BA =1 Thus. ATl = [:] _n_l




E E 39) Isthe matrix [; ) ?]invcrtiblc? IT so. find its inverse.

We wili now make a few observations about the matrix inverse, in the form of a theorem.
Thcor-cm Grap A LS invc‘niblc. then

iy A isinvertible and (A1) = A,

i1 A'is invertivle and (AN = (A

b) If A.B € M_(F)are invenible, then AB is inveriible and {AB)} = B~ A~

Proof: (a) By definition.
A A-I =-A-I A=1 ) . -......n-..(])
i) Equation (1) shows that A~ is invertible and {A™)"' = A. )
i} ) we take transposes in Equation (1) and use the property that (AB) = B' AY, we get
(A I)IA‘I AJ(A I)I..II..I
So A'is invertible and (A')' = (A",
(b) To prove this we will.use the associntivity of matrix multiplication. Now
(AB)} (B A"ly={A (BB} A = A A" =1.
(B A1) (AB)=B'[(A" A)B)=B"'B =1
So AB is invertible and (AB)~' = B! A\,
We now relate matrix invertibility with the linear independence of its rows or-columns.
When we say that the m rows of A = [a J € an (F) are lincarly independent, whai do we
mean? LetR ..., R be the m row vccmrs (o) 8 g 80 [y 0 2, )y B - T

respectively. We say that they are lineirly mdcpcndem if. whenever3 ), .u € F such that
R, +..+0 R =0, ) :

thena =0,..... v, =0.

Similarty, the n ;:nlumns C ... Cof A are lmenrly independent if b,C, +..5, C =0
=b,=0,b,=0...b = Uwhcreb ~b eF. ;

We have the following result.

Theorem 7: Let A g M_{F). Then the following conditions are equivalent.
6) Ajis invertible. :
b) The columns of A are linearly independent.

¢} The rows of A are linearly independent,

rrooft We first prove (a) & (b), using Theorem 4. Let ¥V be an n-dimensional vector space
over Fand B = {¢,,... € tbeabasisof V.Lat T e L (V,V) be such that [T),= A. Then A is
Jnvertible iff Tis mvcmblc iffT(e). T (e, v T {e ) are linearty mucpcndcnl {see Unit S,
Theorem 9}, Now we define the map .

o
8V o M (F): 80,6+ +a_¢,)=
i

Before continuing the proof we give an exercise.

" Matrices - |
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E E40) Show that 8 is a well-defined isomorphism.

Now let us go on with proving - Theorem 7.
Let C,. C,.nva €, be the columns of A, Then 8 (T (e} = C, foralli=1I .....,n. Since @ is an
isomorphism, T (¢, )....... T (¢,) arc lincarly independent iff C,, C,,....., C_ are linearly
independent. Thus, A is invertible iff C,...... C arc finearly independeit. Thus, we have
proved (a) & (b). -
Now, the equivalence of (a) and (c) follows because z‘; is invertible & A'is invertible

& the columns of A' are lincarly independent {as we have just shown)

& the rows of A are linearly independent (since the columns of A' arethe rows of A).
So we haye shown that (a) & (c). ' '

Thus., the theorem is proved.
From (he following 2xamplc you can see how Theorem 7 can be useful,

Exampie 15:
, 1 0 1
LetA=]0 I 1 EMJ{R).
1 1 1

Determine whether or not A is invertibie.

. Solution: Let R,/ R,R, be the rows of A, We will show that they are Haearly Indepesdent.

Suppose xR, + YR, + 2R = 0, where x, y, z € R. Then,

x (1,01 4y (0.1,1) + 2(1,1,1} = (0, 0, 0). This gives us the following equations.
x+z =0 - ' '

y+z =0

X+y+2z=0 ’ .

On solving these we et x 20,y =0, 2 =0.
Thus, by Theorem 7, A is invertible,

E Ed) . Omeekif

{2 o0 1
[g 0 1]6 M, (Q) h iavertible.
¥

0 __

We will now see kow w2 associste 2 matrix to 3 change of basis. This associstion will

- be made use of very often in th2 twext block,




7.6.2 Matrix of Change of Basis : .

I:m V bean n-dimensional vector space over F. Let B = {epe,..... e }and B = [e/ ¢

«r e @) be two bases of V. Since ee V, forevery j, it is a linenr combmanon of the
' clcmems of B. Suppos.e

e --Zau I-V-J-l ..

' The nxn matnx_A = (a,) is called the matrix of the change of bsts from B to B”. It is
denoted by

Note that A i is lhe mekix ofthe lmnsformatlon T e I.(V, V)such that'r‘ (e) e¥j=1I,
..... » It, with respect fo the basis B.Since {°|' v e oo, €) is 0 basis of V, from ﬂ!mt 3 we see
that T is 1-1 and onto. Thus T is invertible. So A is invertible. Thus the mairix of lhe
change of basls from B to B’ is invertible.

Note: a)MB -I Thislsbecuuse,inl.luscaseo, eMi=1,2,..0

B M = [I] o y, This Is because
I(c)=e = Ea e =12,
inl
Now suppose A is any invertible malrix, By 'l"heomm 2,3Te L{V, V}such thal {T]Il
Since A is invertible, T is invertible. Thus, Tis 1-1 and onto. Let f; =T (e,) %i=11,2.
Then B’ = {f,, f,......f,) is also a basis of V, and the matrix of change of basis from B to
Bis A,

in e above iscussion, we have just proved the following theorem.

- - 0w
Theorem 8: LetB= [¢. e, .. ... »¢,] be a fixed basis of V. The mappmp B" =M, isa
-1 and onto corrcspondencc betwecn the set of all bases of V and the set of invertible nxn
malrices oveér F. :

»

) B
Let us see an example of how 1o obtain M

Example 16: In R, B'= {¢,, &,} is the standard basis, Let B be the busis obtained by
rotating B thrdugh an angle © in the anti-clockwise dm.cnnn (sec Fig.[). Then B = (e, ¢} )
wl'um:e = (cos 8, sln B) &; = (-sin 9, cos 6). Find M

4

xa"

_ {cos 8, sin @)

¥

_h_ - -
0 e‘ (l 0) - ..X'

H 'F H \.u-n;c a1 m

Solution : e = cos 8 (1.0) + sin 8 (0.1), rind
el= —sin B(1, 0} + cos & (0.1)

cos9. —sin 9]

.o
Thus. M, = [sin & cosB
Trfr the following exercise.

v’ 01 1
E42) LetB be the <Iandnrd basis of ®* and B’ be another bitsis such that M = {l | O:I
What are the elements of B*?

Midries |
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What happens It we clnngc the basis more thar onee? The following theorem teus us
something about the' corresponding matrices.

C s -
Theorem 9: Let B, BY, BY be three bases of V. Then MIIII M::- = Mu

'S

:N ' = .
Proof: Now Mu MB [I]n 11“];; “.
_llﬁl] M

An immediate useful consequence is
] S I
Corollary : Lct B. B'bc twa bases oI‘V Then M M =T=M M

““That is. [ ) =

Proof : By Thcorcm 9.
‘M, My =My =1

. Similarly, M. M} = M5 =1,

Bul, how goes the change of basis-affect the matx associnted o a givon linear
transformation? In Sec, 7.2 we remarked that the matrix of 2 linear transformation depends
upon the pair of bases chosen. The relation between the matrices of a transformation with
respect 1o two pairs of bases, can be described as follows.

Theorem 10: Let T LU V). LetB =g, .....c)andB,={f....... »f_) be a pair
of bases of U and V, respectively. L -
Let By ={e/,....". €}, B,={f],...:...L ] be another pair of bases of U and V,
respeclively, Then,
. B, u'.l
My = My [T, M,

Proof: [T}n;. 0 (Iv o Tolu ]I;.I o vl . {fu ]n-I 2
(where I = identity mapon Uand fv = identity map on V)
B '
=M M
M B, (Tl .o,
Now, a corollary to Theoremn 10, which will come in handy in the next -block,
Corollqry: Let T L (V. V) and B, B’ be two bases of V. Then [T],, = P*' [T],P. where
P= ’

Proof: {T),=H" (T], M =P~! (TP, by the corollary to Theorem 9.

Let us now recapitulate all (hat we have covered in this unit.

We briefly sum up what has been done in.this vnit.

1) We defined matrices and explained the method of associating matrices with linear
transformations. ’

2) We showed what we nican by sums ormalnccs and mu!uphcnnon of matrices ‘by
scalars, :

3) We proved that M, (F) ls n vector space of dimension mn over F.

4) 'We defined the transpose of a matrix, the conjugate of a complex matrix, the conjugate
transpose of a complex mairix, a diagonal matrix, idenlity matrix, scylar matrix and
lower and upper triangular matrices,




3},

) 6
)

We defined the multiplication of matrices and showed its connection with the
composition of linear transformations. Some propertics of the matrix product wete also
listed and-used.

The concept of an invertible matrix was cxplained.

We defined the matrix of a change of basis, and discussed the cl‘fccl of change of bases
on the matrix of a linear transformation,

7.8 SOLUTIONS/ANSWERS

El)

L2)

-53)

E4)

ES5)

56

B

a) You want the clements in the Ist row and she 2nd column. They are 2 and §,
respectively

b) 007

2
¢) The seeond column of A is Is
0

s
The first column of B is also [ 5‘

d) B only has 3 rows. Therefore; there is no 4th row of 1.

They are infinitely many answers. We give

1 2] [1 o
3 4 J20
5 6/ |30
7 8] ‘L4 of

No. Because they are of different sizes.
Suppose B; = {(1,0, 13, (0, 2, - 1%.(3,0,0)) and Bf = 10. 1). (1,0}
C Then T{L,0,1)=(1.0)=0. (0,1} + 1. {1.O)
T 2, -1)={02)=2.(0.1))+0,(1.0)
T(1,0,0="(10=0.0,1)+ 1.(1,0).
0 2 o]

“y =[1 0 1

B, = {¢, e, ), B, = [f,. [,} arc the standard bascs {given in Example 3),
T(e)=T(1,0,0)=(l,2)=f +2f,

T(e)=T(0,1,0)=(2,3)=2f +3,

T (_ca) =T(0,0,1)=(2,4)=2f +4f,

. )
"[mnl.n:-[Z 3 4:|
T(lOO) (1.2)=1.{1.2)+0.(2,3)

T 1,0)=(2,3)= 0. (L2+1.2,9
T(In "'2. l)"("']'p)—3(llz) "2(2'!3)

T3 =[i G 32]'
B8, L0 I .-
LetB'= (1,1, 12 ). Then
D(1)=0=0.1+01+0.2+0:
D@ =1=11+0t+0.7+0.0

T D32t =0.1 + 2.t + 0.0 +0.0°

D (1%) = 3 = 0.1 + 0.0 + 3.0+ 0.t
Therefore [-P]i, is the given matrix,

Matrices - 1
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E8)

E9)

-

- N 3
B 10) a) Since [1'2) is of size | x 2 nndL -|is of size2x 1,

EL]Y

1i(2)

We know tha!

T(e)=f
T(e)="f+1,
Tley=T,

Therefore, fot any (x, y:z) e B
T(x,y.2z) =T (xe, + ye, + ze,) = xT{(e,} + yT(e,) + z.T(c ).
=xfy + Yyl + D) w2l = (x+ y) £, + (y + D,
=(x+y,y+2z)

That is, T'R* 5 RET(x.y,z2) = (X +y, ¥ + 2).
We are given that

TN=01+kLi=i

T =(-B1+0i= =1

-, forany a+ibe C, we have

T(a+ib) = a¥(1) + bTG) =ai - b

the sum af these matrices 1s not delined,

b} Both mutrices are of the sume size. namely, 2 ~ 2. Their sum is the matrix
l+i=1) 0+ 0 ]__[n o]
W+ .0 T+=11"10 n
] inl

-‘{' aHEHEH

2] 117135
s S ()L

9

Notice that 1([_]4 m] = 1[ }+ J[ﬂ

B, = {01,400, B, = {(1.0,0), (0.1,0). (0,0.1)}

Now S(1.0) =(1.0.0)
S0y = (0,00

I 0
~[8) =10 0, a 3 x2 matnx
I, I
o 1
Again, T(1.0) = (0.1.)
T = (0,01

. 0 Q .
.'.[T]n . =1 0Q].a 3x2 matrix
T )
' b o] {o0] [to
-~ [8 +T]D 0 = [S!ll " + IT]rl n = 0 O|+|1 0(=[10;:,
1t ' :_ ¥ 0 1 01 02

| 0'! a0

.1nd[nft»|B " = l\IH.‘":= alﬂ 0|= 00 .‘ror any @ € R
01y L0«

E13}  We will prove (v) and (vi) here, You can prove {(vii) and {viii} in a similar way.

v) a(r‘\+13)—a[|11+|h E w i, +h!-[r:(1 +c:b]
= [U.n.,] +tah |— A+cr.B

vi) Prove ilLusing the act that foerfiia, = cea, + fia .

14y Since dim M, (R)is 6,205 linearly independent subset can have 6 elements. at most.




E15) Leto,Be Rsuch that & [1,0] 4 B[1, - 1] = (0.0},
'S
Then [o+B. — ] = [0,0]. Thus, f =0, a = 0.
< lhe matrices are linearly independent.

El&) {1 0 ... 0 0 ' 0 Lo
60 0 .., 0 g 0
E" = . E,=] " 0 0 . and so on.
0 0 ... 0 o0 o 0 .. 0!

Nowanymxnmatix A =[a])=a E, +a,E,+.. +a_ E_ (Forexanpl, in the
2x 2 siluation,

o oo al+ls oot 1[5 )

' (F). Also.if &, i =F e m,

Thus, lEiiI i=l,...m, j= 1. n} gencrales M
J= 1, . 0. be scalars such that o, E;+o,E,+..+a E =0

Then,
o, P o g e 5
weger 2 Tm vt e 100
. o, 0 --.--

Therelore, o, = 0%,
Hence. the given set is linearly independent. . it is a basis of My, x 5 (F). The number
of elements in this basis is mn, ’

sodim ML (R) = mn.,

EIT A= ['2
El8) b) aA:[wlu]. o (aA) =[b,], where
© by =(.ilth element of otA = ati;
= @ times the (j,i)th element of A

g} In thiscase A' = A.

= o times the (ij) th clement of A
= (i, g)th clement of gAl
o (@A) = aAl
¢} LetA= [aij]. Then A' = [b“]. where bij =4
o (A= [cij]. where c; = 1’;; =a
S (A=A,
- E19} Let A be an m X n matrix. Then A'is an n X m matrix.
», for A'= A", their sizes musl be the same, fha is. m=n.
A must be a square matrix. -

E20} Let A= [2 :] be a square:matrix over a field F.

Then A' =[a c]

b d .. _
v |a+a be+e 2a b+c
"A.J'A‘L:-fb d+¢l_lb+c 2dJ'““d

. _fa-a b-c}_ 0 b -
A_A_[c—b d—d]"[-(b-c) o]'
You can check that (A+A")' = A + A'and (A — A'Y = - (A= A"

5 A+A'is symmetricand A ~ A'is skew-symmetric.

e |73 3,
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E24}

E25)

E26)

. E27)

E28)

E29)

E3M

The size al' Al is the same us the size of AL & A = ;\'_irr]plics that the sizes of ‘A and_ .

Alare the spme. o, A IS a square mulrix.
LR = R": (X ek ) = (%

Then, for any basis B = {e.....c ) of R 1 {:1)=c.

16..0

g1 ...n
allly=|7 77 =4

00,1}

Since A is upper trianpgular, all its ¢lemenis below the diagonal are zero. Again, since

A = A% alower tridnpular matrix, all the eniries of A above the diagonal are zero. o, -

all ke ofT-diagonal entries of A are zero, - A is a dingonal matrix..

Let A be a skew-symmetric matrix. Then A = —A'. Therefore,

T U T Y R
Ay || TMa T2 e T8,
Uy Mg T ay, ~a,  —a, ottt =ag

s foranyis L, nay=—a;=a=0=a-= 0.

L , : 0 I
The converse is pol true. For example, the diagonal entries of[z- o] e zero, but
this matrix is not skew-symmelric. :

[TxT+0% 2+0x3)=][1t]
AB_[I)-EI+I><I Ix0+lxl]_[2 I]
Tloxtb+txl OxO+1x )7L 1
1oolfto ] bl
BA‘[; J[ﬂ J={1 B
C+ D is not defined,
CD iy i 2% 2 muatrix and DC is a3 x 3 matrix. . CD#DC.

CD:[Ix0+|xl+0xn 1xl+lx|+0x0]=[l 2]
~LOx Ok Ix 1+0x0 Ox1+1x[+0x0) L[] 1
[0 1 Lrgl [0X1#1x0 0x1+1x1 0x0+1x0
BC=|1 1 [010]= IxT+1x0 Ix|+Fx] Ix0+tx0
L0 © '|_0><1+0x0 Ox1+0x] 0x0+0x0).
o1 0
=1 2 0
Lo 0o
L] 3
wooft et I 2
I 2 I 2JLE 2 4 5
z,[t f[h'q [I ﬂ
Also A = =
' 0 Lo | 0 1
1 oofft o] [1 0
o | Y L
LI LJLI EJ L& 1J
2-AB=2[2 =[4
tou L2

nA°+2AB+B’=[
0
L (A+B)P =AY 2AB + B?

2 j—bd h} {- b h] B+ dy —b3d+dh2}_[2dzbz
A= ? : = K 2 =
d'b dofian do —Ed+d b

d'.‘ b! + dEb-! 0

[
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Il 0 0}fx X
0 z

L 223 0
J'B:[“ 5 ]] Then

9 12 5 2
AB={0 0 0 O], youcan see that the 2nd row of AB is zero.

E32) Welake A =[

L7 10
|'0 0 0 P00
E33) [S}“=L! 0 0.IT], =0 0. 0
a | 0! o1 10
‘To 0 0
.-.tslu[T|I;=l| 0 q
0 0N

. 0 00
Also. [SOT]B= I 00 =|S|“[T|“
|.0 O 0 )
E34) ' (A+B)*=(A+B)}A+B) = A(A+B) +B(A+B) (by distributivity)
= A+ AB+BA+B* (by distribnivity}

-1 -8 -1D -2 -6 -~20]
E35) AB= i -2 =5 |.'.2(AB}= 2 -4 —I'.'IJ
9 22 15, 18 44 30
MRS [ PR Ry
On the otherhand, (2A)B=§ 2 0 I_
a 4 ol
-6 8
-2 =16 =20
= 2 =4 =10
ATIR 44 it

- 2AAB) = (2A)B

0 ~7 -3 Cfe -0
Ed6) AB=|=11 -4 6| ~(AB) =[-7 -4 o0
0 0 0 -3 6 0O

1 2 4l[ 2 1 o© ¢ -11 0

Also, BA' =|-4 -1 o||-1 0 ol=[-7 -4 ol=(AB)
0 3 -2 g -3 0 -3 6 0
E37) First, suppose AB is symmetric. Then AB = (AD)' = B'A' = BA, since A und B arc
symmetric. '
Conversely.suppose AB = BA. Then .
(AB) = R'A'= DA = AB. s0 that AB is symmelric.
(E38) Let A =diag(d,....d), B =diag (¢,.....e). Then

d 0 0 0]010 0"'01

0 d, 0 - 0|0 & 0 7 0
AB=1. < J

G 0 ) [0 "0 e,

17
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de, 0 0 D

0 9,0 D
={q0 i (ljt.'..‘ - )

0 0 o0 "'dn'lnj

=ding (d ¢ de,....,de)

[l *“noa

5
such that
le C

I R E A N T

|
2

1
E39) Suppose it is invertible. Then 3 A =<(

o C . . .
This gives us A =[ ]] which is the same s the given matrix. This shows that

L - _' ’
the given mawix is invertible and, in facl. [Iz ] ?] e [; _ {:]

E4Q) Firstly, 8 is a well delined map. Secondiy, check that 8(v, + va = 6(vyy + B(vy, and
B(av) wab(v) for v, Vuvy € Vond o e F. Thirdly, show that 6(v) =0 = v = 0, that
is @ is 1 = 1. Then; by Unit 5 (Theorem 10}, you have shown that @ is an
isomorphism. .

Ed1) We will show thal its columnps are lincarly independent over Q. Now, if x, Y2
Q suth that

2 0 ] it
-~ x| O+ yfol+z1|={0], we get the equationy
3 ol (o '
2%+ z =0
‘2 =0 o
Jy ='.-0

On solving them we get % = 0, y=0,z=0..
v the given matrix is linearly indcpénd:_:m.
E42) letB={c.e.e,} B'= (. fuf, |. Then
f,=0e, + le, + 0 =¢,
fy=¢ +e,
fi=e +3e,
: ,‘ B = leye, +eue +3e ).
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3.1 TIntroduction
ObJectives

3.2 Rank of a Matrix

3.3 Elementary Operations
Elem¢niary Opcmﬁoﬁs on o Matrix
Row-reduced Echelon Mairices

3.4 Applicatlons of Row-reduction

Inverse ﬁf_a Matrix

Solving a System of Lincar Equations
8.5 Summary
B:6 Solutions/Answers

8.1 INTRODUCTION

In Unit 7 we introduced you to a matnx and showed you how 2 system of lincar equations
can give us a malrix. An imporiant reason for which lingar algebra arose is the theory of.
simultaneous linear equations. A system of simultancous linear equations can be iransioted
into o malrixcqunlifm. and solved by using malrices.

The study.of the rank of a matrix is o natural forerunner to the theory of simultaneous linear
'cquqtinns. Becsuse, it is in terms of rank that we can {ind out whether a simullaneous sysiem
of equations has o solution or not, In this unit we start by swdying the rank.of a matrix, Then
we discuss row operations on a matrix and use them for obtaining the rank and inverse of a
matrix. Finally, we apply this kqowledge to determine the nature of solutions of a system of
linear equations. The method of solving'a system of Tincar cquations that we give here is by
“guccessive elimination of variables’”. It is also called the Gaussian elimination process.

With this unit we finish Block 2. Tn the next block we will discuss concepls that are
intlmately reluied to matrices. :

Objectives
After reading this unit, you should be abte to

obtain the rank of a matrix;

reduce a matrix lo the echelon form;

obitain the inverse of a matrix by row-reduction;

solve a sysiem of simultancous lincar cquations by the method of successive elimination’
of variables.

g0 b

8.2 RANK OF A MATRIX

Consider any m X i matrix A, over a field F. We can associate two veclor spaces with i, ina
very natusal way, Let us sce what they arc. Lel A = [uul. A has m rows, say. R, R R
b

. - ., . RS . T - [ » J——
witere B, = (0, 80 iy, 00 Ry & (g igge o I R L (I R a 1
R,
R\

Thus, R,e F* i, and A=| 2

Rlﬁ
The subspace of F generated by the row véctors R,... R of A, is called the row space of
‘A, and is denoted by RS {(A).

Example 1: If A =[:) ? g] .does (0.0, 1Y e RS (A)?

79
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e numbers of i and n'.

80

Solution : The row space of A is the subspace of R? generated by (1, 0, 0) and (0, 1, 0.
Therefore. RS (A) = [{a, b, 0)l a, b & R|. Therefare (14, 1) & RS (A).

The dimension of Ihe row space of A is called the row rank of A, and is denoted by p, (A}
Thus. p, (A} = maximum number of linearly independent rows of A.
In Example [, p {A) = 2 = number of rows of A. Bul consider the next example.

I 0
Exnmple 2: IFA=[0 11,ind p, (A

2°0
Solution: The row space of A is the subspace of R? generaied by (1,0}, (0,1) and (2,0). But
(2,0) already lics in 1he vector space generated by (1.0) and (0,1)/ since (2,0 =2(1,0).
Therefore, the row space of A is generated by the lincarly independent vectors (1, ®) and
(0.1). Thus, p,_(A)=2. -

So, in Example 2, p, (A) < numlber of rows of A.

In general, for any m x n matrix A, RS (A) is pencrated by m vectors. Therefore, p,(AY=m.
Also, RS (A) is a subspace of ¥ and dim F=n. Therelore, p,' (A)sn.

Thus, for any m x n fwatrix A, 0 < P, (A) € min {m, n),

ET) Show thal A =0 &5 p (AV= 6

fust as we have deyined ihie row space of A, we can detine i cotumn space of A. Each
colunin of A s an m-tuple, and hence belongs (o ™, We denote the columns of A by
C,....,Cn. The subspace of " generated by [C,,--.C } is called the column spuee of A and is-
denoted by C5_(A). The dimension of CS {A) is called the column rank of A, and is
denoted of p_(A). Again, since CS (A) is generated by n vectors and s a subspace of F™ we
get 0 =p_(AY< min (m, n).

1. 0 I
E2) Qbtain the column rank and row rank of A =[0 9 ]]

In E2 you may have noticed that the row and colunn yanks of A are equal. In fact, in
Theorem 1, we prave thay p (A) = p_{A} for any mutiix A. But first, we prove a lemm,

Lemma 1:Let A, B be lwo niatrices over F such that AB is defined. Then
a} CS(ADMZ CS (M)

b} RS (AB)S RS (B).

Thus, p. (AB)S p_(A), p,(AB)=p (BL

Proof: () Suppose A = (a;] is an m X n matrix and B = [b,} is an 1 x p matrix. Then, from
52, 7.5, you know that the jifi column of C = AR will b




n

I-L Lz‘l “:L hLI
JIES R

n .

L.‘.jl ): ity hL. ) Ay,
=1t = b+, .+ h
S Y

c mi SI‘I' ilm IJ I_'lnm j

i “ml. k1

-L:I -

=C /b, +..+C,b
171y n:
where C. ... € are the solurins of A.

Thos. the ecolunms of AB are linear combinmions of the vislamns of A, Thus, the columns of
AB & CSiaAL So. CSAR © CSIA L.

Henve, p (AB) S p LAY

b) Byu similar argument as above, we pel RSGAB S RSB aod so. p (AR pIBY.

E3Y Prove thy ol Lenamn |

We will now use Lemma 1 {or proving the fallowing theorem.
Thearem {:p (A) = p LAY Tor iy malrix A over F,
Proaf: Let A € Ma. o (F) Suppose plAy=rand prA) =1

Now, RstA) = [{R,. R, H. where RoKlR e the rades al AL Let fee.e b bea
basis of REcA ) Then R is o linear combiostion of ¢, e toreach = foam Ler

;
R.= Ehuc.. P= 1,2 00m, whereh & Pl U €igm b o<y,

1=l

We can wrile these equations in matris forn is

A N N P
I i
N | %
D =l : .
{Rm- bml """ b"“_.c’J
Se. A =BE. where Bz (b ] is an m X r matrix and E s the 1% n malrix with rows U
iRemember, ¢ & F foreachi= 1. ..r.)
So.t=ptAy=p (BE)£p (B by Lemma 1,
€ min tm.r.
L
“Thus. LS 7.
Justiis we got A = BEabove, we get A = {{...fID. where [1,....0) is a basix of the column

space of Aand Dis atx nmotrix, Thus, r=piarsp (Dy <G by Lemma b,
Sowegelr g tand 1 £ This givesusr=1.

Theorem 1 altows us 1o make the lotHowing definition,
Definition: The integlr p (A) {=p (A} is called he rank of A and is denated by prak

You will see thut Theorem 1 i very helplul il we want Lo prove any fact sham pA L 1l L is

Motrices- Il
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“Thus. tank (T) = rank of iT|

casier to deal with e rows of A we can prave the fact for p {A). Similarly'if it is easier to
deal with the columns o A, we can prove the fact for p (A). While proving Theorem 3 we
harve usedl this facility that Theorem | givex us,

Use Theorem | 1o solve the foliowing exercises.

G4) H A.Bare two matrices such thit AT is delined then show that
plADBY = min (p{A). p(B)).

E5) SupposeC#0e Mmdtl:‘]. andh R0 ¢ M, (F). then show that the rank of the
m x n matrix CR is 1. (Hini: Use Ed).

I . ~
l .

Does the term 'runk ' seem fumiliur to you? Do you remember siudying about the rank of &
lincur translormatlon’in Unit 57 We will now sce If the runk of a linear transformatlon is
reluted to the rank of its matrix. The fdllovang theorem brings forth the precise relationship.
(Go through Sec. 5.3 belore going further.)

Thearem 2: Let U,V be vector spaces over F af dimensions n and m, respectively. Lct B be .

a basis of U and B, be u basis of V. Let T & L{U.V).

Then R{T = C5 (| T] 3

H,. b,

i, n .

Proof: Let B, = ¢ &, } ugd B, = [1Ff_ L As in the proof of Theorem 7 of Unit 7,
BV M, {F} G[\l- LOOdeI)dIL vcclnr of v with respect to the basis B, is an
homorphmn

Now, R{T) = [{Tte,). Tie... Tee 4l Lc1 A={T|,  have C.C,....C asits columns.

. s

Then C8(AY = [[C,.CenC 1L Also, 0T e ) = C ¥ & L
Thus.‘ﬂ:R['I-‘) - CS(A) is an ivomorphism, & RiT)= CS(A).

I purticular, dim R(T) = dim CS(A) '—'h'p LA - "
That is. rank (T3 = p(A L. '

Thearem 2 leads us o ihe Tollowing corotlary. It says that pre-multiplying or pest- .
muliiplving a matrix by invertible marrices docs not alter its runk.

Corollary 13 Let A be an m > nomiatris. Let P,Q be m % i and.n X n inverfible matrices,
respectively.

Then p (PAQ) = plAd. ©

Prooli Let T & L(U.Y) be such that [T1 = A. We are given matrices Q and P -,

Ther-.tm by Theorens § of Unil 9, 3 hw,-. B, amd B, of U and V, tespectively, such that ~
Q= \I lml 1’ "o M




Then, by Thearem 10 of Unil 7,
[Tl 0= Mgt IT] M} = PAQ

I, u .
Tn other words we can ch.mgc the bases suitably so that the m.nnx of T with respect 1o the
new bases is PAQ.

So, by, Thearem 2, p(PAQ) = rank (T) = p(A). Thas, p {PAQ) plA).

. 3 .
i 2 3 0D 1 oo .

EG) Take A = . P= .Q=(0 2 0 Obipin PAQ
6 ~1 =2 -l 0 0ot

and show thut p{PAQ) = p{A),

Now we state and prove another coreilary 1o Theorem 2. This cerollary is useful because it
transforms any matrix into a very simple malrix,-namely, 1 matrix whose entries are 1 and 0
only.
Corollary 2: Let A'be an m X n matriz with rank r. Then 3 invertible matrices P and Q such
I, 0

that PA

Q= [0 0]
Proof: Let T ¢ L(U,V) be such that ["I‘]| = A. Since p (A)= r.rank (T) =r. . nullity (T)
=n -1 (Unit 5, Theorem 3).
Let {u, u,....,u,_ ] be a basis of Ker T, We extend this to form the basis

Bl = {uilpentt U, et ) 08U Then [T )00 T ) ) s @ basis of R(T) (See Unig 5,
proof of Theorem 5). Extend this sci to form u basis By of V, say By =
AT, s T LY 0, b Let us reorder the clements of B) and write it s

Bl = {un-n-l""‘un'ul""‘un-f]' ’

™ [r U|x{n—:l _I
Then, by definition, [T]n, o
LA o{m-f]"r Bim—r}x{n—rJ

where 0 denotes the zero matrix of size sxt. (Remember that u,....u, € Ker T.)

H PAQ 2
ce, =
ence 0 0
b,
P=M

where Q=M E and 5" by Theorem 10 of Unit 7.

‘H ; _ |
Note: | © I'\!J is called the normal form of the matrix A.
0 0O

Concider the fnllowing axamala which ic the coaverse of ES

Example 3: A is an m x n matrix of rank 1, show that 3C = 0inM__ (F)and R=0 in
M, (F) such that A =CR,

Solutlon: By Corollary 2 (above}, 3 P, Q such that
Tt o G '

g 0 ... 0
PAQ=(" ., . [+ sincep (A)=1.

Lloo .. d

Moalrives - 11
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/

\-

£
|
o]
- i: 1ol
Lol
n
- ; 1:(I| i
DA =P (PAQI) =1 1= ||1 0010 =R, )
;!
2
f'l-;u.lc AL 00 e .
f

where C o= P !
Lo,

- - \\
E7) What i the normal fonn of disg o, 2, 3y

e e ek = P mmom e A oo Al Al mmiimmias mmra = marme = = ———

- R
The sobution of E7 is o particuliar case of the general phienamenon: the normat ferm of an
0 X anverlible nutrix is 1.

Let us.now.look wt some ways of transfomung a matris by playing around with its rows. The
ider is (0 get more and more entries ol the matrix 10 be zere. This will help us in solving.
syslems ol-linear equagions.

§.3 ELEMENTARY OPERATIONS

Canpsider the following sed of 2 equations in Y unhnowns %,y and 7:

a+yv4s=
2 s = Al

How can you express this system of equations m matris form?
One way i

In generad, i system of m lineir equations in n variables, X ...% 18

HIR S R Y R S TR "‘.-

B L R

el
where iy bhoe TP i=1. . mand = 1. nthen s can bre uxpressed as
Ax =R
R
. el
where A = e |0 N = i.li =
Il 1 i
v tLhr.,,_.

1t this secton we wall sty methods of changang e mamx A o very simple Torm so that
e can oblain an immediae solution 1o tas seatein of inear euinions AX = B, For this
purpose, wre will afways be mdoplying A onihe lebt o the npbt by suitabic mairis. In
clieen. we will be applving vlemenniey row ar colunmn operasicis on A
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8.3.1 Elementary Operations on a Matrix ' Matrices . Il

Let A be an in % n matrix. As usual, we denole jts rows by R,....,R , and cnlilmn_s by
C,-..C We call the fallowing operations elementary row nperations:

Ty imerchanging R and R foriz j,

2 Multiplying R, by some n € F,a =0,

1) Adding aR to R, where i jand a € F.

We denote the operation {1) by Rj. (2) by Ra). (3) by R, (a).

For example it'A—[l 2 'j
al p . -_ 0 I 9 . j

g 1 2

" 3]{intcrchr!ng.inglh{:lww:rrc:.l\.ll.f.ti).

then RI:(A1=[

_ [ 2 3 Y23
A"“’R‘H”M"-[on 1% 3 2x3]“[0 3 G]'
and R.ue]m)___[l+0x2 24 1x2 3+2x2]=[l 4 ﬂ

0 ] 2 01
0 0 1
EB}IfA=[1 O O.w;ml is
o0

1) R, (A} BIR, aR, (A) ©) R {~1)A)?

-

Just us we Hc_ﬁned the row operations, we can define the three column operations as follows:
I} Imerchanging C and C, for i # j. denoted by C,;.

2) Mulliplying C by a ¢ F.a =0, denoted by Cfa). -
3 Adding aC 1o C.+vhere a € F. denoted by C,, (a).

e ga=|! 3 .
Ft)rc:mmplc.|I'/§-—|:2 d]'

then C,101A )= [L ;]

42 4

We will now prove a theorem which we wili use in Sec. §.3.2 for oblaining the renk of a -
. marrix easily:

and Cul 10}A )= I.:“ 3]

Theorem 3: Elementary operations on a4 mairix do not alter ils rank.

Proof: The wuy we will prove the stiiement is 1o show that he row space remains
unchanged under row operations and the cotumn space remains upchanged under column
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vperations, This meins i the row rank and the columm rank remain unchanged. This
inmediately shoaws. by Theavem 1. thait the rank of (he matrix remains unchanged.

Now, let us show that the row spice remaing unaltered, Let R R, be the rows.of & marix
A. Then 1he row space of A is generated hy {R R GR GRS Onapplying Ru. 10 A, the

rows of A remadn the sime. Only their order gets changed. Therefare, the row space of

TR AAY is the siume as e row spage of A,

If we apply R (u), fora € F, a0, then any linear combination of R,...R, isIuIRI +.+a R,
Ll T H .

~a R +"'"+'-:1L aR + ..+ R which is a liweayr combination of R . .aRpnR -

Thus, [{ RI....,}ii,....le] = {[R,,.-,aR,..,R . }]. That is, the row space of A is Ilie same as the

row spoce of R, {a) (A).

If we apply R.(a), fora e F, then any linear combination
bR, +.4bR;+ ..+ bR 4. +b R =bR, +.+bRoraR)+..+ (b-baR, + ..+b R .

Thus, [R R H = HR R, + AR oo R R 1

Hence, the row space of A remains unaltered undier any elementary row operations.,

We can similarly show that the column space remains unaltered under elementary column
operations,

Elementary operations fead us (o the following definition.

Definition: A matrix obtained by subjecting i_to an clememary row of column operation is
called an elementary matrix. ]

Il 00D g 1 0
For example, C (1) = C,lle 1 of|=[1 0 0 is ant elemenlary matrix.

0 01 0 0 1
Since there are six types of elementary oporations, we et six types of elementary matrices,
but not all of them are different,

E9) Check that R_(1,) = C,,(1,). R,(){1) = C2)(1,} and R ,(3)(1,) = C,,3XL,)

In general, R, (1) =C. (1), Ri(a)(1,) = Ca)],) for a »* 0, and R, (aXI,} = C(a)(L )} fori = j and
aeF.
Thus, there are only three types of elemeniary sadrices, We denole

Rl = T B
LA T ey Sy

1 ]
R, (a)(1) = C (a1, (if a # 0) by E(a) and
R, (0)1} =C (aX1) by Eyta) fori=j.a e F.
E . E(a) and E,(a) are called the clementary matrices corresponding to the pairs R; and C,,
R.(a) and C(a), Rij(a) and Cﬁ(a). respectively.
Caution: E,(a) corresponds ta C; (a).and not € (a).

Now, sce what happens to the matrix

g1 2
A =|:3 0 0] if we muliiply it on the left by
21 0




. [o 1 0
E]z=l 0 0| Wepet
o 01
ot ojfo1 2| {300
1 00([300]|=|01 2|=R_(A)
ool1jlz21r o0 L2110
Similarly, AE,, = C_(A). .
[1 0 offo 1 2
Again, consider E, (2)JA =(0 | 0 [3 0 0]
’ 00 2f[21 0
[0 1 2]
=|3 0 0j=RyXA)
' 4 2 0]
Similarly, AE,(2) =C,(2)(A)
1 0sfer1 2] [ 62
Finally, B, (5)A=|0 1 0[|3 0 0}=] 3 0 ©
oo1ll210 210
=R, (5)A)

o1 21 05 (01 2
But, AE,(5)=|3 0 g] 01 0|=301Is
L2 001 2110
=C, (S XA)
What you have just seen are examples of a generat pienomenon. We will now state his
general result formally. (Its proof is slightly tcchnical, and so, we skip it.)
Theorem 4: For any mowix A
a) R(A}=E A ‘
b) Ra)A)=E(a)A, fora=0.
¢} R (a)(A)=E (a)A
d) C(A)=AE,
ey C(a(A)=AL(a), foraz0
fy C,a)A)= AEa)
In {f) note the change of indices i and j.

An immediate corollary to this theorem shows thit all the elamentary matrices are invertible
{see Sec, 7.6).

~ Corollary: An elementary matnix is inveriible, In fact,
a) EE =], '

b) E(@HEa)=1foraz0.

¢) EC-0E@=1

Proofl: We prove (a) only and leave the rest 1o you (sce E10).
y ¥

Now, from Theorem 4,

EE R{E3=R R =1, by defivition of R

it T Uy T R ARV S5 Dy uel A

E10) Prove (b) and (c) of the covollary above.

The corollary tefll us that the elementary malrice are tavertible and the inverse of an
clemeniary malrix is 2150 an clemoniory aotrin of the same type.

Matrices - 11
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An echeloa matrix §s so-called
bogause of the step-tike structure of its
RON-2E50 TOWS.

%8

E1 1) Actually mul.tiply the two 4 X 4 mairices E, (-2)and E;(2) 0 get L.

And now we will introduce you 1o 8 very nice type of matrix, which any matrix can be
transformed to by applying clementary operations.

8.3.2 Row-reduced Echelon Matrices

Consider the matnx

In this matrix the three non-zero rows come before the zera row, and Ihe first non-zero entry
in vach non-zero row is i. Also, below this |, are only zeros. This type of matrix has a
special name, which we row give.

Definltion: An m X n matrix A is called a row-reduced echelon matrix if

a} thc non-zero rows come before the zero rows,

b) in each non-zero row, the first non-zero entry is 1, and .

¢) the first non-zero entry in every non-zero row (after the first row) is to the right of the
first non-zero entry in the preceding row.

Is [L : 3] a row-reduced echelon matrix? Yes. It satisfies all the conditions of the

. ) ooo}f2 1. 0] [or0 '
ition. O ¥ . y ’ ’ H - d
definition. On the ot¥=r hand [0 0‘ ]] [O 0 l]or[l | l] are not row-reduce _

echelon matrices. since they violateconditions (a), (b) and (¢}, respectively.

The matrix

0l1 349780 -101
oooo0ll 5610 2 00
0000'TDOLL 7 012
00000000 071 10
00000000 00T
00000000 00O

is a 6 x 11 row-reduced cchelon matrix, The dotled line in it is to indicate the step- hkc
strueture of the non- 2610 rOWS.

But, why bring in this type of a matrix? Well the following theorem gwcs us one good
reason.

Theorem 5: The rank of a row-reduced echelon mnlrjx is equal to the number of-ils*non-
ZETO FOWS, .

. Proof: Let R,.R,. R, be the non-zero rows of an m X n row-reduced echelon-matrix, E.

Then R3(E) is gencratcd by R....R, We want 1o show thot R,....R; are linearly Independent,

Suppose R has i first don-zer0 vntrv in column k.. R, in column k., and so on. Then, for

anyr scalnrs €;unC, Such thatc R, *e R+t R 0, we immediately get

K, K, L
] 1 !
¢, [0...... [ PP OTR T e gt e ol
20, [0 arrrinireeen 0L e ¥ .
FC f0 e 1R IO x)
PP P 0]




wliere w denoles vorious entries [hat we aten’t botlierng o caleulale, Mulrices - 1

This equation glves us the rollo\_ving equations (when we equate Lhe kilh entrics, the kath
entries , ...., the k,th cntries on both sides of the equation): '

c,=0,¢c(*x)+¢c,= O...c (e} + oy (& Mot = Y+, =0,

On solving these egualions we gret

¢, =0=cgF -=c. ~R...R are linearly independent . p {(E)=r.

Not only is it casy Lo oblain the rank of an cehelon mairix. one can also solve tinear
equations of the type AX = B more easily i’ A is in echelon form.

Now, here is some pood news!

Every mulrix cun be transformed to the row cchelon Torin by o series of elementary raw
operations, We sity that the nuatris is reduced 1o the ;ow echelon Tonm. Consider 1he
lollowing exunple.

000 0 -0

. ) D12 -1 =11
Exampled: LA =)0 F 2 0 1 |
o0 1 40

o a 1 0 2

Reduce A-10 the row echelon Tofm,

Solutian: The fiest colump of A is zero. The second column is non-zerm. Fhe 11.20h
clement is 0. We want | at this position. We apply Ry lo A and gel

02 -1 -1
coo0 0 0l

A=101 2 0 31
‘00

]
10 H 4 4]
24 1 I 2 ' ' )
The {1,2)th entry has become 1. Now, we subtract mubtiiples of 1he st rose [rom other rows
80 that the (2.2)th, (3.2)ih, (4.23th and {5.2)1h ealries become zern. So-we apply R i1 and
R, (=2}, and get

01 2 -1 <1 1} - .
000 0 01

A,=[00 0 1 4 0
Q0 0 I 4 |

000 3 120

Now, beneath the entries of the Nirst row we have zeros in the firsl 3 columns, and i Lhe
lourih column we find non-zero entries. We want 1 a1 the (2,4)th position, so we inlerchange
the 2nd nnd 3rd rows. We pel

-1 1
40
S0
4 |

== I = T e I 8
—_— O — -

0 1
00
A=0 0
00 ‘
000 3 120

We now subtract sujtable multiples of the 2nd row from the 3rd, 3th and 51l rows so that jhe
(3.4)th, (4.4)th and (5,4)th entries al! bacome zero, ... '

» |'0 12 =1 - I'I
Rlooo 1 4 0
A~ 0Cc0 0 0 1]|=A,
' ooco 0 01
000 ¢ 00
Now we have zeros below the entries of the 2nd ros. except for the 6th column. The (3.61k

clement is [, We subtract suitable multiples of the 3rd row from the dth and Sth rows so that
the (4.6)th, (5.6)th elements become zero. ..,

T
A= necans 1hat un applying the
"nperation R 10 A we get the muorrix
B.

89
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01 2 -1 -1 |}

Rew (0000 1 10
A;*'-' 000 ¢ 0 i
000 0 0D

o0 o0 o o

And now we have aclieved 2 row echelon matrix. Natiee that we applied 7

vlementry aperaions 1o A Lo obriain this mairx,

In general. we have e followiog thearem.,

Theorem 6: Every matrix can be reduced to a row-reduced echelon matrix by a finite

sequence ol elentenliry row openiljons,

The proot of this rexultis just o cepetition of the process that you wem thiough in Example 4.

Far prictice. we give you the sollowing exercise,

‘ I 20
E E12Y Reduee the matris [ 1 ] 10 echelon form,
' T .

.

W O LS

Thearem 6 [eads us 1o the Tollowing definition.

Definition: 17 matrix A s reduced 1o vow-reduced ecbelon matvis by a [inite segaence
o clementary row aperations 1hen F s called i row-redueed echelun furm {or. the row
echelon formy of A, We now give a usedul resub thal immediately fotlows from Theurems 37

and &,

Theprem 71 Lt 2 be g row-reduced echelon form ol A, Then the rank of A = number ol

non-Zern rows ol £,

Praof:  We oblain B Grom A by applying elemeniary apergtions, Therefore, by Theorern 3,

PLA) =piE) Also. plE) = 1he number of non-zera rows ol B, by Theorem 5.

Thus, we have proved the thearem.

Let tis taok al some examples 1o ae@aliy see how the cehelon form of a omatrix simplines :

NuleEs.

Example 5: . Find p(A). where

S

by reducing it to its row-reduced echelon form.

-

1 2.3 123 [t2
Solution: I.I 5 GJR’f:_I,"[O 3 3JR=‘,1‘E‘,‘[0 !

which is the desired row-reduced echelon form, This has 2 non-zero rows, Hence. p(A) = 2.

E E!3} Obtain the vow-reduced echelon form of the matrix -

v 205
A=l2117 6
45710

=i e Cee T




Hence determine the runk of the mirix.

By now you must have gat used 1o obiaining row echelon forms. Lel us discuss some wilys
of upplying 1his reduction. '

8.4 APPLICATIONS OF ROW-REDUCTION

In this scction we shall sce how to wtifise row-reduciicn for abtuining the inverse ul
matrix, and for solving a system of linear cquations,

8.4.1 Inverse of  Matrix

In Theorem 4 you discovered that applying a row translonmation 10 o mineix A is the xame
as multiplying it on the lefi by a suitable elementary matrix. Thus. applying a series of row
transformations 1o A is the same as pre-multiplying A by 4 series of elementury murrices.
This means that. after the nth row transformation we abluin (he malrix EE,. - EEA.
where E,E,, ..... E , are elementary matrices. *

Now, how do we use this knowledge for abtaining the inverse of an invertible murix?
Suppose we have an n x n invertible matrix A. We know that A = TA. where | = T.Now, we
apply a series of elementary row operations E,, ..., E 0 A sothnt A pets transformed to L.
Thus, ' ‘
[=EE, ..EEA=EE_. EE, (IA)

=(EE_, .. E.EDA = BA
where B=E_ ... E I. Then. B is the inverse of A
Note that we are reducing A 10 I, and not only 1o the row echelon form.

We Nlustrate thic below,

Example 6: Determine if the matrix

121
A=12 )
32

is invertible. If it is invertible. find its inverse.

Solution: Can we transform A to 17 If 50. then A will be invmibl;-..

. P0G [1-23
Now, A=IA=(01 0| {2 3|
60150312

To-transform A we will be pre-multiplying it by elementary matrices. We will alco be pre-
multiplying 1A by these matrices, Theretore, as A is wansformed to 1, the same
trunsformations are done to T on the right hand side of the matrix equation given above. Now

T2 .3 1 0.0
0 -1 -51=[-2 1 0|A (applying R,, (~2) and R,, (-3) 10'A)
O -5 -7 -3 0|
P23 (1 o o
=01 5{=[2 -1 QA (applying R,(~1)and R, (~1))
C 57 3 0 -1

Mutrlves - 11,

9]
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E Eidy Show sl

10 -7 -3 oz o
lo 1 st=| 2 -t olA (apptying R, {-2) anc R 4—-5Y
o 0 ~18) -7 5 -i ' '
'y o =71 [ -3 20
=,0 1| Si=,t 2 -1 O[A (applyirg It - 17180
“lo o IJ NG ~SHR /I8
10 0} [-sas 18 8]
=|0 1 0l=1 1/1x  TA% ~S/8IA capplying R,, (7) and R (51
0 0 by Lis -sne ‘ )

-5 71
Hence, A is invertible and its inverse is B= UlR[ | 7 -5
- 7 -5 1
To mike sure that we haven’t made a cireless mistake al any stage. check the answer by
multiplying B with A. Your answer shouli be 1.

!t 3
3 1 §|is imvertible. Find its inverse,
157

Lel us now look at another application of row-reduction.

8.4.2 Solving a_System of Linear Equations
Any system of m lincar equations. in n 17nowns K X0 08

u”xl ot alnxuzhl

4,5, + ..+ a x =h,
where all the u, ind b, are scakars.
This can be written in matrix formm os

X b

- 1 i
AX = B.where A =[eg]i X=|- {0 B =] ;
L&‘“ bll'l

I B = 0. 1he system is called homogeneous. In this situation we ere in a position to say how
mumy finearly independent solitions the system of eduions has. :

- R




heorern 8¢ “The number of lincarly independent sotutions of the mairix equation AX =90 Matrices - 11

n = r. where A is an m = nomitris and r= ptAl

-pof:  [n Unit 7 you studicd that given the matrix A. we can obtain a linear ransfermation
L BY — P such that'{Tl,, - = A, where B und B’ ure bascs of Frand F™, respectively.

X

ow. X =[1 | is2asolution of AX = 0 if and only if it lies in Ker T (since T(X) = AX).
X .
n
hus. the number of linearly independent solutions is dim Ker T = nullity (T) =n -
nk (T (Lni 5. Theorem 5.)
kso. runk (T1 = p(AY (Theorem 2)
hus. the number of lincarly independent sotutions is n — plA

his theorem is very usefu] for finding oul whether a homogeneous system has any non-
ivial solutions or not. :

xample 7: Consider the system of 3 equations in 3 unknowns:

x~2y+2=0
+y =0
-3z =0

jow many solutions does it have which are linearly independent over R?

i =2 l]

iolution: Here our coefficient matrix, A=|1 t 0
o -3l
“hus. n = 3. We have to find r. For this. we apply the row-reduction method. We obtain
1 0 -
V210 ) ; . which is in echelon form und has rank 3.
00 1
Thus, p{A) = 3.

Fhus. the number ol Tinearly independent solutions is 3 = 3 = 0. This means that this system
»f equation has no non-zero solution, !

n Example 7 the number ol unknowns was equal to the number of equations, thal is, n=m.
Mhat happens it n > m?

A system of m homageneous equations in n unknawns s a non-zero solulion ifn > m.
#hy? Well, il n > m, then the rank of the coetticient matrix is less than or equal 10 m, and
rence, less than n. o, n — r > 0. Therefore, at least one non-zera solution exists.

Note: 1fa systeny AX = 0 has one solulion, X, then il has an infinitc number of solutions
»f the form ¢X... ¢ € K. This is because AX, =0 = A(cXp) =0 ¥cef.

n
215) Give a set of linearly independent solutions for the sysiem of equations
X+2y+32=0
20+ 4y + 2=0
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Now cunsider the general equation AX = B. where A is an m X nmalrix. We lonn the

sugmented matrix |A B]. Thisisanm % tn + |} matrix whose [ast column is the imatrix 8.

Here, we also include the case B =0,

Interchinging equations. multiplying i equation by a non-zero scalar, and adding to any
¢quition ascalar times some other equation does nol aler the sei of solutions of the system
ol equations. In other words, it we apply clementary row operations on |A BJ then the
solution set does nol change.

The lollowing resultlells us under whit conditjons 1he syslem AX = B has a solution.

Theorem 9:  The system of lineir cquitions given by 1he matrix equation ' AX = B hys a
solution i peA ) = po| A 13]).

Proof:  AX = B represcnis the sysiem

Ky i Xk X0 = h,

A K FaA F L+ % = h

| mn n n

This-is the spmie as

QX+ X+ oo+, —h, =0

I S W | ~b =0

T L

[ x

which is represented hy |A HIL IJ-—, {0, Tierefore, any solution of AX = B iz also a solution
. X \ - . . L ,

ol jA B] N 0. and vice versa By Theorem 4. this system has a solution if and only if -

n+[>pllA B

Now, il the C
|

coiion JA BI[ XJ: { has i wlutinn, sny[ | thene,C +eCo c,C, = B, where

-
n-}

L are the eolumns of AL Tt is, B is o linear combization of the C's./ . RS{ABD =
RS (AL it Ay = pia B,

Comverely A0 p AT = podA B, then the nnmber of Inesuly independent columns of A any
A B are the same. Thyrelere, B mast be i Lineur cambinaion of the éolumns Chen
al A, :

leiB= z]l(.', oa+al. ne Fyi
B 1
|

Thenasollionof AN=Bix X =

n

i, .

Thus, AX = B lais o solution if and only if ptAL=p([A B).

-Remark: I A is inveniible then the system AX = B hiws 1he unique solution X = A™ B.

Now, once we know that the system given by AX = B is consisient, how do we find a

_solution? We utilise the method of suceessive (or Ganfssinn) climination. This method is

altributed to the famous German mathematician, Carl Friedrich Gauss (1777-1855) (sce
Fig- 1). Gauss-was valled the “prince of malhematicians™ by his conlemparprios, He did 2
great amaun( of work ia pire mathemalics as well as in the probability theory of errors,
reodesy, mechanics, eleciro-mugnetism and opiies.

To apply the method of Guussian eliminalion. we first reduce [A B] to its row echelon form,

E. Then, we write oul the equanions JL X| = 0 und solve them, which is simple,

Let us illustriue 1he merhod,

Exyraple 8: Solve the following sysiem by using the Gaussian climination process.
x4+ dy+lz=|

W+dy+ 2

T T




Solotion: The given system s the same as

3 "[- : 0
B N

We liest redace the coelficient rvuris to echelon form.
[1231] 2o ’1231‘|
oo

-2 R 118
This gives us an cguivalentsysiem of cqualions, nametly.

sy 2SS0 0 -5 0l o~
Nkdy+dzes Lindz=0

These se, again, cyuvaleni s |~ 2ygind 2=0.

W ret the solution in lepms o saemter, Puty = o Thenx = - 2o,y =, 2=0isa
wolution, lor oy sealar o Thos. the utien setis {(1.- 20, o, 0} ot e R).

Now et us fuyok it an example where 13 = 0, thal is, the system is homogencaous.
Fxample 9: Oblain u solution set of the simultaneous cquinions

oy + 5 =1)

N+ y+Tn+tn =0

dx+ 5y + Tz + 161=0)

Sofution: The nutrix of coefficicnts 1<

[1 Y0 5} ._
A=1217 6
|.-I S 716 ~
The given system is equivalent 10 AX:== 0. A row-reduced cchelon form of this matrix is
f2 0 s '
_[n 1 =73 473
[ I f]

Theu the given system is eyuivalent lo
Ay +51=0 X ={~14/Xz—-(H3in
Y= 1Rz (I =0] Ty = (73— (43N
which is the salution in 1eaws of z and 1 Thus, the solution set of the given system of
euiitions, in termis of (wo-parameters o and B, is
(=T 0— i B B - D o ries e RY
This'is a Iwo=climensional veelor subspace of RY with basis
(=173 2730 00 O (=703, =413, 0. B}
For practice we give youthe followinpexercise.
[E16) Use the Gaussian meihod 10 obtain solution sety.of the following systcl;n af equutions.
4x,-3x,+ x,-7=0 . :
X~ 2x,—2x,~3=0
‘3"i ~%,+ 2%, +1=0

Mhtrlees-- IL.

Flg. ): Carl Friedrich Gaws -
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Llacor Transforinatinhs und
Mulriees

And now we are near the end of Lhis unil.

8.5 SUMMARY

In this unit we covered the following points.

N

us

2)
k)
4)
5}
6)

)

8)

We defined the row rank, column rank and rank of a matrix, and showed that they arc
equal.

We proved that the rank of a lincar transformation is equal to the rank of its matrix.
We defined the six clementary row and column aperations.
We have shown you how to reduce a matrix to the row-reduced echelon form,

We have used the echelor form to obtain the iaverse of a matrix.

We proved that the number of linearty independent solutions of a homogeneous system @
equations given by the matrix equation AX = 0isn~r, wherer= rank of A, n=numbero
columns of A.

We proved that the system of lingar’eqyations given by the matrix equation AX = B is
consistent il and onlyif p (A) = p{[A B]).

We have shown you how [osolve a system of linear equations by the process of successiv
elimination of varinbles, that is, the Gaussian method,

8.6 SOLUTIONS/ANSWERS

El
E2)

Ed)

Ed)

£5)

A is the m X n zero matrix & RS (A) = (0}, < P, (A)=0.

The column space of A is lhe subspace of R* generated by (1,0, (0.2). (1.1). Now
dimyCS(A)S dim R} =2. Also (1,0) and {0,2), are lincarly indcpendent.

o [(1,0, (0. 2)) is a basis of CS(A), and p (A} = 2. _

The row space of A is the subspace of R* generated by (1,0,1}and (0.2.1). These vecto
are linearly independent, and hence, form a basis of RS (A). .- p,(A) =2.
Theithrowof C=AB s,

(e, €p €y}
n n n .
=[Elaikblsl Elﬂikbkz""' Etlaikbxp ]

=a, (b, by b )+ 2,1y by by Tt [ b,y - b,,} a linear combination of
rows of B. .. RS.(AD)S RSBy =~ p, (AB) < p, (B).
By Lemma 1.p(AB) g ¢ (A)=p{A

Alss pEAD) £ 0 AB) = p(R).

- p(AB) § min {p(A), p(B)).

p(CR) g min (p (C}.p (1Y)
Bulp (C)<min (m, )= 1. AlseC20. .. p(C)=1. =~ p CR)< 1.

|

N

Now,if C=1 " Ry e b, then
L. |

a




o b, ['llhg v llibn . “Altrives 511
C;{-: a,by b, . a,b,

a b a b, n.,"b,,

m m -
‘Sinee C.#0,-3; = 0, for some i, Similarty. b s 0, for some . oo b2 0.0 CR L

~p (CRY# 0. ~p(CR) = L.

0 -2 -2
6y {PAQ= [_,3 —d _3]. The rows of PAQ are Tinearly independent. = ptPAQ) = 2, Also

sthe:rows of A are linearly independent. =~ p{A) = 2, - p{PAQ] = )

~ froeo Mool
1 LetA =) 2 0] Thenp(A)=3. = A's normul form is| (0 | [}J
03 3 0al
100
B .u) (oo
010
[ | 00] 01 n’
‘b) RnDJRn(A-)=R_p golfl=|D1 0
) oral) toor]
0+ 0x.(=1) O+ Ix(=1) 1+0x(=N] [0 -1 |
C)[ 1 0 0 =1y 00
0 i -0 |;0 1 -0
1 000
. 001t 0 .
:9) R!J(I4)= 0100 =‘("2."-“4)
0001

1 000
R = _g 3 ?"g]:Cz(’JJ(I‘,)
000
340
I Q
01

===

R, (NA,)= = ¢,,(3) ()

210), E (1Y) E@) = Ra).(B) = R, (@) R ()} (D) =1
This proves(b). -
:Eyj(~0)-Ey (0} =Ry (-n) Ep(a)) =Ry (1) (R, (a) () = I, providing (c).
to-=20]t 020 [t 000
01! o0:0/{01 0-0] (01 60
oo 1 oflloo10 {oo1 0
60 o 1Jloooi1l loo:o:

i11) Ey(=2) E,(2)=

2o b2 0 1 2 0]
A2 40’1 0] R, (=30 | O|R,(H0 I O
31 0]~ 0 =5-0/~:.0000}
120 5 ' 1 20 5
A3 12 1 7 R, (-2, R, (-4)]0 -3 7 _4l
14 57100 o~ [0 -3 7—10J
1 2 0 5
R, (-18)[0 1 =3 43
o -3 T - 10 97




Lincar Tramformations ond
Matrices

YR

CEl4)

El5)

El6)

é
L2 0 5 12 0 § !
RJ:‘(’E‘).‘:O 1 -3 413} Ri{-1/6Y|0 1 —7/3 4/3
00 . o -6 ~ loo .0
Ap(AY=]
013 1 00
A=|2 3 5]{=[(0 | 0jA
157 6011
235 Jor1o0
=[0 1 3|=11 0 O|A@applying R,,)
357 00|
1 a2 527 o oo
|0 1 3l=[y 0 0|A (applying R (1/2), Ry (- 3))
[0 172 =1/ 0 - 32 1]
[1 0 -2] [-v2 172 o]
=10 1 =/ 1 - 0 0|AGpplying R, (=3/2), R, (—1/2})
L6 o -2] t-1y2 ~32 1
1. 60] [-1 2 -
=01 0|=|1/4 —9/4 372|A (applying R(-1/2). R, (-3} and R, {2}) 1
oo 1) L w4 -2 - :
o . l—l 2 —1]
~Adsinvedible,and A = 1/4 —9M4 5.
- 174 M =\
The given system is equivilent to
ISHINEH
24 1|77 Lo
rA
Now, the ronk ol‘[; : ?J is 2. ., the number ol lincorly independent selutions is
3 -2 =L .oany non-zero selution will be a linearly independent solution. Now, the
given equations are equivaleni to
X+2y==3z ..... (1)
I2x +dy=-7z ..... {2 B

(=3) times Equaiion (2) added 10 Equation (1) gives —5x — 10y = 0.

< x ==2y. Then (1) gives « = 0. Thus. a solution is (=2, I, 8}, .., a-5c of linearly
independent solutions is [(=2, |, 0)}.

e T T TR Sy HET T TR

Noie that you can get several answers to this excrcise. But any solution will be
e {-2, 1} 0) forsome xe R, ' ‘

The augmenicd matrix is |A B)

|‘4 -3 1 7]
=8 =2 -2 2. hwrow-rmduced cchelon foom s
13 -1 2 -l

-2 -2 3

0 1 95 -y

oo v s
Thus, ihe given sysiem of equations is equivalent to
) X, - 2x;—-2;<‘ =21
X, +{(9/8) x; =~I
X, =5
We.can solve Ihi:"' system Lo gel the unigue solution x = =7, x, =~} x =5,




MEDIA NOTE (MTE-2, Block 2)

Yideo Programme : Lincar Transformatrons and Matrices,

Conlentcoordinptor: Dr. Parvin Sinclair ’ Producer : Sunil Das
Schoot of Stiences, Communication Division,
IGNOU, ' . IGNOU,

Introduction

.In this note we will give a brief overview of whal we have covered in the programme, Twice, during the programme, -
wo have suggested some exercises that you may like to do after you've finished seeing it. We will also list these exercises in
this note.

The aim of lhls programme is 1o help you in getting a better understanding of some of the concep:s that we have dealt
with in Block 2.

Before walching the programine we expect you Lo have firished going through Block 2.

Prngramme Summaory

. *In this programme we introduce you to some geomeiric transformations, namely, rotations, scalings, reflections,
projections and trunslations. You will see that, cxcept for tranglation, all these are linear transformations, Then we discuss the
_method of obtaining the matrix associated to a linear transfocmation with respect to @ specified pair of ordered bases. Finally,

-we talk about the compositjon of transformations and how to mulfiply matrices.

Dunng the programme we hove suggestcd that you try the following exercise

E 1) C'heck if the scaling g: R?— R?: p(x, y) = (2x, 3y) is a linew transformation or not.
E2) Isthe function h : R? — R%: h(x, ¥) = (y, x) lincar?
E3) What is the matrix associated to the projection

p: RP=R:p(x,y.2)=x _

with respect to the bases B, = {e, ={1.-0, 0), ¢, = (0. 0, N} and B, = {f, = 1}

Answers
E 1) The acaling g fs linew since

glix, ¥) + (', )] =g(x, Y} + g (x’, ¥, and
glafx, y)) = og(x,y) 3w € R,
E 2) Yes, because h satizfies conditions LT1 and LT2.
E3) pley)=1, ple.; =0, ple))=0.’
~[plg,,p, =f1 0 0]

99
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BLOCK 3 EXGENVALUES AND
EIGENVECTORS

This block consists of three units in which we first intreduce you (o the theory of
determinants, and give its applications in solving systems of linear equations.

The theory of determinants was origi:mcd by Leibnizin 1693 while studying systems of
simultancous linear equations. The mathgmatician Jacobi was perhaps the most prolific
contributor to the theory of determinants, In fact, there is a panicular kind of
determinant that is named Jacobian, after him. The mathematicians Cramer and
Bezout used determinants extensively for solving systems of linear equations.

In Unit 9 we have given a self-contained treatment of determinants, including the
standard propertics of delerminanis. We have also given the formula for obtaining the
inverse of a matrix, and have explained Cramer's Rule. We end this unit by discussing
the determinant rank. :

In Unit 10 we discuss eigenvalues and cigenveclors, Their use first appeared in the
study of quadratic forms. (You-will study such forms in the next block.) The cancepls
that you will study in this unit were developed by Arthur Cayley and athers during the
1840s. What you will discover in (he unit is the algehraic cigenvalue problem gl
methods of finding eipenvilues and linearly independent eipenvectors.

In Unit 11 we introduce you to the characterislic polynomial. We give a prool of the
- Cayley-Hamilton theorem and give its applications. We also discuss the minimal
polynomial of a matrix and of a lincar transformation.

Ifyouareinterestied in knowing more about the material covered in this block. you can
refer to the books listed in the course introduction. These books will be available a
your study centre. -

L YR TR




NOTATIONS AND SYMBOLS

M.l
Y.{F)

det (AY]
N

Tf;;u
det (Y
Adj ()
Tr{A)

W,

setof pll nxnmatrices over F
M, . (1)

determinant of the matrix A

the product ol as such that i satisfies property P
determinant of the linear operator T

adjoint of the malrix A
truce of the matrix A

cigenspaee corresponding 1o the cigenvalue 2
!

Errad byl by 1M




UNIT 9 DETERMINANTS

Sirﬁcture' -

%1 Introduclion . . 5
Objeclives
9.2 Defining Determinants 5
9.3 Properties of Determinants 10
94 Inverse of a Matrix ' ' 13
Product Formula
Adjoint of a Maltrix .
9.5 Systems of Lincar Equations ) 20
9.6 The Determinant Rank 23
9.7 Summary , 26
9.8 Solutions/Answers _ 26
9.1 INI_ TRODUCTION

In Unit 8 we discussed lhlﬂ:successive elimination method for solving a system of linear
equations. In this unit we introduce you to another method, which depends on the
concept of a determinant function. Determinants were used by the German
mathematician Leibniz (1646-1716) and the Swiss mathematician Cramer (1704-1752)
1o solve a system of linear equations. In 1771. the mathematician Vandermonde

- (1735-1796) gave the first systematic presentation of the theory of determinants.

There are several ways of developing the theory of determinants. In Section 9.2 we
approach it in one way. In Section 9.3 you will study the properties of determinants and
certain other basic facts about them. We go on to give their applications in solving a
system of linear equations (Cramer’s Rule) and obtaining the inverse of a matrix. We

also define the determinantof a linear transformation. We end with discussing a method

of obtaining the rank of a matrix.

Throughout this unit F will denote r field of characteristic zero (see Unit 1}, M_(F) will
denote the set-of n X n matrices over F and V, (F) will denote the space of ailn x 1
matrices over F, that js, o

a i
V(F)={X= || |n€EF

aI'I

The concept of a determinant must be understood properly because you will be using it
again and again. Do spend more time on Section 9.2, if necessary. We also advise you to
revise Block 2 before starting this unit. '

Objectives

After completing this unit, you should be able to

© evaluate the determinant of a square matrix, using various properties of
determinants;

compute the inverse of an invertible matrix, using its adioinl:;
apply Cramer's Rule to solve a system of linear equations;

evaluate the determinant of a linear transformation;
evaluate the rank of a matrix by using'the concept of the determinant rank.

9.2 DEFINING DETERMINANTS

Therce are many ways of introdusing and defining the deterrinant function from M (F)
to F. In this section we give nne of them, the zlassical approach. This was given by the
French math2iratician Laplace £1749-1827), und is stiil very much in use.




Eigenvuiues unl Eigenvecinrs

Wedenote det (A)
by |A] also. Far
exiunple, the determinsnt of

|
is denoted by
I 4

2

3 4

o

-

we wiil define he determinant funclion der: M, (F) — F by induction on n. That is, we
will define it forn = £, 2, 3 and then define it Tor any n, assuming the definition for
n-1.-

Whenn =1, forany A €M (F)we have A = [a], for some 1 € F. In this case we deline
det (A) = del {[a]} = a.

For example, det {{3]) = 9 and det {{-5]) = -5.

a )
o 12 .
Whenn o= 2, tor any A =—-[ " € M,(F), we deline
’ RETRU :
et TAY = iy i, — il

i !
For exampie, det ’\ {_g 3 ])=0><3 — I X({(—-2)y=12

- i Az 3
Whann = 3, forany A = r“ i T

E.MJ(F'}. we define

My iy dlyy

det{A) using the delinition lor the case n = 2 as {ollows:

T

/r ' \ 1
. ry =« . H H a . a
. U I L IR e TR 1N | a,, det w2
clit 1{A)=nq,,dct ,‘\l Ay Ay det ay, aMJ 13 &y, 8y |l
- . r

That is, det (A) = (=1)}'*! 4,; (et of the malrix left after deleting the row and column
‘ cantaining a; ) + (=1} a , {det of the matrix left afier deleting
the row and column containing a,) + {(— 1) 0,y (det of the matrix
left after deleting the row and column containing ap, ).

Nete that the powerof (- ) that is attached to Ay, is 1 + } {or

ji=12.3%

So det {A) = a,; Gig, g iy,

3

A =003 (@) =Byt )+ 25 (g Ay —t5,1y,),

In fact. we could have caleulated PA] from the second row alsa us follows:

4 (- ”:n: a,-:] A an

drr o | lﬂll an;

e il AP
[Al=(— 1) apn | an 8w

HEM HEY! ] av an

Similacly. expanding by the third row, we get

I(H.‘ n [ 3

Wl 1 ity HEY
an )
I ar:s 0n I

_--1 [ Bn !

| ann an I

{-
Y. b
Ifl:i_ a:;|

Al Y ways of obuaining {A] lead to the sume value.
Consider the following example,
Exampie I : Let

0

A= Calculate |A}.

e I

I
2

-1 W =

|
I
[
|
L

[




Solution: We want to obtain

1 26
Al=|5 4
7 3

1
2

Let A;; denote thie matrix obtained by deleting the ith row and jth column of A,
Lzt us expand by the first row. Olserve that

- i
Au"‘l" 1 '_“-\12=|i

5]
Thus,

4 1

|An] = '3 2

=5x3—-4x7=-13,

Thus,

=dx2-1x3=5]A;

.A,,=[5 4l
73

L

5 - ' 5
ﬂl_? 2 r-5x2-—l><7=3.'f\u|"]7

Al =(— 1" X1 XIAN] (= 1) X 2XjAu +(— 1) X6 XA =5~6-78

=—79

: El) Now obtain |A] of Example 1, by (-::Epanqing by I'.h(.;- second row, and the third row,
Does the value of |A| depend upon the row used for calcufating it?

Now, let us see how this definition is extended to define det{A) for any n X n matrix A,

n# 1 i 1]}
L}

When A =
au
| it

an
a2

Unz

the ith row as follows:

an
Han

€ M. (), we define det(A) by expanding [rom

det (A} = (— 1)"'a, det (Au) (— 1D)"20,;8ct (A )+ ...+ (— 1)""u,, dei{Aw) , where A
1s the (n-1) X (n~1) matfix obtained from A by deleting the ith row and 1he jth cotumn,
andiis a fixed integer with 1 i np. -

We, thus, see that det (A} = il (— ", det (A,),

Deeterminirnie




Eigorvalues nud Kigenvec|ues

defines the determmant of an n X n matrlx A in terms of the determinants of the
(h=1) > (n=1) matrices A ;. j= 1, 2.0 n.

Nole: While caleulating [A|, we prefer to expand along a row that has the maxinium
number of zeros. Tlis culs dowh the nrmber of terms o de caleulated.

The iallowing example will help you (o get used to caleulating detcrminants,

Example 2: Let

3 20 2]

2 1 0= Caleulate |A| .
A=y 0 1 2

2 1 -3 |

L -
Solution

-3 -2 0 2

2 1 0 -l
lAl=11 o 1 2

2 1 -3 i

The first three tows have one zero each, et us eapu..... ..ong the third row. Qbserve that

43, = 0. So we don’t need to caleulate |Ay . Now,

-2 0 2 -3 -2 2 [—3 ~2 0
Ay = 1 0 —|,An= 2 1 —1],Au= 2 1 _ 0
I —3 1 : 2 ] 1 2 1 —3

We will obtain JAy],| Ay}, and lAJ.I by expanding along the second, third and second
row, yespeclively.

-2 0 2
Sl A = 1 0 ~1
I =13 1
— 141 0 "2 1.1 - X 243 —-2 0
= {— 1. 3 (— 0. (- (-1
SN IR (1)0! 4(1)(1>|,_3|
(expansion along Ihe second row)
=(-1).6+0+ (—1) (-1).6
=-6+6=0.
1-3 2 2
A = {2 1 =(-1y"la, |2 2 4-(—1)-‘”.1.[ ; 2’
1201 ] b= : ¢
‘+ {"1)34‘3 . _3 2’ (1“{|'\'1n‘.|nn ‘Ilnrln l'I‘n P]-\ -l-n..-\
2 1" 1o the third row)

1

2.0+ (=1).1. (=1) + 1.1.1

=l41=2,

:-_1 -2 o l Caara] '—2 (] -3 -'0 |

. iA.-.|=1 2 1o = FEEY 2 |
21 =3 .

T




{expansion along the second row)

. 2un __3
+ (‘—1) ? .0. 2 ]
=(-1).2.6+1.1.9+0
=-—[2+9=-3
Thus, the required determinant is given by

JAl=an Al —ax [ Azl + 133 |As| — 334 [Asd
=10-0+12—2 (—3)=8.
' E2) Calculate | AY, where A is the matwix in

a} Example 1,
b) Example 2.

At this point we mention that therc are two other mnethods of obtaining
determinants — via permutations and via multilinear forms. We will not be doing these
methods here. For purposes of aciual caleulation of determinants the method that we

have given is normaHy used. The other methods arc used (0 prove various properties of
delzrminants.”

So far we have looked at determinants algebrzically only. But there is a geometrical
interpretaion of determinants also, whick-we now give.

Determinantas arex ans volume: Letu = (7,,a,) and v = (b,, b.\ betwa vectorsin 7.
Them, the Magntuds 27 . 2z arca 8l the rarailelogram spanned - 2 ano v{sec Fig. - s

a b

the absolule value of det (u, v) = .
’ 1 b,

In {act, whatwe a2 :justsni¢lis true for any n > 0. Thus, ifu, u,,....u, are i vectorsin

Determinanes

&

X

f-‘ig. 1: The shac :d area is

det {u, )

rav=T

YU P e TR T




Eigenvalues aod Elgenveclory

&

Del {C,, Cypenrnny C,) deatotes
det(A), where A = (C,, C, ..,
Ca)is Lhe mitiix whose
columns are €|, Cy..., G

: !A_! ={— 1}“\:... Al g 13D,

1, then the absolute value of det (4, U,...., u,) is the magnitude of the volume of the

n-ditnensional box spanned by uy, u,,.-.. U,

Try this exzreise now.

£ E3) What is the magnitude of the volume of the box in R? spanned by |, j and k?

Ler us, now study some propertics of the determinant function,

9.3 PROPERTIES OF DETERMINANTS

In this section we will state some properties of determinants, mostly without proof. We
will take examples and check that these properties hold for them.

Now, forany A €M, (F) we shall denote its columns by 'C,. C,. ..., C,. Then we have the
tellowing 7 properties, P1-P7.

PL:If € is an n % | vector over F, then

det (CpreeesCiyy €+ Gy Crypreenn €,)

=det (C,...., C,, G, Cppyeene, §) + del(C,.0, €, CL Colgyn C).

P2: 11 G, = C for any i # j, thea det (C,,C,,....C) = 0.

P3: If C and C; are inlerchanged (i # i) to form a.new matrix B, then

det B = = det (C,, C,,..., C)- )

P4: For«€F.

det {C,..., Cipy @ Ciu Croyees C) = ¢ det (Cy, Gy C,).

Thus, det (<C|, «C,,..., =C ) = =" det (C,,..., C ).

Now, using F1, P2 and P4. we find that fori # jand <€ F,

det{C,,..., C 4 =C,..., C;,..,C) = det (C,,..., Cr..,, Cp. ,C) + xdet (Cy,,
Corr--Cpyon. G

=det (C,,Cp...,C)-

Thus, we have )
P5: Forany o € F andi # j, det (C,,...,C, + aC,Ciyprr-iCy) = det (C1G,,...,.C.
Another property that we give is ,

P6: det(A) = det (AVY A € M (). (In E2 you saw that this property was true for
Examples 1 and 2. Its preof uses the permutation approach to determinants.)

Using PG, and the fact that det {(A) can be ebtained by expanding along any row, we get

P7: For A CM_(F), we can obtain det{A) by expanding along any column. That is, for
a fixed k,

P R L VR IV |
MIE rvig oy i) un \ 1§ @pL |y

An important remark now.

Remark: Using P6, we can immediately say that P1-PS are valid when columns are
replaced by rows.

Using the notation of Unit 8, P3 says that
det (Ry(A)) = — det(A) = det (C,(A)).

'P4 says that

det (R{a) (A))' = o" det (A} = dei (C, (o) (A)), ¥ € F, and PS5 says that
det (R, (o) (A}) = det (&) = del (C,) (o) (A) ¥ o € 1.

Fwr—r




We will now illustrate how useful the properties P1 - P7 are.

Exampic 3: Obtain det (A), where A is

w160 [ 12 -1 3
27 2, 2 4 5 0
160 0 2 -1 =2

10 0 1

Solution: a) Since the first and third rows of A (R, and R,) coincide.jAl == 0, by P2 and
P6.

"b) 1 2 -1 =3
24 5 0
dal=1o 2 a4 2
-1 0 0 1
12 -1 -3
= |[2 4 5 0}, byaddingR,toR,.

02 -1 2 ,

0 2 -1 =2

= 0,since R, =R,.

Try the following exercise now.

: E4)Calculate |1 3 0 23 5
2 1 2{and|l & 1|
1 30 4 6 10[

L

Now we give some examples of determinants that you may came across olten.

Lxagmple 4: Let

a bbb
A= |bv a b b|, wherea,b€R. _
b bab
b b b a
Calculate [A|.
Solutlon:
a b.b b
JAl= jv a 5 b
b b a b
b.-b b a

b i h b to the firue row, and applying P5)
= b b i b
b b- b il

a+3b  a+3b  a+3b  a+3b [(byadding ihe sccond, third and fourthrows

Delerminanly

T TERA A Ui e




e

Charucteristic 3od Minlml—
Palynomlnal -

W =4at 81 . .An

0 | (bysubtracting the first column from
b a-b 0 - 0 | cveryothercolumn,andusingP5)
0

b ] 0 —b
= (a+3b){a—b 0 0 (expanding along the Girst row)
0 g~-b 0 . -
0 0 g—b

(a+3b) (a-b)*

if

In Example 4 we have used an important, and easily proved fact, namely,
det (ding (), 2,..0y 2 }) = a; @3 00 a2 C YL

This is true because,

R RN
0 a 0 0

Tmtrantn 7 ).byPd
0 lU 0!-' On 0 0 l

= oy O ... Xp “nl
= oy a7 e @, SiNCE |1 =1,

Example 5: Show that
LA T

X X; Xy LT T . )
= —_ - -
a'ox’omoxd g Tl =i<j=4
X’ X}] x’s X

(This is known as the Vandermonde's determinant of order 4)

Solution: The gi\?en determinant

l 0 0 0 (by subtracting
- X1 X=X X=X ¥a— X the first column [rom
W xi =% x?—xt x’—x1| everyothercolumn)

] ) 1, 1 .} |
X D — X Xy — % X — X

X3 — X| Xy —X1 . Xa— X
(ke —x) () (2= x) (x» + x)) (X« ~ x2) (%« + %))
(= x)(xF + xd Fxx) (o= x} 0+ 08 F ) (% — xg) (% + 17+ xex)

tby expanding along the first row and factorising the entries)

=(x,—X,) (X3 - %) (x,~%,) 1 1 1 l
X TX, Xy T X, X+ X,

xgz +x,7 4 X,%, sz + x]2 + X% x>+ x!z + x_‘ic,
(bj taking out (x,-x,), {x5-%,), and (x,~x,) from Columns 1, 2 and 3 vespectively).
| 0 0

=Xy = a VX = x X, K) ntx X=X Xi— %2
1
' taitoxn -0t mmnx oot x) K

(by subtracting the first colunn from the secongl and third columns)




=(x3=%,) (xy—x,) (xx,)

(%) (X3 +x)  (x,%,) (x4 x,+x,)

(expanding by the first row and factorising the entries)
I 1

= (i) (%) (3473, Oe) (x4%) XgFKatX, X KX,

= () (33=%,) (xmx,) (%3m%5) (%,7%5) (,7%,)
=_T‘r1(xl.—xi), 1=i,j=4.

Try the following exercise now.

E5)Whatare | a 0 0 a d e
« b 0ojadlo p 1 |v
B r ¢ 0 0 c

The answer of E4 is part of a general phenomenon, namely, the determinant of an upper
or lower triungular matrix is the product of its diagonal elements.

‘The proof of this is immediate because,

an " *
0 an * i ¢ *
- [ ]
00 =1y 0 5 - = " | (expanding along C,)
0 0 ... aw 0 0. . .

=« e=gq a22.. a,,, each time expanding along the Tirst column,

anr

In the Carculus course you must have come across difde =I'(1}, where [is i function of ¢,
The next exercise involves this.

E6) Letus define the function 0(t) by
) e
a(t) = ,
O rw g

© Show that g'¢)) = I

() gV
"o g

And now, let us study a method for obtaining the inverse of an invertible matrix.

9.4 INVERSE OF A MATRIX

In this seclion we first abiain the determinant of the.product of two maltrices and then
define an adjoint of a malrix. Finally,we sec the conditions un¢ler which a matrix is
invertible. and, when it is invertinde, we pive its inverse in terms of ils adjoint,

Detenclnants




Figenvalues aml Llprnsectony

il

%.4.1 Produc

In Umt 7 you studicd malrix multiplication. Let us see what happens to the determinant
of 3 product of ¢

Theorem 1: Let A and B be n X n matices over F. Then det (AB) =

t Formuln

nalrices,

1 [or some cases.

Example 6: Calcuiate [A]LIB] ane 1AB] when

1
A={|23
Tl

Solation: We want to w..nfy lhu)rt.m 1 for our pair of matrices. Now, on expanding by

02 [z
i D] and Be=| 0
0 1 Lo

the third row, we pet [A] =

Also, |B] = 30, which can be immediately seen since B is a triangular matrix.

2
SinczAB=|6
{}

= |A]

10 19 l
[ | &
335 | jABl =5 | ¢
9 s
Bl

109

10
3

3 =130

You can verify ‘Theorem 1 for the fellowing situation.

& E7) Show that

;S

IABL =[ALB), wiere

|
Lan—-

u

1
J and g --.-

1 0 1
2 20
§ -3 3

det(A) det (B).

We will riot do the proof here since it is slightly complicated. But let us verify Theorem

Theorem 1 can be exiended 1o a product of m nn matrices,
AAL A That e,

*
det (A, Ayeuhy,,
Now let us look at an example in which Theorem [ simplifies calculations. -

Lxample 7: Fows,

T 2uc at 4 2be

-2ah b 2ae

Yom At (A det (AL

a7 R, caleubste

. L L
b oo a4 T
c 4 b

al e Ohe

ol (;1,m]




Solution: The solution is very simple. The given matrix is cqual io IR 5 it

2

b
a Therelore,
c

e oo
LTl oY

we get the required determinant to be

a b cif? a b cf?
c ab = |lc a b (by Theoarem 1)
b c a b ¢ a h
: = (a3 b} -3nbe)?,
because [a b ¢ ;
a b I'e ] ‘ a
' cC a b =g - | i
C | b Hi b C
b ¢ a

= a(a>=be) — blac-b2}- ¢ (c*-ab)
=83 + b? + ¢ - Jabe.

Now, you know that AB # BA, in general. Pur, det (AT = dei¢ita). sinee bofl are
cqual to the scalar det(A) det(B),

On the other hand, det (A+B) # det{A) + (s, in general. Tie Yollawing excercise is
an examipie. '

ES) LetA = [; (_:] B = [_é [1):| Yhow thatdet{A--B) # det(A) -+ det (B).

What we have just said is that det. Is uet u fineay function,
We now give an immediate corcllary to Theerem 1.

Corollary I: If ACM,(F) is invertible,then de:(A”") = 1/dct (4).

Proof: Let B&€ M (F) such that AB = {, Then det {AB) = det(A) del(i5) = del(I) = 1
Thus, det{A) # 0and det (B) = Vdet{A). In particular,

det (A7) = 1/detfA),

Another coroliary to Theorem 1 is

Corollary 2: Similar matrices have the same detarming..

Proof: If B is similar 1o A, ther B = F” AP (47 some taver e e >, T, by
Theorem 1, des(B) = det(P?! AP)

l o . A nuatrix s chwiler to a matcx
= det (P7) det{A) det (P) = tideilirt. dei(l"). duifss, oy Cas L Aif there ext o nan-singular
=dc;(A): munnes [P sach thal ITAP = H,

We use this corollary to introduce you to the determinant o0 1 linear tra asfnTmation, A
cach stage you have seen the very close relationship betweer linear iransformations and
matrices. Here oo, you will sec this closencss.

Definition: Let T:V— V be a lincar transéo=-x%on an o fivite-nimenssional non-zero
vector space V. Let A = [T], be the mateis < ¢ with 2spret @ & preen hasis B of W,
Then we define the déterminani of T by det(T) = dubi b 15
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i

This definition is independent of the hasis of V that is chosen because, if we choose
another basis B of V we oblain the mairix A’ = [Th",, which is similar to A {sec UnijL 7,
Cor. ta Theorem 10). Thus, del (A% = det {A),

We have the following example and exercises.

Example 8: Find det{T) where we define T:R* — R’ by

T(X),%p.X) = (3%, HXy,~2%, +X,,-%,+2 X, +4x,) .

Solution: Let B = {(1,0.0), (0,1,0), {0.0,1)} be the standard ordered basis of R3. Now,
T(1,0,0) = (3,-2,-1) = 3(1,0,0) ~2(0,1,0) ~1{0,0,1)

T(0,1,0) = (0,1,2) = 0(1,0,0) + 1(0,1,8) + 2(0,0.1)
T(0,0,1) = (1,0,4) = 1(1,0,0) + 0{0,1,0) + 4(0.0:1)

[3 0

coA=T= -2 1

-1 2

So, by definition, :

’ 30
det(T) = det(A) =[-2 |

-1 2

=3‘1 ol +1]=2 1

2 4 -1 2

1
0

1
0
4

=12-3=19,

E E9) Find the determinant of the zero opevator and the identity operator from R— R?,

k= E10) Consider the differential operalor
D: Py — Py : D (ap+a x+a,x%) = a, + 2a,x.

Wit is det{D)?

Letus now see whal the adjointof a square matrix is, and how it will help usin obtaining
the inverse of an invertible matrx.

9.4.2 Adjoint of a Matrix

In Seetion 9.2 we used the netation A, for the matrix ebtained from a squarcmatrix A by -
defeting itsithrow and jth cotumin, Related to this we define 1he {i.j)th cofactor of A (or
the cofactor of ay) to be (~ 1)1 {A . Tuis deneted by €. Thatis C,=(-1"A

Consider the following example,

n




Example %: Obtain the cofactors C,; and C,, of the matrix A =0 2 -1

3 4 i}
_ 21 6
Solution: Ciy = (— 1" 1A = — I 2 6 |=— '6
. 0 2
Cor = (= 1) Al = — ‘ ) ‘=4.

Inthe fol[owing result we give a relationship between the elements of a matrix and their
cofactors.

Theorem 2: Let A = [3,],.,. Then,

2) 9, G, + 0,Cp+ ... + 3, C,, = det(A) = 4G40, Gy + L Ha, C
b) 8y G + 3,Ct .. + 8, C, = 0 = aChta,Cy + .+, Co ifi £,

Wewillnot be proving this theorem here. We only mention that (a) follows immediately
from the definition of det (A), since det (A) = (1™ agfA, [+... + (<1 a, [A,[.

= E11) Vcri'fy (b) of Theorem 2 for the matrix in Example 9 and i=1, j=2 or 3.

Now, we can define the adjoint of 4 matrix. .
Definition: Let A = [a:]be any n X n matrix. Then the adjsint of A is the n X nmatrix,
denoted by Adj(A), and defined by

Cu Cn ... CuTt Cn Cu Cni
Ch Cn ... Cn Ciz Cn Cn
Adj (A) = A - . A
Cui Co oo Cu len Cu . Cu

where C, denotes the (i,j)th cofactor ol A.

Thus, Adj(A) is the n X n matrix which is the transpose of the matrix of correspanding
cofactorsof A.

Letus look at an example.

=»lru

1
Example 10: Obtain the adjoint of thematrix A= {0 1 0
sind 0 cosl

Lo}
[
w
=

L=t ]

Solutlon: C,,=(-DN'"' 11 0 — cos0
0 cosd
Cp,=(=1y+ |0 . o0

] =0
sin®d cosi

e rranh




ligenvalue. ki) Elgenvecrom

Cho= = = sin

0 1
sin8 0

G == 0, Gy = cosM + sin0 == 1, G, = 0.

Cy =sin0, C,, =0, Cyy =cos i

rcnsu t - zin {}]' cash 0 sin®
o Ad{A)= { [ 4] = 0 - 1 0
L sinn f) cos IJJ - sinf { cosl

Now you citn try the lellowing excrcise,

2 3 -1
E E12) Find Adj(A).where A= [ G 0 4 £
[n 0 5_|

In Unit 7 you came across one method of finding out il o matrix is invertible. The
following thcorem uses the adjoinl o give anather way of finding out if a matrix A is
invertible, It also gives us A1, 0 A is invertible.

Theorem 3: Lel A be an n X n matrix over F, Then
AL (ADI(A)) = (AdI(A)). A = det(AY 1.

Proof: Recall matrix multiplication from Unil 7. Now

HEE il e ilin C|| C:| e Cn|

an - HAN PR H R CL: C:: . (.u.‘
A (A (A)) = . : -' . :

il lin: - LI C| " C;‘n. - Cn;\‘-

By Theorem 2 we know that a,C;, + a,C, + ... + &, G, = det (A), and -
GG + 0,8, + .+, C =0l # j. Therefore,

mn

[Get{A) 0 0 1
0 del (A 0
A(Adi(A) = 0 0 0
0 0 coodel(A)
I 0 0
0 ] Ce 0
= del (A) c . . ") :dl.:"r\)!.




Similarly, (Adj{A)) .A = det (A)I.
An immediate corollary shows us how Lo caleulate the inverse of @ mairix, if it exisis.

“Corollary: Let A be an n X n matrix over I, Then A isinvertible il and only il
det (A)# 0. If del(A)= 0. thep

A = (11det(A)) Auj(A),

Prool: If A is'invertible, then A™ exists and A™ A = L. So, by Theorem |,
det{A™) det(A) = det(l) = 1. ,-., dei(A) = 0.

Convc;'scly. if det(A) # 0}, then Theorem 3 says that
: l |

Al AdA)|=1=| = Adj

(arAs )) (M,Adnm)A
“

. -1 .

LA = ]A_IA,dJ (A)

We wiil use the result in the [ollowing example.

Example 11: Let

cos b 0 —sind _
A=| 0 l 0 Find A~
sin 8 ¢ cos @
Solution:
det{A)=(-1)"**.1. [ cos0  =sinD (by expansion along the
| sin0 cos0 " second row)

= ¢os?0 + sin?0=1
Also, from Exomple 10 we know that |
Adj(A)=| coso 0 sind
0 1 ]
-sind 0 cost

Thereforé, A~ =(1/det (A)) Adj(A) = Adj(A).

You should also verify that Adj(A) is A™' by calculnting'A. Adj(A) and Adj(;‘\)'. A
You can use Theorem 3 [or solving the following exerciscs,

E13) Can you find A™ for the matrix in E 129

E14) Find the adjoint and inverse of the matrix A in E7.

Derermminanis
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E E15) If A™ exists, does [Adi(A)])™ exist? Tfso, what is [Adj(A)]?

Thoarany £ s sallasd Meamuae T
- L A Tamer s

Rule.

20

Now we go to the next section, in which we apply our knowledge of determinants to
abtain sclutions of systems of linear cquutions.

9.5 SYSTEMS OF LINEAR EQUATIONS

Consider the sysiem of n linear equations in n unknowns, given by

Xy 4 gz + L A = by
anX: + dxnxy + ... 4 freka = by

2n1X1 -I' dn2Xz '!' . "I‘ pnXa = bn-
which is the same as

X b,

he b;
AX=B.wherce A={q].X= | . B=|

X, . bn

" InScction 8.4 we discussed the Gaussian elimination method for obtaining a solution of -

this system. In this section we give a rule due to the mathematician Cramer, for solving

- system of lincar equations when the number of equations equals the number of

variables. .

Theorem 4: Let the matrix equation of a system of linear equations be

I'x!'l [ ]
ol

AX=B,where A=[a; hen X=|
xlll

b

I}J

-——

L

Let the columns of A be C,, G, .. ..C. 1 det(A) # 0. the given system has a unique

-solution, namely,

x =D/D,.....x, = D/D, whero
D, = det (C),...C.,.B.C,y 1o, Cy)

= determinant of the matrix obtained from A by replacing the ith column by B, and
D = det (A).

S




Proof: Since |A] # 0, the corollary to Theorem 3 says that A™ exists.
Now AX=B=> A" AX=A"B
==1X = (1/D) Adi(A) B

Cu Ca ... Cni by
Cis Cn Cn b:
= X =(1/D) ) ) .
: . I .. : b,
Cln C2n ' - Cnn .
Thus,
X Cubi + Caby+. .. +Cub,
C 4 Caba+... 4 a2bn
X2 = (1/D) IJPJ 22b; T+ Cos
Cisby + Canba + .. .+ C, b,
Xn d

1]

Now, D, = det (C,,..., C_, B, Ciapr-++» G- Expanding along the ith cotumn, we pot
Di=Cb +Cb,+...+C b

“ni-n

Thus,
X b,
X2 D,
=D |- ' .
xn Dn L

which gives us Cramer's Rule, namely,
X, =D/D,x,=D,/D,...., x, = DD,

The following example and exercise may help you to practise using Criuner's Rule.

Example 12: Solve the following system using Cramer's Rule:

W3y -z = 2
X+2y + 2z =-1
x4+ y-6z2 =4

Solution: The given system is equivalent to AX = B, where

2 3 1 4x 2|
A= 2 1f, X=|y |, B= —1-[ » Therelore, applying the rute, we got
2 1 -6 z 1 4]
(2 3 22 1 273 2
-1 2 1 1 -1 i il z -l
11 -6 2 4 -6 (2 1 4
X= - v Y y £= ————
23 -1 2 3 4 2 3 |
I 2 1 1 2 1 2 1
2 1 -6 2 1 <6 2 1 -6

Alter caleulating, we get
=-23,y= 14,2=— 6.

Delerminanis

2l




. Figenvalues and Elgenveetore Substitute thesc values in the given equatigns to check that we haven't made a mistake
in our calculations. -

E EI16) Solve, by Cramer’s Rule, the tollowing system of equations,

X+2y 4z =1
24+3y - 2 =3
b -3z =2

Now let us sce what happens if 13 = 0. Remember, in Unit § you saw that AX = 0 has
- rlinearly independent solutions, where r = rank A. The followine theorem tells us
this condition in terms of det(A).

Theorem 5: The homogencous system AX = 0 has 1 non-trivial solution if and only if
det(A) = 0. ' '

Proof: First assume that AX = & has a non-trivial solution. Suppose, if possible, that

det(A) # 0. Then Cramer's Ruie says that AX = 0 has only the trivial solution X = 0
Xis non-trivial if X < 0, {because each D=0 in Thearem 4). This is a conlradiction to our assumption,

Therefore, det (A) = 0.

Conversely,, il del (A) = 0. then A is not invertible. . the linear mapping

AV (F)—= V (FY: A(X) = AX is not invertible. -"., this mapping is not one-one,

Therefore, Ker A # 0, thatis AX = 0 for some non-zera X V. (F). Thus, AX = 0 has

i non-trivial solulion,

You can use Theorem 5 to solve the following exercise.

E 1317) Doesthesystem WHdy o+ oz =Q
X— v -7 =N
dx+0y +2z =0

have a non-zero solution?




And now we introduce you to the determinant rank of a matrix, which leads us to
another method of obtaining tie rank of a matrx.

9.6 THE DETERMINANT RANK

I Units Sand 8 you werc introduced to the rank of a linear teansformation and the rank
of a matrix, respectively, Then we related the two ranks. In thisscction we will discuss
the determinant rank and show that itisthe rank of the concerned matrix. First we give
A necessary and sufficient condition for n veetors in V,(F) 1o be linearly dependent.

Theoremé: Let X, Kysenirn X, € Vo(F). Then X, Xare )X, are lincarly dependent over
thettield F if and only if de (X)) Xg0eeriX )= 0.

Proof: Let U = (X, X,,..,X ) be the n X 7 matrix whose column vectors are X, X,....,
X, Then X, Ky X, arelinearly dependent.over Fif and only if there exist scalars
% @z, €T, not all zero, such that o, X, + 4, Xp o+ o, X, = 0.

NOW, a.l %L
@ % .
ul. =X Xa.X,)
@ i

=chr.| + Xz, kL, + xnan
=E~| X1 + {sz,_."‘ R +Of|;|Xn.

‘hus, X,, Xz,...,Xp are lincarly dependent over F if and onty if UX = 0 for some non-

[«
] %y
o X = 1 &V.(F)
N
\ A .
ut this happens ifand onlyifdet (U) = 0, by Theorem s. Thus, Theorem 6 is proved.
heorem 6 is equivalent to the statement X

1Xoren X, €V (F) ave linenrly independent i€
donlyifdet (X X,,...X) # ¢,

ou can tse Theorem 6 for solving the following excercise,

[8) Checkif the vectors- ] 0 2
U R e O I are lincarly independent
1 I 0
over R, '
. 1 2 3
", consider the matrix A = 0 4 5
1 23

ice two rows of A arc equal we know that |Al = 0. Butconsiderils 2 x 2 submairix

Determinonts

A submatrlx of A is a matrix
thal can be oblaired from A by
deleting some rows and
colutns. 23

[1- e ]
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0 4 ‘
Apn= [ P2 :l Its detcrminant is — 4 = 0. In this case we say that the determinant

rankol Ais2.

In general, we have the following definition. -

Delinition: Let A be un m X n matrix. If A + 0, then the determinent rank of A is the
largest positive integer r such that

i) thercexislsant X 7 submatrix of A whose determinant is non-zero, and
ii) fors > r, the determinant of any s X 5 submatrix of A is 0.

Note: The determinant rank r of any m X n matrix is defined, not only of a square~
matrix. Also r < min (m, n}.

Consider the following example,
: i 4
Example 13: Obtain the determinant rank of A =2 3
36

Solutlon: Since A is a3 X 2 matrix, the largest passible value of its determinant rank can
be 2. Also, the submatrix |1 4{of A has delerminant (-3) # 0.

2 5
., the determinant rankof Ais2,

Try the‘following CXErcise now.

E E19) Calculate the determinant rank of A, where A =

a1 2 oflby[1 2 3
0 2 1], 4 5 6]
1 0 2

And now we come to the reason for introducing the determinant rank—it gives us
another method for obtaining the rank of a matrix. o

" Theorem 7: The determinant rank of an m X n matrix A is equal to the rank of A.

Proaf: Let the determinant rank of A be r. Then there exists gn r X r submatrix of A
whose determinant is non-zero, By Theorem 6, its column vectors are linearly
independent. 1t [oliows by the definition of linedr independence, that these column
veciors. when exiended 1o the column vectors of A, remain lineany indenendent. Thus,
A has ar least 1 linearly independent column vectors. Therefore, by definition of the,
rank of a malrix,

r<rank (AY=p{(A) e ey

Also, by definition of p(A). we know that the number of lincarly indgpendent rows thin
A hasisp (A). These rows form a p(A) X nmatrix B of rank p (A}, thus; B will have
p(A) linearly independent columns. Relaining these linearly independent, columns of B
we getap (A) X £(A) submatrix Col' B, So. C s submatrix ol A whose delerminant
will be non-zero, by Theorem 6, since its columnsare lincarty independent, Thus, by the
definition of the determinant rank of A we get ’ ) o




P(A)=T
(1) and (2) give us us p(A) =T.

We will use Theorem 7 in the following example,

Example 14: Find the rank of

2 3 4
A= 3 1 2
-1.2 2
Solution: det {A) = 0. Buldct([ 2 3 ]J = — 70,
' 3 1

Thus, by Theorem 7, p {A)=2.

Remark: This examplc shows how Theorem 7 can simplify the ealculation of the rank
of'a matrix in some cases. We don’t have to reduce a matrix to echelon form eatch time.
But, in {a) of the following excrcise, we sce 4 situation where using (his method seems
to be as tedious as the row-reduction method.

E E20) Use Theorem 7 to find the rank of A, where A =

1 2 -1 2 1 -1 21
4 3 17

P31 235 b)‘:2 351}

Determinants




Elgenvalues and Ligenviciors E20 (a) shows how much time can be taken by using this method. On the other hand,
' _E20 (b) shows how little time it takes to obtrin p (A), using the determinant rank, Thus,
the method to be used for obtaining g {A) varies from case w case,

a4

We end this unit by briefly mentioning what we have cover in it.

9.7. SUMMARY

In this unit we have covered the following points.
1) The definition of the determinant of a square matrix.
2) The propertics P1-P7, of determinants,

3) The statement and use of the fact that det(AB) = det(A) det {B).

4) The definition of tlie detefmnant of a linear transformation from U to V, where
dim U = dim V.

5) The definition of the adieint of & square matrix.
(6) The usc of-adjoinis to pbtain the inverse of an invertible matrix.
7} The proof and use of Cramer's Rule for solving u system of linear equations. -

8) The proof of the [act that the homogeneous system of lingar equations AX = 0-has
a non-zero solntion il and enly if det(A) = 0.

9} The definition.or the determinant rank, and the proof of the fact that rank of A =
determinant rank of A.

9.8 SOI'UTIONS/ANSWERS

E1) On expanding by the 2nd row we pet
[A| = =5 [Auf + 4| Az}~ {Ax|-

Nowu [Azll = 2 6 =4—]8=_ 14.
3 2
Ay = |1 6] =2-d2=-40.
72
|[An| = |1 2| =3-ld=-11
3 : 3

o JAL = (55) (<14) o+ 4(-40) - (-11) = 79,

Expanding by the 3rd row, we get
o o126 b6 L1 2
Al=T[Ayj-3Ap 4 2an =7 | [ -3 o | 2| 5. 4

= 7(~22) 23(=29) + 2(-6) = 79, _ -

Thus, [A] = ~T79, irrespeetive of the row thal we usc Lo obiain il.

' . EHm) A =
31. .., oncexpancling by the first row, we get
2

4 3 2'] 2 4 1. _s2y =79
T _ =5+ 70+ /(-22)
S N RS F




number of zeros, we expand along it. Then

-5 2 2 1
[Ay=1{-2 1 1 —(-3) 1 0
2 -1 1 -1 2

=2+3(2)=8.

E3) The magnitudé of the :cquircd volumne is the modulus of

11 01
0160
‘0 01

We draw the box in Fig. 2.

"E4) The first determinant is zcro, using thg row equivalent of. P2. The sccond
~_determinant is zero, using the row equivalent of PS5, since Ry = 2R,

E5) a 0. 0 b 0
a b 0 =3 =abc
: r ¢
i T € -
a d [\)
[} b f =a [ b f ] =abeg.
0 0 ¢ 0 ¢
N fl1 t) . ,-
E€). 0) = [[5{3} :,(m] = 1) 00 — (W 80
Lo = PO+ Y g0 — (0 s + 1) g,
 since — fg) = df -+f
(g) R

=gt - g = frf% ggf([t)) |

E7) Note that B is obtained from A by interchanging C, and C,.

E IBI=“IAI
Now jA| = !0 3| =4+6=10, ., |B|=-10. -
3 -3
-6 . -2
Also[AB|  =|-14 10 -6
28 -21 '18
-6 3 -2 _
=(-14 10 -6 adding 2R, to R,,
0 -1 6
=1{-5 [ :
~-14 -6 + 6 -14 10 ‘,expandingalongRJ.

.=8-108 = -100 = |A{[B|.
E§) [A|=1={B}. . |A| +[B] =

ButA + B = [0- oJ vt |A+B|=0|A| +[B].
0 o)

E9) Let'B be the standard basis of R*. The zero operator is
0:313?“):0(!)50 ¥ x €ER’. Now, [0); = 0.
det 0) = -
~R*: I(x) x¥ x €R), is the identity operalor or R, Now, (1], = 1,
dct(l) = det (1) = 1.

Dxlerminanta

Flg. 2
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Elgenvalues and Elgenvectors "~ E10) The standard basis for P, is {1,x,x?},
- Mow D(1} = @, D{x)= 1, D(x?) = 2x.

. : 010
‘ ~Dlg= |0 0 2
0 0 0

oMo
I
o

0 1
Codet(D)=10 0
0 0

B11) 8,,Cy) + 2,0 + apCpa = 2(-12*2[ 0 =1 | +H(-1)1)H
6|

6 27 =0
2 21

Similarly, check that a,,C,, + 85,Cy, + 85,Cy, = 0,
.Gy + 2Chy + 03Ci = 0= 2,Cpy + 2,,Cy5 + 2, Cy.
E12) C,;=0.C;=0,Cyy =0, Cyy =15, Cp = 10, Gy = 0, Gy, = 18, Gy = 12,

C,,=0.
' 0 -15 18
. CAdI(A) = [0 10 —12
o o ol

E13) Since |A = 0, A™ does not exist.
E14}:From E7 we know that |A] = 10.
Now, & =4,C), =6,C = -6,

4 3 2

l .
A":—I—Adj(.t‘\)=-—-- 6 8 2
-6 3 2

Verify that the matrix wé hnve obtained is right, by muliiplying itby A,
E15) Since A. Adj (A} =|A| I= Adj(A). A, and |A[ + 0, we find that

. 1. 1
[Adi{AY™ exists, and is = A.
! Al

E16) This is of the form AX = B, where

1 2 4 X 1
A =12 3 -1|, X= |y|.B=[3
1 0 -3 z|] - 12
T2 o4 B
"D, =13 3 -1 =-19
2 0 -3 »
i1 1 4
D, =2 3 -} =2
o2 -3
1 2 1
1 0 2
D = |A|=-II
\ x=21_ =.12.. Vo= —D.,l. =i 7= _.I?..'!'_ =i
28 D [ D 11" D 11

nT=m




Deterninants

E17) The given system is cquivalént to AX = 0, where

2 3 1
A=[1 -1 -
4 6 2

Now, the third row 6f A is twice the first row of A.
"., by PZ and P4 of Section 9.3, | Al =
".,by Theorem 5, the given system has a non-zero solution.
E18) [1 0 2
o -1 3

=-3+2=-1+#0. .".thegiven vectors are linearly independent.
1 10 :

E19) a) Since |A] # 0, the determinant rank of A is 3.

b) Asin Example 13, the determinant rank of A is 2.
E20) a) The determinant rank of A < 3; (3 1 1
Nowthe determinant of the 3 % 3 submatrix 1 2 .-Iliszero.
- (4 3 J
. 3 257
Also, the determinant of the 3 X 3 submatrix 1 -1 2 |iszero.
' 4 1 7

In fact, you can check that the dctcrminanl of any of the 3 X 3 submatrices is

zero. Now let us look at the 2 X 2 submatrices of A. Since |3 S#0,

-
we find that p (A) = 2.

b} The determinant rank of A < 2.

2 3

1 11==5#0...0(A)=

Now

- - - Fems din i miE— A Al e cam s e———— e m e
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xis the Greek letter 'lambdy’,
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10.1 INTRODUCTION

11 Unit 7 yau have studicd about the matrix of a linear transformation. You have-had
several opportunities, in earlier units, 10 observe that the malrix of a lincar
transformation depends on the choice of the bases of the concerned vector spaces,

Let V be an n-dimensional veclor space over Foand et T: V — V be alinear
transformation. In this wnit we will consider the problem of finding a suitable basis B,
of the vector space V', such that the nxn marrix {T],,is a diagonal matrix. This problem
can alse be seen as: given an nxn matrix A, find a suitable nxn non-singular matrix P
such that P AP is a dingonal matrix (sce Unil 7, Cor. 1o Thearem 10}, Ttis in this
conlext that the study of eigenvalues and cigenvectors plays a central-role. This willbe
seen in Section 1004,

The eigenvilue problem involves the evaluation of all the eigenvalues and eigenvectors
of a lineay transformation or 1 matrix. The solution of this prablem has basic
applicalions in almost all branches of the scienees., technology and the social sciences,
besides it fundamental role in various branches of pure and applied mathemarnes. the
emergence of computers and '.hclm'ui[ul;iiil_\.' of modern computing facilities has Further
strengrhened this study, since they can handle very large systems of equations,

In Seetion 10.2 we define cigenvalues and cigenveetors. We go on to-discuss a.method
of obtaining them, in Section 10.3. Tn this section we will also define the characteristic
palynomial. of which you will study more in the aexl unil. .

Objectives - : -

Adier studying this unit, you should he able 10 .

® wvbtain the characteristic polynomial af a linear transformation or a.matrix;

® obiainthe cigenvilues, cigenveciors and cigenspaces af a lincar transformation or a
NHILIH .

©® abtain a basis of 4 vector space V with respect 1o which the matrix of a.lincar
ransformittion T : V — Vs in diagonal form;

® abtatn a non-singular matrix P which dizgonalises a given dingonalisabte matrix A.

10.2 THE ALGEBRAIC EIGENVALUE PROBLEM

Cansider the linzar mﬁppmgT: RZms R2:T(xy) = (25, y). Then, T(1.0) = (2.0) =
2(10). L T(x.y) = 2(x.y) for {(x.y) = (1.0} = (0.0). In this situation we say that 2 is an
cigenvalue of T. But what ix an cipenvatue?

Definitlons: An eigenvalue of a linear transformation T : V — V' is ascalar v # F such
that there exists a non-zero vector s+ V sunslving the cquation v = 7x
- (T —y . 1] i 1
This non-zero veelor x € Vis called i elgenvector ul [ will respect o ”_“3 ugcn\f.ﬂll{.
»(Ilnour example above, (7.0 isan eigenveclor ol T with resnect o the mgunvulue_.)
s
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Thus, avector x € V is an.cigenvector of the linear transformation T if
i) xisnon-zero, and
i) Tx= Axforsome scalar A€ F.

The fundamental algebraic eigenvalue problem deals with the determination of all the
-cigenvalues.of alinear transformation, Let ns look at some examples of how we can find
cigenvajues.

Cxomple It Obtain an eigenvalue and a carresponding cigenvector for the tinear
operator T : RY— R? : T{(x,y,z) = (2x, 2y, 22).

Enlution:.Clcarly.T(x.y.z)' = 200.v,2) ¥ (X, y.2) 6 RY Thus, 2isancigenvalue ol T, Any
non-ze:q‘c]cmcnt of R? will e an cigenvector of T corresponding to 2.
-Example 2:' Obtain an cigenvalue and a carresponding cigenvector of T: C'-» C
“T(x,;y,z) = (ix, —iy, z).
Solution: Firstly-note that T is a lincar operator. Now, if % € C is an cigenvalue, then

3 (x,v,2) £(0,0,0) such that T(x,y,z) = A {(x, ¥, 2} =- (ix,~iy,2) = (n ?y, )z)

PN = -y =y, 2=2 . m e m
Thcse equations are satisfied if 2. = i, y = {) 2 =:1),

Ja A =lisaneigenvalue with ncorrespomdding ¢f - avector being (1,00 (or (x.0.0) for
my x = 0).

(1) is.also satisfied if . = -i,x =0,z ="00rif % = = (), y = 0. Therefore, -i and |
are also-cigenvalues with corresponding ugcnvcclors (-.‘] y, ) and ({1,0,2) I'Cbpc{.ll\"d)'
foranyy#.0,2 4+ 0.

Doutry the following exercise now.

El LetT ;'R%~-R2be defined by Tix,y) = (x,0). Obtain an cigenvalue and n
‘corresponding.eigenvector of T.

Warning: The zero veetor can never be sin cigenveclor. But, 0€ Fean be an eigenvalue.
For.exampie, 0 is an-eigenvalue of the lincar operator in E 1, a corresponding
cigenvector being (0,1).

Nowwe-define a veelor spice corresponding Lo an eigenvaluc of TV — V, Suppose
»EMis.an.cigenvalue.of the linear lemsfarmation T, Define the set
W, = {x €V ]| T(x) = Ax]
~ =1[0) \J{ecigenvectors of T Corresponding to 3}
‘Soaweetory €W, if and only if v = 6 or v is an eigenvector of T corresponding L0 7.
Now, x€Wr <= Tx=1lx,1being the idc‘:niity operator.
< (T-x)x =0
<= x € Ker(T-11)
W, = Ker (T - A1) und hence. W, is a subspace ol 'V {rel. Unit 8. Thowem -

- r . - . . - . gL
Since dds.an.cigenvalue of T, il has an eipenvector. which must be non-zero. Thus, W,

JSNONZCro.

:Definition: For an eigenvalue & of T, the non-zero subspace W, ix called the vigenspacd

of*'I .ussocialed with the eizenvahie A,
Letus: look at an exampie. s

Example 3:-Obran W, for the hnc.ur aper ator given in Example l.
Solution: W, = {(x.y.2) € R [ Texy.2) = 2(x,y.2)}
- “‘( y.z) € R (2%.2v.27) = 2(x, y.7}}

_F-llln\fl.hlﬁ and Elgenvicior:
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Ligenvalues und Eigtnveclors

Now, try the following excreise..

E 1:2) For T tn Lixample 2. obtain the complex vector spaces W, W, and W

As wilh every other concept relaled to lincar transformations, we can define

cigenvalucs and eigenvectors for matrices also. Let us o sa,

Lat A be any nxn matrix over the ficld T,

As we have said in Unit Y (Theorem 5), the matrix A becomes a linear teansformation
from V¥ (F) to V_(F), if we define

AV (F)= V(1) : A(X) = AX.

Also. you can sce thal [A],, = A,where

[ "]
]
: 0
Bll= Jcl = v
0

"ol 0]l

1 Lot

0 at l
= ] g, =0
. 0
0 . ]

is the standard ordered basis of V, (F). That is. the mitrix of A, regarded as a linear
transformation from V (F) to V_(F), with respeet (o the stundarcl basis B, is” A itscH.
This is why we denote the finecar transformation A hy A itscll,

Looking at matrices as linear transformations in the above manner will help you in the
understanding ol eigenvilues and gigenvectors for matrices.

Deflnition: A scalar 2 is an cigenvalue of an n Xn matrix A over Fif there exists X € V (),
X # 0, such that AX = wX.

1L is an eipenvatue of A, then all the non-zero veetors in V, (F) which arc solutions of
the matrix equation AX = »X arc eigenvectors of (e matrix A corresponding to the

eigcnvalue 2.

Ler us iook at a few exampies,

Exampled: Let A =
© eigenveclor of A.

Solution: Now A

eigenvalue and

=

oo —

LT

ow BN B
o

3
I
= 0 |- Thisshowsthat lisan
)

is an cigenvector corresponding to it

[J} Obrain an eigenvalue and a correspo

nding




0

0 0 Elgenvaluesand _Blgtlweﬂurl
Infact, A 11 [=21{1 and A =310 '
o 0 0 1

Thus, 2 and 3 are eigénvalues of A, with corresponding

0 0 . . i d
| ind |- o |, respectively. The c|g.cn\.-al(|i|:s of diag {d( -, da
0 | .

0
0
1

cigenvectors

Example 5: Obtain an eigenvalue and a corresponding cigén\ccctor

0 -1
of A= EM,R).
1 2

Solution: Suppose X € R is an cigenvalue of A. Then

X PO' ) ~y X
IJx=| . * such that AX =22, thatis, =

¥ 0 X+2y AY

So for what values of 3, x and y are the cquations —y = xx and x+2y = Ly satisfied? Note
that x # 0 and y # 0, because if either is zero then the otler will have to be zero. Now,
solving our equations we get A = 1.

. . N
Then an eigenvector corresponding toitis [_ i

Now you can solve an eigenvalue problem yourself!

- o , ' P2
= E3) Showthat3isancigenvalue of [ 0 3 ] Find 2 corresponding eigenvectors.

Just as we defined an eigenspace associated with a linear transformation we define the
cigenspace W, corresponding to an eigenvalue » of an nXn mairix A, as follows;

W, = (X EV.,(F}IE AX =X}l = (XeV.(F)[(A—- A) X =0}

For examf)lc, the cipenspace W, in the situation of Example 4, is

E} ev}(m—A :] =EW - {f} 6-"’,(15!)% ;2{:;}= EH
f

1

< .
0 XER \';'hich isthesameas [(x, 0, 0) [ xER .
0 .

)
ud




{ ‘xenvalues ond Elgenveclon
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E Ed4) Find W, for the matrix in E3.

The algebraic eigenvalue problem for matrices is to determine all the gigenvalues and
cigenvectors of a given matrix. In fact, the eigenvalues and eigenvectors of an nxn
matrix A are precisely the cigenvalues and cigenvectors of A regarded as a lincar
transformation from V (F) to V_(F).

We end this section with the following remark:

A scalar A Ja axt lgenvalue of the matr!x A If und only if (A — AT) X = 0 has a non-zero
solutlon, L.e., I and enly if det (A — 2 T) = 0 (by Unit 9, Thcorem 5).

Simtlarly, A is an eigenvalue of the linear transformation T if and only if det (T-AI} =0
{ref. Section 9.4),

So far we have been obtaining eigenvalues by observation, or by some calcalations that
may not give us all the eigenvalues of a given inawrix or linear transformation. The

remark above sugpests where to look for all the eigenvalues [n the next section we

determine eigenvalucg ond eigenveciors explicitly.

10.3 OBTAINING EIGENVALUES AND EIGENVECTORS

N ‘ . .
In the previous section we have seen thaba scalar \ is an eigenvalue of 2 matrix A if and
onlyif det (A—xI) =0. Inthis section we shall sez how this cquation helps us to sofve the
eigenvalue problem.

10.3.1 Characteristic Polynomial -

Once we know that X is an eigenvalue of u matrix A, the eigenveclors can casily be
obtained by finding non-zero solutions of the system of equations given by AX =12 X.

a4 o0 dia X

: an &4 ... Am X:
Now,ifA = and X = '
Anl 1] .I- ' Onn Xn ’

the equation AX = 3X becomes
B 81 ... Qi X A
dn 4 ... @ a X
Z Lol : A
JLL

Writing it out, we gel the following sysiem ol cquations.

a“xl + 2111.11 + ... + alnxn = }.xl
Nk +oapx, + o + 8%, = AX,
nmX' + ﬂ“:x: ¥ ... + {'l“nxn = )‘xn




This is equivalent to the following system.

(3= W%, a3k . 4+ oapx, =z )
By (A= i Fs, =0
a,x, +a,x,+ e+ (A, 2%, =0

This homogeneous system of linear equations has a non-trivial safution if and onty if
the determinant of the coefficient matrix is cqual to 0 (by Unit 9, Theorem 5). Thus, ?
is an eigenvalue of A if and'only if

ag-3d A e a,
Ay "122_?‘ """ By
det(A-2D)= | . R .| =0
an A e I'nn_':“

Now, det(AI-A) = (~1)" det{A -I) {multiplying each row by (- 1)). Hence, det().I - A)
= 0if and only if det (A - AT} =0, .
This leads us to define the concept of the characteristic polynomial.
Deflnltion : Let A = [a;] be any nXn matrix. Then the characteristic pelyroniial of the
matrix A is defined by

f,(t) = det(tl - A)

t—a;, =d; e -4,
1 YRR o PR ~aag
=~y = e t-a,,

The equation f,(t) = 0 is the charneteristic equation of A.
When no confusion arises, we shall simply write f{(1) in place of 1,(1).
Consider the following example.

Example 6; Obtain the characteristic polynomial of the matrix
ko2 '
lo -1].

Solutign: The required polynomial isjt-1 -2 |

0 t+]
=(=1)(F1) = 2= |

Now try this exercise.

ES) Obtain the characteristic polynomial of the matrix

2o
o 1 2],

Flgensulurn uni Eigruseiiars
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€igenvalues and Eigenveclors

The roots of the choracteristic
-pelynomial of o matrix A form the
‘sel ol elgenvalues of A.

_ Note that 2 Is an cigenvaive of A iff det(al - A) = f,(3) = 0, that s, iff X is & root of 1.

characieristic polynominl f, (i), defined above, Due to this fact, eipenvalues are also
called characleristic roots, and cigenvectors are enlled churacteristic vectors.

Forexample, the cigenvalues af the matrix in Example & are the roots of the polynomial
t2-1, namely, 1 and (- 1).

E E6) Find the eigenvalues of the matrix in ES.

-36

Now, the characteristic polynomial f, (1) is 2 polynomiat of degree n. Hence, it can have
n rools, at the most. Thus,an nXn matrix hos n eipenvaloes, ol the most.

Forexample, the mutrix in Example 6 has two eigenvalues, 1 and —1, und the matrix in
S5 has 3 cigenvalues,

Now we will prove a theorem that will help us in Section 10.4.

Theorem 1: Similar matrices have the same eigenvalues,
Proof: Let an nXn matrix B be similar to an nXn matrix A.
Then, by definition, B = PTAP, for some invertible matrix P.
Wow, the characteristic polynomial of B,
fa(t) = det(ll-B)

= det{tI-P'AP)

= det(P(t1- AYP), sincc PHIP =tP"'P = 1.

= det(P™) det(1l- A) det(P) (see Sec. 9.4)
det(tI~ A)det(P™) det(P)
f,(6) det(P'P)
= f,(1), since det(P'P) = det(l) = 1.

Thus, the roots of f,(t) and [, (t) coincide. Therefore, the cigenvalues of A and B arc the
same.

Let us consider some more examples so that the concepts mentioned in this section
become absolutely clear to you.

Example 7 : Find the cigenvalues and ejgenvectors of the matrix

S LU - O
A= 1 001
01 -2

Solution: Insolving E6 you found that the eigenvalucsof Aared; = 1,3, = -1,3,= -2,
Now we obtain the cigenvectors of A,

The eigenvectons of A with respect {6 the sigenvalue ; Ay = 1 aie the figu-Uiviai soiuiions
of
-
00 2 X, X,
i90 iJ x| =1 X1,
01 -2 X, Ay

which gives the equations

2!: =1 = 21)
x|+x3—x; = x;=x|-i‘x1=3x)
— I = xy =x




T'h'l.lS, Flgenvalues nodd Eigenvectors

2% 2
3x, ,thatis, x,|3 | givesalltheeigenvectors associated with the eigenvalue
X 1
3

A = 1, as x, takes all non-zero real values.

“The cigenvectors of A with respect 10 &, = =1 are the non-trivinl solutions of

0 0 2 X X
1 0 i X2 =(— 1| %
0 I —2 X .31
which gives
2% = =~ X, X, = — 2x3
M= x = e —N=2—X=X
x;—2x;=—x: Xy = X3

Thus, the eigenvectors associated with (-1) are

— 2X;3 . -2 .
un|l =n ] v xu#0xER,
X3 1

The eigenvectors of A with respect to 33 = — 2 are given by

00 2 %, %
1 0 1 1 ={=2)| %
01 2 Xy Xy

which gives

Xy = — 2x, X| = — X3
X t+x=—2x: == =0
—2n=—2 X=X

Thus, the eigenvectors corresponding to -2 arc
—X ~1
Q X3 #] ,XJ#O.XJIER.
b3 l '

il

Thus, in this example, the cigenspaces W,, W_, and W_, are 1- dimensional spaces,
gencrated over R by

2] 2] - [l
3(,] 1| and 0| ,respectively.
1]-[1 t

Example 8: Let A be the 4 x4 real mat-ix

[ 1 1 0]
1 _1 N Filbtaiem la Al A ssrm Tenmae e A mimamaan Ilwwr

bV 8 o = ASLICOITID ILa \-Ibhrl'(llu\'qllllu !-lE,!-rlII'\lUI.UI.i-
2 02 21
1 1 -1 0]
Solution: The characteristic polynomial of A = f,(1) = det(t]-A)
t—1 -t 0 0
_ 1ot 1 0. 0 _ .
= |2 2 (—2 g TUED
-1 =~ i l

2 DO

‘Thus, the eigenvaluesarc 2, = 0and 3, = . ' 17




Figenvalnes angd Eigenveetnrs

The eigenvectors corresponding to 2, = D are given by

38

O X, X,
-l -1- 0 0 X, X,
=2 -2 2 | x | =0 Xy |!
I 1 -1 0 X, Xy .

whichgives  x 4 x,=0
' —X, =X, =)
=2X =X, 5+ 2%, + X, =0
Xy kX=X, =10

The first and last equations pive Xy = 0. Then, the third equation gives x, = 0. The first
equation pives x, = —x,.

Thus, the cigenvectors arc

[, ' -17
X, . 1 X, #0,x,€R.
0 =X 0
o 0]
The eigenvectors carrcsponding 1o A, = L are given by
[1 1 00 [ x, X, -
-l -1 00 %o X,
-2 2 21 S R
L1 -1 0 | X ] LXi ]

“which gives x4+ x,= X,

=X~ ¥y XL
~2X; = 2%, + 2X, + K, =X,
X+ X —-xy =X,

The first two equations give x,

2 = 0and x; = 0. Then the Jast cquation gives X; = ~%;.
Thus, the cigenvcclor{s age '

{0 N
In =x] 0] ,%,#0,%ER,
© Ny |‘ [ |
B

Solution: The characteristic polynomial of A = ()= dct(tI—A)'

t -1 0 o , ‘
=l-1 t 0 |=n+1)q—1)

0 0 t-1

Therefore, the cigenvalues are 3, = -1 and 2, = 1.

Tne cigenvectors corresponding to &, =-=lare given by
¢

T 0| x X,
10 0t =(-1) x,
0 0 1|}x, X5 1
which is‘cquivalent to
=%

X =%
Xy =Ky




The last equation gives x, = 0. Thus, the eigenvectors are Eigenvalucs aad Rigenveeiars

X, 1
X | =% (-1 | ,x#0,x€ER.
0" 0

The eigenvectors corresponding to %, = 1are given by

0 1 01 ['x %
T 0 0 =[x
0 0 i Le X
which gives x, = x,
g = Xy,
Py =3ty <

Thus, the cigenvectors arc

X, 1 ' 0
X o=x |1 +x, |0
X, 0 1
where x|, x, are real numbers, not simultancously 0. AN
. Note that, corresponding 1o 3, = 1, there exist two linca rly independent eipenvectors
1 0
L'l and |0 |(,whichform abasisofthe eigenspace W,.
0 - 1 :

b

Thus, W_, is 1- dimensional, while dim W, =2

Try the following excrciscs now.

¥ E7) Find the eigenvalucs and bases for the cigenspaces of the matrix

2 ] 0
A=110 L -1
0 2 4

-—

LD




i peavalues ol Eipenvectors

E Eg) Find the eigenvalues and eigenvectors of the diagonal matrix

a, o0 . 0
0 a, O 0

D=0 0 2 ] ~whervea, # o fori#j.
0 0 a

We now turn to the eigenvalues and eigenvectors of linear tmnsformations.

10.3.2 Eigenvalues of Linear Transformations

Asin Section 10.2, let T: ¥V — V be a lincar transformation on a finite-dimensional
veclor space V over the ficld . We have seen thal

A€ Fisan cigenvalue of T

<=>det(T—Al})=0

== del{(Al—T)=10

<=> det (Al — A) = 0, where A = [T),, is the matrix of T with respeet 1o abasis Bof V.,
Note that [?‘.!‘T}:::.k.l“r!‘};;. '

This shows that 3 is ao cigenvatue ol Tif and only if 2 is an cigenvalue of the matrix A

= [T}, where B is a basis of V. We define the characteristic polypomial of the linear
transformation T to be the same as the characteristic polynomiat of the matrix A = (T,
where B is a hasis of V. '

This definition does not depend on the basis B chosen, since similar matrices have the
same characteristic polynomial (Theorem 1), and the matrices of the same linear
transformatian T with respect to 1wo different ordered bases of V are similar.

Just as for matrices, (he cigenvalues of T arc precisely the roots of the characteristic
palynominl of T,
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Example 10: Let T : RZ— R? be the linear transformation which maps ¢, = (1,0) toe,
=(0,1) and e, to —¢,. Obtain the eigenvalues of T

0 -1
Solution: Let A = [T, = ,whiere B=[er, e:hi
1 0

The characteristic polynominl of T = the characteristic polynomial of A

t 1

. = t? 4+ 1, which has no real roots,
-1 t .

Hence, the lincar transformation T has no real cigenvalues. Bui, it has two compiex

eigenvalues i and —i.

Try the following excreises now.

'E9) | Obtain the cigenvalucs and cigcnvcc!ofs af the differential operator D : P, P,
D(ag + a,x + a,x2) = a; + 2a,x, for ag a,, a, €R.

EI0) Show that the cigenvalues of 4 square matrix A coincide with those of A",

E11) Let A be an invertible matrix. If 2 is an eigenvalue of A, show that A+ 0 and that
a-lis an eigenvalue of A, -

Now that we have discussed a method of obtaining the cigenvalues and cigenvectors of
a matrix, let us see how they help in transforming any square matrix into a diagonal
martrix. '

10.4 DIAGONALISATION

In this section we start with proving a theorem that discusses the kincar independence
of cigenvectors corresponding to different eigenvalucs.

Elgenvatues and Flgeavectors
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Flgenvalues and Elgenveclors

Theorem 2: Let T: V— V he a lincar transformation on a finite-dimensional vector
space V over the field . Lot 2, 2,...,A, be the distinct cigenvalues of T and v, v,,...,
Vin De cigenvectors of T corresponding to 7,. %,..... b, respeclively. Then v, v,,......,
v, arelincarly independeat over I,

Proof : We know (lku

Tvi=hv, 5 €F, 04 veViori=12. .. .m,md? # A fori .

Suppoge, it possible, that {v, v,,..., v, } is a linzarly dependent set, Now, the single
non-zero vector vy is lincarly independent. We choose r(=m) such that {(VisVaseeny vy}
is linearly independent and vivae v, v} is lincarly dependent. Then

l-Ivr-l """"" (l)

for some.a, ay, ..\..0, 2,y i i

Applying T, we get

Tvi=aTv +a,Tv, + .. 4 a_Tv_. This gives

L N -y A S ta_ bV e (2)

Vis v FaV,F .o, ta

Now, we multiply (1} by %, and sultract it from (2). to get

0=qa,( -2))v, + LI W LA a0 -A v, ; .

Since the set {v,. v,,..., v,_,} is lincarly independent, each of the coefficients in the
above equation must be 0, Thus, we have 2 (-2 ) =0fori= 1,2, ........ r-1.

But) #) fori=1,2,......t=1. Hence (h=% ) # Ofory - 1,2...... , =1, and we must

have a; = 0 (ori = 1.2, ..., 7= I, However, Lhis is not possible since (1) would imply
that v, =0, and, being an cipenvector. v, can never be 0. 7his, we reach a contradiction.

Hence, the assumption we started with must be wrong Thns, (v ¥gpean , ¥} mustbe
linearly independent, and the theorem is proved..

We will use Theorem 2 1o choose 1 hasis for a vector space V so that the matrix [T), is
a dingonal marrix,

Definition : A linear tr.uslormation i 0V — Van a finite-dimensional vector space V
is siid (0 be diagonalisable il there exis(s a basis B = {v,, v,,... ,v,} of V such that the
miadrix of T with respect to the busis 3 is diagonal. That is,

W 000 .0
0o » 06 .0
[Tly=]0 0 2 .. .
0 0 0 ..

where 3, %, ..., 2, are scalars which need not be distinet.

The next theotrem tells us under what condilions ‘a lincar transformation is
dingonalisable.

Theorem 3 ¢ A lincar translormation T,.on a finite-dimensional vector space V, is-
diagonalisable if and only if there exists a basis of V consisting of eigenvectors of T.
Proof: Suppose that T is diagonatisable. By definition, there exists a basis B = {v,,
Va,eeeny ¥} OF V, such that

A 0 0 .0
¢ 2 0 .0
[T],=(0 0 ¥y
R U .
By;’Jcﬁnition of {1, we must have
T\-"I =3y, Iy, = 2oy s, Tvn =Qv,.

Since basis vecior are alvavs non-zero, v, v,, ..., v, at¢ non-zero. Thus, we find that

Vi Yoy eens Ve migenveciors of T

Conversely, let B = v, v,,..., v, } beabasis of V consisting of cigenvectors of T, Then,
there exist scalar§ a2, ..., @, nol necessarily distincl, such that Ty, = a,v,, Ty, = .

a‘ZV:'.' frerioy 'I.\"n &,

Ll




But then we have

ey 0 ce G
@ 0 .
(T]y= . . , which means that T is diagonalisable.
0 1] T

The next theorem combines Theorcms 2 and 3.

Theorem4: Let T:V — Vbealinear transformalion, where Visan n-dimensional vector
space. Assume that T has n distinet eigenvalues. Then T is diaponalisable.

Proof : Let X, 4.0, 4, be the n distinet eigenvalues of T, "Fhen there exist cipenvectors
Vi Yoyl ¥, corresponeling to the eigenvalucs i), 2,,..,2,,, respecl ively. By Theorem 2,
the setv, Va...,V,..i5 linearly independent and isas n vectors, where n = dim V. Thus,
from Unit 5 (corollary to Thearem 5), B = {v|, vy, -, v } isa basis of V consisting of
cigenveetors of T. Thus, by Theorem 3, T is diagonalisable.

Just as we have reached the conclusions of ‘Fheorem 4 for linear translormations, we
dciinc diagonalisability of a matrix, and reach a similar conclusion for matrices.

Definition: An nXn matrix A is aid to be diagonatisable il A is shnilar to a diagonal
matrix, that is, P AP is dingonal for some non-singular nXn imatrix P,

Noie that the matrix A is dingonafisable if and only il the matcix A, regarded as a lincar
transformation A: V (F) —» V() : A(X) = AX, is diagonalisablec.

Thus, Theorems 2, 3 and 4 are true for the matrix A regarded asa linear lransformation
from V_(F) to V (I). Therefore, given an nxn maurix A, we know thal if iy
diagonalisable if it has n distinct cigenvilues,

We now give a practical method of diagonalising a matrix,

Theorem 5: Let A be an nXn matrix having n distinet eigenvalues 3, 7,002y, Let X,
P, ST X, EV (F) becigenvectors of A corvesponding 10 7.y, Jg.-., 2, Fespectively.
LetP = (X, X ... » X, )} be the nxn matrix having X, X,.....X_ as its column
veclors. Then .
PAP = diag(?,, 2aver i)

Proof: By actual multiplication, you can sec thal
AP = A, Xy X))

(AX, AX, .. AX,)

(X 2 Xgr ooy 1K)

n

% {] 0
. 07 a

= (X XaoX,)
0 0 A

= Pdiag (X, 2., %)

Now, by Theorem 2, the colurnn vectors of P are linearly independent. This means that
P is invertible (Unit 9, Theorem 6). Therelore, we can pre-multiply both sides of the
matrix cquation AP = Pdiag (3], %0000, 2,) DY r'ieo peL 'AP = diap () hyeenn B ).

et us sce how this theorem works in practice.

Example [1: Diagonalise tive matrix

h P20
A= 2 1 =6 ‘
2 2 3 -
Solution: The characteristic polynomial of A = [{t} =
-l -2 0
2 -1 6 = (t=5) (t—3) (1+3).
22 -3 i

Eigen¥nluezs and Elgenveelors

B L= ey
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Eigenvalues and Elgenveciors

Thus, the cigenvalues of A are y = 5, A, = 3, %, = ~ 3 Since they are all distinct,-A is
diagonalisable (by Theorem 4). You can find the eigenvectors by the method already

explained to you. Right now you can directly verify that

G TH =T

1 | _1
Thus, 2], I and | 2
-1 0 1]

-f

are cigenvectors corresponding (o the distinct cigenvalues 5. 3 and -3, respectively. By

Theorem 5, the maltrix which diagonalises A is piven by

I 1 -1
P =!: 21 ?]. €heck. by actual multiplication, that
-1 0 1

S0 0
P'AP=! 0 3 O |[.whichisindingonal form.
0 0 3

The following exercise will give you some practice in diagonalising matrices.,

E E12) Arethematricesin Examples 7, 8 and 9 diagonalisable? Ifso, diagonalise them.

We end this unit by sur=marizing what has bern done in it

=T

T




T Eigenvalues ond Eigenveclors
16.5 SUMMARY
Asin previous units, in (his unit also we have treated linear transformations.along with
the analogous matrix version. We have covered the following peints here. -
1) The definition of eigenvalues, eigenveetors and cigenspaces of linéar
transformutions und miatrices.
-2} The delinition of the churacteristic polynomial and charncteristic equation of a
lincar transformalien {or malrix).
3) Ascalar Aisan cigenvalue ofa linear transformation T(or matvix A) ifand only if it
is a root of the characteristic polynomial of T (or A).
4} A method of oblainirig all the cigenvalues and cigenveciors of a linear
transformation (or matnix). .

_5) Eigenvectors of a linear transformation (or matrlx) corresponding to distinet
eigenvalues are linearly independent. .

6) A lincar transformation T : V — V is diagonalisable if and anly if V has a basis
consisting of eigenvectors of T.
7) A linear transformation (or matrix) is diagonatisable if its cigenvalues are distinct.

10.6 SQLUTIONS/ANSWERS

E1) Suppose X € R is an eigenvalue. Then 3 (x.y) # (0.0) such that T(x,y) = A {x. y)

' =:-(x 0) = (Ax, Ay)=>Ax= %, Ay = 0. These cquations are satisfied if 3 = 1,y = 0.

, 1is an eigenvalue. A corresponding eigenvector is (1,0). Note that there are
infinitely many eigenvectors corresponding to 1, namely, (x. 0)¥ 0# X ER. "W

E2) W, ={( y.:)CC’IT(x ¥, z) = i{x. y, 2))
= {(x, v, 2) €C'| (ix, — iy, 2) = (ix, iy, iz)]
= {(x,0,0)| x €C}.
Similarly, you can show that W., = {{0. x, 0} x EC] and W, = [(0. 0. x)| x €C].

x1 .70
E3) If3isaneigenvalve, then 3 # -} such that
v 0

I2 x1 T x
[0 3] [}l] _3|:y] =lx+2.\'=3xnl:ld3.\_=3yl

These equatlons are satislied byx = 1, y=landx =2,y = 2,
1 2

. 3isancigenvalue, and and are cigenvectors
1 2
corresponding to 3.
. [" X ) X2y
R4y W, = €V, (1) =
LY LI R '
’|

%] . '{ X
= EV;(R) X=y:» = xe R
LL x|

7l
This is thc 1-dimensional r-at subspace of V (R) whose basis is “: ”

t 0 -2 - 0 -2
W35} Itis -1t ~l [=t +
0 -1 2 -1 142 -1 142

= {R(t+2)-1} -2 = 1* 4+ 212 - {2,
45
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EG) The cigenvaiues are the roots of the polynomial 34212 —t-2 = (t~1) (t+1)(t+2)
Jotheyare 1, -1, -2,

i =2 -1 0 .
E7) ()= 0 -1 1 [=(-2)2(t-3)
_ 0 -2 (-4

LS the cigenvalucsare Ay = 2,2, = 3.

The cipenvectors corresponding to X, arc given by

2 i 0 X X
0 i1 -1 y =2y
0 2 d4 z 7

This leads us to the equations

x4 y=2 X=X
y—.zzzy ==X y=0

2y +dz =2z 2=0

X
“W,={] 0
0

The eigenvectors corresponding 1o A, arc piven by

1
XER . .., abasislorW,is [0:‘
0

21 0 X X

01 -1 y| =3| y/[| .Thisgivesustheequations
02 4]z z

20+ y=3x X=X

y— z=3y[ = y=x

2y Fdz =32 1= — 2%

-2

1
X€ER . .'.,ubasisforwais'“- l}

ef[3]

t-a, ¢ .. 0
0 ta ... 0

E8) (1)=;. . o = (t-a)(t-a,) ... (1-a )
e 0 - teay

.., its cigenvalues are a,, &,,...., 3,,.

The cigenvectors corresponding to a; are given by -

a 0 .. 0|5 xII'I
0 o .. Of|x =a,| % )
. 6 0 . a, ;‘|: ..\'")

This glves us the equntions

3% = aiks \ LERES §
arxX: = 4 Xz = x:=0
HELSE R & =0

(since a; # a, fori # j).
) X

g

.., the cigenvectors corresponding to a, arey X, #0, ,ER,
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Similarly, the cigenvectors correspondingtoa;are | 0 [ x5 0,x,€R,

X
0
E9) B = {1,x, :'»cz} is a basis of It,, L 0
01 0
Then[D];=0 0 2
000
r -1 0
.., the characteristic polynomindof Dis| 0t —2|=3
0 0 t

."., the only cigenvalue of D is 2= Q.

The eigenvectors corresponding to A = 0 are ay + a,% + ax2, where D(ay ¥ a;x + 0,x2)
=0, (hatis, a, + 20,x =0,

This givesa, = 0,a, = 0, ."., the set of eigenvectors coiresponding to A = O are

{ag| 3, €R,a,+# 0} = R\ {0).

E10) jul ~ A| ={(t — AY],sinee |AY ={A],
=il — Al,since I' =T and (B — Cy =B'~ C. :
.., the eigenvalues of A arc the same as those of A'.
E11) Let X be an cigenvector corresponding™to A, Then X # 0 and AX = 3\X.
LATAX) = AT ().
= (ATAIX = MATX)
=X =3A"X)
=» A # 0, since X # 0.
Also, X = MATX)=> 2" = AT K=" is an eigenvaluc of A7

EI12) Since the matrix in Example 7 has distitict cigenvalucs 1, -1 and <2, it is
diagonalisable. Eigenvectors correspondiny to

r2] - -2 —y
theso eigenvaltesare | 3 ] i 0 | . respectively.
[ A !
272 1] 00 2 1 0 0
JLifP=(3 1 0f ,thenP'f1 0 1|P={0 -1 O
1 1 1] 01 -2 0 0 -2

The matrix in Example 8 is not diagonalisnble, This is because it only has two distinct
cigenvalues and, corresponding ta each, it has only onc lincarly independent
eigenvector. ."., we cannot find a basis of V(I consisting of eigenvéctors. And now
apply Theorem 3. ' .

The matrix in Example 9 is diagonalisable though it only has two distinct cigcavalues.
[This is because corresponding to %, = -1 there is one lincarty independent cigenvector,
bui curresponding to 2, = 1 there exist two lincarly independent cigenvectors.
Therelore, we can form a basis of V(&) consisting of the cigenveciors

ro ! " 0
=1y ! K
o 0 1

i}
Thematrnx P = 01 isinvertible, and
' t

1

-1 1

0 0

a 1 07 -1 a0
>"(1 0.0 P=[ﬂ 1o
0

)
]
pooo Yol ;
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i1.1 INTRODUCTION

This unit is basically a continuation of the previous unit, but the cmphasis is on a
different aspect of the probiecm discussed in the previous unit. :

Lot T:V—V be a lincar transformation on an n-cimensional vector space V over the
field F. The two most imporeant polynomials that are associated with T are the
characteristic polynomial of T and the minimal polynomiat of T. We defined the former
in Unit 10 and the latter in Unit 6.

In this unit we {irst show that every square matrix (or linear transformation T:V—V)
satisfies its characteristic equation, and usu this ta compute the inverse of the concerned
matrix {or linear transformation), if it exists. .

Then we define the minimal polynnmiigl of a square matrix, and discuss the relationship
between the characteristic and minimal polynomials. This leads usto a simplc way of
obiaining the minimal polynomial of a matrix (or linear transformation).

We advise you to study Units 6, 9 and 10 before slarting this unit.

Objectives

After studying this unit, you should be able 1o

® state and prove the Cayley-Hamilton theoresn;

® {ind thg inverse of an invertible matrix using this theorem;

® prove that a sealar % is an eigenvalue il and anly 1T it is a rool of the minimal
polynomial;

+ obiain the minimal polynomial of a matrix (or lincar transformation) if the
characterisiic polynomial is known.

- 11.2 CAYLEY-HAMILTON THEOREM

In this section we present the Cayley-FHamilton theoren:, which is related Lo the
characteristic equation of a matrix. Itis named after the British mathematicians Arthur
Cayley (1821-1895) and William Hamilton (1805-1865), who were responsible foratot

e e I L L T " -
O WOTR UOTIE BN e wiesiny ol dotarnunonts,

Foo1 2
Let us consider the 3 X 3 matrix A=l|—l 2 Il
Lo 3 2]
Me -1 -2 -
Thent—A=l 1 =2 -1
Lo -3 12,

Let 4 be the {i.j}ih colactorof (U - A).

Then Aj, = (=2 -3 = - AL Ay = -2, A=A A=A Ay = B0

-

Lo = M By = -3 A= 12 A = V20

i e




v —dt+ 1 t+ 4 -3

LA~ A)= 1—2- -2 t=2

-3 3 =20+ |
F1 00 -4 1 27 R
=lo 1 ole+t 1 2 1|lta+]-2 0 =2
L0 0 1 0 3 2 -3 0 |

This is a polynomial in t of degree 2, with matrix coefficients.

Similarly, if we consider the n X n matrix A = [{lu}. then Adj(tl - A} is a polynomaat of
depree < n—F, with matrix cocflicients. Let :

AG =AY =B + B 48, 148, L (D
where B, ... . B, arc 0 X n malrices over I,
Now, the characteristic polynomial af A tx given by
(1) = £, () = det{tl-A) = [tI-A}
t=ay - -y ' : U
| TRa an . |
= . . . . Co l wwhere A = fa.]
=5 Y] ,l“ ilya 1|
=t 4™ "L +e,t+c,, o (2)
where the coefficients ¢, ¢,y ..., ¢,, and ¢ helong Lo the field F.

We will now use Equations (1) and (2) 10 prave il Cayley-FHamilten theorem.,

Theorem | (Cayley-Hamilton): Let [(t) = 1» + ¢ 1" + + ¢, 1+ ¢, he the
charucteristic palynomial of an nXn matrix A. Then,

f(AY= A"+ ¢ A™ + A" + ..+ A+cl=1D

{Note that over here 0 denotes (ke nxn zero matrix, and [ = 1)

Proof: We have, by Theorem 3 of Unit 9,
(tl-A) Adj{tl-A) = Adj(1I-A). (tI-A)
= det{ti-A)l

. =1{1)1.
Now Equation (1} above says that
Adj(tI=AY = B3,""" + By + .., B, where Byisannxnmatrix fork = 1.2,...,n.
Thus, we have
(=AYB,t™" + Byt"™ + Byt + ... +B 2+ Bt +B)
=[0I
=1+ ¢ " + 1:311"'2 F o + t:n_zl!.2 + ¢, Jt-+ ¢ ), substituting the value_of {{1),

Now, comparing the constant term and the cocflicients of t,12,...., 1" on hotl sides we
get.
=~ AB, =l
B, - AB.y = ¢l

Bn 1= ABn-! = Cn .'I

B, - AB: = ¢l

RB; - ADy = ¢l
B =1

Pre-multiplying the first cquation by 1L the second by AL the therd by A7, L e Last Iy
A" and'adding all these cquations. we gel

0=cdd e A A L cA™ AT DA
Thus TA) -~ A" + A" A 4 G GA .l
thearem is proved. ’

I'M}

“ 00 and the Cayley-Haunilwon

w
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sl

This theorem can also be stated as :
“Lvery squarc inatrix sntisfies its chargctevistic polynomiall?
Remark 1: You may be tempted to give the foliowing 'quick’ proof to Theorem 1;
f{y =det (tI — A)
=2 f{A) = det (Al — A) = det (A - A) = det {0) = 0.
This proof is false. Why* Well, the lelt hand side of the above equation. f{A), is annxn
matrix while the right and side is Lhe scalar (), being the value of det(0).

Mow, as tsual, we give the analogue of Thicorem | for linear trapsformations.

Theorem 2 (Cayley-Hamiltonk: Let The adinear transformation on a finite-dimensional
veelor spice V. IT (1) is the characleristic polynomial of T, then [(T) = 0.

Proof: Letdim V = u, andlet B= { v, vy, ..., v, } be a basis of V. In Unit 10 we have
observed that
(1) = the characteristic polynomial of T

= the chardcieristic polynomial of the matrix [T |u.

Let[T], = A.
IFf(t) = ot et A4 L et 4 oC, l'hcn! by Theorem 1,
[(A)= A"+ ¢ A™ 4+ A" +o Al =0,

Naw, in Thearem 2of Unit 7 we proved that [}, is a vector space isomorphism. Thus,
[T = [T 4 T 4 T 4 w1 e T+ e
frie + ¢ [T)0 4-‘c2 [T] R S Ca-tf T)u + cflin
A" A" A 4 L A+l
=[(AY=1
Again, using the onc-one property of [ ]y, this irapuzs that f(T) = 9,
Thus, Thearem 2 is true, .

Let us look at some examples now.

l 0O

‘Example I Verify the Cayley-Tamiltan theorem for A = [_ 32 ]

Solution: The characteristic polynomial of A s

1= -2 1

| 3 =y —-3t42
! t

Coowe want Lo verify that AT-3A 421 = (.

wer=[ 337100 < [

o _ 7 6 __‘ 9 6 . 2.0 = 00
A 3z\+2lm{_3 _2] [_3 0] + [o 2] [0 0].

o the Cayley-Hamilton theorem is trug in this case.

E E1) Verify the Cayley-Hamilton theorem for A, where A =

—_——

g0 10 10
a) 0By |3 0 11,c) (D3
3

,
-2 -2 IJ P -2 -1

L

[

= LT




We will now use Theorem [ o prove a result that gives us o method for oblaining the
inverse of an invertible matrix:

Theorem 3: Let () = tv + e ™' 4 ..., + ¢,k ¢, be the chargteristic polynomial of
an nxXnmatrix A, Then A~ exists if ¢ # 0 and, in this ease,

AT = (A A R L e D).

Proof: By Theorem 1,

KAY= A"+ A" '+ ..+ A+el=0.
= AA" AT+ L) = -l

and (A" A" T Lt DA = — el

= A~ (AT H oA+ L e )=
={=c ' (A" + gAY b e )AL
Thus, A is invertible, and

Al=—g A+ A 4 ).

~cl us see how Theorem 3 works in pructice.

: 7
Example2:Is A = —? '."]_ —l_l invertible? [fso, find A"
11 3]
Jolution: The characteristic polynomial of A, f(t)
(-2 -1 -1
=l -2 | =c-rtere-

] -1 1—3

Churacteristle und AMimnpl
1'nly namiul
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Since the constant term of I(1) = =19 :£ 0, A is invertible.
Now, by Theorem 1, [(A) = AS-TAZ+19A - [9] =0
= (119 A(A2=TA -+ 191} =1

Therelore, A = (1/19) (A° - 7A + 19)

2 5 4
Now, A’= |—-3 2 -6
-6 4 7
7 -2 -1
LAT=1719 |4 7
1 =3 5

To make surc that there has been no error in calculation, multiply this matrixby A. You

should get 1! .-
Now try the foilowing exercise.

E E2) For the matrices in E1, obtain A-!, wherever possible.

o ——

Now let us look closely at the minimal polynomial.

11.3 MINIMAL POLYNOMIAL

In Unit 6 we defined the minimal polynomial of a lincar transformation T: V— V. We
said that it is the monic polynormial of least degree with cocfficients in F, whiclt is satisfied
by T. But. we weren'Lable 1o give sinethad of obtaining the minimal polynomial of T.

In this sectioh we will show that the minimal polynomiut divides the characteristic
polynamiat. Moreover. the roats of the minimal polynomial are the same as those of
the characlenstic palynamzit. Since itis casy (o obtain the characteristic polynomial of
T, these faces will give us a simple way of finding the minimal polynomiai of T.

, Letus fir: el some properties of the minimal polynomial of T that we gave in
Llnit 6. Let p{ty be the minimal polynomial uf T, then
MPD pit)is o monie palynnmial with coclfivienis in ¥,




P2} P(T) = { Chuorocteristic and Minima)
1P3} If q(t} is a non-zero polynomial over F such that deg q < deg p, then (1) # 0. Polynomlal
1P4) If, for some polynomial g(t) over F, g{T) = 0, then p(1) | g(1). Thatis, there cxists

a polynomial h(t) over F such that g(t) = p(t)h(t).

Ve will now obtain the first fink in the relationship between the minimal polynontial
nd the chumctcmlm polynarial of u inear transformation,

Lieorein 4 : The minimal polynomial of a linear transformation divides its characteristic
slynomial.

roof: Let the characteristic polynomizl and the minimal palynomial of T be (1) and
(1), respectively. By Theorem 2, {(T) = 0. Therefore, by MP4, p(t) divides [(1), as
zsired.

efore going on to show the full relationship between the minimai and characteristic
slynomiils, we stale (but don't prove!) two theorems that will he used again und
1ain, in this course as well as other courses.

heorem 5 (lestun algorithm for polynomials): Let f and g bc two polynontials in t
ith coefficients in a ficld F.such that f # 0. then

I there exist polynomials q and r with cocfficients in T such that

=fq + 1, wherer =0 ordegr < degf. and

b if we also have g = fg, + r,, withr, = Dordegr, < degf, then q = ¢, and r =r,,

1 immediate corollary follows, '
grollary: If g is a polynomial over F with % € T as a root, then g(t) = (=) g(t),
) some polynomial q over F.

roof: By the division algorithm, taking f = (1 = A) we gt
D=-Na}+9,. L (1)
ithr=0ordegr<dep(t—Ary=1.

dégr< 1, then ris a constant.

iting t = ) in (1) gives us .

A) = r(3) =r, since r is a constant. But g(%) = 0, since 2 is a root of g car=0,
1ws, the only possibility isr = 0, Hence, g(t) = (i == M) q{).

nd naw we come 10 a very importanl result hat you may be using often, without

alising it. The mathematician Gauss gave four proofs of this (theoren between {797
td 1849,

weorem 6 (Fundamental theorem of algebra): Every non-constant potynomial with
mplex coefficicnts has al Jeast one root in C. :

othier words, this theorem says that any polynomial Kt = aw” + ae ot A ... +
t+ au (where au, a1 v @0 € C s 70, 0 2 1} has at leasi one rool in C,

qmark 2: In Theorem 6, if 1, € Cis aroot of f(t) = 0, then, by Theorem S, {t) =

-2 )0 {t). Here deg [} = n=1. If £, (1) is not constant, then the equation f(ty=0hasa

ol 2, €C,and [, (1) = (t=x){,{1). Consequently, () = (t=2,){t=22) (1) Here degf, =

2. Using lhe I‘un(hmc.nt.ll theoremn rcpmu.dly we gel .

D= a (a3 (). .. (t=3.) for some 2y, »a,.0.0, &, in C, which are not ncccqf.'lnly

stinct, (This process has to stop afier n steps since deg F = n.) Thus, all the roots of

2 belong to C and these are n in number. They may not all be distinel. Suppose %,
-» h are the distinet roots, and they are repeated my, My, s, respectively.

en my + ms . 4o =, and K1) = o (0= A0 (L= A™ o (U= AN

wexample, the polynomial equition 11 - i? -+ 1~ = O has no real roots, but it hastwo
stinet complex roots, namely. i(=vV—-1)and - i, Andwewrite 1 =12 +t-i=
){t+i). Here iis repeated lwice and- i only oecurs once,

e can similarty show that any polynemial f(t) over R can he writien as a product of
ear polynnmmh andl qu.ulr.lllc polynomials, For example the real polynomial 3= 1 = '
D +1+1).

n we go on 1o show the second and final tink thit relates the minimal and




Elgenvalies and Elgenveetors

54

characteristic polynominls of T V' — ¥V, where V is a vector space over F. Let p(t) be
the minimal polynomial of T, We will show that a scalar 2 is an eigenvalue of T il and
only if 3 is a rool of p(t). The proof will utilise the foltowing remark.

Rerpark B IFnisancipeavalue of T, thea Tx = wx for some XEV,x %0, Bul Tx = Ax=>
T2 = T(Tx) = T(x) = 2Tx = 22, By induction it is casy 1o see that Tk = 2kx for afl
k. Now, il g(t) = a "+ a 1™+ ... + ot a, is a polynomial over

Fotheng(M =a T +a T + ... +aT+al

This means that

g(T)x=a T +a, T"'x + ... +a,Tx + ax

=aaxa At +a,0X X

=g x

Thus, » is an eigenvalue of T= p(4) is an cigenvalue of g(T).

Now for the theorem.

Theorem 7: Let T be a linear transformation on a finite-dimensional vector space V
over the field F. Then 2.€ T is an cigenvalue of Tif and only if 2,15 a root of the minimal
patynomial of T. In particular, the characteristic polynomial and the minimal
polynoi‘ﬁinl of T have the same roots.

Proof: Letp.'bc the minimal polynomial of T andlet € F. Suppose X is an eigenvalue
of T. Then Tx = ax for sonre 0 +# K€V, Also, by Remark 3, p(T)x = p(3jx. Butp(T) =
0. Thus, 8 = p(d)x. Since x # 0, we get p(») = 0, (hatis,  is a root of p(L).

" Conversely, let abe a root of p(t), then p(2) = 0and, by Theorem 3, p(t) = (t=1)g(t).

deg q < deg p, q # 6. By the property MP3, 3 vE€ Vsuch that q(T) v # 0.
Letx = q{T)v #+ 6, Then,
(T -Wx= {T=A)g(Tv=n(T)v=10

= Tx — Ax = 0 = Tx = Ax. Henee, % is an cigenvaiue of T.

So, nis an eipgenvalue of T iff A is a root of the minimal polynomial of T,

In Unit 10 we have already observed that % s un cigervalue of Tif and onlyif Xisaroot .
of the characteristic polynomial of T. Hence, we have shown that both the minimal and
characteristic polynomials of T have the same roots, namely, the cigenvalues of T.

Caution: Though the roots of the characteristic potynomial and the minimal polynomial
ceincide, the twa polynomials are not the same, in general.

For cx:nnpic. il the characteristic potyncmial of T : RT-— RYis (t-+1)* (t-2)2, then the
minimal polynomial could be ((+1)(1-2) or (14 1) (1=2), or (t+1){1- 2)*, or cven
(t+1)2(1-2)*, depending en which of these polynomials is satisfied by T.

Ingencral, let £(t) = (1-3,}" (1~2,)" ... (1 — A)* be the characteristic polynomial of a
lincar transformation T, wheredeg f=n (.-., 0, + r,+....4n =n}and2,...., €Care
distinct. Then the minimat polynomial p(t) is given by

PL) = (1= A™ (L= ™ . (t = AY™, where 1 <m, <0, fgri=1,2, ... , I

In ease T has n distinct eigenvalues, then

(1) = (t=2,)(1=2,) «ooonn (i-2.)
and therefore,

p(t) = (&=2)(1=D,) oo (t=3,) = f(1).

E E3) What can the minimal polynomial of T: R}*— R be il'its characteristic polynomial

is .
ayt, ke 114+ 2)?




Analogous to the definition of the minimal polynomial of a linear transformation, we

define the minimal polynomial of a matrix.

Delinition: The mlaiingd polyisomial of & mairix A over ¥ is the monic polynomial p(t)

such that

iy p(A)=0,and : .
ii) if q(t) is a non-zero polynomial over F such that deg q < degp, then q(A) + 0.

We state two theorems which are analogous to Theorerss 4 and 7, Their proofs are also
similar to those of Theorems 4 and 7

Theorem 8: The minimal polynomial of a matrix divides its characteristic polynomial,

Theorem 9: The roots of the minimal polynomial and the characteristic polynomial of a
matrix are the same, and are the eigenvalues of the matrix.

Let us use these theorems now.

5 -6 —6
Example 3: Obtain the minimal polynomial of A= |~ 1 4 2
-6 -4

Solution: The characteristic polynomial of A =

t=5 6 ’,6 .
f(t) = 1 1—4-2 | =@-DHia—2).
-3 6 1+4

Therefore, the minimal polynomial p(t) is cither (1~1)(t-2) or (1~1)(t-2)?
Since (A —I)(A — 21

] 46 —6] 3-6-6 0 0 0]
==t 3 21 -1 2 2= {0 0o O|=a
3 -6 -5 3-6-6 0 0 0

the minimal polynomial, p(t}, is (1-1)((-2).
Example 4 : Find the minimal polynomial of

31 ~1
A=(2 2 -1
22 0
Solution: The characteristic polynomial of A =
-3 -1 1 I
(=2 2 1 = (t~1)(t-2)2
-2 -2 t

Again, as before, the minimal polynomial p(t) of A is either (1-1) (1-2) or (¢=1)(t~ 22

But, in this case,

2 1 =171 1 -1
A-DNAD) = |2 1 -1| 12 0 -1
(2 2 -] 22 -2
]'2 0 -1
=12 0 ~1| +o0.
4 0 2

Tence, p(t) # (t-1)(t-2). Thus, p(t) = (¢~1)(t-2)%,

dow, let T be a linear transformation for V to V, and B be a basis of V. Let A = [T},
f g(t) is any polynomial with coefficients in F, then g(T) = 0 if and only if g(A) = ¢.
“hus, the minimal polynomial of T is the same as the minimal polynomial of A. Sn, for
xample, if T : R*— R is a lincar operator which is represented with respect to the
tandard basis, by the matrix in Example 3, then its minimal polynomial is (t—1) (1-2).

xamgle 5: What can the minlmal pofynomial of T : R - 8 be if the churacteristic
olynamial of {T], is '

Y(=1) (B 41), b) (2 + )27

fere, B is the standard basis of R4,

Chorneteristic and Mln.imn!
Folynomiul
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E E4) Find the minimal polynomial of

Solution: 0) Now (=1 X + 1) = {i-1){(t+1)(t%t+1). This has 4 distinct complex roots,
of which only 1 and —| are real. Since ali the roots are distinct this polynomial is also
the minimal polynomial of T.

b) (€2 + 1) has noreal roots. Tt has 2 repeated complex roots, i and -i. Now, the minimal
polynomial must be a real polynomial that divides the characteristic polynomial. ."., it
canbe {12 + ) or (12 +1)%, -
This example shows you that if the minimal polynomial is a real polynamial, then it
need not be & praduct of linear polynomials orly. Of course, over C it will always be a
product of linear polynonials.

Try the following exercises now.

01 01
11 0 10
a) A= 01 0 1
1 010
b) T:R*— RY: Tix,y,2) = (x+y, y+2, 2+X)

The next exercise involves 1he coneept al the trace of amatrix. 1T A = [a,] C M (),
tiven the trien of A, derated by TriAd s - (e Weica ol M in (1))

e ————————— —mmmaly



E5) Let A = [a;] € M (F). For the matrix A given in Ed, show that
Tr{A) = (sum of ils cigenvalues)
= (sum of its diagonnl elements).

We end the unit by recapitulating what we have done in i1,

11.4 SUMMARY

In this unit we have covered the following points. .
1) The proof of the Cayley-Hamilton theorem, which says that every square matrix (or
linear {ransformation T:V— V) satisfies its characteristic equation.
2} "The use of the Cayley-Hamilton theorem to und the inverse of a matrix.
3} The definition of the minimal polyiromial of a matrix.
.4) The proof of the fact that the minimal polynomiul and the characteristic polynomial
of alinear transformation {or matrix} have the same reots. These raols are preeisely

the cigenvalues of the concerned lnear translarmation (or madrix).
5) A method for obtnining the minimat palynomial of a linear transformation {or

matrix). :

11.5 SOLUTIONS/ANSWERS

: t~ 1 0 0
El) a) Tup= -2 1—3 0|l =a—-1u—3
2 2 t~1

Now, (A — I)' (A = 31) = 0. .. A satisfics fa{t).

t =1 0

b) fay= -3 it =1 =4 =-1—-4
-1 . 2 (+1

[0 1 01l o 1 0 F 3.0 17

Now, A= | 3 0 i 3 4] ] = I 1 =1
Io=2-=0]| 1 -2 — -7 3 -]
‘ [0 1 0)f 3 o 1‘, 11 ]
A= | 3 ¢ | [ —I[ =12 32
1 o-2-a)-7 3 -] |8 -5 4

R ) —1 30 1

Now, A+ A2—A—4[= [.2 30 021+ .1t -

g =5 4 1=7 3 =

Characteristic and Minkmal
Polynomial

T rET L e
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Eigenvalues and Elgenveciors 0 1 0 4 t] 0
- 3 0 1] — 0 4 0
1 -2 -1 c 0 4
(Rl 0 -1
c) (= 0 1~3 -1 |=¢—-8+1n
-3 -3 1-4 .
[ | & 1] 1 b 4 3
Now, A=t 0 3 | 0 3 | = 3 12
' 3 33 4 15 21
0 [ : 5 19 24
3 12 7= |24 57
3 y 15 21 22 gl 129
_ 24 27 [ 32 24 40
SAT-BATH BA = 51 43l — 24 96 36
12¢ 124 (120 168 176
0 13
39 13 |- L,
(39 39 52
A sausfies its characierislic polynomial.
E2) a) The constant termof f,(t) is =3 # 0. .-. A isinvertible.
Now, A —SAT+T7A -3l =0.
PR
A= 5 (A — SA-I-T71)
| | 0 0 5 0 0 7 0
=3 8 9 0 — 10 15 0 | A 0 7
-8 -8 I ] =10 —10 5 0 0
1 30 07
= — -}
3 2 ) 0
J 2 2 3

Pre-multiply by A io check that our caleulations are right.

1) Aisinvertible. and A™ = %(AJ + AN

] 2 i 1
=‘3' 5 0 0
~6 1 -3

¢} Aisnol inverlible, by Thearem 3.
E3) a) The minimal polynomial can be 1, 2 or 1Y,

3R b}y The mintmal polynomial cim only he ({1-1) (1+2).

22

277
43




Charscteristh: and Minlmal

T =} 0 —1i
Polynomlal
Eqy o tan= |~V ot T Ol=pu -+ 2)
0 —1 1 —]

-1 0 —1 t
.7« e minimal polyudminl can be t{1~2) (t+2) or t° {1-2) (142).
Now A[A=21) (A+ 2T) = 0. .5, 1{t=2) (t-+2) is the minimal polynomiat of A.

b) The matrix of T with respect (0 the standard basis is

] ; 0
!

A= 0 ! ]

I 0 1

t—1 -1 0

Then f,(t)=" 0151 —i]=¢-r-t
' ’ =1 0. 1—1
This has 3 distinel roots: 0'1+'2\/?.1_;\/?

.",» the minimal poiynomial is the same as f,(t).

ES} Sum of diagonal elements = 0, )
Sum of eigenvalues = 0 — 2 + 2= 0and Tr(A) = — (coeff. of t¥in f,(1)) = 0.

.. Tr(A) = sum of diagonal elements of A.
= sum of cigenvalues of A,
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BLOCK 4 INNER PRODUCTS AND
QUADR ATICFORMS

This is the last block o this coume Jrdeats with the inte s ting prorertices of @ speciai i
of vector spaces which are known an inner product speces. T ihis block the unly vectur
spaces we consider will be over R ar C,

In the first unit (Linit 12) we introducs ihe basic rovon ¢ 1he wanee product of 1Wo vactors.
along with its properties. This product helps us in irtmducing ithe well-known govaieirics)
nutions of lengths and anples betwe2n vectors, %A'e ac on (o discuss the conzapl ol
orthogonality and the solution ol the basic problem of the exir tence of an srthononsal Sk
in i finite-dimensional inner product spacz,

The second unit tUnit 13) deais with 1he proble:s o charzciensing lingss 1'1...uinn.1ls in
nner product spuces. We show that such functiongts are s*ocavs nepresented s mner’
products. This fusther helps us in pravieg the existence 1 5 vniges adyim Ge avery piven
operaior. Some interesling relations berween an operator an s adjoint lead o define
self-zdjoint and unilary operators We also asablish sonie of their properties Thien we
introduce you to Hermilian, unitary and orthogonal matrices and ihe coruepi of orthozonat
sumilarity.

In Units 14 and 15 we deal with real vector spaces only. The purpose of these twa units is
lo use the methods of finear algebra that you have studied in the course so 1ar. (o reduce
quadratic forms in R?and R? into simpler forms. kn Unit 15 you will study various conies in
detail.

What you study. in these units will s1and you in good stead ir variots maihematics couises,
particularly in geometry and mecharics.

In case you are interested in knowing more abei; the materisl covered in this block. you
may look up the books that we have given in the cousse intraduction.

Trmwm
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UNIT 12 INNER PRODUCT SPACES

Structure
12.1 Introduction 5
Ohjectives

12.2 Inner Product _ 3
12.3 Nomiofa Vector - 8
i2.4 Onhogonality 11
12.5 Summary 17
2.6 Solutions/Answers . : _l‘?

12.1 INTRODUCTION

So far you have studied mifny interesting vector spuces over various fields. In this unit, and
the following ones, we will only consider real and complex vector spaces. In Unit 2 you
studied geometrical notions' like the length of a vector, the angle between two vectors and
the dot product in R° or-R*, In this unit we carry these concepis over 10 a more general
senting. We will define u censin speciul ctass of vector spaces which open up new and
interesting vixlas foginvestigations in mathematics and phys:c» Hence their study is
extremely fruitful as fur us the applications of the theory to problems are concemed. This
fact will become clear in Units 14 and 15,

Before poing further we supgest that you refer lo Uni1 2 for the definitions and properties of
the length and the scalar product of vectors.of R or R*.

Qbjectives
After reading this unil. you should be able to

‘@ define and give exumples of inncr product spaces;

® define the norm of u vector and discuss ils properties;

@ define onhogonal-vectors and discuss some properties of sets of orthogonal) vectors;

‘@ ob1ain un orthonormal basis from a given basis of a finite-dimensional inner product
space.

12.2 INNER PRODUCT

In this section we stant with defining u concepl which is the generalisation of the scalar
product that you came acrosk-in Unit 2. Recall that if (x . x,, x,) and (y, , ¥,, ¥, ) are two
veciors in R, then their scalar pruduc't is

R XYY YO EHY P Ry XY, .
We also remind you that given uny complex number z=a + ib, where a, b € IL ll.s
complex conjugate is Z = a — ib.
Further. 27 = |z]|' = aZ + bz. mdi‘h 2.
Now we are ready 10 define an inner product.

Definition: Lot Vbenvectorapaceover e fietld B Amap{ VR Y B { Sz )=

{ x.y)is called an inner product (or scalar product) over V if it satisfies the followmg
conditions;

IPD (x.x)20%x e V.

IP2} {x.x}=0iffx=0.

IP 3) ‘(x+y zy=(x.z}+(y.z) foralix.y.ze Vv

P4} (ax.y)= a(x y} foroe Fandx.ye V

IP5) {y.x)= ( xyiorallx.ye V. (Here( X,y ) denotes the complex conjugate of the
number {x. v ).)

FaRorC
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The scalar { x. ¥ ) is c.ulled lhe mner pruducl {or scalar product) ofthe vector x with the

veclor y, '

A veelor space YV aver which an inner product hay been defined is called an inner product
space, uand is denpted by (V. {, ).

We make d remark here.

Remark I: Letae F. Thena =B iffa e R. S SolPS implies the following statements.
o {xoxde R Maxe Voune(x2)={xx).

by If F-R.rhen(x.y)—(y.a)*ﬁ-x.; g V.
Now. let us exumine o familiur exampee.
Example 1: Show that R*is an innar product spuce.

Solution: We need 10 define an inner product on R? For this we define {u, v} =u - v %A,
ve R'(*" denoting the dot product). Then. for u = (x,, x,, X hand v = {y,, ¥, Y.\
(V) =%+ Xy, + Xy, We wam to chuck if { . )\ausfes IP1 - 1P,

i} IPLis satisfied becouse (v, u) =17 + %5+ x; . which is always non-negative.

i) Now, {0u)=0:= x] +x} +%] 0= x, =0, x,=0, x, 0, since the sum of positive

real numbers is zero if and only if each of them is zero,

~ou=0,

Also,ifu=0.thenx, =0= =%~ {uu)=0

So. we have shown that [P2 s satisfied by <, >
iii} IP3 is satisfied becouse

(usv,w)m(x + ¥z, +ix,+ ¥z, + (5 v yoz, where w = (2,2, 2,).

=X Z, E X2 X Z)H (2 2 Y2+ y2) e (0w (v, W)L

We suggest that you verify IP4 and IPS, That's what E| says!
El) Check that the inner product on R satisfies IP4 and IPS.

The inner produs? thul we hive given in F.xz-.:npla i cun be generatised 1o the inner prodect

-{.)on R" defined by {(x,. ... . X ). (¥} ... ¥.)) S Xy, * XY+ .o+ ay, This is called the

standard inner product on R

Let us consider inother example now.

Example Z: Take F = C and. for 5. y € C. define {x. y)= xy. Show that the map
(.2 €CxC — Ciseninner product.

Soburien: IP1 cad IPD ore sulisficd Sooausc, for ainy COMPBIER nunioer a, Ax £ 0, Also, XX = §
ifand orly iFx = Q.

To complete the solution yeu con try E2.

£2) Show thit IP3, IP4.und IPS are srue for Example 2.




)]

in fact, Example 2 can be generalised to C". for any n > 0. We can define the inner product
of two arbilrary veciors

X=Xk} 8nd y = (yp.... ¥, )€ C by (x.y) = E x,¥,-This inner product s called the
slandnrd inrer product on C".

The nexi example deals with a generat complex vecior space.

Example 3: Let V be a complex vector space of dirnensio; nietB=e....elbeabasis
of V.Given x, y € VT unique scatars a,. ....8,. b,. ..., b, & Csuch thai

n ' 1]
X = Za;c,.y = zb;c-,.
i=1 1=l

Defive {x.y} = iuib_i.

ia)

' Verify that { . ) is a: inner product.

n
Solution: Let x= _‘dc y= zb,e,.z—zce

where a, b.ce . CXi = 1,....n. Then

{x.x)= Za 20 Ao {x.x)=0e=a, =0icx=0

(x+y.2)= z(a £b,c = Ld c, +Z byc; ={x. z>+<y z)

Also.forany e L, (ux. ¥y)= zdd.b_l = aza, b_, =a{x.y)

i=! Ill
Finally, {y.x) = Zb Zba —Zd b, ={x.¥}
1=1 ) ‘el
Thux, IP1 — IPS ure xatisfie:. This proves that { . ) is an inner product on V.

Note that. in Example 3, ike inner product depended on the basis of V that we chose. This
suggests that un inner product cun be detined on any finite-dimensional vector space. In fact,
miany such proeducts can be defined by choosing different bases in the same vector space.

vou may like io try the following exercise now.

EM LaaX=1Ix.... %] Be u set and-V be the xet of al! functions from X to C. Then, with
respect 1o painlwise addition and scalar multiplication, V is a vector space over C, Now, for
any [Lp e V. define

n
(f-}_!:’= z f(Ki)E{K;}-
. s =1
Saowihut !V, { ) isuninner proxluce space.

Inner Proluer -

zbaabyabe C.
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We now state some properties of inner producrs ihat immediately follow from IP1 — IPS.
Theorem 1: Let(V.(, ))beminuerpmdwspace Thon, forany x, v,z € dec.uc C,
8) (ax+py, D=0z z)+p . 2
b (x. oy +pz)mo{x. v+ {x, 2}
¢} {0.x)={x,0)=0.
&) -y, e 2)-{.2)
e) X, D=y,2)¥z6 Voax=y,
Preof: Wewiﬂpme(a)ugd(c).mﬂ!uveﬁ:émtwym
2 (o +py, z<=(ax, 2) + (tyz}  (by 3)
sa{x.z) +p1{y,.z; (byIP4)

c) ThevectorOe Vcanbe writtenus @ =0 -y forsome ye V.

Thus, (0,2} ={0.y. x) =0{y. x} = 0.

Then, (x.0)= (0. x)=0=0.
The proof of this thearem will be complele once you solve E4.
E4) Prove (b). (d)and(e)or'l'heommi

We wili now discuss (e confent 067 .5 renb nia v

- =1 = ey =g ameen

12.3 NORM FAVALL

- e L - A

n Unu 2wedelirad e rangs, o5 wn 0 - T 87 195 T v, We will exisid this
definiiontnthe lergth el gz ro o - b pradect spn e

Definitdon: If (V. 7 . ;) is &0 st 000 0 sz20s @ha X € 7, dhen & porm {or Ragth) of
e veotor K s wenned it o2 jo Ll tiarled uyhd.

Yorer, b 2t R
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We make some pertinent remarks here.

Remark 2: a)ByIPl,{x,x)20%x¢ V. Thus | xf 2 0.
Also, by IP2,fx] =0 iff x =0

br Forany @ €C., we get fax|=|al fx|.

because Jax | = J(ox, ax) - = -JEE:_-(_: x) =\} cclz_(x. x)
m]u.lyj(x. x} =|aj]«L

AsinUnit2, wecallx e V a unit vector if x] =1, .

£= ES) Show that for anyxe V, x=0, L isa unit vector, - -

, Ixi
— = .

E

i

!

i

L >

ES5 leads us to the following definition. )

3efinition: Given any vectorxe V,x =0, ﬁ is the normalised form of x,
ES tells us that the normalised form of a vector is always a unit vector. -

We will now prove sorme mu_lls_invp[vipg_ norms. The. first one 1s the Ceduchy-Schwarz
inequatity. a generalizéd version of Theorem 3 in Unit 2. It is very simple, but very

important bacause It alibws iis'to fms‘gmy other useful statements, )

This inequality was discovered indepénacx:iﬂy by the French mathematician Cauchy, the
German mathematician Schwarz and the Russian mathematician Buniyakowski. However, in
most of the literature avaitable in English it is aseribed only to Cauchy and Schwarz.

Theorem 2: Let (V. (.} bean inner product space and x, y € V.

Ten (e ylshsl iyl .

Frool: If x =0ory=0,then [{x.y)|=0=]}x] Iyi.

So. let us assume that x 0 und y =0, Hence, jy]> 0.

Let z=-l:—u. Thenze V.and Jz]=1. Now, for any a € F. consider the nonm of the

veclorx~aze V.
ﬂx—azH:=(x-'az. x-ui) . :
=(x,X) -a(z.-x)-&'(x.z_)fuﬁ{z. z), using Theorem 1.
=ix!_’ - T(x, 2)— a{x. 7) + o, since (z.2)=1.
=ﬂn§3--E(x.z)—d(?;?ﬂqﬁﬂu.z)ﬁ«(x.z}ﬁ. '
adding and sibtracting (x, 2) {x, 2"
=ff’ -|(x. 2} #itx.2)- 6l i{x. 2) -]
=1l -1 2)f +[(x.2)~af

n particuiar, if we choose @ ={ x;z), weget - .
0sfx i’ = |{x. z)'z‘ _

Now [.x - az§* 2 0. This means thas § x |* ~[x, 4+l <al 20%aeF.

Henee, [(x. 2)[ 5 | x| that is. !(x II—::I) <ixf
I .
S CRNE Y

iy sfxidy]

which s the required inequality,

ST o SR
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Let us sce what the Cauchy-Schwarz inequality looks like in scine casex,

Example 4: Write the expression for the Cguéjiy-Schwarz inequality for the vector space
given in E3. AP

Solution: Forany f € vif I1 ={f.N= Zlf'(l'h)l2 . Thus, Theorem 2 says that

n f:'l_'u; .,'1.ln 2
X Fx; gD l-.:" £ e 2 lesf #fgev.
i=t TRTESSEE [
Do iry these exercises now. :
E E6) Write down the expressions for the Cauchy-Schwarz inequatity for the spaces givén in
Examples 1,2 and 3. .

E7) Ify = ax, show that [(x. )=} x} | ¥ [.

We come 10 the next theorzm now, which is & generalisation of well-known resulis of
Euclidean geometry,

. Theorem 3: IF(V.{.}}is an inner product space and x. ¥y € V, then.

a) ﬂ‘x+yﬂs|n|+lyl (Triangle iﬁequllily)

b) Im-&_—yﬂ1 +Hx—y|3 =2(Ix§: +ly51)(l’nmllelogramlaw)

Proof: a) Now lx+yf = {x +y.x+y)=§g:f +I-‘.~;.y}+()'.x}+ﬁ)-ﬂ1-
= ety oyl T
=Ix¥ +2 Re(n.y)-}llyf.
six[* +2Mx )|+l y L. since Re {x. vy s|{x.¥)}
20§ < 2fxffrioiyT (by Theorem 2}
= xedylf

Hence. | +y [ s (L +k )

Taking square coots of boils sides w¢ -hiain -

fxrylstixg+iyl-

by Toprove the pamilelogrins Jaw we eapand Tt g pEx- yﬂ" o gat
(x.x) + (L )+ Y. ) H vyt Y- ayi ey XY (v

“Z2(§e +lhyh™)

ST TR




Thus, (b} is ulso proved.

1t.nsp Pendc=t Kot e
The reason (a} is called the triangle inequality is that for any triangle the sum of the lengihs

of any two sides is greater than orequal §p the lcn"th of the third side. So. if we consider u A

triangle in any Euclidean space, two of whosc sides are the veclors x and y, then the third

side is X + y (see Fig. 1), und hence, {xf + ¥ 2] x+ y|.

Similarly, (b} is called the parallelogram law becnuse it genaralises the fact thut the sum of

the squares of the lengths of the diagonals of o parallqlqg'a.n " Euclldtan space is ulways \ / v
cquel fo the sum of the squares of its sides (Fig. 2). ; / .

ER) Show that ix1-1yRlsfx-yhkforx. yE(V. (.}
(Hint: Use the wriengle inequality for y and (x - y).)

-

1 LT B

Fig. 1 Doy slaf+irl

Lat us npw discuss a general version of what we did in Sec. 2.5.

124 ORTHOGONALITY
In Theorem 2° we showed thet Il(I ;}lﬂ S1 foranyx.ye V.laUnit2(Theorem2) we A B

\ i)
have shown that, for non-zero vectors x and y (in R'or R"}.Ill—l'i is equsl to the

magnitude of the cusmc of the-angle between them. We generalise this concept now.
For any inner product space V and for-any nosn-zero X, y € V, we lake [¢2.7) to be the

ixbivl

magnitude.of the cosine of the angip belween the two veclorsx and v, . “ 2

So what happens if x-and y are perpendicular o esch other? We find that {x, y) =0. This ~ Flg.z fx+y}?¢fx~y'= 2(de7’
leads us to the following definition. )
Deflnition: If{V,{.)}isan innuproduél-spacemd x.y€ V,then x is said ro be
orthogonal (or perpendicular) 1o y if {x.y}=0. This is denoted by x L y.
For example, i = (1, O)is orthogonal 1o § = (0, 1) with respect 10 the standard inner product
in R? _
-We now give some properties involving orthogonality. Their proof is lefi as an exercise for
you.

'\.
".
1
C

E9) Using the definitions of inner product and orthogsnaticy. prove the following results for
an inner product space V.
ay Oix-dxeV
. b} xix iffx=0, where x€.V.
e) xly=>ylx forxe V.

G) xiy=0oxiy forany @€ ¥, wherg i.y€ Y.

1"
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Let us consider some examples now.,

Example 5: Consider V=R" If x ={x,,....x ) and y =(y, ..... y,) are any two vectors of
¥. we define the inner product of x wuh y by

ix-y)-zx.n

letB=le.....el belheshml.trdbas:snl‘v Showl.hauil.e wheni#jij=1..

What happens when i = j?

Solution: Considere, =(1.0.0. ... ,0yand e,=(0. 1,0, ..., 0). We find that
(¢.e)=10 +0.1+0+., +0 B chce.e le. Inamm:larwny.wecanshowthnl
J.e forizji.j=1..

Now Iclusscewhnl(c..el)u. izl
{epe)=1L1+0+...+0=1.
{e.e)=0+1+0+ ., . +0=1

Similarly, {e.e) =1 Yi=1I,....n
'ﬂms.lci!=l’ﬂ"i= {.m

On the lines of Exumple 5. we can also show that the elements of the standard basis of C*
are mulualiy orthogenal and of unit lepgth with respect to the standard inner product.

Try the following exercises now.
El) Forx,ye (V{.))suchthatx Ly, show that
Ix+yF =xk «lyl.

(This is the Pythagoras Theorem when ¥ = _R;" {see Fig.3)))

EL1) Obtaina vector v = (x, y. z) € R’sotha:vlspe:pcndlcularm(l 0, 0) as well.as
{~1. 2,0}, with respecttomemndard mnerproducl.

We will now define a set of orthogonal vectors.

Definitions: Aset A = Viscalled orthogonal if x Ly 44 x,y € Asuchthatx =y,
An orthogonal sei A is called orthonormal if [ x| =1 ¥xe A,

For example, the sct B in Example § is orthogonat and orhnnormal.

By definition, every orthonormal set is onhogonal But the converse is not irue. as the -
following example tells us.

Example 6; Consider the standard basis B = le, .....¢,) R“ Show that the sl

C=1{2e,.2e,..... 2¢,| is orthogonal but not onhonnnml with respect to the smndmﬂ inner
product.

Solutlon: Fori=j, (2¢, 2:):4(: e.;=- 0. Thus, C is an orthogonai set.

'But IZeil.—.-.‘f4(e,.c, =2 ¥i=1,

&, C is not an orthonormal eet.




E E12) La P_ be the real vector space of all real pol-ynominis of degroe € n. We define on
inner product on P_ by )

<in,x‘. gb;') x i‘lh.-

Il inl}

Show that the basis [ ). x, #* ..., x*) of P_ is an orthonomal set.

I the next wo theorems we prevent some properties of an orthagonal set, reluted 1o the
linear combination ~f its vectors.

Theorem &: Let (V.(.J)beﬁimerpmdmupuccand:.y, wie ¥, € V such thi
ALy ¥iel.... 0 Then x is orthogonal to every linear combination of the vecions

) JRR I8
;]
Proof: Lot y = Zaiy,-. wherea, e FMi=1.....n.

=l
-Then,y e Vund
Az = <"-i"i¥i) a i:{(x. ¥} = 0. because { x, ¥Y,) w0 i

This shows tha x L y.

Theorem 5 Let (V.{.)) be an inner product space and A & [X, .....x,| € Vbe an
anhoganal sci. Then, forany a € F(i= | ...., n), we have

3o, r=i|n.ﬂx. P

Proof: Our hypothesis says that { x, x) = 0if i » J. Consider Y= 3. 3%,.

ial
v I: ={y.y)= (ia,x, .ia,-nj) = 2.‘, i(ﬂisi. a,-!])

i=] =l in)  gul
fi -] -
“Z'E‘i']f"i-‘ﬂ
il Jub
=ili;(x,.u;}.since(a..xj}=ﬂ tor i=j
iml
=Z"l|1|"i|2
ia]
This proves the resuh,

Note: Ifa = I'V'i.inﬂuruns.wesel

liﬁr = i' %y Iz

vl in]
This is a generalised form of what we gave In E10.
We now give an important result, which is actusily a corollary to Theorem 5.

Theorem 6: Let A be an orthogonal set of non-zero vectors of an innerpuh;cmpacev.
Then A i a tinewrly independent sci. . '

tnmar el
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Proof: To show that A ix linearly independent we will have to prove (hat any finite subset

. n
{%, ..... %, of vectors of A is lincarly independent. For this. assume that y= Zai"i ={0.
. _ . o
2 gy oo .
e Y[ =0 Z|a|] i =0=]a,] Fe = 04%i
vk

L]

I L . .
ER Y R e ﬂ‘.! r ioram

. . . e . ]
for L R T TR T B T Y R S T A Pr O

e s pand that ve amngnas) 2 i
nriteaonnt LAl ny 3 A ecr <pine Voo dlnemicR n e .. - - IO L
ol it any Githopona] auswied R e s oam e sl e Jnew

W shall use Theoream 6 ds a steppmig stone e arnds Siwing ihat any niner product space
has an orthonormal <ol ax 1 baas But B2, some definitions and remarks.

Definitlun: A busis of un inner product space is called an orthonormat basis if its elenyrt
form an orthonormaai wt.

Fer exumple. the standard basis ot R is an orthoromal basis (Example 53,
Now, a small exerciae,

E13} Let fe. ... ) be an onbinnormal basis {or areal inner product spac"c V. Let
n n n
A= Z e, and y= z i€, be elemenn of ¥ Show that{a, yi= Z Ny,

ERCRTITT SO TR [SPLT L T ray prret ey
Kemarh b0 o0it o oV sz ~enal, then the ver

H-. --‘-i Av b R el Fae avainple, coasider RY with the got
S

product Letv = i Trad w =00 20 vhen s, won (=i = () Thus, vl w._Therefore,

i H e . .

v L l v . 2 . -
;ﬂ,ﬁ} =5 = = . s-;oe—— 0 sSanerthonormal setin R n fact, this is o bosis
tvy gwyio v e w2

of R since {v, wi ix u lmexrly Independent set and dim JR=2

T :‘ L3 - a . - I =
L “q Il-c;ir: v rEgarded as AL OATORGMaT sa1 in V.

h: Fproany ez

TN aate b thearem this il us of the ensstence of un eribonormal basis, 15 prood -
oo ofanethod called the Gram-Schaidt erlnogonalisation process.

Thesrem > Let 1V, )1 be a ann-2em inazr product space of dimension a, Then V has an
anhanere s ase

Promt. e wiale Tnd citere | vz 1, W enabONTl Dads, and then otwn an wrikononnal

PR TAS
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Take w, = v,. Define w, = v, SLvewy) ) w,. Then w.=v.- Lpw) V) v

W:.\h} (V|-\'|)
and LI
(“-:,\-,>=(v,.u,)_£<1::_‘ﬁ.)2(\,.v,>=u.m| in (W, w,) =0, Furiher, v, =c v, + w..
V].\'l .
where ¢ (w:,wl)Ei S

("t-“":) _ ('l-‘ﬂ)
(Wa.wa) 7 {wwy)
v,=cw, +.,w, + w,where e, ¢, & F. Continuing in this manner, we can detine
PHR. Y cF.

(w,. w,)

=V, ECW, W ke W W, for m=0,....n~] .

Dueline w,=v, -

w,. Then (wy.w.y=li=(w,.w; Ao,

W S ¥ =W, =Wy = O W, Wi €, =

maul n

This way we abtain an onhogonul set of veion {w,. wy'..... w_}. Such that the v 's ure &
linear ¢ombination af the w's. By Thevrem 6 this set is lincurly independent. and hence
forms s basis o V.

From this basis, we immediitely ohtain an onhanormal bais of V by wonp Remark 3. Thos,

) W W, i -
: —'-—‘H w '—‘-"! o ] is un tvthonormul basis of V,

Nite: The sume process l.:-'.lll e usedd 10 show thut:

eV O s anomner product space and Y = {y, L,y Faoset of linearly independent
vecton af V. then in otthonormal set X = {x., 1, ..... X} van be obtained from Y such that
the linear spans (ref. Unit 3} of X and Y-coincide.

Let as s ow the Gram~Schmidi process works in o few cunes. )

Exumple 7: Obtain un orthonormal busis for P.. the spuce of all reul polynomiuls of degree
il tioat 2, the inngr produgt being defined by

{py.pad= Lp,mpzum.

Solution: |1, FF] is o basis for P.. From this we wil) obiuin an orthagonal basis
fw.owaw L Now w, = L and{w,, wy}= I: di=l,

2

__ {Lw)) ! [ | I
:-l-mwl. Now {I.W.}HL' It !—2" " -'5-... Wy =1

.-..(w:,\m:)=-[:[l__;-]: dt = L.

12
W= 1 - ('z-“’:) . (¥ wy) .
(wa.wa) © {wpw) !
oA I I _a 1 1, la |
=1 - I-{T__Tu-l—z—l}—-i-t akhie Alm(w_,.w_.)u_['u —|+E} di-—l—sa.

Thus. 1he orthonormal hasis is Il—:ll-'ﬁ-”-:—:l}u {1. Jl'z'[: -%].Ji‘ﬁ( 2 -—:+%]].

Here's an exercise.
E Ei5) Obuin an onthononmal basis, with respec to the standurd inner product, for
2t the subspace of R pensrated by (1.t 31and (2. 1. 1),
b) the suhspace of Rpeneruted by (1.0.2, 0)and (1,2, 3. 1)

Inner Producl Spaces

Sce Block 3 of the Caleulus coun
fur d2finite integrals.
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W will now pm\'e 4 theorem thut leads us to an important inequality, which is used for
studying Fourier coeffivients.

Theorem 8: Let (V. (. )) be an inner pmducl space and A = |x, ..... x,) be an orthonormal
setin V. Then, forany ye V.’

Z(y X )xll =lyF - Z [¢y. x0)-

irl i=|

Proof: Let xa leli(l € Fibe any linear cambination of the elememis of A,
In)

Then fy-xF =(y-x.y~x)=§y§ ~tv. )~ fnyy + ] 2 F

—Iyl’ (y Eaix) (an y\vl F

im] {m}

={yl -(y.%u,x.) - _Zlgn.u..y) + .I;i'*r Ix F.since (X ;) =0fori=]
As Ix, I w1 Wi, it follows that

by -2 =py¥ Zﬂn) Xe) = Za,.x..y\+2aa

il |-|

_ =I:‘i.:-5_', [ty. x )1 +F ly. x, )| Za;.. N Za {x. y)+Zaa

-='rﬂ’—2 Ly x0f + ¥ 05, 5) 5 )~ En 7%= ):a<y e+ e




=bF-X K yor)f +Z<y. DICTENEPED L RE

=y’ Z |y, x0f +Z [(y:x )-:a,HEy X9 -a;)

iw] : =1

=H)‘Iz‘2 |(Y- ‘l)la"'z |(Y- 31)"“:'2

=] i=l
This is true for any a € F. Now choose a, = {y, X} 4+ ... . n. Then-we get
~ P 1 % 2
Y"Z {roxxyl =17k —2 iy x)l
iml =]
which is the desired result.

"+ And now we come (0 a corollary of Theorem 8, loown as Bessel's inequalily. It is named
after the German astronomer, Friedrich Wilhelm Besse! (1784--1846).

Corollary: Let A = {x, ..., x ] bc any orthonormal set in (V, {,)). Then, for any'y € V,

Z I(M)I siyf’

E15)} Prove the corollary given above.

[

We end the unit by s-umma:ising whar we have covered ip it.

o

12.5 SUMMARY - i

In this unit we have discussed the following points. We have
[. defined and given examples of inner product spaces. -

2. defined the normn of a vector.

3. proved the Cauchy-Schwarz inequality.

4. defined an orthogonal and an orﬂgonoma! 5et of vactors,

5.

shown that every ﬁmu-d:mslona.! inner prodyct space hasan on.l'lononml basis, using
the Gram--Schmidt orthogonaljsation process,

.6. proved Bessel's inaquality.

12.6 SOLUTIONS/ANSWERS

El): Forae Rand(x, X, k)L (¥, ¥ yy6 RY
CICRE RSN UM A LICE WS B R
=QX,y, + axy, + 0.y, =a{:,y, +_5,y, + x,y,)
= 0f(x,, X X)), (0 Yoo VY-

~IP4 s satisfied , .-
Also, for any X = (x,, X, X,) ady=(y,y,y)ln R .
{x, y)=x Y XY Y =YX, F YK R yx =y, x).-
~IP5 is satisfied.

17




g‘::;:?:;m‘ E2) Forx,y,z€ Canda e C wehave

(x+y.2)=(x +y)z=x2+yZ={x,2) +(y, 2},
{ox,y) = (ox)¥ = a(x¥y) = a{x,y),

{x,y)=xy =Xy =yX ={y. x).

~{., ) satisfies IP3, [P4 and IP5.

E3} Letf,g.he Vand ae C. Then
(f, f)=f, f(x.)ﬁ,i_{i=i‘, [fexpft 0.
(f.f):gle r(x,)=0'V-;=l1.....n
< £ is the zero function.
(F+g. h)=§"‘,tf+s)(:.)i('iﬁ

iml

= Ilelft'x;)'«- g G

=Y, (e h(x) + ) Ox, R(K)

Il =l
={f.h)+{g, h}.

(of.g)= Y, (@)(x)Elx)= Y of(x,)5())

bmt Iml P

= uz f(x,)g0%)) = a{f. g)

(F8) =) fixg0) = Y, Txpalx)

=} 1=
= Y e G =(a. 1),
I=i
A (V. (. )) Is an inner product space,
E4) b) (x,ay+pz) = {ay +uz,x). by IPS
= {y. %)+ L{z. x), by Theorem 1(a).
=&y, 0} +i{zx)

= a(x, y) +{1{x,z), by IP5.
< (b} is proved. "

& (x-y.2)= (x +(~D)y.2) = (x,2) +(~1){y. 2), by Theorem 1(a).

= {x.z)~{y. 2).
e) h.z)?'(y.z}-v-zev
2{x-y,2)=0%zeV, by (J) above. .
S{x-y,x-y)=0, taking z=x-y, in particular.
1=9x-y=0, by IP2, '
=x=y.

ES) Letu=c™ Then (v.uu (2o 2 Yol tx xy
o= (4. u) (lxllxﬂ) I_’slr(“ x)
=P |

REL
sofu]= )y =1

E6) In the situation of Exumnple | we get
lu-vlsfuffv] for u.veR’. Thus,

[K¥ + 22y 2 5av] S xF #7453 YT+ Y3+ 93
V(X k) (v vy ) € R?
In the situation of Example 2 we get
18 |<¥|shx] |yl ec




Theorem 2 and Exa.r'npla 3 g[w'uus

where Zale, Zbiei are elements of V.
iml l-I
ED [y}=laxax) =laf (s x) =fol ] x ]
~lxlly ] =lellx T =[8ltx, =) =&, ] =K. m)| |<;,,;|

E8) Iy+(x Nislyl+ix-yi
=Ixislyf+x-yl.
=[x{-lyislx-yl-
Similerly, jyi-1x]sby-xi=fx-y}. sime {x}= I-—xl
Iﬂxl-Mlﬂx—yl.ﬂnukduuor-afnranquR
E9) a) Use Theorem I{c).
b)- Since (x, x) =0 <> x =0, (h) is tree.
o) xly=s{xy)20=F.x)=0={,x)=0
2ylx.
d) xLly=2(Xy)=0=2a{x.y)=0V¥ae¢F
= (ox, y)n0¥ agFm axlykaeF.

E10) Ifx Ly, then &y =0 Henep | 5 + ¥ [ = (5 D+ vy =xF + 1y T

Ell) vI(L0.0)=s x-1+y-0+Z-0wO=x=0
vi{(-L2,0)=3 x- (=1} +y:2+42-0ul=-x +2y =0,
So we get x =0, y = 0. Thus, v is of the form (0,0, 2} for z€ R.

El2) Fori#j, {x',x) =1.0+0.1-50.
Also,¥i=0,.....n &Wxd=1,]=1.
., the given set is onkongrmal.
E13}{x.y)= (Ex i®is Ey;e.) Ff&.r,(e,.e)
-Ex,y, since {e;.¢) =) lub;—l....,n and
(e;.e)=0 for b# ).
Ei4) a) Herev, =(1,0,3).v,m(2, 1, 1.

We want the set [ﬁ I“"al}- where w, =v; and

W=V, —
" Now, <V1-‘“|)=(V1.V|)=2+Q+Jas.
Also (w), w))=-{v,v}) =10, 10 tha} lel=m_

s, =201 |)_.§.n 0 1\-(1 ] ."'_l‘

T A ¥ T W

=T

{7—-(1 o, 3). \F(--. L --I-]} i8 ;he required a:thmormal basis. .

7 2

b w0029 .
W: =ﬂ. 2.3;')"3%.1"0"2-0)3(-'5- 2. gu l)!

Yoo Prodyst Syosss
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Innerl’_mdueulnd- 2%
Quadratle Forms Iw:l-_*-JE, I“'2|= ’? .
W w
Then {+——. —-} is the rcquired basis.
{I“’!ﬂ fw, H} .

E15) Theorem B says that
]
3T M R
i=l .
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13.1 INTRODUCTION

In the preceding unit we discussed general properties of inner product spaces. In this unit we
will show that we can precisely determine the nature of lincar (unctionals defined over inner
product spaces.

We, then, discuss the adjoint of an operator. The behaviour of this adjoint leads us o the
concepts of self-adjoint operators and unitary apgrators. As usual, we will discuss their
mainx analogues also. This will entail studying the definitions und properties of Hermitian,
unitary and orthogonal matrices.

Regsrding the notation in this unit, F will always denote R or C. And, unless otherwise
mentioned, the inner product on R"or C"witl be the siandard inner product (ref, Sec. 12.2).
Also, if T is a function acting on x, then we wili often write Tx for T(x), for our
convenicnce.

Before reading this unil we advise you 1o look at Unit 6 for the defipitions of a linear
functiorat and a dual space,

Objectives
After going through this unit, you should be able to

@ represent a linear functional on an inner product sgace as an inner product with a unique
veclor ;

#® prove the existence of a unique adjoin! of any given fine=r “peratar on an inner product
space; .

@ 1dentify seif-adjoint. Hermitian, unitary and orihoponal finear operators;

@ esiablish the relationship between self-adjoint (or unifary; operators and Hermilian (or
unitary) matrices.

® prove and use the fact tha: a matrix is unitary iff its cows (or columns) form an
onhogonal set of vecters;

@ use Ihe fact that any real symmetric majrix is orthogonaly similar 1o a diagonal matrix.

13.2 LINEAR FUNCTIONALS OF INNER PRODUCT
SPACES

L]

If V.is 2 non-zero inner product spece over F, then 3 0 # 1€ V. Consider the linear
functionai fon V delined by

fivi=lv.x)¥ve V.

Then f{x)=0.since x = 0. Therefore. f# 0. Also. fe V'. Tnerefore, V' = {0 |. But, what do
the eiements of V" look like? _
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Before golng into the detailed study of such functionals let us consider an example.
Example 1: Consider V = R?Take y=(1,2) € R%and define, forany x = (x,x,) ¢ R?
f: R%> R by f{x) =(x, y) = x, + 2x,. Show thai f is a linear furictional on R2

Solution: Firstly, fl(x,, %) + (v, ¥ = f(r,. x) +f(y,. ¥,) 'V-(x,. x), &y, y) € R

Also.zfor anyae R, f(alx,, x.0 =ai(x, x,) y{x . x,} € R? Therefore.  is a linear functional
on RT - ‘ '

Try the following exercise ot ‘he same lines as Example 1.

El) Fixye R?Show that the function
f: R°-R L (x)= (x.y) is a linear functional on R?

Let us now consider any inner product space (V, {, )). We choose & vector z € Vand fix it
With the help of this vector we can obtain a linear functional f& V" = LV, F) in the
following way: .
define F:'V— Fby f(x):r(r. Hxe V. Cluﬂyflsawell-deﬁndmp and
fx+y)={x+y.2)a(x.2)+{.2)

= f(x) + ().
Also f{ox) ={cex, z) = afx, z) = af(x) forany a @ F.
Hence, f s a finear functional on V. (To show the relationship of £ with 2, we somatimes
denote fby f )
Thus, wa have succeeded in proving the following result.
Theorem 1: If (V. {,))is an inner product space over F(F s Ror C) and zis a gwen vector
of V, then the map
f..V-»F.fl(x)a(x.z)..
‘15 & linear functional on V.

~-Theorem 1 is true for any finite-dimensional or mﬁmte-d:mmonal inner product space.
What is interesting about finite-dimensional inner product spacens that the converse of lhls
zesult is also true. We now proceed 1o state and prove it,

Theorem 2: If (V,{, ?) is an inner product space over ¥ with dimension n, and f is a lincar

functional dafincd on V then 3 a unique elemenl zin V such that f(x) -{x. iforx e V, that
la,fmf,

Proof: Asdim V= n, il follows from Unit 12 (Theorem ‘I) that there exists a finite
orthonormal basis for V. Lét this basis be B = (e;¢, 1o e,). Then

_JO, iej
(c"e})-{h i:_}
Letfie)=3,(i=1.....n).

- n
Now, any x € V can be wriffen se o Ebe LA

Thm"f(x):f{ibie,] be{c) Zba edeen (1
=l

SE] Ia]

Mow consider the vectorz & Vsi.ch tha z= 231 ¢
. - ia]

Aseuscha iskncwntous zis o krown vector of V. Also,

(..'.. z)'= {i b.e.. in_ie)

e T T
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b;a;. since B is an orthonormal set.
]

=f(x), from {1) above. - S
Thus, f{x) =(x,2) ¥x e V.
Suppose there also exists z, & ¥ such that fix) = (x.z) ¥ x & V.
Then, (x'. -4{x,z)=0forallxe V.ie.
{x.z-z)=0forall xe V.
 Hence, by Unit 12 (Theorem 1), we obuainz- 2, =0.ie..z=z,
Thu, there exists a unique ze Vsuch that

L f(ixY={x. D) %xe V.

We can also represent f in Theorem 2 by = {, 2). Thus, in £xample 1,1 =( . {1.2)). -
See if Theorem 2 can help you in solving the following exercise.

E2) Definef: C* — Cbyf(z,z,2)= At *2)
Find the vecwry € Csuch that £={, ).

Let us naw use linear functionals 1o define the edjoint of a linear transformation from Y to'V,

13.3 ADJOINT OF AN OPERATOR

In this section we will obtain a linear transformation from V 1o V, which corresponds to a-
given linear operator T: Vo V. '

Let V be a finite-dimensional vector space over F, and let T:V —3 V be a linear operator.
Choose any vector y € V. Then, keeping T and y fixed, we can defincamapf: V — Fby

o e a1
NMAT=\ 1A Jf AT v.

E E3  Show thai fis a linear functional.i.e.. f € V",

Iermiting znd Undiary

wd e

£
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By E3 and Theorem 2, 3 a unique clerﬁeﬁt zeV -such that £ ={ , z}, that is,
f(x) ={x.2) ¥x € V, thatis, (Tx, y) = (x,Z) }x & V.

Note that the choice of this vector z depends upon the fixed vector y. This is secavse if the
fixed vector y is replaced by another vector ¥,, we shall get another linear functional f, and f,
will be represented as an inner product with some other vector z,. Of course, you can ses
that f depends on T slsol

So.foreachy e V., 3 aynjqu.: vector z € V, thet depends only upon y, 1fwe keep T fixed.
Therefore, we get a function

T: VoV T (¥) =z

Then, we can write

(Tx,y)={x. Ty} forall x, y & V (since both are equal to {x, z)) .

We will look a: some characteristics of the map T in the following two theorems. -

Hencaforth, unless otherwise mentioned, we will only deal with finlte-dimensional inner
product spaces,

Theorem 3: ¥ (V,(.)) is an inner product space over the field F amd T€ A(V), then Tis
a linear transformation, i.e., T" € A(V).

Proof: Choose y,.y, e V. Then. forany x ¢ V,
& Ty, +¥,)) =(Tx, y, + y,}, by definition.
=Tx, ¥ + (Tx. y)
={x, Ty} + {x, T"y,). by definition,
=(x, Ty, + Ty,)
This is true forany x € V.
THerefom. ‘["(yI +y)=T(y) + ’I"(yz)-v- ¥y ¥, € ¥, by Unit 12 (Theorem 1),
Again, choose y € V. Then, forany x 2 V,and a. € F,
(0T (ay)) = (T, oy} = (T, y}
= @{x. T"y)
= (x, oT"y),
which implies that T'(ay) = oT"(y).

Thos, we have shown that T" is linear.

So, we hive shown that given T € A(V)3 T e A(V), sueh that {Tx, y) {x, Ty} for
X.y € V. Now, we will show that T" is unique.

Théorem 4: If (V,(.)) is an inner product space over F and T € A(V), then 3 a unique
T'e A(V)for whicr
(Tx,y)={x, T'y) forall x,y'e V.
Proof: Suppose T' is not unique. ‘Then there will exist at least.two operatorsTy, T; € A(V)
such that
(T ) ={Ty)
and (Tx, y)=({x, T3y}
forall x. ¥y & V. Thiz will mean thet % x, yeV
ETA=ETIY. o T W-Ti ) =0 xa V.
. Ty=Tyy for all yeV.
This shows that T, =T;.
Theorem 4 allows us (o give the following definition.
Definition: ¥ f'.r' {. ) Is £n inner product space over the field F and T & A(V), then the

uniqus operstor T & A(Y) for which {Tx, ¥) = (x. T"y) holds for all x. y € V, is called the
adjoint of the operatoe T. (We also call T” the adjount vperator.)

Le: uz look af soma examples,




Example 2: Let P{€) dctote the vector space of all polynomials of degree < n wilh
coinplex coefficients. Show thut we can define am inaer productun P (C) =P, as foliows:

n -
{r.g)= 235 b where fi=u, +at+ ... atandg=b, +bl+ ...+ b, Find T' for the
N
nperator T defined by (PR = afty, a-e €.

Solution: Take 8 = {14 ¢....2*} in Example 3 of Unit 12. Then you can see that . ),
defined above. is an inner product. Now for g e P,
(Tr. g} = (af. @) = u{f.p) = {F.Fp).
AR T )= (R ag)¥ f.eeP,. ~Tg=dg¥ecP.
. we get TP, P T (f)=3af.
Example 3: Find D¥ 1or ihe ditfercntial operator D, defined on P, by DR1) =f(1).

~

“Solution: Forf=a,+a1+...+arandg=by+bt+...+b,5 we have
(DL gy =(rpd=(@a,+ut+...+mar' . g)
=a,53 +2a35i +..+na b, .
={a, ¥yl +...2,t" byt +2b;t% 4.+ b, ")
Dby + byt +. bty = bt +2b,1% +. .4 nb,_t"

= t{bg.~ 2B,t +...+nb, "'
Try the foliowing. exercise now,

E4)} Obtain the adjaint of 1the operator
T:R* = R*:T(x, ..., %) = (x,.0..... O).

Let us now look at some basic properties of ihe adjoint operalor.

Theorem 5:  Let (V. {.}) be an inner product space over F. Then, for $, T € A(V), the
following relations hold:
a) I"=L I being the identity operator.
b) (S+T) =8"+T"
) (aT) =a&T’.foranyaeF.
d) {T*(y).x)= {y.T(x)).forall x.y e V.
&) T =T(T"means (T"))
A TT=0iff T=¢
2) (Te§) =§oT",
Prouf: We will prove (e, () and (g} here. assuming (&) to (d). We lenve the proof of
{a} - (d) to you (see ES).
) Choose any two vectors x, y € V. Then,
(T )= TV (a0 y) = {x. T(y)), by (d).
=(T(x), y). by definition.
Thisis true forany y e V.
ST = Tixd4x € V., Henee. T = T,
0 ET'T =6 then, foreach x € V. T'T(x) = 0
Hence. (T'Tix). yy=0foranyye V.
Thus. tory = x we et &= (T'Ttx). x) = {T(T(x)). x)
= (T(x).T ). by td) '
= Tixy=0.heIP2 tUnit 12),
Therefore, Tish = iy wohr g V Honcg 1= 0

Hermitisn end 4 yign oy

NS
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aeotie Poomt Conversely. if T =0 then T(x) =0 ¥x € ¥

STTX)I=0¥x eV
=TT=0.
g) Foranyx.y € V. ((To8) (x),y) =(x.(ToSKy)). by (d)
- .- ={x TSy}
-- =3 LSy, by (d).
(SO y), by ().

={(S =T Kx)y)
A(Te8Y1x)=(S T )x) for zny xeV. -

Hence,(ToS) =S8 oT".
To complete the proof of this thearem, ry ES.

E ES) Prove ()~ (d)of Theorem 5.

TT' =0cI"=0 + Now. look closely at (¢) and () of Theorem 5. They tell us that for eny Te A(Y)
TT =0T T =0, since T = T. '
= T =0.by (D applied 10 T".
Try the fallowing exercises now.

L E6) Show thatif T=0.then xais T°.

e e e v A

Fo¥

=7} Show that the map 9: AV — A(Y):@(T) =T Is saxquilinear, that is.
BIS + TH=ST+HITh andpresS) = TAMSI 5. T A(Viandae F. -

e s
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E ER) Using Thearem §: prove that if T € A(V) and T exists then (T = (T

| |
g . . .
Now that.you ane familiar with the adjoint operalor Iel h» {ook at some operators whose
adjoints have special propedies, v e

13.4 SOMESPECIAL OPERATORS.

In 1his section we will define two types ol transformations, They are classified accordmg o
“the way their adjoints behave. Thc two types are’ self-adjmm operators and unitary operators.

As the name indicates. the members of this class will consist of operatom: thas ase the same
as their adjoints, We make a formal definition.

Deflnition: Let (V.{.}) be an inner product space over Fand T e A(V). T is xa:d 1o be
self-adjoint (or Hermitlan) if T=T",

Thus. if Tis ulf-adjoml then

(Tx. y)={x. Ty) =(Ty.x} for any xyeV.
If V is a real inner product space und T is self-adjoint. then the above condition is reduced to

(Tx.y)={Ty.x} (since z2=Z¥zecR).
In this case T is xaid to be symelﬁc

Cun you think of an example of a self-adjoint operator? Theorem § tells ux that the identity
operator is self-adjoint.

The following exercises deal with self-adjoint operators.
€%  Define a function £ : R* — R : f(x. y} = (y. x). Show that f is self-adjoint.

EID) IfS.Te IA (V)are self-adjoinl. then show that $ . T is self-ac-ljdim iffSaTm TS,
i.e. S and T commute, (Use Theotem S.)

In Unit 10 you studied about the eigenvaluex and eigenvectors of operators. Let us see what
ihey 1GO% Hike 1n ifve onse of seij-adjoint upemors

Theorem 6: Let (V. (. }} Be an inner product space and T & A(V) be self-adjoinl. Then the
eigenvalues of T ure afl reul,

Proof: Let a be an eigenvalue of T. Then 3 v e V. v #0, such that T(v) = a v. We want 1o
show that & & R. Now,

a{v. v) = {av. v} =(Tv, v)

={v.T" v)=(v.Tv). since T-"l‘
={v.av) =q{v.v).

‘!-E::-.r.!:-'.."n and 'U.-r.lmry
ipmeutnos
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Inner Prodocts and Since (v, v) 0, we get @ =c. This means thata € R.

uadratic Forms ) .
The following exercise tells us something about skew-Hermitian operators.

. E Ei1} Lat V beacomplex inner product space and T € A(V)-such that T=-T. Showllhal
a) iTis self-adjoint, where i=+/-1.
T Ar¥iiscalled b) the eigenvalues of T are purely imaginary numbers-or 0.

kew=Hermilian if T" = -T
semmmermina! ¢l eigenvectors of T conresponding todistinct eigmvaluesmmuumﬂy-ophogonnl:

We will now prove a-useful result about sclf-adjoint. operators.
Theorem 7: Let (V. (. )) be an innerproduct space and T € A(V) be self-adjoint. Then
T=0iff(Tx.x)=04%xe V.
Prouol; For any operator T,
T=0=Tx=o0¥xe Vo ({Tu.x)=0%xe V.
‘Conversely, assume that {Tx, x} =0 ¥x e V.
Then (T(x'+ y). a+ W =0¥x.ye V.
ST Y+ Tya)y=04x,yeV. e (1)
T+ T)=0%xye V," T=T.
= (Tx, y) +{Tx, ¥} = 0 ¥x, ;-e V..
= Re (Tx, y)=0%x.ye V.
Now 2 cases arise —F = RorF =,
I F = R, then {Tx. y) =:Re.{Tx, ) =-0-.\y-x.-y'-e ¥,
4 Ted,
UF = C. then (TGx + yLix + y) = 04 x, y-€ V givesus
{(Te.y)—(Ty.x)=04x.ye V.
This, with (1), gives s {Tx, ¥} =0 ¢z ye V
~..again, T=0. .
This theorem will come in useful in the next ‘sub section, where we

¥ look at anolher type of lineor transformaiion.

-




13.4.2 Unitary Operators Hzrmi'fan and Unilary.
We will now study the class of operators which satisfy the condition T =T First. a Do
definition.
Definition: If (V. {.)) is an inner product space over F and T ¢ A{V). then T is called
unitary if

TT' =1=TT. T N e
Thus, T is unitary if and only if T =T"". T T

If F=R. a unitary operator is also called orthogenal,

Can you think of an example of a unitary cperater? Does the identity operator satisfy the
equationJI" = =I'I? Yes.
Another example is f ; R*— R2: f(x, y) = {y. x). :
. From E9 you know that f= ", Also
fr(x, . x,) = f(x, x) =F(x,.x) =~ ffi=1
Similarly f'f=L .. fis unitary.
In both these examples Smu may have noticed that the operators are also self-adjoihl. The
following exercise will give you an example of 2 unitary operator which is not seif-adjoini.

E E!2) Show that the operator

T:R'S R Tix,. 2, %) = (x,.x,.x,)
is not setf-adjoint, but it Is_unitary.
(Hint: Show that T"= T and T" =)

We will now prove a theorem thal shows the utiily of 4 unilary (orthogonul) operutor.

Theorem 8: If(V.{.)is aninner producl space over F and T € A(V). then the following
conditions are equivalent.
a) T'T=I.
b} {Tx.Ty)={x.y) for all x,yeV.
¢} §Txf=fx| for all xeV.
Proof: We shali prove (3} = {b) = (c) = (a). This will show hat all three statements are
eyuivalent. ’ ’
ta) =3 {b): Assume (8). Then, forany x. y € V. (x.y}={Ix, ).
= (T"Tx. y) = {Tx. Ty).
Thus (b) holds. .
{b) = {c}: If (b) holds forall x, y € V., then it alsa holds when x = y. This means that,
¥xe V, _
(T Tay=(x.x) or §T«F == [
~ITxf=0x}¥xe V. Thus {c) holds. 2y
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(€} = (): If (c) holds, then
ATx, Tx)={x,x) forallx € V.

= (TT.x)={x,x)forallx € V.

=(TT, Jf)-(x. x}y=0forallx e V.

(T T-Dx,x)=0 forallx ¢ V. .

= T'T - 1= 0 (by Thedrém % since T"T-1 is self-adjoint)

= T'T=I, which shows tiat () holds.
Note: Theorem B says thet Tisa hﬁi:a.ry operator iff
i) {Tx.Ty)=(x,y) %%,y € V, thatis, T preserves inner products: |
i) [Txf=Fx|¥=x e V,thatis, T preserves the length of a vector.

You will learn about some properties of unitary operators from the following exercises.

E El13) IfVisagiven inner product space over € and 8, T € A(V) are unitary operators,

show that
a) ST isaunitary operator.
b) «T is a unitary operator for e e Ciff |a|=1.

E Ei14) Showihatthe charuttenstic rools of a unitary operator have absolute value 1.

Let usnow talk sbout the action of a unitary operator on an orthonormal basis. From Unit 12
{Theorem 7) you know that (V, { . )) hes an orthonorma! basis. The following theorem °
characterises unitary operators in terms of their action on an orthonormal basis.

Theorem 9: Let (V, {,))bean i!'mer product space over F of dimension n. Then T & A(V)
is unitary if and only if T maps an orthonormal basis of V onto an orthonormal basis of V.

Proof: Let {e, ,.... ¢} be an orthonorinal basis of V. Then {e.e)=0ifi=jand

(e e)=13i,j=1,..,n. . )

We will first show that if T is unitary then { Te, ..... Te }is an orthonormal basis of V. Now,
since T preserves inner products: we get(Te, Te) = O for i # j, and (Te, Te) = 1 ¥ i. j=1.
s D Also, since T is invertible (in fact, T™' = T'), you know from Unit Sthat T mapsa
basis to a basis, Hence, [Te, ..... Te_Jis an orthonormal basis.

Conversely, we will show that if B = [Te, ..... Te, ] is an orthonormal basis then T is
unitary. For this, consider )

x=zlcz,ei. y=]ZBiei in V, where a;, § eFyi=1..n
i al '

Then
Tx. Ty)={Ze,T(e;), LB. T(e.}}
( X J') (Ial. (el) jBJ (ej}>

=.‘_I'.(1,5j (Te,.TeJ,)

1 =1

1
a,f. vince B forms an certhonormal  basis,




. _ = Hermitian and Unitury
Also, (x,y)= ‘_?alﬂi Operalors

Thus, {Tx, Ty} ={x.y}¥x.ye V.
Hence, by Theorem 8 we can say that T is unitary, :

. We will use Theorem 9 to solve the following example.

Example 4: Let (V. (. )) be a reat inner product space of dimension 2. Obiain an
orthogonal operator T € A(V) such that (Tx. x} =0 Yxe V. | '

Solutlon: Let [e,, ¢} be an orthonormal basis of V. Then. so is (e, ~e,}. If we define
Te A(Viby T(e.) = ¢, and T(e,} =~ e,. by Theorem ¢ we know that T is orthogonal, Also,
(Te.e)=0=(Te.e). '

Nowtakeany xe V. ThenJa.b e Fsuch that x = a€, + be,. What is (Tx, x)? It is
{T(ae, + be,), ae, + be,)
={ae, —be,. ae, + be,) o
=ab ~ ab = 0. Thus. T i5 the required operator.

Note that this example shows us that Theorem 7 is false if T is not sclf-adjolnt,
Try the foltowing exercise now, -

E gls) I T € A(V) be such that T2 =1, show thar T is Hermitian if and only if T is unitary,

So far we have been discussing various kinds of operators. You may have wondered about
their matrix analogues. That is what we will discuss in the next section. But, before going
further revise Unit 7. “

13.5 HERMITIAN AND UNITARY MATRICES

In previous blocks you have seen the inter-relationship between openators and matrices
representing them. In this section we will show you the link between se)f-adjoint operators
and Hermitian matrices, and between unitary operators and unitary rhatrices.:

13.5.1 Matrix of the Adjoint Operator

Let (V. (.} be an inner product space over F. Given the matrix representation of an
operator T € A(V), a natural problem that we can ask is: what is the matrix representation of
its adjoint T°?

To solve it let us consider an orthonommal basis B = {e, ,...,e ] of V. Let [Tl = l’ﬂl and
[T"}s = Ib, ). Then we know thal

Tie)=ace +ae,+...+ae ¥i=1...n

and T'e)=b,e +ot be Mi=!..n

Now fore, ¢ € B, we have

(Te,e}={s.Te)
=(§'ﬂtie.k-cj) = (ei-zbkjck)

123 ayle.e;)="Y byle. )
Dokal k=1

Ty =b_u since (ehej>={0.- if i#j

Loifi=j.
Thus. we have proved the following resuli.
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Theorem 10: Let V be an inner product space over F(F = R or C) of dimension n. and

T & A(V)have the matrix representation laul with respect to a given onhonormal basis B. -

Then the matrix representation of the adjoint T" of T with respect to the same basis is the
matrix |b, ]. where b, = a

Note: WhenF=R. thenb =3

l’flaf

Recall tfrom Unit 7. that gwen amatrix A = [a,]. its conjugate transpose is the matrix
=la ], where 1 ° =4, el A= A‘

.

Thus, Theorem |0 says lhal.

fA=]a ] is the matrix repreqenlauon of T e A(V} with respect to B, then the malmr.
rcprcst:nlalmn of the adjoint T" with respect10 Bis A =Al

For cxample. if D; P,— P, is the differential operator, then ils matrix with respect (o the
orthononna! basis B = | . x. x7} i5.

01 0 |'0 0-0
00 2] . |D'|,,=l1 00
000 Lo 20

Try the following exercises aboiit the conjupate fransposes of matrices.

E EI16) Show that

a) (AB) =B’A” for any two n X n matrices A and B,
{Hint: Show that the (i, jth elements of (AB)' and B'A’ are the same.)
b) Ifannx n matrix A is invenible, thenso is A”: and (A" "= (A7),

Now let us look at the matrix of a self-adjoint operalor.

13.5.2 Hermitian Matrix

Recall, from Unit 7 (Sec. 7.3.3), that a matrix A is said 10 be Hermifian if it is equal to its
conjugate Lranspose. that is, if A = A”. The following resuil teills us that the matrix of a
Hermitian operator is Hemitian. .

Theorem 11: Let V be an inner product space over F and T e A(V). Let the matrix
representation of T with respect 10 an orthonormal basis B={e, ,....e ) be A. Then T is
self-adjoint iff A is Hermilian.

Proof; Let [T], = A = {a,|. Then, by Theorem 10,

IT..=1b 1. whereb =0 . Thatis. IT | =




i1 715 self-adjuint, tie.. i =T, Therefore. | T}, = (T"},. Therefore, Aw A’, which means A
is Hermitian.
Conversely. if A is Hermitian, then A = A'. Therefore,

ag=aj=8; ¥ij=l...n. _ :

n
NHw, by definition. T(e;)= ¥ ae,. Therefore.

jol

{Te,.e.)= (iaﬁej.ck>= n&ﬁ(e’]‘el.) =4, = ;k -V-I.I\=|. voranlle
iU

1=l
Also T'(cﬂ:ia}iej’v“i=l.2._....n.
J=1

CoTee ) =ay, =agapik=t...n

{Te, e )= (T e e )Wik=1.....n.

This means that T =T, that is. T is self-adjoint.

Thus. the theorem is proved. ' '

50. by Theorem | | we know that the matrix of the operator in E9, with respect to the

standard basis. is a2 Hermitian mitrix. That is, [ :}

Theorem.] ] also tells us that the following Hermitiun matrices. ireated as operators, are 581f-

l h |
0 Jis Hermitian.

adjoint;
2 l+i

1

]2
k a+ib c+id

and | a—ib m e+if [wherea. b, c.d.e.f.k.m.neR.
c—id e~if n

You'may like to try the following exercises now.

E EIT How many charactesistic roots of a Hermitian matrix are purely imaginary?
(Hint: Use Theorem 6.)

E Ei#) Show that i triangular Hermitian mairix is & diagonal matrix.

-

E E1Y Show that the matrix A of a skew—Hermitian operator T € A(V) (i.e.. T =~T"), with
respect to an orhonormat basis of V is skew—Hermilian (i.e.. A =—-A").

Hermittan and Usitsry
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The Rronecher defz, 5. .

is dehncd by
. j“. il
A i, af =),

E

We will now intreluce yuu Lo the matrix corresponding to a unitary operator,

13.5.3 Unitary (Orthogonal) Matrix

Remember, whenever we discuss unitary operators, we include orthogonal operators, that is,
the case F = R. We will lead you to the definition of a unitary matrix. via the following
theorem.

Theorem 12: Let ¥ be an ir.aer product space over Fwithdim V =n. LetU & A(V) have a
matrix representation A = [auj. wilh respect 10 un orthonormal basis Bof V. If U is unitary.
then

N
2) zaikajk =9
kel

n -
h) 3 ayay =5

k=1

i j=l.an

Proof: U havike matnix representaton A = [a ], with respect to B. Therefore, U* has the
matrix representation A" = (o] Jwith respect 10 B,2;* = a, . Since U is vnitary,

UU" =1=U"U. Therefore. AA" =1=A"A.

That is [a|_|}[‘1:|]~‘- |8.11=[a.—j”3.jl

Now, (a,]le,]=(8,]

n
kml

L —
= Z i B = 'Si,
k=l

Simitarly, [ay |{3;) =[8;].

. n
= Zak,ak! = Elj

k=1 .

The above resuit leads s to the following definition.

Definltion: If A is a given n x n matrix with entries in a field F.then Aissaidtobe a
unitary matrix (an orthogonal matrix, if F= R} if AA* == A"A,

Thus, Thesrom 12 says that

The matrix represeatation of any unilary {or orthogonal) oparator oft &n inner product space
V, with respect 1o an orthanormal basis, is 2 unitary (or onhogenal) marix.

Example 5: Show that the matrix A = [ ; _31 ] is not orthogonal,

Solution: A" = A'in this case, sincc The entries of A are real,

waro 11 =1 2] 2 -1
Thus, AA" = =
l_z 3][—1 3 [-l :3%1

This means that A is not orthogonai.
The following exercises will give you some examples of unitary matrices,

Ez{}} wh:ch 3 tha ra!!c-:'aiun R P Juyyp N py—— |

PEE JEALE TS B WTITTAL Y

:“: :'2] ﬂ} B] [i-l-i ];i]'




E
f

L

cos @ sin@

EZD) ls|:—-si1'|t21 cos 6

] onhogonal ?

We will now derive a:basic property of unitary (and orthogonal) matrices.
Theorem 13: For a square matrix A over C the following are equivalent.

8) A.is.unitary.

b) The rows-of A form an orthonormal sct of vectors.
c) The columns of A form an.orthonormal set of vectors.

Prool:” We will prove that (a) = (b} and (8) & (c).

|, where R is the ith cow of A. Then R! will be the ith

IRI 7

(@)« (b): 'MI.A:[;“_]: :
R'l'l
column of A", -
TR

~AA =1l ! [R;.....R;

R

c=7| ......

|R.R} R,R} ... R,R!

QRia-!:ng"'f'i.j-l.....ﬂ.

]
|
=ap.aa. __ =y
8in

L]
e axag =8y
ai

[R,_—,T R,:R'_‘, klzii";]—[
]
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<> the set of vectors ((a, .....a.) ' i=1,...,n} are orthonormal.
- ¢ the rows of A are orthonormal.
Hence. we have proved that (a} < (b).

Similarly. using the fact that A"A =, we can prove that {a) & {c). Hence, we have proved
the theorem. - :

Note: Just as we have prov:d 'lbcorem 13, we can prove that a rear square matrix is
orthogonal iff its rows {or tolumas) form an onthonormal set of vectors.

You can apply what we have just said to solve the following exercise.

E22) Consider the matrix representing the linear apérator T:R*~ R : Tix, v.Z)=

{x cos @ —y sin @, x sin B+ y cos 8, z), with respect lo the standard basis. Do its
columns for~ an orthonormal set of veciors?

Now fet us look at real matrices only for the rest of thé section,

Recald, from Unit 7. that a matsix A is symmetric if A = A", In Unit 10 vou also came across
the concept of similar mutrices. We now define an allizd concept.

Definition: Two squarc matrices A and B, of the same order, are said (o be orthogonally
similar if A =P BP, for some orthogonal matrix P.

-Rem:mb:r lha: :l’P is orthoganal, then it is invertible, and its inverse is P. Thus, A and B
are orthogonaily simlar if A = PBP, for an orthogonal matrix P,

Lat us consider an example.

I 2 -2 -
Example 6: Show thas | 1] and [ I] are orthogonally similar,

[a b
Solutlon: Suppose P = c d] is an orthogonal matrix satistying
L ' .

32

S I

"—"n+2r.' —a+c'| |'a b] r(2a+c)(c a) (2b+d){c-a)}
[-2b+2d -b+dlc d] [(2a+cHd=b) (2b+d)(d -b)]
Solving the equations
l=(‘.!'a+c]{r—n]
=I=(2a+c}d-b)
(2= (2b+dilc-a)
=2=(2b+d)(d-Db).

we get

{3




LAHIE e
[ 2HE IR 9]

Check that these equalities do hold. by multiplying the right hand side.

‘This example shows that there can be several orthogoual matices P wch lhal A =PBP.

Now we shall use an orthogonal salnix to diagonalise & real xymmetric matrix, In Unit 10
you have studicd about diagonalising matrices. Theorem 5 of Linit 10 gives you a practical
method of diagonalising a square matrix. We will use this thenrem 1o prove the following

result,

Theorem 14: Let A be a real symmetric matrix of order n with distinet eigenvalues
o, ..o Let X, ..... X eV (R) be normalised eigenvectors (see Sec. 12.3) of A
mncupondmg lo a,...., a, respectively. Lat P = (X, ..... X,). Then

al Pis onhngunal.

b) P! AP is the diagonal matrix. diag {a ... o).

Proof: a) We will first show that X, ... X_ | is an onthunonaal set in V_(R): Remember
that the s1andard inner product in V (R) is givenby X.Y = quh =X'Y

rx: |-)'|

Mx=|:|.y=; i |in V(R).
X, I_,n

Now, (U'.| -uz)(xl 'x1)= al‘x‘ - x!)-ﬁztxl X;)
= {a|x1 ' X;]-—-lxl -U.EX:):(AXI 'xz)—(X| AX;)
= (Axl)lx: ‘X}Aa\:
= X]AX, ~ X} AX, (since A’=A)
=-..O :
Since o # a, wegel X - X, =0.
. Similarly X, - X =0-V-|=]
Also] X; | =1%i=1...n r:.lm:t:lhcil(l s are normalised veclors.

Therefore. {X,. X, ..... X, } is an orthonormal set,

Therefore, by Theorem 13, P is orthogonal..

b} From Unfl 10 iTheorem S) you know thal P AP = diag (0t 1eore01). Thatis, PAP =
diag (4, ..... o) Tl
What Theorem 14 says.is that any real symmetric n x i arotrix with n distinet

eigenvalues is orthogonally similar to a dlagonal mair:x. This theorem has important
geometricat appllcauons inthe study of quadrics. You will see the connemm m Umt I5.

Note: Though we have proved Théorem 14 for real symmetric marices w:lh dJsunct
elgenvalues it is true for any réal symmetric matrix. That is, any real sylnmetrlc matrix is
orthogonally similar to a diagonal matrix. The proof of this result is beyond the scope of
this cobrse.

Let us consider.an exainple of how to yse Theorem 14,

l -
Example 7: Reduce :, : _11 to diagonal form.
1 ~1 =l
: | I .
Solution: Thematrix Ag4 1 [ —| {is a reai symnietric matrix. Its characieristic
I~ =
_ A-1 -1 -] ]
egudtionis | ~1 A-} 1| = 0. This shows us that the cigenvalues of A are 1, 2. ~2.
-1 bR+
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Eigenvectors corresponding to them arc (1,-1; 1), (1.1, 0) and(~1, 1, 2}, respectively.
Therefore, the normalised cigenvectors are(l}ﬁ)(l -1, I) (llﬁ)(] 1,0,
{l!\fﬁ) (=1, 1, 2). These vectors give us the orthogonal marrix

/3 172 -1/+6
P=|-1/43 1742 1746
1143 0 2406

1 0 0
.Then.weget PAP=|0 2 0}
¢ 0 -2

Do try the following exercise now.

7 -1 -10]
E E23) Reduce] -1 7 10 { 10 diagenal form:.
-10 10 —ZJ

(lis eigenvalues are 6,12 and 18.)

Let us end with summarising what we have covered in this unit.

13.6 SUMMARY

As in the previous unit. the vactor spaces considered in this unit are aII defined over the
(ields C or R. We made the following points in this unit.

1} Any linear funclional on an inner product space is rcprescntca‘ by the inner product with
a fixed vecior. .

2} The definiticn and propemes of the adioint of an opem!or defi ned On an inner produst
space.

1) The definition and properties of a self-adjoint operator.
4) The definition and properuzs of o unitiry {omthogonu!) operator.

5Y A self-adjoint operator on an inner product space is represented by a Hermitian matrix,
with respect to an onhononmat busis of the underlying space.

i TE— S —




6} A unitary (orthogonal) transformation on an inner preduct space is represented by a
unitary (orthogonal) motrix, with respect 1o an orthonormal basis of the underlying
space.

7) A matnix is unitary (onthogonalj iff its rows form an orthonormal set of vectors iff its
columns form an orthonormal set of veclors.

8) Any real symmetric matrix is onthoganally similaz to a diagoenal matrix.

13.7 SOLUTIONS/ANSWERS

Et) Foranyx,.x,e R°, we have
(0L +x) =% + 3, 9) =X, W)+ (x. 9
=10+ ().
Alo.jorany e Randxe R~
f,(il(j ={ax. y; =af,ix}.
=1, is alincur functional on R*,

E2) {(1.0.0). (6 1,00, (0.0, 1)) is an osthonomsal basis of €.
Now f(1.0.th =1 =0, 1.0)= 0, 0. .
... as in the proof of Thearem 2,

y=5(1.0.0)+ (0. 1.0+ 4(0.0. 1) =[-]—, %,3'-] is what we want. To check whaiher

—

3
y is the required vector you must ensure that f(2) = {z, ¥) %z € C°.

E3) Forx, andx,.€ V., we have
f(x, + 5 =(T(x) + 2,0 ¥ = {Tx, + T, ¥ =T y) + (Tx. )
=f(x,) +1(x,) -
Also,forae Fandxe'V.
ftax) = (T(ax). y) = {aTx. y} =a (Tx. y) =af(x) -
o fe Vv
Ed) (Tix, ..... LRI 6 S VX (R IR 1) N (O ¥}
=Xy =00 00, (7). 00 L0,
ST, ey, = (9,000l 0)
=T = Tin this case.
E5) a) Foranyx.ye V., (I(x), y)={(x, y)
=&y =(xy)
=V =yy¥yeVl'=1
b) For anyx.ye Vv,
((S + THx). y) = (Sx + Tx. y) = (Sx V+{Tx,y)
(.8 +{x, Ty
=(x.S’y +T'y)
=(x, (8" + Ty},
LS+ =S4T
¢) Foranyx,ve V,
H{aT)(ahy) = (alx, y) = (T, y)
=aix, T y)
. =@y
~aT) =aT.
& Ty x) =€, Ty = {Tx, ¥) = {y. Tx).
E6) T=0=Tx=0%x¢e V=(Tx, y)=0%x.ye V.
= (. Ty)=0¥%x,ye V. -
Inparticular, for x = T*(y) e V., we gel

Rermiliar. and Uni: . ;
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(Ty.Ty)=0¥%ye V.
2Ty=0%ye V=T =0.

E7) By Theorem 5(b). &(S +T) = o(S) + &(T).
By Theorem 5(c), a(aS) = T(S).

E8) By Theorem 5. (T- T = (T . (T")
=1 = (T (T
=1=(Th" - (T
Similarly, T'(F) =L o« (T = (T,

E9) Now {flx, ) (7o 1o} = (% x). 0, Y0

= xlyl + *13’:‘

EX.Yy XY,

= ({x x]) (Yr Y,»
f'(y, ¥) = (0p ¥ =y, I @¥) € R
~ =1

EIO) SaT:(SoT).
50T =T o8 =TsS, since S=5" and. TaT".
Ell}a) GT) =TT « (<) (<T) »iT.

b) Letae Cheanecigenvalue of T. Then302ve Vmc.hthatTv-:cw We will
showthat T = ~c

Now a {v, v)={av, v) ={Tv.v) = {v, TV}
={v,-TV) a~{v,a v}
m ~&{v v)
. @=— &= a=0orois purely imaginary.
¢) Let =0, P& C be distinct eigenvalues of T. Let v, w o Vhedgenveclom
cam::pmdmgtoamdﬁ respectively. Then Tv = av and Tw = Bw.
Now a(v.w}= {(av, w)={1‘_v. w)-—-(v..T w)
= =(v. Tw)=—(=,pw)=—B(v,w)
=P(v.w) (-P=-B' from (b} above)..
@-Pvw=0={v, w)=0 maaﬂ
-—-a-vuonhogmltow :

E12) (T(x,. ;0 K (%30 ¥ Y300 = Ey0 3o, 3ds (00 Y Y0
CERY, XY, Xy EAY +'x;y,+ Yy
—((x.. Xu X (Yo ¥y ¥, ))
T'(y,. o Y9 = ¥ Y = T Vo V(Y Y V) € B2,
T =T*=2T.

Msb‘l"(x) =x¥¢xe R, ~T*=T" Le.T aT.

_~Tisunitary:
EI3) &) ST =TS =TS = (ST

b} (aT) = (o)™ & ET" =@ T ™ T =71,

' ctd=a’war=lo|a|=l

El4) Let & be a characteristic root, i.e., auengmvnlm:ofamqu:mmTe A(V). Then
Jé=ve Vsuchdw'l'(v]=av

Now a{v, v}--(av.v)—{Tv W={v,T'v)= (v.TI v).
a{y.a"lv) (T v=alv),
= F(v. v).
._'.a=c?"=aii=l=_a]a|=l.
EIS) T?ales TaT, Now,

e




T TisHemitan e T=T T =T ¢~ T=T")
& Tis unitary. .
E16) o) LetA=[z).B=[b)and AB=C=[c,). ‘fhend}e(i )th element of

c* = conjugate oflhe (ji i)th element of C= Zaﬁbu
kel

the (i, n:h elementof B°A" = zdneu =Z by 8 ,1
kel | ksl

= Y agby P v

k=1

(1)and(2) = C"=B'A". .
b) LetB=A". Then(AB) =I"=>B'A" =L
Similarly, A°B" =1,
B'=(A")", that Is, (A1) = (A",
EI7) A isacharacteristic root of & Hermitizn matrix A,
¢ A is an cigenvalue of A.
& A is an eigenvalue of A, treated as en operator.
&> A iz real, by Theorems 6 and 11.
<+, no characteristic root of A is purely imaginary.

E18) LelAbeanuppe.rmangmuHmmnmnumx Thena, =0fori>j. Also.

A=A aynd,

~ofori<j, g =8 =0=0,sincej>i.
“ ¥izj.a =0 .-.Aisadiagohalmuix.

Herimitinm anid Unitary
Operalors

Similarly, if A is Hermitian and lower iriangular, it must be a diagonal matrix.

El19) LetB={e,..
T,=A"=[b)b, =3, an.'ra-'r‘=-.~rr},=-['r1.
mAm=-A’, .

-] i

a0 1 « 10 -
Now.lfAvf[i O}M-A -[ - ,0].

o Y B S
Similarly, A"A =L
= Als unitary.

E20) Since[ 0t iz]isnotuquaremau-ix.ilcnn'tbemimy.

1 I+i . I 1+
If A [ T _lhmAt:[l._i 0 ].
. bo1+i I I+i 3 1+i
AA [1-. 0 ][I-i 0 ]_"[1-1 2 ]"I
A is not inimry.
tos@ - sln@ cos@ ~-sin®
E21) Bet A [—unﬂ 0050]' Then A’ = sin@ ooiﬁ]

cosB -sin® O
0 0 1

E22) Themanx:sA-[smG cos® 0O

. }hemorumnonmlbuuofv Le:[Tj,-A-[:u] Then

4
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) cos®  sinB 0
Then A® =|-sin® cosf O
0 0 1

S AAT=ATA = L
< Ads unitary. . . its columns form an orthonormal sef of vectors.

: 1. [ 1] 1
" E23) The eigenvectors comesponding o 6, —1‘2‘md:’lﬁ;atc|zli [—1]: and |:—l
N of | 2 -1

‘respectively.

0y
+ o the notmatised eigenvectors are

1 | i
1v2 -n], 1146 [—1]. 1/43 [—I]L
o 2 -

(1142 1146 1143 '
S P=l1742 -1/46 -17+3 | isanorthogonal matrix such that
| 0 2/J6 =1/3

& 0 0
PAP=l0 -12 0

Sl 018

|
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141 INTROBDUCTION

So far youhave swudied various kinds of matrices and inner producis. n this unit we shall
discuss a.particular-kind-of innergraduct, which is closely connected 10 symmetric matrices.
This-is called a.quadratic form. It can also be thought of as a particular kind of second
degree polynomial, which isthe svay we shall first défine it We will discuss.the geometric
aspeci of a particular case-of quadrstic:forms in the nexi unil.

Quadratic forms are encountersd in various mathematica) and physical problems. For
example..in physics, expressions for.moment of inentia, energy, rate of generation of heat
and siress ellipsoid in the theory-of elaslicity involve quadratic forms. Quadratic forms also
appear while studying chemistry, the life sciences, and of course, many branches of
mathematics,

In this unit we shall always-assume that the underlying field is R,
Before going further make sure-thal you are familiar with Units 12 and 13,

Odbjectives

After reading this unit, you should be able to

-identify a real quadratic form;

find the symmetric matrix associated to a quadratic furm;
celculate the rank of a quadratic form;

obtaim the orthogaonal canonical reduction of a quadrstic form;

find the:normal canonical reduction of & quadratic form;
calculate the signature-of a quadratic form.

14.2 QUADRATICFORMS

The word “guadratic™ is not new to you. You have already encountered it when solving
equations-of the type
.ax*+bx +c=0.abc, e R,a»0..... cn

which are called quadratic-equations. The left hand side of {1) is 2 quadratic function in one
variable overR. We call the second degree term in (1), i.e.. ax’, a quadratle form of order
-one. It is called of order one. since it involves only one variable.

The most general- quadratic-equation over R involving two variables x and y is
(ax® + 2hxy + by?) + (2gx + 2y) +c =0.abefghe R,

where at least one of a, h. b is non-zero. Its left hand side is a quadratic function, or
quadratic polynomial, of order 2. The second degree terms occurring in this equation, i.e..
the expression

ax®+ 2hxy + by’
- 15 called a quadraticform alorder-two, since it involves two variables x and y. ’
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The most general quedralic equation over R involving three variables is

(2%* +by* +c2* + 2hxy +2pxz + 2y2) +2ux + 2vy +2wz +d=0,

a.b.¢.d.f. g h.u. v.we R, where at least one of a, b, ¢. . g, h is non-zero, Iis lef hand
side ix a quadmatic function. or quadralic polynomial, in three variables. The bracketed pan

of this eguation, containing only second degree terms, is called a quadratic form of order
three.

By now you can see how we cun generalise this concept, We call the non-zero form

]
Y o,
ij=1 -
4 quadratic form aver R of order n. where 1he a,’s are real constanis and X . X, ... .. X are
real variables.  “»

Nole: These expressions are called yuadratic. since they uare of second degree. They are
cnlled forms, since every term in them has the same degree. !

We are now ready 1o make a formal definition.

Definition: A homogencous polynomial of degree two is called a quadratic form. Iis order
is the number of vanables that oceur in it.

_ For example, X* - 3y* + 4xz is a quadratic form of order 3.

"

A quadratic formv is real,if its variubles can only take real values and the coefficients are real
numbers. We have already stated, in the unit introduction, that all spaces considered in this
unit xhal! be over R. Therefore, by a quadratic forin we shall always meari a réal
quadratic form, ‘ : -

From the definition of a quadritic form it is clear that a rea! valued function witl be a
quadratic form if and only If It satisfies each of the following condltions:

a) ftise polyﬁomia.l.

b} itis hamogeneous. and

¢} itis of degree two, .

Let us look af some examples now.

Example 1: Which of ihe following are quadratic forms? In the case of quadratic forms,

- find the order.

a) x> +x+1

b) 2:34y2+z:

<l x:ﬂﬁ}‘: =0

d) 3xj +X, Xa -:ﬁ;i
e} X} -x3 +xix,

1 x"+x:y-y‘1-.,

g} x* +logx.

Solutions: {c} is an equation. and not a polynomial, (a) and {¢).are polynomials, but they are
not homogeneous. {f) is a polynomial which is homogeneous, but its degree is three and not

iwo. (g) is not a polynomial. Only {b} and {d} represent quadratic formis. (b) involves three

vanubics, and hence, its order is thnee. (d) invoives two variables, and thus, has order two.
Try the following exercises now. ' '
E 1) Give an cxample of a function that is

n) a non-homogeneous holynomial of degree 2.

b} a homogeneous.polynomial. but not of degree 2.
E2) Which of the following represent quadratic forms?

a) x* =Xy

b) x, +x,

4] xi‘
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d) x*—xy? .
¢) sin(x? +2y?%)
f) 1,2-1/2-;;:_2.;0

E E3) Find the values of the integer k for which ihe following will mpresent quadratic forms.
a) x2-2yt—kxy?
o) x*+2y?
€) x§ +2x;x5 - x} -

E E4) LetQ, and Q, be two quadratic forms, both of o.der n, in the n variables A X
Which of the following will be a quadratic form?
Q,+Q,, 8Q, +bQ,, Q- Q, QQ,0/Q,

Let us now see how to represent a quedratic form ps & product of matvices. In fact. you will
sez how a quadratic form can be written oz an irteer product,

e e X

143 QUADRATICFORM AS MATRIX PRODUCT

Consider the quadratic form of order two,
Q=2x7+ 2xy +3y%.

hmingXa_[_;‘,]mdAuLz ;].wcﬁndﬂw-_

Q= X'AXn[xy) [Iz ;] [;] ...... M

The question now is whether we can replace the matrix A by another matrix without
"changing the quadratic form Q. In fact, you can check that

Qe X'BX, where B =[§ i] and

R _[2 -t

C_I--J(('JX.1|.i|rlm\':C—[3 3}
'nm.weseedutifwcreplaccAbyBorCin(l).mequndraﬁcfonnisuotchanged.'!'his
showsul.hallhec.hoieeofmc.mn-ixAin(l)i.snmmjdque.lnmissqcﬁmwelhlllﬂndd\e
reason for thia, and also investigate the genera! msirix which can replace A in (1),

.Notk that we can also write Q = {AX, X}, where (Y, Z) nZ'Y forany Y, Z 6.V, (R). So, ;s
you go along. remember that we ere simultaneously discussing the representation of Q as 2
matrix product, as woll as an inner product. . -

Look carefully at the matrices A, B and C, givew 2iwve. Do they have a common festure?
You must have noticed thas the diagonal elements of all these matrices are the same, i.c.,
A, B and C have the same diagcnal. Now, what about the off-diagonal (i.¢., noa-diagonal)
entries? Have you noticed that the sum of the aff-diagonal entrics in all these matrices ig 27
Note that the coefficient of the tarm xy, of the given quadmatic form, is also 2.

E ES5) Changeone of the diagonal entries of A and verify that this will change the quadrasic

worm. | . .
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2
In:foct, any mulrix P = [b ;].wilh a+b=2, can replace A without changing:the-quadrutic
TormQ. Thisis:because the cocflicient of xy im Lhe quadsatic form X'PX .is{i +b).
However, if we insisi'that the matrix P should be symmefric, then we must have a =b; and
‘hence, Thw-choice is unique, namely, [? ;]

AWe, therefose, conclude that A is the only symmeiric matrix for which Q = X*AX.

‘This symmretric matrix A is called the matrix of the quadrstic form Q, or the matrix
ssovigtedto thequadratic form Q. Observe that

[ coer, of x* (1/2) coef. of xy
T4/ 2) coef. of xy  coef. of y?
where cocl. is short for coefTicient.

W can sum.upthe sbove discussion as follows:

Given:aquadiatic form Q of onder 2, there are infinitely many square matrices B:for whch

0 =X'BX. However, ihere wull e aunique symmnetric matrix:A forwhich:Q = X'AX.
This matdn A, whioh is callad'the matrix of the-quadratic form Q, is given’by the nile

[ coef. olx {1/ 2) coef. ofxy]
£

112) coef. of xy coef.-of y? --------3(2)

Aciugily. there is 2 one:to-one correspondence between the wx.of all symmetric square

‘matrives of order 2 andithe set of all quadratic forms of order 2. This Is becaus, given any
) b

3 % 2 symmetric matrix ‘B ='[: d]we can obiain a unique quadratic form of order 2

corresponding 1o it, namely, X*BX = ax™ + 2bxy + dy”. Cenversely, given any quadratic
form-of otder2 we can oblain a unique 2 % 2 symmetric matrix by therute (2). The
Toliowing examples will itlustrate this commespondence.

‘Example 2: What is the quadratic form generated by

1 -]
A= ?
'[-1 i

‘Solution: The quadratic form generated by A is

1 -1 [x
ix ﬂ[ 1 [y]
On expanding this we get
X =2xy+y*

Observe that you could have obtained the quadratic form snnply by applyingthe rule (2) as
‘follows:

Comparing the given matrix A with the matrix in (2) gives
coef,of x?= |, coef. of y? =1, (i/2) coef. of xy =-1.
Therefore. the required.quadratic form is x? - 2xy + y2.

: a
Example 3: A-general diagonal matrix of order 2is A = [n'

0
LV =

. 2]
IWhat is Ihe corresponding quadratic form?

Solution: Once again you.can either compute

or use tule (2} o gel

<oef. of x* =, coef. of Y= &r,. coef, of xy = 0.
. the required form Is @ x* + o,y

Such s quadratic form is celled 3 dlagonal form.

Example 4: Find the matrices associned i the following quadratic forms.




a) x* RuFQu:udhﬂ'e Formg
b} —y*=dxy

a

Solutlon: Rule (2} is-very handy for writing the symmetric matrix of a. gwcn quu:lram form.
It is easy to-see thatthe:coresponding matrices wili-be

o3 o2 ]

. -No\pfonan-excmisc!'
E 6). Findithe 2x_2'mauices associated to
Y=y, bY2x*+y, cy2xy. d)px®+gxy+ Rt

The above discussion involved matrices and quadmtic forms of ozdes rwo. It canhe
extended to-matrices andiquadratic forms of higher orders, Lctuslwkltthecue of
qu-ldnancfeﬂm of ordar 3.
Let us.considen & general 3 % 3 matrix

) Gy 8
A== |8y &n an

43 By Anf
The quadvatic fossy determined by A willbe
Q=Xax. L. 3
where X' =[x, x,. x,]. _
Expand the matrix product in(3) and verify that
Q= oy 0] +ax} +ayyx] +(8y; +25))%)%; + (g +ay Koxy Hay + 8y 885 L (&)
Observe that the diagonal elements of A, i.e., a, . a,, and a, . are the coefficients of

x. x3.and x3, respectively. in Q given by (4).

Also-note that the sum of the two enlries a,, and a,, determines the-coefficient of £,x,, while
these two-entries.do not occur elsewhere in (4). So, if we replace a,, and:a,, by two diffirent
numbers. 812 and. & such that aj; +&3; = a;; +8;, whilc keeping other entries of A&
unchaaged, the new mairix A’, thus obiained, will not be equal to-A. B the quadratic
forme geneeated by A and A" will be the same, i.e.,

i _ ulew __ owl s s
L T Rl Y

Similar changes can be made for the entries contributing to the coefficients of x x,, to-obtain
matrices differens from A which can repiace A wirhout changing the quadratic form.

However, if the malrix A’ is restricted to being symmetric then the choice is unique, i.e.,

A =ay -_-l {32 +:Iz[}—-2- (coef. of x;x3)
| I
&) = ay, =7 (eu +a3|)=5 (coef. of x;xy)

i I
and aT!] Sy ='§' (al'; +332)=E (coef of le._ﬂ.

Therefore, the unique symmetric matrix comresponding 1o the quadratic Form (4) will be 47
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I -
cocf. of X;xa 3 coef. of xx,

A'= % coel. of x;xs coef. of x3 % coef. of xaxx| 0 eeeee (5

coef. of x{

-

I .
) 1 coef. of x;x, % ©€o¢f. of xyx; coef. of X3
L = )
We sum up the above discussion as follows:
Given & quadratic form of order 3, there are infinitely many matrices of order 3 which will
generate it. However, a symmetric matrix that will generate a quadratic form of order three

is unigue, This symmetric matrix is called the matrix a'asomated to the quadratic form, or
simply. the matrix of the quadratic form.

Just as in ihe case of order 2 forms, there is 4 one-to-one correspondence between the set of
all symmelric matrices of order three and the set of all quadratic forms of order three. The
next few examples will illusirte the above discussion.

Example 5: Find the quadratic form Q corresponding to the symmetric matrix

Silution: A straight-forward wuy will be 10 expand X*AX where X's{x .x,.X;}. Then we
would get -

] 1 3
Q=7 +4x3 +2x) —dx Ky + 0% Xy +2XaK,, -

But, & quicker way is 10 use the rule (5). Compuring the entries of A” irt (5} with those of A
above we can obuunall the coeﬂ' cients of the quadratic form as follows:

Coeff'c:cm\ of .t, xa x; w:ll be the elemenls of the diugomal in A, |c l.4and 2,
respectively.

coef. ofx x,=a +a, =—4

coel.of x x,=a, +a, =6

coef. of XX, =a, +4,, =2

Then the required quadratic form is Q, as abtained above.

Example 6: Find the symmetric matrix associated with the form

+ L) 4
2R} = X5 + X3+ 2% X5 = 0%;Xy,

. Solution: Using the rule (5). we can write the matrix as

2 13
I -1 0
-3 0 |

Example 7: Find the guadratic form associated with the zero matrix of order three,

Solution: All the entries of a zero matrix are zero. Therefore, using (3). we get ali the
coefficients to be zero. The associated quadratic ferm is, then,

.
Ox] +0x3 +0x2 +0x,x5 +0%;x; +0xsxy,

which is fhe zero quadratic form of order tiree.

Example 8: Consider the general dingonal matrix of order theee, (
A, 0 0
0 A, 0 | Whatis the associated quadratic form?

Solution: The assoctated quadraric form is the diagonal form
Apxd +Aax3 AN
The following exercises deal with guadratic forms of orders 2 and 3.

E E7Y Write the following quadric Torms as X'AX, where A is a symmetric matrix.

e




4l Ix’+ 7y =~ 22° + yz - zx - 2uy (in RY
b} x{ +X3=X,x. {in RY)

¢} x{~2x;xx (in R}

a4 2yr+2zx (in RY

E E¥} Expand X'AX asa puly_nomiai. where X' =[x, y, 2}, and A is

a h g 1. 00] 14 0 9
a) [h b fl.wlo -1 ol aylo =vZ ¢l
e f o« 0 00 0 D -l

Cun we exiend the comments about quadraiic forms af urder two and three 1o & quadratic
lorm of-uny finite order n? Yes. You know that a general quadratic form of order n is given
by

h
Q=Z a,ixixj. where aij=aj~|-1+'i.j=l.....l'l.
hLjel ’

The associated symmelric matrix A of order n will be
' [al? - TEIN aln-i
B2 "2 L o2g, :
Awm| | © e - bhowhere a=a ¥ j= 1. .
a,.,l an_._ [ETTI - F¥

Thus, Q can be wrilten as
A=X'AX, where X‘:[x,x_, A A _
So. there is 2 one-to-one correspondence between the set ol all symmetric matrices of

order n and the set of quadratic foring of order n. Under this comespondence the matrix

A cogresponds to the quadratic form X' AX. The following exercise illustrates this for
order4. ‘

Real Quadratic Foras
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E =55) Expand X'AX as a polynomial, where X's [x,.%,%,%,) ang

a4 00 2|
|21 00
(36 01
00 0 4
Find the symmelric matrix A’ such that X'AX = X'A'X,

A

Before going fuiher, we would like to remind you that the quadratic form of order n, X'AX,
is simply the inner product {AX, X} in V _(R).

Lt us now see what happens Lo the matrix of a quadralic form if we change the basis of the
underlying vector space.

‘144 TRANSFORMATION OF A QUADRATIC FORM

UNDER A CHANGE OF BASIS

In the previous section you have seen that 2 quadratic form Q of order n can be expressed as
X'AX, where X' = [x,, b S x Jand A is a real symmetric matrix of order n. Now,-

K. X, weon X, are the components (or the coordinates) of the vector X with respecl (o & pre-
assigned basis (e, ¢, ..., ¢,} of R" If we change the basis of R" from B = [e. ¢, ..., €, ] 10
another basis B’ = {e] ..... € |, the componenls of X will also chenge. Therefore, the
quadratic form Q will also change. We will show that, under a change of basis, the quadratic
form changes zccordine to a certain transformation law,

Let P be the matrix of the change of basis from B to B (see Sec. 7.6). Then P =[],

. n
where ¢; = 3.38;-
i=m] o .

You have seen, in Unit 7. that P is invertible. Note that the columns of P are the.components
of the vectors of the new basis B’, expressed in terms of Ihe originel basis B. .

Now, if X' ={X, ..... ] 81d Y' = [y, ..... ,] denote the coordinates of a vetor in R” with
respect 10 B and B', respectively, then '

] ] L]
? Rl = Y Y £y = S‘ Yt
el . .ﬂ & 2 A x I

=1 j=l i Jal
Since (e, ,.... e, } is a basis, we got

X = Zauyj-v-i =1 Zyeeal.

=1
'This is equivalent to the matrix equation

===y




This equation is the coordinate transformation cormresponding to the change of basis from B -Real Quydronic Forins
. to B, The change of basis will convent the quadratic form X'AX i into ’

(PYY A(PY) = Y(PAP)Y.
"= Y'CY, where C = P'AP,
Bul, is C symmetric? Well, C = (P'APY = PAP=C

.. C is symmetric.

The above discussion shows thal, under a change of basis given by the invertible matrix P,

the coordinate transformation is given by X = P, and the yuadratic form X'AX gets - (AIEI:-'-: ya
transformed into another quadratic form Y'CY, where C = #*AP. This leads us to-the (Al
following definitions,

Definitions: Two real symmetric matrices A and B are called congruent if lhere exists an
invertible real matrix P such that B = P'AP.

Two quadralic forms X'AX and Y'BY arv called equivalent if their matrices, A and B, are
congruent. :

In particular, if the matrices A and B are orthogonally simifar (see Unit 13) then the
comesponding quadratic forms, X'AX and Y'BY are called orthogunally equivalest.

So. under a change of basis, a quadratic form gels transformed to an equivalent quadratic
vorm. They may or may not be orthogonaily equivalent. Let us look at an example.

Example 9: Consider the change of basis of R? from the siandard basis B, = {100, (0, 1)}
0B, = {(1.0) (1.2)). Lei (x.x,)and (v, yz) represent coordinates with respect to B and
B,.n:speclwely

2) Find the coordinate transformation that expresses x,, x, in terms of y,, ¥,..
) Let Q(X)=xj —2x,x, +4x3, Find the expression 6f Q in terms of y, and y,.

" Solution: 2) The change of basis from B, to B, is given by the coordinale: transformation.

R T ——

- (Remember that the columns of P will be the components of the new basis vactors expressed
in terms of the old basis.) From (1)

AL Yit¥s
11 2)’5
. Le.,x = y, + y,
%, = 2y,
which is the required coordinate transformation.
.- - - .
%), Now Q(X) =[x, x5 [ : j] [""J
B s . - L X:
= X'AX, say L {2)
Using (1), Q(Y) = Y'(P'AP) Y.

101 1T 1
T2l 4)lo 2

S

Using this in (3), we get

QUY)=yi ~2yy, 13y} O
Thus, under the change of basis given by X = PY, the given quadratic ferm transfosms
into (4).

The mllamng excreises will give you some more pruclice in dealing with quadratic forms
uitder a clunee of hasis. 3i
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E E10) Verify that the matrix P.in Example 9 is not unhu;_.nml {Therefore, (l; is not an
onhogonal transformation. Thercfon. l"i.mdl-hareequwulcnl bu1 not orthogonully
equivalent.)

E Et1} Consider the quadratic fom given in Example 9. Replace 8, by {(1.0). I(l 13} Is
" this change of basis orthegonal? Find the quadralic form with respect (10 the new -
busis B,

b

E EI2) Leta qua&_railc form have expresxlon
Tx?+ 52y - 32y
with respect (o the standard basis B, = ({1, 0. (0, l}!oflt' Find us expression with
rﬂpcctlothelmwﬂ = {{2. L. -2)!

E Ew Cmmdermcchunscol'basrsofll from the stingard basis B-= {(1. 0, 0). ©. | 0.
0, 0, D)} to the basis B’ =.{'(=2. 6, 3). (3. -2, 6)..(6; 3, 2)! Fmd 1he coordmale

lrmarurrn.mon correspmdmg 10 this change of basis. -




Now let us <ee what we mean by the rank of a quadratic form.

14.5 RANK OF A QUADRATIC FORM

M Unit & you have swudied aboul the runk of a matrix. Here we will discuss the rank of a
quadratic fonn. Sinve quadratic forms are closely associated with matrices, the concept of
_the nk ol matrix can be used o define the rank of a quadratic form. But first we shall
prove the following resuli.

Theorem L: Congruenl malrices huve the same rank,
Proaf: Let A and B be congruent imatrices, Then there is a non-singular matrix P such that
B=PAP.

Recall. from Unii 8. that muhiplication by 2 non-singular matrix does'not change the rank of
a matrix. Therefore,

rank (B = rank (P'APY = rank (A).
which proves the theorem.

We are now all set 1o define the ran, of a quadratic form.

Definttion: The rank of a quadratic form is the rank of i associated matrix.

Yuu may think that this definition is not meaningiul. because the associaled matrix depends
un the busis of the vector space. But Theorem 2 assures us that the definition is meaningful.

Theorem 2: The rank of a quadratic form does not change under a change of basis.

Proof: Let Qi X) = X'AX be a quadratic form of rank r. Under a change of basis let X = PY.
Then QiY) = Y(PAP)Y. .
And then, rank Q(X) = rank A = rank (P'AP) iby Theorem 1)
= rank Q(Y}
Thus, we have proved the theorem,
Try the following simple exercise.

E EV41 Verily that the rank of 2 diagona) form is the number of non-zero terms i.n its
expression,

Real Quadrailc Forme .
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Now let us.dbtain the ranks of some more guadrate forms.

"Example 10: Consider the quadratic form

QUX) = 2x] +2x %, +2x3 - 6x 1y —6x,%; +6x3,
where [x,, x;, X,] are the coordinates of X with respect to the standard basis of R?.
&) Findthe expression of Q with respect (o the basis
B={(I 1 -2][: -1 0)[1 1 1]}
Pl wEwENE et EE A
b) What is the rank of Q? | ‘

Solutions: ayLet ¥' =y, y,. y,] denote the coordinates with respect (0 the new-basis B,
Then, the change of coordinates is given by

11
6 V2 3

w1 -1 _
‘ x_.:’g var 7-5' Y =PY (say)

-2 i
V6 0 5
The given quadratic form can be written as X'AX, where

2 1 -3
A=(-1 2 =3
-3 -3 6
The change of coondinaies given by X = PY will convent KAX inito YRTATHT, wivae
(4 1 2] (1 1 1]
FER, | A ®AD
1 -1 ) 11 1 -1 1
PAP=|—= — 0 I 2 =3l|l—=s = —|=
i 1 -2 I
—_ 0 —
_ﬁ' ﬁ 3 73: ‘\!54

Usinp this, we get
QY =95t + 43,
which is the required quadratic form.
Nuie ihai P is an orthogonal matrix. .. Q(X) and Q(Y) are orthogonaliy equivalent.-
b) Now, let us obtain rank(Q) directly. We know that rank (A) = 2,
o rank (X'AX) =2, b.e., the rank of Q s 2. '

Another way of showing that rank Q(X) =2 is as follows: Q(X) and C(Y) are equivalent,
and the rank of the diagonal quadratic.form Q(Y) is two. .., rank of Q(X) is.also-two.

The following exercise will give you some practice in obtaining the ank of a quadratic: form.

& EI5) Find the rank of the following quadratic forms in R,

PR N Y L LR TR pp
Wi oA T Uy v oin —SAy ~yu

By x?erlaz?adyua dyra2ar

C) 287+ 2+ 270 = 2uy + 2yz + 2xx

d) x*-y?




Now. as we hive seen, under a change of hasis 2 quadraric jonm pets iransiormed to an
equivalent yuadratic form. We will show that all quadratic Torms can be divided into.
cquivalence classes bused on the relationship between their matrices, Recall from Unit § that
a relation is an equivalence retation if and only if it iv reflexive. symmatric and transitive,

E16) Recull the definition of congruent and onthagoraiy simitar malrices. Show that the
relitions of congrugnce and o:thogonal similurity beiween matrices are equivalence
refations.

Once you have proved EI6 the fliowing thearem follows immediately,

Thevrem 3: The relution of equivalence, as well ag orthogonal equivalence, of quadratic
lormy is an equivalence refation.

Prool: We will prave the 1heorem for equivalence. You can prove the resuft for orthogonal
vquivalence similarly. :

Now two quadratic forms X'AX and Y'BY are equivalent if and only if A and B are
conpruent. You have just proved (in E16) that the congruence of matrices is an equjvalcnce
relation. .., the equivalence of yuadralic forms is also an equivalence relation.

Real Quadraslc Forms

35




Tnner Products ssd
qmnlk Fornw

In view of Theorem 3, the refation of eqﬁivnlencc (respectively, orthogonal equivalence)
divides the set of all quadratic forms of order n into disjoint equivalence classes. Each
equivalence class.contains all quadr'iiii‘c forms which are equivalent {respectively,
orthogonally equivalent) to each other. Tn other wards, any two quadratic forms in an
equivalence class can be obtained from each other by a suitable change of basis. This
division into classes will be very useful in the next unit,

‘We shall now use rcsuhs of Umts T2hd 13 10 establish a method to reduce a quadratic form
into a diagonal formi, by d‘s‘lng a siiitable onthogonat change of basis.

14.6 ORTHOGONAL CANONICAL REDUCTION

Recall from Unit 13 that for any real symmetric matrix A. we can always constnict an
orthogonal matrix R whose columns are a set of onthonormal eigenveciors (say,

U, U, .... U,)) of A such that '

R'AR =diag A, ..... A,), I ¢

Ay v A, being the eiﬁenvalues of A corresponding to the eigenvectors U, ... U,
respecuve.ly

Remember, R may nol be unique. This could be due to two factors:

i) Changing the order in which eigenvectors are taken will change R.

ii) An ofthonormal eigenvecior corresponding to an eigenvalue need not be unigue,

We shall now use the relation (1) to transform any quadratic form to a diagonal form.
Let A be the matrix of a quadratic form with respect 10 a pre-assigned basis. Let R be an
orthogonal matrix obtained from A as indicated above. Now consider the change of basis

from the pre-assigned basis to the basis {U,, U, ..., U_}. The coordinate transformation will
be given by :

X =RY, S e (2)

Y'.= Iy, . ¥, »--. ¥, being the coordinates with respect to the new basis. R being orthogonal,
(2) is an orthogonat transformation which will convert X'AX into

YRIAR)Y =42+ 4 yd, e )]
because of (1). '

Thus X'AX is orthogonally equivﬂent to the diagonal form in (3) whose cocfficients are the
cigenvalues of A. The form in (3) is called an orthogonal canonical reduction of X*AX.

We say that the orthogonal ransformation (2) has reduced the quadratic form X'AX into

. its orthogonal canonlcal form, given by (3). The form in (3} is orthogonal since the

transformation used to convert X'AX into it is orthogonal. It is calted canonical as the
reduced form is the simplest onthogonal reduction of X'AX. The clements of the basis which
diagonalise the quadratic form (in this case they are U, ..., U ) are called the prmcipnl axes
of the quadratic form. In Unit 15 you will realise why lhey are called axes.

We can summarise the above discussion in the form of a theorem. i

Theorem 4: A real quadmatic form X*AX can always be reduced to the diagonal form -
Ay e+t hyE _

by an onhogonal change of basis, where A, ... .. » & are the eigenvalues of A. The new

ordered basis is an orthonormal set of eigenvectors corresponding to the eigenvalues
Ao A,
l T *

Now, if the matrix of a quadsatic form is onthogonally similar to diag (A, . ... . A dtis
atso orthogonally similertodiag (A, &,......, A)- Thus, the orthogonal canenical form to
which a quadratic form is orthogonaliy equivaicat is unique excepl for the order of the
coefficients. If we insist that the non-zero eigenzalues L2 written in decreasing order
followed by the zere eigenvalues, if any, then 'we can obtain a unique orthogonal canonlcal

form,
So, we can state the followmg result,




Theorem 5: A quadmuc form of rank r is orthogonally equivalent 1o a unique orthogonai Real Quadratic Forms
canonical form Ay} +...+A,y?, where &, ...... A are the non-zero eigenvalues of the -
matriz of the quadrauc form, such that A, 2 Az, z A,

Proof: Lct X‘AX be a quadratic form of rank r. Then mnk {A) = r. Therefore, A has r non-
zero eigenvalues. We write themas A, ....... A.in decrea.smg order. Now, by Thearem 4
w._ get the required re.suIL ; . -

So far we have spoken about the orthogonal canonical form in an abstract way. L&t us now
look at a practical method of reducing a quadratic form to its orthogonal canonical form.

Step by step procedure for orthogonat canonical reduction: We will now give the
sequence of operations which are peedad to reduce a given quadratic form to its orthogonal
canonical form, and to obtain the required coordinate transformations or the new basis.

]
19 Construct the symmelric matrix A associated to the given quadratic form Ea“xixj_
2V Form the characteristic equation bt
det{A—)=0

and find the eigénvalues of A Leth,...... + &, be the non-zero cigenvalues armanged in
decreasing order, i.e.. A, 24,2 ... .>JL

3} An orthogonal canomical reduction of the given quadratic form s -

J\‘ny oo "'lr)’f-

4) Obtain an ordered system of n orthonommal vectors U, . . ... ., U, consisting of
eigenvectors corresponding to the eigenvalues A, . ..., A thered =05 ..., =}).
Note that for repeated eigenvalues also we must obtain Imearly lndependcnt
orthonormal eigenvectors.

5} Construct the orthogonal matrix P whaose columns are thc eigenvectors U, .....,U,.

6) The required change of basis is given by X = PY.

7) The new basis (U,, U ., U,; is called the canonical basis and its elements are the
principal axes of the gwen quadrauc form. -

In Step 2 you are required 1o find the eigenvalues, i.¢., the roots of the characteristic
equation. In a realistic situation the roots can be irration2l numbers and we may have to use
numerical methods to determine such roots. We have avoided imational numbers by °
carefully selecting the quadratic fosms in our examples and exercises so that the roots of
characteristic equations are sational numbers.

_To clarify the procedure given above we present some examples and exercises,

Example 11: Obtain the umque orthogonal canorucal form of the quadratic form

Also give the a.ssuc:ated coordinate transformation, canonical basis and principal axes of the
given form.

Solution: The matrix of this quadratic form ls

5 -3
A:[_s s]

Tha sivonualuar .r\F A ora muven by
LR L ) B

g

AT 10A+16=0=9A=8,2. '
Thus, the required orthogonal canonical reduction will be

8y} + 2y}
The nomalised eigenvectors c:ornspmdmg to the eigenvalues 8 and 2 are U, and U, where

{-1/42 1742
U’_[uﬁ ] i [u«l_]
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Thus, the neworthonormal basis is {U;, U}, which is the canonicel hasis. U, and U, are e

- principal axes of the piven form. _

The associated coordinate transformation will be

B el
b2 U2 ,
e, x,—-l!-\f_(-ylﬂrz)
3y =1/N2(y +y2)
Note: Remember that the choice of normalised eigenvectons is not unique. You could have
as well taken —U, or —U.. instead of U, und U,, respectively.

EI17) InExample 11 take the normallsed e{genvectors corresponding to § and 2 to be ~U,
and —U.. respectively. Find the coordinate transformation needed for the orthogonal
canonical reduction.

Nowwelookalmeumple in which the associated mamxlusrepmedengenvaluu.

Emplelz. Consider the quadratic form

P4+ P+ Iy +2xz+2yz e (1)
F'ndnsmhogomlunanulmducummdtheewrupmdingmbuh
Solution: The matrix of (1) is

111
Aal1 11
o hoa

'!‘heeigmvn.luuofAmS o&.mmmwmmnh
T e (2)

where X, y,, 2, are the new coordinates,
Anoumalmedugmvecmrmn'espoudlngmﬂiedmvdudu

1743

/43|

11743

Eigenvectors corresponding 1o the clgenvalvs 0 are given by

11| [5]-fol

1 1] [2] {0 -

ie,x+y+z=20 ... 3)

Here we can choose any two mutually orthegonal sormalised vectors satisfying (3), Let us
choose

1742 L/ V6
-1/VZ[and | 1/46 :
0 ~2/6




The new basis, in this case, is

143) [ 143) [ 1146
3L -1742) | 1746
13| 0 276

N

Rezl (nadratic Forrm

\F""

which is the canonical basis. Its elements are the prncnpnl ntes of (i) The change of basis

needcdloconvert(!)mto@)isgwenby
1 (173 1742 1745
y[={1/¥3 -1/¥2 1746
zj (1743 o0 -2/6

=gl

L - - .
fer

We again observe that the canonical basis, principal axes and the coordinate transformation
needed for reduction are not uniquely dele:mmed. We coirld have chosen any two mutually
orthogonal orthonormal eigenvectors of 0.,

The next few exercises will give you some practice in applying the procedure of reduction.

E Ei8) Find ke orthogonal canonical forms to which the following quadratic forms can be
reduced by means of an onhogmal change of basis. Also obtain a set of principal

axes for them,
a8) xt+day+y?
b) 8x?—dxy + 5y*

©) 3x3 +3x3 +4x;x5 +4%,%; - 255X,

59
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E Ei9 Which of the following quadratic forms ate orthogonally equivalent?

) 9x3 +9x3 + 12x;x; + 12Xy = 6x2%,
b) —3y] + 6y3 +6y3 — 12y,y; +12y,y3 + 6y2¥3
¢) 1127 — 423 + 1123 + 82,25 - 22,2y + 82,2,

E E20) Show that the quadratic forms

x2=2y*+2? and z} - 2;. +y,
are orthogonally equivalent. Find the m:lhogoml Imnsfofrmnm whlch wall transform
the first of these into the second, ' )

"N . T T

T




We will now try to reduce (he mirix ofa quadratic form.to a diagenal form whose diagonal Real Quadratic Forms
clements are only 1. =1 or(. -

14.7 NORMAL CANONICAL. FORM

if we do not restrict ourselves to an orthngonzl chenge of sasis, then we can reduce 1
uudratic form to a stmpler form than the one w2 conside: ed in 1he plevious section. In this
simpler version the coefficients of the reduced fonn are +or Zero.

n
L X'AX = 3 agx.x, wondl)
ijel
be 4 guadratic form of order n, From Theorem 5 we know that X'AX can be nsduced o its
unique orthogonal canonical form :

Ay e A Ay il

where & ... .. A_are the non-zero eigenvalnes of A suchthatd 2 A2 ... 2 4, Thus,
runk (A) = ror. cyuivalentiy. the renk of (1Yisr,

Now consider the conrdinate sransfurmation

Zi=1“li|}'|- =L 2wt {1 bl 1,ifa>0
=y, i=r+l,..... .n , sign (@)={ =, d a <0
This is a non-singular transformation which will convert (2) into 0.8 a=0
sign(A, )2t +...... +sign (A,)2] )

n

] i.e..z sign (A;)z)

kal

Remember, sign (A ) =0=.... = sigh (A;.

Thus, by two successive transfonnations, one onthegong. and 4he other non-singular, we
‘have reduced the given quadratic form to a diagonat form (4) of order n whose coefficients
are + 1 or 0. We call ike form (4} the normal canonical form of the quadratic form (). We
give the following definition.

Defiition: A diagonal quadratic form. whose coefficients are 4 1 or 0. is called 2 orma)
canonical form.

For example, x* = y* is & normal canonical form, but 2x*+ y* isnot.

The procedure involved inrtransforming (1) to (4) i described as reducing £ quadratic
form to its normal canonical form.

E21) The transformation (3) is not, in genieral, 2n urthogonal transformation. Under what
" conditions will it become orthcgonal? '

~“We can sum up the above-discussion in the following theorem.

Thearem 6: A real quadratic farm can atways he mdured to a narmal canonice! foom b o
suitable non-singular transformation. ’
Let us now ook at some examples that will help you in understanding the procedure.

_ Example 13: Reduce the quadratic form

Sxi-6xx,+5c8 e H

10 & normral canonical form.

Solution: From Example 11 we know that (1) can be reducedto

gyr+2ys. L @ _ 61
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Now consider the coordinate trunsfarmntion,
L= \m!’l

2y=V1y,

ie.. z=l[f 35] Y. where z=[:'] and Y=[:‘]

This lmmafonm|igﬁﬁ‘pjﬁp:iﬁ:ﬁ?@@iuguhr but not orthogonal, will convert (2) inin
Z7 +23.

which is the required normal canenical form,

Example 14: Reduce the diagonn! form

2x; - 3x3 - 7x; inlo its normal canonical form,

Solution: Consider the trunsformation

i =1f?-.x|.
y: =3,
YI=\{T‘|
¥ 0o
e, Y=j0 43 O X,
o 0 g7

This will conver the piven diagonad Form inte

vi-yi-vi

which is e requined n(l.l'lll-:ll canonicat fomm.

Try (he fullowing exercises now,

E2Y) Reduce the following yuadratic forms to ll;eir narmal canonical forms.
a 8RS~ dxy + Sy h

bl 23 = vy + 34K = dxy

E E23] Show thut the rank of a rormal cancnical form is 1he nember of non-zero terms in its

cxpression.

—




;

o1 Show Mt a gl s Toct il its normal cansi at reduetion have the xame runk.

T e

Fa vew of i ahove exerenes i namnat camet reduction of s quidsatis form of rnk ¢
ha the Torm
.}';+ ----- +}I‘ yii 1= “.—::'

where pis the nuither af poaitive e in the reduced -fora

Butis u nermal canenical cedog ton of i guadratic fopm wnigue? In other words, is the
numbrar of prositive terms m a nesail canonieal reduesiions ol o guismtic form uniguely
deternsined? W answer this guestion in the foiiowmg dheenm., due 10 1he Enplish
mattmanCian L, Sylvester (1R -TRY7) _
Theorem 7 {Sy.vestery: The number of positive seemx in « nosms cancnical reduction of a
guxdratic foom by uniguely dewenitned Comreguently. s puadratic fom of rank rhas a
unigue romul casonical neductive

O (3 [N

Proof: L2t Q be 2 quadrtic form of arder & und rank r. Lo (4, ... 0 | be 2basis of R®
te which Q is represented by

Q(_X}=x,‘ .., +x x;.,— ..... -x,:. O 8§
vhere :-imul

Let [v ...I.l.. +¥, 1 be another basis of R"in which Q i represented by .
Q(fi:yi"+..'...+yl"_".-yi:‘.“__ =y e 2)

n
wliere Y = E}'I"--

inf
Thus. (1) and (2} are both normal canonical reductions on in which the numbe: of positive
terms are p and p’. respectively. To prove the theorem we have to prove that p =p”. Lét'U
and V be the -.ub:.paccs of R penerated by lu ....... suand (v ... v L
respectively, :

Thie, dim U = panddim V =n - p’. We will show i U A V = {0}
Suppose U YV 2 [0).LetOsue UMN Y,

Now,since v e Uand o 2 6, we have

T LT T +ay 1€ R Yiowhenss ) for some |,

vacrelore, Irom (1

QU=aj 4+ al >0 L)

Also. since y € V. we have i A F
au:h:.v“.|+ ...... thv,. b e Py, b, 20 ft-rsomel

no ffom (2) we get Quur=-bf.,, ~..... -5 %0 T akey

{3} and (4} bring us (o u contmadiction. . . ouc supposition must be wrong.
UMV =0}

At thix stage, recalt from Unit 3 that

dimU+dm V-dim(UNVi=dimiU+V,

'I'hcret:nre.

prn-p=dinU+ViSdim(RanasU+V SR

=r+n—p<n

B asne . .

G3




Innier Prmbucts snd
¥ TR

o

----- (']

=p<y ) AT
Interchanging the rokes of p and p’ in the above argument, we get '
pse (6

(3):amd (6) show thas p = p’, which proves the theorem,

By Thecrem | and, S;y[vps;cr % thcorem the rank r and number p s'emain unchanpged under a
change of basis, i.e,, under u nnr.-amguiar transformation. Hence. the number 2p - r aiso
rtmamstmchanged-

Definition: The signature of arqund;allc form is defined to be
(the number of positive tesmx)— (the number of negative terms) appearing in its normal
canonical reduction. [t is denoted by the lenter s.

Thus, s=p—{r-p)=2p-r.

Forexnrnple fot the form:inExample I3 we havcp=2,r-2und-s=a2 For the form in.
Example 14.p=),r=3.5=~1I.

EJS} Find-the sunk and signature of the quadratic forms given in E 22.

The rank and the s-ignamre completely determine the normal canonical reduction. Also, any
two goedratic forms having-the same normal canonical reduction will be equivalent. We can,
therefore, siate the: following resulr,

Fheorem 8¢ Two yuadratic forms are-equivalent if und only if they have the samc- rank and
sigraure. )

In Section 14.3 we said:that there is a one-fo-one correspondence between the set of all
symmetric matrices of order n and the set of quadratic forms of order n. So we can expect

‘Syl\mtu' s theorem to have a marrix lmerpmauon This is as follows:

A.symmetric.matriz of order n and rankris cquwalent 10 & unique diagonat matrix of the
Lype

Frp '0- 0
0 I, 0

Io ﬂ- un’—.l'.lll-r

And.now we end {he unit by baefly recailing what we have done in it.

148 SUMMARY

In thisunit 2l the spaces considered are over the field R. In it we have,..ovcred the

:II.I'IIDWIIIL. |.minn

t) A hamogeneous polynomial of depree two is calted aquadrand,onn Its ordcr isthe
number al veriables occuming in its expression.

2) Each quadratic form can be uniquely expressed as X'AX., where A is a unique symmetric
mratrix and is called the matrix of the quedratic form.

13- There Is a one-fo-one cnrrespondéncc beiween the st of reat symmelricn %X n malrices
and ihe se1 of real quadratic fonns of ordern.

4) Twoquadratic forms are called equivalent (respectively. onthogonzlly equivalent) if their
matrices are Zongpuemt (respectively. onthogonatly simitar). Two equivalent

=T PO




(respectively, orthogonally equivalent) quadratic farms convert into each other by a Real Quadratic Forms -

suitable change of basis.

5) The rank of a quadratic form is defined 1o be the rank of ils matrix.
6) A quadratic form X'AX of rank r is orthogonally equivalent 1o a umquc diagonal form
l,y, ..... +A.y7, AzA. 2.2, '
called its orthagonal canonical reduction, where L ' 2\. are lhc non-zere
cigenvalues of A. LT
7} A quadratic form of rank ris equivalent 1o a umique diagonal form
yia..... Typ Vet = ceee ~y2
called its normal canonical reducrion. Here the number p is uniquely determined
{Sylvester’s theorem). The number 2p ~ r is called the signalure of the quadratic form.
14.9 SOLUTIONS/ANSWERS
E1) There are pienty of possible answers. We give one cach.
Wxt+ |, byx*
E2) Only ().
E3) a) k=0.otherwise.the poiynomfal is of degrec 3.
b) k=2
c) k=4
E4) The first three will be quadratic forms, if they are non-zero. Q, Q, will be of degree 4.
Q,/Q, will alsp not bz quadratic; in fact. it may noteven be a polynurmal
ES) For exampie, the matrix [: ;:I gives us the quadratic form
t 11 2 2
X | 3 X=x"+2xy + 3y*.
. 0 0 20 0 1] - p ql/2
S R I Y A
7 -1 -HJ-I |'x
EN a) [(xyz) -1 -7 10§y
-10 10 -2] |'z
[
By [x, %0 fo; 2 ["‘]
7
1 =1 0% -'
C) ["I x-_. x;] -1 0 a X; |
) G 0 0j]x, J
{0 0 I] [x
d) {xyzjto 0 1 Ly
|11 OJ |2
EB) a) ax®+by'+cZ' + 2hxy + Zpxz + 2fvz
by x?=— y?
c) dxi- \ﬁy: -z
E9) X'AX=dxi +x3+dxl+ 2x)%3 + 3%, %y + 2%,X + 6X35y + X3X,.

4 1 312 1

P 0 T I T

1372 3 0 172 '
1 0 1/2 4

EiM) Since its columns are nol orthonomal. it is not onhogonal. 65




’ l'.l -
Ell) Now X =PY,whereP= I-:) 11' This is'also not orthogonal, sinne its solvmny 2o
not orthonormal. - ]

Now Q(Y) = Y' (P'AP)Y, whene

Loofrolfr -t i 0
PAP= i =

Vo= «5§0 tf {0 3_I
S QUY)=yi +3y3.

7 26‘|
N A=
E12) A [26 -32]
The coordinete transformuiion corresponding ta the change {from B, to B, is given-by

the matnx p = [2 :
1 =

Ve r Products and

Lpre
Pl gLt A5

:|, ., the matrix of the form will now be

vap |2 1j{?7  w]72 n_[10 0
“P‘[n 26 il 2)7lo -2

.. the quadratic form wili now be expressed as 100xZ - 225y2,

X %
E13) Letihe coordinates of a veclorbe X = sz and Y=|y,
' X3 Yy

with fespect (o the bases B and B’ respectively. Then the coordinate transformation is

given by
-2 3 6
X=1 6 -2 3| Y
i 6 -2

= x,==2y, +3y,+ by,
x, = Gy, - 2y. + 3y,
x, =3y, +6y,—~ 2y,
is the required coordinate transformation.
El4) The rank of the quadratic form alx;" Fiires +a xl
= the rank of the matrix diag(a, .. .. ... a)
= number of non-zero a's

= number of non-zere terms in the expression of the quadratic form.

. 5 =2 0

ELS) a) Therunk of the form-=rankof [=2 & —2]=3,sinccilsdctcnninanlmkis 3.
2k

M 11 11}

b) rank (Q)=rank ufil 1 1}=1,since its row-reduced echelon form is[ 0 O OJ

i_l 11 00O

2.1
¢y rank Q) = rank of [l 2 ]= 3. since its determinant is non-zero.
P12 ' !
T 00
lo t 0
o o9 0

4} runk 1Q) = mnk of

Et6) Congruence is
iV reflexive : A = 1'Al
Wy symmetric: If A = PBP, then 8 = (P A (P),

Wiy transitive; If A = P'EF pd B = RICR for ;ome invertible matrices P and R, then
A = (RPY C{RP:, und RP is an invertible matrix.

oL CONpraance is an syuivalinee relavion.

m
k4]




.  Orthogonal similarity is - Rewl Quadraic Fermy
i) reflexive: A = I'Al. and 1 is an orthogonal matrix.
i) symmetric: If P is an orthogonal mainix such tha; A = P'BP, then
B=(P"Y AP Y.and P 'isalssan orthogonal matrix.
i) transitive: A = PBP and B = ROR =2 1 o (RPVC(RP), L
iso P orthogonal and R ortioganat = RP onhog;:n.'il. '

" ‘orthogonal similarity is 2n equivatance ielaucr.

E17) The required transformaiinn is X =PY. where P =| -, UL

e, Xy === {y; =y}

|

V2

-1, -

X2 = S+ Ya)
Vi

El8) a) The mdtrix of the form is A ={L fj Its eigenvalues are 3and ~ 1. .~ , the given

form is ~quivalentto 3x} -y} Normalised eigenvectors conespanding to 3
[ !
and -] are ] h@j and 'ﬁ >
[I 143 ] il
V2
axes of the form. Rememberthat the principal axes are nol unique.
b} Its orthogonal canonical form'is 9x? + ay?.

r ="
A set of principal axes is Il =2/¥5 I {”'\E] _
“_H\G : Lg,,jgj

respectively. -, , they form & sel of principal

¢) lis orthogenal canonical reduction is 4y11 +dyl - 2y§,
" Eigenvectors correspanding 1o the eigenvalue 4 are given by

fo 2 21[x I’x'!
2 3 - ::]:4 ¥ |=>?.x—y—z=0.
[2 -1 3§z} ’_zj

. two linearly independent orthanormal eigenvectors comesponding (0 4 can

be obtained by putting x =0 and y =0 respectively, in this equation. So we gei
[0 ] [iy5]

/2 |, 0 I
| -1/¥24 (27 JE_!
Also. corresponding to the eigunvalue -2, we el A normalised cigenvector,
2 18]

1/ 6
1/V6
“- ,aselof principal axes is

, ] ’_ 1 2
o L b
]
2|3 [
! il -—? i
fa b VS )
’_\ 2 L-\rrg | J
E19) Any twa forms are orthogonally cquivalent iff they have the same orthogonal
canonical forms s given in Theorem 3. .., their matsices should have the same

eigenvalues (including repetiions).

as the required vectors.

Now., the eigenvalues af the marrices in {a) and ‘c) are 12, 12 and —6. . . the forms
in (a} and (<) are orthogonally equivaient. The matrix of the form in {b) has
eigenvalues 9. 9. €. . i1 is not ontlwgorally equivalent 1o the others.
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6B

E20) Both the forms have the same diaponal form, as given in Thearem 5, namaly

£2h

E22)

E23)
E24)

E25)

22+ y* =227 1F

=B -

PQ™! will transform the first to the second, and

“PQ"! = PQ, since Q15 orthogonal,

1 0 0]{0 01 0 01
=0 0 1{|0 1 Of=|} O O
0t 0|t 00O 010
The transformation (3) is given by Y = PZ, where

peding [Zni’T o ,]

This matrix is orthogonal provided PP =, i.e., 1A 1= 13- i=1,
or-1¥i=1L ... or

a) First obtain the orthogonal canonical form 9x +4y?. Then obtain its normal

canonical form x$ +y3.
b) xf —yiis the normal canonical form.

“The rank of any diagonal form is the number of non-zero terms in its expression,
Since the normal canonical reduction is obtained by non-singuter transformations, the

rank remains unchanged.
a) rank=72,signature =2x2-2=2,

-b) rank =2, signature =2 x 1 =2=0.
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15.1 INTRODUCTION

In Unit 14 you have studied about real quadratic forms of any order n, ‘This unit is only 3
gremetric extension of the pravious one. In it we shall confine ourseives to the two-
dimensional case, =

—— o — fn -

Circles, parabolas, hyperbolas and ellipses are curves which we comie across quite often,
The ancient Greeks studied these curves and named them conic sections, since they could be
obtained by taking a plane section’of 2 right circular doable cone (Fig. 1). However, from
tne aralytic viewpoint, the Greek definition of conics. as sections of a cone, is not
particularly useful. We shail consider a conic to be a curve whichcan be, represented by an PR
cquation of second degree. ’ HE )

After defining comics, we shall list the Jifferent types of siandard conics. Then we shali T

study the etlipse. the hyperbola and the parabola in detail. In the last section we will Iook ar )

one of the basic problems of plane analytic geometry that deals with conics—how to obiain™. Fig. 1: Kight circular doubk cone
a rectanguiar coordinate system in which the equation of a given conic 1akes the standard

form. .

Before going further, we suggest that you revige Unit 14

Objectives

After readling this unit, you should be uble to

@ recognise different types of conics ard their standara equations;

@ reduce a general equation of second degree to one of the standard forms of conics;
® Lrace a conic whose standand equation is given, '

15.2 DEFINITIONS AND EQUATIONS

You have come across poiynomials in several variables already. We will consider the curves
that represent polynomials of degree two, in two variables,

15.2.1 What is a Conic?

Let us go back to Sec. 14.2, where we told you that the geneml equation of sacond degres in
Ris .
ax* + Ihxy +by! + 2gx + 2fy +c =0, v (1)
_where a, h. b, 3. f and c are real constants, of which at Jeast one of a, b, b is non-zero. Nota
* that if a, b, b are all zero, then (1) will become an equation of first degree, and hence, wiil
represent 2 straight line. . 69
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A s consisting of only gne point
i< cibzd a point conhe,

A Arst degree cquation [n R®
vagrasents 2 denight line.

Now, (1) represents & clirve in R, We nol! this curve a conis. Let us make some forme!

. definitions now,

- DefMnitlons: ‘The set of points of R’}.vhose coordinates satisfy a.n equation of second degree

is called a‘conle.

It may happen that there is no point of R” that satisfies a given equation of segond degree,
(For example, no point of R- satisfies the equation x* + y*= —1.) In such a case we say that
the conic represented by the equation is an imaginary conic,

Let us look at some exomplesd.

.Example 1: Investigate the niture of the conic given by

*+y'zg,aeR. (2}
Solution: There are three cases'to consider depending on the signof a:a <0,a=0,a> 0.

Case I: If 3 <0, then no real values of x and y will satisfy {2), and therefore, the cofiic
represented by (2) will be imaginary.

Cose 2 if a =0, then the only real solution of (2) is x =Qan'dy=0. Hence, the conic
represented by (2) will consist of just one point, i.e., (0,.0).

Case 3: Ifa>0, rhen-.,ﬁ € Randa=(feF. .., apoint (x, y) will satiafy (2) if and only If
the distance of (X, y) from the origin is /B Hence, the conic represented by (2) will be a
circle of radi us,fa and centre (0-0).

Example 2: Find the nature of the conic represented by

20 ~xy-3x=0, ' S N

Solution: Equation (3) can be written as

(2x~-y-3=0

This shows that a point (x, y) will satisfy (3} if it satisfies x = (or 2x =y ~3 =0, Therefors,

* we see thar the points satisfying (3) are points of the lines x=0akd 2x -y - 3=0. .. , the

conic consists of a pair of straight lines. * ~
The examples above show that a circle, a point and = pair of straight lines are conics.
Try the following exercises now. '

]

El) Find equations of second degree which will represent a pair of
(a) parallel lines. (b} coincident lines. i

- (Hint: Remember that parallef lines have the same slope.)

E E2) ‘Find the nalure of iha conles represented by the following 2quations.

g) X -y +y =0
by 4z*—9x+2=0 .
) x*=0

d) xy=0




B T T e ———— — =
lnmeexmplunﬂemdludmynuhwedmmhnywhnwdﬂhwimnmplemd
degres equations. These and other simple forms are what we will discuss now. -

. . [ ]
15.2.2 Standard Equations of Conlcs :
Didymmdedﬂmmhlirenotsivmmymphormuiulmﬂ+5:y+y’+_2xrﬁy+
. lﬂsOwt_‘ar?WgwﬂldowinSec.ls.immmywwinueﬁtwemnlwmchoqu
coordinate system so that the equation of the conic in this system Is in the “stmpléss™ form,
that Is, it has 2s'few terms ais possible, Such a form is called the standard equation of the
conic. In this sub-section we shall discuss this form, ’ .

There are several types of standard conkcs to which a geseral quadratic equation can be
reduod.ﬂwdauiﬁnﬁmhm&mﬂﬁhnkofdnemﬁﬁm&nfﬂnﬂﬁmﬁmm
the constant term appearing in the equation. In Table 1 we list different types of real conits
along with their standard equations, ) -

‘ " Tablel: Gimsdard Forms of Coukcs

Euque Al +y el b>0
Clrcle _. Prymst and
Hypesbola -yt lab>0
Parshalx yi-%|{>o
Pairolimerseciing linex | x4~ yH* = 0 s, bw 0" i

Cazice

=
o
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72

. |
Pair of parallel lines yi =2t axl - —

|
|
“
I b——t—_ | |
Pair of coincident lines <=0 :

e
L]

Point-conic Ma wy¥?=0,2,b20

i
|

3

From the standard eqﬁau’ons of conics that we have listed in Table !, we can obtain other
equally simple equations by the following two methods.

i} Interchanging the role of the axis: We apply the orthogonal transformation
x=Y veeree (1)
y=X

to the conic.

i) Reversing the direction of aa 2:is: For examplc, the direction of the x-axis can be
reversed by applying the orthepaal transformation

xe-X ] . (D)

y=%¥

1

ta the conic.

Similarly, we can reyerse the direction of the y-axis by applying the orthogonal
ransformation x =X, y=-Y.

Lat us illustrate the above discussion,

Example 3: Consider the standard equation y* = 4px (p > 0) of a parabola. What are the
different forms of this equation thar v can oblain under transfonmations (1) and (2)?

Solutlan: If we interchange the x 2nd y axes, the given eguation wilt lxl'a.nsform to
X*=4pY,p>0.

To apply (2} we replace x by - 2zod 17y 7L Vet (e @iven equation vall transtorsa (o

Y =—4pX.p>0

All three equations represent the sa:ne parabola with respect to different coordinate s stems.

Try the following exercises now.

E E3) ‘What are the different of the equetion of the circle x? + yi = af that we get iy

apPlying the yransformations (1) and (2) giver abovc”

— il e LI - -
Letus naw studs sone 02 L eacs inaztat onale {otlowing sectizas we will descnbe
ellipses, hyperbalas, probolz: 200 tniy conics, As we 1o aiong we will alt.o pictorially
show ¥au how conivs vorir ag rian=s ~<r o of 4 fighy creenisr -aibls cane.




.. Conks
Before starting Ihese sections you may Hke to recall what you <tudied about curys tracing in o

Block 2 of the Calculus course.

15.3 ELLIPSE

1o the Foundation Course in Science and Yechnniogy, you have already studiad tha: any
Planet orbits the sun in un elliptical path. The sun is al a feeus of these etlipses. In this
section. you will see what exactly in cllipse is and stuay sume of its geometiical proparties.
In Fig. 2 you can see why an ellipse is called a conic.

15.3.1 Description
From Sec. 15.2 you know Ihat the standard equation of an ellipse iy
’i*+ yib?=t,a, b0 (%))

We may assume a > b. (If b > a, then we can interchange the x and y axes o amive at the"
assumed 2ase.) We wanl (o trace the eilipse (1). For this purpase we swi gathering

information.
) (l)is symmetric about the axes: If we replace x by (=x; or y by (=y) in /1), it remains Fig. 2: Elllpsc as n seclion of
unchanged. This shows,that the ellipse is symmetric ‘with respecl 12 both the axes. deuble cone

b) (1)is a central conic: If we replace both x and y by (—x) and (~y) in {1}, it remains
unchanged. Thus, the ellipse is symmetric with respect 1o the origin, Hence, (0, 0) is the (0. 0) is the centre of a conie
centre of the ellipse. ' fx. y)= Oil fi~x. ~y) = fix, y). If 2

() ang (b) tell us that it is enough to sketch the graph in the firsi quadrant only, i.e., for ::i'::‘;:‘g'""' it ix called u
x.y 0.

¢) (1)is contained in the rectangle bounded by x = a and y = b: ()) can be wrirten as
X*=al(] - 6.
This shows that there ure no real values of x for ly| > b. Hence. the ellipse does not
exist in the regions y <-b and y > b. Similarly, writing the equarion as
y =b? (1 - x¥a?), '

we see that the ellipsz does not exist in the regions given by [x| > a. i.e.. for » < - a and
X >a,

d) (1)is bounded by the circle x* + y* = a2,
1fa point P(x,. y,) lits on (1), then

[ 5]

3 3
i‘.;.+.z_',.=1. Since a2b, we get
T

= s,
%Y
U" -1

1.1 a2
Therefore, 2531 ¢ 5-%-+%';-= ]
a° a :

he., x;" + yf € a*. This shows that P lies inside_ or on. the circle x2 + yaal,
e} {1)intersects the coordinawe axes in{ 2. 0) and (U, b).
f) The parc of (1) in the first quadrant is given by

y:-:- a’-x*, 0sxga e g
=
or x_=%-\fb2—yz. o0<ysy (3

Here y is a continuous function of x, and it attains its\maximum value batx=0, Asx
increaces continuously Som Do s, ¥ will CoTHinGOUSIy dedicase irom b io . From {Z)
above. y is a differentiable function of a over the interval [0. al. The tangent at B(D, b} is
¥ = b. From (1. x is a differentiable function of y over ihe interval {0, b), the tangent at

A(a, D) being x =a.

E E4) Prove that the tangents at (a. 0) and (0. b) of the ellipse (1) are x =aendy = b,
respectively,

73

T | T




Inner Products and
Qerzrt=tle Foro

Tl mugur and minoe gaes of an
elbipee ore given by o selof
nornalued eigeavecton of ils
st lurm

\

-

bl S ——

Fiy. 3: Circle s v seclivn of o
'-.'l:'e

74

T o

From the above information the cllipse (1) will be represented by the curve in Fig, 3,

1l
\I
xm=it | x=a
T ymb B {o. h) Xmale
Ym-ale
A’ (-, v) A

F._.(-ilc.' o

ya b H'(n. =-h}

Fip. 3: The efllpse «/a? + y¥'b* = |

The terms reluted to this ellipse HI‘I; given below.

}]
i)

i}

vl

v)

The. points (% a, 0) arc called its vertices.

A’A and B'B ure called the major and minor axes of the elhp&e respectively. Their
lengihs are 2a and 2b, respectively.

These axes are the principal axes (ref. Sec. 14.6) of (he ellipse. Can you see why? It is

because they are given by the normalised eigenvactors [L] and [?] of the form
A+ v, '

The positive real number ¢ delined by

a’e’ = u® — b, is called the ecceatricity of the ellipze. Note that D <e < 1.
The points (4¢. 0Y and (—ae. 0) arz calied the foci (pluizt of focus).

The line x = a/e is called the directrix (plural; direcirices) corresponding to the focus
(ae. 0). Similarly, x = —a/e is the directrix correspondig to {~ae. ).

Note: Ifa=bthe equation { ) reduces to a7 + y© = o, which represents a circle of radius u
(vee Fip. 4}, A circle in. thus. » speeluf case of 3n oilinse

We will study a circle in the fallowing exanple.

Example 4: Fird the cecentriciry, foci amd direcerizes of the circts x° + v¥ =07,

Selution: Since v+ vy =wlisaspeerd o sl withh =2

wegete =0, . both the

foci, (z ac, 0) coincide al the origis., (G, 7). The two diectricas X = = a/e diverge
winhnity as e = 0 and denor exiad o seal ploae.

We b seen whinl bappensf a = b
major aad minor awes will be interchanged

Lk But, what bopens iFE > @ in e 1)? The role of the
and e teominelogy given fer un ellipse will

hins e to be suiably modificd as follow <




i)  the points (0, b) will be the vertices.

i) B'Band A"A will be the major and minor axes, and their lengths will be 2b and 2a,
respectively, '

iii) the eccentricity ¢ w:{! be defined by
Pela b -2t

) the pints {C. ©e) will be the foci. They will tie on the v-axis. Tacrefore, the major exis v
will iie slony the . .oxis, C e T e

v} The lires - =g aml < e will ba Gie .ln..‘mcrs corresponding to the foei (0, be) I

T e R A A
Bemow wovmang w0 o, » - wSipse yourself. Try the following c.icroise.
EX Foar verma . o L { o directrices of the eilipse 9x? + 411 = 35 fsec
Fig. - .
- -- R
|
i
‘ Fig. 5: Tha dlipse x'/t+ ¥/ =1,
1 .
1
i
i
. _ "

Nurs let us look closely at some properties of an ellipse.

15.3.2 Geometrical Properties
Tl csupee hag v-e very introsting geomctrical properties. We shall study three important
Ol e

Fucuxsirecirix Property: ‘The djstance of any point of the cllipse from a focus is ¢ timas
its distarre from the corresponding directsix, where ¢ is the cccentricity of the elllpse,

Thﬂ Ty .
Proof: Let P(x . y,) be 4 point on the llipse x¥/al+ y¥t# = 1, a > b (see Fig. 6). Let dmﬂd?mm::zfn::mymwu:uo
F, iae. 2 be the focus under consideraiion. The directrix comesponding 1o Flisx=a/e.L&t  curve from the fucus and from tbe

D be the fuot of the perpendiculer from P 1o the directeix x = a/e. Since P hes on the ellipse  carespording directriv.e

we have
\"lu:---,:',' Iabzx, +ay-"u2b3
=y \-l -4'c )x. +a =a” (a - & 1). singe bz =ﬂla2 --azl.'.2
o x ey +ae’ =r:1r.§+ al. N
Aading - Zzex, on boik sides, we get, ¥
(x)=ae)” +y? = (ex, ~a) AR
=3 (X, ....|;}:+y,2 =c3(:., -aic)’, ’ \I:i"-c o
which 13 cquivalent 1o ' /F/- IE-" .
.. i 0 X
PR} - MDY, i.c., PP, =e(PD), : k,/
which aroves Uie statement for the focus F,. For completing the proof, try E6.
E E6) Prove ne facus—directrix property for the other focus F,.
Figi &: The cBipse 3%5% + p/d 0 u 1.
Another property that holds for ellipses is the 75
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String Property: . For each point P of the ellipse the sum of the distances of P from the two
foci of the eilipse is the samea. and is equal o the lennth of tha mgips riis

Proof: Let P be a point on the ellipse whose foci are F, and F, (see Fig. 6) Let D and D, be

the feet of the perpendiculars from P 1o the two direetrices. Using the focus—directrix
property, we get

PE, + PF, = e(PD, + PD,) = ¢(D,D,) = e(2a/e) = 22,

which proves the string property.

‘You may w:inder why this property is called the string property. It provi-les a mechanical
methed to 1 nstruct an ellipse by using a string. Let us s=e what the met.oibs.

A mechan’ ;al method for drawing an ellipse: Taio u picee of stinag o ngth 2a and fix
its end poir ts atIhe points F, and F, (F|F, < Za) of a plae seet of pupes { e Fig, 7). Use
the pencil :-0int of a pencil o stretch the siring into two scgments. Naow rofate the pencil
point all around on the paper while sliding it along the siring, making sure that the string is
taut all the time. The corve traced will be an ellipse whose foci are F) and F,, and the Iength
of the major axis is 2a.

E7) Use the method we have just givén to draw an ellipse whose eccentricity is 0 and minor
axis is 3 inches in length, on a piece of paper.

An ellipse has another important property which ‘we shall state, but not prove in this course.

Reflected Wave Property: A ray of light {or sound, or any other type of wave) emiited
from one focus of an ellipse is reflected back from its reflecting interior to the other focus
(see Fig. 8).

- An interesting consequence of this property is that rooms with an ellipsoidal ceiling have

whispering galleries, A person sianding at one focus of the ellipse can whisper so as to be
heard hy a person at the other focus, while the people in berween cannot hear what is said.

£t us now study the hyperbela in detail.

15.4 HYPERBOLA

In this section we shall present the description and some geometrical properties of a
hyperbola. See Fig. 9 for a representation of a hyperbola as a planar section of a double
cone. -

15.4.1 Description

From Table 1 you know that the standard equation of 2 hypcrbola is

xYal -y =1,a.b>0 N ¢ )

You can check that this is symmetric about both the axes, and hence.about the origin. The
origin is. therefore, the cenire of the hyperbola. Thus, the hyperbola is a central conic.

The x-axis meets the hyperbola in (£a, 0) while the y-axis does not meet it at all.

Due 10 symmetry about both the axes, itis enough 1o sketch the hyperboln in the firsy
quadrant only, i.¢.. for x, y 2 0. In this quadmnt i1 is given by

: !xz ] .
y=by——1 (orx=a %i"” ).
|

~This provides the following information.

a) The hyperbola does not exist in the region' Ixl<a,
b y= D forx =g,

e) yis a continuous function of x, which increases continuously from ] to = as % ingrepses
- from 010 <. The hyperbolh, therefore, extends to infinity.

d) xisa differentiable function of y. and hence, a fangent can be drawn at each point of the
hyperbola. The tangent at {a, 01 is paralle! to the y-axis.

. All this information allows us 10 skeich the hyperbola as in Fig. 10.

TR =




Canlcs

A=-ife X =

14 "oig

{-a. 1)

1

F'rie. 0)

| gam >

Ftawe, 0}

(g-*o)g

Flg. 10: The hyperbota x¥/a! - yiibt m |
Can you see that the hyperbola consists of two branches? OF all the conics, this propernty is
typical of hyperbolas only. ' ’

The terminology for the hyperbola is as follows:
i} The points {+a, 0} are called its vertices.

ti) The line segment joining the ventices is called the prircipal (or iransversal) axis, while
the line segment joining B and B’ is called the conjugate axis. The length of the
principal axis is 2a, while the length of the conjugate axis is 2b.

As in the case of an ellipse. these axes are in the direction of the normalised”
gigenvectc?rs [L] ar_ld [?] of the mairix of the form x%/a' - y*/b*.
iii) The positive real number ¢, defined by
ae’=a'+ b,
is called the eccentricity of the hyperbota.
Note that e > | in this case. ’
iv) The points (*ae, 0) are the foci of the hyperbola.

v) The line x = afe (respectively. x = — afe) is calied the directrix corresponding to the
© focus (ae. 0) {respectively, (~ae, 0)). '

Can you solve the following exercises now?

E ER) Find the vertices. eccentricity. foci and directrices of the hyperbola 9x* — 16y° =144,
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Let uslook at the seorr rry of &t hvnerhad, o,

15.4.2 Geamatrieal Deone- "o

A hyperbola has propenties.analogous ta those of an ellipse We dixcuss some important
properties here.

Focus—directrix Property:- distanceof any puint of the hvperbold frem vithar focus s
e times its dixtance from the zorrespending direcirix.

Prooft We will sturt the pruuf and you can mmplﬂh: u‘ Lel P{x y,) be any point of the
hyperbola x¥/a® —yb2=1.a. b > (). Then’ \c, fa? -y, fb7 =1 Con‘-lder the foci F (ze. 0}
and F (- ae. Q). Now do EY9.

E E9) Prove that PF = ePD, where D = dixtunce of P from the directrix x = a/fe. Also show
that PF, = cPD where D = dixtance of P froni the line x = —u/e.

S0 you have proved the [ncus—directrix propery.

Corresponding to the siring property of an ellipse we have the following property for a
hyperbola.

String Property: For each point af i hyperbola the ubsolute value of the difference of fts
distances from the two foci ix the same. and is equal to the length of the principal axis.

Proof: Let P be a point of the hyperbola whose foci are F| and F,, Let D, and D, be the feel
of the perpendiculars from P on the 1wo directrices. Fig. | | shows the wo cases, when Pis
on one branch or the other.

Fig. 11 Swring pcopeny Tor ad-petbola




From the feus—direcinix propenty

PE =¢PD,

PF, = ePL,.

Hence, :

' PF, - FF, lae IPD, - PD,|= ¢(D,D;) = #2a/¢ = 20, which proves the siring propenty.
You must have noticed the limilu:i!y il U properties of an cthpse nnd u hyperhota.
Sometimes an gilipse or a hyperboly is d=fined by the focus—directrix property. an cllipse
being defined when e < 1, and 2 hyperbola when ¢ > §. What happens when ¢ = 1?7 In ather

words, what is the locus ol a point whose distance from a fixed point (a focus) is equat to bis
distance from a fixed line (& directrix)? We shall answer this question in the next section,

15.5 PARABOLA

Have you aver nti.ced the path of a projectile when il is uctedl upon by the fa:ce of gravity
only? [tis a parabotz, In tris section we will discuss parabolss in soms detzil. In Fig, 12 we
0w how it can b rep.esentod by a planar section of # naie.

£3.5.1 Description
" Table ! leils'you that the standand squailon of a passbels is y* = 4px, p > 0,
You can verify the “ollowuu mfonnlum sheut it, & you have done for aneilipse ora.
nyperbola,
3} Itis symmetrical about lhie x-axis. and met about the v-axis.
-~ , this is not a central conic.

b) Forx <@ there are no real vaiues of y, and hence, this parabola does not exist in the
) second and third quadranis.

<} This parabola meets the axes onty at the origin.
tn view of (a) and (b), it ix enough 1o alesch the parsbola in the first quadrunt only. The part
of the parabola in the firs. Quadran is given By

x=yYap (ory= px. k20

« is a continuous and differentiatde function of y, and hence, the tangent exists at each point,

The tangent a1 {0, 0) is the y-axis. As n increasss continuously from Q to oo, y 2lso increaser
from 0 to oo, Hence the parabols is an infinise curve.

From the above information we desw the parsbola in Fig, 13,

. x-‘-ﬁ-'P

QO ‘F fp. &l X

Flg- 13: The parabola v = dpx

Conbes

Fig. 12 Parabola as asectlonof o

daubte cone
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For the parabola given in Fig. 13,

i) the origin is called the vertox:

i1 the line of symmetry. i.c.. the x-uxis. iy its axis.

i) {p. Mis the focus.

ivi the line x = — p is the dirdetrix: -

You can use this knowledptduelvethe following exercise.

El(}} Find the coordinates ol the fociss: und the eqﬁalion of the directrix. ol the parubola
ay y'=3x. b) =day, ¢} y'= -dax,

Draw a rough skelch of these curves also.

We will now discuss the geometey of a parabola.

15.5.2 Geometrical Properties
We will ralk about two geometrica_l propesties of a parabola now.

Focus—directrix Property: Each point of a parabola is equidistant from rhe focus and the
directrix of the parabola. '

Proof: Let the parabola have standard equation y* = dpx, Then Fip. 0} is its rocus, Let
P(x,. y ) be any point on the parabo'a.(see Fig. 14). Then

yi =4px,.
Now
PF* = {x,= p¥+ yi =tx, —p¥ +4px, = (x, +pr.
=PD*
= {distance of P from the directrix x = 4§,
Hence, PF = PD, wihich proves tiie focus—diredtrix propenty,
Now we state (without proal) anctier impartznl geomerrcul. a» weil us physical, property of
a parabolic curve,

-Reflected Wave Property: (('a source of light for sound, or any other type of wave} is
. placed w dhe focus o o parabola which has o reflecting surfuce tee Fre. P abe mvs thar




222 the teflecting sudace of the parabola will be reflected paralic! to the axis ofthe Canrs
parapola. Conversely, the rays of light (or sound, or any other type of wave) entering
parllel 1o ihe axis are reflected o cenverge ar the focus.

As a consequence of this propenty a paraboloid surfacr. is used'in the headlight of cars, A parcholald b u surface genere v
opiical ond radio lelescopes, radars, elc. z:wlvluﬂ prasbois ooaut i

The focus~ direcirix preperty is common to an eflipse, a hyperola and a parabola. Eachof

them can be considered as a locus of & point whose dretance from a fixed point (a-focus) is a-

constant, ¢, limes its distance from a fixed line (a directrix). The locus is an ellipse, paraboia

or hyperbola accerdingly ase < 1, e x I, € > 1. The focus— directrix property, therafoce,

cntlias ail these conics., Thee ellipee, hyperbols and prrahaia

ere caliod sos-deguneraly cowics,
Whet about ihe rest of the conics given in Table 17 They are gt hmmn; cased of an ellipse,.

3 hvperbola or s parabola

* or example, ihe pair of intersecting lines x? - k% = 0 is a Limiting case of the hyperbola.
et ey el, s.hp0uwsa—=0,b>0.
{Taking limits a; & -+ 1, b ~» O such that lim afb = k (finite), we get w- ki = 0)

b0
Sirr-ilariy. the ellipse x°/w” + y'/b° = 1 degenerates into the pair of paralle} iines given by
v 1z b" o =—ipa,
32 {Sryou have studied quite a few conics. But you must be wondering sbout curves that are
fepresented by the geacral equation of second degree, .

We will now jock 3¢ any conic and see how to reduce it 1o one of the standard forms given:
in Sec. 15.2,

15 6 THE GENERAL THEORY OF SECOND ORDER
CURVES IN R?

Vo wsow thii the mast gen=ral “oom of an equation of second degree is
ar’ + 2hay + by + 20x + 2y + ¢ =0, cees (1) ’
where a, h. b, g. 7. c € R and a, h. b are not all zero.

¥/& will se2 how 12 reduce this equation to standard form, that is, one of the forms listad in.
Tublz 1. You wil! see that use whole of this section will be devoted to using the following
ihecrem,

Theorem 15 If the £onic represenied by (1) is not imaginary, then it is aiways possible to
choose 9 1ectangular coordinate system in’ which the equation £1) witl reduce to ane of the
stondard for nvs of conics.

vl prve o .a.:gh onttinz of the proof of this theorem. The idea is to first reduce the
qeetraits fong 3% + Thay + hy* to 1he othogonal canonical forma, x3 + Ay, with &, 2,
[ Sew B L2t thds transformation be given by '

£

=F |
l rF J ‘. ¥
On substuu.hg these values of x and y in (1) we get a conlc in x, and y,. If thig conic has
anv Im.ar terms, we eliminate them by applying a translation. nmu- formy =Xam,

"+ P2, 8e R We will choose and B in suchamnnner!}mthelmmm
JedLCen ic zevo. Thzr our conic {1} will finally be transformeq 1o one of the standand conics.

Qrs greaf may seem vague to you. To undersiand the method of ixjuction consider the
wiiowing exarnples. .

Erample 5: Reduce the conic 7x7 = Bxy + y* = a 1o stancand form. Hence, idemity it

Setuzien: Trz matrix of the quadratic form 7x* - Buy + y° is

P -..x"j 81
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which ir 2 required coordinate tewn 0w s Salvine far Woena Y

Its cigenvalues are 9 and ~i. .. fooist Unir <3 {Thcorem 5) you know that we can fied 2n
orthogonal transformation wivzh, 1« Aave 77— Zay ok yPinio X = VR TN
transfarmation will reduce the gy mul

9%~ y? =a.

The nature of this conic will <~ nond on the vaive of a.

Ifa=0,it will reprasent th. irofiotercting ines X - Y =0ond3X + Y =0.
Ifa=0, it wiil represent 2 byperbuin.

Example 6: Investigate the rature 3 i conic

5k =6y + Sy + 200 + ) = o,

Solulion: The second degree tcimas in fhu siven eqjuation are the saae as in the quadiatic
form considerzd in Example 11 of Unit 1¢. *"ae orthogona! coordieate 1zansformation

x=(! :"\E,(n}', +¥,)
y=0/¥2)(5 v y2)

will eonvert 5x% —6xy + 5y ‘nra By
nio

"1 2 . -
T +2¥5. and hence will transform the given equation
2 2
Byp +2ys +(=y, +y: ¥y FVa)=e.
be . Byl +2(v.+1i2Y =a+1/3,
Now a translalion ol axes given hy

(Y ¥ o (XY = 1/ 2) wilt trzosTorm the above equation inio BN+ 22 =a + 172, which
is in standard form.

The nature of this conic wiil depend on the value o a. We have the following three cases:

-Case 11 a+1/2<0.Inthis case na real valzes of X and Y satisfy the conic, and hence the

eonic is imaginary.

Case 2: a + 1/2=0. In this casc the comic is o foint conic.

Case 3: a+ 1/2> 0. In this case the equalion can be wrillen as
X2 .y .

(2a+1}/16 (2a+)/4

which represents an cllipse.

Noie that we have used two successive transformations in Example & 10 convert the given
equation into siandard form. The first one wes an anhogoral transTormarion. The second one
was a transtation. Both these traas comntionas 3res1rve the geomeinc nature of the curve,
‘Thus, the given equation ard ,ts madiaced “onn, repeesent the came senis 'noine svordinae
systems (x, y) en (X, Y} respesitvely, '

Qver here we woud tike lo mske 12wl ring remesk,
Hemark: Whan we apply an orta. g ~.oi (rasisformanicr, whal are we doing peometrically?

We are simply rotzting (he axss. Ir fsel, nrifiugonal matrices correspend o vn'alions and
reflections.

in the following example you can 223 8 L0 2 spair loobs ke betore 2ad afier eeduciion (0
stiandaei forn.

Exampie T Leta=4 imbhe egoatics = aadors fin Framipla 5. 7ind the coordinate
rreansformation tal wilt convert v inio & :

Soisiion: The vomposite of ther v e 70 - Lansin Exaripic 58
l -

;{:Tf—:{-"':’—fﬂrz,\

y = e Y - 120

4

[ 4]
Tz
33

Ny T
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2 2 :
For a = 4 the reduced equation becornes
X ¥
— f —— T
/16 974
We give the sketch of the original equation in Fig. 15,2, s the sketeh of the mduced
equatinn in Fig. 16(b).
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{a) (b)

Fig. 16: Toe eilipsz $x! by + 857 ¢ 5708 “4yrad
{a) ivfoze reduction. {5; afi=r reauctico.

- 50, you see, *he shape and size of the conic temeins hacrasged under sie transformations
that we apply to reduce it »a standard fore.

s-21 us loak at another exanmip'e in which vz¢ 15entify a canic by reducing it to siandard form,

Example 8: Fird the nature of th: conic
2y +y ~fx =2y +4m0

reooan

1] I .
Sdutiun- The matrix of the quadratic form x* + 2xy + y*)s '_i 1J-. whose eigenvalues are

2.0. I\o:rn.shse J \,:ger.- sctors »orrespnd a2 0 the eipervaiues 2 and D are (1742, 1732
nd (~1ivZ, 1z, sespective:y, Hence, the coordinaty ronsformation

r_lus? --sfvz'i*yl -
Lyi iz 142 jlya ]
e k= (Y, —y N2,y =y, + yINT,

will convert x* + 2xy + y* inio 2y;.and the given equation into

y? --3\@(}'1 ~¥2 )= 2y, = yil+d4=0

Le. (y, =vIN=-v2y,.

Now, we want to get rid of the linear terms If we apply the translation

v, =V2=X. ¥; =7,

we can rediice the conic further into X7 =— y2Y.

This represenis a parabola, Herce, the piven equation itpresents a parabota,
Let us formally write down what we have done in the various examples,

Step by step procedure for reducing a second degree equation in R%: Consider the
second degree equalion

Cunics




Joner Froducin and
Quadratic Form

R

' :E EV1) Reduce the following second degree equations to slandurd form. (Herea e R.} What

axt+2hxy # by + 2gx + Ay +c=0 . (1)

$tep1: Usethe methad of Section 14.6 10 reduce ax® + 2hxy + by* 10 Xy} +A,y3 using an
.onthoponaltransformation. This transformation will reduce (1)10

Ayyi +hiyi+ Ay, +By, +C=0
Step 2: Now.use a suitable translation of axes (y,. y,} - (X. Y) to eliminate the linear
ermis and-reduce (2) into.one.of the standard fosms, This wallgwe the reduction of (1),
By now you:must be-wanting to 1cy and reduce equations on your own. Try this exercise,

is:the lype of conic they represent?

@) F+dxy+yi=a

b) 8xi-dxy+Sy'=a

¢) AIx'-4dxy=a

d) 4x —dxy+ y =l

¢) 167 =24y + 9y* = 10dx — 172y + 44 =0
N AT=dxy+y =12x+b6y+9=0




Conkcy

We end this unit with briefly mentioning what has been done in it.

15.7 SUMMARY

. In this unit we have covered the following paints.

L. A conic is defined 1o be the sét of poinis in R* that satisfy an equation of second degree,
Conics can be real or imaginary.

2. Real conics can be one of the following types:

ellipse, circle, hyperbola. parabola, pair of gtraight lines, pair of parallel lines. pair of
coincident lines. or & point. Their standard equations are listed in Table J.

A, All these conicy. except for a pairff paraliel Jines. cun be oblained by tuking o plune
scction of a right circular double done,

4. Ancllipse, a parabola and a hyperbola satisfy the focus-directrix propesty. i.e., the
distance of any point P on them from u fixed pont (2 focus) is e (the eccentricity) fimes
the distunce of P lrom a fixed line (2 directrix). . ‘

5. The cllipse and hyperbala have two foci and two corresponding directrices. while the
parubola has ane focus and one directrix. -

6 e=|.e>lore <] accordi'ngly as the canic is a parabola, a hyperbola or amellipse.

7. Anelipse (2 hyperbola) sutlkfies the s'ring property. i.e., for ezch poini P on tlie ellipse
(hyperbola}, the sum (ebsolule value of the difference) of the distances of P from the two
foci is constant. and is equal 10 the length of the major ¢(principal) sxis,

K. The ehiipse and parabola satisfy the reflected wave properties.

9. The eliipse. hyperbola and parabola are called non-degenerate conics, The rest of the
conics can e obtained as limiting cases of the non-degenerate conics. The ellipse and
hyperbola gre non-degenerute conics with 4 unique centre. and hence, are called central
conics, . ;

10.  Any second degree equation can be reduced to starigrrd form by onhos__mnal
transformations and translations,

15.8 SOLUTIONS/ANSWERS

El} There can be many unswers. We give the following:
8) y=ax+lundy=x—lurey pair of parallet lines.
Sody=(x + 1)} [y~ (x = 1)) w0 represents a puir of paruliel lines.
b) {y -tx+ F =20 re_pré;ems u pair of Jines, both of which are y =lx +1.
E2) 4) x*~2xy+y® =0 tx = y)* = 0. This represents the pair of coincldent lins
X—y=0, i.e..q\= X.
b} The equation represents the pair of paralle! lines
(x-2){x—4)=0. iLe./(x=-2) (4x~11=10.
¢} The coincident lines x = (), i.e.. the y-axis. -

d) The ppirof lines x = Dand y = (), i.e.. the y-uxis and 1he x-uais. 85
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