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ADVANCED CALCULUS

This course takes you a step further in the study of calculus. Here we shall first tackle
infinite limits of funclions of one variable, discuss L'Hopital’s rule, and then go on to'study
functions of several vartables. ' B

You are already familiar with some aspects of the calculus of functions of one variable. As
we have mentioned in our calculus course (MTE-01), Newion and Leibniz are considered to
be the founding fathers of calculus. You have alsoread that the major developmients in
caleulus took place in the seventeenth century. Later, in the eighteenth century, the basic
concepts of calculus, for example, limit, continuity and differentiability were exiended o
functions of more than one variable, The need for studying functions of several varigbles
arbse when some mathematicians like Euler, Daniel Bemoutli, Fourier and d' Alembert were
investigating some physical problems. -

Augustin-Louis Cauchy (1789-1857) was a dominant mathematical figure in-Paris, the
centre of the mathematical world in those days. Cauchy too has contributed o the
development of several variables to a great extent. : e

The concepts which you are going 1o study in this course are bound to be a little more
compiex than the corresponding concepls for functions of one variable, But you will see that
one variable case shows us the way in which these concepts could be generalised. So; ezch
ime we inroduce 2 new concept we'll recall its parallel in the one variable case. and then set: '
how it is extended to the several variables® case. In this course we'll restrict ourselves mainiy

to functions of two or three variables.

We have interspersed the text with a lot of solved examples, These examples will help you
rnderstand the theory betier. We have given the answers of all the exercises in each unit al
the end of the unit. As you will see, we often have to refer back to results or definitions
from earlier units. For this we'll refer (o sub-section y.z of Unit x as Se¢, x.y.Z,0r to
section y of Unit x as Sec. x.y. We'll also recall some results from our carlier course,
MTE-O!L on calculus. We shall refer to a unit in this course a5, “(nit x of Calculus”. What
we had said in our calculus course remains true for this course too—{o raaster the various
techniques presented here, you will need to put in a lot of pragtice. '

In case you want to seek some additional information about the concepts discussed here, or-
10 solve some more exercises, you can consult the following book: '

Calcutus HI by Jerrold Marsden and Alan Weinstein
This will be available in your study centre library.
We hope you find the techniques developed in this course useful in your further studies.
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BLOCK 1 INTRODUCTION

In this course we are going to generalise the cencepts leamt in the calculus course. For
instance, in the calculus course, we had restricted our discussion to finite limits only. You

may remember that'we said that the (finite) limit of f(x) =. -}E as X tends (o zero, doe.é not

exist. In this block we shall enlarge the notion of limit to include infinité limits téo. For
this we'll first extend the real number system to R_by adding two symbols o and — = to it
We'll also refresh your knowledge of the limit of a function as the independent variable tends
to infinity. This discussion will then help us to study L"Hopital’s rule. This rule is a simple
technique which helps us 1o find the limits of various functions which are in indeterminate
forms. In the first (wo uaits of this block we sirall be dealing with functions of a sinsle
variable.

Unit 3, which s the last unit in this block, introduces you to functions of several vanables.
In furire blocks you will study the concepts of limit, continuity, differentiability and
‘mtcgrablluy of these functions. To enable you to appreciate these concepts, in Unit 3, we'll

give a detailed description of the algebraic structure of R3, We shal] also discuss the digtance
function in R? there. So, Unit 3 forms the basis of the rest of this course.

Lastly, we remind you once again to carcfully go through the solved examples, and to
attempt all the exercises in each unit. This will help you grasp the theory better.
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UNIT 1 INFINITE LIMITS
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1.1 INTRODUCTION

You are already familiar with the notion of the limit of a real-valued function f(x) as x tends
to a real number a. You have also come across functions like sinx, cosx, e*, Inx which are

defined for arbitrary large values of x. In our earlier course on calculus, we said that li.f.no #
X
or “f,lg ;—; does not exist. Bul in both these cases the functions under consideration have a
x

definite behaviour in a neighbourhood of zero. It is clear that #cn.n be made as large as we

like while ;—1 can be made as small as we like by choosing x sufficiently close to 0.

In order to study the behaviour of functions like e* and Inx when x is large, or to study the
behaviour of x_li or _j,} when x approaches 0, in Sec. 1.2 we extend the real number system

by adding two new symbols +ee {(simply wrinten as ==}, called plus infinity or infinity and
- =, called minus infinity.

In Sec. 1.3 we exiend the nolion of limit to include = and — e as limits. We also define the
limit of f(x) when x approachies eo or - =0, You have already studied the limits of some
functions as x approaches == or — e in (e earlier course on calculus.

Objectives

After reading this unit you should be able 10:

e define lim f(x} =L, where a €.R and L may be a real-number of = or — =
X—a

define lim f(x)=Landlim  f{x) =L, when L may be a rcal number or ce or — e
X X—3 — o3

a

» evaluate lim [{x) = L, where a and L are elements of the exiended real nuntber system.
A=rd .

1.2 THE EXTENDED REAL NUMBER SYSTEM R,

The extended real number sysiem s the sei consisting of the sei of rea! numbers and two

new symbols +e= (plus infinity) and — e= (minus infinity).

Henceforth, we shall denote the extended real number system by R_, and write = for +es,
Thus,

Inficite Limits
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R.=RU [so} U {-oo},
where _R denotes the set of real numbers.

You are already familiar with the arithmetic Operau'oris in R. Let us see if we can define
similar operations on R, . '

1.2.1 Arithmetic Operatidns in R .

The basic ope.ations of addition, subtraction, multiplication and division in R are extended
to R, by the following formulas:

l. ‘If X, y are in R, then x £ v, xy, ?(y;to) have their usual. meaning.
2. Fo.ra.ny real number x, we define

() X+m =4 X =0

i) x+(—w)=(-=)+x=—=

(ili) x.ee=o0.x=00ifx>0

(iv) Xx.m=e.x=-w=ifx<0

(v) ;;.(—m)=(—o=).x=—-_c-oifx>0

(vi) x(—e)=(-e)x=oaifx<0

(vii) XE =teifx>0

(viii)” ?::mifx-:o
@ =0

3. Wedefine
()  ceteo=ce
i) oot (o) =moo
() oo, comon-

V) (o) (-)=es

(V) ;_.(‘—-00)=(—oo)_m=._w

Note that if x and y are two real numbers, then x +y, x . y, x — y and ; (y % 0). have the

same value, whether x and y are considered as elements of R orof R.. .

Remark 1 : You would notice that the {feimulas 1, 2 and 3 do not cover cascé'likeg- . E

{} . =, o0 — 0o. These symbols are not defined because it is not possible to assign a unique
vaiuc to these expressions consistent with the above formulas.

For example. if we defing, e — e = ¢, where @ is 2 real number, then

=00t O =00t (o—oo) = (0 too}—mT e —=q

whicl s a contradiction. If ee — e= is defined 1o be equal 10 =, Lha:n,lfor any real a < 0,
~eomgfes}=afoo—o)=a,00—7, 00 =00+ 00 =2s,

A similar contradiction would arise if we defined o — o> 1o be equal te — e

Proceeding exzctly as above, you should have no djfﬁcully in checking that a unique value
cennot be assigned to the other symbols mentioned .nbove. That is why expressions likc% ,

L=

, 0 . e, oo = oo are called indeterrminaie forms.



E'l) “Prove that a unjqdc value cannot be assigned to
2 8- Y 9 0.

Now after defining arithmetio operations, let’s see if we can define an order relnl.ion inR,,.

Order relatlon in R, ¢ We extend Lhe order relation ‘1es3 than or equal to’ (S) o R .as
follows:

(i) Irix andy are two real numbers, then x £ y in R.. if and caly if x S y in R.
(i) x < == for any real number x.
(3ii) —eo< x for any real number x.

.Clearly = is larger than any real nurmber and — o js smailer than any #eal numb..r. Inituitively

speaking, R.. has been obtained by adding two more points to the real line, namcly. wlothe

extreme right and — « fo the extreme fefi.

Remark 2 : In the first course on calculus, we used the notations

J-=,=[ =R ='{x|xe Ri—em<x<en )

Ja,f = [xlxeR.x>al
J-=qa = {x[x'e R.x<al
{a, oo[ = [xlxeR,xZu]
J-ee,8] = {xleR,xSa]

for different infinite intervals on the real line. You will notice that these notations are
consistent with our definition of the order relaton in R....

Now that we nave defined an order relation in Rz;-we can discuss upper and lower bounds of .

subsets of R_.

1.2.2 Boun'és in R.

You are afready familiar with the notions of upper and lower bounds of subsets of real
numbers (Definition 1 in Unit § of Calculus). We now introduce these concepts for subsets
of R... You would observe that the definitions given here are exactly similar to the ones
given for subszts of R..

Definition I: Lel S be a non-emply subset of R_, An element a € R, is said 1o be an
upper bound of 8, if s <a{oraz s) forevery s € §.

Anelement uw € R, is.5a3id to be a least upper bound of S (denoted by lub 5) if
@ uisan upper bound of S, and . ‘ ) ‘

e any aumber v’ e R, , v’ <u, is not an upper bound-of S.

lub S is also called supremum of § and is also denoted by Sup S,

"Definition 2 : Let S be a non-empty subset of R... An element x € R.issaidobga
lower bound of S, if x < s for cvery 5 € S.

An clement xg € R, is said 1o be a greatest lower bound of S (&motcd by glb S.}'if
©  Zplsalower boun-:-i of 5, and

& any number x) € R, x, > Xg ().¢. Xg« X;) s not a lower bound of S.

slb S is also calied infimum of § and is also denoted by inf S.

The lewscupper bound and greaicst lowcr bound of any non-empty set S are unique.

I is obvicus from Decfinition 1 thai if S is a non-eipiy subsei of &, which is bounded

above, then the least upper bound of § in R is the same as the ]east upper bound of & in R_.

If § is a non-empty subset of R, whici is not bounded above, ther. == is the only upper '
bound of S, when S is cons.dcred as a subset of R_ , and mercfc.re lwb. 8§ = 2.

-

Infinite Limits



Advanced Calculus Similarly, for a non-empty set § R, which is bounded below, glb.S in R is the same as
" glb S in R... And for a non-empty subset S of R, which is not bounded below, glb 8 is — e,

“"Thus, every non-empty subset of R is bounded in R., , and has a unique lu% and a unique
glb.

1.2.3 Extension of Exponential and Logarithmic Functions to R..

You know that the nalural exponential function is defined on the set R. Let us see if we can
extend this function to R... To do so, we will have 1o define &= and e=. You know that

when x > N and large, then so is e* (see Fig.1). We, therefore, define ™= e and e™= cl: = :—o
=0.
Next we extend the definition of Inx by seiling In ¢ =~ o and In = = e,

[
Y
y=et

Fig.i
The power funclion a* is extended te R, as follows:
e {5820e
_ewm_J 0O,ax>1 ;

a _{“.0<a<_.l- :

-

The expression: 1=, 02, co¥, 0~ have not been defined, s no unique value, which is consistent
with the various definitions given above, can bé assigned 10 any of these expressions. Thus,
1=, 0P, 0@ and 0= are also indeterminate forms. '

Try to solve these cxercises now. N

E2) a) Lei S be an unbounded subset of R. Prove that, if S is considered as a subsel of
: R.., theneitherlubS 2 ecorplb § = — ==,

b} Give an example of a subset § of R which is unbounded and for
which lub S =~ buiglb 5 & R

¢) Give an example of an unbounded subset of R for which gIb S = — eo and
lwbSe R, .
d) Give an example of an unbounded subscl § of R such that lub § ==, gib 5 == oo,

" E3) LetS= [x%i | 0<x<1}cR..
a) Give two lower bounds and one upper bound of S.

b) Find lub S and glb S.

id



Before we conclude this section we would like to remind you once again that ee, — eo are just
symbols and not real numbers.

In what follows in this unit and the-subsequent unit, unless sp-e.ciﬁcaliy stated, ail sets will'c

be subsets of the set of real nurmbers, and a reference to their bounds will be to their bounds
as subsets of R.

1.3 INFINITE LIMITS

In this section we shall extend the notion of limits. Now there are four ways in which the -
notion of limits can be extended. One way is to consider the behaviour of f(x) as x
approaches ==. Another way would be to examine the behaviour of f(x) as x tends to — ca:
We'll cover these in Sec. 1.3.3, Tvo other ways would be to consider the cases where f(x)
becomes arbitrarily large (tends to o<}, and where f(x} becomes arbitrarily small (tends to

-- oo}, as x approaches a e R.

"We'll take up these in Sec. 1.3.1 now. .

1.3.1 Infinite Limits as the Independent Variable x - ae R

You are already familiar with the concept of finite limits. Let us quickly recall what.we
mean when we say that

lim f(x) =a
=0

This means that given€>0,3 8> 0, s.t.

¥ 1-8,85[\{0} =>Fx)e Ja—e.a+El

We can interpret this as:

(f0 | x e 18,80\ 0) g )a-ca+el

This means that the set {{x) | x€ ]-8, 8 [, x =0} is a bounded set.

What we can gather frcu:n this discussion is that if li_rE:0 f(x) exists (and is finite) then for:
X

some neighbourhood 1-8, 8[ of zero, the set (fx) | x € ] 8,8 [, x #0 ] is a bounded set.

Now suppose we want [0 prove that a function, say f(x) =;lz- , does not tend to a finite
limit as x ~> 0. Then it would be enough to prove that f is not bounded in any
neighbourhood of 0, i.e., in any interval of the 'typc 1-8, 81. Since fix) =$ is positive for
all x, to show the unboundedness of f(x) we need to show that f{x} is very large.

Let us consider'an interval ]-3, 8, for some & > 0. We want Lo prove that given any real
nuntber M > 0, however laree M may be, we can find an x € 1~8, §[ such that f(x) > M,

Let M > 0 be chosen. Then f(x)> M = # > M

1
2 =
::-x<M

|x|(;

i

New given M, cither 5(— orb > — . If 6 ¢ .

M M

Lo 1 .
huve [xj<d =2 x? <8 = = :-ég > M. That is, f{x) > M.
A

then forany x ¢ 1-5.8 { we

1 1
[f & > ——, then the inlerval J —

-
M Nrvl I_;]—S 3[.

e

i ! i
Choose x € —=,———| Then |h r— >Ma’Th|smeans.f(x)>‘Vl
|-G | e e ,

Infinite Limits

By a nzighbourhood of a, we
maan-a set of the Type

Ja-G.a+8L6e R {xlx>r]|
‘ortx lx<rl. reR, wcordmg

as a is equal 1o b finite real’
number, o= oF —o»,

11
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“Thus, in both the cases we could -;-)i-c‘we_ﬂlz;.t given M> 0,3 x e ]-8, §[ such that f(x) > M.

' . . 1 ' ; .
However, in the cdse of f(x) = 2 We can prove a stronger statement, That is, we can prove

that given u real number M > 0, there exists a real number &> 0, (& depending on M),
such that f(x) > M for all x in ] =5, 8] , x = 0. In fact, the above discussion shows that

given M, any 8 such that & < L would suffice. We express the above facis by saying that

M

. ]
the function 2 tends to oo as x lends to 0,

Sirnilf'a.rly, if we consider the function f(x) = {x—:lagi , X #a,then we caﬁ .show that i(x) can

be made to assume values less than any given number for all x which are sufficiently close
to a, but are not equal to a. In fact, fora given m < 0, an:,; positive §< '\‘ ?n*l- would
suffice. We express this by saying that f(x) tends 10 — 2 25 x tends to a.

We are giving the precisc definitions below.

Definition 3 : Let f be a real-valued funciion defined in an open interval Ja-hoa + h[
except possibly at a. f(x) is said 10 tend Lo 1he limit = as x tends 1o a, if given any real
number M, there exists a positive real number & {(depending on M), & < h, such that

ol:lx—_ai.:s = f(x) » M.

" Definition 4 : Let f be a real-valued funciior defined in an open interval Ja—h,a + h[

excépt possibly at'a: Then f(x) is said to.approach the limit — = as x approaches a, if given
any real number m, there exists a positive number & < h, 8 depending,on m, such that

‘0.<ix-— ai<8 = f{x) < m.

We'll use the symbols ’I‘l_n;; f(x) = oo (or — =) or f{x} — = {or ~ 0a) BS X—1 10 express that |

f(x) tends to « (or —o=) as x tends 10 a.

Remark 3 : (i) In Definition 3, if we have found a real numbcf &> 0 foronc M, then'lhé:

same & would suffice for all real numbers smaller than M. Therefore, there is no loss of
generality, it we 1zke M > 0 in Definition 3.

(i)  Similarly. in Defigition 4, if we have found a real number 8 > 0 for one 'm, then the
same § would suffice for all real numbers greater than m. Therefore, there is no loss of
generality, if sve ke m < 0.in Definition 4,

We now illustrate the above definitions with the help of a few examples:

Example 1: Let us prove that

. . X
l — =
O m -0
e lim _.._l—
(i) o0 l-cos2x - %

We'll prove them one by one.

(i) LetM>0be givéh. Our aim is to find a real number § > O such that

0_<1x—l!_<8:-, > M

x
{(x=1)
Now.O-:';x - lj«d=1-06<x<] +8, x= L. rhus. x> 1 =8 and
(x = 137 < § . This means that

X 5 i -8
(x =17 &

'0<;x—]|<5=::

L
And if we choose a positive 8 less than a fixed real number, say > then

0<|J(— 1\_(5*(%5 aj—:]—']._;> E-BT



Now when-will be greater than M ?

X
(x - 1)?

This will happen 1f282 > M, ie, if

vaM
So we have pul two restrictions on 3: 0< 8 < 1 and & < L to achieve our aim. Thus,

2 Vam

if we choose any & such that

0 < &< min l—.—]—
27 VM
then,
X
0<(x-—l|<8=o (x—1)1>M'

showing that ,l;m_}l (x—-1)2 =
0 Letfey=T"cosax +**?
Then f(x) = If|x| < £, then |sin x| |x|, and therefore
2 sin? x ° 2" S kel Lhal '
fi(x) :-L
2x2°

Thus, for0<]x| <6<% . we have

.
1'(:t)>2x2 >58

Consequently, Oclx; <8, and f(x)>-l,252-‘ >M if8<——. -

VoM

Hence, we have proved that for any M > 0, if we choose a real number & such that
. fm :
0< 8d< min{ =, — } then
EITY

—_—
l - cos 2x

. . 1
showing that l"ll»u T —cos 2x =%

0<|x|[<6=:-

Note that in (i) there was nothing special about our choice of § < % We could have chosen

any other §, say 8 < % . Then we would have obtained

x 1
x-12 738

i

.
1.3 |42

and we could choose any § < min { Jl to reach our goal.

Example 2 : Suppose we want o prove lhat

Iim 4x
x »-2 (x + 2)?

i)

i)

lim ——
r =0 510" X

Infinite Limits
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Let us ke these one by one.

() ‘LetM>0be given. If0<|x + 2| <8< 1, then

1 1

x+22° ¥
Nowlx + 2\ <1 = x < -1, and therefore -

1 1 ax 4x -4

2 T8 x+2F F CF

Now, _?’4 can be made smaller than —M, if we 1ake & < 2 .
_ VM

7
Thus, if 0 < &<min{ 1, —— }, then
: { N M }

4x

___(x T 2y < =M.

0<lx+2|<8=>

. 4x
Hence, llﬂ‘l_z x+ 27

(i) Let M > 0 bé given. If0<8<;—t.then for x e } 5. 8[, x # 0, we have sin®> x < x?

S_-l L
sin? x x? &

or

L

. R ¢ 1
Thus, if0 <8< min{ 72 — ;,then
{2 W}

. -1 =1
0 Ty <3 <M,
< |x| <&= snix <& < ~M, and therefore

. -1
lim
=0 sn-x

While siudying the earlier course on calculus, you would have observed that it is not easy 10
evaluate the limits of most of the functions by directiy applying the definition. The sarne
holds here too.

The following thearem, which is very easy to prove. is very useful for applications, as you
will see fater, It aiso provides 4 conneclion belween the notions of finite and infinite limits.

Theorem 1 : (i) Lim f(x} = e if and enly if {{x) is positive in | a - §,a+ 6 [ except
A=l

x—i f(;i

(i} Ll_[’n f(x) = — o= if ang only if 1(>) is augative in J 2 - §,a + & [ except possibly at a
a

possibly at a for some 8 > 0, and lim )

for some & > 0, and lim L =
“y—a f(X)

Proof : (1) Suppose (hat lim {{x} = oo,
x—2

. | o oL _— : :
We have to show that lim < = 0. Let £ > 0 be given. Then for this £ > G, choose M s,

L L

K = — For this M, 3 § » 0 such mat

L
&

0<‘x—ai<6=>f(x)>M>;l:-' )

. l !
1.e.,0<|x—a\<5=>r(x)<M<E.

. ' |1 -
1.e..0<|x_—ja|<8=:r g~ O <€



Thus, ki C.

i 760 - _
Also, f(x) > M, for all x such that 0 < Ix - a\ <&= fix) islpositivc inja-8,a+ 8[.'
except possibly at a.

To.prove the converse, Suppose f(x) is positive in ]a — 5. a + §[, for some & > Q (except
possibly at a), and lim -L_Z 0. Then given M > 0, choose 8 8, > 0, §, < § such that
x—ra (X}

<L
M

0<|x—a1-§8, = ;:(L—)

1 S W
= ™) < M since f(x) > 0.
‘= f(x) > M.

This means that lu_-{la f(x) = o=,

The proof'of (ii} is easy and we are leaving it to you as an exercise (see E 4).
The following example will illustrate the us;:fulness of this theorem.
Example 3 : Let us show that

, , 1
o }r.la-r? 2 1-sinx

=

(ii} Lﬂ‘o fex +e*—2)?

(i L‘ﬂ xf2 Sin2xcosx =
We will take-up (i) first.

i
1-sinx

(3 Clearly > 0 for all x and lim (1 -sinx) =0.
% =il .
Therefore, by Theorem 1,

. 1
Iim — =
x - nf2 1=sinx

i ; x e A = - {ek ~x _ N2 =0,
(i) ilgo(c + ¢ 2) 0=:>Lu-_n'u(§ +egx-2¢ =0

Also, 77 is negative for all x. Therefore, it follows from Theorem ] that

(e + gmX—

. =1
L‘—% (e rer-27

. X X .
{iii) Since = = 7o and sinx > 0 and cos?x > O for all x such that
sin2xcosx  2sinxcos<x . .
R
Dex«m x;ﬁi,wchuve
% . f
- — 5 0 for all x such that 0< x < 7, except for x =4
Sin2xcosx - 2
. sin2icesy
Funther, lim —=—== =0,
X — il X
. x
Thus, lim oo,

s 1i/2 SIN2XCOSX

We have seen that the existence of lim f{x}=L implies that the function {(x) is bounded in
X —ra

a neighbourhood of a (except possibly at 8), lim f(x) = os (Or —=) on the other hand,
X =

implies that f(x) is not bounded above (resp., below) in any neighbourhood of a (except
possibly at a). From this we can infer that these three cases are mutually exclusive, i.c., as

Infinlte Limits
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[

nditien 8§ < b is necessary

sdefinedin]a a+hl.

x— a, f(x)} cannot tend to a finite number (L) as well as 10 ¢o o5 —e=. In other words, lim
X =3l

f(x) = L, where L is any real number, e or = e, is unique.

Try the following exercises now.

E 4) Prove part (ii) of Theorem 1.

E5) Evaluate the following limits

imr——— 5
L i 2 _ =
¥ J‘1_'rnz|:“ - 2| b lim {2x x’)
0 lim—=—= 4} lim 1
s X2(x ~ 5) lm S eo D
171 1 . )
© lm S Ny - t lim e-/
) —0.X [ x+h ﬁ) ) x—+0
) .l'm _1.--— n H [ . [
g hm ey is a non-negative integer.
by lim n—lﬁﬁ_ ) lim _xian
xonl2 '(i'-‘ x} cos? x x—n/2
b lim S S—
] x— r(SiNX) (X~%)

1.3.2 One-s_.ided Infinite Limits

We now generalise the concept of one-sided limits (Sec. 2.2 of Caleculus} to include oo 6r — oo

as a limit. .

Definition 5 : Let f be a real-valued funclion defined in the open’interval Ja, a + b [,
h=>0. '

) f(x) is said to approach the limit = as x approzches a from the right if given areal
number M there exists a positive real number 8 (depending on M), & < h, such that

nex <o+ 8= f(x) > M.

i) f(x) is said to tead to the limit - = 25 X tends 19 a from the right if given a real number

m there exists a positive real number & (depending on m), 8 < h, such that

a<x<a+b=f{x)<m

Definition 6 - Let fbe a real-valucy funclion defined in the apen interval Ja - h,.a[.

) We say that f(x) approaches the limit +e= a3 x appioaches a from the leftif given a real
number M there exists a positive real number & {dspending on M), & < h, such that

a-8<rn<a= f{(x)>M

i) Wesay that £(x) appfoachcs the limit — c= as x approaches a from the left if given a real

number m there exists a positive real number 8 {dcpending on m), O < b, such tha
a-S<x<a= f(x)<m
The symbols lim | f(x) =X ee.0f

=-ia

{(x) ->Leoagx = a7, 0r

Him ) =es, oF
e i

fix) s tesasx—a+0

will be used to express the fact that {(x) approaches o or — == as X approaches a from the

right. For the left-sided limit, we shall usc the minus sign in place of the plus sign. For

gxample, lirn_0 £(x) = o means that f(x) approaches = as x approaches a from the left.
=2



Remark 4 : (i) There is no loss of generality if we take M = 0 in Definitions S(i) and
6(1). and m < 0 in Definitions 5(ii) and 6(ii} . (Compare with Remark 3),

(i) 'With suitable modifications Theorem. I holds for one-sided limits. More precisely, we'
can casily prove that

lim | f(x}=va(or= e} if and only if f(x) > 0 {or <0) in some open interval

X —ra
]‘a.a+5{andm—+0asx — at.
lim _ f(x) = = (or — o) if and only if f{x) > 0 {or < 0} in some open interval

fa. 2+ 8,3 andm—>0asx—>a

In Unit 2 of Calculus you have studied a result (Theorem 4) which brings out the connection
between limits and one-sided limits. A similar result holds for infinite limits too. Thus we
have

lim f(x) = o= (or - o) if only if

I—1

lim |, 1(x) = o (or — o) and Jim_ (x) = = (or — o).

The foliowing exampies will give you some practice in dealing with one-sided limits.

Example 4 : Let us check the following one-sided limits.

@ lim, ——==z
=5 \J x2_ 25

. 1

n tho* e -1

e |

i) 1.1212‘ (=22~ 7

(iv) lim_ —r-o_

am 0 X1sinx
We shall take them one by one.
(i} Clearly x2-25>0forx>5and ¥x?=25 5 0as x° - 5*
Therefore, in view of Remark 4(11).
]

llTs' "IXZ—ZS

(i) Sincee*~I>0Cforx>0ande*~1 = 0asx — 0, it follows that E"_ll_ — = a3

x = 0%
2
(iii) Smcc -(-—"L —0asx-» 2and x f 2y < 0 for x < 2, we have,
z
lim _ "“5—'—3 =—=
a2 (X -2)
2
(iv) For— ’25 <x <0 S5 0and 2, 0as x — 0. It follows that
x2sinx cosX
lim cosx

= ’nzbillk

Example 5 : We shall row use the observation made after Remark 4 to show tha the
limits of the following functions as x— 0, do not exist.

Gy fix) =

e*-1"T

I—-x:r{}
X
2x + 3, x < 0

Ler us'start wiih (i1,

Giy  f(x)

Inficite Limits
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M

i)

We have already seen in Example 4 that

lim .

xa ot er=17"7"

Si“‘:"-e; l'<0forx<0, and e*~1 — 0as x — 0, we have
. 1 . . 1 .
lim _ ———r =—e, and therefore lim ——=— does not exist.
=0 e* -1 x>0 e*¥ -1

It can be seen easily that

lim, & =eoandlim_2x +3 =3,
=0 X x—0

which implies that the given limit does not exisl.

See if you can do these cxercises now.

£6) Evaluate the following limits :

E7)

E 8)

9 lim __ xtanx b fim , 2

x — 2t . x - 07 k(1)

. 1 . b+ 2x + %2
@ M- Tx) Inx d Mm%

. [x] + 2 .
¢) lim x[x]+ 2 where [x] denotes Lhe greatesl integer < x.

X — |+ x2 + x—2 '
Discuss whether the following limits exist or not. Evaluate the limil, if it exists.

x2+ 2 x2[x] + 2

.28 lim _— b lim

1 — x/2 Sinx cosx Al Xiex —2

¢ lim X tanx
x— il

d lim ((x), where
r=0

1 )
i) = 4 sinx > * 2 0
x24+2x+3,x<0

&) lim sin i

x—0 X .
Ler f(x) and g(x) be two polynomials with real coefficients having ¢ as a root with
multiplicity m and n, respectively, That is, f(x) ={z - o)™ {x) and g(x) = (x — )"
{x) where o is not a roat of f) (x} or g, {x). Then prove the following :

a  lim l-'(t§l=0ifrn>n
x—=a Z(X)
b} lim it} is finite and different fron zere if o= m.
x = o g2{x) .
c) lim 9 does not exist if m-n is odd and m < n.
x=a g{x) . .
. [(x
im 8
9 hm o O
f(x) B(x)

according as —

pulli >0 <latx=0,
(x —a)® (x-ow)"

ifm—niseven and m < n.

1.3.3 Limit as the Independent Variable Tends to o or — oo

Uptil now w¢ have considered the limit of a function [ as the independent variable approaches
a finite real number a. The existence of lim f(x) gives us some information about the
L M|

behaviour of thc_: funcrion near a only. Bul functions like e*, sinx, '\’; . v 1-x , ;%-T' which



are defined for large values of x or for small values of x, arise naturally in many contexts.
We would like to know the behaviour of such functions for large or small values of x. For .
this, we extend the notion of limit to include the cases when the independent variable x .
“approaches " or “approaches —=". You have already studied such cases in Calculus, Here
we'll recall these definitions and also exiend them 1o include infinite limits.

Definition 7 :'Let f be a real-valued function defined for all X > 1, where r is some real
number.

(i)  f(x) is said 10 approach a real number L as x approaches w, e, lim f(x) =L, if
t X o

given any real number € > O there exists a real number G (depending on €), G >,
such thar ‘ '

x>G=[ffx)—L| < E.
i)  f(x) is said to approach = as x approaches o,
e, Iir_r:m f(x)' = m;.if given any real number M there exists a real number G
(dep:nding on M3}, G > r such that
x> G = f(xy> M.
ili)  The function f(x) is said to approach - as x approaches e i.¢., lﬂl f(x) = — oo, if

given any real number m there exists a real number G (depending upon m), G > r,
such that

x>G = f(x) <m.

Definition 8 : Ler f{x) be a real-valued function defined for all x < r, where r is some

real number.,

i) The function f{x) is said to approach a real number L as x approaches — oo, if given any
real number € > 0, there exists a real number g (depending on ), g < r, such that
x<g=>lf(x}—L|<e. _

1) The function f(x) is said to approach e= as x approaches — oo if given any real number
M there exists 2 real number g (depending on M), £ <, such that
Xx<g= f(x) > M.

iii)  The function K(x) is said 10 approach — e as x approaches — « if given any real number
m there exists a real number g (depending on m}, g <, such 1hat

t<g= f{X) <n.

Remark 5 : (i) As remarked carlier, {See Remarks 3 and 4) we can assume without loss

of ‘generality that M > 0 and m < 0 in the above definitions,

(iy  Clearly f{x} = oo (or — =) as x = <, {i.e,, lim f(x) = o or— =) if and only if f(x) >
X e

0 (or f(x} < 0) for all large values of x and t‘(lT) =2 0asx— m,

(i) lim  {(x) = (or — ) if and only if f(x) > 0 (or f(x) < 0} for all smail values of x
x - .
l .
and’.m —=0asx =3 ~ e,

I
ay mmd T . o . .
~ > &nd L 13 any real numixr or L = oo or — oo,

Thus, in this secilen we have defined lim f(x) = L. where a is any real number ora = e or

Atthe end of Sec. 1.3.1 we have noted that lim  £(x), a € R, if it exists, is unique. Similar
X —ka

reascning shows thatlim  fx), 2 e R_, if it exists, whether finite or not, is urique.
=

Nate Lhat the value of f(x) at a is immaterial for the existence of lim f(x). In fact, f(x) may

sinx

not even be defined at x = 2. You know that lim = 1. But 'Slxﬁ is not defined at x = 0.

x =0

Furlher. if lim  f(x) exists, it will continue 10 exist and its value will rerain unaltered, if
X = a .

Infinltz Limits
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|h1.: function f(x) is changed arbitrarily ouiside a neighbourhood of &, Fo;- example, consider
the function given by f(x) =x, x € R. Here Ijrf:+ o f(x) = 0. Now if we define a function g by
. ' . X
g(x) = f(x) =x for x € ]-5, 3[ for some &> 0, and g{x) = | otherwise, then we get limo
X =

g(x) = lil].l . f(xy=0.

Thus, changing f(x) outside a neighbourhood of-0 does not have any effect on the value of

* the limit.

In the example below we show how to evaluate certain limits using only the definition,

Example 6 : Let us show that

Ix?

b lm aes =

ii) lim e=* =0, where ais a positive real number
e

T -

i1} l:r_rl_ o+l - 1

We'll take these one by one.

ity Lot e> 0be given. Then

L3 )16
‘x2+2_ T X+ 2

6 . "6
<= <Eifx> =.
x: £

Thus, given € > 0, we have faund G = "\ ’% such that

- 3x?
x>G = - 3| <¢
xt+ 2
.. B - Ayl
This shows that lim =
e Xe+ 2

iy LetebesuchthatO<e<]. Then

|ess| <if and only if T <
if and onl ifx:-L-]n]-
YHAZL e

- Thus, lim e¢*=0whena>0.
R —pem
{iii) Let € be.such that 0 <& < 1. Then

et
e*+ 1

1

R R 1
_c‘-+l<e‘ «.e.;fx-_>ln£

nl

Thus.-x>G=lnL=:-

‘!
[ -1l <&
L€ jet+ i

This shows that lim  —— = 1.
X == E‘+ I.

Moy lat vs luem our altention to algebra of limits.
1.3.4 Algebra of Limiis

The algebra of limits, which was clated or finite limits in Section 2, Unit 2 of Calcuius
hoidis goed for infinite lmits also. Wa now state it {without proof) in the following
theorern. You will realise that it greatly reduces our labour for evaluating certain limis.
Theorem 2 (Algebra of Limits) : Let 4m fix)=L. llﬂ g(x) = M where a, L.

' 3 [
M e R_. Then )

[



) lim ef(x)=c.l, where ¢ is a constant
X —ra

iy lim (ftg){x)} =lim (f(x)xp(x}})=LtM
X —a X —a

i) lim(fg(x) = lim (fx) g(x)) =LM

iv) lim —(x)) _;I:l-..g(x) M *M=0,

X —*a

provided the right-hand side makes sense, i.e. cL, L+ M, LM, ﬁ do not become
indeterminate forms.
The algebra of limits states that if lim f(x) » lim g(x), where « denotes any one of the
T % —u .
symbols +, —, X, +, does not become an indeterminate form, then it is equal to
lim (f « g(x)). However, if lim f(x) » lim g(x) becomes an indeterminate form, then it
x —4a X~ X — . :
does not mean that liﬂ {f+g) (x) does not exist. [t simply means that-the algebra of limits
X a - .

does not app]y in these cases. For such cases, where the algebra of limits fails, new methods
have to be devised to calculate hm (fxg) (x) 11m (fg) {x) or llrn ﬂ(-%
We’il study these in the next unit.
Our next example iliustrates the usefulness of algebra of limits. '

Example 7 : Suppose we want to show that

. e* —
® lm s

" er+ 1
ii) lim
( ) Y = el ]

Giy i x5+ 4x3+ Ax24+.7
n ;m_-',.. 2x5 4+ x% 4+ 3x+ 6

1
2

@) lim x*+ Tx3+3x2+ 2
3= X}F6x+5 -

Let us start with the first tHmit.

. B .
) lim et | = {im L (dmdmg numerator a.nd denommalor by et)

1 —vee €5+ 1 X —w ]l +

But, lim {(}—e*)=1lim (I +e3) =]
K e % e
Therefore by using algebra of limits we abtain

e* —|
lim =
g —w & +l

(i}  Again. by using algebra of limits we can casily show that

, er— ]

lirn -——- = —|, because

= - B4+ |

limr e’ ~l=-]landlim &%l =1|
L= —w- %

vt} For x = 0, we can write

l+i‘+§-+-7—
4 dxd+3x2+ 7 LR S
2x34 x*+ dx 4 6 E

?.+—+--3+-6;

x X %
Letf(x)= i + g+ + Sand gio= 3+ v 5+ &
=R %273 X5 8ixy +x+x-"
Then lim f(x) = lim I+-:+—+-—)

XL —bm X —joa

Iafinite Limits
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(iv)

- whcref(x)-x+?+3+%andg(x)_1+Q+F.

o) = I L3 §_) -5
:lt“-n;-g(x)-:ltlﬂ-(z titate) =2
as#—}(}for all integral n 2 1 when x — oo,
Clim o f(x)

. X34+ 4x3+3x2+7 . f(X) _ x—ye 1
Thus, im e X+ 3% + 6 x5 lim gtx) 2

For x #°0, we can write
+7+1+3*
x4+ Tx3+3x2+2 _° x ¥ fx)
3 — — T
X+ 6x+ 35 6 5 -g(x}
l+x2+x3

5

It’is obvious that

lim f(x)=e andlim g(x)=1
X = T

Therefore, we obtain

+?+-+—2*
o KATEIE3x242 L A x>
. ‘x3‘+6x+5 -k 6. 5
- 1+ 5+ 5

x X

.hm (x+7+—+—)

1
1+x2+x3

We now give two results (Theorem 3 and Theorem 4) Wthh you would find very useful in
evaluating llm f(x) and hm f(x).

Theorem 3 @ (i) “E} f(x) = L if and only if
X —bm .

lim f(i) =L

x -0t

(iiy lim f(x)=Lif and only if
X =

: £IN
iy (-

where L is any real number, = or —.

Proof : (i) Suppose lim f{(x)}=L. w- ituve o prove that
X = .
1 :
lim, f{—1=L.Nowforagiveng >0, choose M>0s.l’
x 0" X .

x>M=f{x) e ] L —¢g, L+ g[. that is,

l
X

] cpe . . .
e =2f{e Jb-c Lol

M

R - 1 L 1
it we take 6 = 5 and write y = -, then
s

1¥1

O<y<cd = f(l\& IL-—sbL+el
\y/ :

This means that

lim

im f(1)=1im . r(l)=1_.'
y =0 }' x—= 0 X



By reversing the arguments we can prove that if

lim f(l)=1,. then Tim  f(x) = L.
T x X —fa

& =0

The proof of (ii} follows on similar lines, and we are leaving it to you as an exercise
(scz E 9 ' ' :

E 9} Prove Pan (ii) of Theorem 3.

b

We now illustrate the utility of Theorem 3 with the help of an examplé.

Example 8 : Suppose we want to prove that liE sin i‘ =0.
X o
Here f(x) = sin i Therefore, f(%) = sinx.

Now, lim _ [ (l)'=lim » sinx =0.
x =0 X X0

.1
. sin—=10.
X

Therefore, by Theorem 3, we can conclude that lim
X =

Now here is an example which illustrates yer another useful result about limits.

Example 9 : Let us show that

() lim L.. sinx = 0 and ii} lim eV sin L =0,a2>0.
x —w X° X =p o oov X .

We start with (i)

(i) Let ¢ be such that 0 <€ < 1. Then

1.
= siax

| 1
|{ ﬁFCE

-

for all » > ‘\) ! ., showing that lim Lz sinx = (.
£ Y=o X

(i1} Lat £ be such that 0 < ¢ < 1. It is obvious that
b 1
|ex*sin | et < gif x < ~Ine.
i x| T a

-

This proves thatlin - ¢~ sin L. G.
L=} = e X
Both the results mentioned in the above example are particular cases of the following simple
FC5ULL
“LetBm f(x)=0, where 2 € B, If g(x) is a bounded function defined in a neighbourhood
E S N

of a, then lim  f{x} g(x) =0"
X1 =3

Example 10 : To show that lim  cosx does not exist, we'll start by assuming that this
X — s

Tl dues eadst, aud then amive & 2 confradiction.

Sinve cosx is o bounded funciion on the whole teal line, it follows that lim  cosx, it it
" . X = =

caists, has o be finite, . .

. . 1, . .
Let lim  cosx = L. Then for €= 5in particular. there exists a real number G >0 such that

- | i
x> G = fcosx-Lj <L

I x,>G, x,> G, lhen

‘Infinlte Limits
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o ot
cosx,—casxy| = !c'osx,-L + L - cosxy|
| % [cosx,L| + | cosx,~ L| |
<2e=]....(%)

Let n be any natvral number such that o7t > G. If we take x)=nrand x, = '(2‘1—;1}-1! then x;
and x, both are greater than G, but .

cosx, — cosxz} =1

This contradicts {*), This proves that lim cosx does not exist.

X =

Similarly we can prove that [im  cosx, lim  sinx and lim sinx.do not exist.
X == X == b LN

Now we will state and prove a theorem about Lhe limit of a composite function,

Theorem 4 (Composite Function Rute } : Lét f and g be two real-valued functicns such
that g o f is defined for all x > r, where r is some real number. If tim  f(x) is finite and gis
b L]

continuous at fim (x), then
&=

lim  g(i(x)) =g (lim_ [(x))

Proof: Suppose that lim  f{(x)=y,.leteg> 0 be given. Then since g is continuous at
X =)

Yo » there exists a real number § > 0 Isuch that

H—'Yo’<5=>|g(y}—g()m)|'48_ (™).
Since liﬂnm f(x) = yo . given & > 0, there exists a real number G > r such that

x>G = |f(x) - ypl <8 . ),
Cornbinin_g (*) and {(* *) we obtain that

x> G = |g(f(0) - gtyo)] < £

Le, 1i_r?” g(f(x)} = g(yo) = g(ii‘].‘w f(x))

This result remains 1rue when e is replaced by — e or any finite real number with sujtable
modification. More precisely. we have the following thecerem.,

Theorem $§ (Composite Function Rule) : Let f and g e two real-valued functions such
that g o f is defined for all x in a neigivbourhood of a. except possibly at a, if a is 2 finite real

number, If lim  f(x} is finite and g is continuous at lim  f(x}). then
i—a L=

lim glftx)) =gllim  f(x)).

L i—ra .

You should mndify the proof of Theorem 4 1o obtain a proof of the above theorem in case a
is a finite real number or a is - .

We now give an example 1o illusirate the usefuiness of these theorems.

Example 11 : Let us evaluate the foliowing limits :

o
i) 1im?-'3lsx _s

AT - :
i 53 |

Let us consider these one by one.



(i}

(i)

Let h(x) = N'1 5x - & . Tnen h{x}) is the composite of two functions f(x} and g(x) given
by

f(x) = 5x — 8 and g(x) = ¥x .
That is. h(x) = g o f(x). Also
lim {{x)=lim 5x-8=27.
=1 x=7

Now, since the function g is continuous for all x, g is con{inuous_at 27. Therefore, by
Theorem 5 we get

lim_ V5% -8 '\jllm (5x—-8) =427 =3.

. Then h(x) = g < [(x) where f(x) = 2 5 and gx)= '\[; . Also

Lat h(x) =

li f(x) = lim X _ =lim L =1 and g(x} is continuous at =

‘12']-“ X _1’“= xt_s - m 2_.5_—2 g 7
x2

Therelore by Theorem 5,

o Vs Ve s T
i Y2x2-s TN DL 2xr-s T N2 T

We are sure you can do these exercises now.

E10) Evaluate the following limits:

1 —2x+5 by lim x9+5x4+6x+7
A Im T ext+ 7 Im Ty 60 +3x+3
. 312 + 4t X + CO5X
9 Ih_'f'_ 4t + 5 . ¢ ll_..... X + sinx
€) lim ?.cosl+e"‘+5
X—te X
)] im  ([x]+ 1}, where [x] denotes the greatest integer £ x,
X =t

E11) Using only the definition prove the following,.

. 3x2 . s
a) Yim T =0 b} lim (2+e>*)=2
== X T 8 K=
, l : . 2+ x5
c) Lu_'::_ - ] dy }‘IT—. 5 =1
€) lim — L =0

xae |+ In(x - 2) -

Let us quickly recall what we have covered in this unit.

i.4 SUMMARY

In this unirt, we have

l.
2,

exlended the real number syslem by adding two new symbols va and — ee,

defined im  f(x) = L, where a is any real number. e Or — <= and L. is any real number.
Of — oo, e

used the algebra of limits to calculate the limits of some func_:tions.

developed some techniques to calculate these limits.

Infinite Limits

15
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1.5 SOLUTIONS AND ANSWERS

ED

E2)

E3)

'B) TakeN={ i,

a) Supposc% =k e R. Then

This can happen only if k = 0.

Now, if% = 0. then

x+0=x+% =x.00+0 =% =0, or

1=pVvxeR.

This is contradiction.

Ifg‘ = oo, then for x < Q, g‘ = g - x, ar «a = — o0, which is again a centradiction.
Similarly we can not say mat% = —sa,
. 0
Hence we cannot assign any value 105
b) Supposcz =k
L= X . pa -]
Thenxk=x.7 == _— =—=k
= k=0

I.f:—:‘ = (, then as in a) abave, we arrive at & contradiction. Similarly prove that
it is not possible (o assign the vajug ce or —e= 10 O_i .

¢) Suppose0.==Lk,
%x.k=x(0. m)='(;t LO)e=Cer=k,

=k=0.

Now if 0. = =0, thcn E e, -(1;==-n_0=0. But weha\.rt:se,t:nlhal?Cl is
urde fined.
Also prove that 0 . = cannot Le equal to = ar — c.

a) If$is an unbounded subsci of X, then either 8 is not bounded below, or it is

not bounded above., Suppose S is not bonnded below. Thus, 5 does not have a
lower bound in R, and we have seen that in such a case gIbS = — o.

Similarly, if S is not bounded above, then [ubS = .

T mr ot P T _ 3 alimaim i T T me Fa A
L T 1 [V tounded above in K- Therefors, ubN = =,

il o

S T
But gilbN =1 R.

¢ TekeS={xc R |y<0jcH ThnlubS=0e R, But glbS = —w,

o) {Fand 1 are lwo lower bounds of S and the only upper bound of § = ee.
b) lubS=-ccand gibS =2,



E4) Suppose lim [(x)=—c. Then ¥ m<0,38>0,s.1. Infinite Limits
L&

0<|x - a| <b= f(x) «m.
=5 f(x) is negative.
We have 10.prove that iim . 0.

x=a [(x} -

Now given > 0, choose m < —é . For this m, 3 8 > 0, s.t.

0<|i-—a|<5 = f(x)cm(—é

{(x}

1 . S
=;-l i) < g, since f(x) is negative.
= lim Lo

s H(X} e
Now, if f(x) < 0 for x such lhatOc!x —_a[ < 8, and lim L = 0, then given
- r—+a M(X)
m<0,choose£<—}1—1.Furlhiss,3a8>0.6<6| 8.1
1
1
Oclx—a]<6::‘f(x) < £
_L 4
f{x) m
= f(x) <m.
= lim f(x}=—-e.
L |
BS) 9 ] [ |:-Oa.nd§;:+21-%ﬂasx—>2.
x —
= lim = <o,
a—=io|x -2
2zt - . 4’
b} 2.*.2—-:_-’;= 3 5’<01f0<‘x\~c %
re i= T L
a.ndi:in.u 2:4_5 =0
lim sz—% E
X = xE/

c) —oo
d Ferx>0.e*-1>0andforx < 0 e* - | < @, which shows that
%230+ (X — 1} > 0 for all x = 0, where n is any non-negative integer. Since

2ufe* — 1V — Qas x = 0, it follows lhal,.._-L'_'T; — o asx — L.
Zx{e* = 1)

- iim — =
sap 2X (er=1)

—7 - (Hint ; Rationalise the numerator).

€)

=
[~ ¥

1.at e be such that 0 < £ < L. Then e gl
27
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E6)

ET

Ii\

o
(e

h

»

b)

o

e}

a)

b)
c)

1 2
o = <elf
£
1 1
e Ins <3
£ X

1

= x c—
1

In =

E

Take 2ny & such that 0 < 8 < .Thcn0<|x|<8=:- e < g,

o ( see d) above)

(-]

LT
xtanx<0if - <x <m, and

2

I COs5X ) rt
—— =—7— s 0asx = .
X tanx X sinx 2_

lim , xtanx = —oo,

x = af2
22 Gforx >0, and
2x.(e* - 1) '

x
J—(e——)-ﬂ-ﬁ..sx—)(‘.

x+ 2
Hence, I x+ 3
ence, xlirnl] ot c‘r-l)
eo, [flex<2 thenfx]=1landx?+x--2 =(.x-r2)(:\—l)>0

Consequ.nt]y —-—Ll ‘= >0 for all x such that 1 < x < 2.

. . X2
Since lim -

TS +—,} = G, the requited limit is eyuai Lo ee,
a= ! - E

Does not exist,

X2+ 3 X1+ 2

lim — = = -« {im T =

r— a2t SiOX cosx % rrz 5inx cosx

Dioes not exisl,

Does not exist.

Doe¢s not exist,
Note that lim | f(xj=cwandlim _ fix)=3
=0 20 )

L}

. 1
ey ol caist, To prove this 1t wili be cnr\ugn o pl'OVL that iim sin 77
x—-iU A

does ol eaist.
L 1
Now, since ‘sm ;ll ,lim  sin ° if 1 exists, has 1c be finite. Lei, if
- 0

= 1. Then, given € > U, there ¢xists a & > U such thai

D<x<d =.»isinl; - L]i-: £

|-

possible, lim _  sin
1=0



E8)

1
T 2nn

larx X,

l =(4n+1]n'

Then for sufficiently large n, 0 <x, < 8,0 < x, < &'and

sinL— L+1L - si'nL
X X2

N .
sip 77— - sin

i
t= X izr::

L
< sinl—L’ +lsin;1-— L! <2<,
|

2

if < % which is a contradiction.

. 1 .
Therefore, lim , sic = does not exist.
=0 . X

In view of the given data we can write
f(x) = (x—o)™ f (%) with f, (@) =0

8(x) = (x-0)° g, (%) with g, (@) # 0

Thus,
H) i(é)_ =-(_iiyn_n_f_]_{ij rﬂr m > o,
-ty 8 (x)
and therefore,
_f_{il - 11 — m=n !I.g.x_}
:l-+u [i1$9] _:](ITU. (- 2,(x)
_ oo B {a) -0
T Bl (o)

b) Sinccé%% =§1§—i;form =nandg, (@) =0,

; 1 (o)
it follows that im0 <148 e 0
x-re E(x) g o)

¢ Ifm<n, then

&) _ o gymen L0251
g{x} g/

£, (x}

Since ——= 2 0 atx = ¢ and is continuons there, it has the same sign as

2, (x)

in a neighbourhood of ¢, But (x — gy™s is positive for x > o and

(x - @)™ <0 for x < cas m-nis add. Now lim . a(x) =
X I163)

= - Wwhere m-nisodd and m < n.

\ X . , . f{x .
oo lim 5 does not exist and hence lim ) does not exist,
1oa fix) r—a  E{x}

& Form-neven, m<n, (x-—-a)™ s always positive. Tt follows_that

)
X - a)m-n i LA
( £(x)

is positive or negalive according as

[L(E_\ or w<g:r n:l-.'l. wrmhen o {

> U o NEIEACOUTIoNg O <.
g, () g, (@ c *
. om %) ) . :
Since {x — g)-m f.(0 =5 07+ 5 — «, the required resule
i .

o, lim _

Infinite Limits

i (o)
g, (u)

269
f(x)

27
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E9)

E 10)

EID

Suppose lim - f(x} =L. Wc have to prove that lim_ f(l) =L.
’ === x =0 X

" Foreg >0,choosem<0st.x<m= f(x)e ]L-g L+e[, or,

|

< -# = f(x) € JL-¢& L+e[.
If5 =— % . then 5> 0. Take y = L.

m X
Then0<y<5=:>f($) € }L-g L+e[.

= lim_.f(l) = lim _ f(l) =L.
y—+0 y 20 X .

Similarly prﬁve thc reverse.

1 -2 . 3,
. 32x +5 Tx % 1
i X2x S -1
9 lim 5 ey Thm, 6 71 3
- 3+ T + 3
x X
b} e
C) =
cosx
X + COsA 1+
d lim —— =lim —_—
- 1os—m X F SINX Lo = - S1NA
| + _x

Since cosx and sinz are tounded functions for alt ¥ and

lim 13 = 0, it follows that

Lt —w

. COSX . sinx

lim ——=lm —/ =0.
14-= X P-bem A

. X + COsY i+ 0
Thus, lim =S
L - X T Gi0RX i+ 0

e 7.

. . | . . .
Since lim — =0 2nd cosx is continuous everywhere, we obtain
5=

(Theerem 5)
. i L
lim = =cos§ lim —-} =1
n—re= A [T 4 [
The rest is obvions.
fy e
Let M be given. Let N be 2 natural number so chosen that

N > M. Then

0 o3t | W cift
iven - 'i'-_——"—'; = —— - = Tl
a) Given £ > X+ 4 81 <+ 8

3x2 — gxt <8 @ xewt-3) > ~BE
if (ex2-3) »-8and x> 1.

e, if x> 3-3¢



b)

€

D . f 3-8¢
e, if x> =
£

- givcn£>0.ifM=max{I. 3_£8£
x2
x> M= -*1‘-:-8* < £,
. L G
=>i1_r51" xi+ 8 0

Given £>0.]2 + e-5* ~ 2| <eiff

]c"-‘ =e™ <¢g

¢ 5x <Ineg

=Ing
= X >

5

—Ine

LM ==C5 then x> M = |2+ e-5x -2| <&

Therefore, lim (2 +e-5%) = 2.

L=t =

Given £ >, let x > 1. Then Tnx

= x>et

Take M =max. [1, e7}

2+ xt 12
wo ! 5
. 2
Given € » 0, let x <0, Then ]
Sf_2
o x e\ —
£
- Take m=min | 0, r
1 5 |
Thenx <m = ZISK —1i<£.
. 2+ x3
Therefore, lim sx =1
I —- X

Let x > 3. Then since In x > 0 far x > 1,

| 1

U+ In(x - 2)

. |
P+ In (x - 2)

f
' =
l

= 1 +Inix-2} >é

|
= n (x~-2) » . ~ 1.

= x_z Y c“i’l:-n
o x >2 4+ alie-D

o Take M =rnax. {3, 2 + etle-1),

< &

e

) 1
SE e —— <&

lnx

2
<€ & 5 P-E

L’ Hopital’s Rule

3l



Advanced Calculus

32

UNIT 2 L'HOPITAL'S RULE

0
Simplest Form of L'Hopilal's Rule

- Another Form of L'Hapital's Rule forg Foemn

L'Hapital's Rule for E Form o 43
2.5 Other Types of Indeterminate Forms, 48

Indeterminne Fonms of the Type so — 5o,
Indc::rmmwFamso'mmwpca o

Structure

2.1 Intmduction . 32
Chjoctives )

2.2 Indeterminate Forms 32

23 L Hopital's Rute for 2 form 34

Indetermiriate Forms of the Typs 07, oo
2.6 Summery ’ 51

2.7 Solutions and Answers 52

2.1 INTRODUCTIQN

In the last unit after stating the theorem about algebra of limits (Theorem 2, Unit 1), we had
remarked that infinite limits do not always cbey the four fundamental laws of arithinztic.
This means that the sum or product of the limits need not be equal t6 the limit of the sum or

*.product function. In this unit we describa such situatiens in some detail, and develop

methods to cope with them.

A method which erables us ta evalpate mest of the limits in such exceptional cascs is
known as L' Hopital's rule, after the French maihematicien L'Hopital. In this rule we use the
derivative for evaluating limits. This is in conrast with what we have been doing so far,
i.e,, evaluating derivatives of funcifors by caleuialing certain limits.

hjectives

After reading this unit you should be able o

o - identify the types of indetcrminete farms,

e cvaluate the following limils:

iy lim Xz} vhen' llm ) =0=lim g{x)
x = o 8(x), X -2 r = a
iiy lim 9 when lim == =lim  g(x)
X = a ( ) X — 3 X o= &
iii) llm (@) — e(x)) when e fxY = = im g{x)
K=+ 3 =z

iv) hm f(x) g{x) when lim %) - § o lim: g(x) = w
X =r 01 X =0 X—=a
v) Iim (f(x))E(" when li.-n [ =o= ]im g2(x3. or
x—a

lim f(x}= e and hm g{x" =), ar

%= 4 |

I
il l'\’n) =1 und lllal i’LX} =co wilede i 5. |
A= A= |

o obiain all the zbove limits when 2 5 = -0,
S

2.2 INDETERMiNAYE FORMS

In Unit | we have seen thal we cannol assign any particular value to symbols llke-a ' ‘:—:.

0. 0. This is why these symbols are called indeienninate forms. We have zlso seen that the



algebra of limits: lim (f Y E)x) = l:m f(x} * llrn g(x) cannot be applied if the right-

hand side is in an 1ndctcrmmale form In such a s:tuauon we say thal f(x) * g(x) is in an
indeteminate fonm as x—a. Now let us get familiar with the various types of such forms,

Suppose f(x) and p(x) are two real-valued functions dcfned in a neighbourhood V of a, except

possibly at a when a is a finite real number.
(i} Og Form: Suppose that g{x) # 0 for any X in VY,

lim f(x)

- _ - . r— .
If l‘ﬂ . fix)=0 llﬂ . g(x), then lim  g(x) is an expression of the forrn
=» a

0’

1{x
case we say that Ko ; is in an indeterminate form of the lype g atx =aoras x—a. For

gx)’

example,

__“EMIS lnihcofonnalx-0

1
e-I g =

L. 0
. 2 is in the Ofonna_tx-w.a.nd
X

=

e 0
U -5 s in lhc—formalx——oo

(Hy — Furm tIflim fx)=dee = ]|m g(x) then we say that g is in an
x> a B(x)

indetenminate form of the typc —atx=a.
L)

For example,

- .

T 15in the — fortn at o,

Inx o

2 i inthe = f d
< isinthe —~ form at —eo, an
c_‘ . oo

Inx

J'{__n(nE N)lsmlhc- formatx=10.

tiiy eo — e Form : If lim f(x) =es and lim g(X) = =, then we say-that f(x) — g(x} is
X—a2a )

X =
in an indelerminate form of the Lype oo — e 2t X = a. For instance,

(=N

In general, let * denote any of the foor dgekraic oparations of addition, subtraction,

multiplication and division,

If l’ﬂ f(x) * lim g(x) is in an indeterminate form, i.c. 2n expression of the Lype
X H] E |

0 oo

X upproaches a.

Other Indelermmate Forms If hrn f(x) = land lim g{x} =<, so0 that
X =l

[!lm f(x) NT,, B0 g an expression of thc type 17, we sy thai (F(xH5 is in an

L i 2t
indzterminate form of the type 1™ al & = 4, For exampie,

-5in X

Ul: .o . . _ - . .
1 150 uan Ingettmminaie fonn of the type i~ at x = 0, while

=

(! + I/X)*is in an indelerminate form of the Lype 1% at es,
Indelerminate forms of the type 09, 0=, «a® ara similarly defined. For example,

(e* = 1)< i5 in an indeterminate form of type 0% at x = 0,
(sin x)!** is in an indeterminate form of the type 0° a1 x =0, and

(e*)* is in an indeterminate form of the type o< a1 oo,

In this

tan*x - (7/2 - x)~2 is in the o — o form at x =72, and x? - ¢* is in the e — eo form at

0 o 0, oo, e — oo, then we iy Wl [{x) - g(x} is in an indeterminate form at a or as

L’ Hopital’s Rule
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Acule Lot merphbar ool ol 3

[T f'.‘..t.. bowhond of o from

which the soint o has been
removed. Se the figure below,

=3 P o
L4 L4 S
) a at+h

We have said it before, and we repeat it once again that the methods developed by us so far
do not enable us o calculate the limils in the situations mentioned above. In what follows
we describe methods which would enable us to deal with almost all these sileations. But
first, se¢ if you can do this exercise.

E 1) ldentify the types of indeterminate-fonms in the foliowing cases.
e
a) " a8 X —3 o0

5in 2x
by ——3asx—=0
% COSX

1
C) ¢Osec X — ; as x — 0.

sin x :
& —;—— as x = 0.

[n the next section we will give a simple method for catculating the limits of functions

which are in the g fonn.

2.3 L'HOPITAL'S RULE FOR %FORM

Guiltaume Francois Amoine De L'Hopilal, a French mathematician, was a student of Johann
Bernoulli, He published the first book on calculus in 1696, This book, based on Bemoulli's

f(x f{x)
lectures, conlains a method for evaluaung lim :((Ji when 'i( ) is an indzterminute form of
L —+ a g

the type % at x = a, This resull is now universally known as L Hopjtal's rule, even though it

was proved by Bernoulli. Here we first state and prove the simplest form of this rule. In Lhe
subsequent sub-sections. we shall stale and sometimes prove other versions of this rule.

.3.1 Simplest Form of L'Hopital's Rule
We now state the simplest form of L'Hopital's rule as a theoren.
Theorem 1 : Lf i{s} and g{x) arc ‘Lwo real-valted functinas such that
1) f{x)and g(x) are differentisble ntx =2, 0€¢ R,
i1y f(a)=0=g{u).and
iy gay=0
then Iim 1 L,@ .
x— aB(x) B

Proofl : Obscrve that the eaistence of {{z) and g’(a} implies that boih the functicns are

defined in a neighbourhood of a. Morcover, the hypothesis g'(a) # 0, g(a) =0 implies that

Tx)
glx)

g{x} is different from O in a deleted neighbourhood of a so that the quotient is defined in

adeleted ncighbuurhood of a. Cleariy

) M) e
a(\) hy\}—g(a) since [fa) =gluy =0

= -‘[-IL‘-—--—) — “EH&". :_‘1.)_
(8(%) = gan/(x — ay

. . fixy = f(a
Now sinee lun (2) =17
r— 2 X —4a

wj, and

. x) a . . .
lim &l I“ ! = g'{a) = 0, we can use the algebra of limts (o oblain

ORI}

it



f(x) —'f!a! Infisiite Limits

. 0y _ . x ~a
I a0 =™ 50 - g
X —a
lim f(x) — f(a)
X = i-—a
T (x) ~ g(a
him
X — a X=—-a
_f@
g(@
Note that the right hand side of this cquation is not in an indeterminate form, since g'{a) = 0
and 1s finite.

Here is an exampie which illustraies the utility of Theorem 1.

Example 1 : Let us find the following limits.

. . 1 —cosx
iy lim ——==
x -0 Sinx
N (x - m/2)?
ity lim

x - N2 COsX

Me'll start with )

i) Letf(x}= 1l —cosx, g{x) =sinx. Then the hypotheses of Theorem | arc satisficd and we
obiain
l - cosx  sin

li - = =
x —ft  SINX cos 0

=0.

=]
—

i) Since ad; (cosx) at X = m/2 is -1, and

— (x —7/2)t = 0 at x = /2, applying Theorem 1, we get

" PP .
_ 2

lim Ix_m}_zo

x - #/2 COSX

In ihis example we could not have obtained lim Hx)
x—»a B{X)

directly, because the functions f(x) and g(x). being differentiable at x = a, are continuous
there, and therefore lim f{x) = fa)=0andlim g(x} = g{a) = 0.
X—a X=ra

by applying the algebra of limits

Theorem | has a very restrictive use. According 10 the hypctheses of the theorem., the
functions £(x) and g(x) have to be defined-at a. Whereas for the existenée of the limit of the
f(x)
glx) ,
we'll present another theorem (Theorem 3}, in which the conditions of Theorem | are
replaced by another set of conditions.

quolient » I is not essentiai that f(x) and g(x) b= defined at a. In the next sub-scction

Now try and evaluale the limits in the following exercise by applying Theorem 1.

E 2) Find the following limils

x —sinx x} -1

3 A—+0  SINX 2 lim

xk—|X2 — 6x + 5

2,3.2 Another Form of L'Hopital's Rule for 5 Form

=R —]

. - 0
In this sub-sccaon we'll siate and prove L'Hopital's rule for G form (Theorem 3). Bul to
prove it, we'll have to take the help of Cauchy's mean value ticorem,

You have elready studied Rolle's theorem and Lagrange's mean value theorem (Theorerns 2
and 3 in Unit 7, Culculus). Here we shall only state Cauchy's mean value theorem. It isan

L,
O
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Augusiin Louis Cauchy (1785
1857} of France is one of the all
Lime great mathematicians of the
nincteenth centary, His interests
spread over a broad area in
mathematics. He paid great
atlenlion o the lori, o)
foundations of mathemarical
analysis,

In Sec.1.3.3 we have noled that
the valus af ((x) atass
immalenial for the existence or

tevalue of lim f(x).
=2

Nole that f{a) =g (2} =0

_HOWevcr. our assemption makes (he functions continuous at x = a,

easy consequence of Rolle's theorem. You can find the lﬁroofs of all these mean vajue
theorems in the course Real Analysis.

Theorem 2 (Cauchy's Mean Value Theorem) :

Let f and g be two real-valued functions defined on the closed interval [a, b] such that
i) fandgare cﬁntinuous on {a, b],

i) fand g are differentiable on Ja, bl, and

iil) g’(x) # 0 for any x in Ja, bi.

‘Then there exists a real number ¢ in Ja, b{ such that

f(b) - fta) _f'(c)
gb) —g(a) g0 " -

We are now ready to state and prove L'Hopilal's Rule for the g form at a, where a is any real

number.,

Theorem 3 : Let f(x) and g(x) be two real-valued functions such that

) lim f{(x)=0=lim g(x), wherc a is a real number, and
X—a X =]

ii) lim -l:,@-‘exisls { and may be +sa ar — co),
x—ag (X)

Then lim ) lim —(—lf, X)ooe
=2 B  x9a g(x)
. T i ¢ Y . . - .
Proof : According to the hypothesis lim P exists. This means that £°(x) and p"(x) exist
xX—A

in a deleted neighbourhood of a, i.c., both fand g are differentiable in an interval
Ja--&. 2+ 3[ except possibly at x = 4 for some & > 0. Further, this also means that

gf{x):ﬁfomc[x - a‘ <3, s0 m;% isdeﬁncdfor{}dx - a] <8.

The hypothesis does not say anything about the values of land g at x = a. In fact. f(x) and

&{x) necd not be defined at x = a. But let us assome that f(a) =0, and g(a) = 0. Note that this

assumpticn does not affect the existence or the value of the limits lim f(x} and lim g(x). -
X—¥d =2

. ' | - - - . -
Now for any x such that 0 < !x - a, < §, the functions [{x) and g(x) salisfy the
1equircmcnl§ of Cauchy’s mean value theorem (Theorem 2) in the interval [a, x] or [x, a]
according as 3 < x of x < a. That is,

= f(x) and g(x) arc continugus in the closed interval 4, &} or [x, a].
e differentiable in the open inteivai ja, x[ or jx.al, and
© g{y)#0foranyyinja, x[ orJa, 2l

Thus, applying Theorem 2 we can say tha: Giere exists a real number ¢ between a and x such

. that

) _f(x)-fa) )

it T ~g@ " g©

Obviously ¢ — a when x — a. and therefore,

lim m: lim ﬂg)— =lim f‘(x'} v and the picof is compleic.
2oz g0} e agle) Tsxo g . !

Remark 1 : The condition (ii) stated in Theorem 3 is only sufficient and ‘is not Necessary
. N ¢ I fx , . f(x
for the existence of lim M. Thus, if lim ﬂ,ﬂdoes not exist, then lim _(_J_ may or
x —a g{x) x = agx) x—a £{x) K
may not cxist, and we have 1o use different techniques (o eslablish its existence and to
evaluate it (See Example 3). -



If we medify the proof of Thezorem 3 a bil, we get the following result, which is referred to
as L'Hopital's rile for one-sided limits.

Theorem 4 : Let f(x) and g(x) be wwo real-valued functions.
) Iflim , fx)=0=lim , gx), and
X =ra =3

lim @cxisl.s(andmaybcmor—-m).
x—o at gix)

lim , gy [0

x-at X)) x o2t gy
iy Iflim _ f{x)=0= lim _ g(x), and
X—= 2

A= a

-lim mexists (and may bemor—m)l,
C oz a” BX)

then
ftxy - . f(x)
_ = lim _ ==
X)) x o a g'(®)
We, now, illustrate the above discussion with the help of a few examples.

Examplé 2 : Let us find

. , . |l —s5inx
i} lim —and
&= T2 COSX

i}y lim
L x—\{_

We'li take these ene by one.

1 - smx

0
e 5 in the = form at x = /2.

i) It is obvious that

The funcrions ! — sinx and cosx satisfy the hypatheses of Theerem 3,
Therefore we can apply L'Hopital's rule-here. Thus,

lim | —sinx = jm = TSO0sX _ cosm/?2 _
v w2 COSX x— w2 —sinx  sin /2

i) Setf(x)=Inx, g{x)=x - \!_ Clearly, f(x) and g(x) are differentiable in J1 - §, i + §]

for a suitable 8 > 0 say § = l . Moreover,
lim f(x)=0=dm gx), and

k=1 = |

%) =1 l/x -

lim = in — =2
2=l 2R 2 1 - I
2Vx

-Thus, L'Hopital’s rule gives us

. Inx
litn — =2,
LC TN

A=~ X

Now we give an example of a siivaticn in which L’Hopiwl's rule cunnot be 2pplied. You

wiil see that we can still find the limit of—(*%

.1 .
x? sin = x7 sin =

X . . 1]
: . we first note that———— s in the = form at
sin x sin x 0

x =0. But L'Hopita.l'q rule s not applicabie, because,

Example 3 : To find lim
=N

L’ Hopital’s Rule
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: - X4 sin.— —co0s5 =+ 2x sin =
. dx X . X X .
lim ——— =lim does not exisl.
x=0 d sinx L C cosx
dx

How can we be sure that this limit does not exist?

e e 2x sin 1/X —cos i/x .
Note that if lim ! L 2xists, then
x= 0 COosX

As x50, cos i o.callates wildly

. ] 1 . . 1 C
petween —1 and |, and does not lim [2x sin = —cos —] woutld exist and consequently lim = cos — would exist, whicl:
icnd 10 any limir, x - 0 X X : 0 X

is not true,

x? sm inl/x

Howe\rcr we can still evaluate the limit of — x - 0.

. x .
Since, —— — | as x — 0, it follows that
sInx

xZ
sinx

x2 sin 1/x
sinx

el LR

We have

2
J‘——)Os\sm —.0, and therefore,

Sinx
. x?sin 1/x _
1= 0 sinx

The next example shows that L'Hopital’s rule { lim f) _ lim o is

) x — a g{x) xl - a gx)
applicable only to those quotients which are in indeterminate forms of the type% at the

given point. In other words, the first condition in Theorem 3 is very imporntant.

Example 4 : Suppose we want to [ind |IITI L2 SI0X can we arpue that

S 0 X+ Ccosx
X + sinx . | + cosx 2

lim ——— =lm —— =7 =27

x0X+cosx xoo0 I+sinx 1]

It is truc thar the functions x + sing ard x + cosx are differenttable functions, but this

X + sinx

argument is not correct, because L'Hopital's rule cannot be applied as % + cosX is not in

“an indeterminate form at x = 0. Actually,

L. lim (x + 5inx)

lim X+ 5InX  x—o 0 - _

1-5 0 X +cosx  lim (x+cosx) 1
x>0

=

=0.

Now we give ancther example o show that the conditions stated in Theorem 3 are sufficient
f(x)
glx}

and not pecessary 1o e{!aluatc the limit of functior}s of the form.,
Example 5 : Let
2 gin &
x*sin=—,x #0
f(x)= X
0,x=40

. iy
and g{x) = x. Let us evaluate hm o p, <, and show that T meorem 3 cannot be appiicd.
= L)

=

. ' Cleasly,
FO = fim Of“”;J (i)  f(x) and g(x) are diffcrentiable at 0,
--’ -
=lm msin= (i £(0)=0=g(0),and
oot (i) g7(0) #0.
. 1 ' Therefore, by Theorem 1,
sirce hsmE s]hl—)o ]
2
lim LTﬂ)‘:lim xZ sin 1/x = f—u
-x = 08X x=0 X 2



But, I'heorem 3 is not applicabie because

lim fix) =lim {2x sin L cos 1 ) does not exist. That is, condition {i?) in Theorem 3
x=0pe{x) x=0 X X
is viclated. And yet, llm —E‘))' 2xists.

You st have noticed that here we have a sitwation where Ilm b ] does not ¢xast, but

E(x)
g(%% cxists. This means that .:’.—((% is not continuous at x =0, We suggest that you go over
this example again, and try 1o understand all these points.
The conditions in Theorem | are also sufficient and not necessary for the evalualion of

Hm 0 -%% In our next example we give a siteation where Theorem 3 can be applied but
x -

Theorem 1 cannol be applied. So Examples 5 and 6 together tell us that Theorem | and 3 are

independent of each other.

Example 6 : Suppose we want 1o find iim L and g(x) = sin” x. tis

X~

. .2
. X - ]
obvious thal =5~ Is in the — form at x = 0. Now,
sin‘ x 0

F(x) . 2%
lim 1.3} =lm
r =0 g{x) x =0 25inx . cosx
. i
= lim -
x —0 §inx
Tcosx

. sinx .
lim ——.1lim cosx
r—=0 X - 0

[

x2

Therefore by Theorem 3, lim o=
v — O 5In- X
Note that here we can’t apply Theorem | as g7(0) = 0.

“Now you can try this exercise.

E 3} Evaluaie the following limiis:

A 1 — cos?x
ay lim =————
x = 0 Sinx-

2x* -9x + 4

b} lim
A= 142 COs TTX
T XM —gn
¢ lim o ,a=0
x = a xT-0of
. in {1 + 4%
@ lim x)
v 0 4x
¢ im In sinx
X o Rz L = Aiax
. 3 .0
n lm =
» = 0 X
5 lim ginx — cosx
£ X - mid X - ﬂf-i
m lim \[}”:“'—4
X = 2 x 4

L' Hopi:al's Rule
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Ry Iim

Consider the functions f(x) = 1 ~ casx and g(x) = x? , which are aifferentiable everywhere,

. . | -~ cosx . . . .
Let toe telim —— = ‘)=
us iry to evalua lim 2 Here f*(x) = sinx, and g"(x) = 2x, and e is again
in an indeterminate form of the type 0 at x = 0. But let us now turn our atiention to the

0
functions £°(x) and g"(x). We find that the functions £(x} and g(x) are alse differentiable

. - ") = N i .9 RS Qg
functions, and (x) = cos x, g"(x) = 2. Clearly, 11‘113 0gx "2 This means we can apply

‘L'Hopital's rule to the quotient of [*(x) and g’(x) at x =0, and get

. fix SR il ¢4 B ¢

1 “é—)'=l Pt

150 g5 0g (2

Now silnce :I:m-l 0 g,%%: % , applying L'Hopital's rule to 5(% we get
dim Wy, @1

2o 0 EX) x- 0 g@® 27

Thus, we can wrile,

Jim l—cc)sx_.m_l sinx _ .. .cosx _1,

=0 2 Txs0 2X xo0 2 T2

We often come across similar siuuations where repeated uss of L'Hopital's rule enables us to
evaluate the required limits, We now state the general result in the foliowing theorem.

Theorem 5 : Let f(x) and g(x) be iwo real-valued functions such that
lim f(x) =0=Hlm gk (x),0 s k < n—]1, forsome n e N.
11— A '

I— i

(Here, O = f, g% = g, and f@denotes the k-th order derivative of f for 1 < k<n-1.)
o) {x)
3 :{n) ();) exists {may be BQUZU. 10 « or — ), then
) _ i ™ (x)
Im g “roa g9 ()

The proof of this theorem follows on the lines of the proof of Theorem 3. But let us not
worry sbout il here, We will be interesicd only in the application of this theorem.

Iflim
p

Now we give some general obscrviidons in the form of remarks.

m
Remark 2 : Nole that if for sems n, Hm %dms not exist, and
= a A
im f900 =0=tim g6 (x)-0 <k s n-l, then lim 1) annot be evaluted using
X3 a X = 2 Tt x—}ag(.‘l)

L'Hopital's rule.-
Remark 3 ; We can now stare the zeasral L'Hopital's rule for one sided limits.
Let f(x) and g{x) be two real-valesd fr:n=rions such that '

lim , @ (x)=0=lm g® (x}, b £ k€ n-1 for some n & N.
LI— & x— 1

. W) .
If lim — 2L ayigis (may be equal 10 +eo oF - o), then
1 at g (x) (may
g
fim L g, 2
X—ra B x-a EARS

If we replace a* witerever it oocurs by 27, we get the statement for the left hand limit,

We now give an example to llustrate the above discussion.

Example 7 : Let us evaluate
D tim x3 - 5x + 4
Do x3—x2—x+1
e3* .3 -1
1= 0 1 - cosx

vand



We start with i), ' L’ Hopital’s Rule
i) If we take f(x) = x*- 5x + 4 and g(x} = x?~ x? = x + 1, thea

lim f{(x) =0 = lim g(x)

x> 1 E=1]

lim f(x) =lm (§x*-3}=20
=1 2= ]

H

lim  g'(x) lim (Gx?2-2x-1)= 0
=l 1

x =

. P (x) _ . 20x3
ad hm oy T XD 6x - 2

= 5.
Therefore, by Theorem 5;1.e., by repented use of L'Hopira)'s rule, we obtain,

i x-Sz d o S -5 208 _
M XTI o x2-x+1 o1 3x2-2x=1 x5 6x-2

5.

i) IFf(x)=e?—3x—1and g(x) = 1—cosx, then
£°(x) = 3e3* — 3 and g’(x) = sinx, Also,

lim f(x) lim f(x) = 0, and
x— 0 x =G

0, and

1
I

lim X
x-——il’)g()

fm LGy S

" = lim
1o 0g"(x) x = 0 COSX

i (x
fim , 6

G, which shows that

3x b

. e?f - 3x -1
im —/——— =9,
=0 1 - cosx

See if you can solve these exercises now.

E4) Evaluate the following limits:
~1 432
2 lim (e x)*

x -0 In {1 + x?)
) x —tan-! x
¢ by Iim —————
L =0 X —sink
. 1—cosxt
¢ lim =
‘A -40 X510 X
., tap? x - x2
lim ———
9 x—0 xfuan?x
. pe_ Sindx - 3x
g lim =55
x =0 X
: . ! — sinx
tim —_—
b x> =2 1 +¢os 2x
et —eg X —2x

lim "
B) x— 0 X - sinx

£5) Find the valve of : for which Sin by = S

. sinh 2x + t sin 2x
HA 3
0 X
is finite. Evaluate the Llimit,
E6) Find the value of t for which
. gt +revt — Ix
lim —
x -0 1 —cosx
is finitz. Tind the vadue of the limii,
J Show that

x2gin ifx

|

B
iim’
i 0 5tanx

Also show that this limit cannot be evalnated by using L’Hopital's rule.

41
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Till now we have considered lim ;—%‘% * where 2 € R. What happens if a is 2qual 10 = or
e

— el Let's see.

L’Hopital’s Rule for ?—'Form at w gr = o

Theorem 3 and Theorem 5 about L'Hopital’s rule at x = a hold good even if a = o or — ==,

We shall not try to prove this statement. But intuitively we can say that it has to be true,
Imagine that two cars, the f-car and the g-car are on endless journeys. Suppose f (1) and g (1)
represent tne positions of these cars at time 1. The respective velocities of these cars will be
£7(t) and g (1). Now, suppose we are given that

lim L& _
15 = gt

This means that in the long run the f-car travels L times as fast as the g-car. Therefore, is it
not reasonable to say that in the long run the f-car will travel L times as far as the g-car, that
is. :

lim 2{U] =L7?
t—+ o E(I}

We now solve an example using this fact,

Example 8 : Suppose we want to evaluale

tan;]:’x!land

Dolm e ()
ii} lim X sin 3 .
X — —na X

Let's tackle these limits one by one.

)
8(x)
as x — oo, Clearly, both f{x) and g{x} arc_dit'fcrcntiab!c forall x=0, and

lim (=3/x2) sec? (3/x) i 3 sec? (3fx) _ 3

x =+ = (—1/x2%) cos (1/x) =;"E, w cos (1/x)

iy Letf(x)= La.n% and g (x) = sin i . Then is in an indeterminate form of the type g

Thus, L'Hopital’s rule forg form at = is applicable, and therefore,

tan (3/x} _

xow sin{lxy” 7

. _o S 1 £(x) . 0 "
1) Letf(x)—smx 'g(x)—x'mmg(x) ISO form at , and
532
im f:(x) = lim (=5/x) cc%_(s;’x\ _s
K=} —os g(x) X — —ca -1/x
Therefore,
tim 00X g L
X — —m 1/x x— ~= g(X)

Now you should be able to do this exercise.

E 8} Evaluate the tollowing timils:

a) lim  xlan™! (1/x)
I ow
B lim sin_(1/x)
;'__‘_“ elin _ 1 -
¢ lim x(et*-1)
X = e
d dlim  Zx{In (x + 1) = Inx)
|

2 ]
e) lim xIn [5—;—-"1]
I =) —co X -




. ] . . oo
In the next section we will consider functions in the - form.

2.4 L'HOPITAL’S RULE FGR E FOR

In the last section we have seen how to evaluate lim —(—} by L Hopital's rule when Kx)
I—

g(x)

.. 0 ) o f{x)
is in the = form at x = a. Now we shall study the rule for evaluatmg lim when

0 = a S(X} B(x)

. ' o0
is i 1he ” formatx =a.

In order o evajuate lim LQE). when lim f{x} =t oo = lim g(x), we have resulls
:aag(:‘l) % —a = a -

similar to those proved in the last section, but their proals are more complicated. Therefore,
we state these results without praofs, and then illustrate them with the help of examples.

Theorem 6 : Let [(x) and g(x) be two rcal-valued functions such that

I¥olim [(x)=%e=lm g{x).
=1 A =r 2

where a is any real number, eo ar - eo,

i lim 1

exisls, which may even be infinite,

x -+ a.8(x}
* Then,
lim &g, X

X = q glx) :lr-ll a 007
We shall not prove this theorem here.

Now as in the tast section (sec Theorem 4) we can modify the statement of Theorem 6 1o
cover ihe evaluation of one-sided limits.

Iirn andl: - ﬂﬁ)
( ) x - 2" ElX)

“We had also seen, in Theorem 5, how repeated use of L'Hopital's rule sometimes helps vs in

a3 Juanng the required limit, We now state an analogous result for indeterminate forms of
the type ; .
Theorem 7 : Lel £ (x) and g (%) be 1wo real-valued funclions such that

) lim MY (x}=kom=lim g (x),
X — 4 L= a

where 0 € k < n—1, n is a natural number and a is any real number, = or — o0, and
£ ix

i) iim - exists, and may even be thiinite.
X a g‘“‘f } ey
Then
. f(x) . fin (x)
l __1_= ——
UM g T EM L,y

We remind you once again that, as in the last seetion. the conditic ns stated in Theerem 6 and

Theorem 7 are sufTicient and ot necessary.

Here is another point thal you should note.

ﬂll E ) . . .
If g“‘" P is in an indeterminale form for 0 £k < o and (ni{ ) fails to tend to a Jimit as
X — 2, then this docs not mean that lim fx) does not exist. It only means that we

X = a S(X)

L’ Hopital's Rule
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Advanced Calculus cannot apply L'Hopital's rule, and that we have 1o adopt a different procedure to-establish the
- existence or non-existence of the limit under consideration. -

We shall bring out this and various other points with the help of a number of examples. Go
through these carefully. They will help you 1o get a better understanding of the concepts
involved. '

“Example 9 : Let us try to show that

T ex ‘> 1
I).;IT; el

. fim  22.0,150,and
L1 e X
) In tan 2x._

iit) lim =
) x =0t Intanx

Let us evaluate these limits one by one.
) Letf(x)=eX g(x)=x%n=1, Then

lim fx)=e=lim g(x).
= = A= = .

ifn=1 thenlim = fim '%:m

X = v g'(x)zx—bu
and therefore by L"Hopital's rule

. et
lim = =00,
o= X

Ifn> I, then it is ciear that,

lim () =ew=lim g®(x),0sk<nand
X = oo X =3} co

. 16,9 AR -
lim | g ~im | r=e

Consequently,

R
lim- S =eforallnzl,
E— m X

i) Let f{x) = Inx. g(x) = x". 7 > C.

L

The functions f (x) and g {x) satisfy the requiremenis of Theorem 6. Therefore,

im P&y L& e g, Lo
x= e E(X) x— e E(X) W= = nx" x = e XM

ii) Letf (x)=Intan2x, g (x) =lnwan x

Then Jl(n'_r: o f(R)=—e== lir:_'e o 7030 and

X -

lim fixy _ lim 4 coseehx
xo ot g xS0t 2cosec2x

. 1

=lim . =1

1o 07 cos2x

Therefore,
In tandx

lim .
x — 07 Intanx

-

) 15 ian2x e
in the above example we cannot talk of lim  ————— because tan2x and tanx are negarive
=

=0 Inrtanx
for x < 0 and therefore we cannot take thejr logarithms. You would also notice that

. n s v
;n:n_, ot f'(x)= —Jl(m_':’ o g°(x), but

ilcd]
g ()

is not in an indeterrninale Torm as x — 0+".
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Ex;;;nple 10 : Suppose we want Lo prove that

n
i} lim (In %) —= 0, where n is an integer, n = 0. .
X = X
.. . In x)™ : B ,
W) lim n=0,m>0,n>0and mis an integer.
X = w X

Let's start with {).

i) Forn =0, the result is abvious. Forn = 1, the result has been proved in Example 9, ii).
Letn> I

Set {{(x) = (In x)™ and g(x) = x. Then the functions f(x) and g(x) are differcntable for
x>0, and lim {(x) =« = lim pg(x).
= =

E—b 02
Therefore, -
I yin-1
lim - f(x) =~ lim ﬁ’(:_c)_ = lim n (In x) '
12 B(K) x93 =g 13 = X

provided the right-hand side limit exists. Considering the funcions (In x)™! and x
instead of (In x)" and x, we gel

i nx)E lim  ln x)n-! - lim R =D(ls x)*?

T —b = X X — w A X = oo X ’

provided the right-hand side limit exists. Repeating the above process, we obtain

= |2

. {In x)"
lim ~———
A =) x

it} Letf(x)=(nx)™ g (x) =x" Then f (x), g (x) are differentiable for x > 0, and

= li = [
kS

i3

lim f(x) = o =lim B(x).
X = =

X ‘_—) w2

Therefore,

. Inx)™ . m {In x)=-!
lim = lim

1 n - n r
£ =3 oo X X = nx

provided the right hand side limit exists. Considering the functions (In'x)™ and xn
instezd of {In x)™ and x*, we obtain

L (nx)m mé{m — ){In x)™-2
im 7=~ =lim - '
A =p s s W n- X

provided the right-hand side limit cxists. Thus, repeating the above process, we obtain,

i)™ , L
lim QI—'I;)—' = lim %'-—,. =0,

X - o= X %~y N &
You must have observed that in Lthe above cxanple we are using Theorem 6 again and not
Theorem 7. In fact, Theorem 7 cannot be applied. because lim f(x)# 0 in both the cases,

1) and ii},
Example 11 : Let P (X} = 2, x™ + ap,; 30 o oo + a5 and
QxI=byx"+ by x™ + . + B be two polynomials with real coefficients, a,, = 0,
bn = 0.
We'll show that
( dm ..

E,: im =
im 2 {x} = 0,ifm<n
A =r w Q (x) m .

%es, ¥ m > n, according Lo E’“ is positive or negative,

Let us rake the case whan m = n,

HO<k<mlim BY(x) andlim Q¥ (x) are infinite, and
X =3 w0 X = w

e

L Hapital’s Rule



Advanced Calculus lim Pm () lim 2m m! am
X =y Q{rn) (I) —xl—f [ brn m! - bm
Therelore,
m)
lim S8y () _ am by Theorem 7.

PR a0 TS g™ b,
Now, suppose m < n,

Again lim PO (x) lim Q% (x} are infinite for 0 S k < m, and
K= m

X — =
{m)
im BELOGL g m! o
s e QM) T x99 0
¥ b, r{r— D..... (r-m+ [x—m
rem
=0
Thus,
im P . Pl (xy

- = lim =
x — e Q(x) X—)mth}(x)l
Now, if m > n, it is obvious that

lim P&Y{x),lim QW (x) are infinite for 0 <k < n, and
X~

X — oa

m

Yo oarr—-1).... (r—n+ b)xeo
. P(n) * r=n
lim s I 8 lim
12w QX)) xo e n! by,

= * e, according as %-"L >0or<0.
n

Thus,
. A P i
lim P(x) _ 3, =mor—m,accord1nga.sﬂ—m >0 orcq.

x~ e QX _Jll"—nl « QM (x) b,

This example could also be sulved by using the method described in Example 7 of Unit 1.
We shall illustrate this through a specific function in the next example,

: 3 2
Example 12 : We'll show that lim dx- ¥ 3x" + Sx+ 6 can be evaluated in two

X — o 5x4+6x+7
Wiys,

By applying L Hopital's rule (as in Example 11), we get

i 4x3+3x2+5x+6_l.m 12x2 + 6x + 5

s SxtHbx 47 Al 2000 + 6
- im xt6 .24,
7 R T,

Using algebra of limits, we zan fiad e above Jinit in & very simpie way as follows!

lim 4x' + 3x2+ 5x + 6 _ jim  d3ix 4 5/x* + 6/x°
1o e SXYH6X + 7T T oxo e 5X 4 6/xT+ Tixt
when x — o,

=0,as l/x =0

- In the next example you wiki find 2 sitation where L'Hopital's rule is net app]licablc.
Example 13 : Consider,

. 2% sin x - s
lim ﬁ . Can we apply L'Hopital's rale to evaluate this limit?
|

No, L'Hopital's rule is not applicable because lim 2x sinx does not exist.

L ]
However,

. 2x sinx
lim ST——

!‘.—)wl"'xz =0I
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because, 1.’ Hopital’s Rule

. 1
2x sinx l i 2y
—— <
l+x2!_‘l+x2"and
. 2x
lim =

no—r ter l"'x:

We now give an example where L Hopilal's rule is applicable but it yields no result, But
such siluations are very rarc.

Example 14 : Consider the function

ot a1

et + et

Let us see what happens if L'Hopital's rule is applied to evaluate its limit as x — o= We get

_ The right-hand side is again in the E form. but if we apply L'Hopital's rule 1o evaluale ir,

we get back to where we started. Thus, it is uscless to apply L'Hopital’s rule in this case.
Burt we can stili evaluate the limil as follows.
gr—e* . | —e %

lim = lim
X o=—h o= t‘.‘+c" 1-—)m]+e_3x

=1,

because Hm ¢* =10,
X — e

After going through the above examples you should have no difficulty in solving these
exercises.

E 9) Evaluate the following limits,

. Bm X™ + Amol X7 A + an Ny
2 lim - -+ .wherea, € R, Vi=0l,..m
X — o= c
. — tanx
b lim _—
=Hr2r- In cosx
. zn3x
¢ lim ——
=2 lanx
¢
.. X°+ Inx
im —f——5——
9 x—re 2X0+ 519 % 1

o thim 2x¥ 4+ SxT + 6x24 1
x— o0 3%x8 4+ 5x7 4 5x + 1

E 10) Show that

. X + sinx
irm ———== ],
X — e X + COSX

and that L'Hopilal’s rule cannot be used 1o evaluate it.

E 11} CEvaluate the following limils and show that L'f!opim!‘s rule is not applicable in

a30h Case,
5 fim x% - sk’
S 1 - 5T

X - x?

_ ~ — COSA
B lHm

L — e X

. ;
| 5inx | 4 I cosXx | -

g lim

X = X
.. XSinx + COSX
d lim T

X — o= X
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]il'l'l - "'—"-'—l;'__ - .
% — A2 —EiNR - gealx

since .
-$inx - cos2x—+0 81 xRS

2.5 OTHER TYPES OF INDETERMINATE FORMS

. . 0 o . .
So far we have concentrated on two types of indeterminate forms : 0 and — . In this section

we shall wke up the remaining indeterminate forms one by one, and study the evaluation of
limits in each case. Given any indeterminate form, our standard procedure would be 10 first

bring it in lhcg or E form, and then apply L'Hopital's rule.
2.5.1 Indeterminate Forms of the Type oo — o

By some algebraic or migonometric process we can transform an indeterminate form of this

type o one of the. two standard formsg or E Then, we can use L'Hopital's rule to evaluate

its lirnit.

We'll now illustrate this procedure with an example.

Example 15 : Let us evaluate the following limits.
i) lim (cosecx - L )
| ] ) X

.. . 1
ii) lim [sccx -— ]
) xl—){m'.’)_ \ {1 - sinx)
N Rl
x— 0 X x=

Clearly ali the three functions are of the type = — <o,

1) “‘We can wrile

seck — & = 1 1 _ x-sinx
FOSCCR =X Tsinx "x ©  xsinx
so that the right-hand side is in the g form at x = 0, to'which L'Hopital’s rule is
applicable.
. 1 , - 5i
Thus, Iim (cosecx -= ) = lim =3k
: =0 . X % — X51nx

. | — cosx
lim #—————
%z — 0 SINX 4+ XCOsX

. sinx . ..
lim 5= by differcntiating
L — 0 2C0SX — KSinx

lim_ sinx
x—0

= _0 -0
T lim (2 cosx —xsinx) 2
=0 .
ii) Nfﬂgt. T e |
=secx ..z"—l__.”'—":L _—1 _ 1l-sinx-cosx
- l—sinx cosx 1 -sinx cosx (1 — sinx)

L

T
o)

-

and the righl-hand side is in Lhc% form as x — » to which L'Hopilal's rule is

appiicabie. Thus, -

. l iy -
fim  {secx ———— ) _ jim | - SIRX - COSX
X = /2 l —sinx : O w27 COSX — SiNX cosx

. ~COSX + Sinx . -
=lita _—._ - . by dillereniiaiing
x = /2" —sinx — cos2x
. . . 1
= lim _ (—cosx + sinx). lim e
x = 2 x = w2~ \~sinx —cos2x
=loo=m



iii) Iris obvious that

[1 ln(1+x1] x=In{l +x ,
x —i 0 xt i
and L Hopital's rule can be applied to evaluate the limit on the right-hand side,
Therefore,
L
l - : 2

lim ]n,zl +X) _ lim l + x = Lim H + x)
x— 0 X x = 0 2x x—0 2

1

2

Now, we'll look at another type of indeterminate form.

2.5.2 Indeterminate form of the tyﬁe 0.0
Let f(x) and g(x) be lwo reals va]ucd functions, such that llm f{xy=0and Ilm g(x) = oo,
R ]

where a 13 any real number eo‘or — ==, Then, as we h:wc seen in Sec. 2.2, f(x) g(x) is in an
indeterminate form of the type O.ee a5 x — a, In order to evaluate lim f(x} g{x}, we can wrile
=3l

_ ~ f
lim {(x) g0x) = lim Ty
_ N Bx)
JI‘HE]_' E [(x) glx) = }“T) a Lf(x) "

50 that the right-hand side is g‘ form or E form to which L‘H-opita.l‘s rule can be applied.

The conversion from Qe form to g form or E form would depend upon the pa.ﬁicula.r

functions under consideration. You will undersiand this more clearly if you study the
following example.

Example 16 : Let us evaluate (i) ]irnI 1an %’5 Inx and
X—

() lim  xPeS" where p, q are positive inlegers.
PR

We start with (i},

X . .
Moie that tan == lox is a Q.= form at x = 1. Now wi wriie

a..

—
—
—

143 sm(rtx:‘2!
1an 7 Inx cos (ﬂxfz)
Inx
W a 5 =
¢ know tha thm s.m 2 l. So let us try to fi f“d“m T 1 cos (mx/2)
Now ) form at x = 1.

" cos (x/2) 0

Therefore, by L "Hopital’s rule

lim - =X gy M2,
x — | €05 {mx/2) ~ x 51 -sin (Mxf2) .27 W
Thus,
Hm  (ran ax Ylnx = hi ML&
%= 2 x— | cos (Tx/2)
= lim sin EX lim —nx__
T aot 2 1o 1cos{nx/2)
= 1.7}
- _2.
B

L' Hopital's Rule
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i) We can write

. Lo
lim xPe® = lim <
O . E e ed
x .. . I
Now, -5 isinan indeterminate form of the

applicable. Thus, we get,

P
lim == =lim =0,

x—bmeqx x—tu'qpcq"

so that lim xPe9f=0.
X = sa

type E to which L'Hopital's rule is

We shall now end this section by discussing the remaining types of indeterminate forms.

2.5.3 Indeterminate Forms of the

type 00,009, 1~

Let f(x) and g(x) ‘bc two real-valued functions defined in a neighbourhood V¥ of a, except
perhaps at a, if @ is a finite real number. Suppose that f(x) > 0 for all x in V. Then

In (£()E)

= p(x) In f(x) and
lim  (EOP® =lim et
X=+a . e I
m  (gx) in £Cx)
X=r a
=

because the exponential function c* is a continuous function. Thus, in ord=r to evaluate

lim (£(x))#= it is enough 10 evaluate lim  g(x
I a -8

Y In f(x). You will agree that if as x iy a,

(f(x))5® is in any one of the forms, 0=, =, 1=, then g(x) In f(x) is in the form 0.c0. And in

Sec. 2.5.2, we have already seen how © evaluale

Here is an example to illustrate this procedure.

Example 17 = Suppose w2 waut 1o sveluate

iy Hm M-

x— 1
iy {1 )‘ -
iy im _yinZT and
Y Im %
{it) lim  _ (cos x)cos

X - uf2 .
i) Itisclear that xV&= 1 is in an indvtenninale form of the type 17 as x =3 1%, Let

y=x4*-1 Then

In H-*-l—lnx

LT

- Inx . . v . P g N .

Kow, -] lein the o foun as x > 1*, and 1."Hopital's rule is applicable to It.

Thercfo:s

. X . 1/

Lm .. vln =lima 4 =% =

x=1" ®x=-1 x5

Herzee

1im‘+lny
im x#E-D _lim e 2 T o«
x—=1t Tx-i - -
'/ i \n-" - -
iy Lety—din S ko cocharyisin dic form et asx =2 U7
XS
Thzn
. lan + ID)'
: fl I y y Iy 0
- = Y= g Y= 0C

}:h— ot { " x } xnlal or- :tu-l-i ot

But

li In lim xIn {ln LY

im = -

xl—} i v = Qv “ X ,;

the limit for this type-



w(nl)
WU—K

is in the E form as x — 0* ., Therefore, by L'Hopital's rule

X -1

T In (1/xy 2
lim o* Iny = lim In (1/%) x* = 0.
X =k X

= 0F ~1/x?

Substituting this in (I) we get

]u'n ot (ln ) =el=1,
iif} Let y = (cosx)****, 0 < x < n/2. Then,

Iny-= cosx In cosx =% , and therefore by applyi.ﬁg L'Hopitals rule we obtain

Incosx . — tanx
litn ny = hm = li — . - =
11— mf2" — xf2- SECA X ~— R/2- 5eCX lanx
Thus. -

lim Iny

. X —nf2 0
im (cosx)*™* =¢ =g =1
L

MNow you can try this exercise on your own.

EI2) Evaluate the following limits. In each case you will have to first idenu.fy the type
of indeterminate form, and then decids upon the pmeedurc. :

- . l 1+ iz
.4) lim o+( x)

b) . lim (cosx)s?
x— 0

C fim b 1
) x - 0t

4 lim _ (anx)=u
. x— 0%

e) lim { Loy jun2=
T — B2

. 1
f) lim xsin-
} I X

That brings us to the end of this unit. Let us summarise all that we have done in it

2.6 SUMMARY

In this unit we have

1) iotroduced indeterminate forms of functions at a point,

2) stated and proved L'Hopital's rule for lheg form at &, where aisareal number.

i, h .
Thus, if -—‘(-5 i5 an indeterminate fonn of the type g Wx=a then

fix} . g

tim —— = lim

h
L G < if the right-hand side limit exists.

3) extended L'Hopital's rule mg forms at = and — =

4) stated (without proof) L"Hopital's rule for = form, and demonstrated it with the help of

examples.
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5) describéd 1w 10 requcé indelerminate forms of the types oo = <o, 1=, o= and 09, to the

0 e
forms 5 or—.
o

6) given a few examples where L'Hopital's rule fails.

2.7 SOLUTIONS AND ANSWERS

ED

E2)

E3)

E4)

oo 0 0
B o0 D) g e e @)
. X - 5inx . 1 — cosx -1
1) lim ————= = lim =I. =0
x - 0 SInX x— 0 COSK 1
x4 -1
b) hm . S -
) x—1 XZ2—6BXx+35
= lim 2rxr v x el _ 4 _
- ! x-5 -4 )
a} By L Hopital's rule
, | —cos? x 2sinx cosx
lim ———=3-= =
x—= 0 Sinx- X 0 2XCosx+
. 2 sinx cosx . sinx  1; Cos X
NDW. lira T = lim —_— Iim 2 = 1.
x—2 0 2Xcosx = 0 x =50 cosx
Therefore, the required limit is 1.
by Tim
c) - [ et
) \n
d) 1
¢ -1
i In 32
e
g] N
) T
a) 1
o
! —cosx? . 1 — cosx? z
9 lie PO g, (Lo -
#o0 x?sinx =0\ X sin? x
lim  L=sesxt . 2 sinx? l|.m (smx2 ) 1
w0 X4 LT X0 4 =0 2 2
- lim 1 :casx? _ iy A=-cosx? cosx? ) _
a0 x%sintx 30 ¥ X%y sm2
. A gireci application of L'Hopital’s rule will also yield the rcsult.
&) dim anfy —x?- tim (lanz x—x2 x2 )
s n o onttan' TaSa0 A an? x
.. ply - x° . 2ia0 x sec?x — 2x
Thin —m— = lm
s el b z-+0 dy}
secix — 2 see?x tan?x — |
=] : 3 =0,
- 0 6x:
Fer.
. sectx ~— | . 4 secx tanx
lim "==>=g = lim -——F——
X i} G- x—= 0 12x



E5)

E6)

ET

E 8)

= lim 'l'sdc‘x.lim tﬂ*‘:'1'.
x—03 10 X 3
and lim 2sectxtan®x _1
x—0 6x2 3
9
€) )
1
B 4
g 2
8
I.--—l.3
1=-1,0
. -1 LN
N x sin’ =
lim % sin 1l/x = lim
x—0 5tanx x-»nstanx
' X
\ L]
lim_ xsin 2
_ 1= 0 X
© siim  ARE
x=0 X
= O, gncesin 51, and since lim 2% =1,
5 X T x=0 X
=0

L'Hopital's rule cannot be applied as

I | 1
2x sin ——-c08 T
X X

lim -
x— 0 5sec? x
does not exist as we have seen in Example 3.

does not exist, because lim (21: sin L cos L )
x— 0 X . X

a1, D1, ol
d) lim  2x(In (x + 1) ~1nx)

T2 e
I (. ICESVE 1))
T = l/x
(255
- i x+ 1 x
= 0. Yy -
. 2 .
= lim
'I—)w'ﬂ-'l’l
= lim 2} = 2
S
b3
R i b
. Lox 1
o lim | 1
L e 2
2
x? ]3 3[)LI1'+ 1]3 [ﬂ
) 1 +x21 x2- x3
= lim —
-y —e= =2
3x2

|
§.

L’ Hopitul’s Rule
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Advanced Calculus E9. a8 lim SpX— + ...+ 3p _ Lm Hidm _ 0

b) e
¢} By L’Hopital’s rule

tandx o 3sec? 3x
X mi2lanx x5 seelx

.which i5 again E form. It can be handled more easily by converting it intog

form.
3 sec? 3x ) Jcos?x
X = n2 Sect x x - xf2 co0s*3x
) — 6 cosx sinx.
= lim —_—
x = /2 —6c0s83x sin3x
= lim sn_n2x
x— w2 sinbx
— i | 2cos2x _1
T x5 w2 Geosbx 3
1
d —_
) 2
2
e} 3
' : X + sinx L+ SISX )
‘EN) lim ——== i ——&- - L _ 1.
: X—w XK+COSX x5 e 1+cosx 1

. . . . 1
Since sinx and cosx are bounded functions, and < = 0asx 3 o,

L’Hopital's rule cannet be applied because lim (x + sinx) and
E =

lim  (x + cosx) do not exist,

I — -

sinx?
x2 — sinx? L- Bz
EIl} a) lim —— —= lim -
X =3 e X X = wo 1

. . .. 1
= 1, since sinx? is bounded, and 2 Jasx — oo

L"Hopital's rulé is not applicable becausc lim  (x? ~ sin2x) dogs not exis.,
L=y us

t) 1. L'Hopital's rule caunst &2 applicd by the argument similar to-the one in a).

¢} O.L'Hopital’s ryle is not applicable as é% is not in an indeterminate form as

X = oo,
, ‘sinx  cosx
d) lim —+ =5 =

= x =

L Hopital's rule is not applicable since lim  (x sinx + cosx) does not exist.

|
T = i
B1D) @) 1= 10y = (4 0t then tny =10 L45) the 3 form

T F1 . P ] -
. . T LETIE Wl I 1 _
SAN xIl_I_l; g+ Ity = 11_1'1'10+ " = ,i[u& T r " 1.

- i I =i =cl=
..,P_Tm(l+x) J{l!ll’o+}'_ el =c.

b) 1= Ify =cos xli°, tny =10 :2“5" , which is in the g form as x = 0.
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lim Iny - lim "“—=— _ lim.
x>0 Y xo0 X . T xo0 K

. lim  (cosx)¥* _ e;uz=_. .
T'x = 0 . )
¢y 00 If}l' =x* ; then Iny = x Inx, which is 0(—e) form as x'~» 0*.
o . lim DX
~lim o dny = lim, o, xlnx = R,

, 1/x
Ty

lim , —=x =0.
x—=+ 0

o, lim ot x*=el= 1.
x
d) 0°lim . (k) = 1,
S ,

g) =0, Ify=(tan x)¥ 2%, Iny = sin2x In tanx

. . In tanx
colim oy = lim | SAank
X = 2 . x o~ /2T cOsecZx
|
—secl x
= lim X
x—= - 2 Icosech col2x
2
= Lm sin 2x
x = n2” =2c0s2x
sin? 2x
. — 5i
= lim —sin2x _

x = /2~ cosix

s.Hmo o (ran x)sier = 0=
f2

5 - =,
) 0. 'lim xsin 1 lim sin 1/x
L — o= X X =) o I;x

. 1
= lim cos==1.
K3 o= X

L' Hopital's Rule

Ly
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3.1 INTRODUCTION

In the first course of caleulus and the first two unils of this block we have studied the
concepts of limit, continuity and differeniiability of real-valued functions of a real variable,
i.e., functions whose domain and range are subsets of R, the set of real numbers. In Block 2
we shall study these conceplts for functions of several variables, i.e.; those functions whose
domain is a subset of R", the Cartesian product of n-copies of R. These functions arise
naturally in various contexts. For instance, the insurance premium is a function of a large
number of paramelters like the sum insured, the age of the ingured person and life expectancy.
Similarly the price of a commodity is dependent on a number of factors like cost of
producticn, permissible profit margin and state .axes.

You have seen Lhat a knowledge of the algebraic structure of R and famﬂla.nty with the
properties of the distance |x - y| between two points X, y of R is necessary to study the

notions of limit and continuity of funclions of onc variable. The same is trye for functions
of several varizbles. Therefore, in this unit we first define R? and describe its algebraic .
structure. We then introduce the rotion of a distance bervreen 1wo points of R? and deduce its
elemeniary properties. We end this unit by defining a function of several variables, and by
giving various examples of such functions.

Objectives
Afer reading this unit, you should be able to:
o define a real Euclidean space of dimension n

° gwe cxump]:.s of real-valued and vector- va.lucd tuncticns of several va.nabll:s

3.2 THE SPACE R™

Ve have mentioned in lhe introduciion rhat in this vuiz we are going to study funclions
whose domain is a subset of R But what is R 7 In this section we shzli define B®, and
sludy itz algebraic structure. We'll also study the dislance funciion in R®, Bul let us star
with the definition of BA, For this we'll peed to defioe Cartesian [‘\roqjur'lc of sers.

Xandy e Y, we dencie the
whasne secon

coordinate i isy. Two ordered pairs (), ¥,), (X, ¥.) are szid lo be cqual, ie
(xp y) ={xy y,) if and only if x| = x4, y, = ¥,. You are already familiar w:(l: this conccpt
While studying coordinate geometry you musi have represenied & point P in the Cartesian
plane by (x4, yq), where x, is the atscissa andl y, is the ordinate of P (see Fig. 1). Clearly the
point {Xg. ¥g) is diffcrent from the point (y, Xg) if & == ¥g. Thus you know that a point in
the plane is represented by an ardered pair (3, ¥}, wiicr2 x and y are real numbers.

Let X and Y be two non-empty sets, By (x, y) where x

‘— i3]

:I.

nrderad pair whosge first member or coordina ic ¥ an

memper or

-t



Note that the ordered pair (x, ¥) is different from the set {x,y), because the ordered pair (x, y)  Functions of Several Variables
is different from the ordered pair {y, x) if x = y, whilc Lhe sets {x, y) and (y, x] are equal.

The set of all ordered pairs (x.y) where x € X, y € Y is called the Carteslnn product of
the sets X and Y. We denote itby X X Y,
Thus, X X Y={(x.y) | xe X, ye Y].

For example, if X =:(0, 1,2] and Y = {0, 1}, then
XxY={(00,0 10,0120, @21
Ii X =R, Y =R, then
XxY=RxR=R?=[(x,¥) | x € R.ye R}
is nothing but the Cartesian’ plane. '

We now extend this idea to get a product of n sets.

Let X|, X, X, e any n non-empty Sets. By (x|, X;, vy %o} Where x, € X, 1515 ﬁ.
-we shall denote an n-tuple. Two n-tuples (X, Xp, .cccuoms y Xp) and {¥},¥5....0Y,) areequal, ie.
WKqs XgueeXg) ZAY L You waeen¥y)
“if 2nd only if x; =y, foralli, 1 Sign,

The set of all n-tuples (X, X3......%;) where x; € X,, is called the Cartesian producr. of n sels
X Xo o, X Tt s denoted by X % X, % ... X Thus,

Xy X Xo X o X = {(X)s Xgs Xgu e X)) | X, € X, 1€i%0)

Now:if X, = [1,2]),X;,=1{1,2}, X, = {0}, then what will X, x X, x X, be 7 Youcan
easily check that X, x X, x X; = {(1. 1, 0%, (1,2,0), (2, 1. 0}, (2, 2, Q)]

If X, =R foralli, 1 £i<n, then '

X XXX, =RxRx..xXR {n times) = R"

= (X} e ,x}|xER l<t<n)

is called the Canesian product of ncopies of R.

ot that R! = R, R2 is the Cartesian plane, and R is nothing but the sei of all points in
3~<dimensional space.

Let V denote the set of all vectors 51'—' in the Carlgsian plane where O is the origin and Pis
any poin with ceardinates {x, y) in the pla.nc Then there is a one-to-one comrespondence

batween V and R2? given hy 6;’ — (x. ¥). Similarly (here is & one-to-one correspondencc
betwecen Lhe vectors 55 (where O js the origin and P is any point (x, y, z) in space} and Lhc

poInis.in space given by 61’ ~¥ (X, ¥, 2}. It 15 because ‘of these correspondences that
elements of R? and R* are called vectors. In what follows, we shall call elements of R®,
. vectors and the elements of R will be referred to as scalars. -

If x = (X;, X3, ..ocs %} is any point of RO, then x; is called the I-th coordlnate or the
i-th component of x.

Now having defined the set R® let us sec lf we can define any algebraic operations on Lhe
clements of RO.

i

2.

1Y
=
-—

In the Tast sub-section we have seen that for any integern 2 1
Re=|x=(...x) | x;6 R, 15ign},

and nwo vectors x = (X;, ww., X,), ¥ = (¥, «...,¥,) are equal if and only if x;,=y;, I €isn.
We'll now introduce-an digebraic structure on R2:

The zero-vector ¢ The vector, all of whose coordinates are 0, will be denoted by 0-and it
will be clear from the context whether O represents an element of R or the real number 0.
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Sum of two vectors: Let x = (%, ..., X,) and ¥ = (¥, s ¥,) be two elements of R2.

Then x + y, the sum of the two vectors x and y, is defined to be the vector whose i-th
coordinate is x;+ y;, 1 £1<n. That is,

X+Y =X+ ¥ X+ Yo s X+ Y,)

Using the properties of the opefa[ion of addition in the set of real numbers, we can easily

prove the following :

Al Ifx,ye R%, thenx+ye R"
A2  x+0=0+x=x for any vector x in R®.
(Here 0 denates the zero-vecior.)
A3 Given any vector x in RP, there exists a unique vector y in R® such that
" ox+y=y+x=0.
A4 (x+y)+z=x+(y+z)for any threc vectors x, y, z in R®,
A5  x+y=y+xforany two vectors x, y in RO
Ifx =(x, ... 1 X,), then the unique vector y mentioned in A3 above 15 clearly equal to
(=X =Xgu wureeey =X;). We shall denote it by —x and call it the additive inverse or

» negative of x.

If x and y are two vectors in R, then x -y, the difference of x and y; will denote the vector
X + (=y), where -y is the negative of ¥

Scalar Multiplication: Letx = (%ys X310 wourne » X,) be any vector, and let 2 be any element
of R. We definc a new vector ax by

ax = (ax;, aX,, iy 8X,)

We say that the vector-ax has been obtained by multiplying the vector x by the scalar a and
this particular operation is called sealar mulitiplication in R®. Clearly 0.x = 0 for every
x in R". Note that 0 on the left denotes the real number ¢ and 0 on the right hand side
denotes the vector 0 in R2.

The following properties of scalar multiplication are casy to prove, and we ieave them to
you as an exercise. See E1),

81, Forae R,xe R", ax ¢ R~

ts2.”

53,
54,
55.

£

o (x+y) =ax + ay forevery x, ye R".ac R,
a(bx) = (ab) x forany x ¢ K", a,be R.
(a+b)x=ax+bxforxe BE7, a,be R.

ax =Cforevery x € R" ifand only ifa =0.

E 1} Prove 81, §2, 83, 84 and S5 by using the corresponding properties of real numbers.

e (% = 3]

X

Fig. 2
Distance between x and y is
1x—yl

You must have noticed that the additicn of veerers and scaiar multiplication in R™ are
identical with the usual eperaticns of addiucn and multiplication of a vector by a sealar in .
the plane or space (whenn=2or 3).

= Further, you must be aware that mutiiplicaticn or division of vectors is not defined in the

plane or the space. Similagly, we do not define these operelions in R" for n 2 2.

Those of you who have studied the course Lincar Algebra, would have recognisad that B9 s
A veclor space aver R wort. the eperations of addition of vectors and scalar multipiication
defned above.

Now after this discussion of the algebraic struciure of 87, let us define a distance function
in Rn,

3.2.3 Distance in R»

You know that for any two real numbers x, y, the absolute valuz !x - y[ =v(x - y)?

denotes the distance between the points represented by x and y on the real line. See Fig. 2,
Similarly, from your study of coordinate geomeiry you know thart the expression



"Rxl —x,)2+{y, - y,)? represents the distance between two points with coordinates
(x,.y,) and (x5, Y,) in the Cartesian plane. We define the distance between any two points of

R® in such a way that on taking n=1or n =2, our distance formuka reduces, r!:speclﬁvcly, )

to the two expressions mentioned above.

Definition 1z Let x = (Xjy omven Xg) @AY = (e e ¥,y be two points of R®, we define
lx - yl. the distance of x from y by

\1 - Y|-= \’ ig-{x;— y)?

You can see that for n =1, | x-yl = (x —y)? is nothing but the absolute value of x — ¥,
which is the distance between the points x and y on the real line,

Forn =2, |x - y‘ =V (x, -y P+ (- y,)? . which is the distance between the points:
with coordinates (X, , X} and {y,, ¥ in the Cartesian plane. -

"Those of you who have sudied coordj.uaté geometry of 3-dimensions would recognise that,
forn=3 .

lx—yl =(x, —y2+ (x5 - ¥a)* + (x3— y3)* isthe distance between two points with-
coardinates (X,, Xg, Xy) @nd (¥}, Y2, ¥5) in space.

The disiance between two poinr..s of R®, defined in this way, has-the fo!.lowiﬁg propertics,’
which are ¢asily deducible from the definition.

Let x = (X} Xgo ooy X AN Y = (Y3 Yoo i ¥ be any two points of R™. Then
bl ix - y‘:Oifandon]yifx:y.
b2 Jx - yl=ly - |

You know that the sum of two sides of a riangle in the Cartesian plane or space is greater
than the third. This means that if x, y, z are three points inR®, n=1, 2,3,then .

Ex - yl < ‘x - zl + |z - y‘ {Triangle inequality)
'The same is true for R® forn > 3, ie.-
-yl <lx -2+ ]z -]

for any three points x,'y, z of R™. But to prove this fact, we have 1o take the help of
Cauchy’s inequality which we shall now state. '

Theorem 1 (Cauchy's Inequality) : If a,, &5, ..., I, [T Pyp—— , b, are any 2n real
numbers, then -

Za b

r
=

n n
< Y a? 2 b?
iel =l

Proof If all the real numbers a; are equal to zero, then there is nothing to prove, Assume,
therefore; that at least one 3,2 0. Consider the expression :

Clearly ax? + 2bx + ¢ 2 0 for ull real x, and the identity
a( ax? + 2bx + ¢) = (ax + b)? +ac—b?
implies that ac — b2 z0 asa > 0.

Thus b2 < ac, or

Functions of Several Variables
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\iﬂl
This means

n

23 b; T a2 3 b2
i=1 i=1 i=1

and the proof is complete.

Now for any point x = (X}, . , %) in RA/

=l - ol =/ $x0

is called the noerm or modulus of x. Recall that we use the same terms when x € R, orx
is a vector in the plane or the space. Now let us get back to the rangle ineguality.

Theorem 2 (Triangle inequality) : For any three points X, y, z in R"
x-yls[x 2| +]z -yl

Proof : Let us first prove that

|x + 3| <lx] 4yl

for any two poinls x,yin R"

Let x = (X}, e = (Fpv eeeer Yoo

Thc.n.|x+}'|z Z(x +y= Zx|2+2 Z’HY;*‘ ih

s.‘?‘lx +2‘\(:?— ‘\{——F +.§F‘

in view of Cauchy's inequality.

Conseguently,

|+ gl <6+ 2lxb iyl + 5P

or|x + y{* < (Jx[ + [y )

o x4 yis[x| +y]

Now, if x, y, z are any three points in RY, then

lx - y|=|"(x = 2) + (z - y3| € }x = 2] + |y ~ 2|, and the proof is complete.

The set R® together with the distance between two points of R® defined above is'called the
Euclidean space of dimension n,

We would like to tell you that

: ¥ n
Ix ~ y! = '\J 2 (x; ~ ¥;¥* is not the only way in which we can defin: distance in R". In

' i=1

faci, ihere are many oiher ways in which we can define distance between any two points of
RP which will also satisfy the triangle inequality. But R® endowed with any distance
function different from the one defined above is not catled a Euclidean space. We shall not
deal with any space other than the Euclidean space here,

You know that scts of the type Ja, b[ = [x € R | a<x<b} whereaandd are real numbers,

oo 0 — oo are called open iotervals in R. We now, introduce analogues of open intervals in
the Euclidean space R™.

Definition 2 : Let x, € R” and 1 > 0 be any real number. Then the sct



S(xo, 1) =1 | xe RA, ] X—%g | <r} Functions of Several Variables

is called an oi)en sphere or open ball or open dise with centre %, and radius r.
Remark 1;i) If n= 1, then 8(x4 r) is nothing but the open interval 3x, — 1, X + r{. Sce
Fig: 3(a). : ' :

ii) - Ifn=2 and x, is the point with coordinates (a, b), then S(x; , r) is the interior of the
wisc in the plane whose centre is (a, b}, and whose radius is r. That is,

Stz 1) ={ () l \,Et —a)2+ (y~-b«r l.
See Fig. 3 (b).
#i) If n =3 and x, is the point in space with coordinates (g, b, c), then

S(xp, )= { (x,¥,2) | \"(x - a)? +"(y - b)?+ (z~c)? <r), ie, the interior of the
sphere whose centre is (a, b. c) and radius is r. Also see Fig. 3 (¢}

-
_ Flg. 3 &) S(xg, 7} In R, (b) S(xg, 1) In R2, () S(xg, r) In r3

Remark 2 : In an analogy with neighi:purhocds on the real line, we shall call the open

sphere S(x, r) an r-neighbourhood of the point x, in R™. By the deleted

r- neighbourhood of x;, we shall mean :hc set of points

fx I x € R?,0< | K=y | <r} =S(xﬂ.r)\{x0]

We concludc this section with a few cxamples and exercises. Go through the examples
carefully and try all the exercises. A thorough knowledge of the structure of R? will heip
you while studymg the limit and contmuuy of lunctions of scveral variables in Block 2.

Example 1:Llete,=(1,0,0),¢,=00,1,0ande; =(0.0, 1) Then we can show that
X = (X,, X, X4) in R? can be uniquely writien as.
TxEXE X e ey

By definition of scalarmultiplication we get

X, =(x. 0.0)
x,e5 7= (0, X5, 0)
36y =(0,0.%,) '

and therefore x € + x.ey + xJeJ ={x,, X X3 =X. Now let us prove that these x,, xz. X, are
unique. Thus, :f -
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(a, b}

X=2a,€, + 885+ 258,28, &y, 2, real,ll.hen

X = (a,, 85, &3) =(X,, X,, X5}, and therefore

) = Kp 8y SKg 83 = Ky

The vectors e, &,, &, are called unit vectors along the coerdinate axes.

Example 2 ; Let x =¢, + ¢, — 2¢,, ¥ = 2¢, — &, + ¢, where ¢,, &, €, are the unit vectors

defined in Example 1. Let us find Ix + 2y1 .|x + yl.
Now, x +2y=e +e,~2e, +4de, - 2e, +2e,

=5°l‘°2=(5v -1,0),
andme.r-:forelx + 2y| =V52 4 (<1)2 + 02 =26

Similarly,

x+y=3c:—e3=(3.0.—1)and|x + y| =10.

Exomple 3 : The open disc S with centre (3, b) and radius r in R? lies in the open square
S|={(X-Y}| |x —a’-ﬁr.]y ~bj<r)

and contzins the open square

Sy= | (x.y)J [x - a| -:r/\G.Iy - bl <r/V2 ). See Fig. 4.

Now let us iry to prove this. '

If {x, ¥) € S, then we know that

- ﬂ(x—a)1+(y—b}2<r

and therefore,

]x-alﬂ(x-a)! <r
ly - o) =Vy-m2<r

That is, (x, y) € §,. ¥his means S ¢ §,.
Now, if (x, ¥) € S,, then

L

V2

%~ al <~=r|y - vl <

V2
and tnerefore,
9 I'2 . rz
x-af+(y-by<s + Y =rt

That is, (x, y} € S. Thus, §, c 5.

See if you can do Lhese exercises now.

CF N Yo Sl S

E2) Letg=(5,8, ... v ;)i 1 £ € n where 3, is the Kronecker symbol, (§;=0
ifi= j, §, ;= 1) be n veciors in R, Prove that any X = (X;......, X,) in R" can be
written uniquely as ' )

x= i X6

£31 Lete=(1,Ohf=(l, Dbein R
Find!x - y‘, i?.x - yi. lni where x = e+ [ y=2e + 3f,

E 4) Show thal the open sphere S with canmre at (3, b, ¢) and radivs 5 in R? s contained
in the open cube

Pl={(x.y.2)| ix - nt<r.1y - bl <r,iz—c}<r]
and contains the open cube



P2=[-(x,y,z)! Ix—a‘crlﬁ IY" b|<l'f“\(?. ‘z—c[a:r!‘!gl. Functions of Several Variablcs

Now we shall tumn our attention to functions defined opn subsets of R”,

3.3 FUNCTIONS FROM R~ TO Rm

You have aiready come across the definition of a function earlier (see Definition 4, Unit 1 of
Calculus). Thus, if X and Y are two non-empty sets, then a funcrion from X 10 Y is a rule
or correspondence which associates to cach member of X, a unique member of Y. Here, we
shall introduce a special type of function for which X is a subset of R®, and Y is a subset of
R™, both m, n 2 1. If m = 1, such functions are called real-vatued functions of n
variables. And if m > 1, these functions are called vector-vnlued functions of n variables.
More precisely, we havc the following definitions:

Definition 3 : i) Let D be a non-empty subset of R®, the Euclidean space of dimension n,
n 2 [. A funclion from D to R is called a real-valued function of n variables with

_ domain D,

ti) Let D be a non-empry subset of R™, n 2 |, A function from D to R™ (m > 1) is called
a vector-valued function of n variables with domain D.

A funcrion of n variables is also catled a function of several variables.

- Iff: D — R™, where D < R®, then we denote the value of the funcuon f at a point
X =(x, xz. ..... K € Dby f(x) or by f(x), Xg, e XD

Now here are a few examples of functions of several variables,
i) For (x.y) € R?, define f(x, y) = sinx + cosy.
Then f(x,y) is 2 real-valued function of twe variables with domain R2,

ity LetD=[-1, 1]x [-1, 1]. For (x, y) € D define f(x, y) = sin"! x cos~! y. Then #(x, y) is
a real-valued funcuon of two variables with domain D.

i) For(x,y, z)& R3 setf(x,y, 2} = | |+2[y‘ + Izl . Then f(x, y, z) lsareal-va.lued
function of 3 variables with domain R3.

iv) Lel x = (x|, X3, v...... X,) be any element of R®. For any j, 1 <j < n, define
%; (x) = x; = j-th coordinate of-x.

Clearly the n-functions ;, m,, ......, 7, are real-valued functions of n-variables with
‘domain R". The.function 7, 1 5 £, is called the j-th projection from R” 1o R.

v) Feorany x € R, define {(x) = (x, Q).
Then f: R — R? is a vector-valued funclion of one-variable.

vi) Let D be the open sphere with centre at (0, 0, 0) and radius 1'in R3. Then

. f(x,y. 2=V1 - x? - -yt - 2!
is a real-valued funcuon of 3 variables with domain D,
¥it) Foiany {x, y) in R* define g{x, y) = (x, y, O
Then. g: R? - R? is a vector-valued function of two variables.
viit) For (x, y) € R? define f(x,y) = (e* cosy, ¢* siny).
Then f(x,y) is a vector-valued function of two vz-a.riab]cs with domain R2,
ix) A polynomial in n variables, Xj1 Kpr suieeery X I8 &N expression of the form

ZE k0 k2 e, kot X; K00 xzkﬁ ....... X, kni, where k;i’s are non-negative integers, ‘
and ky; + ky + et k= 1 : o “ -
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For cxa:ﬁplc. x*y2z + 10x2 yz7 + 8xyz + z° is a polynomial‘in 3 variables, and xy2 + 2xy —
y* is a polynomial in 2 variables. If we define f: R* — R such that f(x, Xy, -eceneee, B} =2
polynomial in n variables, then f is a real-valued function of n variables. ..

Remark 3 : As in the case of funclions cf one variable, we often define functions of
several variables with the help of a formula. When a function of several variables is defined
with the help of a formula, then its domain is the set of all those points where Lhe‘givcn
formula is valid. For example, the domain-of thé function

f(x,y,z):\ll - %2 - y? g2

. of three variables is the closed sphere

[(x,y.z}l xt+yi+zigl ),
Similarly, the domain of a furction

2x
) =525 72
of two variables is the set. R\ {(0, 0}}.

Remark 4 : Letf: D = R™, m > | be a veclor-valued lunclion, where T} is a subset of
R™. Then the function f gives rise to m real-valued functions defined on D, which ift tuin
determine f uniquely. The functions are given by (:rtjo £y (x)= T {f{(x)), x e Dfor

" 1<j<m, wherem; denotes the j-th projection, \

7, : R™ — R defined in iv) earlier.

Clearly, (x) = (1, (£ (X)), 75 (£ (X))y wevne T, (€ (X))
Coaverscly, if gy, 8, .- 8, are m real-valued functions defined on D, then these functions

. give rise 10 a unique vector-valved function g on D defined by '

(%) = (g () 8oX): /s By (R))-
This means we can break up any vector-valued function into a number of real-valued
funcrions. As a result, you will soon see that many times the consideration of vector-valued

functions can be reduced to the consideration of real-valued functions. The functions
E s weerer By, re usually referred (o as the cormponants or component functions of g.

You are aircady familiar with the graphs of a numier of real-valued functions of a real
variable. Now let us see how we can geomerrically represeni 2 real-valued function of two
variables.

Definition 4 : Let f(x, y) be a real-valued function of twao variables with domain D. Then
the graph of the function f is the sei of points (X, y, z) in the Euclidean space of
3-dimensions such that z = f(x, y}, i.c.,

Graphof £=G (0 = [(x,y,2) [z=f(x, ). (x, ) € D)
We are giving the praphs of some simpie functions herc tn Fig. 5.

AN
Z

| N e , ;
g o /’4&%\‘ /'”/E’\
- N = Al 7 '

]

- - , <
- [ L P 3 o -

| A - ....WW,—E\—_ -
X ! / I :‘\/If\ ' f}l}f‘

: SN P L Ly
/’0 ¥ },",f_ [_//! :/_;f‘ b ://
Ll pl A - = —"'_f
X /’f I//f i._L ‘,’/ //

Fig. 5 : Graphs of () (X, y} = X = ¥ + 2, (8} iz ) = a2+ ¥%, () f(x, y) = =% = ¥?



But in most cases you will find that it i5 not easy to plot the graph of a real-valued function
of two variables. However, we can visualise the graph with the help of ‘level curves’ defined
below. . )

Definition 5 : Let f(x, ) be a real-valued funcuon of two variables and let ¢ be a
constant. Then the set of points (x, y} in the plane such that f (x, y} = ¢ is called a level
curve of the function \f-'ith value c.

Cie.ariy the level curve £(x, ¥) = ¢ is nothing but the intersection of the surface z = fx, y).
i,e., the graph of [, with the plane z =c.

Roﬁghly speaking, the graph of a real-valued function of two variables can be obtained by
piling up the level curves (x, y) = ¢, as ¢ varies over the range, that is the set of values of
f(x, y;. Look at this example.

£ canzple 4 : Let us find the domain and the range of
ik ¥y = 100-x2—y2,

2 2

i i + lx@ +z2 = {, and examine their level curves,

1 The domain of the given function is the whole of R2 The range is the set of all real
numbers € 100, The leve} curves are the circles with centre m the origin. Sce Fig. 6(a)

Flg. & : (a) Graph of I{x, y) = 100 ~ x! — y3, (b) Level curves

ii} Note that here we have nol expressed the function in the form z = f (x, y), and we cannot
write the value of z explicitly by substiluting the values of x and y. Stilt.we can find

g

the level curves by putting %: 16

= ¢. These witl be ellipses (see Fig. 7).

=

v

7

b1

-

Fig.TGraphof‘—;-i_--l%+zl=l

Example 5 : We¢'ll now draw the graph of tne funciion f (x, y)=x - .
The graph of this function is the plane z = x —y in R3, See Fig. 8.

The level cnrves are the straight lines x - y = c.

Functions of Several Yariables
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Fig. 8: GraphoTz=x-y

X

We curs 2xterd Definition 4 to the case of real-valued functions of three variables.
Deflnition 6 : Let f{x, y, z) be a real-valued function of three variables with domain D.
Then the graph of:the function f(x, y, z) is the sct

Graph 0ff=_G(fJ ={xy, 2w w=Ff{x y2) v,z)e D }in R

Since the graph of a real-valued function of three variables lics in the 4-dimensionpal
Euclidean space, it is not possible (o realisc it geomatrically. We can, however, visualise the
level surfaces defined below.

Dcﬂnl!ion 7 ¢ Let f(x, y, 2) be a real-valued function of three variables and let ¢ be &
constant. Then the set of points (x, ¥, z) in space such that (x, v, z) = ¢ is called the level
suriace of the function f with value c.

What are the level surfaces of the function fx, ¥, Z} = X + 2y + 327 These are the planes

X + 2y + 3z = ¢, where ¢ is a consiznt.

You will agree that the level surfaces of the funcion f(x, y, z) = £2 + y2 + 22 — a? are sphetes
givenby x2+y?+ 22 —a?=c,orx2+y? 4 22 =c+ o, where ¢ > ~ Val,

Try to do this exercise now.

E 5} Find the domain of the foltewing functions :

X

E.} f(X-)’)= x* +y,|,

Ao XT Y
b) ”*V“x-y
c) fix, y)=xsin:l;+y,sin$
d) f(x,y,z):*-——l—:_-.___

4—)‘.2-}'2-21

c) f(x.y.z)=?-z:—}3

Just as we can define the cum, produce, quetion: for functions fiom B v R, we can define
thesc algebraic operations on funcrions of severs) variatles 100, Let us consider these one by
one. :

Sum of Two Functions : Let f "By = R™and 50 D, - R™, where D, and D, arc
_subsets of R™. Let D= D, N D, # . Then lhe funciion £ -+ g defined on D by

g B =R+ gl
i called the sum of the two vector-valued functions f and g

Product of Two Functions : Let f : D, — Rand g : D, — R, where D, and D, are
subsets of R®. Let D = D ND,+ ¢, Then the functior: fg Gefined on D by
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is called the product of the two real-valued functions f and g.

Quotient of Two Funcllons + Let { and g be the real-valued functions mentioned
above. Suppose that the sel

={x|lxe D gx)20)=¢.
Then the function ffg defined on D* by

= lx)
{ffg) (x)= )

is catled the quouent of the functions f and g

You must have noticed that we have defined the sum f + g when { and g are two vector -
valued functions. But we have defined the produci fg and the quotient (f/g) only for real -
valued functions f and g, This is because, as we have mentioned'at the end of Sec. 3.2.2, the
product and quotient of two vectors are not defined.

We shall now illustrate these operations with some examples.
Example 6 : i) Let f(x, y) = ysin ia_nd p(x, y) = xsini- Then

3, = Domain of f= {(x, ¥) | x=0}
D, = Domain of g = {(x, ¥) | y=0}
Clearly D,ND,={(x,y) | x=0and y=0] #¢.

Thus, the sum function

(f+g (k. V=fix.y)+gx. ¥)=y sin i— + X sin iis definied on D, N D, i.c.. . -
RY\ bmh the axes}. |

i) Let f (x., y) = (e* cosy, * siny) and g (x, ¥) = (x, yz) Then the sum function;

{f+g) {x, y) = f{x, ¥) + g(x.y) = (¢* cosy + x?, &* siny + ¥3)
is defined on the whole of R%

i) Letfoo v =[x [y gy D= sin e y+2).
Then the product function fg is defined byl
oy, ) =x, y. 2y plx, y. 2} = |x| |j,'|2 sin{x+y -|_-.z)
and has its domain as R,
iv) i.cl f(x, y) = 2xy, g(x, ) = x* + y2
-Clearly
= 0y | gx,y) =0} = R2\ {0, 0)).
Thus, the quotient of f and g is defined by

f 2
( )(x. ¥} = E((x_})% ﬂ_:}'y_z and its domain is R¥\{(0, 0).

Here is an exercjse which you can ty.

E6) Find the product and the quotient of the following pairs of fgnclion. State their
domains in each case.

a) f(x,y) = x?y.g(xy} = x%y?

b)Y f(x.,y) = sinx + siny, g{x". Y= i cosy, X # 0.
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You have already learnt how 16 define the composite of two real-valued functions of a real
varioble.(Sec.6 of Unic 1 in Calculus). To recall the composile of two funclions f R = R
and g : R — R defined by f{x) = x? and g(x) = sinx, respectively, will be the {unction

go f: R> Rsuchthatge f(x)=g(f(x))= sinx®. Here, we extend this notion tg-
functions of several variables,

Definition 8 : Let g: D, = R™, where D, is a subset of R" and f: D, — RP, where D,
is a subset of R™. Suppose that g (D,) = D,

Then we can define a new funclion ¢ : D, — RP by seiling ¢ (x) = f(g(x})-
for all x€ D,.

This new function ¢ : D, — RP is called the composite of the functions [and g and is
denoted by fog. [fn=m:=p=1, then this definition coincides with the definition given
in the earlier course of Calculus.

Let us see same examples of composite functions.

Example 7 : Let g(x, ¥) = x? + xy + y? be a function from R? - R andf(t) = sint be a
function from R — R. Then the composite function f « g defined by

(Fo ) (%, y) = f(g(x. y)) = f(x2 + xy + y?) = sin(x? + xy + ¥?)
is a function from R = R.
Note that g = f-does not make sensc over here.

You may also come across functions f and g, for whichf o g-and g = f are both defined, but
are pot equal (see E 7a).

Example 8 : Let i(x, y) = (x? + ¥% x+¥, xy) be a function from R? — R? and
g(x, ¥, Z) = (&%, sin (y + 2)) be a function from R} — RR*, .

Then the composite function g = { defined by
(g0 D) (x.y) = gf(x, y)) = g(x? + ¥, xy. %¥)

= (c‘z*l"z*“f, sin (X + v + xy)
is a function from R? > R2,

You can now easily wrile the composile of the functions given in the following excreise.

E7) Find fegand g ¢ f, if they exist, for the functions given Dy
Q) Hx,y,z)=(en In (24 yie 1) 2, glx, y. 2y = (x+y, 2y, 52)

. ——|2ny (x,y) # {0, (1) = sin-lt
b) f{x,y)={xT¢ g2 OV FO &

0o, (xy)=€0n

Let us now summarise what we have cavered in this unit

3.4 SUMMARY

In this unit we have

1. defined the Cartesian product of scis and discussed the aigebraic siructure of Ru,

2. introduced a distance function on R™ and defined r-neighbourhood of paints in R™.
3. defined real-valued and veclor-valued funciions of scveral variables,
4. introduced level curves and level surfaces, respectively, for functions of two and three
variables. ) .
- 5. defined the sum, product, quotient and composite of functions from R R™,




3.5 SOLUTIONS AND ANSWERS
i §,:x¢ R = x = (X[, X9, cecons X}, Where each x, € R
Now ax = (ax, ax,, ....., 3X,). Since ax; € Rforl1Si<n, ax IE R®
Sq: Let X = (X Xy v X,) 3N Y = (Y, Yagrewosons ¥)
-Then a_(x + )= 2 (X2 Xgy ovevereens B} + (s ¥ar coveens ¥l
A[X; + Y0 Ko F Yo e Xy + YL
[a (%, + ¥ a(x, +¥y), ..........'a(x,| +y)]
= [ax| + ay,, aXy + 8Yq, cueeeee ,ax, +ay,)
| = (ax,, ax,, S y ax) + (@Y, ¥y, ceeneeas v ay)
= a(X [y X3y vovnnenn Kg) + A(Y ), ¥ creeeny Yo) = 28X + 8Y
S;, 8, follow similarly.-
S, : Suppose ax = 0 % x € R Choose x € R" such that x = (1, 0, 0, ......,0).
Then,ax =0=>a(}, 0,0, ....0) =(a, 0,0, ......... =0
=a=0,
- . Con{rersely. suppose a = 0. Take X = (X}, Xgy «--eeee VX E R=,
Then ax = (axX,, 8%y, cwreeers %), But ax; =0 ¥ i= 1,2, ... . 0.
Thus ax = 0.
This is true ¥ x € R2
22) €)= (L O nnO) &g = (0, 1, 0y oD, iy € = (00 0y )
Let X = (X, Xgu vy X)) € RE.
Then )
Xy €+ X €y F v+ X € =X (L0, B + 2,00, 1, ..i0)
+ e +x, 00,0, ..., 1)
= (’;1- Ry oeeeee ’ "u;}
_This shows that every x ¢ R" can be wrilten a5 x = :r;:,l X, ¢
- To prove uniqueness, suppose x can be written as x = L x; e, and x'= X y, "-1 where
x;andy,e R¥i=12...,n .
Then (x,, Xge tertes x,) = (¥, ¥p, ¥, ). This shows that x=y, ¥i=1,2,....n.
Hence x ‘can be writtep in only one way as il X e .
: el
E3) x=e+f=(L0+(1,1)=(2,1)

y=2e43f=2(1,00+3(1, 1)
=2 0+(3,3)
={5.3)
. .x—y=(2.l)—{5.3)l
=(-3,-2

wodx =yl Vs @y
=V13

Functions of Several Variables
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Similarly, |2x - y| =|(1, - 1] = V2 and x| =|@.1)| = V5

E4) S=((x, y.2e R F|(x-a,y-b.z-c)<r}

Now xyDeS=V(x—a)l+(y- B2+ (z—-c)P <t
= (x=a) +(y- B2+ (z—c)l<rd
‘= (x—a)? <P (y-bR<rland (z-c)? <12
=>ix-—a[<r.|y—b’<r.|z—c|<r

=y, 2)€ P,

=ScP
Now.xeP:lx—al '\G |y-b|< [ c]
=V(x-a)2+ (y-b)2+ (z=-c)? < §+r-;-_+r3i<r

:a](x—a,y—b,z—c)|<r

= (% Yy,2)€ S

= P,c 8.
ES) a) The domain consists of all the paints inRz|:Ju:t31:m.l'los~=fcpr\.ll.'hir:.hx".-i-y‘1 =0,
Now, X +y'=0&x'=0and y*=0
o x=0and y=0
Therefore, domain = R2\ [{0, 0)]
b ey eRx-y=01=((xy) e R¥xeyl
9 lxy)eRY x=0,y=0

d) The open sphere with radius 2 and ceatee (0, 0, 0), since V4~ x2-yZ-2z?
has to be positive. :

9 lxy.2eR| y#tx)

E6) a)  (fm)(x,y) = [(x, ) g(x, ) = X2y x}y? = xTy?

Domain = R?

()(XY) x #

Dammn: {(1,)’)6 Rzi x#0,y =0}

b)  (te) (sy) = 2 (sinx + siny) cos y

'Domain: H{x. ¥) E RIE x =0}

X (sinx + siny)
cosy

Y
(;) (xy) =
Domain = ((xy) € R?| ye@n+DFneZj

E7?) a) (g . y.n=gf& 2D
4= 8let In (2+yr+ D,z

=(e*+In (x2+y2 + 1), 2n (2 + y2 + 1), S22



b)

and (Fog) (x. ¥, 2} = f(g(x. ¥, 2)) )
=f(x+y, 2ly. 5z)

= (e™7, In(xZ + 5y2 + 2xy + 1), 252%)

Clearly, f o g # g o f, eventhough both are defined.
gof:RZ R

- 2 |xy
(20D (x, )= Si""(%) (%, y) # (0, 0)
0.(x, y) = (0,0)

f o g does not exist.
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BLOCK 2 PARTIAL DERIVATIVES

[n Block I we introduced you to functiens of scveral variabl_.. In this block wa
shall first familiarise you with the notions ef limit and continuity of [unctions of
scveral variables. You will see that«he distance function defined on R", which you
studied in Unit 3, comes in handy while studying these notions,

We will then turn our artention to derivetives of {unctions of several variables. In -
the remaining urits of this block we shall show vou some ways in which the con-
cept of a derivative can be extended to functions of more than one variable. A ma-
jor iinpetus to the work about derivatives of functions of two or three variables
was provided by mathematicians studying partial differential equations arising out
ol physical situalions,

In Unit 5 we wiil intreduce you to partial derivatives. You will also study the no-
tion of a dilferentiable function of several variables, which is a true gencralisation
of a differentiable function of one variable, We will alsa bring oul the connection
belween the concepts of continuity, differentiability and partial derivatives. In all

these considerations we will confine ourselves to functions of two or three

variablos.

The third unit in this block deals with higher order partiai derivatives. In general,

you will see that the order of the variables, with respect to which a function is dif-

[erentiated, is importani, We will also give sets of su{Ticient conditjons for the
equality of mixed partial derivatives of a lunction of two variables.

We shall then tackie the differentiation of composite lunctions in Unit 7. Here you
will study the chain rule and Euler’s theorem for homegeneous functions.

Finally, we will define the directional derivative of a function in-a given direction
at 2 given poiut. You will see that the pariial derivatives of 2 funclion are ncthing
bul its directional derivatives in the directions of the coordinaie axes.

So, by the end of this block, you will be familiar with various ways of defining the
derivaiives ol a function of several variabics. Ve will also zive geometrical luter-
peiarions ol each of these concepis to help vou undersiand them beiter. Our em-
phzsis will be on the study of partial derivatives, since we will be using them
tizruughout Block-3.



Notations and Symbols

lim f(x)

e le, f‘
8%
e
a%f
axay " "

D; f(a), fs (a),
f, (a)

vf

Limit of f(x) as x tends to a; where x = (x), X2, ... Xn)
a=(all -5 PRCRTIN an) 4

Partial derivative of [ w.r.t. x.
second order partial derivative of [ w.r.t. x.

second corder partial derivative of f, first w.r.. ¥y and then w.r..
X.

directional derivartive of [ at a in the direction v = {cos &, sin §)

= ({,, f,), gradient of f.



UNIT 4 LIMIT AND CONTINUITY

Structure
4.1 [Introduction 5
Objectives

4,2 Limits of Real-valued Functions 5
4.3 Continuity of Real-valued Functions 11
4.4 Limit and Continuity of Functions From B — R™ 14
4.5 Repeated Limits 15
4.6 Summary 17
4.7 Soluticns and Answers 17

‘4.1 INTRODUCTION

In Unit 3 you have secn some examples of functions of several variables. In this
umit we introduce you to the notions of limit and comtinuivy for functions of
several variables. We shall define these concepts for funcions of n varables where
n = 1, but in the examples and exercises we shall confine our attention to func-
tions of two or three variables only. We shall first dead with real-valued functions
of several variables, and then with those functions of several variables, which are
.veetor-valued, i.e., whose range is a subset of R®, n > 1.

You will sce that the definitions of limit :_-nd continuity for functions of scvcral
variables are similar to those for functions ol a single variable,

Gbjectives -

After reading this unit, you should be able io:

& define and evaluate the iimiws of functions of several variabies, -

o decide whether a function of severzl variables is conilnunus or not at a given
pcini or a s¢t of points

2.2 LIMITS OF REAT -V SIS M IITIRTS

You are already familiar with the concept of limit for real-wdeed foactions of one
variable. We shall now study this coicept far Mnctie . o0 several variablos, We

begin by discussing Jimits of rm- ahead o T .
definitions of neighbouthood wad dirrens

Crenss Gooover the
Leere oy s w0 fuither

Definition 11 Let f(x) be a real-valued {uvdon defiaed in a aeichbaurhood
S{a, by — =0 e oo o2 i
I'a point a of R®, except possibly ¢ o

% tends to a is equal to 2 real number o,
real number & (depending on ), 6 < h, such

rs

Sy it s {indr of £(X) as
Y U ow, there exists a nositive

' : P "o ' .o
G < ix-o] <a-- e -1 o,

wisg w the denmtbion of
i it the distane:
I.:(.} - L ! 1:.

Perhiaps you bave noted thei s definiticn 5.‘ :
the imit of a function of a singic varizoi:
!X - a) nere is the distance of » from o i L3
the absclure value of the real numbe, 1x} - ;..

If n=1, then Definitiof | colncides willi «he detinition of e 760 for 1ead-valued
P |

functions of 2 real variable. We shall use the asiabivi im i} = Lor i(x) — L
e

as v — a to express the faci that the l'mh of the Iun:Lo:: :{x) s % Wics [0 a is
L. Proceeding cxactty 2s in the vase of real-valued Tracions of a real varizble, we




Partial Derivatives

- Xy - -

L]
L

can prove that lim f(x), if it exists, is unique. We are Icaving the proof 1o you
X—Aa

as an exercise (see E 1).

Bl) If lin} f(x) = L and l!im f(x) = M, where a is a poinr of R", then prove
— —a
that I, = ’

Here are some important facts related to limits.

Remark 1: i) The-following statement is equivalent to Definition 1 and therejore '
could have been adopted as the definition ofli_re fi(x). :

“Let f(x) be a real-valued function defined in a neighbourhood S(a,h) of a point a .
of R", except possibly at the point a. We say that ‘the limit of f(x) as X tends to a

is a real number L if, given as E-neighbourhood of L, there exists a
6-neighbaurhood of a (where & < h and depends on the £-neighbourhood of L)
such that whenever x belongs to the &- ne:ghbourhood of a and x = a, then f¢x)

belongs 1o the E-neighbourhood of L'
£) It’ln__n;l f(x) = L., then f(x) is bounded in a deleted neighbourhood of a. That
i3, there exist real numbers m and M such that

m = f{x) < M for all x in a deleted neighbourhood of a.
How can we prove this? We'l] use Definition I. Thus, hm f{x) = L means thar
given some £ > 0, 3§ > 0, such that

0« |xal 6= ]r(x}-Ll-cs.
=L-8<f()<L+E¢

Now take m=L-¢ and M .« L+ €..Then we have proved that if hm f(x) ex-
ista, then f(x) is bounded in & deleted neighbourhaod of a.

But we wayld like to te’] you that the converse of this statement is not true. in

) chcr wards, if 2 function is bounded in a deletgd neighhourhood of some point a,

it-does ngt fallow thss the limit of the function exists at a. In Example 2 you will
see & funcijon “vhich supports this state nent.

We now state a theorem about the algedra of limits. It witl be very useful to us in
calculatjpg the Iun'ts of some functions of several variables. You may recall that
you had studied : 1d used a similar thworem fer the limits of funciions of a single
varjable, Wo worn, . give the proof of this \heorem here, as it is a bit technical.

Thegrgm 1 (Algell 2 of Limits): L+ [ and £ be two real-valued funciions defined
in a deleted neig! Hourhood of a f: gintajn R™ I lln‘l f{x) = L and
h'n g@ = M, then

f(x) = «L for any « € R.
M

o lim (o) (x) < ",1
iy lmfiog{0=L+
i) lim (fg) (x) =+ LM ;

. . L .
v} hrn_(f/g} (x} =: Ve prowd:d M 2 0.

In the Infroduction sve have mertioned that we would give examples and exereises
only for functions of two or thze varizbles. Bul befcre confining ourselves to
funciions of two or ih ree vanah les, we wili prove a simpie result. With the hclp ot
this result we witl be a ale 1o aveid the direct use of the distance formula in B" ir
the definition of the il ait.

Theorem 2: Ler f(x) be a real-valued funclicn defined in a deleted h-
neighbourhaod of 2 po. nt a of R™. Than h'n f(x) = L if-and enly if given £ > 0,

there exist positive real’ aumbers 6y, 8;, .. 6 (which depend on &), & < b,
I < i =n, such that v henever

0 < [x-3] < & ¥i= 1,2,..,n,then;{{x) - L <§g,

_where a= (2, ..., a) a Wd x= (%, ..., x,).



Proof : Let il_n; f(x) = L. Then given £ > 0 there exists a real number § > 0, Limit and Continuity
& < h, such that .

N<lx-al <d=]Mx)-L <&
Let §, = 6/¥n, 1 = i-=< n.
Now, if for any point x = (X;,.--, o), we have |x-a;] < & = 8/vn, for all i such
that 1 = i =< n, then |x-a} < &, and therefore whenever

0 < |x-a | <&, visuchthat 1 =i = n, then|f(x) - Ij < &

Conversely, suppose that the given conditien is satisfied,
let & = min (&, ..., &,).
Then, 0 < |x-a] <« 6= 0 < |x-a| <é=06,visuchthat I s i =n

=iy - U <eg,
which implies that i]_n;l flxy = L.,

We will now apply Theorems ! and 2 to calculate the limits in the next example.
Example 1: Let us show that

o lme(xP+y) = 2 The limit of {(x,y) 3s (x.y) — (a,b)
","E . ) is also denoted by
y=s | 1 fim f(x,y).
i) lim [xsin— +ysin—) =0 -%
ii) !111; (\ sin " ¥ sin x) y
.)I_n
iii) lil‘l‘zl x* + xy + ¥y = 37.
73 _
iv) lim {(xy+yz+zx) = ab+bc+ca
(x5, —la, b )
We'll use Thearem 2 to check the limits in i) and ii}.
Let 0 << &€ < | be given. Then ]
[ [x) - L] = |x*+y-2! = |[x*| + |y-2| <&,
ifjx| < £/72,1y-2| < E£/2. Thus,

lim  x*+y) =2

1=0
y=2
in view of Theorem 2, Note that here we have taken 4, = £/2 = 6,
iy Clearly
. |
Xsin — + ysin— | = [x| + |y]
Y < £

if | x| <€/2,]y] < £/2.Thus, app]_vini; Theorem 2 again, we can say that

. ok o1
lim (x sin — 4 y sin —) =0
b4 X s

a0

We wiil use the algebra of limits (Theorem F) to check the ifiaits in iii} and iv).

ity  Since,
lim x? = 4, im xy = §, im y? = 27,
x—2 x=2 -3
y—=1 y=1 y—13

using algebra of limirs, we ger thar the given iimit is egual to 37,

ivi  Using algebra of limits, we get
lim XV b yzdzxd = lim sy < lm vz
(av ) — (e =y, - {abg (x5 2 = (2,92
+ lim zx
(x5, 7) — (2. b, c)
= ab+botca,

We have mentioned in Remark 1 that a funciion may be bounded in a
neighbourhood of 2 point, but may not have a limit at thavpoint. In the pext ex-

ample we give two functions o illustrate this.



partial Derivatives ( 1 x 0
Example 2 : (i) If f{x,y) = l,o , then
LU X

hrn f(x, ¥} does not exist.
—0
y—~0

1, x irrational

) I y) = [ 0, x rational then

lipi f(x, y) does not exist-for any point (a, b).
{x, ¥) — (a. b)

Note that bq:h these functions are bounded functions.
Let us prove i} first. .

i) If possible letf us suppose that lim f(x,y) = L. Then, for
:r—O '
agiven £5. 1.0 < €< 1, 3 a real numper & > 0 such that

0< XP+y* <b= [f(x,y)-L]| < E/2

In partigular, if (x), ¥,}, (%, y2) are two paints wish

'x,! + ylz < &, Jxi + yi < &, then we get

| £y, 1) - T(x2, ya| = |f(x;, ¥i) - L+1L- f(xp, ¥ |
< | f(x;, y) - L| + | {{x» y2) -H
< E/2+86/2=E ... (n

_Now consider the points

(x, ¥} = (672, 0) and (x;, y») = (0, 8/2). For these points we have

5 r—
Jxl! + ¥l = - <éand jx3 + ¥z < . But

|f(x|.' }'1) - f(xh YIJ'l = l - E'

This contradicts (1). Therefore we can conclude that
Iirrl; f(x, y) does not exist,
—
y—~0

Let us consider the second funetion now.

i) If passible, let us, suppos., that lim  f(x, 3 exists. Then,
_ =
procesding as'in i), we see that given any £ s.8. 0 < € < 1, there exists a real

number & > 0 such that
|f(x]l )I) - f(x-;, YQl = £
whenever (x), ¥i), (%2, ¥2) beicag io the open disc S with centre {a, b) and radius o.

Now we can choose (x,, ¥;), (2. ¥2) in the open disc S so that x, is irrational and
X3 is rational.

Then
’ f(xl- YI.) . f(le yl} I =1D> Sv
which shows that lim  f(x, y; dees not exist.
r—a
¥—0
We know that on the real ling, & can be approccaed either from the left or from
the right- (see Fig, 1{a)). Accordingly. we have the left hand limit, lim_f(z). and
ey
the right hand Limit, llm {x) of a real-vatued function of a real varichle, We &
krow that x-e”
lim f(x) = L, if and only if
X—a
lim_ f(x) = lim f(x).
I—l

Now let us consider the Cariesian plane R? and a pomt (x, ¥) in a neighbourheod



of a point (a, b). Then (X, y) can approach (a, b} in many different ways, For ex-
ample, in Fig. 1(b) you can see that {x, ¥) can approach (a, b) along a straight line -
or along the curve y-b = (x—a}

I - o
b N i
b X
PR, Fany 1
L= rd L
X aq
@ ®)

Flg.1;{a)}x e] a -4, a+d [approsches & elther-fram the teft or from the right (B) x € S(n, r) cao
approach & sloog-a Upe or nlong @ curve,

In the following theorem you will see that if lim f(x y¥) cxists and is equal

(e = o b
to L, then f(x, ¥) approaches L, as (x, y) approaches (a bj along any path.
Theoremm-3 : Let {(x, y) be a real-valued function of two variables such that

lim f(x, ¥} = L.
(x ¥3 == {2, b)
If ¢(x} is a real-valued function of 2 real variable such that lim ¢(x} = b, then
X — A

IiHm f(x, ¢(xp) .=

Proof ; Let € > 0. Then there exists a real number & > 0 such that f(r; ¥} is
defined 1n the open disc with centre (a, b) and radjus 6 exceni possibly at (a, b)

a.nd

xay + G- <b= |ix y)-L]<E.
Since lim #{x) = b, given 6 > O there exists a real number & > 0,
< 6/ wf- such that ¢(x) is defined for alf x, 0 < |=x- aJ < &, and
0 < ix-a) < 8 = Jex) -b| < &V2
Thuz,

¢ < |x-a|l <8 = [(x-a) + (p(x) - b)* < &, and therefore,
ffx, oG}~ L] < &
e, lim fix, ¢(x) =

This theorem shows that if lim f(x) = L exsts, then it is indéenmdent of the
x—1
3=-b

_ path atong which the poinc (x, ¥) appreaches the noint (o by, "wiids result can also

be interpreted as foliows:

i f(x, v) tends to wwo different fimits as €2, ;s - G D0 g i s ciffenan paths,
then Jim f(x) does not exisi. '
tx,¥)—{1,b} )
You will find that this interpretation Is very vseful in v vins the non-2xistence of
"certain Hmits, We'll now staie this s & coroilery ¢ 3207 mor 5.
Corollary 1 Suppose .y} is 2 real-valicd funchion Cofined in so-ac Jeleted
neighbovrhood of the peinr (a,b), If thery sidur oot rivod Toorgions 2,00 ond

&:(} such that

ima)(x) = b = lim $(x)

and

lim £{x, ¢, (x;) > llm f(x @7 (X)),

r—a

then

him  f(x,y} does not exist,
(=y)—{2,0) '

Limit and Continuity
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Fig 1: Rudlal vectors,

W

=._ 1K

We will illustrate the uscfulness of this corollary with the help of an example no..

Example 3: We'll show that
2

does not exist as (x,¥) — (0,0) and

D the limit of 51
x4y
i) the limit of f(x,y) does not exist as (x,y).— (0,0},
x4y

where f(x,y) = X-y
0,x =y

X #y

Let us start with i).

i) Lety = mx. Then

x3-m?2 x? 1-m

-0 x2+m2x2  14m?
' ol
Now the value of l+m 3 is different for different m.. This means that f{x,y)
m

2

approaches different values as (x, y) — (0,0) along different radial vectors
{see Fig. 2).
2

Thus, the limit of X daes not exist as (x, y) — (0,0} in view of Coroliary

x2+y?

1. (Here we can take ¢; (x} = myx, §, (X) = my %, m; # + my.

i) Let ¢;(x) = x - X%, ¢z(x) = x - x%

Then
& PRV Y|
fim f(x, () = lim 228X _ 5 ang
x—0 x=C X
3. r,{_xz k]
lim f(x, 6,00) = lim ——o - o
=0 x—0 o

Therefore, the iimit of f{x, y) doss not exist as (x,y) — (0,0) by Corollary | agei

Many times you would rind that conversion lo polar coordinates, i.¢., the use o!
as the substitution x=r cos ¢, v =r sin & i5s very useful for evaluation of cenain
limits. Consider the following example.

Example 4: Lel us prove that

3 .3
. x-y*
lim == = 0.
L S
y—0

For this we’ll make the substitutios x=r cas ©, y=r sin @, so that x*+y2=r%
Then .

x3 - y3

Xoy || Eeos o |y L [T
x2+y?

2 l“’ .‘ N

T
because |cos’s - sin’s| =< lcosds; + |sin¥%] = 2.

. o 2 S & —— Lo
MNow, if j%]| < 3 and |y| < -z, then 2 [x"+y* < &, and therefore
v

vE

x} o y?
T |
Xt+y-

L1 3

That is, lim "—2—'—., = 0.

=0 X4y
y=0

Now see il you can solve these exercises.



E2) Show that
Xy

a) lim ~=/— =0
) x=0 J’; +y-
y—0
. x2y2
b) I T— =
) *1—? VKEFYT O 0
¥

. . X2+ 3xyz - 5z°
<; lim 7 . - = -1
oy ) — 00, 1.2 Xy’ -+ 5z - Ixy+x

. X siny
lim > =
(x. y) — (0, 0) x4 1

d

£3) Show that. the limits of the following functions do not exjst as x—0, y—0.

Xy
a ——
) X2+ y2
2
b) —=
X"+ y
2 1
-y 2x

x*+y? Kiry?
E4) In the following problems, how close to the origin’should we take the point
(x,¥) or {x, v, 2} 10 make

| fix, ¥) - 0, 0| < €, or
P f, ¥, 2) - £(0, 0,00 < €

for the given £7

a) oy, n=x+y +2%¢& =00l
b). f(x, ¥) = xy, € = 0.0004

By now you must have become familiar with .. concep! of the limit of & function
of several variables, We shall now discuss ihe continuity of these functions.

Limit and Continuity

4.3 CONTINUITY OF REAL- VAL DD FUNCTIONS

In Unit 2 of the Calculus course you saw ther the kncwicdue of the limit of a
funetion of one variable is necessary for studying the contnuiiy of these fpnctions.

Ta be precise, you know that o functics & ¢ - 7 35 sonliaucns 21 o painrz £ %
i lim f(x) = f(a).
a0

In the last section we have studied the concept of limit tor real-valued functions of
several variables. Let us now see how we canuse Lhis powledge 1o define con-
tinuous [unctions from R — R,

Definiiion Z: Let f{x) be 2 reai-vahied funcion of o vatiables defined in a

neighbourhood of the point a € B". we sey that the “uncrion £x) is continuons at .

o il

lim ((x) = f(a},

-z , .

i, given & > Q there exists a real number § > 0 {(depending upen € such thar
[x-a| < d = [f(x)-1(a)] < E. -

We say that a real-vaiued function of n varizbles is coniiouous on 1 sel A -¢atatn
¢d in the domain of the function, if the funciion s camtinieus &t cich noing od A
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A real-valued function of n variables is said to be a continuous function if the
function is continuous at every point of its domain of definition.

You have come across many examples of real valved functions in the last scetion,
Let us check the continuity of some of these.

For example, consider f(x, ¥) = x*+y: In Example I we have seen thai

m (x2+y) = 2.
(x.y)—1{0, 2)
Now, (0, 2) = 2.

Therefore, lim  (**+y} = f(0, 2).
(x, ¥ — 0. 2)

This means that f{x, y) = x2+y is continuous a1 (0,2).
The projections =; : R* — R,

L (x,.lxl. seeanany Xy = Xjs l=j=sn

are continuous functions on R". (We are leaving the proof o you. Sez E 6)).
2_ 2

You will agree that the function f(x, ¥} = ——- which we considered in
x“+y

Example 3 is not continuous at (0, 0). Remember, we have proved that it does not

~ have a limit as (x, y) — (0, 0)?

We now state a theorem which is an easy consequence of Theorem 1, You would
find it very useful in establishing the continuity of many functions,

Theorem 4 (Algebra of Continuous Functions) : Let f and g be two real-valued
functions of n variables, which are continuous at a point a. Thien

iy f + g are continuous at a
ii} «f is continuous at a for cvery o € R.

iif) fg is continuous at a.

dv) f/g is continuous at a, provided ‘g(a) = 0.

Proof : i) lim(f + g) {x) = lim ([{x) + g(x)]

lim [(x) + lim g{x}, by Theorem 1.

f(a) + g{a) since f and g are
continuous at a.

id) h_m {ef) (X) = lim «f{x) = li_m f(x) = a [{a)

X—i

Il

iii) li_ru (fg) x) = Ii_l:n f(x) g{x} li_m f(x}. P-I-E g(x)

= f(a) g(a).
iv) lim (_.f) 0 = tm L8 Em R @)
X—a X8 g(x) BTG g{x). g(a)

This shows that (f + g), «of, {g, [/g-are all coiitinuous at a.

From Theorem 4 we can conclude that if £(x;, X2, ... , X2} is any polynemizl in

'the i variables X, Xz, -..., X5, then [ 1 R™ — R is a continuous function on 7’

n

Nexi we state and, prove a resuli aboui the continuity of the campaosiic of two con-
tinuous functions. You tust have studied a similar result for functions of onc
variable (sez Thecrem 6, Unit 2, Calcuius), '
Theorem 5: Let f be a real-valucd function of 11 variables, which is cantinuons i a
point a € R" and let-g be a real-valucd function of a real variable, which is con-
tinuous at f(a). Then the composite function g=f is continuous at a.

Proof ; Let £ > 0. The continuity of the functicn g at f(a) implies thar thera exisis
a real number & > 0 such that

y-fa)| < &= [g(y) -s(f@)}] < €.coeeernnn (.}



Now, the continuity of the function f at a implies that ihere cxists 2 positive Limitand Continuity
number 7 > 0 such that ’

ix-al <7 = | [(x) - fa) ] < & evrereme (o)

Cambining (4) and (, ) we see that

| X~aj <7 = | gEG) - sf@) T < &
fe., |x-al <9 = 1 (g (0 - (g=0 @] < &
s, gof 18 continuous at &.

1 the next example we will apply Theorem 5 1o cheek the limit of a composite
function-

Fxnmple 5: Let us show that

1hm e¥*f =35
oyl = 10,105
Clearly, the functions f(x.y) = x4y and g(} = ¢t are continuous everywhere.
Therefore, the composite function gef is continuous everywhere, in view of
Theorem 5. Consequently,

ex-r)' = éOa In5 _— §,

lim
(x, ¥3 - 10, in3)

Wwe conclude this cection with 2 simple resuit, which is found useful in many
applications.

. . - . f(x) has Lh¢ sign of (a) means
Theorem 6: Let f(x) be a real-valued function of n variables which is continuous 20 thal cither I(x) and f(a) are both

a point a of R™. 1f f(@) # 0, then f(x} has the sign of f(a) in a ncighbourhood of qositive or they are both

a. " pegative.

Proof : Since f is given LO be continuous at &, for & > 0 there oxists a real.

* qumber & > 0 such that

|x-al < &= [t’(x)—f(a)l < E.
Or
fim-9o < f(x) < f(a) ~

Lhr)

for | x-al < &

e ho= ,l_f_(i)—l—"['hcn

2
) ¢ < ____3f;a) it f2) > 0,

and

4

3i(a) f(a) . }

38 g0 < Jil i iy < ©

for all x in the 6-ncighbourhood of a. That is, f{x) has tle sign of f(a) for all x in
5{2.8) This completes the proof.

Moie that 1n case fa) = O nothing defipite can BT o b the 5igh of the func-
tion in a neighbour‘nood of a. For examplc.

00,0 = x4yt is continucus & (0,0), f(0.0) = o, and

W rJJ =

fix,y) > © for (X,¥) #* (0,0).

G the other hand, for (he function e B f:: v, cxacily ind opposite
sapnens.

noreover, for the function fx.n) = )y, wnicrn i g oo in, Uy, el ihe Lhree

poss‘.hilities oCcur:
f(x, ¥ # o for some (%, ¥,
fx, y) <0 for some (%, ¥) and

f(x, y) = 0 for some (x,y)ina neighbouthood ot (&, 0)-

Try wo do these exercises now. ’ |
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itiit and Continuity

-
Let D= RPand let f : D — R™. Then we say that f is contivuous on a subel A 3,
of I}if [ is continuous at every point a in A. The function f is said to be a con- '
tinuous Function if f is continuous at every point of its demain of definition. E

1

ff:D—- R™ D g R" then we have scen that there exist m real-valued func-
tions [}, ...... . £ on D, which are determined by f, and determine f uniquely. In
facl, f; = = - f, where x; : R™ —~ R is the j-th projection, I < j = m. We can
prove that 1'is continuous at a point a if and only if each component function f;,
i =} = m, is continuous at a.

Now, if {: R® — R™ is continuous at 2 € R", then f; = x; - [ : R* — R being a . k‘
composile of two functions, continuous respectively, at a and f(a), is also con- _
tinuous at a. So it only remains to prove that if f;, 1 < j = m are continuous at

a € R", then f is also continuous at a. This proof is easy-and we are leaving it to

yOu as an exercise. {See E 8).

Thus the continuity of vector-valued functions really reduces to the consideration
of the continuity of real-valued functions.
For cxample, the function t — (cost, sint) from R to R? is continuous, as the com-
ponent functions t ~ cost and t — sint are continuous everywhere.
Similarly, you can check that the function

(x, ¥) — (cosx, sinx siny, e* siny} from R? 10 R?

is continuous on R2. You should be able to do this exercise now.

EB) Let [ 'R" — R™ with component functions [, ....... . f. If each fj is con-
tinuous at a point a € R", prove that f is continuous at a.

e,

We have seen how the concepts of limit and continuity are extended to functions
of several variables. In the next section we will discuss one more way of defining
the limit of a function of several variables.

4.5 REPEATED LIMITS

e definittons of limit which you have studied in Sec. 4.2 and Sec. 4.4 are
seneralisations of the definition of limit for functions from R — R. We shell now
consider another type of limit,-which is peculiar to functions of several variables,
For the sake of simplicity we confine ourselves to functions of two variables.

Let f(x, y) be a real-valued function of two variables defined on some deleted
neighbourhood of the point (a,b). Then we can certainly talk about the limits.

lim {lim f(x, y)
i—a (Y—b ’ )
and

Him (hm f(x, }'})

y—b x—a
These two limits, which are called repeated limits arc indepeadent of the

lim  f(x, y) which we have considered sa far, We refer 1o lim M{x, v}

v, vi—(a, b} x, ¥y} —{z. B

as the simuli2neons limit 2s x and y are appreaching a and b, respectively, at the,
same time. The following examples show thar the existence of the simultancous
limit need not imply the existence of repeated itmits and vice-versa,

x - 9? _
Example 6: Let f(x, ¥} = ————. Then the two repeated limits
S R4y
lim (lim f(x, y))

x—0

:-!l—né (}L"o' f{x. =)
: 15
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exist and are equal but the Sl"nuJ[dnL‘OUS hmlt Iun f‘(x, y) does qgt cxrpt [
sxoob boanll s o nedT o )

Al

Clearly Ilm fx, ¥ =1 = l:m f(x, y) dnd therefore

lim (}_1_1_161 f(x, NyZ g = llm -"hrn f(x 12)]

x—0" -=0

" Now let v = mx. Then

1 - 2
f(x, y) = %:E)“T’ and therefore
m*)
2
lim  f(x, mx) = d-m”
1+m

which is clearly different for different m. (Check for m=1, 2).

Thus, h'r% f(x, v) does not exisl.
o :

y—0G .
Example 7 : Let f(x, y) = i-. Then lins f(x, y) exists, but
byl x=0
.LI_I:I]O (I;_rr'ij “f(x, y)) does not exist and
im  (lm £, y)} =
Since
Xy
| = 2y
[y]
it fpllows that Iin}J fix, y) = 0..
ot
Further, lim o x and lim_ oo .
y=0* |y y=0" |y

This shows that lim does not exist when x # 0, and thcrcfdfe we cannol

y=0 |yl

even think of hns (hm _'—)T) You can casily chieck. that
A= y—=0 1y 4

. Xy
lim (lm .
y—0 x—0 f y f

S0, dots it mean that the simultaneous limit and the repeated limits are 1otal[y
unrelated? No. Ths situarion is not so bad. In some-cases we can relate the two.

Here is a theorem which gives some conneciion between simultaneous limits and
repeated limiis.

‘Theorem 7: Let f(x, y) be a realvined function such that lim f(x, y) = L I
. A—a

¥=—b
both the repeated limits Lim (ll'n fix, y)) and Iin; (xlm:i flx, ¥)) exst, then
o d :

=5

each one of these Hmits is.cyual to L

We are not giving the proof of this theoseoi'| nere, as it is bcvond the scops of this
course.

See if you can solve thes xercises now.,

Xy
X2+
not exist at (0, 0), while the two repeated limits exist and are equal.

ES) ' For the function fix, v) = -, prove thar the simultancous limit does



~x I+x? ) Limit and Continuity
1+y?’

EID) For the function f{x, y) =

y+x Ty
show that'li[n ('_}fl_r.lg fix,¥)) = -1and li£n (Ilg‘l f(x, y)) =
Apply Theorem 7 to decide the existence of the simultaneous Im'ul as
(x, ¥)—(0, O).
l4+xy, xy =# 0
ElD ch f(x, v) = ( 0, xy = 0
Then prove that '
lim [ Hm f(x, y)] = 51_1_1% [lim fx, y)]

but Iimo T(x, ¥) does not exist.
-
y=0

'i‘his brings us to the end of the unit. Let us briefly recall what we have covered in
it

4.6 SUMMARY

In this unit we have
1)  Defired the limit of a2 function f; R — R™
]im fix) = Lifv'e> 0,36 > 0, such that
0 < |x - a 46 if(x)—Ll < E.
2)  Discussed repeated limits and their connection with the s:rnultancous hmlt
3}  Defined the concept of continuity for funciions of several variables:
f:R" — R™is continuous ar a paoint a il hm f(x) = f(a).

Alternatively, f is continuous at a,ifveg > 0 36 >0, s.i.
|x-a] <6=}i(0)-fa)| <¢.

41 Scen that the'consideration of the continuity of vector-valued funciions
reduces to the consideration of the, continuity of real-valued functions of
several variables.

5)  Stated mapy results about the continuity of funclions from R® — R -
about the algebra of continuous functions,
‘about the contmuny of the compasite of two functions,
about the sign of the values of a continuous function f in a neighbourhood
of a, s.t. f(a) = 0.

4.7 SOLUTIONS AKRD ANSWERS

El} Let f(x) be defined in a neighbourhood S(a, ) of the point a except possibly
at a. Suppose L # M, then |L - M| > 0.

. . . < gl
Since, lim f(x) = L, if we take £'= - 2~—1—| then 2 &, > 4,
r—a

& < h such that

lx-a| <& = |fix})-L} < &.

Similarly, since l:El [(x) = M, 36, > 0,6, < h such that

|x-a| < & = [f(x) - M{ < &.

Choose § = min [ 8, 8;). If |x-a| < 3, then }x-a| < &, and

17



| x-a{ < &,. Also s < hsinde d: 2 hand 9, < h. So
|x-a] <& = |f(x)-L| < &and {f(x) - M| < €.
Then |L- M| = |L- %3 @ f6)-M{
IL-f) + 1) - M|

< 28 = {i.- i

Partial Derivatives

]

[T Y

Thus |L- ] < JL =M. Tals s a coniadiciivn, faails Sar b
that |L - M| > diswnuig.

B2} a) Putx = rees 8, v=rsho. lued

- XYy { r cos. singd

IxTay? (78 czs? 0+ cin? 6)

Il

i r® cos o sin @
! r

r_—_.-""
=T = \le-,-yz

£ T :
] |+ =g, then 7 TN
Now il |x| < ok byl 2 R then \,J'; +y° < Landlt

| Ay ?95’_0.-._(1__5@}?._1
\cos?0+sin® 9)

Corfagst A win? g |
38 i

. i i
- -3 co ERs
= = | P

Mow if jx! < —==. i¥| < -—, then
¥

ThoCuiors,

T s PR bt R N LiB]
t L] ' - il o ’
A T
e A e T Jaeenir i
Lente e
s \
<4 1 v

i i
el = 1,5 \_ wyde 5z% - Bxy+x?

i (0 A dwyz - 529
() = L2 -20 :

fixn oy v SeTxy + 12 20

R R O
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£3) a)

Mg . M

Since - _ Limit and Continunity
lim - xsimy = 0 and lim (2*+D =1 =0,
T nL ¥ — 00 - ' txy) = (0.0)
using algebra of limits, we get )
- lim  xsiny .
tim xsmy) - ) =0 o0 0.
st = 00 \2x7 4] lim  (2x%+1) 1 '
R (x.y) — (0.0
Xy .
fx.y) = ———
SENEIRp

x4 = =

b)

If we put y = $) (x) = mx, then

‘mx? m
x2(1+m? - 1+m? ‘ )

This value is different for different m which shows that the 'fulnct.ion_hﬂs

different limits in different directions. Therefcre the limit does not exist.

In view of Corellary 1, it is enough to prove that there exist _réal-valﬁed
functions &, (x) and ¢, (x) sucii thar

lime, (x) = 0 = lim ¢, (x)
x=0 : . x—0

and lim  f(x, ¢ (x)) = lim £(x, ¢ 00)
x— X -
Let ¢, () = x> and ¢; (x) = x - x% Then

liE"u ¢ (x) = lin}) $(0 =0
: z

. 1 1 1
Also, lim f(x, X)) = lim =l - = —
s ( ¢] ( ]) 2—0 x2+x2 -0 2 2
N . a . - -
x2
dl ix, = lim ———
a_n im  f(x, ¢z (<)), l:g}‘ o ——
= lm x = 0.

} ]

Thus, im (¢, & () = lim  £(x, #2.(x)

9

Therefore, by Corollary I, the limit does not cxist,

Let ¢) (x) = m % and ¢ (X} = max.

. 1;5 #; (x} = Lll_no ¢ (0 = 0.

E4) a)

b)

ES) a)

x? - mf x¥- L _dxamy x

Now, Ll-l-% fx, 610, = x2+mix? - 2Pemiid
_ 1 - mf 2m,
] T oi+m? ! + m?
i _142my -mf -
(I +mf)
1 +Zm, - 20

TThemd

Similarly tim f(x, ¢ () =
Thcn. Iing fi(x, ¢ (X)) = lil’!cl' £, o5 (x)). Chus wvith M, =], Mo=-1
= a— . _—

Hence, the limit do?s not exist.

We are asked to find § such that, if |x] < &, |y| < Sand j2] < 4,
then [x?+y*+2*! < 0.01.

Mow, [x{ <& }Jyi <dand !z}

Then if we cheose § such that 367 < 0,01, then v 2rg through, For
example, we can take’ § = 0.05. )

If |x{ <& |yl <& then jzy| < 8% Then we can take any 3 such
that §2 < 0.0004. For example, & = 0.0:. )

<& xtiytezt < 28%

-

We first note that to prove that a function is discontinuous at a point it
is enough 1o shew that the limit in any pariicular direction exists and is
not egual to (0, 0). ‘

19



Partial Derivatives Let ¢ (x) = x. Then
. - x¥ o x

=02 = (0,0).

}‘l"m° G 9100 = ﬂ x4x2 :L-'ﬂ x+1

Therefore f is not continuous at (0,0).
b) You have already seen in Example 1. that

lim f(x,y) = lim (y sin LI X sin i) = 0.
*x.9)— ©,0) a0 = 00 x y

But f(0,0) = 1. Therefore, the function is net continuous at {0,0).

E6) Leta = (a, a3, ... y 33) €E RE, We h_av.-. to siiow that lim %X} = =(a).
-Let & > 0 be given, -t
Consjder [ 7i(x) - 5@ | =] wx, ... » X} = ) (2, 3, ..... . a,,)j
. 8 = lxj - 8.
‘Il‘akc & = TE—. fori =1, 2, ... » 0. Then,

0< |x-8] <8, Sisn= [ 75(x) - xy(a) ) = Ix -a] < &< &,
Therefore, by Theorem 2, -
lim =x(x) = mj(a).
© x—a
This shows that 7} is continuous.
E7) a) |xsiny + ysinz + zsinx | = [x] + |y[ + !z
£ £ £
Then |x| < —, | < == and < -
@ Ixl < 30yl < sand [2f < 4
= | xsiny + ysinz + zsinxe ] < 8,
Thus, applying Theorem 2,
l.ina {xsiny + ysinz + zsinx) = 0.
X=—
¥=0

z—0

This shows that the junction is continuous at (0,0,0).

b} Using algebra of limits,

lim (e* Cosy + ¢” cosz + ef COSX) =

{xy.2) —~ (0,00

Jim e*. lim cosy + lim e’.
(Ly,2) = (0,00 (o) — (0,0,0) {r.y.2) — 0,0,0)

lim sz ~ lim el lim CO5X
(.2 = (0,00 0. = (0,003 (xy2) - {0,0,00

= 1141 = 3, sinee liuﬁ e = ¢ = | and lim cost = cos b=1,
b= =0 .

) Let i(x.y,z} = In (! +x¥4y" 1gd), , _
Then f = g « h whele b{x,v2) = 1 + ;vc2+y2+z2 and-g{t)"= Int,
Clearly, the function h is continuous at £0,0,0) and g is continuous at
h(0,0,0) = 1. Therciore, by applying Theorem 6, f is continuous

at (0,0,0).
) @ Xy X = Il o+ iyl e + 1 Xnf-
Leli’(x,,x;, ...... ,Xr_)= I?-'[r,i= 1,2, ...... , I
Then { is a real-valued furnction of several variables, Also, §; = Eawp ru
cachi = 1§, 2,..,.. » 7Lwhere g(t) = |t | For each i, the funciion

m; i5 conlinuous at (0,0,....,0) and g is continuous at x; (0,0,...... ) = 0.
Therefore by applying Theorem 6, fi is continuous for i=1], 2, %......n.
Then, using algebra of Timits, ve get that £ i; Icontinuqus ar (0,0,.....,0).

EB) Suppose that cach fj is continuous at a. Then given‘ &€ > 0, there exists real
numbers §, > 0, 1 < i = n, such thas ’

\\- i
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E9)

|x-a] < & = |fit) ~ fj (a}] < 7—%" '
Let & = min { 8, 82,0000y 83}, Then

Ix-a] <é=| fx)-f(@} = JE (filx) - fi(@)* < &.
=1
This shows that f is continuous at a.

We have already seen in E3) that the simultaneous limit of the function

fix,y) = ﬁyyz does not exist. The repeated limits

lim [bm XY ] and Jim ,[I.im —] exist and are equal to 0,

x=0 y—=0 x2+y2 y=0 10 x2+y2
" since lim —s2— = 0 and lim- =0
a0 x¥yy? y-0  xi+y?
/y-x 1+x2 _ 1
E10) lim (Y : "2)= AN
=0 \ y+x I+y y (1+y% L+y
. - 2 1
Therefore, lim lim yx 1+x2 = lj T =
y=0 [ x=0 y+x l+y y—=0 l+y
Now, , i
; -x  l4x =x(1+x '
lim ( }' 2) = IX(- ) = -(1+x?), and therefore,
y-0 y+x 1+y X

Lii)

. , y-x  1+x2
lim lim . 3 = -1.
x—0 y=0 \ ¥y+Xx I+y

This shows that the two repeated limits exist. Now, by applying Theorem 7,
if the simultaneous limit

y-x) (1 +x%)

=0 (y+x) (1+y)
y—0

exists, then the two repeated limits have to be equal.

But we know that the repeated limits are unequal, Hence simultareous limit
does not exist in this case.

iirra f(x,y} = 1 and then
you

lim [lim f(x,y)] = |.
- y—0

x--0

Strnilarly, him [lim fx, Y)] = ]
y—-0 1 2=0 K
Consider y = ¢; (x) = x. Then we get

lkn f(x, &y () = im (Q+x9 = 1

-0 x—0 .

and when we take ¥y = ¢, (X) = 0, then we get

lirr:] £(x, ¢ (0)) = 0, since y=0 = xy = 0 = fix,y} = O for every .
!—-

This shows that the simulianeous limit does nat exist.

Limit and Continuity

S n
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5.1 INTRODUCTION

You are already familiar with the concept of a derivative of a real-valued funciion
of a real variabie {Calculus, Unit 3).’In this unit, we shall study this concept for
functions of several variables. You have seen that the notions of limit and con-
tinuity can be easily extended to these functions. But the definition of the
derivative of a real-valued function of a real variable cannot be applied, as it is, (&
a real-valued function f(x) of r variabies (n > 1). This is because for any h e RY,
h # 0, the quotient ﬂx—h-\)]—-—ﬂ‘:)— Zdoes not make sense-as the division by a

- vector in R" is not possibic.

However, if we examine the deiinition of derivative more closely, we reatise thor o
functien of a single »cnah‘c is differcuniiable al 2 point if and only if the two

directional derivatives, , the right hand derivative and the left hand derivadve,
cxist and are equal ai toas 'cn' Yoo will see later, in Unit 7, that this coneent n’

direciional Gerivalive czn pe zeneralised 1o funciions of several varicbics. The on,
Ritch is that in 2%, we have to Jezl ith infinitely many directions. chcv“r i
the beginning we shall conrioe ourselves to the special directions which arc pay
10 the coordinate axes. This leads us to the notien of partial derivatives.

1n this unit we'll discuss }c concent of panial derivatives of a function of severd.
vayiables in detail. MNote this notion af partial derivatives does not fuily
generalise the conczpl of d‘...._rw- of 2 real valued funciion of a real-varizble
Later in :his unit we introduce the oot uf differcntiability for funciions 9"
several variables, and diseuss the oo nicaship betwean cifferentiaciiivy, condauit
and the existence of partial derivathes. :

Throughou thos unit by ihe word -function” we shall mean & real-valued function
of several variables, i.e., o function from D — R, where D is a subset of

B n > i. We shell give tie defiaitions [or general n, but nost of the tirne dur-

ing our disenssion we shall confiaz ourselves 10 the case n = 2, L.e., (0 real-vaiucd

canciions of two variables, We'd briefly discuss (e case n=73 alsg.

Dhjectives
After reading this unit, you showd be able [0

¢ define partiz! derivatives of the [List ordcr for 2 function of several vaiiables,

¢ partially differeatizte a given cal-vaized function of saverzl real variadles witly
respect 1o any particu.ar variabie.

o pgive the ocom-‘:i'ical fmterpretazion of first srder pariial Aerivatiyes of funclions i



® decide whether a given function of two or more variabies is differentiable or - First Order
not, : ' Partial Derivatives .

© give examples to establish relationships between the continuity, differentiability " *  and Differentiabhiiiy
and existence of partial derivatives at a point for a function of several )
variables.

5.2 FIRST ORDER PARTIAL DERIVATIVES

In this section we shall see what the partial derivative of a funclibn_ al a point
means. We already know how to define the derivative of a function of a single
variable. We'll use this knowledge in defining the partial derivatives of functions

ol scveral variables.

5.2.1 Definition and Examples

Consider a function f : D — R, where D & R™, Let (x|, X3, .... Xy) be an
interior point of D, i,e., there exists an open sphere with centre (x|, x5, ..... , X))
contained in . Then for each i, I = | = n, we can construct a real valued func-
tion of a real variable from this function [ in the following manner.

Choose a small number 5 > 0 such that the point (x|, X2, ooy Xic1» % + N, Xju1s
v Xy € D forallh €] -6, 6 [ Such a & exists since (x;, Xz, ...... y Xg) is an in-
terior point of D. We have shown this for n=2 ir Fig. L. Now we can define
fi:1-6,8[ — R such that

f(xll X21 oer Xjets x]+hl xi‘IAI! [T} xn) - f(xll Ky vy xn)
- h

Flg. 1

fi (h) =
I'érallhf]—ﬁ.é[,h;ﬁ[}.l

Now if lhimo f; (h) exists, then we say that [ has a first order partial derivative.with

respect (o the ith variable x; at the point (%, x5, -..., ‘x,,J and the value of
]nim f; (k) is called ith first order partial derivative of [ at the point (Xj, Xz, +v.vy ¥g)-

You shouid note here that for lhin'lD f; (h) to exist, it is enough that f be defined in

a neighbourhood of the point under consideration.

More formally, we have the following definition.
Definitlon 1: Let f : D — R, where D € R, and let (%), Xz, -.-., X, be an
interior point of D. We say that the function f has ith partial derivative at the
point'{x;, Xy, ..., X,) if

f(xlv xl’. vy Xiope Xj + h) Kizlperiny xn) - r(xll A2y ey xn} exists
r!—o h Kists. Whenever we say that a limil

’ ' exists, we mean thal a Make

The value of this limit’is called the ith partial derivafive of [ al the point limit exists.

(x;. AZi ri-ry Xn).

' There are different symbols availabic in literature to denote the partial derivatives A i ead as
of a given function. However, we shall use only the following symbols ax;
af

— ., f

ax1r P

“'del T by del x;©

nr
1 L

according 16 Our convenignce 1o denofe the ith nariial derivative of first order of [L
in case we wani to emphasise the poinl (x|, Xs, ...., X4) 2t which ihe partial
derivative has peen calculated, we write -

éf

T Ky Kzv ey x..,)
. i
or f,i (512 Xgp -rony Xp¥
or Dy flXp. Rge -ooey Xp)

23
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You have seen in the Calculus course that we write y=1f(x) to express a real-valued
funttion of a reai variable. For functions of 1wo variables it is CUSlomary Lo wij:y

z=1f(x,y), and the 1wo partial derivatives of f at the point (X,y) are then denotedd

Remark 1 : i) Note that the houon of partial derivative of 'a function (like con
tinuity) is local in character. That is, we check the existence of the partial
derivative of a function at a poiat. Thus, when we say that a funciior: has part:
derivatives on a set A, we mean that the function has partial derivatives au ew o
point of A.

ii) Tt is obvious from the definition of a partial derivative at a point that the fiurn.-
tion must be definsd in a neighbourhood of the point. Thus, we can talk abour i
partial derivatives only ar the intsrior points of the domdin D. For example, if O i,
a disc in R?, then we cannot talk zbcur the partial derivative of a point on the «ir
cumference of this disc.

i) I f has a partial derivative al (x;, xa, ...., Xq), thenits value depends oniy on
the values of { in an opers sphere around the point. If the Junction is changed aci
side this sphere, it would rior affect the value of the partial derivarive.

We now give some examples to show how to obtain partial derivatives ol Ziven
functions at given points. If we do not mention a specific point at which partiai
derivatives are to be calculaled, we mean that they are to be calculated ar a BCNC
point (x,y) or {x,v,z) according as n=2 or n=13,

Example 1: Lot 7 : B® — R be a function given by f(x,y) = x*+xy+y*. Lel us
find ; (x,¥) and f, (x,¥).

‘By definition,

N e JEHRY) - HxY)
fy (0¥} = lhlfln i
. (x+h? + () y+y - xf - xy - y?
= lim -

—10 A

3 A . . I
X+ EihehRfa xy+hy syl - x - xy - y

—0 I

= 1
il

=lim 2x + b + y)
h={
= 2x+y

Similarly,

i, (xy) = lim SRYER) - Ex)
y oYy = k—0 k

Baxly v R ety et s <P ay -yt

= lim -
k—0 L
. X4 3y k +3vk T+ K
= lim
k-0 k

= lim 0+ 3y 4 3vh - k)
oy R

s 3y?

i

When we arc considering tunctions of {we variables x and y, then o1 the
increment in x we normally use the letter h and for the inerament in ¥, the folics W,
Similarly. when we are dealing with functions of three variables x, ¥ and 2w use
the letters p, q and r for increments in %, y and 2. respeciively. This is enly a
matter of convenrioit, not 2 ruje.

In the next example we consider a function of three varichles,



Example 2 : Let f : R? — R be a function defined by f(x, v, Z) = Xy + ¥Z + .
Let us find the partial derivatives at the point (a, b, ¢). By definition

fla+p, b, ¢} - f(a, b, )

f, (a, b, ©) = lim

p—0 P
+ a qv _- - -
= lim {(a+p) b+bctc(a+p)-ab-bc-ca
=0 p
= b+c

f(a, b+q,¢) - f(a, b, c} ~

fy (a, b, ¢) = lim

q-0 q
— lim a(b+q) + (b+gq)c+ca-ab-bc=-ca
‘q-0 q
= atc

f; (a, b, ¢} = lim f@a, b,c+r)-f(a b, c)
r—0 r

. ab+b(c+r) + (c+r)a-ab-bc-ca
= lim
r—3Q T
" = b+a

In the next example we shall calculate the partial derivatives of 2 function of n
variables,

Example 3 : Let f : R® — R be a function defined by
[ (X1, X200 Xg) = %7 4+ x3 +....+ x2

To find the partial derivative of { with respect to x; a1 the point (z,, a;,....,2,),
we wrile

£y, (@, Bpernd,) = E"; f(a), a3,..-,3;), &+h, ]31-;+ -2} = f(ag,....2,)

» "
ay+aj+...+ad + (@ +h)2+ad, .. sal -al-al - -al

= lim
h=D h
. 2
= lim 2ah + k7 = 2a,.
h—0 h

Try Lo solve these exercises now.

P N Barir_iia o

Ei) Leit f : R? — R be the constant function defined by
[{x, y) = cforall (x, y). Show that [ (2, b} = 0 = [ (&,
for all points (a, b).
EZ) Let f : R? — R be defined by
C1 if (e, y) & (0,0
[z 9 = o )
0 if(x, ¥} = (0, 0)
Show that f, (G, 0} as well as f, (0, 0) does nat 2nlsi.
E3) Let 7 : R? — R be delined by
[ x ifix, y) # (0, B
Lo if(x,y) = {0, 0)
Show that f, (0, 0} = 1 and £, (0, 0) = .

o, ) =

AL TaT AR R A der s am = ¢ cbmam

From these cxampics and exercises you must have obzervas *aat £ (0, v) 12 .
nothing but the derivative pf ((x, y) considered as a function 2f a single varizbic x.
trealing y as a constant. Similarly, {,(x, ¥) is nothing but the derivazive of fin, 1)
considering it as a function of the single variabje v. and ireating # 25 & < nstant

in general, we can say that f,.1 (X), Xgy....,%;) 35 Nothing Vas the dornead s g0

First Order
Partia? Derivatives
od Differentiability

25
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I the Caloulus course (Block 1)
you hiave seen thal polynomial,
Irjonometric and exponeniing
functions of a singlc variable are
differentiablz.

. A R -

- f (X4 Xa,....,%,) with respect to ¥ treating all the other variables as constangs.

Thus, for calculating partia! derivatives, we can use .our knowlsdge of calculating
derivatives of functions of a single rcal variable and avoid the lengzhy lirniting
process.

Here is an examp!e to illustrate this.
Exemple 4 : Let us find the partial derivatives of the following functioncs, i

D oz = x? - 4xy? + By?

i) z=xsiny + ycos x

iz = xe¥ + ye*

We first note that in all the threc cases, the functions invoived ace Citner

polynomials or trigonometric or exponential functions. This ensures that the posiis’
derivatives exist. By direct differentiation, we get

i) E ='.3xz - Sxyz ;i{. = - 8}(2}' + 16y
ax dy

. oz . . . oz

i) T TSR Y-YSMX, —— = Xc0sSy + cos x
ax dy

.. 0z oz ‘L e

i) ~— =¢¥ + ye*; — = xe¥ + €
ax ay

The caleulation of partial derivatives is not always as simple as in these exampioy,

" In some exceptional cases, we have to use the limiting process as in the case of one

variable. You will be able to recognise such cases with practice. Lel us consider
one such situation.

Exampie 5 : Suppose f: R? — R is defined by
Xy
= &) = (0,0

fx, y) = X'+
0 LGy =00

Let us find the two partial derivatives ar the points (0, 03, (a, 0), (0. b) and {a, L),
wherca = 0, b = Q.

Now, by definition,

[ 0+h, 0) - (0, . 0-
£ 0,0 = lim 0L O-f@0 o 0-0
h—2a h h—0 |
+k} - 1 (0, 0 . 0-0
fy (0, 0) = lim r(o.o-r‘ (9.9 = lim —— =0,
k—0 K k-0
: ) - f{a, . D-
f.(2)0) = lim ~@+R 0 - fla 9 _him 229 _ o
’ h—0 h h=0 h
ak
- . f@0+k)-i@ 0 |, - a*+ k¢ 1
fy @ 0 = lim p R
.bh
. [({C+h, b)-1(0, ) . b* + nt ]
fx (0- b) =h|l_|'gl b == Lll_]},_E— '_—F
P I i W f{ol bj" k} = l‘ (G. b) . 0 - 0
i, {0, ) = lim =jim — =0
Y =0 9 k-0 i
e b) =l LEER D)@ )
h—1 I
{a+h)b ab
. @+hy + 5% a2t pl
= lim
h—0 h
i {ab+hb) (a*+b?) - (ab) (a? +4a® h+6a%h?+ 4ah? + h* + b%)
= 1 L ¥
h—0 h (a?+5% [a+h)* + b



- i D@4 b) - (ab) (42’ + 6ah +4h? a + h?) First Order

4 4 4 4 Parlial Derivatives
h—0 a'+ a+h)'+b
’ ( PO ) ) and Bifferentinblily

_ b -3a%
(a*+b%?

f(a, b+k)-f(a,b)

fy (2, b) = li
(o B =i ‘
abm+k) ab
= lim a‘+ (b+k)*  at + bt
k—0 k
= lim B0+ 3K) @%+b%) - (@b} (a* +b'+4bk + 6b%* + 4bk® + k)
k—0 k@' +b% [a* + (b+k)Y
- lim 2 (a*+b*) - (ab) (4b?+ 6b%k + 4bk? + k3
) (2 + 1% [a+ (b + %)
- a® - 3ab*
(ad+b4)2 "

Here, by direct differentjation, we could have obtained fx(a, b) and §, (a, b);
(a, b} = (0, 0}, correctly, but not f; (0, 0) or 1, (0, 0).

Can you see why? Since f is defined as a quotient of two polynomial functions for
all {x, ¥) # {0, 0), we can use direct differentiation to calculate partial derivarives
at these points. Bui 10 calculate f; (0, 0) or f, (0, 0) we need to use f {0, 0), which
is not defined by the same quotient, Also note that after obtairing {; (a, b) and’
f, (a, b), we could have substituted a = Oporb = 0 to get iy (0, b), £, (0, b),

f; (a, 0} and f, (2, 0).

You must have come across functions from R—R which do not posscss derivatives
at some points. For example, f(x} = |x] can not be differentiated at 5 = 0. Here
is an example of a function of two variables whose partial derivatives fail to exist
4T some poinis. )

Txwraple 6 : If  : R?* — R s defined by

x .
— + i, y# Gx=0
feny)=4§ ¥ x
0 , otherwise,

then £, (0, 1) and f, (1, 0) do not exist.
Let us prove this,

. h+ = -¢
Here FO+h, D=7, 1) - h R
h h - H]
: + k-0
F(l,0+ky-£(1,0 K i .
and = = 7, o+ 1
k k k-
. .1 .
Since lim — = eo, netther
r—0 h-°
. f{0+h, I)-£{0, 1 o P 0RY -1, O
tim - nor {ma -
B0 b Lo L

exist. So fy and f, do not exisi, respectively, at the points (0, 1) and {i. 0,

Wy don't you try some exercises now?
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. . o
Ed) Ufx y) = 2x? - xy . 2y2, find —-:L and a—f at the point (I, 2).
; " v

E5) Find all the Tisst order pariial desivatives of the following functions.
a) sin (x? - y)
1
Tl
¢) y sin xz
d) x¥

¢) X’y + ¥

b)

E6) Show that the functions u = e"cosy, v = c® sin y satisfy the conditions
du )

av
9 e 2=
ey

il
~J
———

letf:R — Band g: & — A be two differentiable funciions,
Lot Fx, v} = f(x) -+ gy} for all x and y. Show that
Fux, ) = f'(®) and F.dx, y) = 2’().
EB) Let f and g be wwo real-valued functions for which fy(a, b) and g,(a, b} exist.
Sa i+ . .
Show that —(a-j-ﬂ exists at {a, b) and is equal to f,(a, b) + 2.a, bx

1s the converse true?

Through these exercises you must have gained enough practice of caiculating
partial derivatives. In lhe next sub-section we shzil try to interpret these
geometrically.

5.2.2 Geomairie Interpreisiion

In the case of 2 real-vaiued funciion {of one variable £, you know that the
derivative £'{x) gives the slope of the langent to the curve ¥ = f(x) a1 a generic
poini (X, ¥). Now we shall try 10 vicvalise the partial derivatives of a real-vaiucd
function of two varizples. Such a function, as rou knowi, represenls a surface in
R

So, let f{x, ¥) be a real-valued function of two variables and let S = [(%, ¥, %) | 2
= f(x, ¥}) be the surface represented by the function f{x, v} in ®°. sSuppose that
f(x, ¥) has both the partial derivalives &t a point {g, by and let e = f(a, b). L=t 2
be the point (z, b, €) on the surface 5. Now the plane y = b, which is pareliel to
the XOZ plane and passes through P will interseet the =urface in a curve (sec
Fig. 2(a)). We are giving an cnjargud version of thie enrve C in Fig. 20,

2 z’[‘

P, (@.b,c} L—""

: f ' e o
Pa(a'.b.c) 2
/

f-_ r

4 —-a

-

N

e -7
.;( e - A
L~
(b} {c}
Flg. 2



Let Py be a point-with coordinates (a’, b’, ¢} on the curve ¢ close io P|. Since
P; lies on the surface S and the plane y = b, we have b’ = band ¢’ = f(a-, b).
Clearly PP, is a line joining the points (a, c}and {a‘, ¢’) in the pianc ¥ = b and
its slope is given by

¢’ -¢c _ f(a’, b) - f(a, b)

a’'-a a'-a

f(a+h, b) - f(a, b)

h -

As'h approaches zero, the secant P,P» approaches the tangent at the point P, to
the

» where we have put a‘= a44,

fa+h, b) - f(a, f '
curve C. Consequently, lim (a+h, b) ,(a b), ie., _&__ (a, b) or E—
h=0 h ax dx {2, b)
‘givés the slope of the tangent at the point (a, b, f(a, b)) to the curve C which is -
the intersection of the surface z = f(x, y) and the planc y = b. Similarly,

_65_) is-the slope of the fangent at the point (a, b, ¢} to the curve C;, which
(a, &)

dy
is the intersection of the surface zZ = f{x, y) and the plane x = a {see Fig. 2(c)).
We use this fact in the following example.

Example 7 : Suppose we want 1o find the slepes of the tangenls to the curves of
intersection of the planes x = 2 and y = 3 and the surface z = xy+3x? at the
point (2, 3, 18).

We know that the slope of the tangent to the curve of intersection of the plane
X = 2 and the surfece z = xy+3x? at the point (2, 3, 18) will be given by

(&)
Y Jay

dz
Now, (—) = (X2 1y = 2.
. 3 Ja.n 3

Therefore, the slope of the tangent at the point (2, 3, 18) to ihe curve of ntersec-
ton of the plane x = 2 and the surfacc z = Xy +3Ix® g o,

.. . dz .

wimilarly, since (—‘3—) = (y+6x);, 5 = 15, therefore, the slope of the tangeni
X /0,3

ai the point (2, 3, 18) 1o the curve of intersection of the plane ¥ = 3 and the sur-

face z = xy+Ix? i IS,

You should be able to do this exercise now.

e e e

E® Find the siope of the tangent at ihe poine {1, 2, 14) 1 the curve of
intersection of the plane y = 2 and the surface 2 = 2xt 4 3y5

R ) = M ELTOT S TA - oty

You know-that if a function f from R — R is differentiable a1 palnt, i is aise
continuous zt that point. In the next sub-section we shail src whoiker any such link
exists betwean tho coniinuity and the existence of pariizi slerivative: of functinns

from R* — 2 or not.

5.

Lel
)

Conpection beiween Contiunisy png Fariiz] o Loivaiives

[

If the two partial derivatives of a function [(x, y) exist, thon whai can we infer

from this? Let’s see. Sunpose fix, ¥) is 2 real-valued funciios havig purtial
derivatives at a point (a, b). Then for & = 0,

fla+h, b) - (s, b)
fla+h, b) - f(a, b) = 97 °; (TR

First Order -
Partla] Derivatlves
oud Differeatisbility

22
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.nd therefore,
fla+h, b) - f(a, b)

lim {f(a+h, b) - f(a, b)] = lim fim h
h—o h-0 .h b—0
' = f, (a, b). 0

Therefore, we can say that f(a+h, b) — {(a, b) as h — 0, i.e., f{x, ¥) — f(a, b) a3
(x, ¥) approaches (a, b) along a line parallel to the x-axis, Similarly, the existence
of the other partidl derivative shows that f(x, ¥} — f(a, b} as (x, y) approaches

(a, b) along a line parallei to the y-axis. The existence of {;(a, b) and fy(a, b) does
not give us any further informarion, So we do not know whether the [imit of

f(x, ¥) exists or not if {x, y) — (a, b} along any other path, But you have learnt ir
Unit 4 that £(x, ¥) would be continuous at (a, b) if f{x, ¥) — f(a, b} as (x, ¥) —
(a, b) along any path (which need not even be a straight line). Thus, it is clear
from the above discussion that the mere existence of partial derivatives need not
ensure the continuity of the function at that point. This, in fact, js the case as
shown by the following example. Later on we shall se¢ that if the partial
derivatives satisfy some additional requirements, theh their existence does imply
continuity.

Example 8 : Let the function f : R? ~ R be defined by
Xy
—_ . (X # (0,0
2yl (x, ¥y = (0, 0)
0 (& Y) = (0, 0}
You will sce that both the partial derivalives of f at (0, 0), that is, [, (0, 0) and
fy (0, 0) exist, but f is not continuous at 0, 0.

f(x,y) =

(0+h, D) - KO, 0 \N0-0
Now, f; (0, 0) = lim —]-—(9#1 = lim\——— = 0, and
h—0 h h—oil h
£0, 0+ k) - (0, 0 . 0-0
£ 00 = fim 0O -10.0 4, 828 _ g
k—0 k k¢ K

So, f possesses both the first order partial derivatives at (0, 0). However, this
function is not continuous at the point (0, 8) since  lim  f(x, y) does not exist.
(sec E 3) a), Unit 4). {x,¥)— (0,0}

We know thar z real-valiued continuous function of a real variable neced not be
differentiable. ‘The same is irue for funciions of several yariables. This means that
a function of several varizbles which is continuous at a point need not have any of
the partial derivatives at the poini. The following cxample illustrates this fact,

Example 9 : Let f : R* — B be defined by
£ (xn X300 %3) = 5] + 1l + x4

We'll show tnat [ is continuous a1 {0, 0, 0) but does not possess any of the three
first order partial derivaiives ai (0, 0, 0).

MNow at the peint (0, 6, 0), ws have

f(0+h, 0, 0) - (0, 0. G h| -
£, (h) = ( ‘) ( ) _ {hl )
n h
Lo . |h! .
“Therefore, lim fith) = Iim —— = lim — = 1,
he—n b= K n-a h
L3\ h»0
o . N . =h
but m fi(hy = m -- = lim — = - L
-0 n=0 b b=t h
hed h<o

Hence, m [,(h) does not exist,
h—0

You can similarly check that

lim fy(h) and lim f3(h) also do nor exist.
h—0 h—0 .



Thus, f does not possess any of the first order partial derivatives at the point First Order
{0, 0, 0). But this function is continuous at {0, 0, 0) as you have seen in E7) d), Partizl Derivarives
Unit 4. and Differen(iability

If you have understood these examples, you should be able to solve the following
exercises.

E!0) Let f(x, y} = Jx’+yz for all {x, y} € R%. Show that f is continuous at (0, 0),
but £(0, 0) as well as £,(0, 0) do not cxist.

L] |
Ell)-Let f(x, y) = X sin ? + ¥ sin ?, Ay # 0
0, xy = 0.

Show that f,(0, 0} as well as [{(0, 0) exist. Also show that f is continuous at
(ol 0)'

E12) Show that the function f: R? — R defined by
x2y .
— ., ifx*y? % 0
fx, ¥) = { x*+y? o
0 yifx=0=y .
possesses first order partial derivarives everywhere including the origin but
the function is discontinuous ar the origin.

X ify =0
E13) Let f(x, y) = 4 ¥l
0 ,ify=0

a) Prove that f is continuous at {0, 0), and both f; (0, 0} and f, (0, 0) exis_t.
b) Show that f, (1, 0) exists, but f, {1, 0} does nat.

in the above examples and exercises we have sgen that the exisience of partial
Jerivatives does not imply continuity. However, if the partial derivatives satisfy
some more conditions, then we can ensure continuity., You will study this in

Lagrange's m.v. lheorem: Let |
be¢ a real-valued function cén-
linuous on [a, 2+ h} and dif-

rem 3. 2 thi . ced a si ] -
Th:‘:o m 3. In order .lo prove this theorem we need a simpie result which foll?ws ferenliable on Ja, a+ h. The
easily from Lagrange's mean value theorem (Block 2, Calculus, also see margin 36¢10, 1[, s.t.
remark). We {irst state this result, . f(e+h) - [{g) = hf"{z-+8h).

Theorem 1 {Meon value theorsm) ; Let £ be a real-vilued funciion defined on a

neighbourl:ood N of (a, b). If f, exists at all poinis of N and {, cxists at the point
(a, b}, then

ia+h, b+k} = f(a, b) -+ bix (@a+dh, br¥) + & (&, (& b) + )

for ali real h, k such that {a+h, b+k) belongs ro N whare ¢ depends on h and k
and 0 < @ < I. Moreover, 5 is a function of k, which tends to 0 as k — 0.

You can see that this is an extension of Lagrange’s mesn value thearem to func-
ticns from R* to R. [nterchanging x and y in tire hyvoothesis of this theorem we get
auvlher (heorem, which we now state.

Thecrem 2 @ Lol [ bBe a read-valued funcion deiinad ¢m o neighbourhood N of

(=, b), If [, exists at all poinry of N and [, exssie ae {2, B, then forreal hoand b
such that (a+h, b+k) ¢ N, we have

fa+h, b+k) = {a, b} + kfy (@a. b+8'k) + K {(l; &, B) + ")

where ¢ depends upon hand k, 0 < 8’ < I, »’ is a function of h and tends to
zerp as h — 0,

Both Theorem 1 and Theorem 2 are easy consequences of Lagrange's mean value
theorem, but we shall not discuss their proofs herc. Ve will now use these
theorems to prove Theorem 3.
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Theorem 3 : Let f be a real-valued function of two variables defined in a
neighbourhood N of a point (a, b) such that one of the first order partial
derivatives exists at all points (x, y) € N and is bounded on N, whereas the other
partial derivative ¢xists at the point (a, b). Then the function f is continuous al Lhe
point (a, b).

Proof : Without loss of generality we can assume that f, exists for all (x, y) € N
and is bounded on N, whereas [, exists at the point (a, b). By Theorem 1, for all
real h, k such that (a+h, b+k) € N, we get

f(a+h, b+k) = f{a, b) + hiy (a+0h, b+k) + k{y @ b) +m A

where 0 < § < landy — Oask — 0.
Since [, is bounded on N, it lollows that

lim hf, (2+6h, b+k) = 0.
(h, k) — {0, 0)

Consequently, from (1) we get,

lim  f(a+h, b+k} = [(a, D}
th, k) ~ (2. 0

Hence the function [ is continuous at (2, b) and the proof is complete.

While proving Theorem 3 we had assumed that f, exists at ail points of N and is
bounded on N, and [, exists at (a, b}. If instead we had assumed that f, exists at
alt points of N and is bounded on N and f; exists at (2, b), then we could have
proved the result using Theorem 2.

Now here is 2 result which follows easily from Theorem 3.

Corollary 1 : Let { be a real-valued function of two variables defined ina
neighbourhood N of a point (a, b), such that both the partial derivatives ol f exist
at all points of N and one of them is bounded on N. Then the function f is con-
tinuous everywhere on N.

Note that the conditions given in Theorem 3 arc only sufficient and are not
necessary. We have already scen in Example 9 that a function may be continuous
even when none of the partial derivaiives exisi. .

In the next examplc we use Corcliary 1 to prove the continuity of the given
function.

Example 1€ : Is the function f : R* — R given by f (x, y) = yc* continuous
everywhere? Let us find out, .
We first note that f; (x, y) = ye*and [, (x, y} =
Let (a, b) be any polnt in &2, snd consider a necighbourhood
= (N Jx-a) + (y-b) <1
of (a, b). Now, f, (x, ¥) and f, (x, ¥} cxist at all points of N. Further, since
Ix -al = Jix-2)7 + (v - ),
therefore, for all (x, y) € N, we have |x - a| <1,

e.,a~-l «x<a+l,
ie., el < of < ¥,

So, f, is bounded on N. Therzfore, in view of Corollary 1, f is coentinugus at the
point (2, b). Since (a, b) was any arbitrary point of R2, we can say that f is con-
tinuous everywhere on R2.

Try Ihis excrcise nouw,

El4)} Use Corollary i Lo show that the following [unctions are conlinuous
everywhere on R*,

xe”

a) 1{x, y)
by f{x, y) = Ixy




—

In this section we have seen that the mere existence of partial derivatives does no: _ First Order
imply continuity/ This shows that the concept of partiai derivatives does not - Partial Dcﬂ_"alf‘f“
gencralise the concept of differentiation of functions frem ™ - R. In the Rext sac- and Differentiability

tion we'll introduce a concept which is a generalisation of (e concept of differen-
tialion of real-valued functions of a single variable.

~

5.3 DIFFERENTIABILITY OF FUNCTIONS
‘FROM R? TO R

What do we mean when we say that a function f from R to R is differentiable at 8
point ¢? ’ :

Do you agreé that f is differentiable ar a point ¢ if and only if there exisis a cons-
lant A (depending on the function [ and the point ¢) such that

f{c+h)-f(c) = Ah + hy(h)
wheren(h) — Qash — 07

While checking this you will find that A js nothing bur ' {c).

This definition of differentiability of 2 [unction of a single variable can be
seneralised in 2 natural way for functions of several variables. In this section we
shail study the differentiability of reai-valued functions or two variables. Here is its
definition.

Definition 2 : Let f be a real-valued function defined in a neighbourhood N of a
point (a, b). We say that the function f is differentizble at (a, b), il

f(a+h,b+k)-f(a, b) = Ah + Bk + ho (h, k) + ki (h, k), where

@ h and k are real numbers such that (a+h, b+k) e N, ,

® A and B are constants independent of h and k bu: dependent on the function
" and the point (a, by,

© @ and v are two functions tending to zero as (h, Xy — (¢, 0).
We would like 1o make an mmportant remark here,

itemark 2 : (i) In the literature you may find another definition of differentiability
vhich we give below, .

Lui T be a real-valued function defined in a neighbourhood N of a point (a, b).
Then the function f is said (o be differentiable a1 ihie paint {n, b}, if there cxist

o constants A and B {depending on { and the point (2, b} onby) such thai
fla=h b+¥)-{fa, b) = Al - Bk - J L, By whore ol K

is 2 redd-valued function such that & (h. k) == 0 as (h, X} — (0, O).
The equivalence of these two definitions can be esiabyished vesily by using the
identiiy : : '

—~—— h kN
Jht+k* = h <—~— + k —r___'v;)

Jhiei? b=+ %4,
ity For a function f from R o R, if £/(xg} exists, then ¢ con approximate
f(x} - f{xg) by the lincar Munstion (x = xg) 7" {mg) e - Shotiariy, i gl ¥) s
differentiable art ta, by, then 2(x, vl - gla, b} can be unnoodmated by il fpear
foction X - A + (v -5 Bina nelghbansiaen of the poing (5, 0.
We now illusirate the delinition of differeniteniliry vith the kel or a fow
wxamples, :

ixsmple 11 : Let f(x, y) = x2+y°. Then we can shoo bz £ iy diilcrentiable ot
any poini (@, b).
Fur zny two real numbers hoand &, we jave

fla+h, b+k) - fla, b) = (2+h)? + L4k - 2t 1y
I 22k + 2bk o hh oo
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Ifweset A= 2a,B = 2b, ¢(h, k) = h, ¥(h, k) = k, then

f(a+h, b+k) - f(a, b} =-Ah + Bk + he¢ (h, k) + ky (h, k), where A and B
are constants independent of h and k, ¢(h, k) — 0 and ¢ (h, k) — 0 as

(h; X) — (0, .0). Thus [ is differentiable at the point (a, b).

. Example 12 : Let f(x, v) = l; Then lat us show that f is differcntiable ar al}

points (a, b) in the domain of definition of the function.

Since f is not defined for y = 0, we take b = 0. Let h and k be two real numbers
such that (a+h, b+k) is a point in a neighbourhood N of (a, b), which is
contained in the domain of f. Then b+k # 0, and

. a+h a
f{a+h, b+k)~f{a, b) = - =
¢ R T
a a " h
= -—+ —
b+k b b+k_
ak h

a4,

bo+k) b+k

IS UL ) PR PR
b2 b+k b btk

1 a -k ak
phE et h(b(’b+k)) * k(bz(b+k))

fl

1 a " ak
Se[ A = - B = =, ¥ k = ——, / ) k = ——
ST b g 0B =y YR Tt

Then f (a+h, b+k) -1 {(a, b) = Ah + Bk + h &b, kj + k¢ (h, k), where A

‘and B are constants independent of hand k, ¢ (h, kX) — O and ¢ (h, k) — O as

(h, k) — (0, 0). Hence, [ is differentiable a1 the point {a, b).
Mow here is an example of a function which is not differentiable.

Example 13 : We will prove that the Function given by f (x, y) = [x| + |¥| Is not
differentiable at (0, 0). Suppose, if possible, that { is differentigble at (0, 7). Then

f0+h, 0+k) - £(0, 0) = Ah + Bk + ho (h, k) = k¢ (b, &)

where A and B are constants, ¢ (5, k) —~ 0 and ¢ (h, k) — 0 as (h, k) — {0, G.
Therefore, |hj + |k| = Ab + Bk + be¢ (h, k) + k¢ (h, k).

Leth = Oand k > 0. Then
k = Bk + ky (0, k).
le, 1 =B+ ¢©%.

Teking limits on both sides as ih, k) — (C, 0), wegei B = 1,
because v (0, k) — 0.

Nowlet h = Oand k < 0. Tren
-k = Bk + ky (0, k)
~1 =B+ ¥0, Kk

Taking limits on both sides as (h, k}—(0, 0), we get B = -1, because {0, x)—0.
Thus the asspmpiion that the ziven fencrien js differenriabie at (0, O ieads us 1o

the contradiction B =. [ = ~1. Hence, Ix] + |¥] 15 not differentiable at {0, 5.
Now see if you can do thesc cxcreises.

E15) We have listed some results abour the differentiability of real-valued func-
tions of a real variable in the first column of the following table. Write
analogous statements for real-valued functions of iwo variables in the sccond
column, and check whether cazh of them is Liue. '



. First Order

One variable Twao variables \ . .
Partial Deriveilves
2) A constant function is differentigble . and Biffercari i
everywhere

b) If f Is differentiable at a € R, then
¢f (c € R} is also diffcrentiable at a,

¢)-If f and g are-dilferentiable st 2 € R,
then [+g is also differentiable at a.

d} If [, g are differentiable at a € R then
fg is also differentiable at a.

E16) Show that the function x*+y +xy is differentiable at (0, 0).
E17) Show that-cos (x+y} is differentiable at the point (%, -E-)

E18) Show that the following function f is not differentiable at {0,0)
Xy

=T = (xl Y) # (Or 0)
r(xl y) = Xty

0 » (X,09) = (0, 0)

Int the case of a real-valued function of a real variable, continuity does not imply
differentiability. The same is true for real-valued functions of two variables.
Consider the function f(x, y) = [x|+ [y] of Example 13. According to E7) d) of
Unit 4, it is continuous at (0, 0), In Example 13 we have seen that it is not
differentiable at (0, 0). So continuity at a point docs not imply differentiability at
that point. However, every function which is diffcrentiable at a point, is also
continuous at that point. This is proved in the theorem thar follows,

Theorem d : Let [ be a real-valued function defined in a neighbourhood N of a.
voint (a, b). If f is differentiable at (a, b}, then f is continuous at (a, b).

ioof ; Let h and k be two real numbers such that (e +h, b+k) € N. Then
zifferentiability of f at (&, b) implies that there exist two constants A, B and two
‘cactions ¢ (h, k), ¢ (h, %) such that

f@+h, btk)-1(2, b) = Ah + Bk + ao (b Ko+ kb, 0 w2}
where ¢ (0, k) ~ 0, Y (b, k) — O as (h, k) — (0, O).
Mow taking the limit on both sides of (2) as ¢h, k) -- @, 0}, we get

Hm (fa+h, b+ky-f(a, v) = 0, or
fh, %) — (0, 0)

lim fa+h, b+k) = f(a, b)
o~ (0, 8)
This shows that the functicn  is continuous at (5, LY "AC can use this resuft to
eilabiish the non-differentiability of a function at 2 ¢ivern point. For intrance, we
have seen in Sec. 4.4.2. that the Linction

2oL
. . . LT X Ty 2 U
TR, ¥) = & x“+y*
LO s W =y =0

Is net continuous at {0, 0y, Thus, 1o view of Thewrem 4, we can conclude ihat this
tunciion is not differeniiable at (0, 0).

You can now use Theorem 4 {o salve this exercice,

E19} Show that the following functions are not dicfceealiable at (0, 0) by showing
that they are discontinueus at (U; 0.
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You can check that A=1{, (a. b}
and D={, (s, b} in Ezamples 11,

12 zno 13,
T o
.-/ ".
i te e bR
'l/ ! \-.
H : '
f '
! e mmand \
i {4, b) (3 +u.b)
. !
I3
I'\
Y
\"‘-—.‘
T
Tig. 3
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LR Y

xz—yz

a) f(x,y) = [ 1y (x, ¥) # (0, 0)
1 (xa Y) = (0, o

25y ]

b) f (x, y) = [ xityl (x, ¥) = 0,0
2 (x, ¥) = 0, 0)
x*+y? ‘

C)f{x,y):,[x_y X &y

) : oy

x? ' o o
d)f(x'}')={x4+y‘ (h_)’)?ﬂ(, )

' 3 G.y) = 0,0

So far we have not said anything about the values of the constants occurring in the
definition of differentiability of a function at a point. We shall now show
(Theorem 5) that the constanis A, B mentioned in Definition 2 are nothing bul the
two partial derivatives of the function under consideration at a point. This, in
particular, would show that if a function is differentiable at 2 point, ther it has
both the partial derivatives ar that point. But is the converse true? That is, if a

- function has both the partiat derivativés at a point, can we conclude that it is

differentiable there? No. The existence of partial derivatives, as we have seen in
Example §, does not guarantee ¢ven continuity. So, obvicusly, it cannot guarantee
differentiability. ; :

'Look at the following theorem 20w,

Theorem % : Let T be a real-valued function defined in a neighbourhood N of the
point (a, b}, I f is differentiabie 2t {a. b), then [ possesses both the partial
derivatives at (2, b).

Proof : Let h, k be reai numbers such that (a+h, b+k) € N. Since { is
differentiable at the poi {a, b), it follows that
f(a+h, b+k) - (s, by = Al + Bk + he¢ (b, K} + k¢ (b, k).

where A and B are constants, ¢ (h, k) — 0, ¢ th, ¥) = 0as¢h, Ky — (G, 0.
You can see from Fig. 3, ivat if (a+h, b+k) € N, then (a+h, b) and (2 b+1}
also belong i@ N. So if we let = = 0 in the above equation, then we gt

fla+h, b)-f(a, b} = ~lh + ho (h, D)

[ (a+h, by~ [ G, b)
h

¢, = o+ &, Biorh el

4 4 - ¥
Thereiore, lim farh, Ui fabty A,
h—0 i

ie., I, (@, b) = A.
Similarly, by setting h = ¢ and proceeding as above, we can prove tbui
fyfa, b) = B. ’
This completes the proof of the ibvorem,
In view of Theorem 5, I [ is differentiable at the point (a, b), theh
fa+h, b+_k) -f(a 5 = i, @ b + kf, (a, b) + he (h, K + 585
where ¢ {h, ¥) — 0 and ¢ {n, k} — 0 as {(h, k) — {0, 0).
From thi§ we see that for smail values of h and k we can apbroximétc
f(a+h, b+k) - f (a, b) by the expression hf, (a, b} + ki, (a, b). This expression

" is given a special name, as vou will aow see.



Definition 3 : Let f (x, y) be a real-valued function defined in a rlclghtn:iurhocu:.| of

the point (a, b). If f (x, y) is differentiable at (a, b}, then the linear function
T : R? — R defined by

T (h, k) = hf, (a, b} + ki (a, b)

is called the differential of [ at (a, b). It will be denoted by df (a, b),
We will now give an example to show that a funclion may possess partial
derivatives and still not be differentiable.

X3 -y

Example 14 : If f {x, y} = x+y?
0 L (% ¥) = (0, 0)

y (%, ¥) = (6, 0)

then f possesses both the first ‘order pamal derivatives at the point (0, 0}, but is
not differentiable at (0, 0). .

Now, lim JQm0-f0O . h-0
h—=0D h e h
r - - —
and lim 0,.0+k) - £ (0, O) = lim k-0 1
k=0 k -0k

Therefore, both the first order partial derivatives exist at the point (0, 0) a.nd
£ (0, 0) = 1,1, (0,0 = -1.
Suppase, if possible, that f is differentiable at (0, 0). Then, by Remark 2 (),

[ (©+h, 0+Kk) - £ {0, 0} = hf, (0, 0) + ki, (0, 0) + JH’_TkTqa th, k)
where ¢ (h, k) — O as (h, k) — (0, 0).
f(h, k) -h+k

e
This means th'fu. o ki]ill‘l o u;%ﬁ =
J

MNow,il’h = rcos 8, k = rsin#, then

fh,k}-h+k

JnTek?

Now, ¢ (h, k) =

=cos’§-sin*f~cos§ + sin0

£or [] |

lim {0 -hrk = lim (cos® 6 - sin® 0 —cos 6 +-sin 0) -
(h, kK)—{0, 0} w - . (3)
Now since the cApiession cos® @ - sin® 6 - cos 6 - sin G i5 independent of r. (3}
1"nn1|cs that
cos® @ - sin’ 3 - cos @ 4+ sind = O for all §. Duit -5~ i3 art irve. So we have ac-
iived al a contradiction, proving that the gm,n funetici is ot differcntiable at
(©, 0).

Thercfore, 0 =

We now present the resuits of ¢his section in e foiloiug Lunrt,
T
L_____., :
- \
/ N
~
- ~

"
r __1| B i T —
Conlinuiiy [ | ouitaies ! pankll goavatives
[ P ; -

il the arrows in this chart cannot be :evesod, "0 00
= sufficient set of conditions, which would easy o oo “iffgrentiability of the func-
1ion under consideration.

ineorem 6 : I f is a rezl-valuved funclion defined in 2 acvightourbhood &f (a, b)
such that :

i¥ f, is continuvus at (a, b).

i uow give (wilthout proof)

First Order
Partizal Derivatives
and Dilferentiabifity
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and ii) f, exists at (a, b}, -

‘then f is differentiable at the poiﬁt (a, ).

Smula.rly. the statement that [ is differentiable at (a, b) if {, exists a: {z, o} and fy
Is continuous at (a, b) is true. Thus, the continuity of one of the partial dmv.mw.
and the existence of the other guarantees the differentiability of the function under
cons;dcranon

Now a function, both of whose partial derivatives are con.muous is given a

.special name. Here is the precise dsfinition.

Definition 4 : A real-valued function f of two variables is said to be contiruously
differentiable at a point (a, b) if both the first order partial derivatives ¢xist in a
neighbourhood of (a, b) and are continuous. at the point (a, b).

Note that the above definition requires that a neighbourhood of (a, b) should be
tontained in thc domain D of the given function.

An immediate consequence of Definilion 4 and Theorem 6 is the following.

Theorem 7 : A Tunction, which is continuously differentiable at a point is differan-
tiable at that poinr,
Now we shall illustrate the above. discussion with some .examples.

Exsmple 15 : Let { : R — R te a function defined by

21
X5 -
Y ——— ifx2+y* =0
fxoy) =4 xI+y? i
0 fx=0=y

We'll show that f is differentiable at (0, 0).

We shall prove the result using Theorem 6.

Now, f, (0, 0) = lim & -7@ 0
h-0 h

0 and for (x ¥ = (0, 0),
xty + dxfyt -yt
P ryh?

Using polar coordinates, x = rcos 6, y = rsin §, we get

Similarly, f, (0, O)

I

rx (x ] 5')

Ify (o )| = 1 j(cos® 6 sin 6 + 4 cos? @ sin’ 8 - sin® B)j]

= 6 Jjx + ¥ siacesiat = | and cos & = 1.
This can be made less than a given & if we take %] < —'8-— and |yi < £ .
iz Viz

This means that lim L (4, ¥) - &, (G O
{r. ) — (0, 0)

Thus, we can say that f, is cominuous at (0, 0). Consequently, f is differentiablz
(0, 0) in view of Theorem 6.

Example 16 : We will now show that { {a, v) = e* 7 sin x '+ x2 + 2xyv is
differentiable everywhere,

Since f, ¢, ¥) = " Psinx + ¢* ¥ eosx + 2% + 2y and
f, (x, ¥) = €*"¥sinx + 2Zx
arc continuous everywhere, it follows that [ is differenziable everywherc in vicv o

Theorem 6.

The following example shows that the conditions slated in Theorem & are sufficient
but not necessary, That is, a funciion can be differentiable at a-point even when
none of the partial derivatives is continuous al that point.



Example 17-: Consider the function f : R? — R given by First _Or;der
) 'artin! Nerlvatives

.1 N .
x2sin — + y?sin — , if xy = 0 and b
X, y

f(x,y) = xz'sini,ifx#Oandy = 0
X

R 1 )
yisin — ,ifx =0andy % O
Yy

L 0 ifx=0=y
» '/ ’
We'll prove that f is differentiable at (0, 0), but neither f; nor f, is continuous at
(UI 0)'
.1 |
2xsin=—-cos— Hxpl
Here f, (x, ¥) = X X
0 ] ifx=20
3y sin I cos1 ify # 0
— - — 1 e
=" : Even theugh the limits of two
and f" &, ¥) = Y ¥ . given finctions do not exist, the
0 ify =0 limit of their dilference may
exist. Therefore it is necessery Lo
. . 1 . , o1 ) . N
Since lim cos — does not exist, and lim t sin — = 0, it follows that check that lim t sin < exisls in-
=0 L -0 t addition 1o noting that Iirg cos
- . . 1 . =
lim [ (x,y)and Jim f; (x, ¥} do not exist. 7~ does not exist.
(x. y)—(0. 0) x, ¥)—(0, 0} . b

This means that I, and f, are discontinuous at (¢, 0}.

However, f(h, k) -f{0,0 =0k + 0.k + h (h sin %)+ k (k sin %),

) ] ) !
where lim hsin— =0 = lim k sin —.
th, k)=(0, 0) h t, K- (@, 6) k

Therefore, [ is differentiable at (3, 0).
See if you can solve these exercises now.

[LE T

i220) Show that the function f : R? — R defined by

;

»¢
o
L

<

-] o1
Xsn — + ysin —
A ¥

fx,y = xsini. y=0 x#0
4

is continuous but aot differentiable at the origin.

E21)  Check the following functions for continuity «nd differenuability at the

- origin.
S Xy
i ——3 Ny~ {00
a) fx, v = X+y”
' .0 if {x, ¥} = {0, M
N
ven — ifx#0
by f(x y) = X
L ifx =20

39
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E22) Show that the following functions are differentiable everywhere.
a) f(x, y) =ey

b) f{x,y) = 2sinhx + 3 coshy

In the next section we shall discuss the differentiability of functions of three or
mare variables.

5.4 DIFFERENTIABILITY OF FUNCTIONS
FROMR" - R, n > 2

10 the last secliom we defined and studied differentiability of real-valued functions
of 1wo variables. Most of the results established in the last section can be exiendeu
to real-valued functions of three or more variables. Let us start by defining dif-
ferentiability of real-valued functions of three or more variables. .

Definition 5 : Let { be a real-valued function defined in a neighbourhood of the

point 2 = (a), az,.--,3,)- The function [ is said to be differentiahle at the point &,
if there exist constants A,, Az,...,A, {depending on the function and the poinl a)
such that

f (@ + Ny, 2y +hy) = [ (@g0een20)

n n
= 3 WA+ 3 D¢ (hpshy)
i=1 i=l

where each ¢, — 0 as (hy, ka,....hg} — (0, 0,...0).

As in the case of two varizhles we have the following results.

o ar
oA = P at (a),...,a,)
j

i) If fis differentiable at a, then [ is continuous at a.

ii) fis differentiable at a if and only if

f(a+h) - () = E hifs = hl by, by Dp)

i~

where o(hy, Ray.--ubiy) — Ows it = G,

b= (, hZ""lhn) and |h] = J_z h\l

iv) If f is differentizble wt o, then [ has all the purtial derivatives at z.

v) If the partial derivatives of [ are continuous at a, then [ is differcnriable
at a.
Don’t worry, we don't expecl you oo Loov s Lisnh.
As for functions of two variabics, ... szy that the icar function T detined vy
n

T, byeh) = 3, LD,

ic rthe diffrrentlal of © al 2 "nd denoic it oy df {a).

Were are a fow examples which will halp you in understanding Pefinition 5.
Examsple 18 ¢ Let f (x, v, z) = x%+y +z? We'll prove that [ is differentiable
everywhere,

fx+h, y+k, z+h -7y, -0y 8- kfy (x, vo 2) - Ii, (x, v, 2)

GK+h)F + i o @07 -xt -yt -zt - 2k - 2Ry - 2

h? + k? + I

he (h k, ) + koa (b, k, 1) = i (h, k, 1)



where ¢y (b k) =h M,k )=k & @k ) =1 First Order

and ¢ach one of them tends to 0 as (h, k, [} — (0, O, 0). _ _ P‘_‘;‘_if‘] l?crri“"“‘_i‘_"“j
Thus the given function is differentiable at every point. #nG Difcrentiabili(y

Kxomsple 19 : Let f (x, y, 2) = [x+y+z|. Then we'il show that £ is differentiable
at all those points (a, b, ¢) for which a+b+e¢ = 0 We'll also show that f (x, v, 2)
is not differentinble at those points (a, b, ¢) for which a+b+¢ = 0, _

Suppose that the point (&, b, ¢) is such that a+b +c = 0. Then, by definition,

[ (2 b, ¢ = lim L&PbAd-f@b

» Provided the limir c:_dst:.. But

p—0 P
{{a+p,b,0)~-f(@, b, c) = [2+p+b+c| - la+b+c| = {p], since a+b+c = Q.
Therefore,
lim I (a+p- b: C) -f (al b) C) = lim L-
p—0 p p—0 P

New we know that lim i—?— does not exist. This means that f, (a, b, ¢) docs not
p—0

exist if a+b+c = 0. Henee, f is not differeniiable at such: © point.

Now, let's take the case when a+b +¢ < 0. Then there exists a neighbourhood N

of (a, b, c) such that (x, v, z) € M implies that X+y+z < U because the function

{%, ¥, z) ~ x+y+z is continuous everywhere {see Theorem 6 of Unit 4). Thus for

those {p, q, r) for which (a+p, b+qg, c+1) € N, we have

f(a+P. b+q. c+r)-f(a, b, C) =-p-g-r
=pfi(abc+q f,¢e, b, c} + rf, (a, b, c), d+bte < Oand a+prbec
) < 0. Tharefors,
because f; (a, b, ¢) = lim [a+p+dtef - Ja+b+c| le+b+¢| euoi-b-c and
TR p=0 p [a+p+bre] = —a-p-b.
=fim -2 = -1,
p=0 P

Similarly,
fy{a, b,y = -1 = £, {a, b, cy,

Thus, fis clearly differentiable at {a, b, gifa+b+e < 0.
The ;emaining case i.c., when a+bh+c > 0 is similar,

oW Nere are seme sxercises which ¥Ou can try 1o soive,

" e
I23)  2) Show that every constant Fencrion Is diifereniiad!s.

b Lat [: R? — Rand g : R? — R.be two functions such thar each is
differentiable at a point (a, b, ¢). Show thet |« ¢ s also
dirferentiable.

c) Let f: R — R be a differentiable function.” frove tha! the funstion
Af is differentiable, where A is & constant,

£24)  Show thai e following Tunclions from &Y — ¥ are cifferantiable
cverywhere.

ay 1 (x, y, z X+ 2y + 4z

LYy T(x, v, 2) = RY T VT bEx
E2%} Prove that the function {: R? — R defined by

etyer |

L.et us briefly recall what we .have covered in inis it
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5.5 SUMMARY |

In this unit we have extended the concept of derivatives to functions of several,
variables. In the process, we have

n

2)
3)

4

3)

Defined first order partial derivatives of a function at a point, If f: R® — R
then

IIITI. f(x3, xz,....%5 + 0, xi“,...,xn) - £ (X[, X3peenaXp)

h-0 h
if it exists, is called the ith partial derivative of f at (x;, Xg,...,%g)- '
Discussed the methods to prove the existence of first order partial derivatives
At a peoint and to evaluaie them,
Given examples to establish that the existence of first order partial derivatives
at a point need not imply the conlintity of the function at that point.

Defined a differentiable function of several variables: f is differentiable ot
a = (a), az,..-,8,) if there exist constants Aj, Ag,-.., A, 5.t

n n
f@+hidy+h) - T @ = Y RA + Y b6 (b
' I=i im)
Brought out the connection between the existence of partial derivatives,
differentiability and continuity of a function,

D]ffcrcnu.blluy

| Existence of partial dcrivativts_!

5.6 SOLUTIONS AN ANSWERS

£1)

E3)

E4)

fa+h, - §{a b} ., €t-¢
= lim

f; (a, by = Jim ! = 0,
2 11140 h h h
Similarly I, {(a, b) == 0.
{0+ ) - . . 1
By definition f, (0, 0} = Hm L0+h, J 1.9 = Jim —
h—0 h k=0 01
1 .
Since lim — does not cxici. §, (&, 0} does not exist.
=0
N 0 kj - f (0, 0} 1
Smula.rl) f, (0,0 = I SR = lim -
-'J
does not cxist.
« f(h, 0 -1, 0 . h-0
£ (0, =} =lim———=1
= 0.0 heo h heo R
£(0, k) -f(0,0 . 0-0
and f, (0, 0} = lim ( j‘ Qo Hm — = 0.
faey X wes ok

The. function f {x, ¥) = 2s° - xy+2y* is a polynomial in x and y.
Therefore the partial derivatives exist. Dy direct differentiation we get,
LI 4x-y;£=‘-—x—:-4}'.

dx dy .

50,(£) =4_2=2;(?') =-1+8=
x /a2 LOY S ’



E3) a) _Bi
ax

ES)

i:8)

2x cos (x*' - y) ;_--;E = - cos (x? - y)

by 3L 1 1
ax 2 (x+y*+zi+1)2
ar | 2y _ .Y
3y L3 Ry 12 T xayiia )2
o .1 2 ) z
g 2 Y22 )V2 T (x4yiizie )72

of daf . af
€ - = YZCOSXZ;, — = §fimXZ} — = Xy cos xz
ax dy ' dz

©oaf af
dy — = -"'l;_= x¥ In x%.
) . A Ix

of 2
e) — = X%y + y¥rr; a x} + 2xy
dx ay

u = e*cosy, v = ¢* sin y. Since the functions involved in u and v are

exponential and trigonometric functions, the partial derivatives exist. Then

ﬂ- = c‘cosyand—éu— = —¢" sin y and
dx . dy
dv av du dv
—= = e*sinyand — =-¢* cos y. Hence — = — and .
ax y dy ‘y ox ay
Su ¥
ay ©odx
F, (x, y) = lim F{x+h, y)-F (x, ¥)
h—0 " h
- lim fix+h) + g(y) - ({1 () + g (v)
h—0 h
- lim Flx+h) -f(x = )
h—0 h
F, (x, y) = lim F{x y+k)-F(x, y) -
k=D k

~ lip L ®TE R - T &)+ g G

k-0 k ]
- hm 8O0 -86) a'1y),
k=0 k

By definition,

{8.(f+8) \ e B (el ) - (g (o b

i

Vo Jam  se h
e | fEER B -TE L) vt b ~3@ BT
T a 0'!_ h- ' TR
iy @R B -F( Y -, BB+R B}~z b)
b=0 h h—g ~h :

|
e W
|
o—
-
z

+

e N

|
_—
]

First Order
Pactial oo dies

and Differcadabijine
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Partial Derivatives The converse i5 not necéssarily true.
Consider the following functions f and g.

Fouy) = [1 if ¢, ) # 0.0
0 iffx,¥) =00

g(x y) = [0 it (x, ) # (9, 0)
il 5) = (0, 0)

Then, (f+g) (x, y) = ! for all (x, ¥).

In E2) it has been shown that £ (0, 0} does not exist.
Similarly, we can show that g, (0, 0) also does not exist.

] ; . . .
However, T (f+g) cxisis at (0, 0) since f+g is a constant function.
X
E9) The slope of the tangent at the point (1, 2, 14) to the curve of intersecion <:

oz
the plane y = 2 and the surface z = 2x*+3y? is given by ( )
0% /.24

) , d a
Now, z = 2x*+3y%. So _:5_ = 4x and hence (j—) = 4.
. ax X /(2.9
Thus, the slope is 4.

. E10) To show the continuity at (0, 0) ol [, let § > 0 be given a rcal number.

£
Choose & = -;@ Then,

& g ——em c
X| € —=. « — = [x*+y? <« — <&
Therefore, lim [x~ 4+ ¥y~ = 3=, 0.
x—0
y=—2

" Hence, T is continuecus at (0, 0). Now, by deéfinition

£ frnged 1 [
fe (0, 01 = lim ARUI el ‘\2'—0) lim vho = lim'—-'-E'—
h—0 n -0 h k-2 h
Since, lim ——— dous :10i exist, f, (0, 0) docs not exist.

h=0 D
Similasly, f, (0, 0) dnzs not exist.
Eil) f, (0, 0) = lim I00-reo
. h—0 h
= lim ——~ = 0.

k-0 R

Similarly, f, (0, 0) = 0. tiow we have to s‘-mw that f is continuous a: L.
We have

S | L1 )
X sin — + y sin —l < {4+ Iyl
x ¥
s 1

This implics that llm q;« sz — - ¥ sin -—-\ = {0 0 - 7 0.
5 . Yy

Therelore, [ is contintaus ol {0. Gy,

f(O+h, & -1{0,0)

Bl 4 0, 0 = lim -
. h=t I
) . fMh, -0
m i 890
h-0 h

“Similarly, £; (0, 0) = ©

14



Similarly, for points (x, y)'such that xy. = 0 we get that First Order

6 Y) =6 &y = 0. Partial Derivatives

. ) o . and Differentiabiticy
Now, suppose x ¢ 0 # v, Then both the partial derivatives at (x, y) exist . )

since [ (x, Y)Y is a quotient of.two differentiable functions in x and y. By
direct differentiation

*+yh . (2xy) - Xy . (4x?)

Lk y) = =
x (% 9) (x4+y2)..
_ X%y + 2xy? - 4xdy
x*+y%H?
and
_ +yd (Y - xYy 2y
f, &, y) = 1, oh2
x+y9)
_oxf - xy?
x4+ )7
Buwt liin f {x, ¥) does not exist, because when we put y = x,
-0
y—o
3
lim f (x, ¥) = Iim 73 = 0. and when we put
x—0 x=0 X'4x ,
y—0
4
2 . X 1
= x5 lim f{x, ¥) = lim = —,
4 =0 0 ¥) x~0 x?4+ x4 2
y—0
.E13) a) Since ———l = Ix1 1y) = |x| for all y = 0,
y [y!

lim % = 0 = { (0, 0). Hence f is continuous at (0, 0).
=0 ¥
V=0

. -
Also, [, (0, 0) = lim 10+h,0-70 0

i

3
Il
=

Similarly, i, (0, 0) = 0.
b) £ (i, 0) = 0. However, £, (1, 0) does not exis{ sinca
L
FLR-1U, 0 [k

1 . I
= = -——and lii -~-— does not exist.
k k L S=f K|

Eld) ) f(x,y) = xe = .f, x,¥) = ¢’ and [, {x, y) = x¢’. Proceeding as in
Example 10, we can show that f, is bounded in any reighbourhood of any
point of R?. Therefore, by Corollary I, [ is continucus everywhere.

D) Now, f(x. y) = 3xy = f, (x, ¥} = 3v and i, (%, ¥} = 3x. Both the
partial derivacives f, and f, satisfy the encdii-ons of Corollary 1,
- Therefore T is continucus cverywhere.
Ei5) 1) A constant function of 1wo variables 15 differentizoie everywhere,
o) If {is differentiable at (a, by € R, then of (¢ £ R} iz alen diffprentishle at
(@ ©).

¢} If [ and g are differentiable at (a, b) € R?, then f + g is also differentiable:
at (2, b). "
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-4

dy If f and g are diit‘c_;:_qliq;l_qlaj at (4, 0) then [g is é.}so differentieble at
(a, b). Fore ey m gy wdt e Y aidn ot ylhiied?

Now we shall check the validivy of these statements.
a) Let f (%, ¥) = ¢ be a given constant function. Let (a; b) be any pa'nt of
+ R% Then )
fla+h b+l - b =c-¢ =0
= 0h + 0.k + b¢ (b, k) + ki (h, k).
where ¢ (b, k) = 0 = ¢ (b, k) for all b and k.
Since (a, b) was any arbitray puint of RE, [ is differentiabic cviry - =
b) Let f be differentiable at (a, b). Then there exist constants A and B c.d
functions ¢ and  which tend to zevo as (h, k) — (0, 0) such that
- f{a+h, b+k) - f(a, b) = Ah +BX + uo (h, k} + k¢ {h, ).
If ¢ # 0, is a constant, then multiplying the above equation by ¢, we get

{cf) (@ +h, b2 X) - (cf} (a, b) = a'h + B'% 4+ hd'(h, W) 4 kR B2
where A’ = cA, B'= ci, ¢’ = co, ¥’ = cf.

Now we have scen in Unit 4 that if ¢ and ¢ tend to zero as

(h, k) = (0, 0) then ¢’ and y* also tend to zero as (b, k) -~ (0, O).
Therefore ¢f is differentiable whenever c is a non-zero constant. 1f ¢ is

zero, then cf is a constant funclion taking every point to zero and hcace o
differentiable..

¢) Since f is differentiable at {(a, b} there exist constants A’ and B’ and
functions ¢ -(h, k) and ¥’ (h, k) which tend to zero as (b, k) — (O, 0)
such that
£ (a+h, b+k) - f(a, b) = A’h + B’k +he'(h, K) + ky'(h, k).
Similarly, since g is differentiable at (z, b) there exist constants A*® and
B~ and functions ¢*(k, k) and ¥°(h, k) which tend to zero as (h, kY -
(0, 0) such that ‘ .
g (e+h, b4k~ 3 (& b) = A"h + Bk + he¢~(h, k) + ke (b, LY
Then, (f + g) (a+h, b+E) - {f * &) (& D)
={A"+ A)n+ (B’ Bk + (e (h K= ¢° (i, k)
+ k[, k) = ¢ (K
= Ah + Bk + ha (b, wj + k& (1, k)
wherc A = A'+ A", B =8 +B% oMKk = '(h, k) + 07 (i k)
and'y (b, B) = VG = w0
'Now since A and B ar¢ _cdnslanis and functions ¢ and ¢ tend {0 Z00 L2
(h, k) — (0, 0} f+gas well as f - g is differentiable at {a, b).,
d) Proceed as in ¢). Tiin
fg (a+h, b+k) - fz(a. L) =~ & #k, b4 k) glavh, btk
- fa+h, b+X) B(a, )+ fa+h ey SPR
- r(al b) g(a! b)- )
=f@+h, b+k) {z{z+h, o+ Wy - sla, b)Y+ el Ly {ffa+h, bkl -
= [fa, )+ A h+L W+ 1e7h, Ky Ky ' (i, K] [A"h + Bk
Fhe Tt Bk B ol by (& h+Bk+ng'{h, D+

s =
L PR

= Ah + Bk + bo (0, k) + k¢ (i X,

1 e £

where A = A f(a L} + A's{e, D). B = S e, by + B0

Prafh o+ Btk o+ he” (b K+ HSURE Y TN

¢ G k) = (A7 (h KA
¢ f@ b e” (K + g b)é'( K
and ¢ (h, k) = [B'+¢’ {k, )] [A*h + B°k + he” (h, k) + k¥ {h, 31

L byt K+ g @by (k.



E16) Here f (h, k) - £(0, 0) = h*+k+hk = O.h + Lk + h (h, k) + ke (h,'K)

EIT)

=
1=

15

¥} 2) You have already seen in Exzamnple 3, Uni < that

where ¢ (h, k) = h = ¢ (h, k) for al! b, &, and thercfore, ¢ (h, k) — 0 and
¥ (h, k} — Oas (h, k) — (0, 0). Thus, {is ’h ferentiable at (0, 0).

Let [ (x, ¥) = cos (x +¥). Consider

(EALERDRICE)
Rt k) - cos (_f)

x
= €05 —
2
= -sin (h+k)
— —h-k +n l__sm(h+l-:) ¢k l_sm(h-i-k)
h+k h+k

Ah + Bk + ho (h, k) + k¢ (h, k),

)

where A = SLB=sl, oK)= gk =1- sin (h+k)

(h+k)
Neow, tlm ¢ (h, k)
th. )=(0, 0
- ' sin (h+k
= lim ¢mk=1- jim S80*H
{h, k} = {0, 0) h, k) — (0. 6) h+k
=1-1=0,
singe  lim sin (B + k) = lim L P wheret = h+k.
ih, k) — {0, 0) h+k -0 o

w

Th-e;'efore, f is differentiable at (%, ~4—>

Suppose, if possible, that f is differentiable a: (0. 0). Then there exist
coensiants A and B and functions rf; and ¢ which tend 10 zero as-
ih. k) — (0, 0), such that

{0+h, 0+Kk) - f(0, ) = Ah+Bk+ho (h, XY~ Ly (b, 1),

oo, "——E—E—“-"—- = Ah + Bk + he {8 Ky = it in, k).
gt k2
Porh =0, & # 0, Then 6 = 8k -+ e (G, 1
e, B4+ ¢ (0, k) =0,
Taking the limit as k — 0, ve act B o= 0,
" Simiiarly, by puing i1 = 9, ¥ < Tyowe ol J
Now if welet h = k = 0, then ve Pt “

= Ah -+ Bh + hd (b h) © he (b, 1)

V2
bes g3 = A B o R Y R
Y
and 50 1aking Umit as b — 2w = La L

which 15 impossible as A = 0 = 1.

Thus we arrive at 8 conlradiction «ne o { ¢ 1 ng: oo differentiable at (0, 0).

S 3 "

. A=y . Al " L

lin - - does not sxist ai (3, 05, {ade shows that the funciion is
.2 2

=0 X" +v :

discontinuous at (0, 0}, 2nd thorei= =~ 2 Tor; ngindde st (@ 0).

First Order
Partial Derivatives
and Differentiabitity
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E21) a) Now [; (0.0} = 0 =, (0,C}.

2 .
by If weputy = mx, f{x, ¥) = ] —. This means that the Jimit of
+m"

2
f,yYas(x,y)— (0,0 along y = mxis ——3
' 1+m

, and this is differcin
for different values of m.

does not exist and hence f is not continuscu:

Therefore, lim TR
. (x- "J""(Ol 1} X +y"

at {0, 0).

. x*+y?

c) When we pui y = mx, ns I, then [im
x, yJ—(0, 00 X-Y

2
- lim x (1+m%

= {0, But [ {0,'0) = 1.
x=0 -~ l-m

Therefore, f is discontinuous at (0, 0).

d) x*4+y* = x*

5
- £, i s |z— = ix|

This shows that  lim  f(x, ¥) = 0, which is different from f(0, 0)
n, ¥)—(0, 0)

= 3. Thus f is not continuous at (0, 0).

B20) Now |f (x, )| = x| - ly| in all cases,

( ].gm{0 OJf(x, y) = { (0, 0) and hence f is continuous at (0, 0). Now, we have
I, ¥i—i,

to show thet f is not differentiable at (0, 0). In view of Theorem 5, it s
enough to show that either f; or f, does not exist.
Now I, (0, 0) does not exist, since

1
f@,0-f@ 0 ¥ -0

h - h

= §in =
h

Lo . . . .
and Lim sin -}-\— doss not exist. Therefore fis not differentiable at (0, 0).
k-3 1

s 3 s 3,1 s

- yi-x?y vty

Atlx,y) « (0,0, 1; (%, ¥) = ~s———and f, (x,¥) = ——=
( Y) ( ) (X2+y2}2 y( Y) (xl'i')’.}"

Putting x = rcos8, v = rsind, we find that

[fy (¥} | = risin®v-cos®d sin¥d | s 2r = 2 &+y?

This implies that  tin {y (,¥) = [ (0,0). Hence {; is continuous a.
(xy) = 2,8

(0,0) and £, (0,0} =xisis. Thus f, and f, satisfy all conditions of Theorem
6. Therefore, f is differeatiable ot (0,05, and hence [ is also continuous nr
{0,0).

b) Since [f(,y)] = |y, it zan be ¢asily shown that f is contiruous ut (0,0).
Now, f, (0,0) = 0 and £, {0,0) = I. ,

Suppaze, if possible, thet 1 is differentinble atr (0,0). Then there exist func-
tions ¢ and ¥, whick teud o zero as (h,k) —~ (0,0), such tiai
fhk) - (0,00 = G.h + Lk+hé¢(h.®y+kd(h k)

Letn = k = G-Then

S . g
h sin — = b + ke (bh} + by (h,h)
I + 40+ ¥ (B,h)

Therefore, lhlrno sin = 1, which contradicts the facr that Ihim sin ];-
- -0

does nor exist.



E22) a}

b)

E23). )

b)

<)

=4y 1

Since £, (x,y} = e**¥ = {, (x,y) it can'be easily seen that f, and f,.are
‘continuous everywhere. Therefore, f is differentiable everywhere.

f; (x,¥) = 2 coshx and f, (x,y) = 3 sinhy.

So fy and {, are continuous everywhere and hence f is differentiable
everywhere,

Let [{x,y,5} = k be a constant function. Then 1
t-(x"'-hl.l y+h2! z+h]) = f(XIYJz) \

3 4 ]
=k-k = EhiA|+ E h; &
i=] i=1 .

where A; = 0, i=1, 2, 3.

and ¢ (x,y,z) = 0, i=1, 2, 3.

So f is differentiable everywhere.

Since f is differentiable at (a, b, c) there exists a neighbourhood N, of -

(2, b, ¢) such that for all h;, | = 1, 2, 3, such that (a+h,, b+h;, e+hy) €
L]

Ny, there exist constants A, i=1, 2, 3, and functions ¢ : R — R,
I =1, 2, 3, which tend to zero as (hy, by, by} — (0, 0, ), such that

] 3
fa+h, bthy crby) - fade) = §5 ha/ + Y hg
inl i=}
Similarly, since g is differentiable at (3, b, ¢) there is a neighbourhood N,
of (a, b, ), constants A;’, i=1, 2, 3, functions ¢ i=1,23, such that
3 3
Bath, b+hy c+hy)-g@bc).= 3 nal + ¥ bg
. =l T w1
LetN = NNNN;. Then Nis a neighbourkood of the point (a, b, ¢) such
that for all b;, i = 1, 2, 3, such that

(a+hy, b+hy, c+h;) € N, we have

(f+g) @+hy, b+hy, c+hy) ~ (F+g) (2, b, o)

=Lhi (A + A) + Th(e + &)

where A + A/, i=1, 2, 3, are constants and = ¢ + &,

I=1, 2, 3, are functions from R* — R which tend 10 zero as x,y,2)—

{a,b,c).
Hence f+g is differentiable at (a,b,c).

Can be proved similarty.

ct {a,b,c) be any point and let the functicn v,2) = 42y +4dz is defined

in a neighbourhood N of (2,b,¢}. Lt iy, ks, W 52 numben such that the
poiat (a+hy, b+h,, ¢+ N,)} belongs to the neighbourhood N of the point
{1,0,c). Then

fiz+hy, b+ h,, c+h;} - f(a,2,0)

LAY

nere A = 1L, B = 2, C = 4 are constauis . ud Sy om Ha e =
7)) = 0. Hence ! is differentiable ot L solar

/-
{v

=@+h) + Z(b+hy) + el - . 35 e
= h| + Zh;h_ + 4h3
= A0y + By + Chy + hyg + b 4 Y

LB, and so everywhere,

L _ - ar
TR YA Ny o+ w4 2

Let (a,b,c) be 2ny poina,

flaih, b ) - iab,0

PP
x 13,0,C0) = ﬂﬂ h
- lim- {(a+h) b+bcre {a-'rf'.) = {ab + b+ ca)
R0 h
. bh+ch
= im ———

h=0 h

Flrst Order
Partial Derivatives
and Differcntiabilicy
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= b+c
Similarly, f, (a,b,c) = ¢+a,
f, (a,b,c) = a+b.
That is, fy (a,b,9), fy (a,b.c), f, (a,b,c) exist and are continuous.
Therefore f is differentiable at (a,b,¢). This is true for all points of R*.
Hence [ is differentiable vverywhere.

E25) To show that f is not differentiable at (0,0,0), it is enough to show that
either f,, fy or f; does not exist at (0,0,0).

f(0,0,0 +r) - £(0,0,0)

—
—_-

f; (0,0,0) =

u
5
|

2
Since lin-é..—f does not exist, {, does not exist at (0,0,0).
r—0'r

Hence f cannot ‘be differentiableat (0,0,0).
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6.1 INTRODUCTION

In the last unit you studied partial derivatives of first order and differentiability of
functions of several variables. You must have seen often, that partia] derivatives of
fiest order again define functions. For instance, if fixy) = 3+ 2xy?+ 52 + 6,
then f, (x,y) = 9%*+2y?and f, (x,y) = 4xy+ 10y are again real-valued functions
of two variables with the domain R2., Thus we can talk of first order partial
derivatives of these new functions. I we consider a function of two variables,
there are two first order partial derivatives, which may give rise to four more
partial derivatives, which might again turn out to be functions. If this chain
continues, then we obtain higher order partial derivatives which constitute the
subject matter of this unit. We shal] be using these partial derivatives in the next
block. In this unit you will study Euler's, Schwarz’s and Young's theorems, which
give some sets of conditions under which the mixed partial derivatives become
caual.

{bjectives

After studying this unit, you should be abije to

define and evaluate higher order partial derivatives,

state and prove Euler's theorem,

state Schwarz's and Young's theorems, -

decide about the commutativity of the operaticns of taking partial derivatives
with respect to different variables.

[ I

L

I

6.2 HIGHER ORDER PARTIAL DIRIVATIVES

In the introduciion you have scen thae the wariizl devivgdvs i of the function
Feny)Y = 2% 4 2ny? + 5y? + 6 is again a fufciicu <f > 2nd y. in general, let
D C R?andlet f: D — R have a first oraer pariis’ o rivative I at every point of
D. Then we get a new function, say g = {,, which is defined on D. This new
function g may or may not possess first order partiz! dertvatives, In case 1t daes,
ihen g, and g, are called the second order partia! derivatives of F and are denoted
U¥ Iyx aud iy, respecriveiy. Simaiarly, if the functon [ has a first order partial
derivagive [, 2t every poinl of D, then f, defiaws = uew function. And if this new
fuonction has first order partial derivatives. then v g2l two more sccond order
actiai derjvaives, namely, fo and f,,. Thus, if (4, ¥) is = real-valued function
detined in a neighbourhood of (&, b) having both the sartial derivatives at all the
points of the neighbourhood, then
£ (a, b) = lim fy {a+h, b) - Iy (a, b) |
; h—0 h ;

. L@ btk -1 {a, k)
jim T

.y (@, b)
51
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f, (a+h, b) - f, (a, b)
h

f,(a, b+k) - f, (2, b)
Ok

fux (2, B) = 1]11501

£y (2, b) = lim

provided each one of these limits exists.

We also denate the second order partial derivatives of f by .
Jy ax

rl.l" v lny T

ax?

af a*f
f, = : f .
T axay. T ay?

If we want to indicate the particular point at which the second order partial
derivatives are taken, then we write

2f 2 . az
(a_l) » al (a; b) ’ fx.l (2, b)l ( J )
axl {, &) ox ax By (a, B

3 (a, b)
“9x oy

In a similar manner partial derivatives 6f order higher than two are defined. For
example, '

o _ 2 (PN _ 2 [3 (A
dx dx dy ax \ ox 9y ox { ax \ dy

3 2
J-f— stands for the partial derivative of ot
ox ox dy - .

. fxy (8, b}, and so on.

i.e.,

with respect 10 x and
af
Axdy

Similarly, we can extend the idea of partial derivatives of highér orders 10
functions of more then two variables. In general, if f is a function of n variables
2

is written as

Xis X34 +e-y Xy defined on D C R", then

denotes the second order paruiad
) ) X 8x,
derivarive of f with respzst to x, and x, obtained by differentinting particlly tha
. ., af 3’ . _p
partial derivative — with respect to Xj. Further, ————— will denote the thire
_ ij i Ebti ij Bxk
order partial derivative of { with respect to the variables x;, x; and %y, abtained

]

partial differentiation of — with respect to the variable x; and so on.

(\'Xj Ay
In the following examples, we snin huw to crlculote thess highsr order perda!
derivatives.

Example 1 : Let us find all the second order partial derivatives of the following
functions:

Dx, o= x4 v} + Suaxy, 2 is constant,

WU K Y, 2) = 52+ yz + azd.
Lel's take these one by one,

i) Clearly, for U (¢, y) = x* + y? + 3axy,

au - au

B = 3x* + 3ay end —— = 3y’ + 3ax. Therefore,
ax ay

U 8



a2y 3, 32U
2 2% axoday) = 32
dy dx oy B ay) ax ay

= 2. (3y! + 3ax) and
Ix

2u
— = i(sy2 + 3ax) =
ay Jy
i ForU(x, y.2) = x* + yz +x2°
©au ouU au : .
f— =2+ 2}, — =zand — =y + Jot Thoddoreg,
ux oz

LN
ax? 3
BU_ 8
dy ax dy
A
dz dx dz

ax

dy

) 3 ex + 2% = 2,
U

ox

U
dx dy ax

i
~
)

1
o

azlj d
= — = 0
o oy @

U |
dz oy dz

I
=
St
f
—

9:uU 8
ax'az
a*u
gy 9z
R
az? az

Txumple 2: I f(x, ¥) = x%tan”! L ~yZan X e 0,y 2 0,
x ¥

. al 7_ .2
we will prove that J = XY
ax ay x* 4+ y?

L_af 5 1 I . i /
sere, — = X% ——p—r- — =2y tan Doyl oL (- x
3y 1+ y¥/x* x y i XMy | yE
-3 2
X xy R
=g + = y - 2y b
+ Y Xt + ¥ v
= x - 2y tan™' -
Yy
Aud therefore,
3% : 2\
- - v . 2!! tun 1:.
ax av &% ( ’ y,}
— 1.3 1 _ 1
1 + x¥y* oy
zy?
= 1 - .
x4+ y?
_X-y
X“+y

Higher Order Partipl
Derivatives
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In the next example we go a step further and calculate a third order partial
derivative. '
Example 3 : If u {x, y, ) = ™%, then we can show that
3%
ax dy oz
Now u (x, y, 2) = ¢*%. Therefore,
du
- = xyz
%z xye™s,
. 8%
dy 9z
3u
ox dy oz

= (I_. + 3xyz + xlyi?) e™2,

= X &9 + x%yz ¢, and

e 4+ xyze™* + 2Ryz e F xiy? e'rE

i

( + 3xyz + x¥%? ™7

We are sure you will be able to solve these exercises now.

El) Find all the second order partial derivatives of the following functions.

a)_f(X.y)=cosl;
X

b) f(x,y) = x* + y*sin x®

O9f vy 2

dy f(x, y,2)

E2) IV(y 2) = x2+y>+2%5™", show that
v v -2y

+ + —

ax? ay? dz*

2

sil XY + sin yz + cos Xz

xyz® + uyz + x%y

e
&y Ay dx
a) F(x, y) = x% + o™

£3} Verify that for cach of the following functions.

b) f(x, ¥} = tan (xy?)
2
24y If x%y¥z% = ¢, show thatat x = v = z, 9z, = - (xIn )"\,
¢xX &y

(Hint : Take logarithms on both sides and differentiate.)

= A R

in Unit 3 you have seen that it is no: always possible to find first order partial
derivatives by direct differeniiation (Sec Examples 5-and 6 of Unit 5). The same is
true for higher order partial derivatives of some functions, This is illustrated by
the following exemples.

Faamnle 4 : Cancider the function
2y (X% - v
2 2 ] '-’\1 ;’: = (0: U}
S hee ey TR
RIS i
0 Y= 0,0

P e loed

10500 . we have to first evaluatcl £ (, 0)
h and 1. (0, 0).

Yo
£ (0, 0) = 11:;1 £, 0 : @0
=

Since fy; 9, Q) = lim
h—0




.o Higlicr Order Parti;_t

= :ll-n; : = 0. Derivatve:
 f(+t, 0 -f(h, O
i, 0) = fim QAL O -T( O
-0 L
=iim 2=2 <o,
t—0 t
Therefore,
. -0
f 0,0 = lim —— =0
-3

fx (0, k) - fl (0, 0}

Since f,, (0, 0} = lim , we must first cvaluate f, {0, k).

k—0 k
Now, £, 0, k) = lim Ve K= T0. B
=0 i
tk (t2- k%)
P+ K
= lim
1—-0 ) [
B Gl
=0 12 + ]\'.2
kJ
T TR
= -k,
. -k-0
Therefore, fy, (0, 0) = lm = -].
v =0 k

i, (h, 0) - f, {0, 0)

Since [z (0, 0) = lim , we first evaluate fy (h, 0) and f,, (0, 0).

h-0 h
. fF(@,sy-{(0,0 . 0-0
Now, [, (0, 0) = Iim ©, s ©,9 = lim —— = 0.
w0 g =0 5
f(hs)-f{h O
[, (h, 0) = lim e 2= £ O
=0 5
hs (h? - 5%
. h? + g2
= lim
L 5
= lim h (hz - 51)_
=0 h2 + Sz
Lo
h:'.
= L
Thercfore, f (0, 0) = lim i — 2oL
h—0 h
-~ k\ - oo ooy
Since, T (@, 0) = lim OG,H-L 09 , we first evzluate F, (0, k).
o k0 ) k
f -~ 10, ¥ . 0-0
tlaw, 1, (0, k) = lim ©, k+s) © -l = in —— = {,
Camd s e~ §

dh
i
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Therefoi'e, f. (@0, 0 =lm —. = 0,
w( ) k-0 k

Thus, you can see that to evaluate the partial derivatives of this function, we had
to.resort to the definition of partial derivatives, and direct differentiation was oot
possible.

In the next example we take up-a function which is slightly more comipliceted.
Example § : Let us evaluate f,, (0, 0) and f,; (0,0}, for the function f given by

& + yYran™ y¥/x), x 2 0

flix,y) = 4
i LA y X =0
2
We [irst note that
£(0,0) = lim L &9-10@0 _, 0-0 4
. -0 t [ ] t i

.k -1{0, % |
t

f (0, k) = lim
=0

{t* + k% tan! (k%1 - 7k4/2

=1
=0 t
Wiz hare applied L'Hopital's rale By L’ Hopital's rule, we have
[z, Aipce .
°+ LY ant (k2% - k22 2
o k? 1 2k
o 4 tan™ — + (K941 < -
i ine = [orm a1t~ . L 1 +(k /L‘?j L
0 f (0, k) = lim
1~0 l
= lim [41° tan”’ (k1Y) - 2kh)
—0
=0
. ., 0 -0
Therefore, f,, (0, 0} = limx — = G
k-6 K.
£(0,s)-f(0, 0
f, (0, 0) = lizn —L-—)——-——S-—--)—
=0 5
=92 -0
= lim 220
i~ 5
=0 ‘
T, 85 -1 i, O
Further, f, (1, 0) = fim e L8 8
=0 5
fo (RS AT SN0
= lim —- —I— -
1-0 I+
AsP ot GRS Rt Y, S {7s/h%
- b o i+ a9t
= B e e e
= 1oy P A l?J
= 0.
o K -y — - (“\ - - - "
Consequently, T,y (0, 0) = jin: b DB GD 4, 020
() h h—0 i

In Unit 5 you have seen some czpashes of Sinciions whose pariiad derdvanives L,

do not exist e Framah 5 of 100 5%



Here we will give you an example-of a functicn whose- first order partial
derivatives exist, but higher order ones do not exisi. From this example you will
also see that the existence of a partial derivativ: of o particular order does not
imply the existence of other partial derivatives of the same order.

Lxzwmple 6 : et 'us examine whether the second order partial derivatives of f at
{0, 0) exist or not, if f : R? — R is defined by

. 1 .
R A
1 {xl Y) = y . ';'.
0 JXy =0

Now, f, (0, 0) = lim £, 0 - f (@0 .

t—0 t i
et
. SRl
. 0-0 .
= lim =0."
-0 t :

+ f (h+t, 0) - [ (h, 0)

Similarly, for h # 0, f, (h, 0) = lim
1= L
-0
=um 222 _ o,
t—r o
Therefore, f, (0, 0) = lim <=9 }-l L©0 _
n—0

Now to check the existence of f,,, we will have to see whether

i L0, k) -1, (0, 0)
k-0 k

Therefore, et us find 1, (0, k), for ¥ = 0.

exists or not.

For X = 0, f, (0, k) = lim T{t k)~ f(0, k)

=1 :
l—rg jti+ k?
kl
TV
= |k[.
wow, im fL{g'—-—-k) _ 5‘—(0-—’ %
Tiog k
= lim -'—‘i,
k-0 k

which dees not exisr, showing that f,, does 10t enin at Q, 0.
WA

; _ " n
I, (0,9 = lim _f(_ﬂ_____ﬁ_,,s) 0.9 = lim £t =
-4 g =0 - ’
[ ~ 'l y
ard forh = 0, f, (», O = iim l—(n’—i—ng
he?
—ag -0
= lllTl )h 5
l-\'.'_ s -
hs .
= lim —=—= = 0
=0 _Jrizﬁ‘gz

Higher Order Partia;
Derivatives
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500-500 . 0-0

Therefore, f; (0, 0) = ! l —_— =10
h h—~0 h
H ¥ OI - » . - 0
Again, for k # 0, f, (0, k) = ) P& k+s) -0 k) _ Im} 0 =0
. - 5 [ s

f. k- 0 R -0

)’(Ol_ F f}'( ] 0) = hm 0 - 0'

k k-0 k

Thus fur fyy and fy, exist at (0, 0} and are equal to 0, while f;, (0, 0) docs nor.
exist.

Therefore, fy, (0, 0) = lim

See If you can solve these exercises now.

ES5) Show that f,; (0, 0) # f,, (0, 0) for the-function { : R? ~ R defined by
5
X .
s (& Y) # (0, 0)
fony) = § XY
0 v ) = (0,0

E6) Examinc the following functions for cquality of [, and f,, at (0, 0).

x3y?
a) fix,y) = ._,lX"-i-}"‘ VG 20,0

0 -, if{xy)=1(00

J "
e, (5, ¥) R (0, 0)
b) f(x, ¥} = ¢ 4<+Y

0 ' if (:'(J y} = (0) 0)

E7) Show that f,, (0, 0} & {. (), ) for the Mnciion { defined by

-

<Y, PR
f(xr y) = -
- XY YA LA

e L T T L L e = O T

The study of the abeove examnpl, »nd exercises must heve convinced you that ve
have 1o be careful about the acaes of variables win respect 1o which hicher order
derivatives are laken. For instance, from Exa 'npl-. Fit i= clear thal Ly, need noi we
cqual to ;. Example € goo. 2 oo osther, wes [ esiss oL (G, O, while &
docs not, showing that the guasian ol iheir eqra aliv do;s nol arise at a2ll. If you
lock at the definitions of 7., »nd ¥, =t 2 point {a, b} more carcfully, you ‘would
see why the expectation of fhe couslity iy, (8, €} = f_ (a, b)is farfetched. Ry
definition

L, b+ey- 7 "
oy (@, b) = sl bbey -
. L N - f(z 5 [ A
_ 1 §li. fla+h, b~ Bz, baly e fla+h, 0) - f(a, b) 5]
k=0 | k [ w-o 5 P h )]
. i { f(a+h, h+ky - fa, h+X: - flusn, 1) - ia, 0]
= lim | lim l - A b A =,
E-—-D =0 [T 2
Similariy,
T "h-q h=ig - b +i bY - 1o, bk} - fla, o) B
I (2, 0) = lim |t *Y ' - hx {]
L RS -
and we have already seen I Lt 4 that repeated limits ore not cqual, in general.

In the next section we will ciudy the con2iiisus wader which thase mixed partial
derivatives bscome equal.
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6.3 EQUALITY OF MIXED PA X i,.L DERIVATIVES

We shall now give a set of sufficient condiitons whivi would wnsure that the 23der
of the variables with respect to wiich higher oruwr paiiiul derivatives acc &ken 15
immaterial. In other words, if a funclion f satisfics these conditions. then its nuixed
partial derivatives will be equal.

e o LWO SoToad el

fh.arem 1 : Let f(x, ¥) be & rezl-valued funciion .uei-
giviial derjvatives [, andl fyx are conrinuous at a pdiat (4, D). Then
f.y (@, b} = fy, (a, b)

Peoof : The continuity of fuy and [y, at (a. bj implies tiae f,‘. iy Iy and fyg eXist -
in a neighbourhood, say D of (a, b)
Consu:ler the expression
v (h, K} = f(a+h, b+k)-l'(a+h b) - f(a, b+L) + ffa, b),

« hich is defined for all those real numbers h, k for which (a+h, b+ %) € D.
I et 1, denote the closéd interyai [a, a+h] or [a+h, a] s.coraing ¢ b = OO
h < 0. Let G{x) be a real-vaiued function defined on the closed interval iy by

Gix) = f(x, b+k) - f(x. b)
50 that G(a+h) - G(a) = ¢ (h, k). Since, for 2V x in I, ilic points (x, b+k) and
(x, b} belong to D, it follows that f, {x, b+X} and f; (x, b) exist for all x € I.
Now we can wrile

G’ (x) = (% b+k) - [, (x, b).
Therefore, the function G(x) is differentiable on tie clased interval I,. Thus G(x)
satisfies the requirements of Lagrange's mean valuc theorem, and we get

¢ (h, k)= Gla+h) - G(a) = h G’ (a+8h) )

= h[fy@a+6h, b+k}-fy{a+6h, )], cceerrrninns

where 0 < 8 < 1,

KON

tlow we define a function F : [, — R by
F(O = f,{(a+6l 1),

where-1, is the closed interval (b, b+k] or {b+, b] according a5 k> Oork < 0.
Jince fyy exists on D, it follows that the fuaction ¥ is ifiurcatinble.on L.
Thercfore, by Lagrange's mean valug theorem, e pot
Fb+X) - F(b) = kF'(b+&'l) for some 8", 0 < &' <
(a+0h, b+k)-fi(a+6h, b) = &y {o+-0h, b+27K)
Jdsiug Equation (1), we get
¥(h, k) = hk f,, (@+6h, b+8'k)

i. This means that

20 consequently .
S { (P
] = !
hiE-:] ™ Ih—O [y (@+8h, b+8'k)
k=0 k—0
= fy (@, b)

as fy is given to be coatinuous at (a, b).

Stariing with ihe fuaciion

H{vy = f(a +h,

-0

v) - fa. v)
far v € §. and proceeding exacily as ahov:

lim $(h, k) = fn

(a, b)

VEQT TRV

g bl 4

and coriciude f,, (a b) = f5 (a,b).

This rcsull was proved by L. Euter around 1734 wnen 118 was working on some
Hermann Amandus
gy of mived partial- .

- (L. Euler {1707-1783)
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derivatives. ThePEL- conditions in Schwarz's theorem are less restrictive than [hose
in Euler's theorem (Theorem 1). We give only the statement of Schwarz's theorem
here.

Theéorem 2 : (Schwarz's Theorem) : Let f(x, y) be a real-valued function defined’in
a neighbourhood of (a, b) such that ’

D f, exists on a certain neighbourhood of (a, b).

ii) fzy is continious at (a, b)..

Then £y, exists at (a, b) and f,, (a, b) = fry (8, b).
We now give an example-to illustrate this,

‘Example 7 : Let us evaluate fxy at a point (x, y) for the function f defined by,

fix, ¥)' = x*+ x%? + ¥ Then we'll use Schwarz’s theorem to evaluate f,, at the
point (x, y). ’
By direct differentiation you can see that
(%, ¥) = 4x7 + 2xy2 Therefore, fy, (x, y) = 4xy.
Since 4xy is a polynomial, fsy is a continuous function.

Further, fy (x, y) = 2x% + 6y’ exists. Hence f satisfies the conditions of
Schwarz's theorem and so fx &0 ¥) = Ty (%, ¥) = dxy.

Are you ready for an exercise now?

EB8) Evaluate f,y At a point {x, y) for each of the foHowing functions.

a) f{x, ¥) = x? + xy + y2

b) f(x, ¥) = e*cos y - e sin x
2,2

c) f(x, y) = —-y—z—,x;to,y;tﬁ
x“+y '

Verify that each of these functions satisfies the requirements of Schwarz’s
theorem and hence evaluate T (X, ¥).

In Euler’s Theorem we assume that bath the mixed partial derivatives are
continuous, whereas in Schwarz’s theorem we assume that only one of them, say
fyy is continuous, and that f, exists. But even though the conditions of Schwarz’s
theorem are less sirict, these are still net necessary for the ¢quality of mixed partiz
derivatives, In other words, we can have functions whose mixed partial derivatjves
at some point are equal, but which do noi satis{y the requiremenis of Schwarz's
theorera. We give one such function in the following example.

Example 8 : Consider the funciicn f defined by
2

S Gy) # (0, 0)
fx, y) = { X'+¥

0 X=0=y

“We will show that fiy (0, 0} = f5 0, 0), even though { does not fulfil Lhe

requircmenis of Schwarz's theoren,

fth, ¢ - 1(9_,_ 0)

L
il

Now, £, (0, 0) = lim
k-0

. 0-0
= lim ——
h—0 h
= 0
Also; for y = 0, .
fh, y) - 0, )

(0. v} = lim o



i h?.yl 1
=i
h-0 h2+ y2 h
. hy?
= lim
h-0 hi+y?
= 0.
r ol k - r 0, 0
Therefore, f,; (0, 0) = i x (0, k) - (0, 0)
k—0 k
= 0.

Similarly, you can check that
l, (0, 0} = 0 and for x # 0, we have

f,fn, 0) = 11‘121 1%, k) - fix, 0}

o k
) %2k |
= lim T T
k=0 x“+ k- k
= 0.

From this we get
f (x. 0y - £, (0, 0)
h

— ].
M €0, O h”—nn

Hence, we have shown thal

fhy (0, 0) = 7, (0, O}
We'll now show that the conditions of Schwarz's theorem are not satisfied. Now,
for x # 0,y = 0, we can find the partial derivatives of [ at (x, v} by
diilerentiating directly. Thus,

z
Li(x,y) = g [i}

e A
ax Xy

2()(:+Y2} x}.l - Zx]yl ‘ .
(x:+ szz
-

2xy
(x*+yH?

. d 2xy*
Further, f,, (1, y) = — ,j—-:r.’
oy | x4y

81+ vy - 8xy’( +v7)

a

{x2+},1)-
8xy? (x2-+y7) IxP+y? - v
- N
(x*+y9)
3.3
o Bxy
(X1+}‘2)3
: By’ : s
NMow, him ———— doe¢s not exist. Put y=mw 11 ————— and take e
PSR TR b i (x~+y)
Hmit as x—0, You will find that the limit fs different for diffecznt values of m.
This mcans thal I{im] o [ay (v ¥) does ot exist, which implies that 1, is not
tin, ¥)l=(u, up

continuous at (0, O,

There is another criterion which tells us when f,, cquals f,, ai a particular point.

We state this also without proof.

Theorem 3 (Young's Theorem) ; Let f(x, ¥) be a ;iei-valued function deflined in a

Higher Order Partial
Derivatives
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e,

neighbourhood of a point (&, b) such that both the first order partial derivatives f,
and f, are differentiable at (a, o). Then [, (a, b) = fyx(a, ).

As in the case of Schwarz’s theorem the conditions stated in Young’s theorem are
less strict than in Theorem 1. However, these are not necessary for the equality of
mixed partial derivatives. ‘Qur next caample illustrates this fact. ’

Example 9 : Consider the funciion f in Example 8.

2

—"2”—2 x, ¥) % (0, 0)
fix, y) = { X +¥
1] y X =y = 0,

We have seen that f, (0, 0) = 0 and i (0, 0) = 0.

You can easily check that f, (h, 0) = 0. Now we'll prove that f_ is not
differentiable at (0, 0). For this, let us start with the assumption that f; is
differentiable at (0, 0). Then there exist functions ¢(h, k) and (h, k), such that

fe it k) - £ (0, 0) = h £ (@, 0) + Kk £, (0, 0) + he (h, k), + ké(h, k) -+(2)
and ¢th, k) — 0 as (b, k) — (0, ),
wh, k) — 0 as (b, k) =~ (0, 0).
Now let us calculate f,, (0, 0).
fu (0' 0) = Iim fx-(hr 0) - rx (0, 0)
h=0 h
= 0.

Therefore,.(2) becomes
fx(h, k) = hé (h, k) + ki (h, k).
2hk* :
or, ————= h ¢(h, k} +. k i, k).
e ¢(h, k) wih, k)
Now if we put h = rcosé and = rsia § we get

AN
[

2 cos § sin'8 = cos @ o{rcos ¢, rsin ) + ¢in @ Ar cos 6, rosin E'J

Now, if r—~0, rcos 8 — Qand i 5in & — 0.
This means as r—0, h—0 and k—0, aad therefore,

. ¢(rcos B, rsin 8) —0 and wir cos 0, r sin §) — a,

Thus, taking the limit of {3) as r—0, we get
2cos 4 sin"g = 0, for all 4.

But this is imivossible. Hence 1, ir not differentizhle. Trus this funciion ;7 doss po
satisfy Lhe‘requirements of Yeunyg's theorem, even though we have i (0, 0) =

frx (0, 0). o

For most of the functions tha: = com . ceross, all the partiel denivatives are

continuous, and thereiore the vacc - " e iniied ~aatial cI.:rr.'.aEivcs Ao s not _
change when there is a charzs i n. wrder of variabies with respect w which dic
partial derivatives are taken. Lot us look at a few more cxamples.

Example 10 : Consider the funsticn f: R? = R defined by

(2 2 w000
Itx, y, z) = ? XY 42T
o Fe¥oz} - 40,0,0)

.
We'll show that 1y, (0, 0, 0) = £, (0, 9, @), whereas f,, (0, 0, 8) = £, (0, 0, C1.

Let us first calculate f,, (0, 0, D). For this we need to evaluate f; (0, C, G} 2ngd
L0, k, 0), Now

o ‘f(pl 0) 0] - [(Ol On 0) = lim 0—0 - 0 a_nd

£.00,0, 0) = 1i
<©0,0,0) = lim : im &
kD - 10K,
£,(0, k, 0) = lim @5 % =10, X, 9
p—0 o}
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P2+k2

P
Zk _ k3
lim E'-z—"'-‘_.‘—.—- = -k.
p=0, p°+k

Therefore, Ly, (0, 0, 0) = lim f: @ k, O)k“ (0, 0. 0

. -k-0
lim ——
-0k

= lim
p=0

il

= ~I.
Next, we'll evaluate fy; (0, 0, 0). Fag this we need.f, (h, 0, 0) and £, (0, 0, 0).
! 10, q, 0) - {0, 0, 0)

Now, f,(0, 0, 9) = iim = 0, and
a0 q
ry (h, 0, 0) = lim f(h, s 0) = f(hl Ol 0) .
q-0 q
h3q _ hql
= Jim h?+q?
q-—-0 . q
 lim h® - hq?
T a=0 hi+g?
= h.
Therefore,
. o fy(hr 0| 0) - ry(ov Or 0)
fyx 0, 0, 0) = lim -
— tim 22
h—3_ h
So f,, (0, 0, 9) w f,, (0, 0, 0)
NO“" f: (o, 0' 0) = lin; t(op 0| r) - r(ol 0: 0) - 0’ aﬂd
ol T
f(h, 0, 1} - (h, C, 0
L 0,0 = lim (00 -fLCO -,
r=0 T
i (h, 0,0)-f, (0,00
Therefore, £, (0, 0, 0) = fim 2 )2 fe ) o
h—0 h
- il
Also £, (0, 0, f) = lim J2: %0 -f@0 1 _ 4
p—0 P
f Y - 1. (0, G, O
This means, £ 0, 0, 0) = tim 22 h -0

Hence £, (0, 0, 0) = f, (0, 0, 0).

Here is another example .t show that the conditions in Theorem 1 are not
necessary for the equality of mixed partial derivatives.

Ewvaramla 11 o T at 110 chaw thar £ 0 0 A oo 7 (0 0 0% hut naither £ nar f
Example 11 Let vz chow ner {0, 0, 0} L €0, 0, 0}, bur neither fop mor £
is continuous at {0, 0, 0} for ine funcrion § ; 2°-- 1T defined by
oo |
—+—+— x#F O,y #0732
f{x, v, 2) = X y
0 , otherwise

£(h, 0, 0) - (0, 0, 0)
h

fh &, 0) -0,k 0 _
h
3

Now, 1; (0, 0, 0) = Ihim0 = {, and

£.00, k, 0) = lim
h—0D



Partial Derivatives Therefore, f;, (0, 0, 0) = 0. _
Similarly we can show that fyx (0, 0, 0) = 0. However, fory = 0, z # 0,

. . 2
W0y yT does not exist bocause lim o, v, 2- 0, ¥, 2) = {im 17y does not exist, and we conclude that
lion _-:!.. R h=0 h hTD - . -
h=0" ¥°h Iz (0; v, z) does not exist. Since in any neighbourhood of (0, 0, 0) there exist
im 2L e points (0, y, 2) with y # 0, z # 0, it follows that f,x is not defined in any

h-o" ¥ neighbourhood of (0, G, 0), and hence f,; cannot be continuous at 0,9 0.Ina

similar way, we ¢an show that fyy is not continuous at (0, 0, 0.

You can try this exercise now.

E9) Let f: R%.— R be defined by

i+—)L,y?:(}f,z;t0
fx, v, 2) = y 'z

¢ , otherwise

Show that at the origin i1 fis fyz and [, all exist, but neither fyy nor £,
exists. '

Now let us briefly recall what we have covered in this uni,

5.4 SUMMARY

In this Gnit, we have
1) Introduced partial derivatives of order more than one, :

2) Evaluated these higher order sariial derivatives for vanous functions.

3) Studied examples of functicis viich show thar, in qenerdl, the two sariz]
derivatives of order more then oie obrained by changing the order of variables
‘are not equal in value, even if barh exist,

4} Applicd the following tires sels of suliicient conditions which ensure Lhe
equality of f,, (a, b} and fox (a0, D).

@ Euler's thecram says thar if iz and £, are both continuous at a point {a, b),
then ’

fry @, b) = fyx (i, D).

@ Schwarz’s theorem ieils vz riiu if f,, is conunwous at {2, b}, and if f, exists
at (a, b), then f,; (8, b) - Lo {2 B

9 Young’s theorem says that if [, ... £y are differentiable at (a, h) then
fy = fix (a, b).

5} Seen, through some examples, that the conditions stated in the above ihree
theorems are only sufficieat ana aut necessary,

LN TR T

INY FTUWRPT T 4 oI 4 Teay st o
5;5 SuLd.ﬂ.iu‘f‘ﬁj PRI YRR RIS

El) a) f(x, y) = cos -:L. Then
x

'fx=—sin(i).(—i;-\. = %sin—y—
X x=/ X X

o

Hi

1

v,

5
——
» |
e



E2)

=-lc051, fsml
X X
7 Y ¥
fo=—sin— 4+ S| cos—)[|—
1
= — 5in +~¥3cos—y~
X X X X
¥ Y ¥
l‘x,—-;sm;——(cos—x—)(—?)
: .
c Ll L Lo L
X X X
l y
f - — cas =
7] ) .

D) M{x, ¥) = x¥ + y*sin (x9
Lf o= 5x* + 6xYy? cos (x9)

fy = 4y* sin x°

for = 207 + 30x*y* cos (x5 - 36x'%* sin (x9

¥
f}

24x%y? cos (x5) = fyy

12y2 sin (x5

W

i

~

c} f(x, ¥, 2) = sinxy + sinyz + ¢cos xz

* fy = ycosxy-zsinxz

fy = X cosxy + zcos yz
f; = ycos yz - x sin xz
f = ~ y*sin xy - z? cos xz
fex = cos xy - xy sinxy = f,,
[ = -sinxz -xzcosxz = [
foy = - x?sin xy - 2% sin yz
[;; = cosyz-vzsinyz = {;
I, = - y%sinyz-x*cosxz
d) f(x, 5, 2) = xyz> + xyz + ¥y
o = yz* + yz + 3%
y = %27 + xz + x°
f; = Axyz + xy
f. = 6xy
fn =28 vz 4 3 -
frw = Zyz 4+ y = [
o = 2xy
fy = 0
foy = 2xz + x = {,
9D = ey

Iigher Order Partial
Derivatives
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.-év_ LI ST SR 18 7, X -
Ca T YR = - e
v 1 L3 2x
o2 (x*+y¥+ %37 2 (R+yi+zy
. 1 . 3x?
Pyl Cryrr 2R
=@yt + 380 '
Ctyiezd)
. hz_yz_zz
(x2+y2+z2)5.f’2
Similarly,
a%y - 2yt -xt-2 v 22R-xP-y?
ayl (xl+y2+22).!f2 f gzt - (x2+y2+32).1f2 -
v | 8 | AW
So + d + ¢y . 0

* axz ayz 3z%

E} 8) f(x, y) = xy + &%

"af .
R %y + ¥ e
.8 2 2
—-a'yax =3x2 + 2y ¥ + kyd ™
— =x! + 2xy e
ay
9 2 2
=3 2 + Y T 3 c‘)’
—--ax Py x 2y ¢ b Ixy
¢ 2
So, 3f - 3%
6x 3y 2y ox
b) f(x, ¥) = 1an (1)
’ af s, s
o = yJ S‘:ﬂ‘ (xy.l)
dx
a*f = 3y2 ec? {xyd 2 Syt sec® (xy") tan (xy?)
3y ax L
of .
— = 3xy? sec’ (xy
ay
Al = 3y? yec? (x1 + 6xy’ sec? (xy’) tan (xy*}
2y £ !
.;,n;'. aif
S0, St = oo
dy dx Bx ¢V

B4) x*y'z® =c¢
Taking logaritlms on both 'sides, w¢ get

xlnx + ylny + zlnz = luc.

Differentiating with respect to y, treating z as 2 function of x and y, we got

lny+y.—l—+[lnz+z-l—-|-iz—=0
Y 2 N
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L _ny + 1 1 3  Ineyinex
" dx ady Anz + 1D?° z ax z (o cz)?
Putting x = y = z, we get
%z
= - = ~ (x In ex)”!
dx dy Xlnex ( )

il

ES) £(0,0) = Jim .w = 0. Similarly, £, (0, 0) = 0,

f(h,k)—f(ﬂ'.k)-_]
" =

and for k#0, f; (0, k) = lim
‘h=0

-50.0 _,
k

50, f 0, 0) = lim =& ¥
k-0

Also, for h 0, f, (h, 0) = lim ~C 1) — I, &

k=0 Kk
hk*
= ]_im —_—— =
k=0 h% + k¢

. So, fxy 0, 0) = lim f (, O)l: f), (0' 0) =0
h—0

Hence, £, (0, 0) £, (0, 0).
E6) a) f, (0, 0) = o.

. fth, k) - f(0, . hk?
Fork 0, f; (0, k) = lim —— =~ -2 &) X"
or O i ~ fim 2= Ay
. fx (Ov k) - f: (0, 0)
So, f, (0, 0) = lim
. n 0.0 k-0 'k
Similarly, f,, (0, 0) = 0.
Hence, f,, (0, 0) = I (0, 0)
b) £,{0,00 =0 = £, (0, 0
fth, k) - /0, &3 LI
Fork # 0,1, (0, k) = lim e 0 -G % . et = K
heo b b0 fhe 4k
: ‘f.'l {01 k) - rx (0- 0)
So, I, (0, B = lim
w (0, 0) k-0 k
L fth, &) - f(a, o , b
= lim ——— =" i = =
For, b7 0, fy (h, 0) kl-!:% k Leg JIT‘ + ki

h, 0y -1 (0, 0
'S°'f"(0'0):.fi“.} fy ( O)l,h( )

=
Consegqiicuily, T, (0, 0) = fox (0, D),

E?D) LW, 0) =0 = (0,0

i, %) - 10, o
For, k = 0, f, (0, k) = lim Ta, 5 - RISORD:
h=0 1]

. =hk-0 .
= fm —= {since & is fixed we can suppose
h=

0o - that 1n| < |k

67



Partial Derlvatives = - k.

For,'h # 0, f, (h, 0} = lim w
' k-0

(since h is ﬁ:;ccd We can supposc
=0k that k| < [R))
= h.

LOO-500 . -k-0

Therefore, 1, (0, 0) = lim = = -1
e, 1 (0, B kl_o . kl_::r; "
and f,, 0, 0) = Jim 2B O -600 _ . h-0
h-0 h h-o h

Hence, f,, (0, 0) » fx (0, O).

E8) 2) f(x, y) = x* + xy + y> Then
gy, y) = x + 2y
f:y x, ¥} =1

Clearly f, exists everywhere and [z is continuous being a consiant
function. This shows thai f satisfies the requirements of Schwarz's
theorem. Hence, by Schwarz’s theorem, f,, exists and f,; = f, = 1.

b) f{x, ¥) = e*cosy - ¢” sinx
SRy = -efsiny -e¥sinx
and f,, (x, ¥} = - e*siny - e’ cos x
It is easy to see that f, exists and f4y 15 continuous. So, in view of

Schwarz's theorem, fx cxists and

~e*siny - e¥ cos x.

fo (%, ¥} = £5. (%, ¥}

] -
= r=

X= -
c} f(x, v) = 3 };,x;‘o,y;tﬂ.
X 4+

-4ty
fy .y = S
Bxy (X7 - 1)
rx)r =y = -3

Since £, exists and £y, is continuous ai 4l points (X, ¥), where x = O,
y # 0, by Schwar:’: thcorem, we hevs
o £. 2 2
: . 8xy {x° - y%)
£, (o, V) o= f.{x, v} = -2 7
yx( r 3) Y l boad i (23 N }'2)3

E9) Now f, (0,0, 0) = £ (5. * = £,{0, 0, 5} = 0.

. {n, k, 0) - £ (0, &,
For kK = 0, £, (0; k, 0) = lim e & O-F0 %0

RS h

= 9.

(0 K, 0) = £, (0,0, 0)

=g LS

Thercforz, i, (0,5, 0) -- tin

Similarly, f., 0.0, 0) = 7, (u, 0,0} = £, (0,0, @) = 0.

. Lotk ey-f,0
For'r ¢ 0, §,(0, 0, 1) = Hu — 1o )
L =G ok
/T
= s
=0k
.. 1 1
= fim -~ = —
=9 ¥

63
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So, f (0, 0, 0} = lim =lim — Derivatives
| ) =0 T r--0 r
But lim — does not exist.
' r:-O T i .
Hence, f,, (0, 0, 0) does not exist.
Since f, (0, k, 0) = lim 12X N-f0.k 0} _ . i

t=0 T r-¢ r

) 1
therefore, f, (0, k, 0) does not exist as lim — does not exist,
. . =0T

lim rr. (on‘k- 0) B fz (0, 0- 0}

k-0 k

Hence {; (0, 0, 0) = does not exist.
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UNIT 7 CHAIN RULE AND
DIRECTIONAL DERIVATIVES

Structure
7.t Introduction 70
Objectives

7.2 Chain Rule . 70
7.3 Homogencous Functions : 8i
7.4 Directional Derivatives R7
7.5 Summary. 92
7.6 Solutions and Answers ' : 93

7.1 INTRODUCTION

You are already familiar with the chain rule which is used for evaluating the
derivative of a function of a lunction {Calculus, Unit 3)..In this unit we shail
study the chain rule to evaluate the partial derivatives of functions of several
veriables where each variable itself is a function of several independent variables,
Let u, v, w,.... be functions of a single variable t, then f(u, v, w,....) is a furction
F(t) of the single variable t. We shall describe how to find the ‘total derivatjve’
F’(t). Using these results we shali prove Euler’s theorem about homogenecus
functions. Finally, we introduce the concept of directional derivatives and discuss
its connection with partial derivatives which you have studied in Unit 5.

Ubjectives _
After reading this unit, you should be able to

& define and evaluate the taral derivative of a function using the chain rule,

@use rhe various forms of the chain tule for functions of several vatiables (o solve
problems,

odefine and identify homogencous functions,

e stale, prove and use Euler's theorem for homogencous functions,

@ calculate directional derivatives of given functicns,

@ cstablish a relztionship between direciional and partiad derivatives.

7.2 CHAIN RULZ

In chis section we describz o chain ruje which epables us to calculate the
derivatives of functions of srveral varinbles whers each variabic wself is a function
of an independent variable. Roesl! thn you hsve learnt the chain rule for functioa;
of omne variable in your caiculus cov- ., The rule seys that, suppose we have o
funcrion
y = {x),
where x is a function of 1, sav
v = ol
- ovsa
then ¥ also may be regarded ac » funerion af £, say y = F(t), and we havs
dy dv  dx
dt dx dt
Or, in other words, F'(t) = F'(x} g’{t} = (g (1)) g' (0.

Now we extend the chain rule for functions of one variable to functions of szveral
variables. We have defined the composite of functions of several variables in Sec.
3.3, There you have seer that there are several ways of forming a composite

function. For instance,



Case 1: Let [ (x, y) = x*+xy+y? be a function from R? —R, g (t) = sin t be a . .
function from R — R. Then the composite function g-f defined by Chain Rule and Dl“ﬁcuo.nn'
. ) : Derivatives
gef(x, ¥} = g (f {x, ¥)) = sin (x? + xy + y9)
is a funcrion from R? — R.

Case  : Consider the function é (x, y) = x*+y* from R — R and the function
g{t) = (sint, tan t) from R — R2, Then the composite function ¢.g defined by

¢=8 (t) = &(g(t)) = @(sint, tant) = (sin V="' + (tan g)tin¢
's & function from R — R.

Since there are many ways of forming composite functions, we will have to derive
chain rule separately for each type. In Theorem ! below, we shall derive the chain
rule for finding the derivatives of composite functions in Case 1. Later in Theorem
2, we derive the chain rule for Case 2. Let us now state and prove Theorem 1.

‘Theorem 1 : Let [ (%, y) be a real-valued function having continuous first order
partial derivatives at a point (z, b), and let g be a real-valued function of a real
variable which is differentjable at the point f (a, b). Then the composite function
¢ = gof has first order partial derivatives at (2, b) and '

ox (3, b) = g'{f(a, b)) £ (a, b)
oy (3, b) = g'(f(a, b} I, (2, b).

Proof : First of all note that the function f (x, y) is defined in a neighbourhoed of
(a, b) and the function g is defined in an open interval

I =]fa by-é f{a, b) + 6 [ for some & > 0. Since, f (x, ¥) possesses continuous-
partial derivatives at (3, by, it follows that it is continuous at (a, b). =

Consequently, there exists a neighbourhood N of (a, &) such that for (x, y) € N, A function [ : R" — R is
tke real number f(x, ¥) € I. This means thac the composite function ¢ = gaf is continusus at aif ¥ € > 0, 3 2
defined in the neighbourhood N of (a, b) and we can taik about its partial 8> 05t [x-a] < &= -
derivatives at (a g) } . Pt [f(x) - f{a)] < € Equlvalandy,
S . : i is continuous at a if for every
Here ¢ = gef is a real-valued function of two variables (also see Fig. 1). neighbosrhood ! of f(a), there
' - exists a neighbourhood N of &
b=g,f SLXEN= fix)el,
\—A—/x\
B ———— —
. fa,b) glf fa.ny,
Fig. 1 -

Let us first find the partial derivative of ¢ with respaci to x.
Since the funciion g is differentiable at [(a. ) thers caists a fuaction ¥{k) such
that

gifa, bY + kY ~ g (f(a, 8)) = kg'(7e, ) + D (1)
where U(k) — 0 as k — 0.{S2e Sec. 5.3 of Unit 5 0(2)
-Choose  k = kthy = fla+h, b) - (2, b), h = 0O,
Mow to find the partial dcriv_a[ivc of ¢ w.r.t. 2 we have to find
i 2G5 @ )

Lg h

- 5@, Q60 U womsider ihe gquotiom

w{a+h, b} -5 (a, b)
h

¢ f(a+h, b}-¢(,b) _
h : h

B (0 (2, DY +K) ~ 5 (1 (3, 03)

©h
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g'(f (a by k + ky (k)

= , by ().
| o y (D)
Substilu[i_ng for k given in (2), we get
o {a+h, b)-¢{a b = g'(f(a, b)), fla+h, b) - f(a, b)
h h
N f(a+h: b) - {{a, b) ¢ ) )

h
From (2) we can also see that, k(h) — 0 as h — 0, because [ (, ¥) is continuous
at (a, b). This in turn implies ¥{k} — 0 as h — 0. Consequently, the last term in
{3) tends to zero as h — 0, and we get
¢x (a, b) = g'(f (@, b)) f; (a, b).

The proof of the remaining part is similar,

We illustrate this theorem with an example,
Example 1 : Let us consider the compaosite function ¢ {x, ¥) = sin (2 +Xy+y 3,

d¢

d
given in Case 1 and calculatc- 3‘2 (a, b) and a—- {a, b). Here ¢ = gof where
X Y

f(x,y} = x*+xy+y*and g (1) = sin t. Both [unctions { and g salisfy the
requircments of Thearem 1. '

) ar
g'{fa, b)) . — (a, b)
ax

Ir

So by Theorem i, -3—¢ {a, b)
X

1

cos (a® + ab +b3) . (2a + b)

(2a + b) cos (a® + ab + bY

——(a b)

Il

240 b)) 2 (2 b)
. ay

~ cos (a? + ab + b} . (a + 2b)
_ {a + 2b) cos'{a? + ab + bYH

You can try this exercise now,

El) Leti{x,y) = x*+3xy+v- and g (1) = cos 1. Find the partai derivatives of

In the followmg theorem we state the chain rule for Case 2. Thr: proof of ihe

. thegrem is beyond the scope ol this ~ovrse.

Theorem 2 : If f (L) and g (1) are two seal-valued functions which are dirfercntianic
at a point tg and if ¢ (x, ) is a real-valued function of two variables, which is
differentiable at the point {{ty), g{’c}, then the function

E () = & (f (), g ()} is diffcrentiable at tp and
F'ito) = "o} ¢x (flia), 8 Ug)) + 8 o) oy (T {To} B{LoY)
Fig. 2 gives an illustration of 1w Fur‘ctiun» considered i Theorein 2.

U'\I‘UJ b\‘UU
!0/’__’[ _‘i _\‘
W(IUO).LUO} )

F=&o(fg)
Fig. 2




If we write Chain Rule and Directionail

- Derivatives
x = i{t),y = g{th z = F(t) = o(f (1), g()) = & {x, y), then the result of the

above theorem can be written as
dz dz dx dz dy
——— — + — —

d o ax dt @y ar

L oo, dz
This is knewn as the chain rule for partial derivatives. The derivative d_t is also

known as the total derivalive of z.

A similar result holds for functions of n variables where n > 2. We have the
resuit: Suppose z is & function of n variables X1, N2y eeeeen- . Xp and each x;is5 a
luncrion of t, then

dz L8z dx

de ig ax di’
‘provided 7 is differentiable at the point {x; (1), X2 (), ....... » Xn (), and each x; is
differentiable at t. ’ .

Ler us look at some examples.

Exemple 2 : Let us find the total derivative of the function

f(x, ¥) = x%y - 2x + 3y-4, where x = -2 and y=t2, ,

You can easily verify that all the requirements of Theorem 2 are satisfied.
Therefore, we have

dr -of  dx . al dy

de dx du dy di

xy-2) {I) + (x2+3} (21

[2 (1-2) 12-2] + [(t-2)*+3] 21

2034022 + 2082 + 141

407-121% + 1412

Il

I

]

In the next example we consider a function of three variables,

Example 3 : Consider the function 7 : R} — R defined by f(x, v, 2} =

Xy +yz+2zx, where x = I, y=e¢', z = e, To find the total derivative of this
functior, we apply the chain rule fer n variables and got ’

df ar dxi_if-dy o of dz

dt  8x dr 9y di . 9z di
r+z) (1) + x+2) &' - (x+v) e

= e'+et 4+ (t+e) e’ - (t+el) e

= (1+)e' + (-1 e

Example 4 : Let us find the total derivative of th- funcijon z = xy where x= ¢os
X=cost, y = (%

By the chain rule we ger

dz : ) S '
—— =y{-snt)+ x.2 -

Gt

Note that we'can also wriie

d_ & ody
dt ax dt dy dt
= X i}—- y Ef;_

dt de

Thic formula is familiar 1o you. This is Agibing oot rhe product raie of
differentiation for functions of one-variable.

Note that in Exampies 2, 3 and 4, instead of using the chain rLilc, we could have
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first substituted for x, y and/or z in terms of t, and then differentiated the
resulting function w.r.t. t. Thus, for the function.in Example 3, namely

f(x, ¥, 2} = Xy+yz+zx, wherex = t, y = ¢!, z.= e, .we can vrite

fity = e'+e'et + et
=te' + 1 + tet
And therefore, £°(t) = (1+t)e' + (1-1) e,

You can sec that this is the same.as the total derivative which we have calculated
in Example 3. by the chain rule.

You might be wondering why we have done so much work to discover the

additional {complicated !} method for finding % There are several reasons.

® First of all, it may not be always possible to express x or y explicitly in terms

of 1.
o Sccondly, substituting for x and y could make the expression of z very
complicated..

Thus, the evaluation of % may become very lengthy and tedious. In

our formula, we are carrying out the calculations in bits which are usually simpler
than the calculations involved in Lthe evaluation of % aﬁer.z has been exprcssgd
as a function of t.

We illustrate this by means of an example.

Example 5: Supposelwe want to find the derivative of (sin ™" + {tan t) ¥*".
Let F(t) = (sin t}**"* + {tan )*"*
We rewrite F(t) as'F(t) = ¢(F (1}, g{1))} where
o, v) = x¥ -+ y5, 5= f(1) = sintard z= g(t) = wnt.
Then, ¢, { and g satisfy the conditions of Theorem 2. Therefore, by chain rule
aF _ap ax a9 dy |
dgt ox dr  dy dt

= {}'x”“ + {iny) )"‘] cos t + [(lnx) x? + xy“’} secl t

J
sin )™ y
= {tan t) (—-ﬁ— cost + (In tan ) (tan ™' {cos I)
sin
. . ) tan [)sin 1 )
+ (in sin v} {sin ©)**"! (sec?ty + sin t L—-— (sec?t)

tnt

1 .
= [i + sec’ In sin ti {sin (Y [cns ilntant + sec t] {tan }*"*

J J

_Can you imagine how long it would have taken had we done this without writing F

as a composite function?

Now if you have géne through the examples carefully, vou should be able to do
these exercises.

E2) Find the 1otal derivative with respect to t in each of the following cases:

] =t .ot
a) z = x* + 3xy+y*ifx = 2cos ,y=-3+smT.
bz= 2x+3 ifx = el+i, y=c™ - 1.
Iy-2 )

Ju=xyzifx =¢



dy u = x*+y2+224 %% ifx = t241], =2,z = ¢, w = 5 .
). ¥ y . Chzin Rule and Directions;

Thus, given a real-valued functinn F (x, ¥y of two variabics, we cannot hope 1o
find a single function f (x) such that F(x, y) = F (x, (x)} = 0 for all x. Later in
Usit 10 you will see that under suiiable vonditions, given any paoint x4, there does
exist a function ¢ {x} defined in a neighbourheod of ¥, such that F x, ¢ ()} =0
for all x in the above mentioned neighbourhood. In such a situation, using the
chain rule we get )

d . ¥ * Tlenl v
E3) Find - in cach of the following cascs. Deienlives
1
) z=Inx+3xy), x =¢,y = e
b) z = 1an™! ~y—. X =lnt,y = ¢
X
2
)w=c" "% x =tcosl,y =tsint z =cost + sint
Ed4) Find the derivatives of the following functions using the cancept of totzl
derivative. '
. -1
a) 138 Ly (sin )
2t 12
by t+{t+ 1)
C) ct" + [-‘f.‘o}l
The chain rule is very useful for finding the slope of a curve given by an implicit
function. Even though you have already studied the differentiation of an implicit
function in Calculus, we shall briefly explain what is meant by an implicit
function,
Many times we come across equations of the ype X + ¢¥ + 3xy = 0. Given any
value of x, there exists a unique value of y such that the above equation is
satisfied. Thus, y is a function_of x, but we cannal express il explicitly, i.e., we
cannot express it in the form y = [ (x). In such a situation we say that y is an.
implicit function of x, defined implicitly by the given equation.
We can also apply the chain rule 10 ger the total derivatives of some composite
. functions of two variables when these variables are implicitly connected.
Let us consider the equation x2 + y2 - 1 = 0. Then giveh any value of x, there .
exist two values of y which satisfy the above equation. Therefore, we cannot find
a single f (x) such that y = f (x}, and {(x, [ (x)} gives all the points satisfying the
above equation. In fact, there are two functions
¥) =\J'I--).'Zarldy;,-=~-\1'l-x2 _
which_ together give all the points (x, y) satisfying the above equation (see Fig. 3),
A
YT y‘[ Y r
. i
| !
] ]
4 R
. N — = R - v
~1 0 | % _DI /I X -l 0 o
J
L
(o) ] i<}
Fra 1

75



Partial Derivatives

In the Caleulus cavrse you have
differentiated implicit functions

without being aware of the cxact
rulg involved.

7%

dF aF dx  IF dy

0 = —_—= — =+
- dx ax dx dy dx /i
and therefore, '
d
4y _ aFfaxli££ - 20
dx dF/dy  ° advy

d . .
and -a-x!— at any point gives the slope of the plane curve given by the equation

F(x, y) = 0.

: d
Note that we have found E{_ without explicitly knowing y in terms of x.

Now let us work oul some examples to illustrate this method.

Example 6 : Suppose y is an imp[icit function of x defined by the equation
2 2 dy
ax“+2hxy+by® = 1 and hx+by 2 0. Let us find o

We let fix, y) = é.x2+2hxy+by2 - 1, so that f(x, y) = 0 represents lflc given
implicir function,

al ‘
Now, —a— = 2hx + 2by # 0, since we know that hx + by = 0.
y N

Therefore, by Formula (°), we get
E‘l __ 9f/ax  2ax+2hy = ax+hy

ds  8f7dy  2hx+2by  hx+by
In the next example we prove a simple result for implicit funcrions of three

variables.
Example 7 : Let f(x, y, 2) = 0 be an equation in three variables x,.y, z such that

A af f ' -
—, — and -a—— are non-zero. We will show that
z

ax oy

(2 (2) (&) -
dx z(dz v Ly ‘

dy » ' . . . , .
where (__y_} denotes the derivative of y with respect to x when z is (reated z: ¢
ux Jy

-constant, and so on.

We first note that when 7 Is treated as a constant, we can think of y as an implicis
function of x determined by the eguation f (x, v, 2) = 0.
Thererore, by Formuia {*} we get

.51.3_\ ool

\dx aE/ 3y _
. .
Similarly, (E}_ - _ af/ oz
dz /, S
and (S} oAby
vdy /. a7z

Consequently,

/d_Y) (Axy fdzy |y
\dx /o \dz /Ny /,

In the next example we will consider a composite function of two variables, when
these variubles are.implicitly conrected, ie,, ococur in an impiicit eguadon.

A

" du \ : ,
Example 8 : Let us find -d— for u = sip (x* + ¥?) where x and y satisiy the

% b

© equation a’x? + b%y? = ¢%



Here u is a function of two variables x and y, where x = x and y is an implicit . Cliain Rule and Directlonal
function of x given by a%? + b%? = c2. Then v, regarded as 2 function of a Derlvatives
single varieble x satisfies all the conditions of Theorem 2. Hence we can write

du _ u o dx | ou dy @
dx ax dx éy dx R

- : du du. . )
Now we use Theorem 1 to find . and ET Noie thai u is the compesiic
X Y
of two functions g (x, y) = x* + _y: and f (1} = sin t. Clearly the function
u = sin (x*+y? satisfies the requirements of Theorem 1, since x2+y? has
continuous partial derivatives of first order and the function sin t is differentiable

everywhere. Therefore, by Theorem 1,
du d 5
— = 2x cos (x2+yY), A 2y cos (x*+y3)
ax dy . :

4 . .
Finally, to obtain -Eii we write ¢ (x, y) = a’x*+b%? - ¢%. Then by Formula (%),

- ' 2
_Q:._oélax:_ax,y#&
dx /By b2y
- d
Substituting the expressions for —a—u~ qu and = in (4),
: ax  ay dx
we gét,
 du a%k
— = 2xcos (X*+7Y + 2y cos (x%+ 2(——
o G +y%) y €os ( ¥9) oy

az
=2 (1 - -bT) x cos (x¥+y?).

Why don’t you try these exercises?

ES) If y* + x¥ = a® show that

dy  ytIny + yo!
dx xy™! 4 x¥inx

If€(x, ¥) = 0, & (v, 2) = 0, show that
i 3 dz #f o

[T
[=33
—

. . d . dz \
'(Hlm : ¥ind __‘_y_ and -— 10 caloulae Ei}
ax dy dx /

E7) If A, B, C are the angles of a triangle such that
sin'A + sinB + sin’C = x, preve that
dA _wanC-rmanB

dB tan A -tan C

_odu |
E8} Find e 1n each of the following problems.

AV oo w2 s L3 S
aju o= RS S Ryay, Yy = 3342
(Here u is a funetion of x and ¥, where % and v ore functions of x ;1 5 = »
and y = 3x+2)

b)u =x*-y) y = Inx

¢) u = x lnxy, where X4yiddxy = I

So l"ar we have been discussing the derivatives of composite funciions in scme
special cases. Now we shall introduce you 1o the most gensral form of the chain:
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rule. But before stating the result, let us look at the definition of differentiabitity
of a vector-valued function.

Let g be a vector-valued function defined in a neighbourhdod N of a point 2 ¢ R"
with values in R™. We have seen that g can be expressed as g{x) = (g,(X),--., 8(X))
for x € N, where gy,...,§m are real-valued functions determined uniquely by g. The
vector-valued function g is said to be diffcrentiable &t a if each g is differentiable
at a. )

Now we state the thedrem.

Theorem 3 (Chain Rule) : Let g = (g,..., 8y} be a vector-valued function af n
variables with values in R™, which is differentiable at a point a € R™. Let f be a
real-valued function of m variables, having continuous first order partial
derivatives at the point g(a) = (g, (a),..., 84 {a)) (also see Fig. 4). Then the
compaosite function ¢ = f«g from R" — R has first order partial derivatives at a
point a in R", given by

Dj¢@) = 3 Dif (@ (@ g @) Dylex @) j = 1,2 m,
kel
3 :
where Dy= — farj=1,2,..,n
an
Rrﬂ

TN

v

(e ()

Fig. 4
This expression may appear difficult to you. But if you look at the expressions {or
the cases n=1, m=2 and n=2, m=1 given in Remark 1 (¢} and (ii) below, you
will get a clearer picture. Though wc have stated the theorem for the general case,
we shall consider examples of funclions of two and threc variables only. For Lhis
purpose, we rastate Theorem 3 for the case n=m=2 in Remark 1 (iii).
Remark 1 : (HWn=2m = i, then we get Theorem 1. This is because, in this
case, g is a2 function from R* — R,.f is a reai-valued function, and ¢ = fegis a
function from R2 — R, Then by Theorem 3,

Dd{e} = D) Kz (a)) D: pia)
Dag(a) = D; f{g (a)) ; gia).

d
But, Dip = F{ = ¢, Dig = 5.

L
Y

\

d
D1¢=£ =¢ya-ndD23=By-

Therefore, ¢, (3, b) = ‘(g (3. b)) g« (a,-b} and
0. (a, b) = '(g (a, b} g, {1, b),

which is what Theorem @ statzs.

GYICn = 1, m = 2, then we g Theorem 2. In this tase z =~ (&, &) is 2 vector
valued function from R 1o R? and [ is a real-valued funciion defined on X Then
¢ = feg is a real-valued function defined on R. From Theorem 3 we can wiite

D, f(g, (a), g2 (a)) D(x, (@) + Da (g {(a), g (a)) D{5; {2
= f,(g, (a), g2 (@) &' (@) + f,(g) (2), B2 ()} 2" (a),

which is what Theorem 2 states.

I

De(a}



Chain Rule and Directionui

(i) If n = 2, m = 2, then the statement of Theorem 3 becomes: eeE
Derivitives

Let g = {g1. £2) be a vector-valued function 5f twe variadles. Let 7 Lr 5 reii-
valued function of two variables, having coarinious pariin! dc;iva:ivcc ai the pol

g(a) = (g (a), g2 (a)). Then the composite function ¢ =: eg {rom 5&° - Mbas
first order partial derivatives at the point a given by
Dig(a) = D; (g, (a), gz (@) Digy (@) + D, (5, (2), 52 @) Dysz @) ..05)
Dyp(a) = D, f(g( (a), 8 (2)) Dyg; (a) + D; f(g; (), & (a)} Doz, ) ”6,'
Ifweputx = f{u, v), y = gu, v) and z = ¢:fv, ) in the sxocessions {7) and {

then z can bc thought of as a function of lhc two variables x and v.
Then, using Theorem 3, we can write

oz dz dx 0z dy
+ — ——

du dx du dy Ju

|
I dz dz ax . 2z dz dy
v dx v dy ov

This formula is very convenient in the two variables’ case as you will 522 ini the
tollowing examples.

Expmple 9t Let fik, y) = x* - 3xy%, x = s? - 1%, y = 2st. Let us find

By Remark 1 (iii),
of _ ot ax  of ay
ds - 3x ds dy ds
= (3x% - 3y (25) + (-6xy) 20
= 6s [(s* - t})? - 4s%t?) - 12¢ (5% - %) (2s0)
= 655 + 651 - 3657% - 24572 + 24st*
= 65 (s* - 10s%? + 5tY
ar ar ax + a_f _61
dt ax a dy &
= (3x? - 3yY) (-21) + (-6xy) (25)
= 6t [(s® - 1H? - 457} - 125 (52 - B (2s0)
= -30sM + 60s%} - 613
= 61 (7 - 10s*? + 55%)

In the next example we consider a funciion of thres valiawies, cach of whicli is »
funciion of two vanables.

. dz dr n - .
Exnmplc 10 : Suppose we want 1o find -é-— and — forz = w4 w? o wd)
X S
. v .
where 1 = ye¥, v = xe™¥, w = =
A
As in the case of Remark 1 (iii), we can write
3z az du 9z gv dz  dw .
—_— = + — — + — —, and
ax Ju ox dv  ox v dx
dz 3z du 4 dz v a7 dw
— T — . —— + - ——
dy du dy ov gy v dy
Therefore,
dz
— 2u. ye* +.2v.e™ 4 2w, -iz
ax X
o2
= 2y%e® 4 2xe ¥ ~—']-, and
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az . i

—— = 2ue* + v (xeM) + 25 [—

% e (5)
2y

o= 2ye™ - 2xdeW 4+ 22
x?
We now give an example which deals with higher order partial derivatives.

Erxomple 11 : Letx = rcos®, y =rsnfand Vbea continuously differentiable

function of x and y, whose partial derivatives are also continuously differentiable.

We can show that ‘
*v v g% A4 1 3%V .

+ = _ f — —
ox? ay* or? roar rt ag? -
Here V is a function of x and y, where x and y are again functions of r'and 8.
Therefore, using the chain rule, we get
v ay  ax + BV 63—'

ar ax ar ay ar

av av
=cosf — + sinp — (T
ax ay . :
av av
Now, a—- and — are functions of x and y where both x and y are functions of
X

r and §. Therefore, using the chain rule once again, we get

aiv a /av . g /av
— fcosh) — [— | + sind =~ [ —
ar* dar \ ox ar \ dy
‘ y 2y 2y arv
aza_ua 2) e (0 2L 2V o)
dx* dr dydx ar dxdy dr . dy* ar

{cos &) (

} asv
(cos &) {-{cos i} = + {sin &) 3y Bx]

vV B
-+ (sin 0} | {(cos &) —3—~ + (sin &) J =
ax dy dy*

al!r . nzv ] a‘,v
= cos? @ —-;- + 25in 6 cos  ——— + sin? 0 — ... (8)
X dy
3V aty ,
MNote that ——— = —— | since V satisfies the conditions of Theorem 1 of Unit ¢
v &y dx

Similarly,
av ay ax ay gy

4 ax o9 dy od

av av
{(~rsinf) — + (r cos 6) ——, and therefore
ax ay

av 9 f’ AR
3 W\
2 2 .
= "{-r cos 6}-3V +drsned 3 V 'h 3 _&_i _al"_\- !
3 \'ax? 28 " ayox o8/ :
[ R _‘EY_ P ( a‘v 13?( + aiv _3_")_"\ )
TR aeh by TR ALy P ! I
3y “\oxay a0 ayr a0/ .;
Or, |
|
1 8% av A 3%V ELY !
— = 9——sm86———(sin0} rsuw—+'-.osﬂ——— !

)

r 892 9x F ax? 3x Oy-/ :



. v . dv ’ Cksin Rule and Directionzl
+ {cos %) ( -r1sin @ ox 3y + rcosd B ‘ Derivatives
av v . awv LY
=—~—+rsin28——-,—-2rsm6c050 =+ [ costd —=
ar ax- dx dy dy*
after substituting from Equation {7). Consequently,
LV gy , 3%V LY
=5 o3t — — = sin% v - 25in0cos§ ——— + ol 3 {9
r° ag r or ax- ax dy ay
Adding (8) and (9}, we ger,
OV LAV @V LV 1 gty
ax? ay! a2 r o ar rt gt
Here are some exercises for you,
. du du .. .
E9) Find —‘3—— and > for eachk of the followinz functions.
r s
) u=x*txy+y? X = r45,y =rog
b) u = tan”! i,x =T+s, v =715
X .
€U =cosxy, X =r1%y = e
ElQ) fu="fly-z z- X, X - y), then prove that
_a_u_ + ..61 + §U = o_
ax oy dz
6 .
E11) Find ﬂr—, e and 6_“ for the following functions,
ar  as al
x+ 4 h)
d) w = y,x=r—25+t,y=2r+j-:l.:’.=r"-.'-sl+t'
z .
bl w = xy YT b ZH, X = T 0SS,y = rsintl ;o= <t
Jz
Ci2Y Mz = f(u, v), where & = ¢ cos yound v - - v. cbizin _é_ and
X
az .
= and show thar
dy
a’z %z . . /3% 3%z
St o =t Y 7t oo}
ax dy~° du* .-

In the next scetion we shall discurs 2n epplicaticn of vhe chain role.

7.3 HOMOGENEQUS FUNCTIONS

i this section vie will consider 2 special class of function: of swveral variables,
called omogeneous functions, We shali matnly sieerive x chesrom known as
Euler's thcorem, wihich characrerises homogeneous fapctions urin- the techinigiee,
ST the chain ruje given in the 1ast seenon. Bur whit s @ home
@1 us see.

oy funstion?

fr

*'ou have come across polynomials of e ype - by, 797 - 3xy - Sv? in vaciois
contexts. Note that each ierm in ax - by is of degrev |, while each term in
2x2+3\'y+5y: is of degree 2, Suppose we raplace x Uy i und ¥ DY 1y in e first
polynomial, Then we getatx+bty = ¢ (ax+ b¥). Similariy replacing x by tx and ¥
Oy ty in the second polynomiz!, we get

2067 4 Stx 1y + it vt = 2 %% = 2y - &7y



= 2]

[ ]

Partial Derivatives

‘i} 'rrx. ¥)

Thcsc are the simplest examples of hangcnunm polynomials of _degree | and 2,
respectively. More generally,'a polynomial with real cocfficicnls in two variables x
and y is called 2 homogeneous polynomia) of degree h, if cach term in the
polynomlal is of dcgr#c h. The most. general pulynom:al of dcgrcc Loin x, y is

By = ) a,, x* y*
Aepeh
hel), el
Here also we'note that il we rcp]ace x by tx and y by ty, then we get p(tx, ly) =
th pix, ¥). Thus if p(x y) is a homogeneous polynomial of degree h, then p(x, y)
gets multiplied by t" if x is replaced by tx and y is replaced by ty for any real '

-numbcr L. This phenc)menon makes sense for functions ather than polynomials
‘100,

For |ns:tancc :f fix, y) = 3 24_- /2 | then
' f{lx ly) = tffx Y) for allt > 0. LT

W&call ,'x +y “a homogencous fuuctmn of degrcc 1. ‘Viorc formally. we have the'
following dct"nmon

Defmnlum 2: Lel D be a subset of R” such that if (X, Xz0.-0 X5) € D, then

(1X), ..., 1X,) € D for all t > 0. A function f:D—-Ris Sald te be a

homngenenus function of degree h, h being a rcal number, if

f{1Xy, tX3, =ven Kg) "= t™ fx), X3 -.-., %) for all points (X, x}, vives %) € D and alt
t =0 iz -
LL[ us Iook at some examples,

Example 12: Let us show that the following funcuons are homogeneous functions.

lan X : o
x y
) fx, v = 3 xt a3yt
: x2y
()
FE—

ey

xy?+yztsax?

i) fx, y)

i) f(x, ¥, 2) =
’ CXTY T2
Let us take these one by one.

) Replacing x by tx and ¥ by ty when t is a positive real number, we gel
Yo L
f(ix, ty) = tan oo tan LA 12 {(x, V-
1x X :
Thus, F(x, y) is a homogeneous funétion of wwo variables of degree zero.

" r"’ﬂ____‘_"
iy r'u\ = 1 1.[ 4

Ly A—=7 -y X'+ Al

= (tH 3 ,Jx‘+3y"

PP -
L NA!JJ

", Thus, f(x, y)is a homogcncoﬁs function of two variables, of degree 43,

iii) fiex, ty) = —————— -




: 32y, Co-
. (_‘I_J:_}J_) sin (_:_y__) Chain Rule and Directional
U (x+y?) i Derivatlves

In (x+y) ‘; (-’.H-y I
X T x )

O 1(x, ¥).

u

Thus, f(x, ¥) is a homogeneous function of depree scro,
ao 1 A
IX, Ty~ +1y, "2~ + 1z, [*x~
- OIS

iy NN, oy, (2)
IX+1Iv+iz

!y Fyzt )
UX+y=7)

©° fix, v, 2).

1}

Thus, f(x, v, z) is a homogeneous function of three variables of degree {wo.

Sid you notice that the degree of homogeneity for the [unctions in i}, i) and iv) is
an integer, whereas the degree of the function in ii) 1= noc ax Integer?

Tuw should be able 1o do these exercises now.

Ei3) W thh of the following functions are homogencous? If a function is
homogeneous, determine the degree of homogeneiry,
XU~ vy —Zw

a) fi(x, ¥.z, u. v, w) = ——
AT N Ut e Ty

b} fix, ¥} = max {l ,\'T
Yy o,
cl f{x. ¥) = S_m X
sin ¥
d) fix, ) = x!7 17

ey fx, y) = 3X2'}’ - .'(}': - :r)-":

DI y) = Xy + 2xyT ~ oy =gy

b e -y S,

e T T

Wz-shall row state Euler's theoram., which Lives o beaplly
Ll ey I,

homogencous funtctons. For the szke of simpuictry woe shall speds
for the case n = 2,

Theorem, § (Ealer's Theoram) : Lot D be a subsei of 3 tush < or
. Ty,

Pod T T RO A 3

J darany (%, ¥) € D, there exisdy an op=i 3isc o tadin. oL b oo
cuontained in D, and
d) for any point (x, y) € D, the point (ix, t3) € D for nii > 0,

et { : D =R be a function ’1'"'ih" contizuonrs partial Z:-ivotives of first veder af
all peints of D. Then {(x, ¥} is 4 homogeneous function of cegver il and only if

af,{a,-b) + bf, {a, b) = hffa. L) for any point {a_ b)Y in I

CUL L Suppage (X, ¥) is a"hc.uo geneous funclion o) degree 1 Seifre 2 fnction
i f— & bv

B

FOG - tat, B = i (1, vﬁj.‘,.
is any poind of Tt a

T2z 2 funcriion o7 s
L, o can chech i

Thus, wy get
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F*(1)

u’'(t) £, (), v (1) + v’ Flu), )

af, (u), V) + b £, (u(t), v(D), since u’(t) = a and v'.{¢) = b. _
ady (at, bt) + b f, (at, br). ' : (10}
But fi(x, 3;') is a homogeneous function of degree h. Therefore

F@) = f(at, bt) = t" f(a, b) .
and F' (1) = h ™! f(a, b). : I

[t

i

Equating (10) and (11) we get
afy (at, bt) "+ b f; (at, bt) = ht"! f(a, b) for ali t > 0. A12)

Putting t=1 in (12) we get

af,(a, b) + bf(a b) = hf (a, b).

Conversely, suppose that the function f(x, y) satisfies the 'rclation

afy (a, b) + b f, (2, b) = h f(a, b) for all {a, b) in D. ..(13)
For the function F(t) defined above, we have

F/() = af, (a, bt) + b ¥, (at, bt),

where (a, b) is any peint of D. Since (a, b} € D implies that {(at, bf) € D it
follows from (12) and (13) that

atf, (at, bt) + btf, (at, br) = hf(at, bt).

Consequently, tF‘(t) = hf(at, bt} = h F(D

or ﬁ'(L} = ~':— Fit)

* Consider the function ¢ {t) = t™ F@) for t > 0.

tPEF@ - h ™! F@)

-h [F’ (M - % F(!}J

0 foralo> 0.

Clearly ¢/(1)

o

Therefore, ¢(t) is a constant funcrion for all t > 0.
But ¢(1}) = F(l) = f(a, b). Thereiore,
i) =fa,b)y¥Yi> 0
ie, t"F(t) = Ma. b) for ailt > 0
i.c., F(t) = t" f(a, b).
Thus, flat, bi) = 1" [{a, b) for any point (a, b) € D. This means that { is a
nomogencous function of degree h.

Remark 2 ; Il we write z = [, y), then by Euler's theorem {{x, y} is a
homogeneous function of dcarc" 1 if and only if
az dz

-— = nz.
ax M ay

This relation is known as Euler's ratation.

Ty this exercise befare praceeding [urther.

AT,

Eid) TIf D is a subser of B> which sarisfies (i} and (i) of Theorem 5, and if
f:D - Risa homogeneous function of degree n, which has continuous
- . . of a0
second order parual derivalives, then —‘-3—- and a arg homogeneous
functions of degree n-1. A y

This exercise leads us to the foliowing result.

Corollary 1 : Let f : D —R where D is a subset of R* as mentioned in the



Slatement of Theorem 5. If f is a homogeneous function of degree n and if f has Chain Rule and Directional

continuous partial derivatives of second order at all points of D, then Derivatives
%z . 3tz 3%z
2 2
¢ —— + 2x ¥ ——= =n{n-1)z
ax? Y dy dy? ¢

for all points (x, y) € D, where z = f(x, .

Proof : Since z is a homogeneous function of degree n and has continuous second

. ., . . az dz
order partial derivartives at all points of D, it foliows that both = and — are
X dy

homogeneous functions of degree n-1 (sec E 14), and have continﬁous partial
derivatives of first order at all poinis of D. Thus, applying Euler's theorem to the

functions E- and -ai, we obtain
ax ay
8% . 0% oz )
X— + =Mn-H— ...(14
dx- Y dy dx ( ) ax (14
and
8z 'z dz
b + Yy — = -1 — .-.[15
dax dy y ay? @-D ay t3)
d%z a2z .
But = 1 10 view of Schwarz's theorem {Theorem 2, Unit 4).
Ix dy dy Ix

Therefore, multiplving (14) by x and (15) by y and adding we get -

87 a* 2 3
xz—i+2xy z +y1-§-i=(n—l) x—z+y—qz—
ax? ax dy ay? ax ay

. 3 .
But,(x -éi + y E = nz. Therefore,

22 2 aZz
xz—2—+2xy +y2———2—=n(n-l}z i
ox ax dy dy
We shall now illustrate Euler’s theorem with some examnles, Y T

Example 13 : We'll first show that the funétion X>0,y >0

X+y . D
satisfies the requirements of Euler’s theorem, and then verify Euler’s relation by
direet computation. '

Lei D = ¢ x, Vix>0,y>0,andf: D—R be defined by F(x, y) = \x.yy
Thep - b
Dy eDo(xy)eDforalll > 0 : : ' x
i) 0f {a, by & D, then the disc of radius = > min 'a, bl with centre {2, b) is
comained in D. Ser Fig. 5 -
Fig. 5

Now the piven lunction is a homogenecous function of degree !, because
\ : xy

fax, 1y) = —= - tf(x, y).
tx+y)

Further, for any point {(x, ¥) € D, a simple caleslazion shows that

h] h
y? X2
Lo = 7and (N y) = ——— and
L - z Fae o 2
Ty X+ ¥}
these are clearly continupus on 2. Thus, a¥ ihe setirements of Euler's theorem

are satisfied. :
To verily Euler's relation we Bave ta nrove thes

XLy +y f, 5 v) = 10 y)
Now,

y? o 52
Oty T ey

X, v) + yi(x, y)l-.: X



Partial Derivatives - . T Xty
(x+y)?
Xy
(x+7)
. fx ¥

1Ll

This proves Euler’s.relation.
In the next two examples we coisider nverse trigonometric fungiions.

X
Example 14 ; For the function z = sin”' — + tan’! 7 defined on
¥

X
D=1 |0 <x <y, we'll prove.that
az z
Xowm o yo— =
ox dy

We first note that D satisfies conditions (i) and (ii} of Euler’s theorem. Let’
f(x, y) = sin”? = + tant L,
Y X

Then since
Mix,tyeDforal{x,yyeD,t > 0, and

(i) fitx, ty) = 1°f(x, y) forall (x, Y) ¢ D, wecansay thatz = { (x, y}is a
homogeneous function of degree 0.

L 1
" Further, f, (x, ¥y} = -ai = 1 -_) __?fi. ——

ax y ; 2 b
l—x—2 1+L1
¥ X

Since (X, ¥) € D is such that 0 < x < y, f, is defined and continudus for all
points of D. Similarly )

fo(x, ) = — =
y (X ¥) = " / ” = y2
‘\1-?— ,l+?

= _ (1 (-2): [t (4)

It
t

I 1
AN SR
Y .:,2 xz

is defined and conlinuous [or sli points of D. Thus by Euler's theoreny,

oz gz
xX— +y-— =10
ax ay
; I :
Example 15 : Ifu = sin™ ——-~, 3 < x < i<y < 1, let us prove thnt
\‘..i.-‘.
du du
— 4+ y-— = tanu.
ax dy
Let D = {(x y}} £ > 0, ¥ > 0) and f : D — R be defined by
- xt syt
fin, 9) = —
Y
Then the function » = (s, ¥} .5 « homcgoacous function of degrez | apd sain DS
the requircments of Euler’s theorem. Fhurefore,
az dz ' Iy
*x— + y— = ool %, ¥) & L. LV
ax ay :

Nowfake D' = (Y |0 < x < 1,0 <y < 1] Then D‘c D and hcncﬁc
Equation (16) is true in particular for all {x, y) € D’. Also, for all (x, y} € 0O v
have

55



x4yt
sinu = - S
X+y

au dz
—— and - -
dy

g

dy

dz
Therefore, - = cosu Con U

dx dx

these values in (16) we gel
. e .
(» — +- ¥ E—)cosu = sin v

a3 }l —
ax dy
why don'l you iry some exercises now?

- Cors njuently, substituting

tra

X
Irz = -:;-I-/?_

144 -,
EL5) show Lhat x % o+

T
+ },I!S X

El6) Verify Euler's relation for the functions

1
X'yl

X+y

3 u =

I

X

b) u = 1an

by direct caleulation.

f

7 , then show Lhal
Va4 vy

EI?Ty 1z = sin’!

dz dz
X — + ¥
ax ay

= 0.

o XY
X+y

E18) Ifz = tan , then show that

+ dz _
ax yay -

5in 2x,

Ut e

in the next section we shall study yet another way
runction of several variables,

7.4 DIRECTIQNAL D

We wili now inlroduce you to the cansend of o
«xilain the conzept for &2 vou vaib ssu G,

fin,
derivatives in the directions of ¥ and v axes.

You are already lamibizr with the terin "unit vecion
know that a vector (4, b) is a wnit vector if |{a, b)

¢; = {1, 0} and & = {0, 1Y are known as uni ol
womeor  FracEositealv
S Smeimop e mspemls mlre

In cenerald, 2y eaic veotor i 37 FOTEES.
sncle which (e unit veclor mnkes T
S J 2= 0, fhen we get the duil voo e o - wos

of the x-axis. When we pm g = w/2.

i l\nn r\l‘ thc V- 's'\ 'S

(i wall aluiaes o

Now let a = (4, a;) be any paint of B° and v

in 2% Then the set [z+tv st £ R}

[{er rieo

(R ]

¥} which you have been siudying o far ran l

WE ge LR i ve

C rmnm s = —ame maee

i detimne the dorreative of o

cet e e SR e uh-;ﬁ',"

[ W ol

directiern I

u.ﬁc‘l’ are

oopoan Bioel 0, Beol 32 vou
I = 1, Recall that ihe polals

h

it e dircetion of che xoand

o s he

Iave
— 4L, U e thie direciion
winr e = (0, 1Y in the

Vet ovranroe b fae?
Lounir vanior o

= wefs A cin 3 o oany unii vecior

A . M -
¢, adrsan g«

€ &) gives all

iaaia Rule and Directlonal
Derlvatlves

ricte thel there 1s @ ong-1o-ciaw
carrsspondsnee botween vectn-s
i the Cartesian plane and peinne
% 4s mentioned in Sec. 3.2,

HIEY



Partial Derivatives

(nll ﬂ})

Fiz. 6

All poinis a+tv, where 1| <,
beiong o S(a, r), sinee la+v-a|
=] =t] |v| @ Jt) <1, [n
perticular, if v=(cos &, sin .
then (2,+1 cos 8, ay+t sin [
S(a, r).

points on the [ine joining a and a +v. By varying “v' we get all lines through a,
L¢., lines in the direction of all the unit vectors (see Fig. 6).
Now we are in a position to define directional derivatives,

Definition 3 : Let f (x, y) be a real-valued function defined on-an open disc
S (a, r) with centre a = (a, a;)in R?and let v = (cos 6, sin €) be a unit vector,
If .
{ +1 8, + tsin @) - f (a,,
lim - (a, cos 8, a; sin 8) (a;, a5)
1= [

exists, then we say that f has a directional derivative at a in the direction of v and
the value of the limit is called the. directional derivative of f at a in the direction of
v. We denote the directional derivative of { at the point a in the direction

v = (cos 4, sin §) by f,(a) or D, f(a). '

Remark 3 : (i) Note that for [1| < r, the point
(@i +tcos B, a+tsind) ¢S (a, r),

which is the domain of f. Hence the function

fa+tcos 8, d,+tsind) - f (ay, a
o) = (& 2 ) - f{ay, ay)
L

is defined for all ¢ such that |t} < r. Therefore we can talk about its limit as
t— 0. '
ity The directional derivative in the direction of v=(cos 8, sin 8) when § = 0 is

. fa +1, - f (a,, )

lim £@ L a) - f @y, a)

t—0 “t
This is nothing but f,, the pariial deriv@«c with respect to x. Thus, the directional

derivative in the direction of the x axis is the same as the partial derivative
W.ILL X,

iii) Similarly when 6 = 2, we get the directional derivative in the direction of the

N . 2

y-axis, given by _
[im f (a.]. az+t) -f (al, a;) '
t—0 t

which is nothing but the partial derivative f.,

iv) We can give a geometric interpretation of the directional derivatives at a point
2. In Sec. 5.2.2 you have already s:en the geonselric interpretation of the partial
derivarives £, and Iy, which are, respectively, the directional derivatives in the

directions 8§ = G and ¢ = % fx (. U) gives the slope of the tangent at the poing

(a. b, f (a, b)) to the curve which is the intersection of the surface z=1(x, y) and
the plane x = a. Direcrional derivatives have a similar interpretation which we
Tow give,

Consider a point a = (a,, a,) and the vestor v = (cos 8, sin 8), The directional
derivative in the direction of ¥ repreteais the slope of the curve C which is the

#1

/:"‘\<'— I(x,y)




intersection of the surface z = f(x, ¥) with the plane parallel to the z axis Chala Rulc and gi.“_’m':flf"'
containing the line through (a,, ay) in the direction of the unit vector v. erivatives
See Fip. 7.

v} In the vector netation the directjonal derivanve in the direction v is written as

. fla+v) - f(a)
lim ———— "%
] t

Using Remark 3(v), we now extend the notion of directional derivatives to
functions of severa] variables,

Definition 4 : Ler () be 2 real-valued function of n-variables defined in an open
sphere S{a, 1) with centre a = (a1, a;,..., a,) and radius r. Let v = (Yoo, V) be a
wan veewor in R®, e, Ev? = | If

f(a +v) - f (a)
—_—

lim .
“~0 t o ——
exists, then we say that f has a directional derivative at a in the direction of the

uAit vector v. The vahie of the limit is called the dir ctional derivative of £ af 5 jn
/:he'direcu'on of v. We shajl denote the directional dcrwa&i{e by I, (a).

o - . . \ x "
Note that as in (he case of two variables, all the pomts a+tv'with 1| < r belong
to S(a, 1, since . AN

lat+iv - a| = |tv] It] < r. \
Herice the function () = [—(ait—v);f—(al is defined for all t such thas It <,
I -

and iLerefore we can talk aboul jts limit as ¢ — 0,

)

We shall now give some examples.

[ .

Example 16': Let f(x, y) = x?yy2
C » X, ¥} = (0, 0).

Then let us show that f(x, y) has directional derivatjves in all directions at ©, 0
and each one of them is a linear combination of (0, 0) and 140, ). ‘

» (X, ) % (0, 0)

Let v = (cos 4, sin # be any unit vecior. Tlen
f{t cos 8, t sin 8 - 10, )]
—_— oo

b

#(1) =

cos? 6?53 g

t*cos?d + (Zgnig " °
[
= cos? @ - sin? 8,
and therefore lin; $() = cos’ § - sin? 5.
(=
Consequently, £, (0, 0) = cos ¢ - 5int g,
Now in Example 14 of Uinj: 5 we have already seen thag {or this function,
LA O = 1 g £ (0,0 = ).
Therefore, wa AN write
Y00 = costh—sinda
= ¢cos* §, f, (0, 0) + sin" 8.1, (0, 0.

This shuws thar at G, 0) the directional derivative [, is 3 linear combination of f,
and f,.,

Now you can do these exercises easily.
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Partial Derivatives
E19) Find the directional derivative of each of the following functions at the
specified point and for the snecified direciion.

A u=x‘-xy+y. (3, 1,08=

3
b) u = ¢¥ cos x, (i;b).8=—1
2 6

LY

E20) Prove thart the function,

2xy?
fx, y) = { x*+y'
0 L (xoy) = (0, 00,

v (%) &= (0, 0)

has all the directional derivarives ac (0, 0).

E21) Find the directions in which the function f defined by

Iyt
—— L ) # 0,0
[x,y) = ¢ x"ry
0 , Olherwise |

has directional derivatives at {0, 0).,

We did nol discuss the concep!t ol = directional derivarive earlier and instead, laic
alt the stress on the study of partial derivatives, which are, in fact, a particular
case of direciional derivatives, This was because in most of the cases, the existen:
of partial derivatives implies the existence of all the directional derivatives.
Moreover, il we know the partial derivatives al 1 poiat. then 2ll the direcrional
derivatives can be calculated casily. In fagt, in Theorem 6 we will prove, forn =
that the direciional derivatives a1 a point are lincar combinations of the partial
Thiv resalt s also ue iorn » 2. derivatives at thar pwint.
Theorem 6 : If a real-valued fuaction f(x, v} is diffcrentiable ar a point (a, b), ik
all the directional derivatives of [ exist at {a, b). Further, they are linear
combinations of f(a, b) and f,(a, b).

Proof : The hypothesis that F {x, 1) is differentiable at {a, b Lmplics thar f(x, y)
defired in a neighbourhaod N of (a2, b}. Lel (¢os «. sin @) b any unit vector iy
R If N is an open disc of radius r, then the points (a+6 cos @, b+8 sin «) for
alt & with |5| < r belong 1o N as we have observed earlier. (See inargin remark ¢
p. B8). Since [ {x, v} is differcrtiable at (a, b),

f(a+& cos «, b+6sin ) - f(a, b)

= 305 @ fy (a, b)+6sin o I, (2, b)+6 cos & ¢, (3, o) +6 sin & ¢, (3, a),
oL
where ¢ and $; are functions of & and o which tend to 0 as (6 cos a, 6§ sin a)—
Now as & — 0, (6 cos o, § sit &) — 0 which, in turn, implies that the last two
terras in {17) tend to zero. This is because

lcosady + sincdy ! = oy + |é,
and both ¢, ¢; — 0 as (8 cus ¢, & sin o) — 0. Thus, we have

f{a+6cosa, b+dsin ey -f (a, )

lim

- - 14
el 5

cos o f; (a, b) + sina f, (a, b).

as all the dircctional demivatives at {a, 5) and

=r

Henee £ {x,
f.{a, b) = D, f(a, b) = cos &« ix{a, b) + sin a f(z, b)
for any unit vector (cos a, sin «).

Corollary 2 : If I (x, ¥) has cortinuous padial derivaiives of first order at {(a, b),
then { (x, ¥) has all tke directional derivatives ai (a, b) and
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Partial Derlvatives , -
E22) Find the dir;ctional derivatives of each of the following functions at the
specified point for the specificd direction, using Theorem 7.

1

3) u x1+y2_4' (2n"' l}u &= ":T

- . "
p)u = e - fng, 2y, o= =
<

y
M

/ T x
¢] u =.lanx + SeCY. o2 0=
! AN 3) 2

r.
ey

E23) Let f(x, Y) bea real-valved funetion which is defined ina neighbourhood cf
{a, b). Let F(t) = f(a +tcosd, b 1sing) for any 9. Prove that f(x, y) has 2
directional derivative at (2, DY in the dircciion v= (cos, sing) if and only it

T(t) is differentiable at U and the dirsctional derivative Dy I(x, ¥) at (a, b} i3
given by F .

E24) If f(x, y) has all the directioral derivatives at a point (3, b}, then dogs it
imply that f js continuous? Give reasons.

Now let us briefly recall the matn poinis discussed in this unit.

75 SUMMARY

In this unit, we have:

1) Used the following forms of rhain rule to differoutinte composile functions:

Rule LIffi R~ R, 2 Pt — Rand ¢ = fof, dien the partial derivatives of

the cornposite function ¢ = fep 1 R — B arc glvcd Ly
&, (a, b) = g’ (i, b 1, (= D)

by (3, b) g’ (i@, o) fi - )

Rule 2: IF T : RI_R, g0~ T 6 = [ag. el
oty = 1' () &x (ft); plieki = 0 (i) @ {ilioy Bk’

"

it

Rule 3: If §: pl.mt, g 107 Rt @ = TR thien

é (8) = Dy (@) DN CIRESRCD R piay + Dp fg () B2 @y D s €

é, (@) = D2 (@) D, fgy 12}, 5 @GP Dz & () + D, fg; (@), 52 (@) Dy 32 &
2) Studied the notion of the totzt durivative of functions of several variables.

Suppost z is 8 real-valucd functien of § variables Xy, Rae -oeee . %, where cact

xisa function of i, thai 12* ol Arpvative of 708 given by

1

1

dz i 3z l'j.:'il
dt h GX; di
jwl
3 Defined homogeneous Uo7 o soveral vaosnolte [ if 2 homogancous
fuaction of dezrss b if
1%y, Bz, - Bo) = (. s e} T n, fn s a real number.
4) Proved and applicd Euiz™’z VL sore st o RO, T funclinmhi.

5 Defined and evolueted s dirocdoael dorivaiives of & two-vatiable [uncion
cfn, rrcogh G Sosnd) - [fay, ad

fiay, ) = De B, 2 = 85— 77

L—ui -
where a = (21, 3) and v = icosd. siaf).
&) Established a relationship beiwesn tac directionai denvallves and the partiy,

derivatives-of a function of two ver vl .

D, f(a;, 2 = cosf T (2, "zt ¥ sl o S Lt !'
|
|

|



Chain Rulz and Directign~

7.6 SOLUTIONS AND ANSWERS Deris,

A

El} a) By applying Theorem 1, we have

25 - ) 2R )

Il
I

]

5
f"_""‘\.\
W=

+

[¥%]
IS

+
IR

S,

x

b
Wiy

M |

127
Nry

S

A N B AR ENE | P e e

= - 5 1
2
dz - i T xt
E2ya) — = — (2x+3 $in — + — (Ix+72 —
))dt 3( y)ls 8( )r)cos8
= Z 112 cos T _ 13 gin + 3 [cos? BL _ g2 T4
8 8 8 R - 8
dz 2 . -
b) — = e'+1) + (x+3) [ - et -1
) a -2 ( }+ )( Gy2)? )(ﬂ- )
_ (2T+2) (e - 31-2) 4 (et 2u+3) Gt 4+ 3)
(Be™ - 3t - 2)? '
_ 17-6te' 4 6te™ 5285 4 15e"
© (Bet- 31-2)°
du
) — =yz.ef-xzet + xy. |
dt
=tel el -tetet 4 glat
= 1.
du - 4
)_d? =2x.21+2y.2f21.:‘+2w.5t
= 203+ 1) 2t 4+ 2021}, 2+ 2¢b ¢ -+ 25 54
= 1071400 5+ 1%+ 22
dz i
E3} a) = T Ty {2x+3v) et 4 -— 1_ — 3 =
Lal X"+ 3yx AT+ TRy

B (zcl+3c-l) Ci' - sct e-l

L") . o
o LA

zell
e*+3
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- dz ) B Ty ] | - Py
b —_— s — -l - ————— I —]. LI
) dt 1 +y%/x? ( x.z)_ t 1 +yt/x? (x) ¢

&' — 4+ eb I
= _ et (tnt - 1)
{Int)2 + o™ t [(In)+e¥]
dw 2. . o s . .
o) m = e V¥ ylicost - sint) + e ¥ (Ixy+2) (sin 1 +  cost) |
'[ H

b
+ e T vy (-sint + cos )

1 2 . .
c[l' £OM L HRTTHL Sin §eos L sin 8]

[Psintcost-dsindt+@2%sintcost + sin @ + ‘cos 1)

(sint + tcost)—tsin®t + tsint cost)

E4) a) Let f{x, y) = x¥+y", where x = t%, y = sin t so that the funciion v
considered as a funcrion ol t gives us the unciion whose, derivative we

wish to find out. Thus,

ar af dx Al dy :
dt ax de | 8y dt

[yx¥ ' +Inx. v 334 [Iny. x¥+xy¥ I cos 1

It

[ (sin 0 CF0 D 4 (e, (sin Y] 32

. 1
+ [lusin oo™ 4 sin ")

2

b)Y Let f(x, y) = 87+ yS, wherex = 5,y =1+

df ] .
Therefore, T [{y-D) x4y Iny] 2t+ [Inx. x>~ +xy™)
[ .

(20D & qoDY a0+ 1)) 26

+ ettt G a+nt

It

=2 = 2+ el + e+ Ao+

O Letix, y) = ¢*+x°, where x = tf, y = cos 1.
dr o o
Flhen, —-- = [ ¥ wx!'] (407) + (x¥ Inx) (-sin 1}

Ut

4 \ N B .
= oart el 4 4 gos MOl Cgin oo i

ES) Let f{x, ¥y) = y*+x'-a® = 0.

dy  8f/ax  vlny & yx ¥

BN af/dy ™+ x¥Inx
E6) dy - dfVax d- 830y
dx - 3f/ay " dy b2

dz _ dz dy  ap/dy  af/ax

"dx dy dx 32/07  l/dy
3 86 de _ B 9

dy dz dx ax oy

e sl R N T T

ET) Singe e B. O oare the 2nZici - 4 nmfig!(.',
A+B+C = 7. If we lot
e s am -3 . . - P
f{A, B) = sin“A4-sin"B+sin" - &
= sin?A +sin®B +sin®(z-A-B) - k

= sinA +sin’B + sin® {A+B) - &,

then f{A, B) = 0. So we ¢35 :hink of A as an implicit function of B.



- Consequently,

dA _ of/aB
dB ~  3f/3A

2sinBeosB + 2sin (A + B) cos{A + B)
2sinAcosA + 2sin(A + B) cos(A + B)

sinZB'_ + *iiﬂ 2(A+B)

Sin2A 4+ sin2(A + D}

sin2B-5n2C
- ?-h---, since A B+ C -
5In2A-nn2e;

_E.xir_'j“(_B-C] cos (B+(;

2sn{iA-C) cos (A + C)

fi

) LOSA LsinBcosL_“— sinCcosB)

cosB [sinAcosC - sinCcosA)

itanB - tanC
[anA - tanC

ranC - ranB

anA - ranC

E8) In all these problems (a), (b) and (c), v can be treated as a function of x and
vwliere x = x and y is an implicit function of x and !ht;eforc
du du dx du dy
—_— = — +

dx  ax dx | dy dx

d.
aj) = 2x-y + {-x+2y) (3) = Sy-x
dx
d 2,1__3 2
b) — = 2x - Iy? 2
dx X X
<) e R Inxy + | + X d
X v oodx

oy, ) XL ~3%73 « 1, then

dy  Ag in INT+6xy Xt 2xy
dx Jaddy RPN I Y x”
. 2
u X X*+ 2x
Theretore, “L Porinvy - - ‘---,—--—-;)--
dx A Nk
| ~* (n =+ 2y
= s iy - -2
RS
- - Ay du  dx du gy . e
E9) ay - - - T o4 Pl G E S TR E) B AN
dr dx ar dy
= 3x -3y

= Ir+s) + 3r-s) = 6r

du du  dx du Ay
Sy Go v ST o T @xA () + (me2v) o
as ax Jds 6}' as ( ¥ ( } 5 ¥ )

= K=\
b

= r—s-{r-s) = 2s.

L Au 1 ;” v \\. , ! o
i v S (ST S S SR L S
o et UG T T

—ry 4 {r+sds 52
T+ +r%% " (ras5)?arig?

Chain Rule and Directional
-

e
drcndiel iy

95
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S gu:

EI0) Let u

o

Toax
dgu

oy
du

az
du

ax

dw

Ell} a
_))ar

dw
ds

aw

ot

oW

ar

aw
dx

96

= 1 | L4 1+ ! ! H
1+y¥/x? xt /) T+y¥xt \x/ -
R A2 A r?
x2+y? {r+s)2+rls?

- y sin Xy. 2 15 — X 50 XY, se't

1l

[~ 2 15 ¢ - r¥s%™} sin (rise™)

- (2+13) 15 €7 sin (12 5 )

- y sin xy. r¥ - x sin xy. re”
- [r2+1? 5] ¢™sin (r? se™)

—{r+5) r2™ sin (r%e™)

= fit, 'i-, s) where t = y—z, o= Z-X, 5=X-Y

af af af af
= 0+—(-1+—-1)——-
ar ) ( as ar
af ar af af aof
=2 e — 0+ — ()= —-—
ot dr ds. at  as
af af af af  of
= DA — i — 0= — - —
31: ar as ar at
du au'
-+ =0
oy oz
1 1 i+
R R R St A )
z A r
~ 32+ 52418 - 2 (£-2s - 2r+s-2t)
) x4 5% +1%?
352433005 s
' 2 +s2+ 5%
1 t p
s -
z ‘ Z
_ {r2 5P t7) ~ 25 (r-25+ 14207 5-20)
- : rtest eyt
2_p2.42 4 Ogtegns
(k2 +s? riht
1 )
= -1+ —(- e ¥
z z =
(st - 7~{r 25410 P 20520
( +b | i ‘2
o et Zis (L
25t th?
= {}r -a_-z} CORE e W T EH TR T ‘,") .0
= (rsin 1450 €ois 4 {raoss= st st
= Zrsintcoss 4 s {tees - osm o)
= (y+2) {(~rsins + (x+2} - 0+ 0 ~yit

= (rsint + st} [-reinsy &+ (rouss + rsin t) t



= -r? sintsins - rst sins + 7t coss - -t LA
L dw : .
I = (¥+2). 0 + (x+2) {trcost) + (x+y) - s
= (rcoss + st) (trcost) + (rcoss + rsint)s
= r? coss cost + rst ¢ost + r5 COSS + rs sinL.
oo 82 A .
Z12) roalie ™ {e* cosy) + v {e*siny)
9z af of
— = — (-&%iny) . + — (e*cos
% ™ ( | ) ™ ( )
8%z a%f ar a*f of -
= —s (e"cosy)? + — (c* cosy) + —— {e*siny)? + — (¢* sin
2 Rt ( ¥) 30 ¥) o (e’siny) P { )]
¥ o . af af ar .
) =3 {-c™siny)? + ™ (~* cosy) + 33 {e* cosy)® + v (—*siny)
3%z LAk o 4 o
9x? dy? du? av?

% %
(W) (auz vt

I

), since u? + v = o8

2 (X0 + yv + zw)

E13) a) f(tx, 1y, (2, tu, tv, tw)
. [szz+yz+zz_ JeTv TRt

(xu +yv+zw)

e Sy N Srres Sra
JE+yT+z? ulevivw

It

1° f(x, ¥, Z, u, v, ).

" fis a homogensous of degree C.

max { —, ty
ty
x
max i'—, ty}
¥

; 1
which need not be equal to ¢ max [i, y? = tf(x, ).
¥

b} Fert > 0, fltx, 1v)

i

check with x = 2,y = land{ = 2,
", Tis rot-homogeneous.
sintx Sinx

¢) Since f(ix, 1y) = — L R = " f(x, ¥}, for any n,
sinty siny

f is not homogenecous.

Check with x = =, y = 1,1- = .l.
2 2

d) fx, ty) = (tx)'* (1y)~*
y-SIJ

=i" "X y)

l-{f] x 153

Thus, I s 2 homogencous function of degrec -4/3.
) 0%, ty) = O3x% = xy? o 4y
= Ufix, )

Thus, 1 is 2 homogeneres funetion of degres 3.
1) f is not homogencous,

Chaln Rule and Directional
Derivatives
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. E14) Since f is a homogeneous function of degree n, and has continuous first
_order partial derivatives, we can apply Euler's theorem to f. Thercfore, W

“get,
x£+ E—nf
) yay B

Differentiating the above equation with respect to x, we get

D (E) e 2 ()
ax \ dx ox ox \dy ax -

- Since f admits continuous partial derivatives of sccond order, in view of
Schwarz’s theorem (see Unit &), we get

-_a_(a_f_i o SN
ax \ ay dy \ox :

" Consequently, we have

ax Nax/ T 3y \ax /| ax

Therefore, by using Euler's theorem we get that a— is a homogenecous
x

. .. of .
function of degree n-1. Similarly, we can show that B_ is also a
ay .

homogeneous function of degres n-1.

’ 1
E15) Note that z is a homogeneous function of degree >0 and so Euler's

theorem gi;rcs x'az ry .1,
_ T —_— = —— I
' Ix 3y 20 _
"El6) a) Note that u is a homogencous tunciion ol .degree 2. We have to vérify
' . du Au
Euler’s relation »--— t+ y — = 2u. Now,
dy
) du e+ - x'+v%) 233+ 3x%y - ¥
By — = —— = -
3x (xr¥)? (x+ )
i du Iy (x+y) - teyh - x? +3xy*+ 2y
By (x+y¥ x+y)?
~du du 2+ 2y + 2xy o 2y
, K — + Y —-— = g -
ax By Gry)”
340
2+
= LA 2.
(x+y)
b) u is a homogenedus furction of degree 0. Now,
au . 1 . r'f i ':t' \.. - “-_‘Y___
ax 1+ yo7xt » " xiooy?
. u ] I X
& = — 0| —\ = —-—, Thus
ay + YR N W X+ ¥
x Ll + ¥ gul 0w, Thic proves Enles's relation.
ox T gy

EIMLaD= {{x,ix>01y>0]
Then D satisfics Lhe reguirsactis (i) and (i) of Euler's theorem. Morcoy

the.function

) Vx -y
z(x, y) = sin™’ (",: — v,;_;)

Ly
is a homogencous function of degree 0 and has coniinuous partial deriva
on D. Therefore by applying Eulei's theorsm,



- - - o

.= v

E18) LetD = {(x, y) | x = y] and fiD ~ 2 such i Chain Rule and Dircetlonal
. 3 | H -
[(x,y) = X Ty Derivatives

X -y

Then f is a homogeneous funciion of degree 2 and bas continuous partial
derivalives ol first order.

- ar af .
Therefore, in view of Euler’s Theorem, x — + y — = 2f c{e}
dx ay
Now we have tan z = [. Then or _ sectz - E, of _ sec? z b2
. ax - ax  dy dy
- Car .
Substituting for — and o in (=), we get
X dy
. dz 2 0Oz
Xxgctz— + ysec“z — = 21anz
ax dy
. az oz P
Le.,, X — + ¥y — = sin 2z.
ax oy

w

f(3+lcos T, 1+tsin ; SfG, D

E19) a) ¢(1) = .

1 7z 32 ( T ( . 'zr)

— 3+ tcos —| - [3 + 1Lcos — I + 1sin —

t ( 3) 3 3 3
: \2

+(l+tsin—§—) —33+3—l]

. i s w . w
t{l-sin —cos — ) + 5¢co5 — -sin —
3 3 3 3

i

DG, 1) = lim @) = 5 cos — - sin — 5.3
. ’ = == C — - — D
t!l( 1—0 3 3 2
/x =\ VA RS .(r hY
ff—+tees| - —LO+tsin| - — -0 —,0
Grm(g)er(-g)- (39

b} o(1)

li

t
1 ¥ \ w
= - — ety 5in [t cos —\
t 6/ N . / o
grben e sin fLcos = |

\ 6
" Do f (‘;‘| 0) = fim ¢t) = - Hm e ’

=0 =0 L
. t ™
sin {t cos =
_ . S 6
rn . - H - -
= -cos — lime* % x lim -———-——m
6 -0 . e b enc u
[s]
i — N
. " IH
sin (! cos = |
0y
) \ 7
= lim - —
=0 T
L COs —
G
V3
= <=
Fa



Partla] Derlvatlves E26) Now, &(t). = fltecosd, v 51[1'. @ =100

I‘I: 217 cos 8 sin? @ ]

t | t*cos?d + t*sin® g

_ 2cosésin’ @
cos? § -+ ¥ sin? @

2s5inftranf,ifcosd = 0

o lim g(t) = .
t=0 3 { yifcos8 =0

Hence f has directional derivatives in all directions.

f{teos @, tsind)-f (@ O
t

E2l) ¢(t) =

1 212 sin 0 cos 8 sin 26

t 3(sin? 0 + cos?6) 1 . )
Then hm $(1) exists if and only if sin 2§ = 0, i.e,.,,—.,/""""

I— - e “"'3;:— - T —
=0 =, x =
2 2
Conscquently, f has dircctional derivatives at (0, 0) in the directions
Ix
iven by 8 = 0, -, _—
E ¥ > L 3

E22) Note that the {unctions given in alt Lhe three problems are differentiable at
the points specified and hence we can apply Theorem 6 in each of these
cases.

a) Dy u2, - 1)

T : . &
(L'lz_:'(z' -n ces T + (Uy}(l_ - SIn —4"

H I

m i

:4--

. T
b) Dr(d u(]n3, In2) = (“x)(h.'l. ln21 COS '3;" + (L'y-)ﬂnj. 1p2y 10 ?

[ .ams 1
- A(In3 4 Indy (-ln3 - in2}

=1z +c

! ] vz
+ |rc‘-'“-'"ﬂ’ " c{-ms-mz):] Lz

w

I

w|:vz

n
C) D,.n u (4

\ k) x
} t'.J /4, 1Y)y CO5 -‘J_ T+ (l‘j")[l'f4 1/3) 5in ?

= (Lol - AN Y 5

t'l|

_"I

E23) Suppose  is defined in en ¢-neicnbourhicod M of (a, b). Let N’ be an
€-neighbourhood of 0. Thea

jt-0f < € = jif < © &~ —f{a+tcosd, brtsind)-(a, b)] < ¢
Thus, (& + ccos 8, b + 1 sin @ belongs to N.

Since f is defined on N, we gt tlat inc funciion

100



Chauin Rule gad Directionn?

F(1}) = f(a + tcosé, b 5 tsin &
Derivatives

is defined in ihe €-neighbourhood N’ of © for any fixed 8. Now,

[{a+icos 0, b+rsinf) - fa, b)
t

oW =

_ F@) - FO)
r
Therefore, lim o (1) exists if and only if IF(t) is differentiable at 0. Now the

function [ has directional derivative at (a, b) in the direction of & if and only

it im &(t) exists.- Hence, we gel that the [unction {(x, ¥} has directional

t—0 .
derivative at {a, b) in the direction of & if and only if the corresponding F(r)
is differcntiable at 0 and the directional derivative is given by F(0).

E24) If [(x, y) has all the directional derivatives at a point (a, b), then it is rot
necessary that { is also conlinuous at {a, b). (Sce E 20). We have shown over
there that { has all the directional derivatives at (0, 0). By putting y* = mx,
it can be checked easily that { is not continuous at (0, 0).

iof
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BLOCK 3 APPLICATIONS OF PARTIAL
DERIVATIVES

In the.last block of this course, we defined partiai derivatives ot all orders for funciions of
several variables, We also showed the connection beiv oen parial durivatives. differentiability
and continuity. We stated sufficient conditions which ensured e equality of mixed partizal
derivauves. We also defined homogeneous functions and v onr powledge of parja!
derivatives to obiain some simple results aboul homovencous Ienenons.”

In this block we apply the resulls oblained su Iiar 1o prove some more imporiant resulis
about functions of several variables.

In Unit 8, we define relarive maxima and minima for real-vaiued functions of two variables
and obrain a necessary condition for the existencé of refative extrema. This condition is
similar to the condition ebtained for functions of a sipgic variable, We also obiain a set of
sufficiernt conditions for determining the natnre of slatonary points (critical points in the
one-variable casz). This condition is paralle] 1o the sccond dervanve iest.

In Unit 9, we introduce Jacobians, a notion which reaHy s no analogue in the caleulus of
functions of one variable, Jacobiuns play an imgoriunt role in the whole theory of funclions,
of several variables. Since we have confined cur study 10 [unctions of two variables, the
significance of the role of Jacobians is not that apparent here, Bt Tacobians will be of great
use in the next block, where we shall introduce the theory of integration of functions of two
and three variables.

In the lasl unit, we siate two very imporiant theorems. namely, the implicit fanation
theorem and the inverse function rheorem. Ve prove implicit function theorzm only in the
simplest casc. We also prove a necessary and sufficient condition for the functional
deps:ndence of functions of two vanables.

tn this block we have proved most of the results for functions of two variables ooly. The
aimy was to avoid significant steps gelting cbscured in technical details of the proofs, In fact,
we have included oniy those results about funciions of higher variables which would be

needed in the next block.



Notations and Symbols

Pp (x} n th Tayler Polynomial
Rpe (x) Remainder after (n+1) terms {n Taylor’s expansion -
[ X Determinant of the matrix X

IF = g&% "Jacobian-of F=(f, g) w.rl. xand y

-



UNIT 8 TAYLOR’S THECREM

Structure
8.1 Introduction 5
Objectives
8.2 Taylor's Theorem . 5
Taylor's Theorem for Functions of One Variable
Taylor's Theorem for Funciinns of Two Vanables
8.3  Maxima and Minima 15
Laocal Extrema
Second Derivative Test for Local Exirema
8.4 Lagrange's Multipliers 26
8.5 Summary 31
B.6 Solutions and Answers 32
81 INTRODUCTION

In this unit we state, without proof, Taylor's Theorem (about approximating a function by
polynomials) {or real-valued functions of several variables. This theorem is the principal tool
for finding out the points of relative maxima and minima for these functions, We also
discuss briefly Lagrange’s method of multipliers, which enables us 1o locate the stationary
poinis when the variables are not free bug are subject to some additional conditions.

In this unit we will be dealing with functions of two variables. Even though the results are
true for any number of variables, their proof involves techniques which are not easy to
understand at this level, So, for the sake of simplicity, we confine our aticntion to the twa-
variable case.

We start our discussion with the one variable case.

Objectives

Alter siudying this unit, you should be able 10

» [ind the Tayior polynomials for functions of one or two variables,

@ state and apply Taylor's theorem for funciions of vne an¢ 1wo variables,
o locat¢ the siationary points of functions,
© uscthe second derivative test to find the  ~tere of S1InaY pOIs,

» use Lhe technique of Lagrange’s multi- s in ¢ cating, fis Cationary points of functions

of two variables.

32 TAYLOR’S THEQORENM

In the calculus course yoﬁ have seen (Unit 6) that if v.c know s values of o function of one
variable and its derivatives at 0, lien we can find an exprescian for the valve of the funstion
at a nearby point, We can derive 3 similar axurassion fur funclions of two variables using
partial derivatives. This expression was first derived by drouvk Taylor, an English
maihematician of Lhe eighteentn century, We shall firs: discuss Taylor's theorem for
functions of a single variable.

= -

1T oF Funciiens of Sue Variabie

8.2,

You will agree when we say that polynomisls are by far the simplest functions in calcutus.
We can evaluate the value of a polynomial at a peint by using the four basic operations of
-addition, multiplication, subrraction and division. J6. cve:. the situation ir the case of
funclions like ¢*: Inx, sinx, ele.. is not so surple. These functicns cecur £o frequently in all
branches of mathematics, that approximate vaii.s of -*2 -2 funations have b2en mholated

Taylor (1685-1731)



Applications: of partial extensively. The main too! for this purposs has been to find polynomials which approximale
Derivatives these functions in a neighbourhoed of the point under consideration.

you are already familiar with Lagrange's mean value theorem. This theorem states that if

f(x) is differentiable in some neighbourhood N of the point Xg, then we have

f(x) = (%) + (x = x0) T (&)
for all x such that (xq, x] or [X, %] iIs contained in N. Here éf is a point lying between »,,
and x.

If f is 1wice differentiabele in N, then, again applying mean value theorem to the function f
we can go a siep {urther and write

f(x) = f(Xg) + (x — xg) FA{xg) + é- £ (&) (x - xo)? is some point in N lying between xg and x.

Thus, the constant polynomial {{xg) approximates {{x) in N in the first case, while the
palynomial f(xp} + (X — Xo) I (xo} approximates f(x) in N in the second case. The dilference
belween the actual value and the approximated vajue is called the error tem,

The error term int the firsi case is [ (f) (x ~ xg), and in the second case it is %f" (tf } (% -

xg)2, We can estimate these error tenns is f and " are bounded.

Taylor's theorem tells us that if a function f(x) has derivatives of all orders upto n + 1) in a
neighbourhood of xg, then we can find piynomials Pp (x),-........ Py (x) of degree G, ... n,
respectively, such that the error letm

f(x) - P, (x)

is a polynomial of degtee less than or equal tot + 1. Note that here we consider the
polynomial O alsa as a polynomial of degree zero, which is not the usual practice. We have
done this for the sake of uniformity of expression. In order (o state the precise iusult, we stan
with the following definition.

Definition 1 : Let 1(x) be a real-valued funciion having derivatives upto order n 2 1 at the
poinl xq. A polynomial P (») is said to be the r'h Taylor polynomial of [{x) at x, ir

(i) thedegrecof P(x) <€, r&n’
(i) Pl (xgy = W (xg) for O < j €.
where P@.(xg) = P (xg) and I (xg) =1 (xg).
Recall that a polynomial P (x} is an expression that can be wrlien as
P{x)=cpg+cC, x+CaX2+...i... + ¢ X, SR
where ¢g, ¢j.-.. s ., are real numbers. Apart from these there are expressions like
Pxy=cp+e(x—%g) +oerreennn +Cq (X — X cel2)

where xg, €. Caueeneniies are real numbers and xg # 9, which are alse called polynomials. You
can easily sce that (2) can be rewrittien in the form (1) by expanding the powers (x —

P L {x — g} We alsa call the expression in (13 a polynomial at zero and thai -
(23, a polynomad al a,.

Now we state and prove a theorem which tells us that Taylor polynerials of a given
function are unique. It alse tells us how to find out the Taylor pelynomials of given
lunclion,

"l"l T [ . 1 R ' -
Yieorene 3ol e a, NG any 7+ 1 rear

polynomial P (x) such that
(i) The degree of P(x) <

O ' (i) Py (xy =0, 0 <



where Xp js any fixed real number.

r

aﬂl’ —_ Al
Moreaver, P(x)= Z_!(x = xo)
m=0 M.

Proofl + We can write a polynomial at xg a8
P(x)=bg+by(X-Xg)+.-- - b, (x-Xo)
wihere by..ooooon b, arc rcal numbers. now we fave deleinne b b, such that

P (xg)=g; for O<r. If we differentiate the expressich in (3) j umes, then we get

P‘”(x):zr"k(k—1)....(k-—j+1)bk(:c—.i:g)"j <<

k=J
and therefore
P (x0)=j'by, l€£jar.
Thus,
PV (x
b = (“),IS}HH
! J!
Also
P{m(-’:n)
= P(Z’O) = —_O_T_
Hence,
PP (x
b. =-—(L). forCgj<r
¥ J' |

Substituting for by s in {3), we get.

r n — b r i .
P(x):ZP (xu)_(x Xo) =za+'(x_xu)x

10 it j=0J

Nate that the polynomial P(x) will be of degree r if and only it 1, = 0. Now by (4) we can

concluded thal the polynomial is unique.

“tie following corollary of Theorem tells us how to find the Taylor polyncmials of a given

fugrien,

(3

e

-(5)

Corollary 1 : If [(x) is a real-valued funclion having derivatives of all orders upto n {nx1i)

then the mt Taylor pulynomial o f{x) at xg i givea by

m (ive e
P(x )'—z'f ('Iﬁ).[l Xo)' oS mEa

N
;=0 gl

Proof : Lerus take 2y = flit (xg) O< h< m; in Theorem | Then the m" Taylor polynomlal of
l iv

it exists. must be in the fopm of Equation (5).1hus.

0€m=n

Pu.( Y)= if“}(""o) (x- 1:0)J

=0

The above discuzsion shows that the Taylor polynamials of o given function can he found

step by sep using the relation

F{m*l)(Y )
C(x)=P, () + = X
(m 4 13!
Mureover, i P ) is the m® Taylor polynemial of [ndatxg, then vou can check Lhal the
desivative of Py, x) at o is the vm- 1% Tayles paivaoa! al F{x) al xg.

Lel us constder some examplies now.

Example o Lol us lind the Taylor pelynomials of
M= —2x"+dx+latx=1

W apply Thearem | with x, = 3.

Tayler’s Theorem
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-Thus, the successive derivatives of f at 0, in order, are

Since ¥ (3) = f(3) = 22,

f (3)= 19,
£ (3) = 14,
f? (3) = 6 and

f (N =0forallr> 3, we get

P, (x) = 22, P, (x)=22+11—?(x-3].

P, (x)=22+ 19 x-3) + 12—':( {x-3)%

1t
4 .
Py(x)=22 + 1119- (x~3) + ;‘—] (x~3)7 + % (x~3)" and
P, (x)=P; (x) foralit>3. -
Example 2 : Let us find the fourth Taylor poalynomial

T of f(x}=V]1+xatx =0Q.

Lol

We tave F(x) =5 (1 +x)
£ (x) = L N R
(x]——4(l+x}  f (x)—8(1+x} and

f‘"(x)=-%_{l +x)-""

LR § =3 —_13,
Therefore, f(0) =1, I (0} =5, F" (@) ==, Q) =7, F O =-1¢
The desired polynomial is
4 3) : : 4} E 1 -
T;(x)=f(0)+fl(|0}?‘+fj_§?_) “2+f‘3r0 x? +{(4!0 x!

_1+lxl—L'l—x2+“l*-1x’—L-u-x“
- 2 2! 4 al 8 4l 16

Examplc 3 : Letus find T, {x) for cos x at xo = I ‘

Now ¢os = 1 and the first eight derivatives of cos x at 1t are
0,1,0,-1,0, 1,0, 1. .

Dropping the terms with coefficici s G, we have the polynomial

(x=1)? (x-at¥  (x=m)®  (x=m)*
20 a4 T e T @

Ty(x)=-1+

Example 4 : Let us find T, (x) at x, = 0 for f, where £(x) = ﬁ ={1- x)"

Computing the derivatives, we obtain
FE=0-x7 e =201-x7
Py =32 0", P xi=d41 (-7

=501 -x"



Since f(0) = 1, we obtain

2!, 3 4! !
T_‘(x)=l+x+§ix-+%x3 + 1 1-%‘;.(5

=l+x+ 2+ x+xF+x

How you can try these exercises,

El} Find the n' Taylor polynomial of the function «* oy i = 2,
I:2) Find the 6™ Tayior polynomial of sin x at x =0,

E3} Find the i Taylor polynomials of the following functions at the indicaled peint and for
the indicated value of r.

a) X¥*=-3x+4,a=-2,r=2
byx*-5x+3,a=1,r=4

E4) Find a polynomial f(x) of degree 2 that sutisfies [(L) =2, MU =—land I {{) =2,

We now state Taylor's theorem which gives us the connection berween a function and its
Taylor polynomizls at a point.

Theorem 2 (Taylor’s Theorem) : Let f be areal-valued funciion defined on the open
interval ja, b[. Suppose f has derivalives of all orders upto and including n + 1 in the interval
Ia, b[. Lel x4 be any point of the interval ]a, b[. Then for anv x in Ja. b[,

{X=xq)
11!

P(Xg) + v + ("—;xﬁi £ (x ) +

{(x=xp )" *}
(n+1)!

f{x) = f(xy 7 + ol (), . (6)

where ¢ is a point between Xp and X.-

The expression on the rigin hand side of (6) is called Tayisr's expansion of (x) at x,.
We won'l give (he details of the proof of this theorem here.

But we wish to indicate that it can be proved by applying Roiw's tieorem to the function

%=X . - LTSN

& XKy =1(X).+ (_i_'l X))o + tE ey (=X 51 A defined on the
mterval [Xg, x] or [x, %y } according as x, < x or X < x;,, where a is 0 constapt so determined
that ¢ {xg) = @ (x).
The point ¢ in Theorem 2 comes from the application o 1~ s =2 srem to the funciion
& (3 and therefore we can orly assert s existenos #nd - the <xace location.
Now we rewrite Equation {6) in the forsm

(Y =P, XY+ R .., (x),
where P, (x) is the o Taylor polynomial of i} ai%a o -

_ (x=%q )™!

R, {x)= e 1) Ee-Y (e).

Then K, ., (x) depends on x, X, and i, We cal! R, {1} tie Laerange’s form of
remainder after n+( wrms in the Taylor's exnaeadan of f{vva) x|
I we wrile a as xgth, then Taylor's expassion sevows

N A e .
fxg +h)= 2 775 7 + 7 Fem{x, + Gh).

e r! T on!
where 0 < 0 < 1, and 0 is a real number depending on a, and 5,

{) for r>» m. Therefore, .
case, Hinding TaylorTs

Note that if f(x) is 2 polynomial of dzgree m, then f7 (¥ =

R,.,(x)=0forall x and x;, , provided o = . Thus o il

Taylor's Theorem
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At T . .

expansion ol { (x) upto m+! terms al X, is cquivalent to expressing (14 as @ polynomii: in
x-x, with coefficients from R.

By estimating the remainder R, , (x). we can find how close is {(x) to its n™ Tuylor

polynomial.

In Calculus (Unit 6) you have lcamnt how to write Tavlor's or Maclaurin's series ol o given
tunction. At that time you were cautioned that these series need not be valid for a given
function. In fact, the Taylor series of a function has a very close connection with jts nmu.
Taylor’s expansion. Let us see.
Suppose, fix) has derivatives of all orders at x, . If

fx)=P, (x)+R,.,(x)
is Taylor's expansion of f a1 a point x, . and if we are able to prove (hat

dim R, (x)=0
n— =

then we say that the Taylor's series of f(x) at x; converges to the given
function for all those x for which lim R, ., (x}=0.

Moreover, in that case we wrile

L f(n\ - ,
fly= % l—’f') (x — x5 )"
n={ n:
" (xp)

The coefficient is called n-th Taylor’s coefficient in the Tavlor's expansion

n!
of f(x}at x, .

We now illustrate Taylor's theorem with the help of a few examples.
I

Example 5 : Let us apply Taylor's Theorem to the function f(x) = ¢* abopt x = 0 i the
interval - 1,1 [.

You know from C.‘alculus that the function f(x) = ¢* is continuous everywhere on the real
line, and

) =F (X)) =.oconn.. =EK) =i =S T

Thus, derivatives of f of all orders exist and are continuous in the interval | — L, 1 [. Then b
Taylor’s theorem, given any x € ] -1, 1 [ and n € N, there exists a point ¢ between & ana
x such that

e =T, (x) +R,., (x),
witerse

x?
Tn(x)-1+1—' + 2 + ... +;l—!

Now can we say anything paricular abouc the remainder R, {x) I the above exampic ¥
Let’s see.

xﬂ'v' |I

(n+ 1}! e

Ian—'l (x)l =

| i |
S‘-||( I since Ix) < L.
I

13
Now since ¢ lies between 0 and x, we have ef < eisl,

Than I v ] - alx| J ! |
'11"'" |Rn+1{";‘ - I(I-H'l)i
Now (n-:l)' can be 1nade as small as we like by choosing n sufficiently large,
" l rl =
Le. im ol



o
This means that &, (X1 Qusn — s,

Thus, for the function 1(x) = ¢* we can write

X X
r(x}=1+ﬁ+i+ ....... +n—+ ......

Let us consider another exaruple.
LExample 6 : Let vs find Taylor's expansion of [(x) =in (! + xjforxe | -1, 1 [atx =0,
You know from Calculus (Unit 6) that

R ALEN -_
fio) (x) = (- {n 1!!.

(1L+3x)"
so'that (0= (=1y-'(n-1)!
Henee.,

2 k] —1yn-1 4n
2 2 +-(—-l—l-r—l—-—x-+Rn']{x)'

}n(]+x)=x—3 + ? — et

1y L aa
n+1 (1 +é}nv1

where R, ()=

Clearly forxe |- 1.1 {,

1
n+1’

R, (0 s
This shows thar “Ierl Raxy=0

- =1 yn
Thus,In(1+%) = I un,u forany x e ] -1, 1[.

Try the following exercises now.

- T v

. . ) . . {
ES} Obtain the Taylor's expansion of {{(x) = ___I;; aboui z = 0in the imerval } - 5 AL

1
1

ct; Obain the Taylor's expansion of f{Ax) = sin X aboui x = <

A

So far we have seen how to find Taylor's expansions for functions of a single variable, In
the next sub-section, we shall discuss Taylor's ifeorem fo tunclions of 1wu variables,

8.2.2 Taylor’s Theorem For Funciions of Two Yariables

In this sub-sectian we axiend Taylor's theoram (o funciions of two variables. For this ket us

first extend the notion of Taylor pelynomials 1o functions of 1wa variables. You have
aiready seen the definition of a polynomial in 1 variabies in Sec. 3.3. Here we will discuss
ihe polynomials in two variables in delail,

Dedinition 2 @ Let x zad v dename two variablies, Taen oa cxpression of the form w, x'y*,
where ) and k are non-ncgahve ntegers and a, @ ¥, 15 caticd 2 monomizl. The integer
1+ i is called the degree of the monomial,

For cxampic. 87y7 1s o monoiniai of degree 3,
x* 15 a monomial of degree 4,
v’ is a monomial of degree 7,

A polynomial in x and y is nothing but a finite sun of monomials. We now give a formal
definition, ’

Taylor's Theorem

11
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Definitlon 3 : A polynomial in two variables in x and y with coefficients in R is an
expression of the type.
P(X,Y) = 8go + (1 X * 80,Y) + (ax%? & 2,,XY + 2gy) + ...+
. (X' + B XMy 4 o+ agy) + + (A pX" + ..... + 2ey™),
where g;'s are real numbers.

Here you can note that we have grouped together the monomials having the same degree, In
the first bracket each term is a monomial of degree 1. In the second, each is a monomial of
degree 2, and 50 on.

For example, P(x,y) = 1 + 2xy + x?y is a polynomial in two variables. This polynomial is a
sum of thres monomials, havifig degree 0,2 and 3, respectively. The number 3, which is the
maximum of these numbers is calied the degreé of this pelynomial,

In general, we have the following definition.

Definltion 4 : The highest degree of the monomials present in a polynomial P(x,y) is
called the depree of P(x,y}.

You can now easily do this exercise.

E7) Find the degree of the following polynomials:
) l+y+xy+xyr+ys
by Z+x3+yd
<) 7+x+xy+x3y-i-x4

Now we give the definition of the nw Taylor polynomial of a function of two variables.

Definitlon.5: Let f(x.y) be a real-valued function of two variables. Assume that it has
contimipus partial derivatives of all gypes of orders less than of equal o n in some

‘neighbourhood of a point (X, ¥g). Thcn

. i+isa i+j
Rep = X Lo ey Goxd -

is called the nth Tavior Polynomial of f at (Xg. Vo)
In particular, if f(x.y) is a poiyﬁomial of degree n, then all partial derivatives of order m for
m > n will be zero. Therefore

Taxy)=T_ Xy)foralmzn.
Further, as in the case of ong variable, you can see that T, (x.,y) at (0,0) is equal to T(x,y).
Again, from the definition, you can see that

i+j )

a0 iglj! [a J(}ii(:-;;}’ﬂ)J (x = 5p) (y — yoh:

1+ )]oasi

’ Tn+l :xv}’) = Tn (X-Y) +

.so that the Taylor polynomials of & given function f(x.y) can be computcd step by step. We

show this by am example.

Example 7 : Let us find the Taylar pelynomials of the function P(x, y) = 1+ ’?xy + X%y
at{1,1), -

~ We first note that

P(1,1} = 4 and therefore, T, (x,y) = P(L. 1) =4.

N
e T 2+ 2y ah){m
% { 4P\

o = 2K RS,

. oy ® Lc?y )un

hereore, T, G = T ) + 50 28,1y, =) Tan - i



= 444(x-1)+ 3(y—1). Taylor's Theorem

FP &P . dP
e T axay-—2+2x, = =0
- J___-L’ 2.. (x=i) (y=1) &
Therefore, Ty (X,¥) T, (xy) + -1+ T1U ok o (a1
+ {1’:_!_1'_ IR n
2 oy
= 44d(x-1) +3y-Dr(x- ) +a—-Dy~I)
P _ a'P FP_ P )
Since Y 0. 1 9x dy =2, 3% oy © {1 and S = 0, we gut that

Ty ny) =T, (ky) + (x = 1) {y - 1
Yaou will agree that T, (x,y) = T, (x,y) forallr2 3.
Here is another example.

Exa:ﬁple'ﬂ i Let us find the Tayior pelynomial 71, (x.y) far the function sin (x + y) at
(0. 0.

We wrile [(£.¥) = sin {x + ¥}, [tis clear thal £ has continuous partial derivatives of all orders,
Let us compute these derivatives at (0,0). We get -

g{ (X)) =scos(h +y)= -91-" (x. ¥)

oy = o -
Therefore o 0,0y = by 0.0=1
}f "f (}f
)y === = = - =
L (0.0) <o - (0, 0) 3 (0.0) sin (x + yJ!mm 0
(.i'f (f"_f__- l:l\‘f a2 .
o (0.0) = 37 3y (0 = - 5 By ;0 = 3‘1(00) —cos (x +Y¥) (o.m = -1

‘Hhuts, the third Tuylor polynomial of singx + ¥) at (0,0; is

Tox. ¥yl = 2, T ["rf‘- l"tl:(ll_‘ x'yd

IR i! J! (W 8
LY SRR PR T O VO A
Il rar gy et ax
x>l xy A F . v il
+rn e 0 0 e T oz T (00) + e
300 e O acay O H 505 oyt 0.9 +
_A O St S N NV
BT TR YT SR SR T TR AR
When simplified it (akes the form
T, () = (x+y)- [x + Iy o+ Ayt 4 vh . -
x+vy)
= (X +y) -~‘(—3T‘v“' .
Try these sxercises now,
ERY Fin:the seeand Taylor polynomial of »F ¥ o o
19 Find the Taylor polynomials of ffx,vy = 7 v ui {310

EI0) Let six.y) be a polynomial of degrae =, Prove thae 30 ,;.'} 2 (2,00 is equal to f(x,y').

Now let us consider u funclion {(x,y) of iwo ariadles. Assumeé that f has continuous pamal
derivatives of all'orders less than or equal to 1, for sor2 fntegsq . in a neighbourhood of a
neint (xg, ¥p). Then the nt Taylor polynomiai
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1= )53

. - aaﬂr
T, () = L?_,:u 1_11:"',' EY ay])‘, Yo)(x Xl (y - Yo!

has the same vatue gs f(x,y) a1 (%;,¥o). and the same partial derivatives of all orders < ax ¢
at (X, Yo)- As in the case of one variable, we would naturally like to know wherher e can

approximate f by the comresponding Taylar polynoimials. Put differently, we would Jike 1.
have some information about the function

Rnol (X;y) = f(x, y} - T (%, y).

An analogue ofTaonr 5 theorem wliich we state now. provides us snme informalion abow
the function Rﬂ.l (x, ¥).

Theorem 4: (Taylor’s Theorem For Function of Two Variabies):

Let f be a real-valued function of two varizbles x aad y with eenlinugus parhal derivatives,
of orders € n +.1 in some neighbourhood S (X . 1) of X = (Xp  ¥a)- Then for a given

x.y) # (xo Vo) in § (x. 1}, there exists a point (¢,.c,) on the line s FHUCITSYIITMNTING TN
and (x . y). such thiy

f{x'y)=Tn (X. )') - R.'H'. (X.}')- Lok

where

iazjsn .1 r’(}l-r]f\

T () = T3y o X 0

1Lyl

R, (xy)= i+

1 form ey .
ans R, ., =T . o PR
This means R, , (x . y) = T A JML‘( Ry
Aty .
=" fo L X7 (2 - i
FLAD LAY Gy hen ) 7
n [ J”L} e
e e L T
51T RN TP PR, VN e ¢ ' ’ '
=1
+ i[-__ ‘-;‘Ihl ‘-“- “—r: } _‘(l‘)r
(n " g} ot ! .

Soyou can sec that R,. .o ) invorves sl the yna | " opder parie taesivativoos o f
evaluated at the paint (c‘ L Ca)-

The right hand side of (7) is catled the ' Tavior ¢ saasion of £ .t {x,.¥:) This
expana!on may seem a little coraplicisd 10 ven 2 'l let id seare vou, You wiil s6oa
see thal in this course you need to enisen. o« only ik cong Tayler exnansions of (RGNS,
if you look at the expression for R, th.y,, you %1 vz Ul 3L contains powers Of x5 and
(¥ — yol. Now if we take the poinl (x , y) ciase comein te 0, Yol then e xgyanmd £y - v
will be very small. Therefore, we caic get a good erough approximation of )} Dy 1 azenndd
degree polynomial. Of course, £{x,y) can be approximaied as closely 3¢ we ik ey
poiyaioiial by choosing o sufficiently iarge,

For fuwre use, we write Lie expression for T, (x.3) angd the second Taylor: & aunof fex.w
at (xg ¥y explichiy

£

R o a . s . Of i N
fo0y) =1 (0, yo) “‘L:?x (Xg Yol (X - Xp) 5: {Zgya) (Y - Yol | T

i| _&f va , 28f
+2-.|:-§;§ (Xo. ¥o) (X —X%g}° + Px a;ixf.- ¥R (N =K Y - vo) +




RN o e e

.

a1 : .
_(3-}‘:_ {Xp . ¥o) ¥ - Yn)'] + R (¥}

Now consider this example,

Example 9 : Suppose we want o tind the second Tuylor
f(x.y) = In {1 + x + 2y for points close Lo (2.0

-

cxpansren of the function

Let us compute the partial derivatives one by one. We e

f(2.1y = In3

‘3.1
.
+
T
e

v T a2y xdy ) T

Then the seeond Ty for exnnsios is given by

L ] 1 '
. 11 - 1 | {
h\'._\.’l—j!'l."';_."(“\1"'_.;')":\']."_.)}'- ._|'_. \_'|-|-
- - 4 - -
- 1 _i
e T B e O T 1A A
. - —
Why dor 1 you ivy e S e now
=) o the serond Fuvtur expitimie Lo fanvaee by v
P
AEMTET) HE L
a0 Fiad an appresimadion b the funclicn dev, et by e st
poedy it near 100
Ly a1 dteX s soviion e Wil dinCuea i sl o el boenee e el Yol
Nee alreasry stughie] NN 0 M R0 Iiioes ot e B iSleas Y your
Caiouies course. There voli rave used e Grstand sea T S dun e doeed
i and local miaima, You will see thai tne ('" o o e Ginum e L rdninat

ol funcitons of two vaciables are similay v es i .
= sel of necessary conditions for the exister ¢ of maaiiae
the une vwiable case. Taytor's cxpansion o) funeite

sy meier inble Wl obrin
Lo nmanna, which are sirmaiar o

.', v stldicd mothis seotion wilt

cnable us m deriving a set of sufficient conduions [on u weriianing e points of maxin.t amd

mhvinue This is an analogue of the szeond dervativg Ll
funciions of apen variable.

8.3 #’!AAIM A

i\’llNJ R

Tlm section deals with the concepl of maxinm 2td . 136
Vou know fram the one-variable case find the stady 30
usclul in graphing a function.

roiahy ‘w e have siedied for

oo joncdens of tve vathabdles.

sk ans i AeL cXirema) iy

As in the onc-variable case, we shull be intzrastzd in ‘.tndving the locdl exteema of a

function. rather than its ahselule extrema. So ILI Uy lake 4D

-

the sindy o lecal or relative

sxirema. i.e., points of relative maXim or re1ative mrtiene {or functions of o varables.

Taylor’s Theorem
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8.3.1 Local Extrema

We shali first try to understand the concepts of local maximum and minimum for functiors
of fwo Variables.

Let us start with some simple functions,
Consider the function
f(x,y) = (x + 174 (y - 3 - |
Now (-1,3) =-1.
Since (x + I)’lfmd (y ~ 3)* are always posilive for x # <1, and y=3,
we have (x + ll): +y-3P-1> -1 for(x, y)‘:; (-1, 3).
T]?at is, f(x, ¥} 2 f(=1. 3) for al (x. v).

In this case we say that f has 2 minimum a1 (—i-. 3). See Fip. 1.

z4

Fig. 1

You can sce that the 1angent plane to the surface at {~1. 3, -1} is horizonal,
Now consider anolher funclion defined by

fxy) =3 —sin (4 y3)
Here 7 (0.0) =%

inside the circle, we have

T )
- Take the cirele X+ yi= 5 wilh centre (0,0}, Then for any (x, ¥} s (0, G)

sin(x"+y*)>0

and therefore
f(x, y) =§ —sin(x?+ vy < % - (0, 0).
Thus £(x,¥) < §{0,0) for ail (x, y) in the circle, Note thar f(x.¥) can be greater than :)‘. for

(x, y} outs_idc the circle,

iIn this ¢ase we say-that  has a local maximum at (0,0).
This leads us to the following definition:

Definition 6: Suppose f is a real-vaiued funclion of 1wo variables. We say that the
_ function f has a local maximum at 2 point P(x,.y,) if there exists some open dise



RECSRE 8
e i

S(x, 1), where x = (X, ¥,) and r > 0, contained in the domain of definition of f such that Taylor's Theorem

ror all {x, y) € 8 (x, ) we have

f(x.'y) £ f{xg . yo).

Now we are sure you will be able to define a local minimum on your own, See E 13). Don’t
forpet to tally your definition with the one given in Sec. 8.6.

:wa - @ o vTm o wmLn

213} Define a local minimum of a functien of two verizb: ~.

(ST s

<uodlithat in the case of funclions of one variable, we Lok an open inderval instead of an
w3 dise. Thus, our notioen of local maximum and iccii minnnwun sor functions of two
<ariablus is a nalural generalisation of Lhe notion in the one-variatle case.

Reamark L: i) If f(x,y) < f(x, , yo) for all (x, y) € D, lhe domain o/ f, then we say that the
PaINt X,.y,) is the global or absolute maximum of f. We can simifarly define a global

SN,

3 Uhe maximum and mirimum values of a function are cailod wicema of 1he function;
v~ ey thal & function has an extremurm at @ given poiin I tic Goncion has a maximum or a
wwinimum al that poeint. '

If & lunction has an absolute maximum or minimum 2t & poinl (xg,¥e) and this point is such
that ihere is a neighbourhood of (x,,¥;) contained in the domain of f, then (Xg,Y,) is a relative
maximum of relative minimum of the functicn f. Bul the converse may rot be rue.

In the case of functions of a single varizble you know 152t the derivative of a function -
vanishes (if it exisis} at each local maximuem and minimum. There is a similar result for
functions of two variables also. We present this vesult in the next theorem.

Theorem 5: Let f te a function of two variables, Suopase [ has zn extremuom at some
maint {%5.¥0) and the partial derivatives of [ exist at that point. Then

i of ’
E;; {Xo. ¥o) =0= 'é'; (Xa \¥r)
Teagf t Let us assume that £0,00 Las 2 rzlative oidimioni aix = (X5 Vo) Then I{x,¥) is

“e:ined in an open disc S =S (X, 1), £ > 0 anc {x,y) € f{x,. vy) 00 al} Gy} € S. Thus, thefe
sccrpen intervals I, and L, :

DT A TR S | N R AT
sucnthalx € Iy = (Xygpe Sand v u L= fi, 1) e &
sovw censider the function g, defined on 1, by
g (X) = f(x.),
Then g, is a function of one variable,
scniiarly, the function g defined en Ly by o 0o 0 L. o vl Uliia o7 ono variabla,
We can See from the definitons of g, and -, Lin.
)=y Sty =g xg) Forall x = T, 2l

£ () = o) S f{xgyed = 32 O forall y = 2,0

This azans that the funchions g and p- Juve wereiie s e Lo ot g end ¥y,
resnectively.
Dow we are given thal e partial derivatives o7y v L vos sk s that gy and g,

aiv diilerenliable al xg and yg, respectively. T,
£ (%o} = £ (X, ¥o ) = O and
g (Yo} =T, (X0 ¥o) = 0.

tecause you already knosw thar if a one-variabie fiseticn s <oladi » exiremum at a point and
12 differentiable at that point, then its derivative veniun L 3 .




Applications of Partial
Derivatives

If f(x.y) has & relalive minimum, then g, and g, also have relative mimma a7 X, and y,,
respectively, and we have the same cenclusion as above.

We can use this 1heorem 1o check whether a piven function has zn exiremum al some point
or not. All we have Ir- 7 5 to see whether iis partial derivatives vanish at 1hat point (if they
exist). We shall illust .. this fact with some examples.

Example 10 : Let us check whether the function given by

¥

=x:=3
fix.y)=x ..:-;+4

has maximum or minimum values,
.

The given function f(x, v} = x>~ 2x + % is differentiable everywhere. According to

Theorem 5, first we have 10 find oul the poinis (x, y) such that fix.¥)= 0=1, (x,¥)
Now

fx.y)=2x-2,Mixy)=

13

Therefore, Ty (x, ¥y and £, (x. y will vanish only when x =1 and y = 0. Therefore, the point
(1, 0) is the only jussible poini where [ can have a maximum or minimum value, Now lel
us see whether (1, 0) is a maximum or a minimum point for f.

We rewrite f(x, y) as

1
Fix,yy=x"—2x + )‘;—

2
=xl-2x+ 141
X _>c_l+4 1

Iy
=(x-1)y+ 4 l
This shows that, fi~, y} 2 -1 = £(1,0) for all (x, ¥).

‘Thus, the Juiciion has a glebal minimum at (1. 0), The minimum value is f(1,0)=-1. Th=
function has no maximum values.

Thus, if *gf:

. af of . i,
does not have an extremum at thal point. But lfé; =0= -5)- at some peint, then tins

of . : :
= Oor v = 0 at some point, then we can sraightaway say that the function

does not imply that the funciion has an extremum at that peint. [t is possible that all the
first o fer partial derivatives of 2 funciion are zero at some point (xg , ¥s), but sti}], that

point is not an cxwemum point for that {unction. That Is, the converse of Theorem § is not
1 - . .
true. We illustrate this with an example.

Example 11 : Consider the function : R* — R defined by
fix,y)=1-x*+y¥
For this function we have

o o

> =-2x and E =2y
Tm:rcr'cu'lt:i {0 U‘—O;ﬁ (,0)
"¢ U= _3}' [AUARFE

Now, let us check whethar f has an extremum at {0, 0). We have f (0,0) = I, f(x, , 0} <}
and £(0, y,) > 1 for all non-zere x,and y,. But in any neighbourhood of (0.0), we can jm
points of the Lype (x, , G) and (0, y ). Thus, there gxists no ncighbourheed N of (0,0} for

" which f(x, ¥) < {0, O) or {(x. y) 2 f (0, 0} for all (x, y) € N. (ulso see Fig. 2).

Thus, (0, 0) is neither a maximum nor a minimum point for T, though both the partial
derivatives of f vanish-at {0, 0). :



In Fig. 2 you can see the graph of f.

Fig. 2

Sometimes it may happen that the partiat derivarives of a fuaciion d b net exist  a point,
Bui, still the function has an extrernuim ai that soink. This 15 the vise with the fusclion 1o A
Jdl 1ext example. Z .

: Z=14 o Xyt
Example 12; Consider the funclion given by

f(x.y)=1+Nx?+y?

[r Fig. 3 you can see the graph of this function. Obviously, f kas a minimum at (0. 0.

af gt
Now let us try to calculate Ix (0. 0) and ES (0.0,

2 0.0) = lim (0= F(0,0)
ax b= h ;
_ oy o
ot fhT Y
= lim ——-—
h =0 ]
fal
= L — by
h—2 h
_nl o o .
waLwe know that ng Y does not sxist. Hepes == (O, 1) dees 1ot exist, You can

Hinilarly check thalg% (0, 0) also daoes not exst

-

Sez if vou can soive these exercises now,

FRUTRIEE Ty s . ——l i e = o - U BN ST LT L L B o]

214} Find the poums at whien the perdal ceovam o o5 o fLnena
f(x - ___._._.x-_—_-—-_- e |S
i -‘y’_x=+u=_4“m‘“'

Show that the function 11, ¥) = ¢« 37 - 00— 27+ 1 d s2s | global minin am.
I

.

(Hint : Complete the squices nvobiics oand [0

—— - r BT o T T T A e, = T b R T T

Updil now we have seen thai if o function ¥ 153 on e ruifs giyg, O then either

it the partiat derivatives of [ do not eaisi ai te. v

L.l o
HY Y LGy =90= 5; {a, b

Ticrnecforth in this umit we will Ge concemien ooy vt foiis uons whose y iz derivatives
exist. So the second condilion becoines o w10y 0 L dition for the exis 20C 2 of extrerna,
Because of the finportance of this cOMiitien, w- yi.c - ape L parag (o Or | 2ints satisfving

Definition 7 : Let § be a function of two varaples % poinr {0, v is s .o be a
stattonary point of fif both the partial dorivative: e weer a0 y)

Taylor’s Theorem
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Appiicaions of Pattio Now you Wil ugice s 1 ndo wt @Xikinen. at i, 0% en (&, D) is @ sassic caly pOI o) 0
Derivatives Bur all stationary points of a functivii nuud not be its points oF eXemia. You Ddve avet oo
a situation in Example 11.

You can now try this exercise,

E16} Find the siationary points of the following functions:
aflx, y)=1+x2-y
bHx, y)=(x+y)e™

A T Tk el PV T I R

Now let us look at some stztionir, peints which are not points of extremz. Suppuse (., ™
is a stationary point of a function i, y) but is not s point of extrerawm, Siill i1 1:
possible that one of the functioas t(x, ) or {{a, ¥), where a and b are fixdd CEN EVIE 1y
maximum al (a, b), while the oiher Lins 2 minimum at this point. For eximple. o us io,a
ai the surface given in Fig. 4 by Lhe equation

f(x, y)=y>- X2,
. _ZJk

gaddle points

(0,0) is a stationary point of I(x,y}

Look at the surface alos g x and ¥ wxes. 10 we fix y = 0, then 1%, 0) = —x* considored ag
function of onc variabie, has o maximan at . But 7 does not have & maximum at {095
Hwefixx=0,then {3, y)=y* Las ¢ titrraum a1 O, but § Goes 66t iave 2 ainaon 3

10, ). Such stationarr points are wnngd as saddle poiniy, From Fup, o, vou con see hod
e graph of f resembles a saddle sroued she stalionary point {0, 0), That is why { does nu
nave on extremum oc ("1 0), eeen Vg Q) =1 (0, 0y =0

We say that a function f hasw saddie Lol at (g, ¥el. if there is & dise venged az (2., e )
such thal

i) fassumes its ma<imurn vaiue anoone dlamatr of i dizz only at (5,0,
ity fassumes its meivimum value ot =noter diameter of the Jisc oty at (&Y,

Thus, we have seen (nat a statonty »ain’ fidy w0t be topoint of extivrnum. i sorvses

sectivn we Ty 1o Tind condl Mot wid o - 008 7 sideary poin s o point of cliier
maxirmum Or ninin.im,

‘8.3.2 Second Derivalive Test For Local Exiretas

In this sub-section, we rerive a rucibs 1 u-in0 which we cun jesl wicthior a pobi iz goini o f
maximum or mininie .. You will see et th

ia tust mvolves sccond derivuiives.

You may recall tha £or the case of one varamie alsa, we hnoee 4 second denvaiive s U

tesling 15 vXima ann minima, Accomding 0 s oo, 0 we iave o function Fofonevasichd
sich'that 2 (x,) = Y, then f has

a locai minirwm at xy if I (x) > 0

4 local max imum at %, if £ (a5 < C.

We have a si.viar test for iwo varighles. But the test is nol 25 easy as in (he case u! one
viriable.



-

10U w7 already Tamiliar with homogeasous funvec, ... .. oot Sics v find a sec of
sufficient conditions for determining the nature of sialionary oins, we shall need a simple
result about the sign of values assumed by homogencous polynomuals in two varizbles of
degree two. We shall call a homogeneous poiyLumil of degree two in n variables with real
coefficients, a real quadratic form in n variables. A quadratic form in two variables is-
also called a binary form or a binary quadratic form, Thus, a binary form is an
eXpression of the rype :

ax’ + bxy + cy", where a, b, ¢ are real numbers.

Now we staie aiid prove a theorem which says that we can delarmine the sign of a quadratic
form by looking ar its coefficients.

Thearem 6 : Let q(x, y) be a binary quadratic form. Then

1 br-dac=0=q(o,P)20 ¥, Pe Rorg(ee, BY<0 ¥, e R.
iii b2~ dac > 0 = q (x, y) takes p.sitive as weil as nepative values,

iii) b2—dac< Qanda>Dore>0= q9(x . B} >0 %o, Be , R (e, B = (0, 0).

) br-dac< Oanda<0 orc<0=» g, By <0 V¥ Be Rua, Py= (@, 0.

Proof : i); if b* —~ dac = 0, then both a and ¢ eannot l{x zero. Lat us assume without loss of

generality that a = 0. Then

, _ 2. b € .z
Q% y)= a(x XY+ YY)
=a[(x+ Eyj_ b? — dac yzjl
2 ( da? )
R _ b 32
—a(x +Zay)

This means that q(ct, B ) has the sign of a, if it is non-zero.

In fact, we obtain that q (1, ByzOforalie, Be Rifamdand Gz, Mg 0foral
w.fe Rifa<0. (Note thal in this case there exist &, [ & i s chirat {0, 2) # {0.0)

~nd glai, B) = 0. For example, ot = — % and i =1

.5 nterciranging the roleSdf x and y, we can prove i
q(a, B)=0forallo,fe Rife>0
aad q(a.{])SO'}‘oralla‘ﬁe Rifec <0,

“ii} bt —dac > 0. If both a and ¢ are zero, then qQix, y) = oxy, St el gL, =) = =5,
q(-1,-1)=b. ‘I‘his__showa Ihat g{x, y) assumes both gusli o, ¢ - L tive waluas.,

a2 suppose a # (7 Then

qxy)= al:(x + 2": y): - p—:ﬂg]y‘}
. 4a?

T re — 2_.._.!
AL W - LEC RN
Za

Pl teng{w.pj=-~ A
Also, iley =1 and B, =0, then g(e, By = a.

Thus, q (. B) and a(e;, B,) have opposite signs. This powee s To ) ire =0
Similarly we can prove Case i) whenc = 0.

(iti} and (iv) : If b* - 4ae < 0, then neither a nor ¢ can Ge zoro.

Since a > 0 <=> ¢ >0, it is enough to prove the resulf in case 2> 0 or 2 < 0. As before, we
write ' :

" Taylor’s Theorem
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B

(x.y)=a x+£ a_-_.lf_"ﬂ z
Gy = 2 Y da’ ¥

Then for &, B € R, the expression inside the brackel is positive for (o, ) # (0. 0) and is
zero for (o, §) = (0, G).

Thus, if a >0, q (¢, §) 2 0 for cvery & f € R and
ifa<0,q(a, By<0forevery a, e R.
This completes the proof of Theerem 6.

Now we use this theorem 1o obtain a sufficient cendition to delermine the nature of
stationary poinls.

Theorem 7 : Suppose f (X, ¥) is a function of two variubles such that f (x, ¥) has
continuous partial derivatives upto order two in a disc N containing the point (o , ¥o).

Suppose that the point (X, , ¥y, is 2 stationary point of f (x, y). that i5.

of (x )= oL ( ) =10
Jx o Yol <= 3y NaYod = U
3 f 28, f a*

Further, 16131_2 (Xg.¥% ) =2, oy (Xs,¥o y=Db and o

{Xp. Yo ) =¢.

Then, )
i} f(x.y) has a minimum (maximum} at (Xg, ¥p ) ifb?~4ac<Oanda> 0
(a<orc>0({c<O.

iy f(x, ¥) has neither maximuom nor minirnum at (x, Yoy if b —dac > 0,-1e.,
(Xg -¥o) is a saddle poinl, ) ’

Proof : Let us first consider the functioné
ai af 3 f
= JB2=T_ o .+ 0:=%

oxl ax oy oA

o

81

“These functions are given 1o be continuous at (x,,¥,) € N, and

g, (Xp, Yo = a, 282(%0.¥0) = bigy Yo =¢C

This implies that the function g5 —g,g, is also continuous on N, and

4 (g2 - £,8,) (X, Yoy = D' 4uc.

_ Therefore, by Theorem 6 of Uait 4, there exists a neighbourhood N, of (X, 'Yo) containeg in
N such that the function g2 ~g, #, will nave the same sign as (g2 — G189 (%o Yo) o0t Ny,

‘Similarly,

(@) Cormesponding to g, we can choose a neighbourhood N; of (%o, yp) conuained ie £ snei
. that the function g, will have the same sign as g (Xo. Yo) in Ny

(ii) Corresponding to g, vre can chaose a neighbourhoed Ny of {xg.Ye) conmained tn M o

that the function g; will have the same sign as g» (X, ¥o) in Ny

Let Ny = N, AN, N N, Then  satisfics all the hypotheses of Taylor's theoram 1 ity
Thercfore by second Tuylor cxpansion we have

' [ = 1 — Lfan - ——e
g+ h, ¥+ K) —'(*a-:c..\ﬂ"( (Xq . Yo} (Xp+ h — xg)

+ _gi_y(xc Yo (ot k“)’u)}



1| &1 . 357 .
*’5[5{! & . M) (xo+h—x,) + ﬁ(g.ﬂ)(xui*h—-xo)(}'o-i-k-yﬂ)

+ _g"% €. (Yu"‘k_)’o)::’

where h and k are numbers such that {x, + h , y, + k) helongs o Ny and (€, 1) is a point on
4w line segment joining (x; .yp) and (xg+ 0, yo + k).

Since (xg, ¥p ) is a stationary point we have

ar of
M (. ¥%)=C= Jy %y .¥o).

Therefore,
. J A e 2 ’ T 2
g+ Ly, + k) - f{xp.¥5) = 7l G )b +2g, (€ )ik + 2,7 (& M) K]

=q (h. k), say C®
“Then q (h, k) is a quadraiic form in b and k.
Now lei us take up the cases (i) and (ii). onc by one.
Case (i) : Suppose b* - 4ac < 0 and a» 0. Then (g§ -8 &) (X, ¥) = _I%g_c_ <0.

Thus, gi— £, 8y will be negative at all points in N, in particular, at (§,m) e N,. That is,

(8:-818 )& n) <0.
Also, since a =g, (x;.¥,) > 0, using the same argument we can conclude that
g Em>0.
Therefore, by Theorem 6, the quadratic expression qh, K20
This shows thal
g+ hoye+ k) 21(x,, ¥g)
fov Wi h, k such that (x; + 0, yp + k) & Ny Henze § hat ¢ loer hinimum at (%, ¥o).
Fvdlarly, we can show that if ¢ = 0, then 1 hzs 2 iccal annimum at (xg, Yo). Using a similar
BTN We can prove that © has 2 local mazimum it e <0corg <0,
15 1) Suppose b?— Jae > 0. .
pi--dac =4 (gi— 81 81 ) (o, ¥o) > O irisling that g7-1, #1, 1s positive ac ath points in Ny,
o :

Fren g, g @ > 0,

‘Tnerzlore, by condition (iil) of Theoren 8, ¢, (i, =) 5:s 5o L poaitive and negative values.
Henee from Equation (8), we coaclude tha [ de - nei 772 oy o trayom in this case. This
_eenvies Case (i) of the theorem.

Here, you mnay wonder why we don’t conside: the s, e e D, If iR —dac = 0, then we
~wonetooncluce that go—g, gy = 0. In fact, the | Loaue i oL i nave different signs at

different points of Ny, Thus, the cage D7- Jae = 0 i Jepbe 35 rag,

Mew weare giving a few exumples (0 350 does THon . 7 s aonliad to derermine the
raintg of extrema,
Lraaple 13 ¢ Lot us find thedzest cateea oF © - 050 0 ), where

HaYT = X 2xy + 2y?— Zn b Lyt

Here we have .

o
=

(z,¥) =2x -2y =2, and

(R y)y=-2x + 4y =+ 2.

Flw

Taylor's Theorcn;
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For both the partial derivatives to be zero, we must have
2% -2y -2=0 and
=2x +4y+2=0.
Adding these equations, we find that
2y = 0 ory=0.
Then we must have x = 1. Thus, (1, 0) is the only ‘stationa.ry point.

Computing the second derivative, we get

a ;o
a=w (L,LO) =2, b=2§‘x—a—y'{l.0)=4and
c_='%l’% ,0=4.

Therefore, b*—da¢ ==16 < 0.

‘Since a=2> 0, by Theorem 7, f has a local minimum at (1, D).

Examplé 14 : We shalf show that the function
fx,y)=x* =2y +y +X*-y* + 7
has neit.hcrlniaximum ner minimum at {0, ).
Clearly £, (0,0} =0 = fy (0.0). ie., (0, 0) is a stationary point.

ad P A -4 _
Mareover, a = %2 {0,0) -2.c—ay2 0.0O)=2,b= xdy (0, 0) = - 4, so that

b?.- 4 ac = 0, showing that Theorem 7 is not applicable. But
fy)=x-yP + X=y) & +xy+y )+ 2¢
Therefore,
fitx, x) = 2%

Consequently in every neighbourhood of (0, 0), there exist points (x, ¥) with y = x such that
f(x, x} assumes both positive and negative. values, showing that f(x, ¥) has neither
maximum nor minimum at {0, 0}.

Now we give an example of a function, where B> —4ac =0 at (x,. ¥, but the function has an
exmemum at (X, ¥,). -

Example 15: Consider the function {(x. ¥} = y*+ x%y + x*

Here % (0, 0):0:% (G, 0).
'%fs 0.0 =0, % ©.0) ”'% (0,0 =0.

Ff FEN[ PN L
Thcmforc,f:(ax ay) -4 (axz) (aﬁ} =0t (0.0).

2
Butfix, y)=(y +% ¥ o+ % x*. Therefore,
X, y)20=00,9 for aii X, ¥. showing that (0, 0) Iis the minimum of ¥ {x, y}.
Now we shall sec an application of the concept of maxima and minima.

Example 16: OF ail the wiangles of a fixed pcrirhctcr, let us find the one with maximum
area.

If the sides are X, y, z, then the area A is'given by the formula

Afes(s—x) (S-Y) (s— 2

- \-.vh_crc 5,: % (x + ¥ + z) is the semi-perimeler.



Thus,
2s=x+y+zo0r
S—Z=X+Yy-8§
Al=s(5-x) {5-Y) (x+y—5s).

Here s is a constant and x and y are variables. Thercfore, in order to-maximize A, it is
sutficient 1o maximize

f{x,y)=(s—-2) 5~¥V)(x+y=-5).

Now,

(s-y) (2s-2x-y)

(s -x) (25 -2y -x)

|§§ ¥l ¥

T = —25~y)

q ¥

|

= ~-35+2x +2y

v ¥
IIH,&

-2 (s-x)

¥

Since in a triangle, s #x and s # v,
ons & = o= 2L
the equauonsax = 0= 3y -imply that

25 y=2s, x+2y =25

" Consequently,
_ S
x=y=3s.

This gives the statonary points of f,

For these values of x, y, we get

Jf &f 2s
BEC= T Tyt geo.ﬁmd
Ft 2s
b 23x3y 3
1 2 2
b*—d4ac=— — % —-43i <0,

'I?xcs; conditions ensure a maximun), Noew when x =y = %\s_ . wWe get
2s
c=12s —x-y=3 .

Hence x = y = z, i.e., the triangle is quila:era].

In the next section you will smydy 2 methed for finding the meximum or minmmum of

functions of several variables subjeci {0 cerizin constraints. But first it is time to solve some

CACTTISCS.

El7) ' Find the stationary peints and the local extreme values for the following functions:

a) f(x,y)=x*+2y'-x
0) fix,yy=x*+y'+ 3y’ -2 ' .
¢ f(x.y)=y+xsiny

Taylor's Theorem
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E18)  Discuss the behaviour of the functien
1(x, y) = 2'cus (x+y)+ev
at the originl.
E19) Let n be an imegelr, nz 2, and let fix, y) = ax"+ cy", where ac = 0.
a) . Find the stationary points of f. ‘
) Find the local extreme values, given that

(iYa>0,c>0,(i) a<0.c<O. _

84 LAGRANGE’S MULTIPLIERS o i

Suppose we want.to construct a closed box in the form of a parallelopiped of maximum
volume using a piece of tin of area A. Let x, y, z denote the length, width and height of the
box, respectively, Then the problem reduces to finding the maximum of the function

f(x,v,Z}=xyz,
giventhat 2 xy + 2xz +2yz= A ...{9)'

In Fig. 5, you can sce 2 closed box. xyz is the volume of this box and 2xy + 2%z + 2yz is
its surface area,

In this section we shall study such problems for functions of two variables, where the
variables satisfy some side conditions as in (9). That is, we w|]l discuss a'method 1o find out
the maximum and minimum values of a function

Z = f(x, y_).

given that x and y are connecied by an equation

2{x,y)=0

If we could eliminate one variable from the equation z = f(x, y) with the help of the relation .
g(x, ¥y} =0, then 2 would become a function of ape variable. Then we can easily find its

‘extreme values,

S0y the problem reduces to ﬂndmg the maximum and minimum values for a funcuon of one
variable.

Here is an example (o illustrate this.

Example 17: Supposc we want 1o find the extreme values of the function .
f(x, y) = x* + 2y” —x on the unit circle x?+ y*= 1.

We first use the constraint x* + y* = 1 to reduce the function
f(x,y)=x*+2y—x : L0

Lo a one-variable function,

- Thus, we get

(x, y)=x*42(1 -x*)—x
=2-x'- :(.I
Here: wc‘have 4 one‘variable function, say g(x) = 2 - x*-x, defined on the interval [-1, 1]
Now we shall find out the points of extrema for g(x). By solvmg g ()=-2x-1=0.we
pelthat x = — é Is 2 stationary point of g(x}. Then 1o check whether x = —ils 4 maximum

2
or a miniiaum, we calculate

g (x)=-2



. 1 A ;
Thus, g” (..\-2—_) < 0, Therefere, by the second derivative test for one variable we get that

!t . ; - .
X=-2 isapoint of maximum for 2. g has no minimum. Now we substitute the value

X =—-= in(10).-Then we have

2

Therefore we conclude that the function has a maximum at two poin'ts { —:1'-, .k Jand- -

B, %
"2

1_2_. -1 _¥3
253 =3, =30

1 V3,
(—2,— 2 ) Also (-

=1

+ 2
472

B =

Thus, the maximum value of the function en the unit circle is K

You must have found this example quite easy to follow, But it is not always feasible to use
this procedure. The reduction of the given function to a function of one variable using the
given constraint might prove to be quite curnbersame or sometimes might not be possible at
all,

We now present an allernative method which is often more convenient. This method is
known as the method of Lagrange's multipliers.

Suppose we want Lo maximize or minimize a function z = f(x, y) subject to the condition’
g(x, y) = 0. Theoretically, z is a funclion of a singie variable (say x) and at the extreme

va]ues% = 0, ie.,

X, Hdy
ox dy dx

From the relation g{x, yj =0, we find Lhat at the extrema, we must have.

g . de dy _ '
i il o {12)

Multiplying Equation (12) by an undetermined multiplier A and adding, this to Equation
(11}, we obtain '

E A SN SN N '
(c)‘x +.ﬂ,ay)+(ay '2'8);)8);_0 {13

Chogge A so that the coefficient offi- vanishes in (13).

(This is possidle and would become clear after you have studied the implicit function
theorem in Unit 18.) )

Hence at the points of 2xtrema, we have

o 92 _ ’

o + A x = H (14
I, 98 _

N + A c?_\’_-_ 0 .. {I5)
glx, oy ¥ . (16

From these cquations, we can determine the three unknowns x, y. & . The values of x, y give
us the coordinaies of the stationary points, The role of A is over and we don’t neéd it any
more, We may add here that each stationary point so deiermined need not be a maximum or
minimum. Sometimes, we can delermine their nature by simple observation of the equation
£=1(x.y). In somc cases we can apply ihe second derivarive lest, by eliminating the
dependent vanable, ‘

In-fact, you can observe that eguntions (14), (15) and (16) are obtained by equating the partial
derivatives of the function ) N

=0 : . 11y

Taylor's. Theorem
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Fouyd) = fny) +2gy) e

1o 0, reating x, y and A as independent variables. We can explain this in a simple way as
follows :

Suppose we are given the function f(x, y), whose extrema are 1o be found subject 1o the
constraint g(x, y) = 0. We form the auxiliary function

FX, v, M =X, y) +Ag (X y), ' (1D

where A is to be detemmained, Then we find the three partial derivatives of F(x, ¥, &) and
equate these to 0. Then we solve the three equations. The values of (x, y) thus obtained are
the stationary points of the given function under the given constraint.

The number A is called Lagrange’s multiplier after Joseph Louis Lagra.nge,'a lcﬁding
mathematician of the 18th century.

Here are some examples to illustrate the procedure.

Examplé 18 : Let us find the Jargest and smallest values of f(x, y)=x+ 2y;on the circle
¥+ yi=1, '

: o

Y 4

N

Fig. 6

In Fig. 6 you can see that f takes its maximum at a point in the first quadrant and its
minimum at a point in the third quadrant.

Here
f(x, ¥) = x + 2y and g{x, y) = x*+y* -l

of _ . o8 _ o, B’
Nowax_—l. Ix —2x.ay—2dnqay = 2y.

The auxiliary function is-
Fx, ¥y, M) = (X +2y) + A (x*+ ¥ =))

Therefore, to find stalionary points we have to solve the system of equations,

i+A2x=0
2+4A2y=0
x+y' =1



Solving the firat two equations, we get Taylor's Theorem

1 1
==, y==~ d(— 2_,_ L .
(XELy YTy A (2}.) (l) i

Using the third equation, we get

The value A =% Vs gives

1 2 -1 =2
Thus, the sla —,=}and (—,-=).
us, the s uona.rypomlsa:c(\!g \E}an ('\G'\G)

Vs and f (- L = —\G, we get that the largest value is “E

2,
Vs Vs

Since f(

el

and the smatlest value is —\E.

(%]

Exampte 19 : Supposc we want to find the extreme values of the function f (%, ¥) = xy on-
the surface ¢ (x, ¥), where

E¥

. SR A
g(x-Y)—S + 2 1_0'

YWe first write the auxiliary function
F(x.y. 3} =xy+l(x§ + “;— -1
Now we have to solve the system of equations

=0

¥+

Ax
4
X+l)' ={

X+ 4y'= 8 gix, y) =0 <==> x*+ 4y’ = 8. .

1
From the first two equations we get x = X o A== 2

~ P U = T VT T e ey e "
Lo A =10 2. SUOLLIIUGNE LS I LG rd Sy udiion, wiz pe

dy’+ 4y’ =8 =>y ==z

Corrcspondingly, we gel x = £ 2. Thus, the exticine values e obtuined at the four points
2.0, (2.1, (=2.1) and (=2, —1). The distinct values at these points are given by f{a,y) = 2
and {{x, v) = -2, Therefore, the maximum vrhee ig 2 and the minimom valpe is -2,

] x’ ¥
Note that {{x, y) = xy represenis a hyperboleid and g(x, y) =3 + 7 - 1 =0 represents an
ellipse. In Flgurc 7. you can see the pomts of extrema of £, sub]cct to e condition that
s(x.y)=



- Applizations of Partial
Derivatives

Yn

1 2
fxy) = xy, g (xy) = + 5 -1

- Fig.7

Example 20 : Let us find the right dngled triéngle of perimeter 1 with the largest area,
Suppose ABC is a right angled wiangle with perimeler 1 (See Fig. 8)

w

D C
(e
y
/'/
A x B
Fig. &

Let the sidés of the triangl® be x, y, ¥ x* + y%. Complete the reciangle ABCD with AC &
diagonal, Then -

f(x, y) = area of A ABC =% X Y.

The perimelzr of the triangle = x -y + Vx? + y*.

We know that

x+y+\,r:<3+y3 = 1.

We have to find the maximum of T {x, ¥) subject to the condition that

g(x,y)=x+y+\fx’+y2 =1.

iLet us form the system of cquations for this f and g. We get

1 X '
Ty +Ah(l+————] =0
2 '\’x2+)’:
%x+l[]+‘——“v—-,—~}='0

\‘rxl " y?



x+y+¥xi+yi-1 =0

From Lhe firsl two equalions we have

L i
2 Y _ 2
P = T
Vx4 y? ryx? eyl
Y Y
or = ]
Vxisyit x Vxteyiay
Y _ X
o Ty T ~x

or'y —xy =x-—x¥
or X =Y,
Thetefore, the sides are x, x. and \G X,

such lhutx+x+\"2x= I.i.c.‘[2+\(—2—)x = 1.

l = and

| |
24¥2 2+V2 1+
The following exercises will give you enough praciice of solving problems by using the:
nethed of Lagrange's ruliipliers.

Thus. the required sides are =

E20) Find the maximum value of fx, ¥) = 3xy on 2x +y = 8.

E21)  Of all the pairs of numbers whose sum is 70, find the one that has the
miaximum product,

E2%)  Find the minimum value of the Tuaction f(x. ¥} = X + ¥y on 2x* + y* = 1.

E23) Find the point on the parabola y - x° = 0 that maximizes the function
f(x, ¥v}=2x-y.

r ram—n

Now let us quickly-recall the poinis covered in this unit.

85 SUMMARY

_In this unil, we have .

;Y Defined Taylor polynomials of any arder lor funciions of 1wo vanables.

2)  Stated Taylor's theorem for functions of two varkizies.

The second Tayler expansion:

) . AU ix,, . ovld . 9 i{xa . ¥e) W
Wx, YY) =iil%a . %) +I - BN B N __U'*l: ------ 0y - Yo
L TURg . Y ) n
- L ]| _{‘_-[_.0_-_'9‘ IN — Noi” da Ol (< \u) (y - "’D)
t L ‘}.\- l';\ I|1‘f
(%, . Vo) |
[Z 2 A a
r ENE =y - Yo)'_!

TRy{x )

3} Defined the terms *local maxima’, ‘loca} minima’ and *swlionary point” Tor functions
of 1wo variables and discussed the relziien-hip ¢ 2iween them.

Taylor's Theorem
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4) Derived the second derivative test for points of extrema:

i)

f(x, y) has a minimum (maximum) if b:=4 ac <0 and a > 0 (a < 0),

ii) f(x,y) has neither maximum nor minimum if

b*-4ac> 0.

3) Used the methcd of Lagrange muitipliers 10 find the mdximum and minimuem values of
a function of two variables,

8.6

SOLUTIONS AND ANSWERS

El) fix)=¢*. The different derivatives of f are

Thus, £ (2) =e?, f* (2)=e?,

F)=e*. " )=e, ..., ["(x)=2*

L2 =ef

Then the n* Taylor polynomial is given by

P,

E2)

E.3)_ a)

b
E4)

i}

F z 2 i n
e’ {x—=2) L (x=2) + 4 e! (x-2)
1! 2! n!

=c,[1 pa=n o2r, +u_—n_gn]

(xy=¢e*+

f(x) = sin x. The different derivatives of f are given by
f(x) = sin x, f(x)=cosx
f (x) = —sin x,

£ (x) = sin x,

P (x)=—cosx- -

¥ (x) .=cos X

and £9x = — sin x.

Thus, {0) =0, ' () = 1, £ (0) = 0, £2(0) = -1
and £ () =0,

This shows that the even derivatives are zero whereas the odd derivatives are
alternatively + 1 and - }.

Y0 =00 =1

Thus, the 5th Taylor polynomial of f is given by
P, () =x— x>+ x.

Let f{x) = x*~3x + 4. Then

f(x)=2x-3

and f* (x)=2.

(=2}
Therefore, f(-2) = 4, l(_l = 7,

£ (=2)
2!
Hence the polynomial is
By =14 -7{x+2)+1(x+2)

and

Polo=-1 31013 9o 0y (x— 1P + (- 1)
By Theorem 1, there exists a unique polynomial P(x) given by

1n(|

G T T
P(x) o T (x = xp)"

¢! s
=1+ k=1 +~2—(T—) (x =1y
=2—I{X~l)+% (=P



=2+ |+ (X =25+ 1)

=x'~3x+4
p ol -
E5) Here {(x) = T f{ﬂ)-—-.l
T S _
l(x]—{1+x]_ Fy=-1
e L2 e 12
[Jf.)—{I +X)" . =12
Ivu (x:‘ = (#_l()l_(:i%:'x—&;}}_) . I-n; (O) = {_l)l l xz " 3

an —_ .(___I_).{__z..) =% _‘::[_\l A - n
M x) = 04y f O =(-1)"Ix2x..xn

The [unclion (x) and its derivatives of ditferent orders are continugus in

1
I =5« L[ Therefore, by Taylor's theorem
2 5 " IX2x%x..%n
{(K):l—x+:’l- X+ L+ { ) nl x“
DT IX2x L X 0+ D)

n+ 11 {+ec)-!

where ¢ is a point between ) and x.

Eb) We have culculared derivalives upto order 6 of the funétion f(xy=sinx in E2). 'f‘hat‘ .

paltern shows lhal the derivatives of even order are aiternatively sin x and —sin x-
whereas the derivatives of odd orders are aliematively — cos x and + cos x.

Therelore, |
PR = (=) sin s " x) = (- 1M cos

- . !
Also the derivatives of any order are continuous and 1 {x]‘ £ 1 for any n and any x.

Therefore, by Taylor’s theorem, we have

o . R ™ T T, n Ty
TR X =8I T 4+ CustT UK - _} -~ 5N X ) =008 T X——
s " o { w ( 6} 6 ( Q-)

(=19

a '
+ +—-fﬂ (). (1—{;—)""

T )

. . n -
where ¢ is a jroint beiween 5 and x.

E7ya 5 - o ,
by 3 “
o 4

Ed) f(x.y)=e""
PG yY=Ly) = 0y 1,y F (e, y)=eb™"

Thiss. £ (6. 0) = {0, 83 -2 [, {0, 6y - T, {6, 0} <£,,{0,0) = 1.

Hence the 2nd Taylor polynomial P, (x, y) ot i is .

P;(x.y):l+[x+y]+%[x’+‘3xy+y1]

=l+x+y+]5x3+xy'+:i;y3

“Taylor’s Theorem
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.- Applications of Partial E9)  f(x,y=2+x+y . f(l,1)=4

Derivatives £, (x, y) = 3%? RO D=3
£ (x, y) = 3y} . E(LL)=3
f,,.(x, y)=0 (L 1D=0
fr (%1 ) = 6% . (L, 1)=6
£, (x, y) =6y . (1, 1)=6.

The Taylor polynomials are given by
By (x,y)=£(1, 1) =4.
P (x.y) =4 +3(x =1} +3 (y—1)=3x + 3y - 2.

Py (6, 9) = Py (%, ) + 3 6 (x = 1+ 6 3 =17

=3x+3y-2+3(x—ll)’+3(y_ 13?
N P, y)=P:(x,y) form22.
EI0)  Let P(x,y) =ag +ak +ag ¥+ [ 2 X + 2 XY + 80 ¥
P(0, 0) = ag.

a—P-—a +2 + <P
o e dxpXx +any, %

W =ag+ 2y TN, kg (0.0 = dal
Fp &P

W-‘: 2&10 Ixz J o= 2310
TP _ PPN _
Xy =4 oxay w0 = Ay
2P - (FPY

r?yl = 22 , - (“3}"{)(0.0]=25\n

Thus d‘I‘e 20d Taylor polynomial of P is |
1 -
Ty (X, ¥y =ag+ 2pX + 80y + 5 [ 2000 X7+ 22, XY + 285 ¥
T gt ApKrug Y+ axx®+ ay Ky + dgz ¥
1
Ell}  f(x, ¥y} =xy" +cos xy

2

m.o=m

GL Ay ey (9L . m _®-2n
ax YTV gk jak, Ta T 2T 4
H {9}

= = 2Ky -—isSmRY,| 5. = =n-1

gy . d L YJ .5

ot *Los xv _&_-j_‘) =0
. e =Y I x2 (1.5:_,_-) =

Pai

wov - 2y —{sin Xy + yx Cos xy]‘



(& :—f) : =n'—l'
oxdy jo. %,
2

&t 4 't
——— = Ty ot i =1
dy? 2x - X" cos Xy, 3y’ {(l,m/2)=2

The second Taylor expansion is

"2
Fouy) =T +[(“—4E)— (-1 1)(y-5 )

ra A

1
+§[0+2(n—1)(x-—1)(y—%}+ 2 (y - )2].
El2) f(x,y)=e'siny

f
f(0. 0y = 0. (‘_g_:' Yom =0, (g_). Jog =1

(-5
C}KE 08 T M ax ay L) om s

Then the required polynomial is = y + xy.

El13} Suppose fis a functicn of two variables. We say that the function f has a local
minimum al P{x,, ¥,) if there exisis some open disc S(P. 1}, r € RY, contained in the
domain of f, such that for all (x, ¥) € § {P, r) we have

i(x, y) 21 (x5, ¥o).

Eld) f(x, y) =;—-+—;-_—4

gf _ [x? +y 4 - 2%

02 (x2+ y2 —4)*

o 2xy

dy ~ (x'+ y?-4)?

%: 0_=>y3~x’~4=0
=y —(4+x)=0
=y =44 ()

.

r9y =0 => -xy = 0 => xy = 0. This shows tlm cither x = O or y = 0. But
y cannol be zero bacause ¥~ > 0 by Equation ().

Thercforex =0. Then y* =4 and y =+ 2

_Hence the points are (0, 2) and (§, -2).

E15) f(x,y)=x"+y* —8x — 2y + 18 is diffurcmiable zver-where on the plane,

f af
= =3x8, —— =2y_2
Ix x -8, ay 2y
f
--%f_: =U_=>X=4. ‘-% =0:>}":—'1.
- vy )
Naow check whether (4, 1) is 2 point of mavhin ' or minima, Note that

(4, 1)=16+1-32~-2+18=|
Now f{x, ¥} can be wrilten as,
1‘(x.y)¥x:—8x+y1—2y+18

=x —8x+ 16 +y =2y + 1 +1

=(x—4P+(y-1P+1

1=

Taylor's Theorem
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=l=1¢ 1)
'f‘hus (4.1) is a global ﬂ;.inimurn for £,
El&) o) [(x,y)=1+x"-y'. Then
o o

o= X, o= -y

PO VI

The stationary points ard’the solutions of

ol o :

s o= =1 4 = L3yt =

I %=1t and 3y y- =1 |

This happens il and onty if x = 0 and y = 0. Thus (0. 0) is the only slationary
point of f, . :

b) f{x,¥)=(x+y)e ™. Then

-8_;(— =(Xx+yhl-yye " +e

-ny

={-xy-y'+ lye™

o =(x+y)(-xyemr+e™

oy
=(—xy-x2+ e
Then the stationary points are solutions ol
. Sxy-y+l=0and-xy-x*+1=0
Thus. a
| xy +y' =1 ar;-dxy+x3=l.

This happ&ns if and cnI}: ifei= y* . Therefore x =+ y. But x = - y is not
possible since otherwise | = xy + y* =~v* + y* = . .. Subslituting
x=y in any of the earlier equations, we gef that |

y== -l: . Thus the points are
V2

L—%.%?;md (——l:.——,l_* 1.

Va2 +2 V1ooN32

E17) a) The functien f(x, y) = x* + 2y* - x has continuous partia! derivatives ol any

; af

order. evenvwharz on the plane. == = 2w — |, = =4y,
. 07 2y

The stationary points are given by

2x~1=0and 4y =0

e, x= :]2' and vy = 0.

Thus {% , 0y 15 the only stationary point ol f. Now,

- Som N
o =2 _“_{G"I] 9
el . L {2’.\_:/,'::.GI




st
-

Thix shows that b2 - due = =32 < Qand a > 0. Theretore, by Theorem 7.f has

aomimimuome al (!" O

The extreme value is f(-l* M=~ :]; .

b) f(x.¥)=x7+ 3y + dxy’- 2k

N n . ar .

— = Iy-=1. — = -

I 2x 4+ 3y--2, EW Jy" + Gxy

o of .

o = i AT = = 2 = —-’ =

Y 0 and v O=>2x+3y--2=0.... (%)

Iy +oxy=0"..... (##%)
From {#x), 3y (y +2x)=0=>y=0o0ry=-2x _.....
Substituting y = 0 in {+). we get that x 5 |,
Thus, (1. 0} i~ 2 Slationary point.

*Now substituting y = - 2x in (%) , we et

. . | |
3X+IZX‘-—3:[)=>K=; orx =-J,

Whenx =<,y = ;whcnx=--|;.y= 1.

=
1 I
(2

Thus, the stalionary points are (1, f)J . (.Ii . :3; Jand (% ..

We first check the point (1.0) lor extreme values. We get

= Oy + 6%

Fry . Eall 't
Then, 4 = [_";'F]n.m =2.b= (2 m)( wa=0,6= (_3—;?)um= 6

b'’-4ac=-d8 <Q0anda> 0.
Therefore the function has a local minimum ar (1, 0).

The minimum value is f{1, 0} = =}

a=2,b=-Rc=-2,

p'-dac=64+ 16> 0anda> 0.

Thererore the function has po exuemuin al (-;- ) - % i
N L
ow at{ — 3 h
a=2b=12 ¢c=1

B —dac = 120-24> 0
Qa

1
. fhas no extgmum at (_-—; .

fix,y, =y +x siny

% =siny=0, % ={+xcosy=0

Taylor's Thearem
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El8)

El9)

siny = 0 implies that'y = 2nr ory = (Zn + 1) . nis an integer, Then

cos (Zn+ymy=-landcos 2nx = l.so x = |, or x =--1, Thus the
stationary points are (1, 2nn ) and (-1 . (2n+ 1Y X))
&t 23 &f

n 0, Ixdy *=2co8y. o =X siny
Therefore,a=0,b=£2, ¢ = {.

: aﬁd b*—dac> 0.
Thus, f has no extremum al any poini.
fix,y)=2cos{x+y)e?
of

LI P Ay
x 2sin (X + ¥y} + ye
E

= —2sin (X + y) + xe”
e (x+y)

(0. 0) is a stationury point as bolh 'gf—x and % vanish au (0.0). Now

Ca e eviey (2L} -

N = -2 cos (,\+))+_} c. (axl)m,m__

i )+ e w of )
oxdy =-2co5 (X + y)+ {7 +yxeY), (,??(ay]mm -
% = ~2cos (X + y) + x%e*, [g_},t) om =2

Then b* —dac = —12 < 0 and a < 0. Therefore, by Theorem 7, the function f has a
local maximum art (0, 0.

fix.y)=ax"+cy'.nz2

=nax"” .% = ney "'

-

=0= g— =>nax""' = 0 and ncy"”' = 0, This is possible only when x =0

and-y =0, since a = 0 = c. Thus {0, 0) is the only stationary point of f.

Yy ¥

Here we note thar 2t {0, 0),

H P ¥,
x Toxdy oy

Therefore we cannot use Theorem 7. We have (0, 0)=0.

iy  Now when a>0andc>Q,then
f(x,yy=ax +cy’20=1(0,0),1if nis even.

This shows that if n is.even, then the function has & minimum al (0. M), The

minimum value is 0.

If nis odd, in every neighbourhaod of (0. 0) f takes on both positive and
negative values

f(x,y)<0forx<0andy<0,f(x,y)> Oforx>0andy > 0.

Therefore, if n is odd, then (0, 0) is a saddle point of f.

i) Whena< 0,¢<0,then f(x,y) = ax"+cy" £ 0="1(0, 0}.if nis even.

Therefore, if niseven, fhasa maximum at (0, 0). If n is edd, you can check
that {0, 0) is a saddle point.



E20)

E2I)

F(x, y) =35y, g(x. ¥} =2x +y—8

ik = 3x 9 =
7y ' I
Now we have 10 solve the sysiem of equations
Jy+2h=0
Ix+A=0
2x+y-8=0

- il
Theny = —?l LX=- .ITJL. Subslituting in the third cquation we get

2, _2 -
3}h_37‘- _'8—0

or:,;lzﬂ.Or.l = - 6.

Thenx =2 y =4. (2, 4) =24 ]

" Thus. (2. 4) is an extremuin,

Now we shall check whether il i 4 muaximum or minimuom.
The point (1. 6) alse satisfies g(x, y) = 0. and '
(i. 6= 18 <fi2, 4}

Hence. (2. 43 = 24 is the maximum valee of T,

Let x and y be the 1wo numbers whose sum - is 70 and whose product is maximum.

Letfix. VI = xy and g{x. )= x +y. We have x + ¥y =70 . To rnéximiz.e f(x, y) we
use the method of Lagrange muliipliers and solve the systemn of equations

y4+a=0
X+Aa=0
X +y=70,

Then —24 = 70, Thus, & = <35, Therefore x = 35 and y = 35 and the
extremum valee is (353, 35} = 1225, Check that il is the maximum value,

fxoy) = x+ ¥ (s, y) = 27+ i =1

a  _ g _
T ok T 4%
2l 3

5 =Y e T

The system of equations is

1T 0 1 A —
A 1 e TA —

i
iy

2y + A2y =0

2+ y - 1=0 .

] . . -
3y =—~A 2y =>A=—1, Therelore x =:‘1 . Subsiituting this in the third equation,
we gel
: : I _7 /7 .
T - = _-—= .- r:i'\ - .
y=1-2=1 i .) 5

‘Taylor's Theorem

9
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The extreme value is given by

i 7 I 79 o _—
f(4.‘\l 3 Yy = ity T 3 . Check thal thiy is the

minimum value.

E23) The point is (1. I).
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9.1 INTRODUCTION

The main purpose of this unit is to iatroduce you to the important notion of Jacobians. We
show h . Jacotians can be used to evaluate derivatives of functions defined implicitly. We
also bring out te connection between functional dependence and Jacobians. For this we nead
an auxiliary but important result, that if all points of a domain are stationary points of a
function. then the function must be constant. Nawrally, we have 10 jelf you what a domagin
is. and this is done in one of the sub-sections.

The real importance and usefulness of Jacebians will be clear to you in 1he nexi unit, where
iiese will be used for iie sttdy of invertibility of funclions and explicil determination of
rmetions defined implicity. You will also comie across Jacobizns in the next block, when
ynu siudy change of variables in multiple integrals. ’

Objectives

After working through this unit you shonld be able to

o calculate the Jacobians, whenever they exist, of functions of two or three variables,

@ use the chain rule for Jacobians 10 calculate the Jacobians of many more functions and
to find formujas for the derivatives of functions which are definad implicity, )

@ idenlify domains in R®,

¢  determine whether two functions are dependent on cach other or not.

9.2 JACOBIANE

SaAlw

Take i look al the following 1wo sitwations for funclions from R — R, .

1) Let us consider a real-valuved Funclion f delined on an open interval ] a, b {. Now, il
7 {x,} = 0 for some xu,é ] 2, b L, then cither I {x) > 0 or {* {x5) < 0. This means that
f(x} is either strictly increasing or stricily decreasing in a neighbourhood of xg. -
Thercfore, we carn say that there exists a real number 6_> 0 such that f is one-gne on the
open interval | xq— 8. %+ & [. This means that the function f is invertible on this

d-neighbourhood of x; 41
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K

2) Similarly, in the irtegral j f(x) ox, if we-make the-substitution x = @-{t}, thenr e -~ -
[ ] I

b B
integrand is replaced by f{¢ (1) ) ¢ (1) and I f(x) dx = I (& (1)) & "(1 G, VAR &= O L

a a

and b= ¢ (f ). (Sce Calculus, Sec. 11.3),
A natural question that arises is the following :
Suppose u = £{x, y). v = g (X, ¥), 50 hat (%, y) — {u,v) is a mupping from B BF T
is the condition that the functions f, g should salisfy s0 that ihe transformation (i, yJ -~

(u, v) is invertible in some open disc containing the poini (X, Yo} ?

A similar question will arise when we have defined integrals of functions of 1o variables
and would like 1o change the varizbles of iniegration.

Tn this section we introduce you to the notion of Jacobian, which has really no analogue in

the theory of functions of one variable. However, Jacobians play the same role as the
derivative in the 1wo problems mentioned above. Tt has many other applications. We shail
discuss some of ihese presently.

'9.2.1 Definition and Examples

Before we give the precise definition, let s look at a specific example, Let

u=ax +by - (1
S y=cx+dy Y

Then the equauons (1) and (2) dane a linear transformation ¢ : (x ¥) = (u, v) from R
R%. Moreover, you know from your study of linear equations that the Lransformation @ 1
invertible if and only if the determinant

a b |
< 0.
¢ d
. u o du _dv v
Butyoqcansca.hata_ax b_ay c== d_ay'

Therefore, we can say that the ransformation defined by (1) and (23 is invertiblz Il and oni,
if the determinant of the matrix

du du
ox oy
gy ov
dx oy

" is non-zero.

Obviously, the above maltrix and its delemminant make sense even if uand v ore not linear
functions of x, y, bul are any real-valued funcliops of x and y. We shall sec ioter, in
Unit 10, that if this matrix has non-zero determinart, then given any point (.. y,) € ]

tere exists 2 naighbourhood N of {x;, Vo) on which the wransformation 0 15 inveriibie, Thus,

this is the new notion we were looking for, which provides us some answes o Ure flfat

_questian raised in the beginning of this section. The same notion would provids i oo ot

tne sacond question aiso. But fur this you hiave o wait til the aexl bloghk, Now we alve the

precise definition.

Definition 1 : Let €, , ..., £, be n real-valucd functions of n varigbles ). ...... X;. having
first order partial derivatves at a point a = (a,, ...... 8,}. Then the matrix



B m M M - - Jacobians
ox,  Ox; ax., .
' ) |
oh@  ghla) ROV
ax1 ax: ....... a,\'n !
of, () dffa) ‘ of. ()
L. ox ox, gx, -

s called the Jacobian matrix of the functions [y, ....., f, at (@, ..., 3, ).The determinant
of this matrix is called the Jacobian of the functions at (ay, ..., a,).

As in the case of partial derivatives, if we don’t have any specific pointa= (&), cwmery &) I
mind, then the Jacobian matrix is wrillen as

-~ of af, ' d - Jacob! (IE04 - 1BS51)

:—.;_KL 3_::'1' --------- axl - Jacobians were inmoducad by

! z " . the German mathematician
Carl Guusv Jacob Jacobi.
A ar,
— 9x, 9% ox, =
I 14 T )
and the Jacobianisdenoted by =7 —— -
: O(X 1ersereesXn)

In Sec.3.3 (Remarn . We have scen that the functicns F. . fy determine a unique
function f : R® — R" s0 that f{x) = (X}, .cceees 2g) = (LAY, werreee . £,(x)). The Jacobian

matrix of f,, ..., f; at a is also called the Jacobian matrix of f at a and is denoted by J{a).
Befare we discuss some properiics of Jacobians, v'2 10k 1t a few examples.

Example 1 : Consider the irapsformaiion (r, 0) --3 {x. ¥y}, given by

Xx=rcos 8

y=rsiné )

The Jacobian—M is

&r, 8) .

EXI |
idr 98 | cos® -vasmB l

’- ! :I ) |=.r.

Loy dv | | sin8 rocosé |

| = . ' !

! [¥]) OU |

Lat us try to geometrically interpret the warsformation given by (3). We lake r and 8 as
rectangular coordinates of the (r. 9) — plene as snewn in Fig, [ {a). The cqualion © = const
= ¢ (Say) represents a line parallel 1o the B2 xix As ¢ iakes vartous values, we get a sct of
lines parallel te the B-axis in the 1, 97 plare (see Fip. 1 (@) Bul from Equation (3) we have
that

X2+yi=T1L

Sow, x? + y? = r* represents a circle of raduas r vith centre at the origin O. Thus, as r varics, .
43
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r=c

we geta set of concentric circles in the (x, y) — plane (see Fig. 1(b)). In other words, the
transformation (3) transforms parallet lines to concentric circles,

Y &

Y

{a) (b;
i Fig. 1
What if 8 is a constant ? If 8 = ¢, a consiant, then we get a straight line ;parallel to the
r-axis. As c takes various values, we get a set ‘of lines paralle! 10 the r-ax:s in lhc (r,0) -
plane However, from (3) again, we have that ‘

rsin6
%:—::ane ' - -
¥ rcos@ : :

Thus, if 8 =¢, 0S¢ <2, then i_-: 1an @ = tan ¢, and we gt a ling through the origin in

the (x, y) — planc as shown in Fig. i {b). Further, if © = ¢ { 2 € c<dr,) then ¢ can be

written as ¢ = 2 + ¢*, where 0 € ¢* < 2m, Thus, 3:- = tan B = 1an (27 + ¢*} = tan ¥, Thus,

for ¢ lying between 2k and 4, we can say ihat the strip in the (1, o) plane corresponding o
B =c (2r £ ¢ < 47) gets wransformad into pe same sel of radial lines in the (x, y)—pl;lr}c.

All this is trua il r 2 0. What happens it - =0 ? [t meuns that the Jacobinnﬁ is zero.
(r,

You can see that as 1 becomes smaller and smalier, the gircles in the plane become smaller
and smaller, because r represent; the radii of these circles. Finally, in the Jimiting position.
we will reach the origin which is a circle of radius 0. This happens when the line

- r=constant in'the  {r,.8) — planc coincides with the 6-axis,

In the next example, we obtain a Judobiun of three real v alued functions of three variables,
Example 2 : Consider (he transformation

x=:cos Bsing

y=rsit8sin ¢

A =1COS (3

The Jacobian is equal 1o

1
- cos Gcos ¢ —rsin€sin ¢ rcos@cos @ |
Ox.y.2) = { sin B sin @ rcos Dsing rsinB cos¢ l
a(r0,¢) :

cos & 0 —[ $ing ‘



= cos B sin @ (17 cos 8.5in°@) + rsin B sin ¢ {(-r §in® sin*p —rsin 8 Jscoblans
5 3 - .
cosd)—-r cos” Bcos ¢ sing .
= —r°-cost B sin ¢ (5in o+ cox’e) - i’ B sing (ging +cosd) -
= -Tsing
Geomelrically, r is the distance of (he point P(x, y, 2Y itom 1be origin O, -

0 is the geographic longilude. i.e.. the angle between the xz~ plane and the plane determined

by P and the z-axis, and
¢ is 1he polar distance. i.c., the angle between the radivs vector OF and the positive z - axis.

See Fig. 2.
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| .

E
r ;
. 1
1

1 |
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Try thesc exercises now.

LE1) Calculate the Jacobians for the following m:lppll'lg'i Also find cut which of these are
invertible. .

9 w=x-2y,z=2x+¥

b w=2x-3y, z=5x+7y.

E2) Calculawe the Jacobian for each of the following functions ar the indﬁ:atcd_point.

a) F=(f g), where [(x, y)=sin x, g (X, y) =cos xy at| m, ?R

b F={f. gj .where f(x, y) = x -y’ = 2x'y — x%,
gy =y+x
¢ T{my &) =(ei0ays, a0y at (X, ¥y £, where ¢ is a COnAiari,,
B F(xoy, 2) =(xg, xy. yz} al (%, 2, {.)
E3) Find the Jacobian matrix of the map
w=x+y,z=xly.

Find all the points where its Jacobian is equal to zero. |

If you have done these exercises, You must have become quile conversani with the
computation of Jacobians. We'll now see how the Jacobian is useful in calculating the

partial derivarives of implicit functions. . . . .
o T T 45
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o (F, G)

The conditipn—=—=~— = 0 enwures

diy, v

that Equatians (Y have a solution af
the Tanmu = P yhov = p v, vl We
will 1abk about this. in detail, in Unil

10,

9.2.2 Partial Derivatives of Implicit Functibns

dy
) dx
{(x, y) = 0, which defines y as a funclion of x implicitly. In many cases, it may not be

possible to wrile y in terms of x explicitly. But yet, by using the total derivative, we can

You have seen in Unit 7 that it is possible to find the derivative for a function

find the denivative g‘f without actually solving y as a funcrion of x. In a similar way. it is -

possible to find the partial derivatives of implicil functions of two or more variables by the
use of Jacobians. The following theorem gives us the rule for caleulating these partial
derivatives,

Theorem 2 : Suppose we are giver two cqualions

F(x.y.z.uv)=0 }

. (B
Gxy.z,uwv)=0

such [ha[_B_LF._G_l # 0, Suppose. furtier. that the first order parrial derivatives of F and G

d(u.v)
w.r 1. the five variables are continuous, Then
d (F.G) ~
du _ _d(x.¥)
dx ~ T Jd(F.G)
d (u. v)
f .. {5)
3 (F,G} '
dv _ 2 {u.x)
o IF.G) )
3. v’

A similar result helds forg-; %E , %" undg—:- -
Prooft Using the chain rule {Theorem 3 of Unit 7). we pel
dF  JdF du  gF gv
x T ouax Tovdx
G 3G w IS &

ax Touox T EJ)E:U

Solving these stmultaneous cquations, we pet the result as stated jn the theerem,

P ding exactly similarly we can get the expressions for du gr . dy and o
roceeding exactly similarly we can get the expression: 3y dy 3

0

We are leaving it to you as an exercise. See E 5).

We will now use Theorem 2 1o gel the partial derivatives in our next example,

Example 3: Let us lind %"l and 9—\ for
X ax

F oy u,vi=x® +ux+y +v
G(x, v, U0, v} = X + yu+ v7 4+ x°v,

Note thar kere F and G are functions ol jour variables, Furthar, we have that

9F or JOF _
T =2k Sy TS nannT— =

ox du av

Ei_G =1 +2xv,EL\g =y anda;g =2v + §°
ox u [4AY

These, are all continuous, being polynomiais.

2% + u . l :
'l'hus.i—{&*g-1 = - =2xY + 2uv + 2x" +ux® - 1,
d (x, V) I +2xv 2v + x?



]
X 2Zx +u .
g_(i_CQ = ! ‘ =x+ 2xT v — 2xy — uy, and
(u. x3 ‘y l+2xv‘
aiF. G) X : \
. - = TE2Xv AT -y .
' al_ xl.‘f')- y 2v+x? | W
Therefore. by {5) we gel
du '_-_ v + 2uv + 2x  +uxi - | d
ax 2xv + xP -y an
dv __ X+ 2x'v - 2xy - uy
ax 2xv + x>- y

Now you should be able to solve these exercises easiiy.

E4) Letx,y, u.v be related by the equations
xy + x*'u-vy'=0and

I —duy—x'v=0.

Find gy and dv without solving the equations cxplicitly,

ax ax
E5} Suppose
F{x.y,z.u.v)=0and
Gix.y.z.u,v)=0

a!F. G) 20
g (u,v) =

are such that their first order partial derivatives are continuous and

du dv 3u . dv.
Compute 3y 'ay "3, and %

Eé) x. . i. u and v are relaled by the equations F(x, ¥, 2,14, ¥) = xj +yz+zu+uv=0
andG (x,y.z, U, v)=x+y+z+u+v=0

v

du
Compule 3y and %

{n the next section we shall discuss the methad of calculating the Jacobian of composite
functions. '

9.3 CHAIN RULE

Jacobians eften behave Like partial derivatives, In this section, we will state and prove a
chain rule for Jacobians. The chain rule [or Jacobians i similar 1o the chain rule for panial
derivalives which you have siudied in Unit 7. We will 1 the chain rule for partial
derivatives to prove the rule for Jacobigns,

Theorem 3 ; (Chain Rule) : Letf: R"— R"and g: R"> R" be two differentiable
functions and let F = fog, Then

I (x)=J (g (x)) I (x) -(6)
W= 6 a={g, ... v ane F=(F e, F.). thea the chein rule siated
above can also be formulated as follows : )

d [Fr ------ o Fn) - a (f""""""r'.!). . a___()."‘ ........... }l'.)

DX e X0) Y1, T TR | T Xa)

“where y,= g; (x) . This formula resembles the chain rule for the derivative of a function.

As we shali be using the c!1ain ruic for n = 2 or 3, we give the proof for n = 3, the other case
being similar. ' '

Jacobians
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Applications of Partial Proof : Tiie proof consists in wriling down the product of the delerminanis on the visln
Derivatives tand side of (6), and using the ¢hain rule; given in Sec. 7.2 in Block 2. for partial
derivatives. Indeed. starting from the right hand side of (6), we have

Af B af dy,  "dyi 9y,
.‘?Y: dy. dyx ax, = ox, 0X,
I I FR A 9.y 9y
Stk bl IS VR T M B B S
EAE S | A W VR
a)'| ay« a)'\ ax-| ax: aKJ
- I -
9 gy, 9 dy: - 9h 3y
oy, ox, dy, dx, dy, ax,T

| e ooy dtdy,
- ay1 ax, dy. dx, aY\ ax,

ah dy, Bf\ 9y» . afy dy,

— 3y, dx, - ay ox, dy, 0ox, —

by the product rule for detenminanis. Now we will use the chain rule for partial derivatives 1
‘given in Theorem 3 of Unit 7 for the entries in the determinant on the right hand side. Sinee
tne functions involved arc assumed [0 be differentiabie, the conditions of Theorem 3. Uy -
are salisfied. Thus,

o
9%, X, X,

ar‘i arﬂ afw
Ji(g (x) J . (x)= ax] Y 5:1: | =Je ()

aowan
ox, dx. Oy _|

and this is what we wanted 1c prove.

Here are some examples to illustrate Theorem 3,

Example 4 : Using Theorem 3. let us fin d-J—“Q- for the transformations x = 1:° -

2 (z,
y = 2uv, where u = 2% — 3zw? and\r = Z—W,
Hete
|
2u - 2v |
2=y, L =aitev)
SEI T oy gy |
3 3z~ an? v |
a—g‘—:))- = ’ =321 + 3w’ + Bzw .
! 1 -1
Therefore by Theorem 3,
g—%‘—\%— =4 (U + v (- 32% + 3w? 4 6zw).

=12 (¥ + vY) (=" + W + 2uw),
48
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Example 3 : L-..lf(x y) = (sinx. cosy) and gla, y) = (x*, 7, . Wecan use the ehain rufe ..+ [Jacoblam

10 calculate the Jacobian of F = fog, Now suppase & = (L.| IR SUNE Jand § =g, (v,
1N =g (%, y). Then. we gel

X 3, Ty .
AL ) = 4xy and LA, =—cos§ sinq.

Anyy 3E.
Chus. by chain rulc
Jr (%, y)= - cos xisin ¥, duy.
We could have caleutated ihis Jucobian by direct computation alqo

InTact. ifF=(F,.F.), then F. {x.y)=sinx*and F (x. ¥) = cos ¥

Theretore.
9 (F.Fy) 2x cos x° .0 -
=— 4xy cosx’ siny -
= 2 - .
Ax. Y 0 -2y sin.y’ :

Theurem 3 can also be used to c1lculate lh-.. Jacnbuan of the lnvcrsc of a tran‘:formauon, lf |t
exists. In fact, we have 1he following heorem, -

Theorem 42 Letf={(f,. ... f ) D - R".where D g R’ be dlfferem:dblc Suppose
that I'is inveriible on P, and let 'be differentiable on the range of [. Then

J, alyr=I XYy "where y = £ (x).

Proot IfF ="« f. then F is the identity mappmg and th:,refon, J, (x) = 1. Thus by
T hcon.m i, o
| = J:-' {(r(x)y)J(xy or
latrep =, (x3.
- In the case of 3 variaﬁles. 'll'heorem 4 becomes,

Hx,, X+ X)) -‘[a 1. f, f;)] - or a(x,, X1, Xy) _[ d (¥ Y:--Y‘,\.]:I-II s
NI £ 1) T Hax), X, X)) Ay Y2 ¥Ya) - 3(3_(]. X2 %) ]

The following examples illustrale the gtility of this lhc'on':m.‘

. 0
ixample 6 : Let us find g{(; y))

wherc x=rcosBandy -n.m 6

o y
We have seen in Example | thal A9 _ L. Therefore o ) by Theorem 4 above.
ar, 8) ox; )) r

This, however, is valid only if 1 2 0

| (%, x]:.

Example 7: Letf (x. y) = (x -y, x +'¥) = (€. ). Let us e\l.ralua_lc 3E )
I e
Clearl = =2.
Thcrcll'orc. by Theorem 4, w;.: get -%({;—}1)}— = % .
ny =

Example 8 : Suppose x and y are expressed in terms of Lby Fix.v.) =0 and
G (x. v. ) = 0. Assuming that these funciions are differeniiable, let us prove that

_(;El
Xy

& _d(F G) a{F, G) s
= 3.0l 3k y) prondz_d

Consider the equations

F (x..y, 1) = 0, and.

G(x.y.0) =0
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[ze a'ga_FJ v [ 20 o)

We differcntiate these with Tespect to t using the methods for finding the derivatives of
functions Jdefined implicity. Thus, we gel
9F , OF dx _JF dy
at ox di dy dt
9G 3G dx , 3G dy
dt dx dt dy dt

=0, and
=0.
Eliminating da% from these two equations we get

dt dy ot Jy dt |3x dy ~ ax oy

o [_ dF.G), d OfF. GJ]_O s
LAy, T & Axyyd

dx _a(F.G)/ 9(F,G)
ad " ay.uf 9. y)

PRG . .
You qﬁgcermmly do these exercises now.

Therefore,

E7) Find ‘;Jti in Example 8,

E8) Calculate the Jacobian }a—g‘(—;-’—? forx=rcos®, y=rsing z=z
! (r,0.z .

(r, §, z are called the cylindrical ceordinates),
ES) Verify the chain rule for the Jacobians for the following functions : -

us=e’,vae" w=e¥, x=ry=5,z=p,

In this section, you have seen one usc of Jacobians : 1o find the partial derivatives of
implicit functions. You will see many more uses in the sequel, siarting with the next
section itself.

9.4 FUNCTIONAL DEFENDENCE

- or open spheres, All these subsets have wo things in common.

Suppose we arz given n reai-valued fanciians fiv e o = 2of sevarel vapiables. We ey
want to know whether there exists sanie * relationship' between thess functions. For

. +y o . + 3 X+ v+
example, if f, (x, v, 7) = _X;:_)i Chxy, ) = -Y-x—é, £y, n =__\1__X;___z)‘ ticn

e

you can check that [, .f.= [~ 1. tiowever, the situaiion iy 1ot be as simple as it is in
this example. Therefore, we nved 1o find semc criierion which would ensure Lhe exisience ol
some relationship between the given funcions. You will see that Jacobians provide us 2
necessary and sufficient conditton for ihe exisiencs of some relationship between the given
functions. But before making procise a¢ io what we mean by “relationship™, we look al the
following question and answer it satis!. SLv Apart from ity own intercst, it would be of
use later on.

In Caleulus (Unit 7) vou have seen What i {is a real-valued function defined on an apan
interval, and if its derivative is zero ai aj) points of the interval, then {is @ constant function.
Can we have an analegous result for funciions of several variables 2 Tn this seclinn we ¢hali
se¢ that those functinns, all of whose pariial darivalives vanish throughout some domain,
are constant, Buot here the word “demain” his o different smeening. 1t s not just the sei on
vhich the function is defined. What. then, 55 this comain ? Lep's Loy,

9.4.1 Domains in R"

You would have observed that in Calculas, most of the time we assumed that funection or
functions under consideration were definea on open imervals, Similarly, for functions of twa
or three variables, we assumed that funciicns under considaration were defined on open discs



i) All points of these sels are iMEyio: guiie . o=yt 7 "4 .0 the sel then a whole

neighbourhood of it is conlained in 1he seL.

2) It is possible to trave! from one point of (he sel to another point of 1he set without
Jeaving the set. ’

While the first stalement is mathematically pricise, tie second one is not quile precise,
However, intuitively we can say that given any Lo points in the set, iere is a path
completely lying in the set joining these points.

For example, the set H={ (x,y)& R*| x*~y >1] drawn in Fig. 3 below, obviously
does not possess this property. You will agree that theie is no way of “tavelling” from the
point P 1o the point Q without leaving the séL H.

Fig- 3

On the-other hand, interiors or exteriors of rectangles, circles, ellipses possess this property.
We shall now define the concept of * travelling between” more precisely.

Delinition 2 ¢ Let @ : {0, }] — R" be the function defined by e(t) = (1 - x + 1y,
where x, y are two given points of R". Theset (Wl te [0,1])is said to be the line

segment joining x to y lying in the set R" x is called the initlal polnt and y the final

point of the line segment,

Observe that a{0} = x and a(}) = y. Note also that this definition coincides with our'
intuitive iden of the Yine segment joining 2 pair of points in plaie or space. See Fig. 4 (a).
Sometimes the function e itself is called & line scgment. :

Definition 3: Let X, y, be two points in B®. A rolyyenal rc joining x to y is nothing
but a sequence o, &, gy......, & of line segments in R® such that
i1, (0) = x, i.e.. the initial point of o is x.
o, (1} = y, i.e., the final poinl of ¢, is ¥.
The final point of @, is the initial point of ¢, .y [or each
i=0,1,2 vt = 10

'This definitioa agrees with our intaitive idea of a rolygonal arc (see rig. 4 (b)}.

Jacoblane
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Fig- 4 : (a) a line segmeni in R (D) a polygonal nln; in R3
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Fig. 5

S Open b CAti pont o 8 1 iy
inIeriar point,

The mean value theorem s Ma+ hob -

+%) - T (a. b= hi (2 +6h. b+ 8K}
+ iJ) {(n+0h b+ &k, wenleg

I
2

A

" whare 8 is a real number such thal 0 < 8 < 1,

Deﬁml:on 4 @ A subsct Sof R" is said to be polygonally connecied if. wiven di By iwor
points x ¥ in S, there is .1 polyfzonal are lying in S joining x to y (See Fig. 5).

lmermr-. ofrcclanl'lcq and circles in the plane R and i inwriors of spheres in R ure olw:ou\lv
polygonally conneeted. In fact. every pair of points in them can be Jl"lmed by ane line
segmenl Now we are in'a position to define & domain,

Definition 5: A subset'S o' R will be said 1o be a domain, if § is polygonally
connected and apen, ike., il for each peint x in 8 there is a nt.:ﬁhbourhund Stx.nyofl x of
radlus I. Wthh iy contained in S.

Thus, we can suy lhm Sisu donwinar

o Sis polygonally connécled, and

s - every point of § is'an interior paint of 5. .

The sei H in Fig. 3 is not a domuin, since it is not polygonally connected. Yau can sec that
there canbe no polygonal arc from P 1o Q lying within the set. However. every point of it
is an interior point, The open disc | (x, y)| % +y'<1}and the open rectangle

[a, b[x] ¢, d | are domains in R*.

The closed dise § = [ (x.'y)l x*+ y =1 | is not adomuin because the pouus (5.3} lor
which x* + y* = L. i.c., paints on the boundary of he cirele are not interior poinis of the sel”
S. Note, however, that § is polygonully connected. In fact, every pair of points can-he
joim.d by a line segrent in it (Sce Fig. 6). Similarly, the open sphere

PGy )l e 1-7--: 1} and the open parallelopiped | u. b | x]r. di x]c {1 are
dom.uns in R]

Can you do U]IS exercise now 7

E10) Idennfy dom.uns fmm the following sels :

2 lfw)lx ¥

by s Dl xy>0]
o {yla>iy

&, [yl Fry20)
B Gl K=y

H {I(X.)'_.z)] x>0, y>0,2>0}

Do not conluse the domain of luncion with 2 demain, The domain of @ function need not b
a domain in tm. 5ense of Definition 3. For example, the domain of lhc IUIIL‘lO'ﬂ
[ (x.y) = sin™' x sin™ y is -1 1]l x [ =1, 1], which is nat a domain i in R%

We are now ready to prove the rasull promisee =t the beginning of this section.

Theorem 5 : L et I (x. ¥) ba a real-valued function defined on & domain D.in R

Lt %: 0= 585 on D. Then there is 2 constant ¢ such that

LI .

F e 2t m Fam ol o= I
FA Y =% Il KILAVA, VT LS

Frooi 1 Let Py = (X, ¥y ) and Py = (X, y.) oc two peints of D such that the line segment
Py T jotiag Py iy Hes i DL 11 s posaible [u chivose such u pair of poinly sinee B s
polyganally connccted, For convenience of notation we shall wriie £ {P) for f (. vy il Pis
the point (x, y). By the mean value theorem for two variables (see margin remark), we have

(P = (P =(x,~ x;) g—i (P,+0(P,-PN) +({y.-¥, )% (P, +9 (P, = Pin. )



Now P+ 8'(P;~P,) = 8 P, + (1 ~0) P,, lies on the segment P, P, and hence in D. Since,
by assumption, gi and t%t are both zere on D, we have from (7)that

f(P)—f(P)=0. or

£(P,) = f (P,) = c, say.
Every point P of D can be joined to P, by a polygonal arc in D.

Therelore by successive repelition of the above argumenti, we conclude that
£(P) = f(P)) = ¢ for all points P in D. The theorem is thus proved.

The assumption that D is polygonally connected is essential in Theorem 5. In fact, let us
take D to be the upion of two discs,

Si=lul 4y <l andS;={ (. y)| x-3 +y*<1]
Also see Fig. 7.
Yh

rig. 7

Let us define a function f D — K such that

Lif (x.y) e §,
f(x,y) =
- 2 if(x.y)e §,.

Then both the partial derivatives of f vanicsh on 5. 3ut yet, itis wot a constant function on
D. Note that D = 8, U S, is not polygonally connectad, since it is not possibie to travel
from P to Q aleng u polygonal arc lying in D. A shiailar vosr't is true for any nomber of

variables, and can be proved by using the mean value throrem similar to the one used above.

However, we don’L give the proof here.

Recal! that the slatement of the analogous result for tic onw—variable eace js -

If I'is 4 funciion defined on an apen iitervat 1 such thar £ (x) = 0forallx I, then fis
a ¢onstant function on [,

So, you see, in this case alse we insisl on an open interval which is a demain, Can you
think of an example ta show that it is essential that ihe function be defined on an open

interval ? Checle with f(x}=00cn 19, ! [ and FiRj=lan] 2.3

In the next sub-section we shall investigaie how the guesiion of dependence of various
functions is connected with their Jacobian,

But try the following exercise first.

Jacobians
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£11)  Let f (x. y) be areal-valued function defined on a neighbourhood N of (a, b).
a) Iff (x.y)=0Tor(x,y)e N, then prove that f is a function of y alone.

by Iff, (x.y)=0foral(x.y)& N, then prove that f is a function of x alone.

9.4.2 Dependence

Before we give the peecise definitions. we discuss a couple of examples.
Example 9 : Let
f(x,y) =c*sinyand

g{x,y) =x+Insiny

forxe Rand0<y<m Clearly, D=Rx]0.m [, which is a strip bounded by the lines
y =0 and y =&, and is an open set. In fact, D is a domain. Moreover,

l e*siny c¢*cosy

3(f.p) _
ax. ¥) B l i coty |
= e*cosy—e‘cosy=0

for all {x. y) in D.
Observe that in D, the functions { and g are related by the relation

in(f (x, ¥) - g(x. ¥) =0 - (8)
In (:the,l‘ words, g is simply the function Inf, a function of a.function.
Thc relation (é) can also be put in the ferm

F(F(x,y) g ¥ =0
for all {x, y) in D, where Fis 2 real-valued function given by

F(uv) =ln u-v.

MNoie that oF =Qor %-F; =0 for any point {u. v) in (he domain of F and, in particular. i

du
the range of the mapping (X, ¥} = (fix Y. & Koy

Example 10 : Letu =3x+2y -2
v za-2y T
w=x(x+2y-—-z)

Then,
32 -
'
duv.w) by 2 g | =0
9 (X, ¥, 2) |
2 2 -1
fme nll v v 7V R
LT GiL yng gm0 S

You can check that u’—vi=8w.

Thus. F (u, v. w) = 0 for every (X, ¥ 7ye R where Flu.v.wi= ul =y = B, Note ina
JF dF JF

. P - . 1
one of — » =— and 3~ is different from zero al every point of R
gu  dv ow }

Thi= leads us to the definition blow,

Definition 6 : The real-valued functions folae e fp0f D variabies xp. e X, defined
on an open subset D of R® are said 1o be functionally dependent in D. it there exists
real-valued Tunction F of n variubles <uch that



. of . . . .
1) at least one ofa—l‘ v 1 £1<n,is different 170m aro al every pomnt of the vange of the

mapping from R" (0 R" defined by ivxa v 9wyt a),
where u; = £ (X, x,. ...., Xehis= 1,2 5

i}y F (6 (x), F, (x), ..., f,(x}))=0

for any x = (x,, x,, ..... X € Do

In the discussion that follows we shail confine our atiention to the cases n = 2 and = 3o
has been our practice so far.

In Example 9 we have seen tha ecsiny and x + {n siny are functionally dependent on
R x )0, = {, whereas in Example 10 we have seen that the functions 3x + 2y - 2.
x-2y+zand x (x+ 2y =~ 2) are functionally dependent on R®. '

In order to lock at the geometrcal significance of functional dependence.. we 1ake another.
example.

Example 11 : Consider the transformation T ; R~ R? given by T (x, y} = (u, v), where
U=cos (X + ¥ and v = sin{x + y2),

T is continuously differentiable since sine and cosine functions are so. We observe that T

Taps the entire plane onlo the set of points on the circle ([, v)] +viz] | of radius 1.
This circle has no interior points. Thus, T does not map neighbourhoods (o neighbourhoods.

Further, Tisnot 1 — | even on a neighbourhood. In fac, all the points on the parabolg,
X+y=¢ map into the same point (cos c. sin ¢) (see Fig. 8). As c changes, (hese parabolas
cover the entire plane. Thus, any neighbourhood contains points having the same image,

YJL vE
-7 - S
' - - e :
- - .. (coscsin¢)
s - -
x+yl=c e -F

e

HETUR

All this benaviour is due to the fact that u and v ase functionally dependent. In fact,
Fluv)=v'+vi-1 =0,

Jacohi:- -
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samnmben,u=l{x_ yrund
v g (X, y).

50

YWhat about the Jacobian (4. v) i
Ax.y)
We observe that
— <l 2 -2 ; 2
3(e v sin{x + y°) 2y sin (x + y°)

3 (x, y) cos (x +y) 2y cos (x + y?)

— 2y sin (x + y%) cos (x + ¥*) + 2y sin (x + y¥) cos (x + y)
= G

What we have seen here is not peculiar 1o this example. If u and v are two real-valied

functions of two variables such that aa—(@ﬁ =0ina neighbourhood of some point, then

Xy}
we shall see that u and v are functionally dependent and the transformation (x, y) — (u, v)
maps a neighbourhood to a curve in R. For example. the transformation
(X, y)— (e* sin y, X + 1n sin y) maps a neighbourhood to the curve v—tnu = 0. The same is
true for functions of any number of variables. For example, the transformation (X, y, z) —
(u, v. w) in Example !0 maps a neighbourhood to the surface u— v — 8w = 0. For the
complete proof of this result you will have 1o wait till the next unit. Here {Theorem 6) we
shall prove that vanishing of the Jacobian in a neighbourhood is necessary for functional
dependence.

Theorem 6 : If u = f (x, y) and v = p(x, y) are differentiable on an open subser D of R?,
and are functionally dependent or D, then

g—E“;‘LI"-:—,‘;- =0 for all (x, ¥} in D.
Proof : By Definition 6 there exjsts a real-valued function F (u, v) such that

F(u,v) = F(f(x, y), g y)) =0 ‘ .9)

for all (x, y) € D and either g—f or gg # 0 at every point {u, v) of the range of the mapping
(X, y) = (f (). g (x.¥).

Vv"(: differentiate the relation (9) partially with respect 10 X and y by chain rule (see Unit 7} to
obtain

F oo, F v _
: T "S- VA S
L (10)
OF u 3 v _,
Ju oy Y

Since for any point (x, y) ¢ D, cither g—i— or g—f is different from zero, the system of

cquations {10) implies that

px X
3(f. g) _‘ ox  dy | 0. ' o
3 (x. y)"‘ 3 ai.' =0 at every point (X, y) € D.
| ox ay‘

- A simiiar resuit also helds for tiree funclions of three varizbies. fis proof is exactly simiiar

to.the proof of Thzorem 6.
Look at this example now.

Example 12 : Let us prove that the following functions are functionally dependent by
finding a funclional relution batween them.

1} f{x.y)=Inx-Iny (1D
ii} g{xy) =%:;£ ) - _ Y ]



For convenience, we'll write fand g for £(x,y)ad (X ¥,

The idea is to solve for x from (12) and substitute in (11), which will yield a relation
‘between f and g.

Thus, from (12) we have that

2g. xy=x+3
je.®-2gxy+3 y== 0

or,{x — gy’ - gy’ +3y' =0

e (x - gy)= gy -3y =@ -3y
Hencle.x gy=tyvg -3 .

-Let us consider

X-gYy= "‘YJS—

Thusx=y[g +\Ig - 3].
Substituting for x in (11) we get

f=tn [y(g +G=T§)]—1ny

ie. = lﬁ_(g +Vg2 =3 ).

=lny+ln(g +\!g’- 3) - Iny
|

The functional relation F (u, v) = 0 that we are looking for, is

Fauv) 2u-In(v+Vviz 3) =0,

You can easily verify that

F{ (. y)hgxyN=0

You can also check that the Jacobian is zero.

We are leaving it 1o you as an exercise in E 12).

Observe that P is not identically zero.

You should ke able jo do thcs.c exercises now,

El2)

El3).

Eid}

E15)

&) Verify that the fanctions f and g of Example 12 actually sal:sfy the relauon
F (u, v)-u-ln(v + Jv? -3)

a(f,
b) Prove that aéx 5)) =0 forall x, y toc the functions I and g of.Example 12.

Prove that the following functions are funciionally dependent.

X—-y
X 4y

f(xy)= ;-u(x y) =

“Find the functional relation for the following pairs if such a relation exists.

' o ixaany (- xy)
@ f(x, y)—-—%y BV (T XD (U +yD)

ALY N XY

b) fixy)=

Prove that the Jacabian of u = x cos y, v=xsin y is non-zero throughout the'

CdomainD={(x,y)} x>0}

Jacoblzns
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Prove also that the map.T.: D — R defined 0y T (x.iy) ={u,v)'is notinveriib{g,

EI6)  Show that the following functions satisfy the uecessary condition for functional

dependence.
8 us= X , V= Y W= 2
Yy -z zZ-x X —y

b) u=x'y-xy'+xyz
¥YEXY+X—-yY+2

w=x'+ 4 2 - 2yz 4 2x2

Let us now briefly recali what we have done in this unit.

9.5 SUMMARY

In this unit we have covered the following points.

I} We have discussed the invertibility of linear transformations from R® to RY.

. 2)  We have defined and computcd‘Jacabiads for fungtions of n variables. Thus, if f;, fr e,

f, are n functions of n variables, which possess first order partial derivatives, then the

Jacobian
L ofi M.
- dx, ax, e oK,
(. far oo f) e £ 9,
I 0 T X)) ox, ax, e ax,
a o o,
— -3x, ax, Tttt 0K, -

3)  We have used the Jacobian to compute the partial derivatives of implicit functions.
4)  We have studied the chain rule for Jucobians. |

Thus,

dlu. v.w) 3 (u. v, w) d(x, Y. 7}

d(r.s, 1) 3 (x.y.z) d(r,s, 1) .

Where u, v, W are funclions of x. Y. 2,and X, y, z are functions of r. s and .
51 We have defined domains in R"
A subset D < R" is a domain il it is open and polygonally connected,

6) We have seen that if every point in a domain is a slationary point of a function, then the
function must be a constant.

dd.g) on adomain is a

7)  Finally, we have scen that the vanizhing of the Jacobian J(x.y)

hecessary condition for the funciional dependenge of fand g in that domain,

By & dw aﬂ _ dz _ gz _ |

ST g T gy T TR gk T day
| !

E)(w..f.}_! I _2§=5__0

dixey) 12y |77



E2)

E3)

Ed)

- |
Jacobian =|
I

S od(w.z) i z -3
b = =260
) ai(x.¥) .|5
Both are inverlible,
2}t TT=cosX of =cosm=-I
o "ok tx.xr.h_CO. o
of
dy =0
9 _ o of & T
35 =Y sinxy X | a2 sin 5
§‘$=—xsinxy g‘:% . =—nsin-:f
1,/ T8} -
-l 0 |
r 2
AL (7, /2 a_(il)_: \ . =nsm1r-.
d(x. y) R n? . owl 2
- 5 sin -% sin o
eI ‘ 1 0
) gf.g) _ =1
a(x'y) ]0 1
YZ COS XYZ XZ CO5 XYZ XY COS XYZ
c) Jeix.y.z)= z 0 X =0
0 0 0
z 0 x

d Jp(xyz)=)y x 0|=2xyz
10z y
Voo Je (R, 2, 4) = 16,
O
Jacobian martrix =I: J
Axy x2

l [
=x-2y=0ex(x~2y)=0

2xy x°

= x=0o0rx=2.

.. The Jacchian is zero on the set { (x,y)! x=0orxs= Zy} s

Let F(x, y, u, v) = xy + x’u— vy’ and G (x, y. u, v) = Ix—~duy — x’v. -

Thcnf—E=y +'2;(|_|.§—F= X:..—a\fz-—yzl
aa . ou v
¢GS_, ,.96_ , 96 _
':)x = 3 - LAV, a“ .___1.);. (}v = =X
2kg) ¥ -f‘
oy o | =-Ixte eyl
A
i r 3 vpn .
a(FGI Pyt oxu _-'t‘ - .
3 (x,v) Ol E Ay + 23u) + ¥ (3 - 2xv)
’ 3-2xv —R .

Jacobians
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Applicatlons of Partial X y+2xu
Derivatives %Ef._G)l =| = x? (3-2xv) + dy (y + 2xu)
Ry 3y |

v _ | Xy + 2xu} =y? (3-2xv)
ox [ ' x* + 4y3 and

du _[x’- (3-2xv) + 4y (y + 2xu)
ox "~ x!+ 4y?

ES), Differentiating F (x, y,z U v}=0and G (X, ¥. 2, u,v) =0 w.rl. y. we get

3F+8Fau dF gv _ 0
dy Tdu ay T av ay

9G BG du BG av

ay 9 ay T av dy

Solving these simultaneous equations we get

[ AG) ;F,G!
ay “oty. vif 9 (u, v) .
and—— =_-—-—(—.I.._). -—(—.!_l
oy a(uy) d (u,v)

Slmilarly obtain 37 andg:

‘ 24V u
£sy (.G _

duy) Ti T v
) (y.v) = | ) = X+2-u

ZHY  y+p ‘
2EC) _ .

UnkY—~¥—Z

]
y T z4v-u oz . z+veu

E7) From Example 8 we have.

"OF  9F dx  JF dy _
tax at +8y ar =0

9G | 9G dx 8G(_i_y_

3t Tax ar By dt =0.

Eliminating %— from these we get

FIG IF a_f_s_]c_lx [aFaG ar-aﬁ]_
dy 9x ax oy dl dx . A |}

¢ (F. GY dy _d(F.G)
Td(x.y) d 3 (x, 1)

dy __ 3(F.G) /a (F.G)

=0

dt T 3x, 0 f axy)
60



M

cos® —rsin® 0!

d{x, v, 2) \ .
EB) ————— = &; =rcos B+rsin*O=r
) A0, 2) sin® rcos® 0
0 0 1

ye¥ xe¥ 0

E9) dwv.w) | o _w
d{x.vy,2) _
w0 xe

(ny « yr+ )

=2xyze

1 0 ¢
=l 0 25 0 |=6st?

0 ZseX  sped?
[ ther? 0 3rizen?
a hj

=12rs' PP emiestenty

d(uv.w) g(x.y. z) - +,f“u :
3(x,y;z) " 9(rs. [J'-?.xyze yeyes | st

= 12rsitie ne it enty

_dfu.v.w)
T 9(r, 5,1} "

E10} ¢)and f) are domains.
a), b), d) and c)‘arc notl domains.
EH) 2) Fory =y, let gy, (x) = f(x, yo).
Then g, is a function of 4 single variable.”

Further, g, (x) = f, (x, ¥y} = Q in an intervai I which is the projection of N on the

x—axis.
&y, (x) is a conslant functica on 1.
By, (x)= Cy, + 5Y.

Thus, f (x, y,} = Cra

In genenal, f (x,¥) =¢,.

i e, T (x, y} depends anly on y, and ience is o funciion of y atone.

2} sintlar.
Ei2)a) F(uv)=u-In [v_-.'- v v:_a]

Ifu="f(x,y),v=g(x,y), then

F (u, v) = fx,y)—1In [g (xl. y) + \’EE (x.y) - 3]

Jacobians
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“—‘U—.

T g

Q{] + 3\.:)J 3 -I
4xy? o

_ x4+ 3y?
= Inx - lny - In|: %y +

kT 1 | 2R 3YE(xT = 3yD
= lnx - Iny lnl: 2%y + 2y :|
=lr\]‘x—!ny-ln [%):0.
a o 1 L
ox ay X y
b) =
de - dg L3y _x 3
ox oy AP S 2y' T 2x
L= 3_ ] Ly _ 3y
Tx {2y 2x y[l2y 2
=t 3 1 3 _
2y Yl YT =0
X—¥ 2%
EI3LI+g(x'y)_|+x+yhx+y
l—g(xy)=1- 22X 2

X+Yy K+vy

Lol g vy ¥
T l+g(x,y) Tx =fx. 9

Hence f and g satisfy the functionai relation

F(f.g)=f- ——Eoq

E14) a)

Substitute in g =

h

L + ¢
fand p are functionally dapandent.

R

I———; _.___..__._:

3 (1, .=J{]—xy)' {1 - xy) !
A I Y L
(1 + x5 (1 + ¥h

(] = xy¥ =[x+ )
() & X7y 01w ye

"

4 L4y 1+ x7
€ S5 SN € N 7
TUH-xyV O e xS ey L
: + A i+ y°

Henee fand g can be rusctionall, dependent.

f‘:lﬁLv._
I —xy

Solving for x.
(I —-xyp=.+~x
(1l +1y)= |‘—'y

f—y
[+ fy’

K+ y) (1= xyy

(1 +a7,14 Y

or Xx=

|
|
|

¥
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e Jacobiany
[_f;.v_ +y J =9y
i+ fy {1+ r.‘/) a

_(r___.‘il_:_ 2
{1 Ty [

Sy (U + )] [0+ fv) = Oy + v
G+ )+ (0~ ¥ (1 + )

3 fQ+y7)
NGRS
f f
8FF L - B =0
Filu vi=u- o2 :_ 1= 0 is the required functinn,
3 (f. £) L
TN 1y gy

:—EL—‘L _UVI,)!.

Xy xy

Hence f and g can be functionally dependent.

prr(x.y]=l+i_:

e — Y
flx, y) - |

-1 _ fxy)
f(x.y)-1" f(xy) -1

He.nce g {x‘ y) — —f.!x_'.\i)_ =

=goy)=1+7=1+

f(xl )’) -1
Hence g and l’satis:'fy the relation
o
F (f-g) =g- f— 1 -~

s 3 (u. v lcosy —X siny
B3 S{u.v) |

d (x.y) siny xcosy |
=X costy + x sin’ y.
=x

.2 (u, v
Cd(x.y)

-

. ’ T
Is non-zeroon D = l(x, 3 ! R

Now T (%, ¥) =T {x, ¥y + 2n). where (x, y) e D.
-~ Tisnot (I-1) on D.

Hence it is not invertible.
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10.1 . INTRODUCTION

In this unit, we state two very important theorems, namely, the implicit function theorem
and the inverse funcdon thegrem.

By now you are quire familiar with implicit funictions. The implicit funetion theorem tells
us that under certain conditions an implicit equation F{x,y) = 0 can be locally expressed
explicidy as y = f(x).

In the last unit we saw that a linear transformation from R? to R? is invertible if and only if
its Jacobian is non-zero, Here we'll discuss the invertibility of non-linear transformations
with the help of Jacobians.

In this unit you will find a lot of examples illustrating these two theorems. Please go
through them carefully. You will get a better grasp of the theorems through them.

Objectives
After studying this unit, you should be able to

v state, prove und apply the implicit function theorem,

o derive and use a sufficient condition for the functional dependencz of nwo functions Il‘wll
R*-R?,

¢ define and identify loczlly invertible functions,

e apply the inverse function theorem.

10.2 IMPLICIT FUNCTION THEOREM

In this section we will discuss one of the important theorems in advanced caleulus, nanel;

“the implicit function theorem™. We first illustrate the theorem for functions of Lwo
variables. Then we shall extend the theorem 1o functions of three variables,

(mdd

0.2.1 Ymnlicit Function Theorera for Twa Variables

You know from Unit 7 that an equation of the form Fix. v) = 0 does not nocessarily
represent a unique function y = #(x).

For example, consider the cquation F(x.y) = x*+y?—1 =0, Here wc cannot find a single
vzlue of y for a given value of x.

However, there are functions such as

D oy=fi=+V¥l-x*xe{l -]
i) y=L=-V1-xixe -1, 1]



3 Nrame) Implisitand Ioverse Funeuc.s,

VI -x',xe | -1,., Thasr
1 R Sdwil Lo,
i)y =fx=q V=5 xe (0.5

]
2 —
1-x%x¢ [2,,11,

which satisfy the equation F{x.f(x)} = 2 Fig. | shows the graphs of these functions,

s w b
Y" _rli (r'i
| I
£ an
1 o . X S st /1 ¥ ol T g
\""‘--....-—/ (i—-ﬂ";
Fig. 1

In this context we can raise the following questicn.

“When can the equation F{x,y} = 0 be solved explicitly for y in term., of x, or solved
explicitly for x in terms of v, yielding a unique function y = f{x)or x = g(y)?" The implicit
function theorem deals with this question. Before staling the theorem let us look at some
examplés.

Example 1’3 Consider the cquation F(x,y) = x—y*= 0.

LW '
Now.if wedefinef, : R" > R, 1, (x) = ‘E then 1y satisfies the equatien F(x, £, (x)) = 0.
Similarly, the function f, : K*— R, £Lx) = “Vx dlso sztisfics the equation F(x,f,(x)) = 0.

., coresponding to the piven equalion we have obizinad 1w different functions dafined on
R, Fiz. 2 shows the graph of these funciions. : )

<
~
S —— _-_-_.___,.+

—_—— -—- e e e e

6] ) A | 0 !\\ \

Fig. 2
Note shat here both the functions £, ond f, are cuniie =+ 42 is damin, MNow, look w
thz three functions comesponding 1o ihic cyguaiion e L et o] = 0, whiel we
discussed carlier, You will agiee that 1, and LoAtedndy L onnadhehizvgas s not even

CONLOUOUS {aue Fip. 1),
e hive yet another situation in i neal v,
immple 2 1 Consider the equation

F{x, y) =2+ ¥’ - 55y = 0.

We first note that we cannot solve for y 10 obvain it =x » Minction of x or solve for X to
oblxin il as a function of y. Now let us leok al *he S.zparcal rencesenwution of the funcrion
65
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F(x.y) given in Fig. 3. We observe that thorz wre threw Tuactions fx), Lixund ri(x) which
satisfy F(x.y} = 0in a neighbourhood of x = I. Bul note that we are left with a unigue
function once we fix the ordinate y of the point (1.y) on the curve,

Thus, we get f,, il we fix the point {1, 1.44),
fo, if we fix the point (1, 0.2,

{;. if we fix the point (I, —1,54).

154

Fig. 3 Graph of x5+ ¥3- 5.5y = 0

From Fig. 3 you can see that the graphs of £, f, and [, ere smeoih curves, So. we can
conclude that £, £, apd f; are differentichle,

In these examples, given an equation Fix, vt = 8, we were atle to find some furctjons f

which satisfied F(x, f(x)) =0. But vz will e inerested in Lnowing whether there are say
tunctions having nice properties line © erenia Uil wic, dlore precioy. we
~culd like 1o know the answer 10 1. 2 o

Suppose F 1 D — R is a rcal-valued rencion of lwo varlaeles, whece s o ponlempty
subset of R7. If Fia, 5y = Q for =ome o= 3,11 ' thae covaion By v s 0 vield
conlinuously differentiable fimeron o -tincd enan
g{a)=b? The implicit function theo = ooy
some additional constratnts we cen guve wopositive aroweer, Here Is the s of Lng
Lezoren.

Tochond on e sangics

an ansen o tus gileddion savs g ands

Theorem 1 : (fmplicit Funetior = oo - Lt Foow ouorepl-valeed continuoos
functien defined on some neighbovshrcd 1ordi oinio, b T
1y Fla,b)=0,

oF

LU . . .
i}y = exists and is comtinuons o3

dy

.. dF

i) EI (1, by 0,

then there exists a unique JUnCiGn o Jovne 10 S0LL 0t Lduitmnnd . 9 Goatadi Lher
Doafdr=h,

i) Fx,g{ix)y=01Tloreach.z= iy, ..’

Hi} p.is continuous.

dF , ) o
Moreover, ifa also exisls and is conordors oua M, an & s continpously duerentizbic on

N, and g’ is given by



AF
(L)
g ) =, 1e N,

5}‘(1. g(1))

Proef : We prove the theorem in thres sieps. I Step | we prove the exisience of the
unigue function g. in Step 2 we prove that g is continuous and in Step 3 we prove the
differentiability of .

JF . .
Step 1 : We first note that the given function F is such thal @ exists, is contintous and
JF oF . ., . .
T) {u. b) = 0. Suppose a (a. b) is positive. Then there exits a neighbaurhood N, of (a, by .
N

9F L ' .
cantained in N such that 5= is positive for ail points in N; (see Theorem 6, Unit 3). Now we

dy

choose a rectangle T contained in N, (see Fig..4),

A
Y
E ™N \
.\\
T
M Q B N
i
i .
(a, b) !
1
|
R P A S
-
— e
\"N-.__-_____ -
______ ___:’,
O X
Fig. 4
. .. n )
MNow consider the resiriction £ of F 1o the line throush 1. 5, pritlled ta the y-axis. Then FF

is a function of a single varigble, y. Thus,
] JF :
E(y) =F(a. y} and_f:\-‘ {y)= 5; {a,v) = G

We know fromn Cajculus {Unit 14) that a funcion oF v «sriuliz incieases wlien its
Fal .
derivative is positive. Therefore, we can conciude disr i 1s 5 i seasing function, and henee,

F must be increasing or! he line through (a,by, parallel to e y-axis. Further, v have

F(a.b) = 0. Therefore, F will have to be negative A a3 moint, say P, and positive at some
point, suy Q, of 1his line. (See Fig 4).

Mow let us use the fact that F 1s continvons, Since I is ncgulive arl T, there is a line
segment RS through P and parallel to the x-exis, alvuz which Fis negative {see Fig. 4).
Similzriy, since F is posilive at Z and s cortimuous. 14 snust . positive along a line
segment say MN through Q and puaralle) 1o the x-a:is. 13ee g 1), Do you agree that we can
choose MN and RS so that they av= of equal izngth?

We lhus have a reclangle MINRS = fe, d) x [e, T]. Then tor ezclr x,in the interval Je, d[, we
can find a line AB in MNRS ihrough %, , parallel to the y-axis. As the value of y poes from
its value at A to its value at B, F goes from o negalive value (o 2 positive value. Note that
e p coordinale is constant on AD. Now F(x,. y) is a continucus function of a'single -

Fistieet god Fnverse Funclion
Theorems
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variable. Therefore, by the intermeuinte value tnzorem we can say that F(xg,y) must be zure

at some point (X, ¥, ) on the line AB. Further, Ea)—];is positive on the rectangle T. This

o L ' JF
means thal the derivative of the function y — F(xq. ¥). which is equal 1o g ‘s positive on

AD. This implies thut the function ¥ — Fix, y) is increasing along AB. Thus, F 15 zero
anly once on AB. That is. corresponding to xg, there is a unique y,, {or which Fix,, vyl = C.

iNole thal corresponding o x = 2 € ¢, o we have the unigue value b such that F(a, b} =10

-lence, the correspondence g @ x, -+ ¥, it a funclion. The domain of g is the interval Jo, [,
Thus, we have defined a function g on a neigibourhood N, = Je, df of a such that g{u) =D
and F(x. g{x)) =0 for all x € N, Note that the function g defined on Je, d[ has its iange
sontained in Je,f].

step 2 3 Next we prove thal g is continuous, For Lhat we have o show thal given
x. @ Ny=]e.d[ and g > 0, there is o number 8 > 0, such that

Ig(x) —g(x{,)i <eforxe Ixg-0, 2+ 81.

This can be achieved by repeating the above argument by choosing PQ properly. We thoose
PQ such that the lenpth of PQ is net greater thun 2€ ana such that it has y, as its centre.
Now having chosen PQ, you can see that the rest of the proof is irrespective of our choice of
PQ. Thus, we et the same function g such that F(x, g{x)) = 0 forall x & Jc. d[.

Now choose & such that ]x,~8. x,+8] is contained in ], d[. Note that for each

x € o, d. (x. g(x)) lies on some line AB, parallel to FQQ in MNRS. Hence we pet that

1 ]

2(x)y-gxg)| <c€forall xe Jx, -6, x,+ 8 [.

This is true for all x, in Jc, d[. Hence g is continuous throughoul the interval.

Step 3 1 It remains (o prove thai g is differentiable and that its derivative is contincous on

- oF . . ) o -

Je, d[. In order to prave this we sh... use the fact th iums:s and is continuous on N, To,
ri

srestigate the difterentizbiliny of v, o lon s e losk W

lim g(x--h} — g{x}
h=+) h '

Tite mean value thzorem [or {uitclioa- of two variabbes 1lls us tial
F(x+h, g{x+h}) - F(x. g(x)}

SF

oF 3F ,
=h (¢, wfrin+hy - {ny] (e BB LA
haA(UB) faie+h)y—; }](J}‘( o) | ,
for some (@, B} Iying on the Une scuimiant jobning {x, g{x3) and €x + i1, gix + hjj
But by the definition of g,
 F(x, g =0and F(x + h. gis #0801

Therefore. fram (3) we have

—iﬁiu. i
glx +h) —efx}y __ax > "0 -
b T oA
' (1)
‘ £y e
o

aF
Nole Lhat T\T is non-zero on T
0

We first ohserve that since g is continuous, g (x + hY = g(x)ash — 0.

Hence (o, B ) — (x, g(x)) as h— 0.
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[hereicre, sinee oy an I e coliinuou:, Theorems
. doF daF
:].I-E? 3y (. ) = 3y (x. g(x)}, and
l' '.'?..E !’j — _a_F_.( . Fas
lim == (o B) = o o Bixd

Thius, if we take the limit on bisth sides of {(4). we g

- JF \
glx + ) ~p(xy  ~ 5 (58 (ay
2 {x)=lim - 5 =

aF )
3y (- §1%))
Thus, g is differentiable,
.. JF JF . )
Muw the continuity of 3= and = ensures thal B 18 Conlituous,
ox dy
This completes the proof of Theorem i.

You must have noticed that Theorem ! guarantces only ihe exisience of 2 unique function 2.
It does not provide an explicit formula, :

Now we illustrate this theorem with some eadmples,

Example 3 ; Let us verity the implicit function theorem for the eguation
F(x,y)=xy +x*=0.

We first note that F{x, ¥} =xy + %" is a continuous funciioa defined on ' . Then we find
the set of points (x, y) at which

Fix, )= xy +x*= 0.
XY+ X =0=x(x+y)=0

we. eithery =—x orx =0,

‘Therefore. (x, —x), x # 0 and {0, 0) are the points atv Nl =) Jzrus lake the point .
(%, —x), x =0, '
- . 1 1 - . hl (-‘i?. . . .
S el = X s acenunueus functden in RPand = Goceg o s b o =8I,

dy dy
fiws, F satisfies all the conditions of Theorem 1. Lheric e by Tricerem 1, thare oxigts o
:nique function g defined in a ncighlzyerhood of x -, - TR = R md g s condinlicus,

.. oF . . . : e

rorcover, sirde KoYt 2x ts continuous g is continua, st <15 ertiahle and lhz

arivative g’ is piven by

of
- a (K-Y) .

g =
x(x.y)

¥+2x
=—"—;—.x¢0.

=-1,since y = -x.

In fuct, you can directly see fronr the equation ot dhe funcan « s piven by i) = —x.

. . . : A (0.0 7700
Now when we consider the crigin (0, 0), then (f J= 0= ¢ éJ ). Therefore. in this
: ' -
casc. we cannot apply Theorem 1 1o obtain y as u function F X or « as 4 function of y.
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Here 1§ amivhs ooente, T

Example 4 - Lot us show that there exists a conlinuously differentiable function g defingd
by the cquation

Fla.yl =2+ v'-3xy -4=0 e (3

in a netghbourheod of x = 2 such that g (2) = 2, and also find its dervative.

We hirst observe that F{2, 21 = 0 and

Ar oF
év =3 =X ‘7): = 3)
aF2.2y dF | .
?‘\- =620, and 3_) is conimuous ¢verywhere, Therefore. by Theorem |,

there exists & enique funcion g defined ina seighboeurhood of x = 2 by gix)y = y, where

Lin, yi = 0 und such that ¢(2¥ = 2. Mareover, since d"; ix continuous. by Theorem | agitn

dE(x.y)
.o RN X -y . . .
g (x) = == e e orall s aeighbnurpom! ol 2.
PFLuy) YN
Sy

Why don’t you iry some crercises jlow

E 1Y Apply Theorémi | to Fix, ¥y =<7 =y* =0 atthe poims 11, 1 end (1.1 Daes the
theorer apply 2t the paint (0. U5

E2) Censider the equation Feevt = x> +y " =1ea' y 1 =00 Apply Theerem | o Fix, y) =
(1, 2) and see whether there s a [unction g detined Dy the egualion in .+
neighbourhood or (1. 2) such thet g(1)=2.

E3) Show thai the equiiion 2ay - I xy = 2 detenuines i solulion ¢ areund e paint
%= lsuchthat ¢ (1) = 1 Piad the First derivative of the selution,

=t

In the next sub-section we shall discuss tie implich Function thewren: Tov [anesions of three
variables.

10.2.2 Implicit Function Theorem fur ‘Firee Yariablus

In this sub-section we first discuss the implicit function theorem jor funciions af three
variables in 2 form which directly generabises Theorem (L Then we discuss how Juvobiais
play an important tole in the implich funciion theorem for more complicuied smnuions

Supposc we arc concerned with the solution of an cquation Fix, -y, 2y = 0 forone ot the
variables as a function of the others. say. vie wanl ro salve for 7 tn twe ~ of v und & i this
case we have 10 find o function £ o1 (wo variables X and y such 1

F(x.y. f(x, ¥y =0 _
for afl x, y.

We now state a theorem, which is similar ¢ Theorem §, and whicl gnsures the exisience ¢
the function ((x, ¥}, mention -1 above, As in the case of Theorem o ibis funcnon fxy) also
POSSESSES CONTinUOLS parmiai Gerivaives ud v ereiure in vanitindously differcniinol na
neighbourhood of the point imder consideration. he provl runs exactiy pardilel to the [ros!
of Thearem 1. We do not give it here as the tecnnigue of ihe proal is not used inany Tuiiher
discussions, However, we witl ihustrate the theoren with some examples.

Theorem 2 : Let F (x. y, ) be a real-valued {function of three varjables. which is
continvousty differentiable in a neighbourhood ol 2 point Py = (X ¥i, 7o) 1N R*. Assume

JF S . L
that F(Py) = 0 and that S { By ) = 0. Then there cxists a unique function Fwhich is

0
continuously differentiable in a neighbotrhood Noof { X, .y, ) in R*such that f{xg. v} = 2.

and Fix, y. f(x, ) = 0 for (x, ¥} in N,
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We now look ut Theorem 2 in another form. From the equation F(x, v, 2) =0 in Theorem 2 ;
) Theorems

we construct a transformation
T:R'= R,

givenby 7|

Tix. y y=(x.y.F(x,y.2)). S 1y

You have sccn how 10 compule The lacobians of some winslo: I“it‘)l]h in Linit Y. Now the
Jacobian of the lraml‘ormduon T delined by (8) 4l a pomil Pyt v, o) is gives by

ke x| o0 0

dv 3y az; |
By 0 T 0 e

n Jdy & i = CE e
ar o aF | O GE aF !

ax  dy d¢ | N dy gz

aF ) .
This ncans thul we can réplace the l..ﬂlldlllﬂn o= U wtupaim Py in Theorem 2 by 1he
g Y I

condition thal the Jacabian of T at P‘, is non-zero, In faet. in more complicied cases. where
wi want to find the sotulion of a syslem of equatians, the pou-vanishing ul the Jicobiun
alays an important role,
Now we pive a simple illestration of Theorem 2.
Example § : Consider a function F : R* — R given by
Fixoy.z) =xF +y° 47 -1,
Suppose we want 10 find oui wheiher the euuation Ftx, vy 23 = 0 defines o wague function §
-]

in o neighbourhood of(;‘;. L ysuch it N i ,1, IR
- - - \.’ 2

We {irst note that

1 |
O | =
-
1
-
=9
19—

F(
oF dF LA . .

Now, === 1Ix, 3= =2y and 5 = 27 Tl 171 continuessdy diterentiable sinee al: ity
o dy de .

partial derivatives are continuot.,

aF 1 | "
Further, D_z (3 5 Y= e,

ol

Therefore, F satisties all the coiviitions of Tienrem 2. Heee g .;u dtian dlelines a unigue

2T \f:

In the next example you can see an application of Thzorem 2.

!
= such thatl o
5 )

tai-- .

tunclion f in a neighbourhoad & { %

Example 6 : Let f be a continuausly differeatiable fusnction of one variable such that
ft13 = . Supposc we want to find the conditions un<ze which the equation

Fe, ¥, 2} =i0ky) + fyz) = 0 cw: e solved for 2 fo ienss of a aid v 11 & aelghbouthoad of

(1.1, 1
Now since fis continuously dinfereniiable, and 5 = ¥it (X)), = &1 {uy) + 25 (y2) and

dF
5 yI" {yz),we can say tha: F is a conlinuously diferentiable funciion.

Further £(1, 1, 1) =1.
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Also, we hav B_F ILL.D=r
ki d eaz(' . )“" [J-

Therefore, i we pul the cendition that £ (1) = 0, then F satisfies al]l conditians of
Theorem 2. Thus, by Theorem 2. we can solve for z in terms of x and y in a neighbourhood
of (1.1). provided I'(1) 2 0,

Example 7 : L.e us try to answer the question : Can the surface whose equation is

TX Y + 72 -sin{xyz) =0 be described by an equation of the form z = fix. y} in a

neighbourhood ol the point (0, 0}, such that £(0. 0) = 0?
To answer this question we apply Thdor‘cm 20
Fix.¥.Z) = x +y + 2 - sin{&yz) = 0,

Check that F is a continuously differentiable Function sueh that F(Q. 0, (1) = 0.

dF
Also, o= =1 - 1y cos {xy7).

de
Thus,

dF
3 0.0,0)=1 =0

Theretore by Theoreny 2. thoie exisis o neighbourhood of (0, 0} and a continuously

“differentiable function € defined on it such Lhat z = f(x, ¥) gives the same surface as

Fix.v.a2) = 0 in a neighbourhood ol (0,0.0},

Here we would like to stare the most general form of the implicit functiop theorem, A
particular case ol this theorem for n = 3. m = 2 was used in proving Theorem 3 in Unit &,

Theorem 3 @ Lot Fi{x,, ... v Age Hpa veeemeey U b vey B (60 e + Xpu Upy ey U be m

functions of n-+in varigbles defined in a neighbourhood N of the point (a, u} wilh

A=, ., ahu =, ... u,.). stuch that

i) Fi(an, ..o, ) =0,15jsm T .

i) T, is continuously differentiahle foreach j. i £ < m.

. O(F .. . F)
1_11] A u) O at the powni (&, . .., i, U, .o u,).

Then there exist exactly m furciions g, o n variables such thar each g, is defined in a
neighbourhood S of { a, . ..., } and )

 gitan o L) =yl sism

W B o a2 e 2= bor (0, W x )€ Sandi=1 2 .m

iii) Each g is continuously differentinble in S.

We will not p'rove this theorem herc, Ve aisy dg ot cxI;cLl you 1o rememberthe .;,mtcmcn'..

Now you can Iry this exercise.

E 4) For cach of the following {unciians F : RY — R, show that 1he equation F(x. y. 2} =0
defines a continuously diffcicnuable function 2 = f{x. y) in a neighbourhood of e
piven puini {a,iv).

g Fauyo=xt +y+d o xve =2l Lysucthat [ =

by Fi.y,z)=x" +3'—xysinz  ac{l. -1} such: that i{1. -} = .

[n Unit & we had discussed the functionai derendence of twa lunctions, There we had aise
praved that if two differentiable functions {{x.y) and g(x.y) wre functionally dependent ou
some domain D = R3, then the Jacubian

of, »

~ = = 0 for all (x. y) in D.
e, ) Oforall (x. y)in D



-
We had made a remark that the converse of this resit also holds. iNow we are in a position Implicltand Inverse Function
to prove it. The prodf is an application of the implicit function theorem, Theorems

Theorem 4 : Suppose u = f(x,-y) and v = g(x, y) are real-valued continuously differentiable
functions defined in some open sphere S. If '

au, vy

Hx,y)

Tor ali (x, y) € S, then u and v are functionally dependent in S,

Proof : By definition,

o o
A, v) ox Y
a(x, y)

o9 og

ox ay

1If al] the entries in this determinant are idenically zero in S, then by Theorem 5, Unit 9 u
‘and v are constants. Thersfore, they are functionally dependent. Now suppose there exists at

. . . of .
lcast one enlry which is not identically zero in S. Let us Supposc that P ¢ at some point

{a.b) e 5. Now consider the equation
F(x.-y- U) = f(x‘ )’) -u= 0
in three variables x, y and u, Clearly, the function F(x.-);. u} is defined in some

. F
neighbourhood of the point (a, b, u,). where u, = f(a, b), Since g; = % # 0 at the point

(a.b.v,), the conditicns of Theorem 2 are satisfied. Therefore, we can express x as a -
function of y and u, defined in some neiphbourhood N of (b, U IEx = ¢ (y.u), then

v-g(@ (y.wy)=0orv=Gly u)
forye ] b~8° b+8* [ and u € Ju,— 8*,u,+8°] for some 5 > 0.

We shall now show that % = Oforally € Jb~-8, b+§[ for some & > 0..'which is enough

tir prove that G is a function of u alcne. (sec E 11 of Unit 9).

> _3
ax  du  Ix
& oG 3G

dy :5:5)745;

Bur we are givea that

IR % u

dx oy ax . ay P
0= = . = é;g

& v { R N

ax oy du I S Iy T gy

du .
We know that =— = 0 at (a, b} and is continuous ar {2, 5} Therefoie, there exists a

X

_nreighbourhood of (u,b) in which

, . o du
5, # 0. That is, there exists a 8 > 0 such thar 557 Ofcrze la-8 avblundye j

b- 8,5+ and 0 < § < &, Consequently, g—g‘= Cforyelb—§, b+ 8 and the pmﬁfis
complete. - ‘ -
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You may find this proof a linle ditfictlt o duch_rsmnd itthe first aucmpl BLLit’ you Te- rnad
it, we are sure you will be able 1o grasp il. Thé fol]owlng example iilusirates ihis thcorem.

Example 8 : Show that there is a functicnal relationship between
u=2nx+ly.v=eV' (x.y,>0) (8
and determine it,

We have

I
1

d(u, v) 4
o(x, ¥) \y
yerly e
¢ ¢ 2\(_

Therefore. By Theorem 4, there is a functionat relationship between u and v,

Solving for y from the first of the Equations (8), we gely = Subst:lunng for y in the

-second equation, we get

lnv=xﬂ=e""’"

ie. e —lnv=0.

Now we make an important remark.

d(u
Remark 1 : i} The hypothesis in Theorem 4 that 5((

= 0 on an apen sphere is
essential. For example,

d{u, ¥)
x, y)
any open sphere containing (0, 0). You will also agree that u and v cannot be linked by ‘m}

funcrional relationship.

ifu=x" v=y" then =0 at {0, 0). But this Jacobian does not vanish throughout

i) Theogem 4 can also be exiended 1o three functions of three variables.

Now we pass onlo the next section where we reconsider the prablem of tnvertibiliyy wiich
we have outlined in Unit 9. But before that it is time to do an cxercise.

E §) Show that the following pairs of functions are functionally dependent.

2) fix,y)=c"" p{x.y)= — 2xy + ¥ 2x + 2y,
DY cu=x"+2xy + ¥

V=3X+3y

10.3 INVERSE FUNCTION THEOREM

Let us recall svine known lacls abous functions of one variable.

e e N I i e ]

Suppose 1 is a real-valucd, continucdsly diffcrontable tunction defined oo wom
D oi R. If for any point € D, F (%= 0, then s ot zeroin I =, - 0 h,+ 0o D
For o suitable 8 > 0. in foen, I (s o the sipn of 1 {3 in LI (x> G then (T3 05
stictly increasing in 1, and it i (X, ) < 0, hen f(x) is stricily decreasing L I eny cast, i
one-enc on I. Clearly, ((1) is an oper interval contuning i(x, ). Thus, the function 1721 -~

iz invorible on | hﬂornn\n-r 3 Ou Moy recal] I’TI‘C{"I({ m |

I\ll is anc-onc and oo and h\.,u\.\.- I AanVarTS

Sec. 4.3, Calculus) that the function i : (I} —= T is d|fferenu.1b1c at I(x, yand

N~ 1
(Y (f(xg D_f—'(xu)



.- EUPTNE) b ¢ b T CF
L Sorergglas 4T . : : i
Thus, it £ (x, ) = Oor every x € D.Then the above holds far chery point of D. Implicit and Inverse Function
i . . ] Theoren:s
A similar result is true for functions of several variables and is known as “the inverse

function theorem™. In this section we staie the theorem for functions of several variables und

illustrate with examples for functions of 1wo and three variables. We do not give the proof

here as it is beyond the scope of this course. Belore we state the theorem, we recall the

definition of an inverse function and give some examples. .

Definition 1 : A function f with domain D < R" and range D* < R" is said 1o be
Invertible on D it there exisis a function g : D* ~ © such that gU(P)y = P and Rp(Qy =Q
Jorevery Pe Dand Qe D, -

Recalt that £: D — D* is inventible on D if and only if fis one-one (it is already onto).
Moreover. the function g is uniquely determined by f and is called the inverse of . It is
usually denoted by £

We expliin this definilion with the tollowing example.

Example 9 : Let D be a subset of R® consisting of ail pairs (r, 8) with r > 0 and
0 <8 < 7, Define a function F an D by

F(r. 8) = ({{r. 8), a(r. &)).
whérc fr0=rcos®, g(r.8) =rsin 0.

We first note that the image of D. say I¥, under this map is the upper half-plane consisting You already know thut 2 map F from
) . . R2 10 R3 is given by the coordinate-
of all {x. y} such that y > 0(y>0becauser>0and 0 <0 < 7). See Fig.-5. . function -

Fix.y) o {ltx.y). 200500

a4
. r - 7 F 1
T L
—
» G
O 3 :
Fip. 8 )

Solving for r and & we get,
r=Vx*+y® and § = cos! :_5

Then the inverse map G : D — D is given by

Gx y)= (\.’x‘.‘ +y°, cos”! x; J

So far, by a neighbourhood of a point a € R" we had mear! an open sphere , .
Stan ={ x| Ix-al < r },of radius r. But from now on. we shall regard even those seis
U ol R” as neighbourhoods of a, which contain an open sphere 5 {a. r) for a suitable . This
18, in fact, the universally acceptable definition of a neighbouthood in Euclidean spaces. We
did not introduce this earlier, bacause we did not need it sgccifically. Thus, the closed disc

[ (xy3 1 (x-2)+y* < 4 )isalsoa neighbourhosd of (2, 0), The space K*, or.for that
maller, any open set is a neighbourhood of each one of its pcints. -
Now with this new inlerpretation of a neighbourhood of « point, we give the following
dafinilinn .

Definition 2 : Let {: D — R™. D < R". We say uwi © Is tocally invertible at 2 poim
p € Il there exist a neighbourhood N of P conicined in D and a neighbourhood N* of f(p},
such that

i fN)=N-
i)  fis l-1on'N.

The following example would make this definition clear,
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Example 18 : Consider the transformauos:
F(x, ¥} = (2xy. x* =~ ¥°).

It maps the whole plane R* 10 R, However, it is not 3—1 in the whole plane, since
f(1,1) = f(=1, —1) = (2. 0). Therefore. it is not invertible. In general, fip} = 1{-p). But, if we

take D = {(x. ¥) | x > 0} . then Frestricted to D is 1-1.
To see this, let f(x,y) = f(2,b). We will prove that x = ¢ snd y = b. Thus, we are given Lt
2xy =2aband X = y* =2’ - b’

ie., x2—y'-a’+b'=0.

Therefore, since x 20,y = % and on substituting the value of y in the second equation we
obtain
0 =x*-a%’ - x%*+ x*p” (because xy = ab).
= (< b (- ad)
Thus x* ~a*= 0 or x*+ b* = 0. But x* + b* cannol be zero, Therefore x° = a°.

But x >0 and a > 0 (cn D). Therefore we get x = a. Then Xy = ab gives that y = b. Thus,
f maps the open half plane D into R? in a one-one manner,

We shall show that

D*= {(u.v)]v:I-OEfu=0]
-= R*- negative y-axis

is the range of f.

If u = 0, then y has ta be zero, because v = 2xy and x > 0in D. In that case v = x> 0.
Thus, no point or the negative y—axis can be the image of a point of D under £. Notice that
for any (x, y) € D™ an open disc around x. ¥) is contained in D*, If u # O.then {(u. vI= 15,
Y), where

oy

We leave Lhe verification of thiy o you as an exercise. {see E 0,

Now f is locally invertible at every point of . This is because the seis D and D” being opei:

sets, .can be regarded as neighbourhoods of each of their points. Therefore. for any point of
D, both the requirements of local wmvenibiliiy are smisficd. However, the funciian

f: R? = R? as defined above is not i iy invertible 32 (0, 0). The reason for this 38 thi
given‘ any neighbournood N of (0.0, we can Iind x, y € R such that{x, y}& N and

(~x, ~y) €N. Now since we kacw that [{x, y) = f(—x. —y). we conclude thai f 15 not 1-1 oa
N. We leave it as an exercise 1o you © check the local invertibility of T at (x.y) when x < U
(see E7).

Here is another 'cxumpié.

Example 11: Consider the function £ given in Example 9 hy F (v, ) = (rcos £, 7 #in 81
on the whole of R

You can casily see that the function is not invertible since F is not org-onz. Mole thal

F (0, 8) = (0, ) for all 8. Let us check whether F is iocaiiy invertible. From Exanipie 2, we
can see that F is locally invertible at all points (r, €) such thatr> 0 and 0 < 6 <, Bul

" when we take the point (0.0), then any neighbourhaod of this point contaius points

(0. 8), B # 0 which are mappsd to (0, 0}, i.e., ¥ is pot ong-one in any neighbournood of
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(0, 0). Therefore F is not locally invertible at (G, 0). Later wien we state Theorem 5, you
Thearems

will learn that this function is locally invertible ar-zlt points, (r, 8), such that r # .

Here are some cxercises for you.

E 6) Prove the relations in {9).

E 7) Show that the function f(x, y) = (2xy, x*~ ¥°) defined in Example 10 is locally
" invertible ar (x, y), where x < 0.

We are now ready to state the inverse function theorem which provides us a sufficient
criterton for the loczal inverlibility of a funcfion. Afier this theorem, you would realise that
the above examples and exercises could have been done easily-as we know how 1o caleulate
Jacobians.

Theorem 5 (Inverse Function Theorem) : Let F,, F,, ......., F, be n real-valued A vectar - valued funclion

functions defined on an open subset D of R™. F':(f" - “,d'““e,""abif
{continuoualy diffceentiable) if . ...

LetF=A(F, . ... F.) be a function from R" to R" with domain D. If F is conlinLiO}lsiy f_ arc differentiable (continuously
differentiable at a poinl Py = (a, , .......3,) € D and if the Jacobian of F, i.e., differentiable).
G(F; veere F.)

3K 1) is non-zero'at Py, then the function F is iocally invertible at P, Moreover,
1y mrrsrnny n - -
the local inverse F' of F is continuogsly differcntiable a1 the point F(P,).

For instance. look at Exampie 10. You can see that the Jacobian of F is given by
—4(x% +y7) and the map is invertible at all points different from (0,0). We have already

checked its inverlibility at those points (x, y) for which x > 0.
Look at this exampie now.
Example 12 : Let us check the local invertibility of the function
F: R*— Rigiven by
Fix.y)=(ysinx,x+y+ 1)
at {0,1).

We apply the inverse function theorem {Theorem 5) to F. We first note that the function F
1s continuously differentiable, since both the functions f(x.y) =y sin x and
g2(x, ¥) = x + y +1 are continuously differentiable.

The Jacobian of F is

JF =

y COSX  sinx 1 .
1 |
= ¥ COSX — sinx

Therefore, JF {0, 1) = 1 # 0. Hence, by the inverze funcion Dearem, Fis locally inventible
at (0, 1). '

. Now you can easily do these exercisés.

E8) Prove that ihe map F : R’ R’ given by F(x, y) = {¢" cos y, e'sin y) is not
invertihle an the whole af R? bt e locally invertible ar each noing of B2

E9) Delermine whether the fellowing maps 2re izz22lly invertible at the given point,

D Fxoy)= 3y + L2+ 7)) ar (i, 2
b) Fix, ¥) ={e¥. Inx) ztil, 4)
¢} F(x. y) = (sinX, cosxy) ' &1, g )

d F(x,y,z)=(x+y+zc'cosz e sinz) al(x,y, z).
\ .

Here is an important observation about Theorem 3.
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Remark 2 : According 1o Theorem 5, the non-vanishing of the Jacobian at a
point in the domain of definiton guarantecs that the function has an inverse in a

- neighbourhood of the poinl. Now suppose Lhat the Jacobian is non-zero at a.l points in the

domain of definition of a funclioj. Then by Theorem 5 we know thal each peint thas a
neighbourchood in which the function in invertible. Now does this mean that the function is
invertible in the entire domain? No. In (E8) we have already scen a function F from R? 1o R?

for which

e*cosy. —e'sin .
=t S ORI o
e'siny e’cosy
for all (x, y) e R Thus, F is lccal]y inverlible at all points of R2, but is not invertible,
hecause it is not 1 — 1.

Therefore, it does not follow that the funciion is invertible in the domain of definition, even
when the Jacobian is non-zero for 21l points in the domain.

Also note thal a function may be locaily invertible at a point, even when its Jacobian
vanishes at that point. For examplc, consider the function [(x, y) = {x*, y*). The Jacobian of
fat (0, 0) is 0. But [is invertible in ]-1, 1{ x -1, 1[, the inverse being given by %173, y!/™),
That brings us to the end of this uait. Let us now take a quick look al the points covered in
iL.

10.4 SUMMARY

' _8(1.1 !

In this unit we have

@  Siated the implicit functien thecrem for functions of Lwo and three vartables and proved
the theorem Jor two variables.

Implicit function theorem for two variables

Let F be a real-valuad conlinuaus function delined n some nc:ghbcurhood N of the point
{a. b). If

(i F(a, b)=0

(i) - —— exsts and is conlinuous on N. and

dy
i =0
5 =0

then there cxisls aunmigue funcuon @ defined on some nergbbourhood N of o such that
(h  glay=>b
(i) Flx.gxN=0"loreach x & N.. and
(iiiy g 1s continuous

Moreover. it — also exists wnd is continuous o N, then ¢ is continuous)y

differentiable on N ane 2" is 2iven by

Obtained a sulticient condition for the functional deperdonce of two lhnctions

Suppose u = {(x, y) and v = g (x. y¥) arc [unctions lrom R 10 R which arc connueush
differentiabic in an open sphere 5.

Then u and v are funclionally dependanr in S il

- ) =0 at all points of §
JX.¥)




Defined the local invertibility of maps from R®to R"

Discussed the inverse function theorem which gives a sufficient condition lor local
invenibility :

fet F=(F....... F,) be a function from R"to R" with comain D. If ¥ is continuously
differentiable at a point Po= (a;......, a,) € D and if the lacabian ol F, i.c.

”) is non-zero at Pg, then the function F is locally invertible at Pg.

Morcover, the local inverse F-''of F is continuously differentiable at the point F (Po).

10.5

SOLUTIONS AND ANSWERS

(EN E{1,1)=0,F(, -1)=0,F (0,0)=0

{E2)

iz

dF

—= -2y exists and is conlinuous.

JF
— #oat{l, 1)

JF
- =0at(0,0). -
dy

oF

— = 2x is also conlinuous.

X

.". The thearem does not apply at (0, 0). According to the theorem. 3 a continous
function g defined on a neighbourhood N of (1, a) such that g (1) = 1.

Fix.px)y=0,¥xe N.

Tr: facl, you can see that g (x) = x.
—dF/ox _ —2x _x _
IFidy -2y y

Similarly, you can apply the theorem @ (1. --17. e this case you will get a.g.

1

gx)=

g|(1)=“‘l.
Fix. gx) =0V x € N;.

In [act. gy (x) =~ ‘j_x_z

- -dFldx  x X 1
g ix)y= = —= ==—1.
aFf'C)Y Y —x’rx_‘

[(1). 2)=10.

aF .

——5x1- 48x%y
AN

JF ‘ . dF

o Svd - 16x%. == (1,2) = 63 = 0.
i ]

oF ¥

“?'k- ablilly f}j}, ALl W RLJL NV,

Thererore. there e sis wcontintous function ¢ d2liied on a neighbourhood N of (1, 2);
ENTIS TR PH]

gily=2 and F, 2 {x)=07xe N.

Further, 27 (x) =

let Fix, yy=2xv -Inxy =2
Then ¥Fal, 1r- 0

Implicit and Inverse
Function Theorems

79



80

Application of Partial aF l

Derivalives I =2y_;
F _, 1 3F .
3y —2X—y, Jy (1.)=1=%0.
3F

I and %;E are continuous in 2 neighbourhood N of (1,1). Hence there exists a

continuous function ¢ defined on N such that p (1) = L.

ooy = =2y =1/x) _ y (1-2xy) =¥
¥YOI= Ty Tx@xy-h C x

E4) a) F(l.1.1) =10

™ Ix* -y z,
)

3y = 3y —xz,
dF

= 3z* —xy are all continuous functions.

oz

Further.‘%F (LiLD=2=0

Hence, by Theorem 2, there exist a continuously differentiable function f defined
in a neighbourhood of (1. 1), such that f(1. 1) = 1.

b} Similar.
ES5) a)
e —o* ‘ A -A
a(f, g)
X,y -y-1. . —(x=y-1) - - 54
| Nooyr—2ey YxeyP =260 | | B -B
=0 '

Hence, T and g are functivuady depeadent.
2X + 2y 2x + 2y

du. vy _ _
b) —-(‘-——a(x.y}_ : AR

Hence u and v are functionaily dependent.

E6 uz0=2uyz0=x=0,y=0

u
andy=-"-
Y=
v=x o
B 4x?

. 4v N 16vT + 16u°

= XT= 3

We do not consider the other root as it will mean that x*< 0.

. v+‘\'v1+u:
e e Ee
v + Y vis?
X = 3T



E7)

E 8)

E %}

Ty

-l : Implicitand Inverse Function

' —_ Theorems
= y=u| 2v + 2\,\'2 + Uu-

LetD, = {(x.y] | X <0}.
Then frestricted o D, is L-1.
The proof is similar to that of *f xestricted to D 1s I~1" given in Example 10.

Thus f maps D, into R? in a one-one manner.

Now.D;"={(wv) [ v>0ifu=0]}

W

=R’ - the ncgntilve y-uxis Iy
is the range of I. The proof of Bis also is similar 10 the one given in Exampte 10.
Further, D,” is open.
- I:D—D," i3 1-1 and onto. where D, and D," are both open ses.
-~ Fis locally invertible al any point {x, v), where x < ).
F(x. YI=Flx.y+2m ¥ (x.y) e R'.
Hence F is not 1-1 in R%. |
F is not invertible on the whole of R?,

e'cosy —e'siny
Now JF =

e'siny  e'cosy
= e¢*#0forany (x,y)e R

By Theorem 5, F is locally inveriible a1 each poim of R’

a)
Iy x
JF= = 6x"y2xs,
Y 2x _ 2y |
JF(1LL2)=24-2=2220.
Fis locally inventble a1 (I. 2),
b)
J yet  xeb |
JF= | i‘l'-‘- -t
| = 0 !
X |

IF{l,4)=-e"%0.
F is locally invertible at ¢1.4).
¢y Fis locally invertible at (1, %/2),

@)

IF= elcasz 0 —e*sinz | = —oYsintz-eXecos'z

[ esinz 0 e'cosz
= -e*#Qalany (x, v, 7)

. The wiven map is locally inveriible ot eve o1nt,
P
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BLOCK 4 MULTIPLE INTEGRATION

This is the fourth and Lhe last block of this course in the carher tiacks vou studied the
differental calculus of functions of several variables. that is, you studied the concepis
of limit, continuity. partial derivatives, differentiability and Jacobians for functions of
«sveral variables. You also saw some applications of these concepts to problems of
maxima-minima, invertibility, cle.

in this block we take up the study of the other aspect of the calculus of several variables,
mamely. the integrabcateulus.

In the first unit of this block, i.¢.. Unit 11, we confine our altention to functions of two,
vanables. We first deal. in some detail, with the integrability of functions over closed
rectangles, a natural generalisation of definite integral studizd by you in Calcutus. Here
we show how to evaluate double integrals with the help ol repeated inlegrals. which are
reaily definite integrals with respect (o each of the twa variables. We.do define double
integrals over bounded subsets, but confine our atiention to vory specil Lypes of
regions over which double integrals can be evaluated using werated integrals.

Unit i2is really a repetition of what we have done in the precedimg unit. the oaly change
being that here we deal with functions of 3 variahles and regions of integration are

1
subseisof R,

in Unit 13 we discuss the applications of double and triple integrals 1o some geomeLtric
and physical prablems, like evaluation of areas. volumes, centre of gravity and
moments of inertia.

In the tast unit, i.e. Unit 14, we discuss linc integrals, which provide another way of
generalising the definite integral. Even though we could have casily discussed line
integrals in space also, yet we confing our attention to the integrals in R* only, because
the study of ling integrals in R would be incomplete without the study of surface
tategrals, the introduction of which requires some sophisticatcd ideas, beyond the
scope of the present course. This has forced us to omit theorems like Stoke's theorem,
even though these were mentioned in your programme guide. We conclude this unit by
proving Gre=n's theorem for a special type of regions. This thzarem establishes a link
etween line and double integrals

W2 hope that you will have a chance to study surface integrais and other related topics
it same future course. '

. take sure (o work out all the intermediate sieps in the solved exampies. Spend some
{1me on the exercises before lovking af the suluticns. We huve omitted a large number
of proofs in this block, and have includzd only o few Reud carelully the prodfs which
we have given, as you mity be expected to write thern in your examination.



Notalibns and Symbols

%

P={a=xp<xXy<..... < x,=b}

P
” f(x.y) dxdy

[ f f(x.y)dy ]

_— U

[ | itxyeyasdydz
W

)
f[ f[ Jtr(xvY-ZJd?- ] dy ] Ax

M,
.9
M

xy
(x.y.2)

[ fxy)d
C

J f(x.y)ds

C

Also see the lists in prcuious blocks.

Sumofa; ] fisn.lsj=m.

Partition of {a.b] inia n sub-intervals
Serof all partitions (ol un interval)
Doubile mtcgml of [overa

hounded set Din R?

Repeated integral of [lirst w1 and
thenw.r.b x.

Triple nm.gr.l'l ol [ over o bounded region
Win R’

Repeated integral of [ lirstw.r.1. Z. thea
w.r.t, yand finally w.r.L. X.

Moment about the x:axis

Centre of gravily of an objectin the plan:
Mament about the xy-plane

Centre of gravity of a solid region in space

Line integral of f aver the curve
Cw.r.t.x

Linc integral of fover the curve Cw.r.t.
the arc length.



UNIT 11 DOUBLE INTEGRATION

structure

1.1 Introduction 5
Objectives

1.2 Double Integral over a Rectangle 5

Preliminaries
Double Integrals and Repeated Integrals
11.3 Double Integral over any Bounded Set 17
Regions of Type I and Type I1
Repeated Integrals over Repians of Type | and Type 11

1i.4 Chunge of Variables 23
11.5 Summary 30
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i1.1 INTRODUCTION

In the cartier cafculus course (Block 3 Unit 10} we intreduced you 1o the concepl of
intcgration for real-valued functions of one variable over a closed interval, ln this unit
v extend the notion of integrability to real-valued functions of two variables defined
over a bounded set in the plane. Such integrals are cailed double integrals. We first of
all consider real-valued functions defined over a closed rectangle, a natural
geacralisation (o plaac of a closed interval on the real line. We also introduce two other
mtegrals called repeated integrals, which cannot have an analogue for functions of one
variable, Roughly speaking, a repeated integral is a definite integral with respect to the
two variables, successively. We show that in 2 large number of cases repeated integrals
ete equal to the double integral. This enables us (o compute a double integral using the
techniques of integration of functions of onc variable. In Sectior: 11.3 we-extend the
definition of double integral to functions which are defined over bounded sets. We also
discuss some properties of these integrals in this section. In the last section we consider
regions which are easily described by polar coordinates and describe how to evaluate

integrals over such regions.

v1wis unit we omit quite a few proofs as these invelve ideas which are beyond the scope
ulinis course, However, we have tried to give 2 large number of examples wo ilfustrate
5 reuudes stated.

~r Tre nzxt unit we shall take up the siedy of triple integrals,

Clhiectives

Adter reading this unit you should be able to :

¢ definé double integral and repezted integrals of a real-valued function of two
variables over a closed rectangle,

@ evatuate double integrals using repeated integrals,

# define and cvaluate double integrals over some special types of regions,
sifect change of variables in double integrais,

+ compdte double inlegrals using polar co-ordinates.

11.2_ DOUBLE INTEGRAL OVER A RECTANGLE

i1 this section, we exiend the theory of integrability of fuanctions of ene variable to
functicns of two variables. We shall consider integrabiliey ol vanction defined over a
clased reetangle. Betore siarting the discussion for two verinbles. we aruckly review the
cOieepl ol infegration of functicns of one variable in the folivwing sub-section. Recall
thal you hive studied integration in Block 3 of Cateujus. - '
13.2.7 Preliminaries

We first recali the definition of integration of a function of one variabie. Then we talk
about partitions of rectangles in R? and the analoguz of upper and lower sums.in the
ciae of o function of two variables.

RC



Multiple Integration

To start with, let [ : [a, b] — R be a tounded function.
LetP:{a=xg<xy<x<...x,=b}-

be a parition of [a,b} into sub-intervals [x;_,, x;], 1 =i = n. See Fig. 1. Since fis:'a
bounded real-valued function on {a,b], for each i, 1 =i = n, there exist real numbers
m; and M;, such that

m;= inf- {f(x)}
- -} X SxSK
0=3 XXz e DEXa Mo sp {1(9)
L SKS X
Now we get
L(P,O)= z m; (X—x;_y) I
=l
and
n
Up.n= 2 M (X—xio1).
i=1
Note that x;~x,., is the length of the s su-i:-terval [x,.,,%]. The sums L(P,f) and U{P,f)
are called lower sum and upper sum of [ serresponding to the partition P. These sums
are also referred 10 as lower and upper Riemann sums. Then we have
m{(b-a)=L(Pf)=UPH=Mba), ... (1)
where m and M are the infimum and supremum, respectively, of fin [a, b] (See
Theorem 1, Unit 10, Caleulus Block 3).
Let Pbe the sci of all partitions of [a,b]. Now consider the set
= {L(P.H | PEP) and U = {U(P.0) | PEF}.
Then the non-empty set L of real numbers is bounded above and the non-empty set U
of real numbers is bounded below. Let 1
I, =sup {L(Pf)|PEP)
Iy =inf {U(P,D}|PEP} -
Ifll_ = IU = 1,
then we say that f is inteprable over [a, b) and define
b
[ 1(xy dx = 1 = sup (L(P,0} = inf (UP,0)
2 p P
I 'is also called the delinite iniegral of fover [a, b].
You must have done some exercises in computing the integral by the above procedure
i your Calculus course. To relresh your memory, you can try an exercise now.
E1) Show that the funclion {(x) = x is integrable nn [a, b] and \
; b
Y&
- =1m2_.,2 ,
J’xdx—i(b ~a). |
a - .
(Hint ; Use the inequality x,_, s%(xi + X} S %)
d 4
Nowwe adopta similar procedure to define the integralofa 1 eal-valued function of two
¢ variables. A closed rectangle seems to be a natura! genera: isation of a closed interval -
onthe realline. Here we assume that the arca of a rectangle  vith sides of lengths a and
b units is ab square units.
o X -
a b We begin our discussion of \wo variables by considering part ition of a closed rectangle
analogous to that of a closed interval) '
Fig. 2

Let T be a closed rectangle in R formed by the lines x = a, x = b,y=c,y=dasin
Fig. 2. The rectangle T is nothing but the Cartesian produc: of closed intervals [a, b}
and [¢, d], i.e., T : [a, b] X [c, d] (see Unit 3 of Block 1).



L ne most natural way to subdivide this rectangle is’

{) to divide the interval {a, b} of the x-axis into v sub-interualh,
[a = %o, X1}, (%1, %2}, oo BRics Xils -ens (%1, % = B,

ii} 1o divide the interval [c, d] of the y-axis into q sub- 1. ,
(e = yo, Yihs 1. ¥abo oo Wicts iy 0 [¥qos v = € 0

iii) to consider the rectangles formed by the inter-als [x;_;. %] end
yuylh1=i=p l1=j=q.

Thesc three steps are illustrated in Fig. 3..

Yi Ya
Yo=dT Cde |-------—~1:-—-—H
Yj+1---—----—----' 2
nr o " i‘":: |
e L —p——
|
| '
- 4 l._l [ 1 L 1 i | l T
— } » . . s, A
O a x % - tp=b .3 o} : P Tiet b x
(a) {b}
Flg. 3

Letus denote 1he rectangle [ormed by [x;_;, %] and [¥i.1. yi) by Ty, Thus we have divided
the rectangle T into p.q sub-rectangles Tis (see Fig. 3(b)). These T)s constituie a
partition of T. More formally we have the following defiuilion

Definition 1: Let Tbe aclosed rectangle [2,b] X [e,d]. Lt 1"} be a sequence of finitely
many closed rectangles such that P

iy T;<Tforeachi.
ii) Sidesof T; are parallci to the coordinale axcs.

iy T;and T;intersect on the boundary.

n
iv) T= U T..
i=1

"hen the sequence (T3}, 1 =i T 2,08 said ol oo peth o evinani T

Let T = [a, b} % [c, d] be a rectangle R T

Py {xga Hre coeas By e %} be wpartition ol [2, i

D= (Y ¥1o oo Yo o oo Y BC apaniticnof{z, 1L Ton S piva T W a

pariition P (denoied by Py X P,) whicl divida- v on o hers :
G

Ty= () x ) SXEX, ¥ =y S yi). Comveisciy. o = v
Jivides T intors sub-rectanples as in Fig. 3, thape e ;
dividzs [a, b isito rsub-inter/als unda sanaran v o

sub-iaiervals, such that P =¥y « 1

Asin the case of one variable, we spy thacr panise
of 2nother partition Q ol T, if euch sub-rectangie .
sub-rectangle of Q. We write G © PP o denote EoallLonL oo

We ave now ready (o defing uppersumsand it T ia S riLbles.
Upper Svms tnd Lower Suds
W stars witk 3 bounded real-vatued furctin oo Wlhaireaitagie

r ' ' PR

<, d] lei?=1 P, | LB T

T:{a,b) % [
P, = {Xgs Xps -+e1 7p)

Fa'= {¥o ¥1- -+ Yol .

are partitions of {a, b} and [c, d}. respeciively.

Now lgt T;; be the sub-reclangle [xoy, %] < [Feie
Consider the set S, = {{{x.y) [x €lx. &0 I

Double Integration
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Y

Since [ is a bounded reai-valued function, 5;; must be a non-erﬁpty bounded subset of
R. This means it has a supremum and an infimum. We write

Mij = §up Sij! m;; = inf Sij.

We define the upper sum U(P.f) and thé lower sum L{P,f} analogous to the
one-variable case by

U(P.f)= EP; i M, Ax; Ay,

ial j=I

p 4
LD =3 3 m;Ax by,

=1 j=i
where Ax; = Xj— X, &Yj = ¥;— ¥1 and the product Ax; Ay is the area of the
sub-rectangie T;;. The right hand side of the expressiéns in (1) involves double
summation, £ 5. Bul since both these sums are finite, the duuslc summation poses no
problem. For example, we can write

ra p o, 4 \
2 2 Mij &)C,' Q}’J = 2 [ 2 MiJ AX; .f_\.y, }
i=1 )=l el gl

That is, we first take the sum as j varies from 1 to q, and then take the sum as i varies
from 1 to p. [fwe reverse the order of i and j, we still get the same sum. Thus, when we
expand the sumsin (1}, we get -
U(P.H)= {M,, (areaof T,,J + M, (area of T}3) + ... + M4 (arca ofT|q)j

+ {M, (area of To)) + ... + Mp, (area of Tog)} + ...

+ {M,; (arca of T,) + ... + M, (area of Tpy)}-

Further,

L(P,f) = {m; {(arca of T|;} + my; (area of Ty) + ... + mq (area of T )}
+ {my (arca of Ty} + ... + myy {area of Tyg}} + ...
+ {m,, {area of Tyy) + ... + m, (area of T, )}.

Thus, to get U(P,f), we have multiplied the supremum of each §,, by the area of Ty and
then taken the sum ol all these praducts, Similarly, for obraining L(P.f). we have
multiplied the infimum of ciach $;; by the arca of Ty;. If you compare this with Lhe
one-variabic case, you will see that the only difference is that X is replaced by X X, and
the length of an interval is replaced by the area of a rectangle. Now supposc M and m
denote the bounds of £ia T. Then for any I, j we have

m A Ay, = my Ax Ay = My AxAY M AK Ly

Now we varyiover [,....., p and jover 1, ... ., q and lake double summation. We get
poa P
22 m AN Ay, = E > m; A Ay
fml j=l Y

p 4 q

= 3 Y MAxAys i S MAax Ay

jul j= i=} =i

That is.

NN v T
m Y Y AxAy=LEHNsSUEH=M 3 3, A% Ay,

1=l gm} - =]

But z z Ax;Ay; = area of T = A. Therefore, we have
i
mA = L(P.f) = U(Pf) = MA.

Now we state a theorem (without proof) which gives a relation between upper and
lower sums corresponding to two partitions.




‘Tiworem 1 Lelf: ] = (4, uj A v, d] — R be.a bounded {uiciion and let Pand (3 te
two partitions of T. If Q is finer than P, then

L(P,f = L(Q,) = U(Q,f) = U(P.D).

This means that as the partitions become finer. the oy peran 17 ower sumis come closer,
Now here is an example which illustrates how these sums a. otained

Exainple 1 : Let us consider the function

f(x,y) = x4+y-2 _

ontherectangle T:[1,4] X [1,3]. Let P =P, x P;be a partition of 1, where P, = {1,2,3,4}
is a partition of {1,4] and P, = {1, %, 3} is a partidun of {1, 3]. Let us caleulate U{P,f}
and L(P,f).

We first note that the function [ is bounded on T and [(x,y) = 0 for ail (x,y}) €T, i-e.,
is anon-negative bounded function. The partition P = P; X Pa breaks up the rectangle
T into six rectangles as shown in Fig. 4.

Y A
; |
a2
1
_11:_; -
o 1 2 3 4 X

po) Fe e

First, fet us caleulate U{P.f}. By dedinition
B M (ereaof Ty, 4 M, asea ol Ty
+ (M, (area of Tap + hian Jrvesof 7,0}
+ {M; (arcaof T5} + I»i;; (area oi o))
v here My = sup (S{x,y) [ (x.y) € 1.

Mow, on each rectanglc T, the point atwhish 0270 00 s nninds
cerner fasthest [rom the wriagy

Teeoant o D
N .’ljh iz

Therefore,
My = f('\'ia_',’j) =% +y-2

g,

(@D = %(%)3( g )43
7

. - T/ Bl .
i Tond, ver saicniaic AT . 5 LT
\
PP = {nny, {oreaod ) i
- [:’1' [ RS T I 1 ke =1 3 -
— {hig, rea 0l 0 C G s

g g = ind () R T

£-27in, ven ean see from Fig. 4 thal T i soin L0 whive Dlokes mimmuim value s

(5egs Fiot), B2€ COMIICT £'DELLE5C the Qrighe. TR,

g = 0 Vi) = S T o - 4
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Therefore,
eo=ofz)+5(3)+1(3)+3(3)+2(3)+53)
33
=3

Why don't you Ury seme exercise on your own now?

E2} Find U(P,f) and L(P.{) for the function £(x,y) = x+2y defined on

T:[0,2] X [0, 1}. Pisthe partition P, X Pz, where P ={0, 1,3, 2}, P = (04, 1}.

] E| -
E3) Verify the result in Theorem 1 [or the function in E 2} by taking the partition
Q = P; x P3, where

(= (0,1,32).p3= 0,11
P'.l - {obll,2! 2}IP2_ {OI 4! 2! 1}‘

In the next sub-section we use these upper and lower sums to define the double integral
of a bounded function over a rectangle. You will see that the procedure is the same as
in the one-variable case.

11.2:2 Double Integrals and Repeated Integrals

In this sub-section we define the double integral of a bounded function of two variables,
Then we introduce another type of integral called repeated integral, which makes the
evaluation of double integral quite easy.

Let f: T— R be a bounded function, where T = [a,b] x [¢,d]. Let A denote the'area
of T. Let M and m be the bounds of fin T. Let Pbe the set of all partitions of T. Then
we have seen that to each partition P of P, there cortespond an upper sum U(P,f) and
a lower sum L(P.f). Also, mA = L(P,f) = U (p,f} = MA. This shows that the set

'S = {U(P,f) | P € P} is a subset of R and is boundca below, Thus, it is possible to find

the infimum of S. Similarly, the set §* = {L(P.f) | P € P} is bounded above and
therefore, we can find the supremum of 8. Let U be the infimum of § and L be the

supremum of 5.

Now we are in a position to define the double integral of a bounded function.
Definition 2 : Let{: T = [a, b] X [¢, d] — R be a bounded function. fis said to be
integrable over Tif L = U,

This common valucis called the double integrat of fover the rectangie T and is denoted
by any one of the symbols

f_( f(x,y)dxdy or J?ff(x,y) dx dy.
T 3o

Now we take a simple example.
Example 2 : Let us check whether the function f: T — R, defined by f{x) =k, where
k> 0and T = [a, b] X [c, d}, iz integrabie oF not.
For this, let us take any partition P = Py X P, of T, where
Piia=xg<x; < ... <X, = band
Pric=y<y <.... <yq=-=d.
Since fis a constant function, on each Tj; we have
m;; = k = M;
r

VLD =Y N kax Ay,
=1 =1

=k (b-a} (d—¢)
Similarly, U(P,f) = k{b-a} (d—c)} = L(P.f) for every pastition P
This means that $ = §' = {k(b-a) {d-<)}.




fr e m— m

Therefore, inf S = sup S = k (b-a) (d—<). B

Thus, we can say that f is integrable over T and
jTj fx)ydxdy = | [ kdxdy = k (b-a) (d).

In Example 2 we had put the restriction k > 0. But the result is true even when k=0,
and the proof is similar.

Before considering more examples of cvaluating double integrals, let us look at their
geometrical interpretation. As in the case of functions of one variable, we consider
non-negative functions for this. :

Let fbe a non-negative, bounded function definedon T :[a, b] X [¢,d]. LetP=P; X P,
be a partition of T. Let us see what these sums U(P,f) and L(P,f) represent

geometrrically. Suppose we consider the region D between the graph of f and the
rectangle T as shown in Fig, 5(a).

-~ /177]
| .
all i
Lo Bl
i-_'l i l
Ty Ty

(a) )] . (c)

?lg. 5

Let V denote the volume of this solid reguon. Let P divide the rectangle Tinto p.q -

" sub-rectanpgles Tjj, 1 =isp,1=j=gq

This divides the entire solid region D into parts S;; as shown in Fig. 5(a}. Then, foc each
pair (i,j), consider the rectangular parallelopipeds with base area = area of Tj;

= Ax; Ayjand heights my and M. You can see these in Fig. 5(b) and {c), respectively.
Then MAx; Ay gives the vefume of the rectangular parallelopiped with base T,; and
height M;;, and my; Ax; Ay; gives the volume of the rectangular parallelopiped with basc
T, and height my. The rectangular parailelopiped in Fig. 5 (b) is called inner
rectangular parallelopiped, and that in Fig. 5(c} is termed as outer rectanguiar
parallelopiped.

Mow, if v;; denotes the volume of §;;, you can see from Fig. 5(b) and {c) that

m; AxAy=vy=Maxhy, e (2)
Further,

p 4
UEH= 3, 3, Max Ay

il j=1

= Sum of the volumes of outer rectangular parallelopipeds as in Fig. 5(c).

P a
LpD= 5 3 m;AxAy;
=1

j=I
= Sum of the volumes of inner rectangular paralieiopipeds as in Fig. 5(b).
Now, if V is the volume of D, then )
V= z E Ve . .. (3)

Thus, from (2} and (3)'we .gct : . . .
L(P,0 =V =TU(Pf). B ) b (4)

waimeer— C -

Double Integration
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(4)is tzue for all partitions P of T. Now, if £is integrable, then there isa upique number
lying between L(P.f) and U(P,f) for all P € P, where Pis the set of all partifions of T.
This unique number is the double integral of f over T (see Definition 2). This together
with (4) tells us that ‘ '

U f(x, y) dxdy = V.,

Thus, if fis a non-negative, bounded functio.n , then we can view the double intcgfal of

f over T as the volume of the 3-dimensional region lying above the rectangle T and
bounded above by the graph of {. :

Now, here is a remark, which tells us that double integral can be viewed as the limit of
asum,

Remark 1 : Suppose a function f is integrable on a closed rectangle T = fa, b] x [c, d].
Consider a partition P = P, X P, of T, where '

IP,:a=x°-'Cxl< ..... <x=b,

Pric=yo<y <-... <yy=d.
LetTij=[xi-1.X;] X [Yi—I-Yj],IEiSp,lsjt_:q,

Let us choose a point F;;in T;,. Then the sum
i

q
i E {(P;} Ax; Ay;, where Ax; = X~X; and Ay; = y;— ¥, is called the Rlemnann

il j=i
sum of f over T, corresponding to P. It can be proved that as the diameter of each Ty

tgnds to zero, lHiS Riemann sum approachcs. i Xy dx dy K
T

Thys, we can write

p, 4
[ [ teydxdy=tim ¥ 3 P Sxi Ay,
T ' [IP[[— 0 i=t j=2
where ||P{], the norm of the partition P, is the largest d‘ameter of the rectangle in P.
In what follows, we shall often use the result in Remark 1. So make sure that you have

-undarstood it.

* Now here is an example.

Example 3:Let T=[1,2] X {3,4},andlet (: T— R be defined by
f(x.y) = [

Letus cheek whether this function is integrable or not.

Let P be any partition of T into sub-rectangles T;, | = i = n. Now, when we take any’
rectangle T;, there exists a point (x,y) in T; with x rational. and there exists another
point (x;, y,) in T; with x, irrational. Thus, we have

1,if x is rational,
0, if x is irrational.

m; = infimum of fin T; = 0. and

M, = supremumof [in T; = L.

This sbows that L{P.F) = 0 and U(P.f) = |, since the area of T = 1. This is true for all
partitions, Thus, L = sup {L(P,(} | PEP} = Dand U=inf {UPD|PEP}=1.
Therefore, the double integral of f does not exist.

Mext we state a theorem, which gives a criterion for the intcgrability of functions of two
variables.

Theorem 2 ¢ Let T be a closed rectangle. A real-valued, bounded function f: T — R is
integrable over T if and only if given & > 0, there exists a partizion P of T such that-

U(P.f)-L(P.f) <=.
The proof of this theorem'is exactly similar 10 the prool in the one-variabic case (see
Theorem 3, Unit 10, Calculus). To refresh your memory we give the. proof of the ™if

part” of the theorem here. The proof of the “only if part” is left (0 you as an cxercise.
(Sce E 4}, ’



Proof {if part) : Let L. = sup {L(P,f) | P € P} and U = inf (U(P,f) | P € P}, where Pis
the set of all partitions of T. Then

LPH=L=U=<UPL YPEP,
or, U-L=U(P,f)-L(P.) VPEP.

Now, given > 0, 3 P € Psuch that

UG(P.f) - L(P,) < .. '

This implies that

U-L «Ee.

Since this is true for all e > 0}, we get that

U-L=0ocrU=L.

This shows that f is integrable over T.

Now do the following exercise-and complete the proof of Theorem 2.

E4) Prove the “only if” part.in Theorem 2.

With the help of Thenrc;'n 2, it is possible to identify a large class of integrable
functions. We shall not worry zbout the proof here, but let us state the result formally

now.
Theorem 3 : If a function f : T = [a, b] X [c; d]— R is continuous, then fis integrable.
So, continuity = integrability. But the converse is not true. Here is an-example which
shows just this.

Example 4 : Consider the function,
= [ Lxy#+ 00
)= | 0, (x.y) = (0.0)
Clearly, f(x,y) is not continuous at {0,0). We shall show that f(x,y) is integrable over
T: [+1,1] X [-1,1]. Given any & > 0, find a partition P of the rectangle T such that the

area of the sub-rectangle T* containing.(0,0) is°less than e. Note that for any other
sub-rectangle of P, infimum of { is equal o the supremum of f (each being equal to 1).

Thus,

WP.f-L{P.O= 1. areaof T* - 0. area of T*.
' <E,

r.‘mwmg: that fis integrable on T,

In this example you saw a function which is dlsconUnuous atapointin T, but still is
integrable on T. In fact, even if a function is discontinuous at a finite number of pomts,

it can siilt be integrabie.

In Unit 5, you have scen that differentiability = continuity. Then by Theorem 3, we
have

differentiabilily == continuity = integrability.

Now look at the functions below,

i) I(x.y) =x*—2xy + 4y, in [0,2] X [0,1]

ity f(x,y)=x+yin(3,5] x [1.4]

Clearty, both these functions, being continuous, are integrable. At this stage, apart
from the definition, we have no other means to evaluate their double integral. Asinthe
case of functions of one variabie, itis not at sl easy to evaiuate doubie integrals ol mosi
of the functions by applying directly the definition, In the one-variable case, the
Fundamental Theorein of Calculus came to our rescue. Here we overcome this
difficulty by reducing the calculation of a double integral to calculation of integrals oi
functions of onc variable with the help of repeated integrals which we now introduce.

LetT=1{a bl x[¢, d]bearectanglein R2and [(x, y) be ateal-valued, bounded function
on T. {f we keep x fixed and allow y to vary over the interval [c, d], then we get a
function £ : [c, d] > R, defined by

(y) = t(x,y) for y €[c, d].

Do you agrec that {* is bounded in fe, d]"

Double Integration

{*is a function of 2
single vaciable y.
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Now suppose [* is integrable over{c, d].
d ;
Then the integral ff"(y)d'y depends on x, and thus defines a function of x, say
d . b
F{(x)= ff’(y) dy, on{a;b]. if F(x)isintegrable over (a,b},then JF(x)d.‘: =Tiscalleda
5 ]

repeated Integral of f(x,y) on T,

Clearly,
b d
1= f(ff_(x.y)dy) dx.

Roughly speaking, 1o obtain this repeated integral of f, we first integrate £(x,y) over
[c,d], regarding it'as a function y {treating x as a constant), and then integrate the
resulting function of x over {a, b}. Recall that you have seen a similar procedure in
Unit 4, while evaluating repeated limits.

By interchanging the roles of the variables x and y, we can define the other repeated

integral
d. b

[ty ax) . - o :

c a

provided f(x,y) is integrable on [a,b] for each fixed y,' and the function j £(x,y)dx is

-
integrable on {c,d]. Itis obvious from the definitions of the two repeated integrals that,
at any given time, we arereally integrating a function of one varjable. Therefore, all the
techniques of integration that we have learnt so far are a-ailable to us for the eviluation
of repeated integrals. We shall illustrate this with the help of a few examples.

Examplé 5 : Consider the function f{x,y) = 3x%y.

" Let us find the repeated integral of f over the rectangle T = {1,2] X [-3.4],i.e., letus:
4 .

evaluate the integral

Jl'[ fj (x,y) dy]dx.

To do this, we first compute the integrai ol F*(y) = Ix%y with respect 1o y, keeping X
constant over [-3,4]. We get
-

4
j 3x%y dy = 3t j y dy (Since x is a constant, we can take x* oulside.}
= -3

=3x2[£]4
-3

We then integrate this w.r.r.x and get
2 .

lexz E|J(=-2=l x T

| 72 213 1,

(-1

5
-

Rl

g
LS | —
[—

L

Thus,

f U: 3x"ydy ]cix = ig .
3

2
T S 49 o .
Check that | U 3x°ydx ]dyls alsocqualto = . Se, inthiscase, buth the repeated
23 -
integrals are equal. But there is no reason 1o expect that the two repeated integrals will
always be equal. In fact, it is possible that one repeated integral exists and the other |

does not exist at afl. This is the situation in our next example.

|
o A



Example 6 : Let T: [-1,1] x [-1,1] and let f : T— R be defined by Double Integration

ix,y)=1{ if x is rational,
y 0, if x is irrational.

3 1
We will show that f U f(x,y)dy ]dx exists, and the other repeated integral is not
-1 = .

defined.

We first integrate f(x,y) w.r.r.y, keeping x constant. Then the {ixed value of x can be
rattonal or irrational. In both cases you can easily see that

! f y dy, x rationai
I__f{x.y) dy = h
- 0 dy, x irrational,

1
und rhercforc.J f(x.y} dy = i1, Consequently,

-l

2ol
E_ ! }L flxy)dy ldx = 1) .

Now we have teshow that the other repeated tntegral f ( f fi(x,y)dx ) dy does not exist.
N [

For this we fix y. say, y = 1, and dcfine the functior £,(x) on [-1,11 by

- ! 1, if x iy rutional,
II[\; = - - .
Vo0l xis irrational.

You have seen in Caleulus (Example 4, Unit 10} that such a function is not integrable:
l .

Therefore, j f;(x)dx does not exist, and hence we can't even talk of the repeated
integral -t :

1 |

[{1 ity ds ) dy.

AR .

T gain soine practice in evaluating repeated integrals, you can try these exercises,

E5) Evalua' > the following repealed integrals :

v [

=t

:\ydxjdy

= “IJ

J}( J(Kz_i‘y:) dx ) d

c)f (x)+e")dy]dx

L6) Check \»hcth-.r the repeated integrals obtained by interchanging the ordcr of
integration in E 3) a) b) and ¢) are the same or not,

In Example 6 we have seen a tugction f(x,v) defined on a reciangle T, for which ane of
the repeated integrals exisis und the other is noi gven defined. Is it also possible that
Potivthe repeied integrais are defined butare not equal? In fact, examples of bounded
Mmactions whose repeated inlegeels exist bul are unequal have beeu found. Itis not
pussible to give an example of such a function here. But don’t worry, because in this
course we shall enly consider those funclions whose repeated integrals are equal.

You baveseen the definitions of double inlegral and repeated integrals. You will agree
that 1t is much casier in practice to evaluale a repeated integral of a function than its
doubie integral. This is because in the case of a repeated |ntcgral we are dcallng with
only onc variable at a time. Repeated integrals are very helpful in computing a double
integral, because for a large class of functions, repeated integrals and double integral
colacide. The next theorem concerns this. We shall not prove this theorem here.

15



Multiple Integration

T, T:

Fig. 6: T=T|UT,

Theorem 4 : Le1 T be the rectangle-{a,b] x [c.d]. andlet f : T— R be a continuous

" “function. Then both the repealed integrals exist and are ¢qual to the double integral.

This theorem says that if the function to be integrated is a continuous function, then we
can easily compute the doublc integral by computing any of the repeated integrals.

The condition stated in Theorem 4 for the equality of two repcaled integrals and the

. double integral is sufficient and not necessary. For example, the function in Example 4

is not continuous, But for this function the two repeated integrals exist and are equal.

However, in this course wc shall only deat with continuous functions. Therefore, we do
not need to look for other criteria which ensure the existence and equality of repeated

integrals.
Example 7 : Let us evaluate the double integral of the function f{x.y) = J x-+y over the
rectangle {3,5] X {1,4].

By Theorem 3. we have
K

J'J \/§+_)'dxdy=[ (f mdx)dy

=3 H (5+y)" - B+y)" | dy

_ [ (5+y)*2-(3+y)*? ]]

1

Il
L
—
ik

= % [95".’._652_75!‘_‘ + 45.’2]

You can now evaluate the double integrals in the following exercise by repeate
integration.

r

E7) Compute the double integrals of the following functions over T.
a) f(x.y) = xsin (x+y), T = [0,7] % [0.7]
(Hint : Use integration by pans)

- _ 1 _
b) fxy)=r,ay T 00X 0]
(Hint : Use the formula J Inx dx = x [ax — x+c 1o evaluate the definit
© integral.)

We list below some of the properties of double integrals over rectangles, You have
studied similar properties of definite integrals in Calculus {Unit 10}

Let T be a closed rectangle in R, and le1 f and g be such that J’ f f(x,,) dx dy and
T

I g(x,y) dx dy cxist. Then
1) I JC f(x.y) dx dy = CJ f [{x.y) dx dy, where c is a constant.
T T

2 [ e axdy= [ [ioxdy+ [ [eteyaxay
T T T
13) TEE(x,y) = g{x,y) for ait {x,y) & D, then
j Jr f{x.yYdx dy -EJ J a{x,y)dx dy.
T T
4) If T is the union of (wo rectangles T, and T, such that T, and T; inlersect only on

the boundary, i.e., T, and T, are non-overlapping (sce Fig. 6), then

rf., [ [ r T T B PR
J.!:J f(x,y)dxdy = Jler f{x,y) dxdy + J-ij f(x,y) dx dy

5) ‘ J-TJ‘ f(x,y) dx dy I = JTJ H(x.y) [-dx dy.



So far we have studied double integrals over rectangles. But, in practice, many times " Double Integratlon

we have to evaluate deuble integrals over regions which are not recmnglcs In the next-
section we wﬂl define double integrals over bounded sets in R,

11.3 DOUBLE INTEGRAL CVER ANY BOUNDED SET

Inhis section we define double integral over bounded scts in R?. Thus, we have to first Y1
tell you what is a bounded set in a Euclidean space.

Definition3: A subset X € R™issaid to be a bounded set if X is contained in some open’
sphere with centre at the origin

For example, the set {(x,y) l +y?=1)isa bounded subset of R, whereas the set
{(x,y) | y > 0} is not a bounded subset.

From Definition 3 you should be able to see that a set X is bounded if and only if X is'

contained in some paralleloplped or a rectangular box. Such a box is a set of the form 4]

I; X I % ... X I, where [;is a closed interval [2;,bj], 1 = j s n.

Now et f : D — R be 1 bounded Function, where D is 2 bounded set in R2, Since D is

bounded, there exists a'closed rectangle T, which encloses D (see Fig. 7. ' Flg.7
We now define a function {* on T by

v vy = | fxyhiE(ny) €D
) = | 0,if (x,y) €D.
The function £* {x,y) is a real-valued, bounded function defined on a closed rectangle
T and we have seen in Sec. 11.2 how to define the integral of this function ovch

We say that f(x,y) is integrable over D if £*(,y) is integrable over T, and sel
j jf(x,y) dx dy =I If‘(x,y) dx dy.

D T '
We can easily prove that this definition is independent of the choice of T.

Suppose T, is another closed rectangle which encloses D.
Lzar

PR [{x.y).xeb
H6y) [O.xET,\D.

‘u'-'; Lave to show that
{ | reuyyaxdy = f j £, (x,y) dx dy.
-
Now |zt T be anmhcr closcd rectangle such that T, 2 T and T, DT; See Flg B(a).

f(x, €D,
Lei fz(X.Y) = { O(JX}G} TZ\ D.

Tz . T,

-- ]

—— et

(s} (b)

Fig. 8

Xy



Multiple Integration

y:-x’
!

Flg. 10

* Let us describe D geometrically (see Fig. 11).

e

Then by using the properties of double iﬁtegrals listed at the end of the last section (also
see Fig. 8(b)) you can see that

[ Jram=] j ) = J £ (x,y)

You will agree that this de[mmon gives méaning to the double integral over any
bounded set in the plane. But we are not interested in any arbitrary bounded set
because even good functions defined over them need not be integrable. For example,
let

D = {{x,y)| 1= x=2,3 =y = 4, where x is rational}.

Then D is a bounded set enclosed by the closed reciangle [1,2] x [3,4]. Now if we
consider the constant function {(x,y) = 1 defined over D, then by Example 3, we can
conclude that f is not integrable over D.

In addition, the above definition is not very useful in computing the integral. Because
of these reasons we restrict ourselves to some particular types of regions where the
computation is fairly easy.

11.3.1 Regions of Type I and Type I

We shall now define two simple types of regions.

Definition 4 : Let ¢, and ¢; be two continuous, real-valued functions defined on a closed
interval [a,b], such that ¢, (x) = ¢, (x) for all x €][a,b]. :
LetD = ((x,y) | a x5, ¢ (x) S y = by (x)).

Such a region D in the plane is called 2 region of Type I. See Fig. 9(a).

Definition 5 : A region D in the plane is called a region of Type II, if there are continuous,
real-valued functiens ¢ and g defined on [e,d], such that y; (y) = x = ¢u(y), and

D = {(xy) | % () =x =y (y).c <y = d) (see Fig. 9(b)).

v ) f* x=ﬁU) X =t (y)
d £ A
D
c 1Y Fd
o S .
@ ®)

ig. 9: A region of {a) Type [ (b) Type Il in R?

You will agree that the shape of such regions is very similar to a closed rectangle.
Clearly,if ¢, {y) = aand ¢, (y) = bor ¢, (x) = cand ¢, (x) = d, then both the rcglons
mentioned above are nothing but the closed rectangle [a,b] % [¢,d].

Let us see some examples of such regions,

Exompled: Let D = {(x,y) | 0 =x = 1 and x* = y = x}. Let us describe the region B
peometrically (see Fig.'10). Instead of writing D in the set form, we a]so describe D as
the region bouended by the straight line y = x and the parabola y = x%. Note that here
¥ (x) = x and ¥s(x) = x°. To find the range of values of x, we have to find the poinis of
intersection of these two curves. They arc given byx = 0and x = |. Thus, the range of
xis,0=x=1. .

Let us take one more cxampic.

Example % : Suppose D is the region formed oy the iriangie bounded by the lines :
x=0,y=0,andx+v =6. . . |
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In Fig. 11, we observe that for points (x,y) in D, y ranges from 0to 6, and for any y, X

extends from the y-axis to the line L : x+y =6, i.e., X ranges between the lines = 0
andx =6-y.

Thus we can express D as

D={(xy)|0=y=60sx=6-y}

Thus, D is of Type II.

Note that here ¢(y) = 0 and iJ, (y) = 6.

In this example we could also describe D as

D={(xy)|0=sx=60=y=6-y}.
‘Thatis, D is a region of Type I. Thus, it is possible that aregion may be bothef Typel
and Type Il at the same time.

Here is another example of this type.

Example 10 : Suppose D is the rcglon bounded by the unit circle x +y =1
Fig. 12 gives the geometric description of D as a region of both Type I and Type IL.

v4 . Y"

L =
/T N
o QU
1/ 47

(a) - .uf)

Fig. i2 : Tire unil clrele ps a reglon ol"(a) Type 1 (b) Type U

InFig. 12 (a) we cbserve l.hat x ranges between -1 and 1, and y ranges between ~ / 1-x
and /1-x%. Tnus, D is onypeI Similarly, from Fig. 12(b}, we observe that y ranges

“between-landl, andxrangcs between ~ ./ 1-y?and o/ 1-y?, That is, D is expressed as

D= {(x,y)|~ /-y sx = /i-y?, -1 sy = 1}, and therefore is of Type II.

It is also possible that a region ts neither of Type [ nor of Type II. For instance,

the annulus D in Fig. 13 given by D = {(x,y)|4=x*+y*=9) is of neither type. But

D can be cxpressed as the union of two regions D, and Dy, which are of Type I
(see Fig. 13).

From now on in this unit, we shall be dealing with double integrals over regions of
Type I or Type 1l or over those regions which can be written as unions of these
1wo types of regions. '

Here is a remark about the terminology.

Remerk 2 : If a region D is of Type [, then any line paraliel to the y-axis mcets D
in ot most two points. Such regions are alsa called anadrstle or regular with respect

{0 the y-axis.
Similarly, regions of Type Il are czlled quadratic or regular w.r.t. the x-axis.

To get more practice, you can try this exercise.

Double Integratlon

]':.8) See whether the regions given below are of Type . Type I, both or ncither :
a) The rcglon D bounded by y = 0,x =2,y = x*. :
b) The region D lying between the mrcles X4y = a*and xX*+y° = b’ b>a.

Fig. H-

. Flg. 13

19



blultiple Integration
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c) The region D bounded by y = %*and y = x'*

d) The region D lying between the curves C+yr=1,x2+y*=9,y=0.

.

Asin the case of double integrals over closed rectangles. itis not atall easy to evaluate

_r J- f(x,y) dx dy by using just the definition. However,if D isa region of Type T or
D

Type II', orif D can be broken up into finitely many regions, cach of whichisof Type [
or Type I1, then we can evaluate ihe double integral with the help of repeated integrals.
This is what we are going to discuss in the next sub-section.

11.3.2 Repeated Integrals over Regions of Type I and Type II
Let f(x,y) be a bounded function defined on aregion D of Type 1. Then we can writé D as
D= {{x,y)|a=x=b, $ (X) = y=¢(x)}, where a,b, ¢yand ¢, are asin Definition 4,
Let T be a rectangle [a,b] x [c,d], which encloses D. Let " be defined by

. _ [fx,y), (x,y) €D,
£(xy) = { 0 6o E'I)‘\D

Then, for any x in the interval [2,b}, we have
¢ = ¢y (x) = ¢(x) = d. Now fook at Fig. 14. You will see that, for any fixed x, we can write

4 &ix) &) 4
[Fapdy= | repay+ [ copa+ [ oy ()
P ' € $ilx) &(x)

by the Interval Union Property of integrals of functions of one variable, provided the
integral

d
jf‘(x,y) dy exists.
<

Since £*(x,y) = 0 wheneverc = ¥ = ¢,(xj and ¢a{x) =y = d, we get

di(x) d
f Fxy)dy=0= | fxy)dy
[ qln)

Therefore, from (5) we get

d Ha(x}
f f*{x.y)dy = f £(x,y) dy
c $1(x)

Thus, the repeated integral of {* over the rectangle (if it exists) is in fact equal to tht
repeated intcgral

3 _ <nix} :

I l f ", dy] dx.

c  oyix} .
We have a result similar to Theorem 3, which shows that the double integrai of a
continuous function over a region of Type T or Type 11 can be computed by repeated
integration. We now give the statement for regions of Type L.
Theorern §: LetD = {(x,y) [a =Sx = b, f{x) =y = X)) bea region in the plane
where ¢ and ¢, are as in Definition 4. Let {: D — R be aconlinuous functicn. Then
the repeated integral

b (=)
[ ] £,y dy] dx cxists andis equal to the double integral
NIRRTt

J’ f f(x,y) dx dy.

)



The statement of the theorem for regions of Type I is exactly similar. See if you can Double Integration

write it (see E 11). After you have written it, don't forget to tally it with the answer
given in Sec. 11.6.

E9) Give the statement of a result for regions of Type I1, wiuch is anljous to
Theorem 3.

Now we illustrate Theorem 5 with the help of some examples.

Example 11 : Let us calcitlate the double integral of f(x,y) = x+y over the rcglon
D={(xy)|0=x=s1,1sy=e"})

Clearly, D is a region of Type 1.

Since the function f(x,y) = x+y is continuous over D, by Theorem 5, we have

J f(>f+¥)dxdy IU (J-.+)')ddex

2
ux 1
= [ (sererr ) ],
2
=¢—e+ '%+1~l
L e*43
4

Lxample !2 Let us find the integrals of the followmg functions over the indicated
Fegions.

i} fxw)= \,ff;;; over the region bounded by y = x, y = 2xand x = 2,

£ f(x,y) = x*+y* over the region bounded by x = yPandx=y.

v
Lct us take these one by one.
1) We first describe the region D geometrically in Fig. 15(a).

B Xl YJL
'
!/y:?,x
1 Sx=y?
//!'”1 x= VY
‘-
s) 1 z X 0 1 X
7 /

(n} {b)

Fig. 15
21 ‘
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Fig. 16
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1

From the.figure we can observe that x ranges belween Oand 2,i.e.,0=x=2andy .
ranges between the lines ¢,(x) = x and ¢,(x} = 2x. Thus,

D={(xy)|0=x=2,x=y=2x}, whichis a region of Type .

Since the function f(x,y) = / xy is continucus in D, by Theorem 5 we nave
2 x

J‘D‘jf(x,y)dxdy - l[“ Jﬁgy]dx

2 2x
= %‘[,:J’-X—ym l‘ dx
2
- %?‘:ﬁ[(h)m—x'ﬂ] dx

2
— 232 _ 2
=20 1)!:: dx

_2 x*
'3(25‘”3]

_2 8
~3(2ﬁ~1)3

16
= 5@J2-1
ii) The region D in this case is shown in Fig, 15(b). D can be described as

D=((xy}0=ys1,/y sx=y"7).

Thus, D is a region of Type II. Now since f(x.y) = x*+y? is fontinuous, applying the
resultin E 9), we get

-
1)

D

[ _T (x'+y?) dx }dy
vy

Wy
|
r] hTR} LA T A2 H

= | [3 Oy Yoy jdy

§]
(L3 e 3 i b2 'm]l
'[s R AT A DA
3 3 12
= 20770 35
-9

280

In Some cases it 50 happens that while applying Theorem § or its analog. we obtain an
integrand where the Fundamental Theorem of Calculus is not helpful. In such a
situation we try 10 describe the region differently. This enables us 1o reverae the order
CEINICEraton wnicn may e UsCrul [or calcuiations. 1 ou win SELC OnRe suCil situgion m
the following examples. ’ )
Example 13 : Consider the integral :r [ f(x.v) dx dy,

D

[ siny
— v+
where [{x.v) = ¥ 4
1

=1
and D is the region bounded by the lines x = 1), y = 7. x = y as shown in Fig. t6.

Here D, deseribed as
D={{xy)!0=sx=rx=y=a)isaregionol Typel,



Then by Theorem 5, we get . Double Intcgration

f I {{x.y) dx dy
o

= f)[f .-5~i—;1-xdy)dx.

1 X

But we cannot use the Fundamental Theorem of Calculus to evaluate

siny g
[ 5o

However, if wedescribe Das D = {{x,y) | 0=y =7,0=x =y}.then Disaregion of
Type Il. Now applying the analog of Theorem 5 which you have obtained in E 9), you
can see that

¥

J- f“i;}'i dxdy=f(fﬂgidx)dy

D
}
£

= jsiny dy = -cosy]s = 2.

a
You can now try SCMe exercises on your own,

E 10) Find the value of the following repcated integrals.

X

) J-Ixsin_vdydx
i

E11) Obrain the double integral of the function f(x,y) = ¢*” over the region bounded v4
-by the triangle formed by the x-axis. and the lines 2y = x and x = 2.

E [2} Express the following repeated integral as a double integral and describe the
region of integration. Express this donble integral as a repeated integral with the
order of integrution reversed.

1k (1.5)
[ tteyray ) dx ‘
i 3 .

1213) Evaluate the following integral by reversing the order of integration. /

I ‘[ ( L:.."-xy dy ) dx

e Mj Write both the repeated integrals associated with the double integral j J‘ dx dy,
D

where D is the region shown alongside. Evaluate them and check that they are
equat.

{n the next section, we shall see how a change of variables alfects the integrals of
funcrions of twa variahles ovaer regions of Tvne T and Type 1. In pacticular. this will
Creable us io converi double iiiegrals in Caricsian coordinuics to double integrals in
poiar coordinales. This conversion beeomes essenlial when the region under
cansideration isbounded by a curve like 2 cardioid or a cirele, which can be more casily

deseribed using polar eoordinales.

ii.4 CHANGE OF VARIABLES

In Caleulus (Unit 11} you have seen that a suitable change in the variable of inlegration
often makes integration quite casy. You have seen that in the integral J [{v) dv, the

23



Multiple Integration

substitution v = g(x), where the function g satisfics certain suitable conditions, leads 10

*the formula

, {

The aive 280 APQR, where
F=gy)

0= {50y

L. EX\. Har

I

e wign is cnosen so as to gel a ~
Crevalae,

Ti(v)dv = [ f(g(x)) g'(x) dx.

Don't you think then that we would be justified in expecting that changing variables
may simplify evaluation of double integrals 100? In what follows, we shall informaliy
discuss how the rransformation x = ¢ (u,v), y = ¢ (u,v) affects the double inte gral

f If(u.v) du dv, and then state the precise result without proof.

You have seen that to define double integrals over a region, we first partitioned the
region into small rectangles. The areas of these rectangles were then used to define
upper and lower sums. Now supposc we change the variablesu and v to the variables x
andy. Let us assume that the new variables x and y are related to the variables u and v by

x=¢uvhy=¢y. 6)
‘These equations define a transformation of the uv-plane to the xy-plane. We shall be
interested in only those transformations which map the region of integration for any

given integral onto another region in a 1-1 manner. Now let us see how this
transformation affects the area of a small rectangle ABCD in the uv-plane. The image

of ABCD under the transformation given by (6) will be some region A'B'C’'D’ in the
xy-plane. See Fig. [7.

'V_'JL

Fig. 17

Suppose the coordinates of A, B, Cand D are as follows
A = (a,b), B = (a+h. b)

C=(a+h,b+k).D = (a, b+k}.

The image of A, that is,

A" = ($(A), HA))-

Similarly, we have

B’ = (¢(B), ¥(B)), C’ =.[#(C), Y{C))

and D’ = ($(D), 4(D}).

Now, when the rectangle ABCD is small, i.¢, when h and k are small, the figure
A'B'C'D’ will look like a parallelogram.

Thus, we can write

A=areaol A'B'C’'D’' =2. Arenol A A'B'D’

| oA)  $(B) D) |
=+ iu,r,(,q) W{B) (D) i
1 1 1

Subtracting the first column from ecach of the columns, and evaluating the determinant.
we get
Aot | MBEHA) GD)-B(A) |

S UB-ua) wp-wa) |
Now applying the mean value theorsm to each of the entries in this 2 X 2 determinant
we get

- CoE) b
A=Zhk |88



, wud g BI€ POINS 0 wic une joining A and B, and nand 0’ are pointson the line
jorning A and D7

Fagin o

Double Integration

Now the right hand side of (7) is approximately equal to |3 hk, where J is the Jacobian -
of the transformation given by (6).

Thus, the rectangular region ABCD with arca hk is transformed into the region
A'B'C’'D’ with area |J| hk. '

Let f(x,y) be an integrable function over D, and let P = {T:} be any partition of D.
Then
L{Pf= Zhk inl f(x.y)
i (x.¥]ET,
1s anproximated by

S bk inf B(u),dfuvyy, (8)
i R
where T} is such that it gets transformed to T; by the transformation given by (6).

" Now the sumin (8) becomes

I T i), wtuw)) du av i,
o
as the norm of the partition tends to zero, Thus, it follows that the cbange of variables

from (x,y) to (u,v) should lead to the equality

[ ftoyydedi= [tatem). w11l duay,

D o

where D is the image of D’ under the transformation given by (6). More precisely, we
_have the following result : '

‘Thearem 6: Let D be 2 bounded setin B2, and let fbe a continuous function definedon
D. Letx = ¢(u,v), y = ¢{u,v) be a transformation {rom the uv-plane to the xy-plane,
such thar

i) there exists a region D’ in the uv-plane such that D’ is mapped ento D in a 1-1
manner, ’

i), Y have continuous paiiia! derivatives on D' and

an s A Ly
n) J= FTORD ] £0inD".

Thun

ey dxdy = [ Ko(uv). iu,v) i3] du dv
N

r
o ) .

Yo aie 0t goiay to prove this theorem nere. But now we shall see how it proves uscful
i ibe vviiuation of some double integrals. Since vou will need to celculate many

Tacaviuns while changing variables in double integrals. it will be useful to go back and
do o gqu:ck revisian of Unit 9.

Seinranle 14 Suppose Sis a triangle in the uv-plane with verticcs (0,0, (1,0) and (0,1 ),
znd R is the corresponding regien in the vy-plane obtained under the transformation
= 2u--3v ’

¥ o= 50 5 Jv,

iobrs evatuaie ( r\' dx dv.

IR
124

U toenbiss of transtormation in this conz i

J_.;"-,_'v‘l N I on v
ol i i\-’- l_:J'_x
! A v
2 -3 I
- 53
= 29

25



Multiple Integration

Thus, using Theorem 6, we get

[[xaxay = [[ @u-3v) @) au av,
R 5

where § is the trizngular region in the uv-plane, given by
O=u=l,0=v=1l-u

Thus, .
[fx dxdy =29 I I 2u-3v) dv du
R Do

I
3o
28 |[2uv-=5] 7 du
tJ; 2%

]
= zo)’ {2 (1-u) -3 (1-0)?) du

)
==2

6 .
Example 15 : Let us find the area of the region D lying in the first quadrant bounded by

the curves xy = 1.xy = 9,y = x and y = 4x by using the transformationx = u/v,y = uv.
u>0Q,v> 0 The region D is shown in Fig. 18

6-1 - L

/ nax
[\ /

'
!

/

N,
AY
/N
. ,'/\. g // : \,{

v
,.‘ W L
.‘\‘“
[ L
— xy=1
e
3 = T

//’i-o 1 3

o
Ea

“ip. 18

Clearby. ilis not at all cusy Lo express D as a union of regions of Type i or Type [1. Du.

transformaticn x = ufv,y = wv shows that D is the image of the rectangle boundad by

thelinesu=1l,u=3v=1uandv =2,

Therefore,

{ laxdy = | TTR:

;) B

5] !
i "

where ! ol v
avooay
B ' v
Wl [T
1 A

= ¥ \"i

v u




Thus, the required arca is equal to Double Intepration
23

[ [Xdudv=5m2.

11

You must have noticed that the change of variables made the whole computation very
simple.

We shall now use the change of variables formula to convert double integrals in
Cartesian coordinates 1o double integrals in polar coordinates.
Pouble integrals in Polar coordinates

Youknow thata pointin plane can also be represenied by polar coordinates (r,8), and
that these are connected to the Cartesian coordinates by the equations

X =rcosB y=rsind,

We'can use the above relations (o convert the integralf ff(x.y} dxdytoan integ'ral of
D

[he[vpcf jf‘(rﬁ)llldrd(}.wherc_']]= 17:(:‘55)
D. "’

and D*isthe region D

described in polar coordinales. -You know {Example 1, Unit @) that [J| = r. Thercfore,
lo evaluate a double integrat in polar coordinates we have to describe the region D in
terms of polar coordinates, and (hen ekpress it as a region of the type

{r)le=8=p.g (8) =r=pg,(6)).
or {(r@)|lasr=bh {r)=0=h,()},
or a union of such regions so that we can evaluate the double integral with the help of
iterated integrals. Of course we have to check that the conditions siated in Theorem 6
are satisfied,
In the first (wo examples below you will see how to describe a region in polar
coordindtes. Then we compute a few integrals with the help of polar codrdinates. Note
that if the region D is already described in polar coordinalcs_g. ihen, we consider the A
integral

[ [y raoar
0

as tiic integral of { over D in polar coordmates, and not the integral j Jf(q.ﬁ] dodr.
5]

trecaiese iLis the first one which is equat io the double integral of f over 1D when g
eapressed in Cartesion coordinates. 5 -
Letus look at some examples \ -

Example 16 ; Let D be Lthe region enclosed by a cirele of radivs o wad cenire al the origin \

(Fig. 19). Let us describe D in teras of palar coordinates. : 4

V/e note thatin D. 8 varies from 0 1o 27. Holding 8 fixcd, we sotice that on the ray of
angle B, r vanes from 0 to a. Thus D hay the description

=0=27.0=r=a IFig.W
Example 17 : Let D be a triangular region with vertices {in Carlesian coordinates) at va
(0,0), (1.1), (0.1). We shall now describe D in palur coordinates. From Fig, 20 we can
see that A varics between g/ and 7/2. Further. for i given L, ¢ varies belween
!
Oand —— .i.¢ t (1)
ing //
s g = T e e ] e
LEfEl 0o rs |
sinl) /
Alternatively we obacive thal radncs rom i, 20 oriinod rowhent o = 6 | B
clearly ianges from s w2 whilefor 1l == (2 Braogesfrom /M wa value Ssuch o

that rsinfd = 1, i.c.,

Osrs laid =8 < a2

t=p= /2. 74 =8 sin™t (174

We now give seme examples to iltustrate the evaluation of double integrals in polar
coordinates.

s



Multiple Integration Example 18 : Suppose D is the quarter ring with radii, r = land r = 2, Let us evaluate
the integral

[ fox+sy)dyax

'V?e first note that we can write D as
={(r8):0=s0= "zr 1=r=12}.

In polar co-ordinates the l‘unclion { can be written as

i* (r,8) = 3rcosd + 8rsin’0
Then we have

(3r cos8 + 8r*sin’9) rdrde

Il
3
—_—

j j(3x+8yz) dy dx
D

a2
g

(3 cos6 ++ 8r” sin"8) drd8

_‘___‘I)

[r cosd + 2r'sin8] 7 d8

[? cost + 30sin’0) d8

e o3 o8 =

(? cosl + 1515 cos’B) de

= H =15 _lé : w2
[?smB 158 zsm‘.?'.ﬂ]“_I

=7+1

NI-.,.

Example 15 : Let D be the region belween the polar graphs of r = 8 and r = 28 for
0 = 8 =37 Let us calculate the double integral

J o ayas

Wc note that the function f(x.y) = x 2+y?is continuous on D and
£ (r,8) = r° cos8 + r'sin¢ = r°. Therefore, we have

J!(x2+y2)dydx = "L rdrde
o

Example 20 : Let us [ind 1he integral of f(x,y) = y ovef the region D which is inside the
cardioid r = 2(1+cos8) and outside the circle r =

Lel us look at the region D given in Fig 21.

24



Then D is the set of points (x,y) whose polar co-ordinates satisfy Double Integration
2-=B*=2and2£r-=2(1+cosﬁ) '

Since the functicn f(x,y) = y is continuous on D we have

(5]

w2 X1 +conl -
f f)’.dydx = f (rsind) rdrdn \\
D
b i ]
w2 2 121 +case)
= [[.5 sin@ | da
] 'z -
ﬂ]l-_-'_’_-—--"’
2 B
= g[I(H-cose)-‘sinﬂ—sina]d(}
] _ Fig. 21
3 e
=8 [ - M)- + cosb ]
3 . 4 Ay
3 S

Sometimes we have to use the change of varmblcs formu]n EWICC o evaluatc a piven
integral, as our neM example shows, -

Expmple2l:Letus evaluatcf fxz dxdy, where Ris the region given l:;y %.- + %S 1,
R . . .

by using the change of variables - x = 2u, y=3v.

h1> changc of variables transforms the region R (whnch is bounded by the elltpse

-l’*]‘ u

yg—= 1)in the xy-planc to a ciccular region Sin rm. ‘uv-plane givenby u? +v2 =1,

3

The function {{x,y} = x? = (2u)2, and :—E—E—:% =86,
Thcrcr’o.-ej [ 57 drdy = [[hu' i

rlevotsing (8} co-ordinates i the iv-piane, i.e., u = rcosd, v = rsing, we have

1
-

J (4% cos* ) rdrdd
i)

S 1

f j‘.‘a1 dudy =6
%
= o,

Aere are some exeicises for you,
TP e T S T SR e L

R TA TT LLAT  T e e e B T e HIN - L P L P BT it PR T N PR
1215 Fmd t,lc integral of o =34 aver e region censistirg ot poiits (x,y)} such that
}.'" T y = ].
E16) Find the integral of the funcrica {(x.¥) = ¥ over the region bounded in polar
coordinates by r = I - :as0,
t
217} Ewvaluate the following "rrezrals by mziing e indicated change of variaoles,
[ . N 4 .
&l j (0" —x" =y iy, whore s e o tarivcaler dise M+v% 2 axin the
"D

Lrst quadrant,
Transformation : x =

T X
. . . T <
(Elint ; the transforsped rerlon AT} 0 =535, 02 1 = g cose)
f“x?+p 2 I . _3 g
Cj ——;Y—dxdy,“hcrcDisboundcd byx=y? r=y242 y= Y=

Transformauon U Xy, v = x=y,



Multiple Integration

3G

E18) Evaluate the following integrals by making a suitable change of variables.

a) I lj-cl-i;zy dxdy, where Ris bounded by x-y=0, x+y=0, x-y=+,x+y=".
"R

b) I J-c' dx dy, where R is bounded by
R

y=3%+1,y=3x-3,y=-x+1,y=-x+35.

With this we come to the ond of this unit. In the next unit we shall discuss “rign.
integrals. Let us now recall the points covered in this unit.

11.5 SUMMARY

In this unit we have
1} defined double integral of a function defined over a rccta}nglc.
2) described repeated integrals using which double integrals are easily calculated.

Thaus, under suilable conditions
d b

J If(x,y) dxdy = J(Jf(x,y) dx ) dy,
D ¢

where D = [a,b] x {c,d].

3) extended the definition of double integrals to bounded sets of R?ard also evaluated
the integrals over some regions of Type I and Type 11, using repeated integrals.
For example, ’

; d gl
J Jf(x,y)dxdy=j( J f(x,y)dy)dx,
D e gilx)

where f is a continuous functiun defined over a bounded region D of Type |
described by

D= {(xy):a=x5b,g{x) =5y =gx)).
4) described the change of variables formula :

[ [y axay = [ ] itau ), og.0)) 1] dugv
) of

5) evaluated double integrals in terms of polar coordinates.

11.6 SOLUTIONS AND ANSWERS

E1) Since the function {(x) == x is continuous on [a,b], it is integrable over [a.b] (sce

Calculus Block 3. Unii 10, Theorem 5). b
Then 1, = sup {L(P,) = inf. (U0} = Iy = | 1(x) dx. We will show thas
IL=IU ='—'-12(b2—az). a f

Let P = {Xp, X1, X2, ..-, %o} D¢ an arbitrary partition of [a,b]. On each sub-iniervs!
[X;-1.%i), the function £(x) = x has a maximum M, = x; and a minimum m; = X;_,.
Therefore, U(P,f) = T M, &x = Zx (% —%i21)

and

LfP.n > Koy (}i, - .';i—})

Now for each index i x. . = Ve v }=
SOV IOT ancn ineex N =35 VTN S ,‘l.l

Therefore, vie pet

Up,f) = E%(-‘C. + %) = %)
UP,0) = 23 (- 53),

vEnH=1ip-29



e e B o e

. This is true for ail partitions P € Pof[a,b]. Thus I = inf {U(P.f)} = —é (_b2 -a%

E2)

E3)

Similarly, we can show that
I, =4 (6" -a%). Thus
ILs3(d*-a) s iy
Butl =blu.

Hence, [ £(x) dx =1 (67 -a%)

o

U(P.f) = My, (area of Tyy) + M, (area of Tiz) + My (area of Ty)
+ My, (area of Tz) + My (area of Tys) + My, (area of Tyg)
Areaof Ty : 01X [0.4] =1
Areaof Ty : {0.1] X [-1, 1] =%
Arca of Toy : [1.3;5] x [o,_é] =?1‘
Areaof Tzt [1, %} x [%, 1] =-._11‘
Area of Ty : %, 2] x [0,%] =%
AreaolTss: %,2} b [-21-, 1] .—_.3.1

Now to calculate M;;'s and mj;'s we note that f(x,y) = x+2y is an increasing ‘
function on [0,2] X [0,1]. Thercfore,

M; = sup {f(x.y) ] (x.y) €Ty}

= f(x:. y;)
= x; + 2V
} N i .ol .51 17 NS
Thus U{P,[) =2 X E*JX§+5XETEX1+3XZ+4XZ
3
=53

Similariy you can cateutate L{P t} by noting thai
my = Xt + 2¥j

‘Then L{P.Ny =2

A [—

‘Hejexy=0.x, = l,x:=%.x;l=2;)-0=0.y. =]—.{. ;,gz-%,)'; = 1. Then

303
LiQn= E 2 m;, {area of Ty;)

1=l el

Areaof Ty, = %
Areaof Ty; :Tli
Arcaol 1. = .é
Arcaof Ty, :é
Arcaof Ty = %
Ascaof Ty = %{
Arcaof Ty = %

Double Integration

3



Multiple Integration

[

[ L8]

Arecaof Ty =

" Areaof Tyy =

Pl SOl

voLeF

Wc kno“’ fl'om E 2) ‘hat n]ij = Xi=1 + 2y1_|

an

d M'.I =X +2yJ

Then L(Q.f) = £ m;; (area of Tjj) = 2.5

an

d

U(Q.f) =X M'J ((u'cﬂ OfTiJ) =355
Thus, we have L(P.f) = L{Q.f} = U(Q.[) = U(P.f)

E4) Suppose fis integrable ever T, Then
sup {L(P.,) |[PEP ) = inf. (U(P,0)| PEP}

= [ t0ey) dx oy
T

Then for every e > 0 there cxist partitions P’ and P"of T such that

0= JJ f(x,y) dx dy - L(P'.D) <&

and

0= U 0= [ftay) drdy <5

T

Let P be a partition which is finer than P* and P*. Then by Theorem 1, we have

U -LP.H = UPH -] [ixy) dxdy + [ [oxy)axdy-L(p0
! T

=P~ | ((x.y) dx dy 4 [ [ feoyyaxdy -1, 5
. T ) T

<

=

+

Jlm

talem

E

1

4 2

ES5) a) Toevaluate the repented inlcgrﬂ:[ [J’Jxly dx ] dy.
=1 1

b)J

c)

-

we first calculate Jf&x‘_\' dx.
|

-

2 LA
[axyax=3y |5
1 13 ah

Lo
h) 3 1
r|[ ir(x‘-i:y‘)dx tdy =

3] !

Jr{xy +e¥jay = I). ?2'
3

x+el-¢

j[f {xy+c"dy]dx=
1 3

[paE |

LS %]

-t
-+ cY
-

—_

(%xi-c"—c"ldx



2 Double Integration

|
+
—
[
2
L4
[ ™)
—

EG) Example 5 shows that if we interchange the order of integrationin E 5 {a), then
the repeated integral obtained is the same. If you 100k at the linegral in E 5 (b)

carefully, you will be able to say directly that both the integrals are the same.

Suppose we interchange the order of integrauon in & 5 (¢}, then we get
]

!ni[{_(xy+ey)dx]dy=f [ +en ]jdy

[2% +cf]dy

h!‘——\& Tl

+e-gd

N

This is the answer we have got inES5(e). Thus both the repeated mlegrals are
the same,
E7)a) Since the function f(x,y) = x sin (x-+y) is continuous over [0.&] x [0, %']. then by

Theorem 3, we have

rjl'(n,y)d"dy- j[ '(sln(x-'-_,!)dy]dx

= | [~xcos(x+y)]5% dx

-,

|
~1
L

m

X COS (,, -rx) dx -—jx cosx dx ]
a

__,_..._I.._.r-——-
o——
—_

m

—x sinx dx — J ¥ cosx dx ]
0

"
o ——— a ot

F‘ [ x cosx dx + stinxdx
~ R 1]
= Ha
i \ L e
¥ cosx dx == xsinx |, - | sinx dx
0 J 3]
< PR L
{=- [~cos}, = -2
: b .
l 5sinxdi = =4 cosx | = {(~cosi) de.
| [H
= — w cus(my + sin e
- ] : oy A |0
=i
T ny
Henee ] ssiafa-bybds vdy =7-2
noon ’
1 A
1 i I L)
9} I _;( TIoT = | b | dy
- lex-+y 6 baEby *

= J in {i-:-x-i—y)'[é dy
L
j :
= !In (25} dy - | in (T+y) dy
. 1 .

e

LEH)



To evaluate these integrals we make use of the snbstitution methed.

Putu=2+y, v =14y.
Then

Multlple Integration

k]

|
lln 2+y)dy = !In vdu=ulnu—-ul3
=3In3-3-[2In2-2]

7
=in { et
1 2
Sirnilarly, !m (1+x) dx = [Inuda=1n (@)~ 1
1

Theanf 1+;+y—dydx=ln (%)

ES8) a) In D, x ranges between 0 and 2, and y ranges between 0 and x*. Thus £
expressed as
D= {(xy)|0=%=20=y=x? isof Type L
Similarly, we can express D also as a Type II region, by
D=((xy)|Jy =x=2,0sy=4j
Thus D is of both Type 1 and Type I1.

b) Dis ncither of Type T or Type 1.

¢) D={(xy)|0=x=1,x" =y=x. This shows that D is of TypcI.
D can also be expressed as
D={(xy)] /y <x E_y", 0 =y = 1} which is of Type I

d) Herex ranges from | 10 3 2nd also from -1 10-3. Correspondingly we get thai

yrangesfrom / 1-x~ (o J9-x%7

Thus, D is of Typz [ bui not of Type 1L

E9) LetD = {{x )¢ {y) s x= ¢ (y), c=y=d}bearcgionin the plane where
and & are asin Delindicr 4, Lerf: D — R be a continvous function.
Then the repeated integral

d iyl
I[ j f(x,v) dx ]!(I)'
© iy )

exists and is cqual to the Souble inlegral

J ff(:-:.y) gx dy.
o

s x a.0x
Ei0) a) ByTheorem !, I fx siny Jvdx = ‘H’a sin)—'dy]dx
- uh v
Now |y sing dy — x [—cosv]d
£ s L <
— - alLusA—l) = X - KCUsh.
o A o
I’| . ! {
| | xsiny dy ldx = I ix — xcosx) dx
ho ’ i
= | x ds - | avcosx dx
) H]
- { xsinx
i

If

I‘JIZIJ

”-'u[ sinx dx}

34



L feost;

2 2
Ei. —[cosm—cos0] = 2 + %

=
=]
-

7 finx

o [ ] yayax=[[ | vav]an

Nr<u o5
—_—
=] B

a

x

| |

l
q O g O——y
I
=
X

-3

[« 8

Ed

I\J|

I
oh—
Iy
~3
[
>
|= B
-t

"

= %\[(l—coﬂx) dx
. 1 sin2x
- 4[ 2 ]t,
=T
4

E11) Let D be the region given. Then D can be expressed as

={(xy)j0=x=20=sy=sl x} That is D is of Type 1. Therefore, by
ThcorcmS

[ J.c‘zdydx=f{ Tze"zdy]dx
D 0

0
1[ e y]i? dx

2—x
Xy
- [

2
= %J; x e dx

4

x-lt[e"du. Puti = x* 84 == 2

E.CL

=dEt-1) :

E 12} The integral can be cxpressed as the double integral f(x.y) dx dy,
8 g Y

vhirn P = (e [ e = 1y ...Z.'.-...--'u..\
Tl e A l\n,:;|v—'ﬂ--ﬂ-.n =y = onj

Thea D is the region bounded by the line y = 2x and the parabolay = x*. In D

we observe that for a fixed y, x'ranges from ;'? to/y andy ranges from 004,
Thus we can express 1) also as . )

={(x,y):§sxs,/?,05ys4}

Therefore, by live analog of Theorem 5, we get

J Jtexpaney= ﬂ ;ﬂf(x,y) o Jay

Dauble Integratlon

35



Multiple [ntegration

E13)

E14)

E15)

Ro, (L, ST

The region D = {(x,y) : 0 = x=2,0 sy = x*} isof Type I. When we interchange
the order of integration, the evaluation is possible only if we expresg P-as a Type
lregion. In D, yranges from 0 tod and fora fixed y, x ranges from Jy 10 \/’-ZX
Thus .
D={(xy)|0=sy=4, /y sx=2)

which is of Type I1. Thus we have

q

[ [swaan= | [0l

LY
= ij (2% Jay
- [l-% )
i
=16

From the figure we observe that x ranges from —2 to 1 and y ranges from
x* + 4xto3x + 2. Thus

D={(xy)|-28x=1x+dx=y=3Ix+2}
isef Typel.. .
The repeated integral corresponding 1o this region is

1 M+

” | ddex= }(X2.+4x—3x—2)dx
=2 at+d 2 ‘
-_2
4]

Siimilarly we observe from the figure that yranges from—4to 5and x ranges from

; -2 .
the point x; to %— where x, is such that

x; Hdx, ~y =0
e y+4=(x + 2y

orx,=Jy+4-2
Thus we can express D as ;
D={(xy)|Jy+d-2= x-_:%-’-.—cl‘_:ysS}

The repeated integral corresponding to this region is

‘\;_: 1
[ ___J'_ dx | dy

PR
W

i

s
[ (Vy+a-2)lgy

L=—n
il

5
—

5.2
=&+ 3y-3 (y+4)-"2]

Thus both the repeated integrals are the same.

Since the region is a disc D with radius |, the integral can be more easily
evaluated by polar coordinates. The region D described in polar coordinates is
the set 27 such thi

D= {{rB)[0=r=1.0=4=2n}

Morcover. the function f(x.v) = e*?*¥? is continuous on D and

f* (r.8) = e**. Therefore we have



1

| [ixgyaxdy=[[[e?rar]ao
D

o n

=1 .
= ' u 2 ’
- [[{%du]dﬁ,u=r'-‘..du='2rdr

-

- Ir

( .
= 5 | (e-1)db

2|

e_l i
= =50 l =(e-w

4 0

E16) Here the region D is described in polar coordinates by
={r8)|0=rs1+co50,0s0=7)
The function f(x,y) is continuous on D and,_
f* (r.8} = rsin 8, Therefore, we have

f ff(x.y) dxdy = } [ I+j‘mu(rsinﬁ) rdr]dO
] 1] o

B

J[f sind 2 dr -|ae

{
o

- jsinﬁ
no- L

fsmg IL"“—‘_OSBLda

| +camd

dé

tal
—_

To evaluate this integral we mak. the substitution ¢ = 1+cos 8, and obtain

f ff(x.y)dxdy—— (l+c050)l .—é

Al agmd -
EL7) a) f f(.: —xP~y )dhdqu [ (a*-r) rdrdo

!

EIFATY . 2 ucush
—J f azrdrdﬁ—f , r'drde
E) F,
1] i) a 1} '

2

ﬂ e 15T

'y s
W
= al ! Q-Lgfs—odﬂ-—‘—:{ ’!' cos‘ede
- ‘i"

a2

1 xi2 )
= ‘?{ ! cos i dé - %‘[ cos”ﬁdﬂ]
- 1 1

A n.f_l 29
Now, Icosrﬁdﬁw j H-c%du
1)

52
By reduction formuly ( cos*a de =

\i'

Thus, f f(.l -x" J)dxd}__;[ﬁr_%_J
4

_ Spa”
T 6

Double Integration



Multiple Integration

3%

. _— i
b). Ve transformation is u = xy, v = x~y%.

Muv) _ oy b o

a(x,y) x =2y A

o{uwv) | 52

I axy) =2y1+x

Then axy) | o | 5
au,v) x+ 2y

W is the image of the rectangle [1,3] % [0,2].
Here we don't have to solve for X and yinterms u and v because

2 23 2
J‘ I.’.(.+_2L dxdy:![ x._-.'-_.EL . 1 dudy
D xy 1 Xy X+ 2y?
23
-—‘![ldudv
u

= f [inu]:l’ dv

=213,

~E18) a) Putu=x-y,v=x+y. Then the region D is the imugelof the rectangle

D* : {04} x [0,4] in the uv-plane,

- a{uv) _ l 1 l'l_
Now,a(x_'y) 1] ==2, Then

’ Ax.y)
aiu,vi

Therefore, )
jf[(x.y)dxd =1{ ‘[

4
J.vln (1+u) | dv

dv'

In 5"rz IS

I
= BI— Nl.—n

In3

b) Putu = 3x-y, v = x+y. The region D is the image of the rectangle
D®:[-1,3]x [1.5):

auv)’_ | 31 I =4
axy) "~ | -11 |77
ax.y) 1
d u,y 4

Solving for X, from u=3x-yand v = x+y, we get
Cutve=dx cx=4 (u+v) Therefore,

f jf(x.y) dx dy.= f [{c“‘"""”zldv ] du
3 5
- -1 w4 w4
4;,’ [c x4 e L du
a .
J’ SHE 14 ¢ du

=4 (c.'ﬁ"-i _ BIH) (c.'Ud - e—“-l-)'
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i2.1 INTRODUCTION

Inthe lastunit {Unit 11) you have seen how the concept of integration can be extended
to real-valued functions of two variables. We can very easily modify the method:
described there to apply to functions over R, for any n > 2. Butin this course we will
not consider the integration of functions of more than three variables. In Lhis unijt, we'll
talk about triple integration. You will soon sec that this uni proceeds exactly like the
Jrevious one, '

Objectives

Afier reading this unit you should be abiz 1o .

© define the triple integral of a real-valued functica of three variables over a
rectangular box,

evaluate triple integrals using repeated iniegrals,
describe regionswhich are analogues of Type land Type Il regions in the plane and

cvaluate triple integrals over such regions,
¢ cffect change of variables in triple integrats,
v evaluate triple integrals using cylindrical and spherical coordinates.

0 o

2.7 INTEGRAL OVER A REGION IN SPACE

.

Asia Lae last unit, we wili first define triple integral i.e. integral of a real-valued
function of three variables over a closed rectangular box or a closed parailelopiped.
You know that a clased rectangular box in the 3-dimensiona! Canesian coordinase
spaceis a natural generalisation in space of a closed interval an the reil-line oraclosed
sectangic in the piane. The faces of such a closed box (referrod to simply as ‘box’in the
sequel) are given by the planesx = a, x = by=c,y=3d., =sandz =1 After. .
somewhat detailed discussion about triplz integ-als over s 52y - o define taple integml
weer bouaded sets in R”.

So, let us first define triple integrals over a box.

12.2.1 Integral Over a Rectangulsr Box

InZce. 11.2, while defining the double integral, we had {irst defined it over a rcetangle.
The caly thing that we have assumed there was $ial e = o0 o reclungle of length |

nd sreadth b units is 1k 53 units. Here we e going 1o zssume that the voiume

{2 rectangular box of dimensions 1,b and b uiniis. i 155 cu. Hhils,

cic,

Zy..ovw, voumust be having a clear idea abou how we are aoinseo eroseed tom
Sﬁppr:;c fis a bounded real-valusd.function of thiree zrizbles defined on the box
Stia.s] < [e,d] x% [s,1]

Ve win

2 parivon B,

2 form lower and upper sums,

# tale the supremum and infimum of these sums, and tien

G define integrability. -

So tat us partition B Srst.

L]
o



Multiple Integration

IftP, P2 and P, are partitions of [a.b], [c.d] and {s.t], respcclivclyl, then P, X P x Py
defines a partition of B. See Fig. 1. )

VA Sy S A
/_f A A

[ 4
Py S A ¢
PR

C ]
|

B

Fig, 1

If P, divides [a,b) in p sub-intervals, P, divides [¢,d] inq sub-iniervuis and Py divic s
{s,t] in r sub-intervals, then the partition Py X P. x P, divides B into p.g.rsinali baso;
Biy. Conversely, if P is any partition of B into boxes whose faces are parallel to the
coordinates planes, then therc exist partitions Py, P2, Py of [a,b], [c.d), [s:t].
respectively, such that P = P X P, X P;. We shall consider only such partitions of 3.

Now, if P( = {xg, X, -.o0- AN
PZ = {)'n- yl\ '''' ‘ Yq} ﬂnd
Py = {24, 2|\ - \Z), then

[%i_is %i] X [y1, il X {2y, 7] denotesa typical box By, of B (See Fig. 1). The volume
of By, denoted by Vi, is

Vijk' = (% = Xjm1) (¥~ ¥i-1) (= 2}

Thus, we have that V, the voluiae of B, is given by

: , AR R
V = (b-a} (<) (-5} = ::, :2 2V e (i)

=1 =1 Serd

The right hand sidc of (1) invelves triple summatién over i, j, k. But that should pose
o problem. e o write wefiple summastion

LTI L agasl E[}:a,,, ]

y f ok ) i i Lk 3

and evaluatz it, It may be nowed that the order of stnmation is immateyial,

Now corresponding 1o a sub-box Biy. consider the sct

Sik = {fxy. 0 I el Xeds ¥ 1Y et ¥l 2 €[t z,}}- Since {is a bouadzd functie:,
this 8y, is a bounded set in R This means we can talk about the greatest lower bous-=
and the least upper hound of S;;.. Suppose

PfI'IjL = sup Slj& and m,lk =i '.:'I:i'

Then we can define the lower sum L(P.f) as

B q £,
L(Pnf) = E z }_; l'l.lij__ :'.-;x; f\,J L.\_?.l,'.
i=1 j=} k=i

Here AX; = Ki—Xips A3 = yi- Vi 304 AZp = Zi- Zeer

Similarly, the upper sum U(P.[} can be defined as :

I q r
= o
|_]'|rp N= T‘i’ "> - wl v AANE Y ."i\.Zl .
e [T W ! 41 -
=1 S Lat
T thie cens, the prodnst 200 Az, Isnothing but the volurmic of Sy Thes, 20,5

e obluiged by isaaklsgbe peoduci it intimum ef 8, and the volume OF
shen taking the sum of »i! such products. Similarly, to obtain U(P,f) we muitipiy & -
snpremum of f on Sy, by tie voume {15, and then 1ake Gic sum 6f g poam

in the case of non-negaiive [unctions of a single variable, you know thai L{#¥.i) and
U(P,f) arethe towai areas of necribed and sircumseribed rectangles. Fornon-negaiiveé-
valued functions of two vasiables we have seen that L(P,f) and U(Pf) give the 1ot
voluracs of the inscribed and circumscrived parailelopipeds. V/hat can we say about.

functions of thrae variables? Mo similar interpretation is possible in this case, as we



cannot geometrically visualise o 2-dimensional Euclidean space. You may recal! that Triple Integrati

we have mentioned in Unit 3 that it is not possible o draw the graph of a function :

defined on R,

Now. asin the case of functions of one ortwo variables, we o make the fellowing two

statements about the upper and lower sums of a lunclion 1 .. sined on u box 13 in R’

1Y L{P.f) = U(P.£f). and

DLPH=LQ.N= U(Q.f = u(e.n.

where Pand Q are partitions of B, and Qs fincr than P. In particular, A pmhiu-m IR
BnerThig a purtinen 1, (G -y

mbY= L{P.0) = U(P.f) =M Vv, weich sub-Lox o1 (7 i g yneyg

where moand M are the lower and upper bounds of fon B, 10 asu covold

Now.letus denote the set of all lower sums by o, j.e..

u={L{Pf)|PEP). We further write

u = {P.NiPEP.

New s aset of real numbers whicl is bounded above by MV and o' is a seq of real
numbers whicl is bounded below by mV. So, we can take the supremum of o and the

Wlmum of &/, Ifsup ¢ = inf 4’ _then we ~dy tha) Cis tripte mtegrable, and the Coimnmon
virlue i called the triple integral of f over B. We donote this integril hy

, v
f ff(x.y.z)dxdydz.nr by f(x.y.2) dxdydz.
) it / Wooopos

'l'l:us.j ,f f[[x.y.z) dxdydz = jub u =glb v’
4

Now we can make a similar remark as Remark ! of Unit {1, which tells ug that we can
view triple integrals as the limit of o sum.

Renvrk 1: Suppose f is a bounded function defined over a box Bi[a,b] x [c.d] x [5,1],
We partition B into par sub-boxes, By, by

IS A P T <x,=Db
S T P <y, =d
R AT <=t

Let Ax =5 -x_,. By, =v~vi,, Az, = Zy = and P be any point i the
sub-box B, . Then the sum

A u 1
o E E TP) Ax, Ay, Loz
: L I

is cailed the Riemann sum of fover B,

Fonlanysub-boy B, . et (B) = DX LV, a2 and iet 24P = may. £0Bg )

When 2(P}— 0, then the Rismanpsam o) fappeoaches the triple integsul of [, That is,

[ J' !?(X.:“.f.}li.\d_\'ijz;’ hey ¥V oo TR SRS

L ,]-‘ APy | i

We often make use of this resuli in the following unie.

The stateinents of Theorem 2 and Theorem 3 of Unit 11 are also true [or functions of

threc variables defined on closed baxes. Thus, the staltinen: that
diticrentiability = continuity = intery ghitiey

i RS OF il ee variabics, voreover, coatinuity is onfya
LY s Not o necessary condition, We caa show this

W idsofrue o reglovs

et condition for integrat
casily oy ouing Theorem 2 and madiiving Exanie 258 Uni . We leave i 10 you

vt
forchecking as an ceercise {See By,

e e e e e b

E 1 Showihat the function | gegned by -

(et # 10.0.6)

Mxvazl = '=
(royah = U, {X.¥,z, = (0.0.0)

is inlegrable over the bux B = [-0A] X [=E0) x [~1,5,



Multiple Integration

For the evaluation of triple integrals we make use of the repeated integral defined below.

© Let f(x,y,z) be a real-valued function defincdona box B:[a,b]*[c.d] %[s,i]. Then for-

fixed (x,y) belonging ta the reclangle T = [a.b] X [e,d], the function

fl(z) = f(?-'v}'-z)

s a function of one variable defined on {s t]. If the function {,isintegrableii (.71 e
we get a function

gxy) = [Rzdz = [i0uy.0 2

L]

defined on [a,b] X [c.d]. i the repealed integral

a4
[ ey Jus

exists over [a.b] x [c.d]. then we say thal the repeated integral
1

b_d
HJ;[ Jf(x,y.z) dz]dy ] dx e iZ

of f(x,y,z) over B exists. By interchanging the roles of x.y,z, we il the following five’

more repeated integrals,

J[ ﬂ ff{x-y.z) wlale e )

1, d

f[ f f(x.y.2) dx |z | dy )
[ sariefos o - o
ﬂ Jh[ fftx.y.z) ay Jax |z L e

In(2) we first in,lcgra'.i: {(x.y.z) \L‘.r.l.z.lrcatingxandynsconalunls.Thcnmc Fesliio
function s a function of x and y, which we inlegrate w.r.t.y while treating ¥ 23 o
constant, The resulting function of x is then integrated w.r.t.x: of efurse provided all
the functions invelved are inteyable.

ables vou have seen that the repeated integrals do

In the case of fenctions of two vart
exist, they may not always be equal, A similar

not always exist. And even if they

situation exists for functions of three variables. The six Tepeated integrals may not

always exist, and eveniltic, <atsl, they may be all different. Bulwe WON'TWGETy b .
such cases. We'll only be inierested in those functions for which ali the repeated

integrals exist and are cquub. The folinwing theorem identifies one class of (unctions
with tiris property. Italso estupiislies a link batveen the triple and repeated intearsly of

these functions,

o ' A
Theorem I: Lot B = [w.b] = te.dj < [wt] be rectangular box in R™ und let [ B IR
be a cantinuous function, Then the triple integral J [ I f dxdydz and the six repeited
integrals exist and are all equal. 1
dition stated in e above thesrom

HIR IS

We would like to remind vouas before, thut thecoen
is only sufficient and pot nawwisay We will iHustrate the usefulness of the
theorem through some examples pow.

Exampie | : Lot us integraic ihe fuactiot ifx.y.z) = zonthe rectangular box
B = [0.3] x [04] x [0.2].

By Throrem | we can write
1oa 2

J fjf[x._v.z}dxdydz = J[ Jr{ J-?.d'.-’ ‘:-.!3.-:' JX
I

Benuou



=[(£2dy)dx

c‘—-—,u

= 24,

8dx

Mow we take an cxample which is slightly more (.OITIIJHC(uud

Exomple 2 ; Let B be the box [0,2] x [—

f:83->R.
1(x,y,2) = (x+2y+32)%.

0] % [0 41 and consider the:function

It us cvaluate the triple integral of f over B. Since f is a polynomial function, it is

continuouson B. Therefore, by Theorem 1, we can use any of the

io cvaluate the triple integral of f over B. Let us consider

I ——ra

FAE 1)

So we have to first integrate w.r.t, y,

Now
o

=i
vt
il

”3 0o

iI =12

2t S 5

- 1.0
j (x+2y+3z)2dy=—y—(x+?‘6+32) ]

i n
([ [ cry+aeray)az)ax

=i

[TA]

l (x+2 Y+3Z‘2dy) =-% f{\x+3z)3—(x+32—1)3]dz .
)

(x+32)"  (x+3z-1)F 1P

=T1§[' & 4 1,

Tl[(““’q S+ (x—t)"J'

}c‘:\

T, 4 g4 e
: F:‘ ! ;Lp:-'.—l) -2% + (x—:)JJ ox

eyl

el (el
5

-
Iy

See if you can solv > this exaercise now.

Mot et i &

£72Y Integrate :
a) f(x,y,2)

] P R s T e

= x2+ y+ e over 0,1] x {2.4] % {13}

b) f(x,y.z) = sin (x+y+z) over [0.7) > [0.5] % [0.].
c) f(x._v,z) = zc“-" over [0,1] <[6,1) x IG,}].

six repeated integrals

thep w.r.t. zand hinatly w.r.t. X.

L= é— f(x+32)° - (x+3z-1)%]

'3;\ AR Ry

BCE.

r 13 vou. In (ne neat sub-sectic ) we shiat] dlacuss

i2..2.2 Integral O+er Bound(d Regions
Now we'lt copsider irtegratfon of functions defincd cver bosnded sets of R

Lerd

: W — R, where Wis a bounded setin &

the cone:pt of imepraiion «er rectangular soves would have become uite’
in z-:gr‘:.tion ovir other regions in

. Since W is bounded, we can enclose it

in a reclangular box, say B. Fig. 2 shows one such boneed set enclosed in a box.

'l'ripl_a,- imegration

43



Multiple Integration Now we define a new function FF on B by
2=F:(5.) Flxy.z)= { f(x,y,2).4f (x.y.2) EW
2| A

:

u 0.if (x.y.z) € B\W.
\ That is, F agrees with f on W and vanishes outside W. Now, if Fis integrable ci .

L

rectangular box B, then we suy that [is integrable on the bounded sct W, and

A

Pt paed
...;\1\ L
i
i

I JJ’f(":'Y'Z) dXdydz=J ” F(x,y.z} dxdydz ~
w B

oJ,
Yoo y Proceedingexactlyasin Sce. | (.3, we can sec that this definition also is independ - ...~
/ CEER L) the choice of B.
SR Even though we have managed to define triple integration over ali bounded sats, we i
Fig. 2 sure to have serious problemsin actually evaluating them. But we would likc 1o ascu, =

you, that for a special type of regions we can tackle the evaluation of triple integ:ils
fairly easily.

For these regions it is possible 1o reduce the triple integrals to repeated integrals, witi
suitable limits of integration, We shail now describe these regions in the following
definition.

Definition 1 : Suppose D is a region in R? which is either of Type L or of Type Ilin i..
Let vy, (x,y) and va2 (x.y) be twe continuous functions defined on D such that

¥ (X.y) S v2 (x.y). Let

W= {(x.y.2) | (x.y) EDand v, (x.¥) Sz = v2 {x.y)}.

Then W is said 10 be of Type 1 in R*.

Note that there are two possible descriptions of regions of Type 1 inR*:

D W={(xylasxshdEy=hlnixy)=z=n EN7) NN
where ¢, and ¢ are two continuous funcrions defined onaclosedintervai[z.0].ic. o
is of Type [in R™. .

i) W= {(xyz|dyy=xslyhe=y= d, v (xy) Sz s va(xy))

where @, and gnare Iwo Coniiuous functions defined on the closed interval fe.d]. i
Disof Type il in R™. :
Also see Figs. 3(a} and 3{b}.

. =&Y

A e - —— -.-;-,»_-..:a

P - T

— -
‘ 'D /X"\ih_(y}
x = (y)
P L

- -

I
F

=T (x, v}
(&} (b}
Yig. 3: Regions of Type Lia ]

A region ‘_.V is of Type ITin R i1 it can be expressed in the form (8) or (§) with the roles
ofxandzinterchanged. A region W s of Type HEif it cun be expressed in the form (%)



o

or (9) with y and z interchanged. The followin

g figure (Fig. 4) gives a clear picture of
regions of Type I, Type I1 and Type 111

-zj z ~

() )] {c)

Fig. 4: Reglon of (8) Type I (b) Type 3l (c) Tep=1I7.
You wiil agree that these regions in R* are generalisations of regions of Type 1 and Type
IFin the plare. Notice that a given region may be of two or even three types at once.
Let us see some examples of these regions.

Zxample3 : Let us show that the ball x* + yz' +22=4inR*isa region of all threc types

& .(?)"/“_:F
e '\/4_—:’:?-_'!: (x, y» |2

2 z=—m= 1 {6 Y)

)

{®)

sl

Let us first describe the region as Type L. To do that w_ first note that zranges from
- J"d::\ﬁ?--hy_z_ to  4-x’~y*.In Fig. 5 (a) you can sec the top ond bottom hemispheres
givenbyz =/ 4—y? andz =~/ dx2y? |, respectively. So comparing with (8), we
can say that

Yi(ny) == 4w’y and vy (x,y) =/ xy

What can we say about y? From Fig. 5(b) you will te abie to say that y varies from

T TR
- Ty oxt

Thus, we can write ¢, (x) = -/ 4-x~ and ¢, {x) = ./ 4-x~ . We also note that x varies
oo -2 to 2.

Thus, wewrite Was
2Exm2
~Ja sy=J4-x?
—‘34—)&2-_? =z= / 4—x2_5?

We con write W as a region of Type 11 or Type II by interchanging the roles of x,y z.

Triple [neearatie



Multiple Integration

Exampled: Suppose W isthe region bounded by thcplanes x=0,y=0,z=5and the
surface z == x*+y.

Let us express this region as a region of Type L.
You can see a sketch of this region in Fig. 6.

zl=5u-|;= _{xv)')

1
1
|
)
sz +Y1 Tl (IDYJ

X
Fig.6
Examine Fig. 6 carefully, and see if you agree with the following obscrvations.
x varies from 0to /5. -
yvariesfrom0to ./ 5-x".

z varies from x° + y* to 5.

Thus, W is a region of Type I with

¢[(X) =0l¢2(x) = ‘\-l"s-x

NEY =X +¥, nEy) =5 )

We can express this segion as aregiza of Type Il also. This is what we ask you to doin
E3. )

Here are some exercises for you. .

E3) Express the region W in Examiple 4 as a region of Type I1.

E4) Describe the region W given by a hemisphercz = / ar—x— yz ,z=0,asaregion
of Type L.

As we have said oarlier, we arc intesested in these regions because the integrals over
these regions can be written as repeated inteyrals. Now, if { is a continuous functicn
defined on aregion W whichisof Type [, Il or I, then the following theorem gives us

a method for evaluating the inteyi i of fover W.

Theorem 2 : Let £ : W - R be a corvituaus function, where W is a region of Type Ein
R Then

J f f f(x,y,z) dxdydz exists and i ¢cqual to |
w

b {:\ 12(;-'-':'} 3 \ )
j ! £(x,y,2) dz Jdy Jdx, 1 W is described by (8), and is equai to
s dhfz) ydxy) )

‘L

'ri i), 1(ny) \

| ( J (. { fix,y.2) dz ) dx | dy, 1E¥V Is described by (9).

Al vl

Similar formulas hold if W is of Tyres ! or [iI. We can obtain these by interchanging
the roles of x,y,z. We leave it as an exercise io you'(see E 5).

After doing the exercise, don’t forget 1o tally your answer with the one given in

Sec. 12.5.



'jﬂx_dxdydu ,{[( j; (

E 5). Suppose fis a continuous functiondefincd on 2 region Win R>, Write the formula
for the triple integral of f, if W is of
a) Type il
b} Type IIL.

We now use Theorem 2 10 evaluate the triple integral in the next example, Henceforth
we will consider only those functions whicli are continuous on <~ » reievanl regions.
Example 5 : Let usintegrate the funcuon f (x,y,2) = y+zover theregion W which isa
hemispherez = ./ a-x-y .2>0 '
If you have done E 3. then you know that the region W is of Typc i. We write W as
—asx=a
-Jat =% =y=/ 2 —x°
O0sz=./al-x*-y
Thus. by Theorem 2. we write

[[foramayaz=[ (] | [" (+2raz)ay)as
hd - L aE ¢
2 S 2.2 .2
=[] (/e B o)
-2 L (a7 x2)7
_ mal,
4

Here is another example. It involves integration over a section of 2 paraboloid.

Exampte 6 : Suppose W is the region given in Example 4, bounded by
x=0,y=0, z=5andthesurfacc z = x* + y.

Fig. 6 shows this region, Let us compute j ! J x dx dv dz.
w

In Example 4, we observed that W can be wrillen as
D=x= ‘/5_
O=y= m
X4 yl=z<h
Therefore, by Theorem 2, we write

S5 A

s
L: xdz)dy)dx

=

}

' i J:’_‘:?
x(§-x2-yIdy = x (5-x*) y- % }

____'x (5_:‘2)3!1 _% (5_x2)3'2 .

e %E(S_XZ)JE

Triple Integration

We are sure you will be able

check the evaluation
integrals in these steps.

of

the



Multiple Integration

18

1nerefure,

5

~, -

f \J;fxdxdydw%! % (5~ dx

1 25?1
T3 5n ]a

Co- 10
_3\/?

Thus, you see, the most important step in integration functions over such regions is 12
decide the limits of integration of the variables. And to be able to do this you wilthave
1o first get a clear idea of the graph of the region. :

You can try your hand at these excrcises now.

Eg) Inlegfalc f(x,y,z) = 2x+z-3 over the cylindrical regibn given by x* + _y2 =1
"o 0s=sz=l.

E7) Integrate the function f(x,y,z) = kyz over the region bounded by the piznes,
x=0,z=0,x=1,y=0andy + z = 1. This regton is shown alongside.

As in the case of double integrals, change of variables may prove very useful for the
gvaluation of some triple integrals. In the next section we discuss the change of
variables formula for triple integrals.

12.3 CHANGE OF VARIABLES IN TRIPLE INTEGRALS

In this section we shall state a theorem analogous to Theorem 6 of Unit 11. This

' theorem gives usa formula to express the triple integral in one coordinatc system as the

Rocalt from Unil 9. the definition
of a transformition from.one space

1o another and lhe formula to
sompute the Jicobian 1 of the
transformanon,

triple intcpral in some other coordinate system. Then we apply this theorem to change
a triple integral irom Cartesian coordinates to cylindrical or spherical coordinates.

Let us begin with the statement of the {ollowing theorem. In the statement we dor’
expect you to bother about the definition of a regular region in R?, All the tegions thay

" would enter our discussion here would satisfy the requirements of the theerem.

Theorem 3 : Let W be a regular region in R’ and let T be a continuous real-valued
function defined on W. Let x = gy {u,v,w}), y = g2(u,V,Wh 2= 5 (u,v,w) describe a
(ransformation from the uvw-space to the xyz-space such that

i) there exists a region W' in the uvw-space such that W' is mapped onto Win a 1-1
manner,

i) g1.82.83 have continuous pattial derivatives on W', and

i) 1= ‘3_(.51_92_9_)31 #0in W',

a{u,v,w

Then

j I Jf(x,y,z) dxdydz = f f J't'(g1 (u,v,w), g2 (u,v,w), g3 (u,v,W)} [J] du dv dw.
w W

Here is an example to cxplain the utility of this theorem.
Evamnle 7 : Let us use Theorem 3 (o evaluate
j f j J x+y+z dx dy dz, where W is described by

w ’ :

O=x+y+z=9 l=x+2y=42<5y-3z=6
We shall use a transformation which will convert W into a simpler region. So let us sef

u=x+ytz,v=x+2yandw=y-2 e (19) |



The Jacobian of the transtorinatioun is

- 1 1 1
%—((L;‘—;":—)) = 1 2 0= —2} # 0. Thus, the inverse of this transformation exists |
’ 0 1 -3
fsee Unit 9).

We pow consider Lhe inverse of the transformation given by (10).

iinder the inversc transformation then, W is the image of a rectangular box bounded
by the surfaces,

Tmu=9,1sv=425w=6inthe uvw-space.

Also, the Jacabian of its inverse transformation will be 2x0y,2) _ 2o (see
: a(u,v,w) 2

luceoem 4, Unit 9). Thus, the inverse ransformation satisfies all the requirements of
Tucstem 3. ;
Therewore, by Theorem 3 we can write

,'[J vity+z dxdydz=fff \/_u_ (%)dudvdw
W w

n

=%t{“’{ !J?dw]dv]du

-
= d_um]o

= 108.

0w ¥ou ¢an try your hand at these exercises.

L )

E ‘3)‘ Evaluate the following integral by making the indicated change of variables :

(] x+y-z o
! \{; : -l_-l-('ﬁ dxdy dz, where W s described by

Csyty-z=20=sx-y+z=3,0sy+ 2254,
Transformation:u=x+y—-z,vy=u-y+z,w=y+2z.

“valuate the following integra! by mmaking a suitable change of variables :

j [[4:(2—4}*2—4(}*—1)3] dx dv dz,
where W is describied by
~lEx-y =, lsx+ye3 2 myzmy,
T4 muny cuses we have to evaluaie tiple iri g e sy - Lo hdvs eylindideal

oz sphetizal syinmetry. In the next two seb-sections you vI sce how conversion to
« yiincrical or spherical coordinates simplifies the evaluatior of ripie integrals. Let us
sirst consider the cylindrical coordinate sysiem

22.5.} 'Tripte Integrals in Cylindrical Coordinates

Tae cylindrical coordinates of a point Pinspace are (r, 0, 2). where z is its distance from
-he xy-plane and r end 0.are the polarcoordinates of its crojectioninthe sy-planc. Also
vee Frg 7. Thetis, cylindrical coordinates consist of voler coordinates in the xy-plane
iogether with the z-coordinate, Thus, we have x = r cos8, y=r sind, z=z. Fursher, 1 is
2%ways (aken to be nou-negative, wnd 0 varies beuween U and 2.

Now we apply Theorem 3 to the transformation x = r cosd, y=rsind, z=z,

WY T o= C {x\)'e'-‘-'-J‘ = st a3
tinee aren 7 0. Then by Theorem:3,

ij flxy,z}dx dy <z = jf jf(r cosé, r sin0,z) r drdf de, e (11)
W we . )

.04
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Multiple Integration

2
=1 sin20
z[“ 2 ]
0
=
a —_
e ) '—r'dl'

h1H

[ 2] - - T

where f and W are as in Theoremn 3 anc ./~ is the region W described in cylindrical

coordinates. The integral on the right b 1d side or (11) is called the triple integral in

cylindrical coordinates.

Note that if W is a region descrit. « in cylindsical coordinaies, tsu wiple integral ove.

W isj ‘J;_[ f(r,8,z) rdrde dz, ¢ no! ! \j j f{r,0,2) dr Jdi Cz,

Suppose row that the region 7 is Zqvaiion (11} is of ‘Type Loy Tyre or Typ~ 1),

' (See Definition 1 and replu.ca,y.2 by r,3,z.) Letus say W* s ef 1ype §, desenoae o

v (0,2) sr=y; (8,2)
¢_l(z) =8 = y(z) anl

S LS I,

Then we can write

f ‘LLf.(x,y,z) dxdydz = J {’; If(_r cos8, ¢ sin€, z) r drdf dz

Ir t-"_“{_ﬂ / '.:(9.2) 3 M
= | [\ I H f(r cost, rsind, z)ror jdé Juz ... (12;
7, efz) il

If W* is of Type Il or Type 111, correspondingly we got other repeated integiais. We
shall express the region in such a form that we can casily find the limits of integration.

Now we are giving some examples which wilt help you wnderstand the cvaluation of
triple integrals in cylindrical cocrdinates.

Example 8 : Consider tie funclion f(r,3,z) = zr* ¢0s°0 defined on the region W
des¢ribed by

. '05952.1,05:-5:,05;::?. '

In Fig. 8 you can sce this reg.o:. Lutug gvzisate dic triple integral of £ over ™V,

I I J £(r,8,z) fdrdé dz = ; { i i: .f'{—f -,"-m-fam;)as-i v
[ I 1
W T v v

b = 1 ! -_"‘ — . :dz
-iI' '."] + v J
(s
) -
Example9: Letusevaluzi b5 oo (el B0 (1.8 = Lawnrtioon
W, describedby@=8=25, 0= e - R B N S

coordinates.

jljlrdrdedzzzf: [

ooe——

.‘;'I_ “I .
= P ! -Ar |
JL) fl
o L
el
[2 2an
= = i 0n
23
Li-
_
3



Now we give an exalnpic vi « suaction which is defined over 2 region desciibed in teiin BT TR TR L2 o

of Cartesian coordinates. In this case you wil! find that if you describe the region in
eylindrizal coordinates and then apply the formula of triple integration in the eylindricii
coordinate system, then the evaluation becomes very simple.

F‘xample 10: Let usmtcgrale the function [(x.y,z) = (" + “zPaver = ~lindrical
rﬂmontwenPyx +y'sl,-1=zs 1 wewriteX =rcusd, y=rsimnu,z=2z,then

f(%,y,2) = (x*+y") 27 = (rcos™8+rsin’0)z’ = r ' =1 (r.0,2).
Now. [ [ [ttxya)ax aydz=[ [ [0 e as e
w W

You know that we can describe the unit bali x° = y* = 1 in polar coordinates
(r.0)by0sr=10=8=2m

Thus, we can describe Winr, 8, 2 as
0=sr=s1,050s2r. -1 =251

Hence, o
J’\,[.J.f- (r.B.z)rdrdﬁdz:J_I [!u ‘:"—lf:)rdr}dﬂ!dz
=£ [Znigd{)]dz
b2
=J T—T%dz ;
=1
-1
3T

If we had not changed over to cylindrical coordinates, we would have had to evaiuate

| L Sy e

j [J‘ { f (x*+ y:)zzdy]dedz.

-t A%

Try to carry out the integration, You will soon realise that it is not a very easy task! In
this example the conversion from Cartcsian 10 cylindrical coordinates was useful since
the region wasa cyhndcr‘ {{you huve understoed Exampics 8,9 and 10, you shoutd be
able to solve these exercises.

-

E i0) iIntegrate the following functions over the indicated regions ;
a) f(r.8,z) =cosh, W0 =g/, 0o basinh, rszm 2
b} f(r,8,2) = r’, W is the region bounded by
z=r,0=<9 E%Tnndz = 1.

Ell) Evaluate the integrel of f (.2} = 7+ 32 o wer the cdinder bounded by
x*+y?=1,z = 0and z = { by changing to ¢ tindrical coordinates.

I TR - 2 e

I

In the next section we will fosk atins vzioazion o tost Sueiirais in spherieal
coordinates.

12.3.2 Triple Integrals in Sphevical Coardisaize

Uptil now in this unit we have considered the evaiuation of triple integrals in the
Cartesian and the cylindrical coordinate systems. There is yet another very uscful way
of determining the position of a poinl in space - the sphedical coordinate system.
_onsidera polnu’m space. Let Dy iy nluju.m.m inih w-pmllt. See ng S Then D
can be uniqueiy determined by 1, 8 und &, where v the distance |OP} from the origin 7
to P, B is the polarungle asseciated with i projeotion £ of Ponthe xy-planc and ¢is ‘

the angle berween the positive e-uxis and L livs segiaent GF. Furtber, noie thai _
r=0,0=8=27andl=g=r.
The Cartesian and the spherical coordinztes of & point ¥ ave reiated by Those  ceordinates sl i
sphuric] coDlainGies balinle
x = rcosd sing : = constant represcnts o sphare.

y = rsiné sing

Z =T Cos¢g



Hiutiiple Integralion

Now we apply Theorem 3 1o the transforation x = r cosd sing, ¥ = i 8ind sing,
2 = rcos¢. Recall that you have seen this transformation in Unit 9, Example 2. There
we calculated the Jacobian of the transformation as

_alxy.z) _ 2.
J-a(—r.gj’%_ﬁsm.

T.hus, we have )
J Ij f(x,y,z) dx dy dz=-J- I jf‘ (1,8,9) r* sing dr d@ dep, e
W . wve .

where f, W are asin Theorem 3, f* (r,8,¢) = f (r cos6 sing, r siné sing, reosd), and % -
is the region corresponding to W in the (r,8,¢4} — space. The integral on the Aght hand
side of (13) is called a triple integral in spherical ccordinsates.

Further, suppose that W is of Type I, 11 or 111, defined in Sub-sec. 12.2. 2 with {x.y.2}
replaced by (r,0,¢), say, W is deseribed as

as@sf,
" hy(8) = 0z (0)
.'nbl (Br ¢) =r= % (9, qh)»

and f is continuous on W. Then we evaluatej J’Ifdxdydzby_

B v(6.8) w

[ [[txymyaxdydz=] | j £(r,0,4) *sin ¢ dr d 6.
w h{8) Tile.e)

Depending on the description of W, we may use alternative forms of repsoied integrals.

Belore we give a few examples, we would like to remind you of one thing. Asin the case
of cylindrical coordinates, if W is 2 region in spherical coordinates, then triple integrst
in spherical coordinates is '

[ | [ r.0.4) Psing dr de dp, and not [ | [tr0.0)drdede.
w w
We now give a few examples oi wriple integration in sphm’ca] coordinates.

Example 11 : Suppose W is the region de.cnibed by
O=r=1,0=0=<2r,0=¢=n

Lzt us integrate the function

i(r,8,¢) = e’

over W,

r 1
f

ir
I fff(r,8,¢)rzsin¢drd9d¢-—-‘£L ‘[c"riainidrded«ﬁ:
W
. er.'r ¥ t \
o[ [ sngl i o3 ar}ag s
) " ) ’
; ‘Zurr Y l
Le=R i
= itlsmqbcuajde
=
= 2 240
]
=2(e
= 3(1. i) 2w
=47
= 3((: 1)
Note that in the above exampie W is the unit bali ¥y +27<] exprexad in

(r,0,¢) - coordinates.
In the next example you will find a situation where conversion from Cariesing 90
spherical coordinates makes things zasy.
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f(x,y z) -—2—;}’2_‘_—22)37_.,_ Letusmtegralcnov 1 the soliid region W bounded by the

RIS .,phercs .
v zi= azdndx2+yl+z2=bz,n:‘b>ﬂ.
Coaverting 1o spherical coordinates, we gt

(630 = 55 = (10.9).

W, ¢an describe the repion W as -
b<r<a,0=0=s27,0==m,

Thus,
P T 'Erf:a rsing
\_‘l“' f%,5.2) dxdydlz? !H',oll g dr}uq‘:}d’).

It
———
~—
S—
£
=]
1.
pr——
T,
-
i
s
C.
<
I3
]
£

s
" You cun check-that this repeated integral is equal to
diin £,
u .
You can do ihe foltowing exercises now.

: l"’) Integrate Kr, 9, ¢) = rcos” ¢over lhe quartersphere givenbyr=1,0=<6=n,
b= ¢ = af2,
L] ez

B8 s .’Ipn\’.‘.l'iCal cooldmute-;to !..le.l.lufi.J’ J f:.m (x“+y*+24""% dx dy dz, where W

Is the region bounded by lhc ~ph¢res % f- vt = L and x2+)lrz+zl =

Lmmrw s

With this we come to the.end of this unit. Let us nbw summarize the pointscoveredinit,

| SUMMARY

wiu abiit we have | - -
~sruseed eriple integrals over 2 reorngader bl b 4

i+ scen the evaluation of triple integrals overa box "Sing repeated in nbmis nus, it
{5 a continuous function defm‘.L sveratin D= e b] 2 Tl ), thas

]
]

JJ 'f...yz)dxdydz—f[ , .”\ ,3,;}15.:‘if;5',_'.

_l

3 u:.fln':f.’ triple integrals over bm SN LIIPRI R T vl

. ser that the triple integrals over spoc WO R gt B e b
evaluoied using repeated integrals,

5+ statcd the change of variables foomusa for tiphe integals,

£) expin ained the evaluation ‘of triple integrals in cylindricat ecordinates using change
nf v.mablea formula, Thus,

dydude— | | [on
R ) h

[ad]
e

v -
R Lo

Fheve .
i* (r,8,2) = I(rcos0, rsin0d,z) and W* is the recion carvcspanding to W in the
{ryhe)-space.

¥} cxplained the evaluation of riple inlegrals in spheiicai CCordlales. Thus,

.]”f(\.yz)dxdydz— ff ff"{rauar sing di & dgb,

W

L
Lol
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T 2 -
L ASH e

tF
where W*° is the region W descrivea 1 sphcric.ai coordinates and
£* (r,8,¢) = f(r cosb sing, r sind singd, 1 cos¢).

12.5 SOLUTIONS AND ANSWERS

£1) Givene > 0, find a pariiuion £ of B such that the volume of the sub-rox 5
0=<z=5

For any other sub-b e 'u &, 11s 2 constant function. Therefore, i fimure . T

is the same as the supremuri of £, which is equal ta 1.
Thus, ' _
U(P.0 - L(P,) = 1. volurie of B* -0 volume of B* <.
o 1is integrable on B.

%2) a) fis a polynomial function.

- Therequiesimsra f[ j(xz.4,z+z=)d'z]dy}dx
= i[i {2yt E;-}-:dy]dx
-[f
= £[2x1y+'?g‘;-]—.+ 3-61]:&

3
(42 )

R—

{n?+zf%%]dy]dx

[=]

»

_ oot 164x 7]
K 3 o
=56

I [ F .
Jf ’I Jsin (x-Fy-zhdz 5 dy J dx = ~B.
i

E3) W:{(xyz2)|0=z: § oy S JT owxs S
So, Wis a region of Tyt L
Q=z =5
S,z =0=sy= i

ql'l(zp:"r) =0=x Eﬂ"._,(',f_,ij)‘ . 2y

E4) Wocanbe cxpressed oy

-
A

il"

Hl

-3
- — e
AT TR

. 0z a—ns
ES5) a) [IWWisefiype 0 5iea W ocar e daeseribag oS
a=7=Db
lz) =¥ = & i)
41 (2.y) = x =y (7.0 vhutu
@y, iy, Yy and yo 272 eontnvons functions.



o)

27) .

ES)

: ';3_:_—."»{ N

T e @)

-f] [ AN

) A dyfr) mizy) .
b) If W is of Type I1I, then W can be describe-s = :
asx=b . '
oi(x) =2 = o (X)
I(x.2) S ¥ < da(x.2),
where ¢;, 2, 1, Y are continuous.
b, dufx) , Walx.z)

.-.L”m:j( J17] f(x,y ;) dx | dy )iz

ca ey s

Wity = 1,0=z=]

1_1

\U[m ju J!ﬂ(2x+z-—3};lx]dy]dz_l

l X +zx—3x

“-— G“__‘\..

t[ 1% + (2-3) 1=y dy]dz

=£[ y-L+ ey +%sin"'y }]:dz ,

A8
v |15 T o,
LN TR
= alxyz) 1
P e -
O\U|'|"! wr

Ry applying Theorem 3, we get

[ J’Jﬁ?d“}'@

J’[ I 1+w2 = -dudvdw

where W' is bounded by

f(x,y,z)dx ]'dy ] dz.

LIRAE i Wl

535
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H

wnly f
= 3 2 r.‘f-udu
= tan™' 4.

E9) Letu=x-y,v=x+y, W =y-z. .

Thien

=] 2era |

-a!u.v,w!=_2
2 {x,y,z) '

]
afuv,w) | 2

J' \J;ﬁ[-ixg—-if—-fa (y-2°}dxdydz’

= [” [4(x+¥) (x-y) =4 (y~2)’} dx dy dz

| = 4 I\J; J'-'(Iuv—wls) -% i o ave,where

. \:v'

sgivenl, =1 ) {=2v=3 2=w=l
| S

=‘2 J; L,r[ J- (lL-’Tl.\'sj C"'.} 3 z [ du

—=_%2

E10) a)

bz

J .[i f(r,Br,z)_rd;"dF: dz I
wo ,

2 Yeund, 2,

]L‘ [ 1[ f‘i‘rca G ‘r,jrjc,,;

L

o2 1rring
-

“ L LTI

= 1 cond - -
) L J
] .
] Ly '
- P AP
,; N R LT 3 vt
) "

=z { cLav l'—é =TI egjub ]dﬁ

3
B [gil_lj_g i i Pl iy
3 ! A ' iZ2



b) LetWhe the rcgmn

ffjrduﬂ H[rrdz]dﬁ]

=£[l(r"-r’)dr

L
H

E11) Let W he the cylinder.

El2)

_[fjf'dv':ﬂ If{ T(z+3rsin0-2)rdﬁ}dz;l.dr

[ ”’f (-2} 10 3r'cost | dz | or
l[ En'r[(z—Z) dzJ

i
T g
=2 r.ll—Zz dr
) 2 il

I
=-ir [r dr
]

27
2

Lk

=

ﬂﬂ | ftc.0.6)*sing 0o | ao Jar

| S A

ﬂﬂ f f‘°°sz¢§in¢d-f]'de]dr

i

i

15

X = rcosd sing, y = rsing sing, z = r cosd.
f(x.y,2) = sin (xz+y2+zz).vz =sinr’ =f° (.8,

The region W is deseribed as -
1=r=<3,0=<0=<25,0=sd=y,

x

: : 1
- The given integral = [ [ [ sinr e sing 06§ 3o |4

£

2
3

cos l -—r\n—c?‘ﬂ

© Trinte Yatap

- dh
Ju
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Multlple Integration

UNIT 13 APPLICATIONS OF INTEGRALS

Structure

131  Introduction

. Objectives

13.2  Applications of Doubie isicgran N

Area of a Planar Repicn and Volume of.a Solid
Surface Arca
Mass and Moments

13.3 “ Applications of Triple [nicgrals 7
13.4 Summary 76
13.5 Solulions and Answers 7t

13.1 INTRQPUCTION

You have seen in Caleulus (Usnits 15 and 16) that the defirite integral of a function
of a single variable has got many upplications. It cnables us {o calculate the arez
under a curve, the length of an arc of a curve, the volume of a cone and other’

solids of revolution. In this unit we shall discuss some applications of double and

wriple integrals. In Sec. 13.2 you will see that double integrals can be used to
calculate the area of u region in the xy-planc and the volume of a region in space
lying above a closed bounded region in the plane. Apart from these, double integral
has got some physical applications also. For instance, it is useful in finding the mass
of a plate wilk variable density, or the moment of inertia. We shall alse discuss
some applications of triple integrdls, You will see that most of the applications of
double integral can be carried over dircetly from double to triple integrals.

Objectives
After reading this unit you «“v+id ne able to
® find the area of 3. planar vewica, the volume of a solid region lying under a surface

and the surface arca ol & g..2n surlace vy using <ouble integrals, ”
o caleulate the mass, mostent . conire of gravity and moment of inertin of planar
regions,
compute the soments. e oF aray by and moments of ingrtia of solid regions,
b fingd The voilne and s of o sol-dsgion in space vsing triple integrals.

[h]

13.2 APPLICATICIHS OF DOUBLE INTEGRALS

Fhis section deals with scrae aspliceiens of docble ‘ntegrals. Let us start with a
simple application.

13.2.1 Area of a Plonwir o o7 end Volume of a Solid

In this sub-section we wili sz = o+ Loudbiv integrsls are used to find the area of 2
planar region and the valuime at i sclid.

In Unit 11 we have scen that 37 - = oction f(x,y) is non-negative on a rectangle D,

d ; © vepresents the volume of a threé-dimensiona!

tenied by the serface z = f(x,y) (See Fig. 5(a) Unit 11).
- - wnee,shie double intesrat of a non-negative function

el [ R ey

Mowrwe s
over a0 of Type {or Tyse i cennia ¥z aedas the velvme of a certain

T eIt la e L T A
TRTOD-LNTIANN DR Ped i

Suppose L i3 # vegion Ceserilod by
i.J"“"{(:.._")!a;h-—‘l',:. AU __‘g?'(,‘"._})‘.

Lot 1 be a rcal-vatued fune on definee on D such that f(x.y) = 0 on D. Let D be
enclosed in the rectangle T = ‘zb) » {c.d]. Then we set : :

. _ v oy e
Fi,y) “{ 0 . a2 TD,



Al - - weY

Suppose F is imcgrablé on T, or equivatently, suppose f is integrable on D, We Applicatlons of Integrals
now partition T-into pq sub-rectangles with the help of a partition,

P = P, X P, where _ S AL
P, = {a= % X|y -eceems x, = b} and
Pz = {c= Yo ¥ vmee ,yq=d}. . ,
Let Ax, =x; — %-,, 1l si=pand Ay,é;yj—y]_,,ﬂ:&fﬁ q. " 3
Then the norm of P islllP|| = {giasxp(Axi, Csyj): . '
Isj=q

Let P; be any point in the sub-rectangle T;. Then by Remark 1 in Unit 11,

lim i i F(Pij) Ax, By = I JF (x,y) dx dy

[P0 im] jmi T
This means, " . .

im S, () Axi Ay = f f f (x.y) dx dy.

Pheo i j

On the other hand, consider the three-dimensional region L shown in Fig. 1, which
lies beneath the graph of z = f (x,y), and above the region D.

<y

v

Fig.1

We construct small rectangular boxes whose bascs are the pq rectangles Ty with
base area equal 1o Ax; Ay;, and whose heights are f (P;;). The sum of the volumes
of these boxes is-equal to o '

V() = 2, 3 (R A% By

P

It is reasonable to expect that V(P) will get closer ard closer to the volume of L
as P becomes finer and finer. Indeed, it is true that :

lim E E £ (P) Ax, Ay = Volume of 1.

Pl 00 )
Thus, if a real-valued function f(x.y) = { on a closed bounded region D and is
integrable on D, then the volume of the solid region under the graph of the surface
z = f(x,y) over D is equal 10 the double integral of f (x,y) over D.

b ! Lo H £ Lo} A ot . :
When f {x,y) = 1on D, then J j' dxdy represents ihe area of the region B (when it
YD

exists). This does not mean that the area of a region D is equﬁl to the volume of -
the solid of height 1 and base D. Actually both the quantitics have the same

numerical value, but their units are different. : :
59|
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60

Inus, we can make use of double int
to evaluate volumes of certain solids.
examples.

Example.l ¢ Let us find the area of t
the line y = x-+2 shown in Fig, 2.

b4

egrals to evaluate areas of some regions and
We illustrate this discussion with a few

he region buunded by the curve y = x? and

K'k,u

. 2

2

From the figure we can see thar x varies between 2 and 1, and y varies between
and x4-2. Resnember, ger Lae range of x, we solve the cquations y = x* und

y = x+2 simultaneously for x. Thaus,

_ D={(x.y)[—2:~_=>;.~51.
Then
thcareaof D = | dydx
I

P, e

.’ ’ - .
= '( {l II Gy
~2 "

] K2
, '

= !I I: 3-5
-z "

If the region D is described by potar
region by the formula,
AleaofD = [‘r { r drog

o)
12t us sce an exXTE N whess e o

Hgxample 2@ 1.2t by find the arer oho

L L

cucdioid r = 1 + sipy,

We know that in the firg Guadeant, o

and 1 + sind. Therefore,
D={(rno)lo=p=L (=,

In Fig. 3 you can sve 2 sketch o1 i3

=y s x47)

] ox
i

CO-orelniues, wo czicuiate the area of thz

e Dok dae o Oy polar wo-ondinates.

LIremion ol from the Lirst quadrant by th:

o

Gh 3L U ana - and v s Geiween O

£ I--.ing}
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w2

dr d
E[‘!rrﬁ
w2
!

‘the areaof D =

= ([2
- [2] do
1!:’2
= 5[ a+ sir:&)z de
: .
1773 28
= ?Il(f + 2sinf - cos ) de
]

In the next two examples we compute the volume of a region in space usmg double
integral.

£xumple 3 : Suppose wie want to find the volume of a solid whose base is the region
in the xy-plane, bounded by the parabola y = 4—x apd the line y = 3x, while the
top of the solid is bounded by the plane z = x+4.

Let D be the given region. The line y = 3x and the parabola y = 4—x? interséct in
the points (1, 3) and (=4, —12). This shows that on D, we have -4 s x = 1

and 3x = y = 4-x? Also see Fig. 4. Thus,
= {(xy|-4=sxs133x=y=sd4-x%).
Also, et f (x ¥} = x+4. Then f(x y) = 0 for all (x, y) in D. Thercforc we have

[ [x+4dyax
D

Fig.4

volume of the solid

| 4=x?

J‘ ! (x+4) dy dx

ix2 :
4~x “

jl (x+4)y] dx

1l

3x

-_;f[ (x + 4} (4 — x* = 3x) dx

4

= 1
= SZﬁ'

Example 4 : Let us compute the volume within the cylinder x* + y° = 9 between
the planes y + z = 4 and z = 0..
Here the region D is bounded ny the circle x* + y° = 9. Thus, we can write D in
polar coordinates as

= { (r, 8) | 0=r=3, 0=0s2m}. Sce Fig. 5.
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The rl_:qui;'ed"volumé lies -und_ef the ptane y + z = 4. Now y+zl=4 == zad—y,
So let f(x,y) = 4 = y.Thenf*{r, 8) = 4 — rsing. '
Thierefore,-the volume
. 32x
V= f j {4—rsin8) rdd dr
o0

Adr

Jer4 dod r2 .
r dé dr ~ ind 46 dr
t[i T uf'[[ sm.e

32z

4 46 dr—0 - i
oo o

= 36

Why don't you try some exercises now?

E 1) Find the area of the region bounded by
a} the y-axis and the linesy = 4,y = 2x
b) the x-axis, the curve y = ¢*, and the lines x = 0, x-= 1.

E2) Sketch the regions given in the following integrals and compute their area
VY ' '
.a) dxdy

) 3 x(2-x)
b) dxdy
T
E 3) Find the area cut off from the first quadrant by the curve r = (2 — 5in28)"?

E 4) Find the volume of the solid whose base is a triangle in the xy-plane bounded
by the x-axis, the line y=x, and the line x=1, whiie the top of the solid is in
the plane, '

z = [(x,y) = 3—x—y.

E 5) Find the volume of the solid whos¢ base is in the xy-plane and is bounded by
the circle x2+y%.= a?, while the (op of the solid is bounded by the parabaloid
az = x’+y® (Hint : Use polar co-ordinates).-

In the next sub-section you will sec another important application of double
integrals.

13.2.2 Surface Area

In Calculus (Unit 16) you have sct- that we can use definite intcgra.ls to determine

the area of surfaces of revolution. In this sub-section you will see that we can find
the area of general curved surfaces using double integrals.

Here we shall consider-those curved surfaces, which are given by a graph

z = f(x.y). where f(x,y) is a functicn of two variables defined over a region D of
Type I or Type 11, and f has continuous purtial derivatives w.r.l. X und y at each
roint of D. In Fig. 6 we have shown onc such surface,

r.
The area § of such a surface is given by the formula

f. N'”f (x.y) + £ (5.} dudy

S

f iz \" Az o
[ J’VH{K)_ HIEn dsdv. e (N
D . ) :

Here we are not going to give a riporous proof of this formulu. but we give a brief
discussion. which suggests that 1l fermubic is plausible.
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Flg. 6

As we did in the ]ast sub-section, we partition ID into small rectangles which are of
the form {x, x4+ Ax] x [y, y+Ay] (see Fig. 6). When Ax and Ay are small, this
r¢ctangle will be a projection of a. figure, which is approximately a parallelogram
with vertices,

P, = (X, Y, f(XIY) b

Pz = (X+Ax; ¥, f(x+Axv y) )v-
Py = (x, y+Ay, {x,y+Ay) ),
P, = (x+Ax, y+ Ay, f(x+Ax, y+Ay) ). - ‘ :

Mow the arca AA of the parallelogram P,P,P,P, = 2 area of A P PP,
Since

f(x+Ax, y) — f(x,y)
Ax

f(x.y} = Aliﬂ

f(x,yt+Ay) — f(x,y)
Ay '

f(x.y) = alj-To

arowrite ((i+AX, v = [ (xy Ax + ((x,y)
snd {(x,y+AY) = f, (kY)Y + f{x.y).

“rnevsfore, AA is approximately equal to
2arcuof AP\PIPI with P, = (x,y f(x,y) )

P; = (x+axy, i (x.y)ax+f(x,y) )
Py = (xy+ 4y, §, (xy}Ay+f(xy))

Now to caleniat- “He area of A 'PinPs,
znalytical solid geemeltry. Let P, denote the projection of the AP, P3P on the
xy-plunc. This means that the vertices of P, are (x,y,0), {x+Ax, y, 0) and
{x.y+ Ay, 0). Similarly, let P, and P, denote the projections of the AP, P3PJ on the
se-plane and ihe zx-plane, respectively. Also, we denote by A, A, A; the areas of
P..P, and P, respectively. Then a result in analytica) solid geometry says that

Area of APP3P4 = /Af +Al+ Al

wn make use of a simple tochnioue in
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Note that'P,, P, and P, are triangles in the co-ordiniate plane, whose vertices .
known. 'Ihercforc we know how to calculate the areas of these triangles. Yot n
c.a!culale the areas A,, A, and A, one by one..

~We first consider P,. The triangie P, has vertices (x,y), (x- AZ, ¥) a.ud (=, y-~

. Therefore,
\ : X y 1
Arcaof P,=A, = -fl x+Ax y 1
x y+Ay 1

= x(=4y) = y(Ax) + (x+A4x) (y+Ay) — xy

= -:—IZ- DEAY.

Now 1 calculate the area of P Py, note that Py has vertices (x,£(x,y) ),
((x+8x), &{x,y) A x+(x,y) yand (., (x,) ay+f(x.y) )-

Therefore,
x flx,y) 1
Area of P = =-%— x4 Ax Lxy)Lx+i(xy) 1
Lo % a)ay+ixy) 1
= £ 4, AaxDy.

Similaﬂy, the area of P, which ks venices (y, fGo,y) ), (V. £ y) Ax+((0,y) ) and

(9 Ay, flny) By + Ky )05 Ay =g b ) Dxdy.

f
Then the area of AP,P3P3 = .k \;’; CAY: - t”ax Ay + i A'}.x Ayt

[

F 3

Ly F R+ 2 (xy)

te,

Thnercfore,

Area of the parallclogrant P, P-V,P Ax Ay /1 + fﬁ (x,y) + fﬁ (x,3).

In this discussion we have assumed that the paratlelogram P,P;P;P,4 15 not
degenerate.

So, the total area S is appro.aaiziy ennal 1o

2 Axdy /1 S fn 0 whore e s2m s tzken over all paralielograms
] ’ !
corresponding 10 2 given p a.e.iva of 2. Taus, Ui reasonabie to r.ief'ne the arcs

j' /142412, dxdy.

of the surface under consideraiion Lo be cqua! to f

We now illustrate this formuis 2.0 sum= cxamples,
Example 5: QUP-!'*OSC W weal GFRd che suriaer secu of the oart of the gy
®Eyias? = 1 dving above the .-:111;.5, .3.-4),3 _—

We first note that here the suiines {= givan by the cquation x24+y?+z7=1, Saivin:
forz fror_n this equation wt gei ot “he surrace is-the upper hemisghere given by
ihe funciion

fix,y)=z= f1-x2-- e

The partial derivatives of f ai-

Fry) = - o i) o e



We denote by D, the ellipse x2 + 4y? = 1. Then D is a closéd bounded region
described by ’

D={(xy)|-1=x=1, - —év"l—xzﬁyﬁ—% v 1-x% )
see Fig 7. |

Flg.7

Then the function f is a continucus function defined on D, and has continuous
pantial derivatives on D. Therefore, by Formula (1), the surface area

J J’ [1+82 + £ dxdy
D

S

J“/1+ x + Y dxdy
1-¥*—y*  1-x-y’

f J' /_17____ — - dxdy

Vi—xif2
- dy . ] ix

= =

—lez

VTS

= i,'l[sin'l _IJ}'-:_';?] dx

Il
™
1
“,
=
1
o~
—
e

i
A
w
=0

I

——
f—

—

Example 6: Let us find the surface area, §, of the portion of the paraboloid
z=.9 — x* — ¥
that lies above the xy-planc.

Thc gwen surface lies over the region I in the xy-piane bounded by the circle
x* + y* = 9. See Fig. 8.

Applicatlons of Integrals



dultiple Integration Let f(x,y) = % ~ x* — 5. Then
fx.y) = —2x and f, (x,y) = —2y.
Therefore, by Formula (1),

$ = [ J‘ JUE+ay +1 dx dv
J
)

Here the region D is a dise. Vacreiore, we make use of polar co-ordinmes o

evaluate this integrzl, fn polar co-ordinates we can describe the region D as
D={{(r,8)|0=s8:2 4, 0mr=3),

Thereforp

5 Jar+1 rdr de.

il
Srm—— b
[T

=gy [ L@+ dv
a

=—LJ" (37%%-1)de = %,‘r (3777-1)
v

o § 2 Here are some cxercises for you.
f(xy)-=1x

-~ = ——
E 6) Let R be the reclangular 1egion bounded by the lines

x=0,x=3y=0andy =2, and let {(x.y) = = x**. Find the surface sre1 G
of the portion of the graph of i that lics over R (see tite figure alongside).

E 7) Fird the arca of the surface z = x° + y* below the plane Z = 9.

y e e Lt L

oy

In the next sub-gection we shell Jiscuss sume nhvsizal applications of deble
inteprals.

13.2.3 Moess annd Wionien:s

Here we explain how doubls oizgrais are useful in cvaluating twe phevolal
quantitics related to an objec. nomely. mass and montent of inertia.

Ve first cousider the muss, Fooo s take 2 flat shee! that is so thin, thal we oy
i See o Mad Tupooss o tha chugtis made o

'
e e weie PR Y

consider 1t o B pwoain :
is non-uniform. We want

non-homogeneous material, ic.. iie density of the sheet
to find an expression for the wass of this shzel using doudle inicgrals.

v WA
e ——— - T /r—- ' 'u-_\_f 1: dp'l
- L '
S A
A i "
iy ¢ .t
. |-% = 5
\ '-\ L._ ’/
\\ : A ]
~ : Bl
hx""‘-—..___, s (_’ -—‘_l Y ‘\'"‘--_ F :-f’:
o . o <
1] [N

Let § be the reglon thdai the shiocr Gousdo oo the ay-gienc and let the density a2
point (x,y) be 8(x.v}, Since the Careii o ~ i shect vanies from point Lo paine, we
consider it a5 4 funcijon of *eos g1 the sheot, Now pariition €t sied

s RTEL R deanity reciangles, Ry, s, P otshewn o Fige 948), Let us piek a roint (%, ¥i)
on Ry. Then the mass o Ry i ceoroximately & (0,0 ;. area of By

_Thus, the total mass of the sh ot wode iv aporar indizly



S i) A (R

bl
F

The actual mass is obtained by taking the limit of the above expressivn as the
diameter of R, tends 1o zero. That is,

m = lim ;IB(xk.yk) A (R

But, by Remark | in Unit 11, \his limit is the double integral of the [unction 8(x.y)
over D. Therefore,

m = II 3(x.y) dxdy
D .
“ pemark I: Instead of a thin sheet if we take a flat plate with uniform thickness h,
then the mass of the plate will be

m = ht’;f&(x.y) dxdy

This follows casily because the plate can be considered as made up of h thin sheets
patched together.

Let us look at an example now.

Example 7 : Suppose we want (0 find the total mass of a thin-sheet with density
8(x,y) = xy, which is bounded by the x-axis, the linc x=8 and the curve ¥y = 7,
Here the region D= { (xy) | 0 =x=8,0=y = x)

The total mass is given by the formula

j j 8(x.y) dxdy

"

m

]
—
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Next we will consider apother interesting phenomenon in physics, namely, moments.

Let us imagine two children playing on a sce-saw (Fig. 10). It is a simple fact that

a heavier child has more effect on the rotation of the sca-saw than docs 2 lighter
child. You must have also ohserved that a lighter child can baiance u heavier onz
by moving farther away from the axis of rotatien. This lcads us ta define # quantity
called “moment”, which measures the tendency of a mass ta produce a rotatian.
Lct us first consider the idealised situation in which a0 object of a positive mass m

is concentrated at a point {x,y) in the plane, Such an object is called a point mass.
The moment of the point mass about the y-axis is defined to be mx. We can think

of mx as a measure of the tendency of the point mass 10 rotate aboul the y-axis
(sce Fig. 11). The larger the x or m is, the larger the magnitude of the moment.
Thus, our definition of the moment is consistent with the observation that it is eusier
16 rotate a see-saw about its axis if the person is heavier or farther away from the

axis.

Goplicetions o Tntagenie
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MNext, suppose there are several point masses, m;, my, ...., m,, located at the
respective points, (x;, v}, (X2, ¥2), -..... + (Xa, ¥u) in the plane.

We define the moment M, of the collection of point masses about the y-axis to bo

he sum of the moments of the individua! point masses about the y-axis. T,

n
My = m,x,_-f- Maks + . TG, = 2 My, .. 1_.‘_')
el L

We can think of M, as 2 measurc of (he tendency of the collection of masses (o v
produce a rotation about the y-axis. If M, = 0, then there will be no rendency tor :
rotation. In this case the collectinn of point masses is said 1o be in equilibrium
position. ’
Anatogously, we can define the moment M, of the point masses m.. My .., Mg
obout the :-axis by setting

M, = nyy, + mays + ... oy, (3,
We say that the point masses are in equilibrium with respect 16 rotation about the
x-axis, if M, = (.

Nowletm =in;, + ms + ....... + m,, be the combined mass of the point masses
Just considered. Let us find a poirt (%, §) with the property that if we place a point
‘mass with mass.m at (x, ¥), then its moments about the x and y axes will be M,
and M,, respectively. But according to our definition, the moment of the single
point mass m about the y-axis i m%, and its moment about the x-axis is my. Hence
by (2) and (3} we get that

mx = M, = my. Xy
.
and
. n
my = hd). = my ¥y
k=1
Thuos,
-
S omy xg
= N {4
X o= - = = vl
1 n
and

2,
>d 0, ¥
S Nd
=l vl _
n m
The point (X, ¥) is calied the wenirs of sreviia, or wtgroid, of the givew collection
of point masses.
Mow we find expressions for moracn s aid esntre oiLravity using double integrals. The
pracedure is the same as that for mass, voiume and stitace drea,

Consider a thin sheet of varfable ¢onity 6(x.y) covering & region S in the sr-nlane

a3 in Fig. 9(u).

Partition this o5 in Fig. 90, We cvxuies o an apnroximation, thal the mass of
cach Ry is concenaated at (x, © 3. & = ¢ 2 . y . Now

the mass of By — (XK, 7o) 405 aad se, the moments of I’ are

MY b (R T AR

and
MY = 8 (%, T AL T
Thea the sum of the maments of nasges orcupving all the spaces R, k= 1,2...., &,

aboul the y-axis is given oy
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kel
This will be an approximation-for the moment M, of the totar mass of the thin
sheet. Thus, we get that
M, = Ijx 5(x,y) dx dy.
b
Similarly we get that
M, = JJ y 6(x,y) dx dy.
"D
£ X and y denote the centre of gravity of the thin sheet, frou {47 aad (5) we have
My g = |
= m Y SR

where-m is the tosal mass. We have already seen that the tot:l mass m is expressed
in terms of a double integral by

m = ” B(x.y) dxdy.

"1

Therefore, i
B(x,y) dx d
__ 'Jnjx x,y) dx yl
f I B(x,y) dx dy
and D

8(x,y) dx d
[Djy x,y) dx dy

~
1

' ” 8(x,y) dx dy
D

"The derivatrqns of these formulas may appear a little difficyii 10 -ov, But you don't
have to worry. We expect you only to remember these [oreiclas cad to apply them.
Here are some examples.
Lxnmple 8 : Letus find the centre of gravity of the tnin shicet given u Exampic 7.
in Example 7, we calculate the mass m of the sheet as

768

m = ——&—-

5
The moments M, and M, w.r.t. the x and y axes 214 aisen by

M, = J’ I y B(x,y) dxdy

and D
M, = J j x B(x,y) dady
Therefore, ‘: "
' M, =[] xy? dy] dx
Q 1]
f :Zﬂ

I
ml-—;
[ L —
—
]
b
[
| I
&

Il
taa)—
—
>
L™
g

Applications of Integrals

58



Multiple Integration

I Y_,'_:'.d
Pl il
L

f L
B ‘

B L L PR

Similarly

x:f]
My = [[[ %y dy) ds
!

Thus,

T o= o 128 5 80
< - 3 5 i3 and
§=i&:..l_l&.__5 _ 3 :

m 3 A
Thatis, the centre of gravity is ul the point !r—-?-% . _%{]. ]
In Fig. 12 you can sce that the point (X, ¥) is in the upper right portion of D. But
that-is to be expected, since a thin sheet with density 8(x,y) =.xy gets heavier as
the distances from the x-and v-axes increase.

Now you cun try your hand at these exercises.

- TALA i mtba A e TR L, —

E 8) Find the morents and tie cantre of gravity of a thin sheei in Lhe shape of
a quarter-circle of radius 2, whose density at a point is k rimes the disten-e
from the centre 10 that poini {(k > 0). '

(Hint : Use polar coordinaces for cvauluating the double integral.)

E9) Find the centre of gravity of a mass in the shape of the rectangle
[0.1) x {0,1], i the density ot (x,y) is e**Y

E 10) Find the y-coordinate of tiwe cantre of gravity of the following objects :

a) The part of the dise of radius 1. lying in the first quadrant with uniform
density.

b) A thia plate beunded by the carves y=e oy =0, k=0 n=1vih
density 8{x.y; = v

I e L P

Before we end this scetion, we wilf Jisanas gaolher physiczl eoncepr called “srgmcn
of inertla’. Those of you, v ho hao seedied Chivsics st dave Loerng i momens
of inertia is uscd b studging e reladon of a mass around a fine, I a particle cf
mass mis at a distance 1 from 2 iiar i, then the cxpression i is called tie ‘morent
efincrtia’ of that puiicle shong . #ar o syytent of o partictes in a pluiie with masszs
My, Mg, o,y 2 distane™s oL 0, L 7, [rom aiine L, we moment of inertia

of the sysicni abon Lis definid o

2, ? 2
I = m,;";'-rm.,.‘,,‘.-- 1} I
We can express momant of 2 dn Ut i nad of 4o AT AL Supose v
have an ebjuer with warv'g, < rhevanag s owedon B o dhe slane. e

want 10 {ind an oapression for i oot of insttia of s chjact using double
integrais, By nov you must b quine Laitiar v the proness paniition rbe regions
into slices, caleulate the moman: ¥ iotia ol o samule slice, forin the siummation,

This sumination zpproximet s the eaint of neitia when we tale tho timit 2 the

norm of fhwe periblon wads L, L s rovs s tine folle g formuizs.
> [ - T : . - . e - — -y P > v
The nomeri al feepgdn whmes ol a0 L POSUYOG, givRs Y

l\ h : 1 1
! 1
and s
L= 1 :
. P :
. |

We shall dilusicaie toee S i an avangiz,
Exoruple § @ Lot us calenluie 0 vl efmesiie o) e object given in Example 7.

The density of e obiecs i a0y
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Therefore, the moment of inertia about the x-axis is

I, = f jyz 8(x,y) (-i'xd?'__;= J’s Taxy’ dydx
s oo - .
= %_ fx”?;h = 61_}4-4

Similarly, you can c-alcula‘lc I,. We are lcavil:lg it to you as.an exercise (;cé' El1},

E 11) Coh'lpuie I,'fqr the object given in Example 7.

E 12) Find the moment of inertia I, and I, of a thin plate with density 5(x,y) = y,
bounded by the curves y = x? and x = 2. .

—

13.3APPLICATIONS OF TRIPLE INTEGRALS

Some of the applications you have seen in Sec 13.2, carry over directly from double
to triple integrals. The only difference here is that we consider a region. in space.
and a mass lying over this region will have density 8(x,y,z), a function of three
variables. .

a

We are just listing the formulas by which we can compute the’ volume and miags.

You can see that the formulas are exactly similar with double integrals replaced by .-

triple inteprals. .
Volume = dxdvdz,
L

| Mass = ILJ’S (x,y,2) c!:édydz.

where W is the three-dimensional region which is occupicd by an object with density '

&(x,y.z}). ’ . ' .
Let us sec some examples where we can apply this formula,

Example 10 : Suppose we want to find the mass.of an object which is in the form

of a cube {1, 2] X [1, 2] x [1,2]. Suppose-the density at any point (x,y,2) on the
cube is given by 8(x,y,z) = (1+x)e’y. Then the.mass m_of the object is given by

2 2 2
{1+x) dydz
J‘!! +x)e%y dxdy

J‘ f[ (x +L22) e’y T dydz

i1 1

m

2

I

H
—_—
-
(S} V)
6
!
o
e
=
™~

= f-ITq e* dz
1
= (-0

“xample 11 ;' Suppose we want to find the volume of the region W in'space which
lies inside the surface z = —;— (x*+y9), and below the plane z = 1.

We first note that ‘in W, z varies from % (xz-‘{-}fzj ¢ 1. Now il we put-

Uiy} = 3 (C+y)and d(x,y) =-1, then
Yi{x,y) = z = g(x,y) -
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From Fig: 13 you will be able to say that y varies from — V9—x* 1o /9-x*, and
X ranggs from —3 1o 3. Therefore, we can write W as

W = ((x,y,. 2)|~35x53,—v9—-x2‘| 'SyS\/Qfxi,-é- (+y) szs1)

Mg 13

Then the volume is given by
Ve | dxdydz
-/}

1 Vig—z? I

e (L)

Yo %0

-
I VE:F . ‘.2 .
J_ 5 9
-} Ly ]
Ll - , .2 yJ Vgt
':j [k] ‘—"9‘)}""2—7' b
-3 S e

A 2 F

= -.i 2 . 2.- 2 (-w-! ¥
L {( 5 )29 - (9= |
? 2 52

= f Ml b i A
-3

_. 9

=-2F

MNow fiere vre some exerciscs fov vou.

E 4} F o Bovie by ihe
e s 4 sty Tenclion ic
& (y.zy =

I e 4 7 A el b ' e LSS LT N 3 6T T % e ] s SO Wt e S b AU L m = e e N, e ———

Asin the case of doubls integrals. we can $iud eraressions fo: moments and ceatre
of gravity of objects occupying solid_regions using fiiple iniegrals. Let us first sce
what is meant by moments in this case. Supgose v have a point mass m located
at (x.y,z). We dafine its moments Myy Mo Mo, 2bovt the coordinate plancs us
follows : :



s TR
M - €'i' e

moment about the xy-plane = M,, = zm, Applications of Integrals

moment about the yz-plane = M,; = xm,

moment about the zx-planc = ym.

|
=
]

e that in this case moments are defined w.r.t. the coordinate planes whereas in
the iwo-variable case moments are defined w.r.i. the coordinate axes. Also note
that z, x -and y are the distances from the point (x,y,z) to the xy-plane, yz-plane
und zx-plane, respectively. .

“ow we find expressions for the moments of an object occupying a solid region W
und having density 8(x,y,z}, using triple integrals. We first consider the moment
sbout the xy-plane, We circumscribe W with a rectangular box W', Then we
partition W' into smalt rectangular boxes of which W, W, ....... , W, are entirely
contained in W (see Fig. 1 Unit 12).

Lel Axg, Ay, Az, be the dimensions of W,. Then the volume V, of W, is
Vy = AxyAy Az
For*each k between 1 and n, choose any point (Xy,¥,2) in Wy Thcn the mass of
W, will be approximately
me = 8(Xy,¥Zi) Vi
Now the distance from any pomt in Wy to the xy-planc is apprommately equal to

2. Therefore, by definition, M y Will be
M':y mass X the dlstance from W, to the xy-plane

8(Xka¥io2i) Vi

th

Then 2 B(xk.yk,zk) V2, approximates the moment of W' w.r.t. the xy plane. This
k=]

- approximation gets better and better as we take finer and finer partitions. Thus, we
nel
= 1

M,, = J’ I fz 8(x,y,z) dxdydz
v

Similarly, we get

= J j Iy 8(x,y,z) dxdvdz and

M,, = J‘ I fx &(x,y,z) dxdydz
W
Now we give the expression for the centre of gravity of an object using the moments
without giving any details, Let (X,¥,2) denote the cenire of gravily of the object.

Then .
y f I J’x_ﬁ(x,y,z) dxdydz
X = IT{‘ = w
"1 | B(x,y,2) dxdydz
e
[ [ v5(xy.z) dxdydz
S My 1y
m B(x.y,z) dxdyd
f“[f x.y,z) dxdydz
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Multlple Integration Example 2 : Let us computc the moments, M,,, My;, M, and the centre of grawity
of an object occupying a solid region W bounded by the circular cylinder shown in
Fig. 14, and which has mass density 8 given by

5(x,y,z) = 20~22.
Let us first compute the moment M,,. By definition,

M,, = J‘ j f z5(x,y,2) dxdydz
w

To evaluate this integral we describe the region W in cylindrical coordinates by
={{rn,0,z2)|0=sr=20s50=2r0=2zx=4)}
Thus,

L)

r

M,, = f[! { ofz(zo—zz) dz}d&]rdr

Fig. 14
222r 4
= J' j' [J’ (20z-2%) dz ] r drde
20 i
= J’ET [ 1022 -2 ]4 r drd@
Do ‘ 0

Il
(=
o,

e
o
-
=
j= "
o]

Next we calculate
M, [- j- J y B(x,v.z} dxdydz
/

b

2 4
f f f rsing {20-27) r dr do dz

(LI}

il
o

22 4

[ J’ sind [ 20z ~ -23—3 ] drds
0o 0

fl

22T
E

oo

2

=J% [ coqﬂ] dr

= J' I:’;ﬁ r% (cost - cosZm) dr
0
= 0
Similarly, we can check that M, =
T nrmemmiba tho mentea ~f oarnsibse wee oo fos Firer o bl b Plis v ol L oo o
L \-UIIIIJ\-I S N NE L L S R B 6lu!1|._'|' T W AR T W T B E At AL AN AR R IEW R e e waw | -1 -
Thus,
rof s
m = J I b{.“"ul J ﬂkﬂyﬁf |
] !
W |
A 2o A . i
- [ [ [{28-32% rdrdagz !
Jt
6v o
22 3
=[] [203 -z ] rdrdd |
a0 a



Applications of Iategrals

3
0
I r
= -—-—136 Ir[e] dr
0 1]
L 352 [
= 5]
0
— 704
= “"'-—3 .
Theretore, the centre of gravity is (X, ¥, 2), where
M A - :
Xe2ieg yeu g 3oy Gtar 3 _ s
x_rn_[]’:”_m 0'?'_'111 T i1’

i .18
ie., (0,0, 11 ).

Triple integral also allows us to find the moment of inertia of objects about the x,y
and z-axes, We now give the formula :

I, = moment of inertia about the x-axis = f f f(y2+zz) S(x.y.‘z) dxdydz
w .

I, = moment of inertia about the y-axis = J J J(xz-i-'zz) 8(x,y,z) dxdydz
“’ -

i, = moment of inertia about the z-axis = J’ I [(xz+y2) 8(x,y,z) dxdydz,

w 1
where W is the solid region which is occupied by an object and §(x,y,z) is the density
of the object.
Here is an example.

Exmmple 13 @ Let us find the moment of inertia of g solivi sphere W'of uniform
deasity and radivs a about the z-axis.

ere density is given to be a constant, say k, i.e., 8(x,v,z} = k for all (x,y.z).

.7zorcing to the definition the moment of inertia about ihe z-axis is

1, f \[ j(x2+)'2) 8(x.y.z) dxdvdz

il

[ [ J’k(ﬂy”) dxdydz
ERN

w

Yo il agree that the region of integration % in this 25ve can be easily described

by spherical ceordinates. You have seen in Unit 12 that in shis sitvation, spherical
coordinates are more useful in evaluating the integral. In these coordinates the
region W can be deseribed as '

W o= {(r,B,d:)EOErEa.OEBSZZ:T,UEth:T}

Furiker, xz-.'-}': = rza.inzd}, and hence,
a2
1, :j | J k [r'5in"$] rsind d0déds
{ l:| i
ki [T r'sin’¢ dodédr
y
a I 2m
= 2.-rj J‘ r"sinjd)[ElJ dddr
90 0

15



Multiple Integratlon

Butj sin” g dd = J’ sind (1—cos’p) dd

n 0
= - _coste 1
= [cosd: 3 }
4 ¢
=3
Thus,
I, = erk--g--r*dr
3] .
= Bk {_{i]
3 3 ju
_ Arica’
15

Are you ready for some exercises now?

E 15) Find the moment of inertia about the x-axis of a solid region with vniform

density cut from the sphere x*+y*+2" = da’ by the cylinder x*+y* = a®.
(Hint : Use cylindricai coordinates. Then z° = 2a® = (x* + y°) = 42 — %)

E 16) Find the moments and the centre of gravity of a solid occupying a portion
of the sphere x2+5'1+z: = ;1:, which lics between the planes 8 = - and

o = —"_ll given that 8(,y,2)-= L.

13.4 SUMMARY

In this unit we have seen how e tind
1) the arez of some planar tesions using double integraly :
Arcaof D = J J Jidy
. L
2y the volume of o solid region yiag under the graph of a function {{x,y) and abg e
a region D in the xy-plune using double tntegrals .

Vo= | J finy) daay

3) the surface area of a genernd curved surlace usimy double integral

S = Jr J ‘H'II fHE2 20 gy
D
4) the mass, moments, centre of gravity of objects like Lhin sheels using donble
inlegrals,

mo= | [ 8y) duds
j ! ’

rs
i iy e 1o
1 _l
i
N, o= f ' 3 a{ay) dxuv
: P
&

Centre ol gravity
M, M

m’



5) the moment of inertia of a thin sheet using double integrals.

&) the volume of u region in space.
7) the mass, MOments. centre of gravity and moment ol ipertia of an object
occupying a solid region in space using triple integrals

13.5 SOLUTIONS AND ANSWERS

E 1) a) Let D be the region hounded by the y-axis and the lines y=4, y=2x. We
can write D as a Type 1I region by

D={(x.y)|t)sxs_32’.,ngy54},
yi2

(1] o]

Qa 1

The arcaof D = j jdxdy
D

1]
—
|~
(=0
e

1
)
=
=
IA
-
1A
=
1A
L™
A
nﬂ

b) The region D =

Arcaof D

] 1]
—_—
- D
. —_—
"~ (=8
o o
e (=8
— ~
Q.
S

{1
L1
=
o
-3

= e—).
E2) a)LaD={(xyly=xs= Jy, 0=y = 1). Dis of Type IL
In fact, D is the region bounded by the parabola y=x° and the line y=x.
vy

Then | J'dx‘dy= Jl[ ‘){dx}dy

D "

=21
3 2
=1
6
MD={xy)l0=x=3 ~x=y=x(2-x)}
D is of Type L. D is the region pounded by line y = —x and the curve
y = ~xH2x.
3oa(I-x)
ArcaolD = f [[ dy]dx
a % )

3
J (—x*+2x+x) dx

u

Applications of Integrals -
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Multigle In . : _ x3+3x2
: _[ET 7]
n
- 9
-

E3) Here the region can be described in polar coordinates by

D={(r,8){0=r=y2-5in20,0=8 =5 -"21 }

ufl \f2—|un26‘

Thus, area of D = [ rdr ] du
[1]
2 WFSsing

1,

de

I:
= .|
N

2

Il
=]

3] —

(2—sin248) do

nz

fi

EHem

— D———

. c.os 26
29 + <0520 ]O

1
2

ol

E4) TheregionD = [ {(xy)|0=<x=10=y=x}.

f [ (3—x—yy dx dy
7

Thus, volume

Hi
"
-
¥
b
|~
1
ot
—
(=9
)

f—y

. - y2
£5) Letixy) = -

Since the base region is a circle, we use poler coordinates.

2
ThenD = {(t®)|0=r=a0=0= 2m} and {* (r,6) --—‘;T.

Ths,
N
T O - ma'
volu.c —J 1 JP 5 rdr]dO-— 5
b] [
. o
E6) Thesurdace aica S & J \I‘r[i + 0+ Ldx dy.
) Lr
Lot fxy) = -5 T Ther £, (kg = k', Rlxy) = O
5= i' I iﬁcixdy
i
= {;i ll._ § el '--"':}' l.J'
4 l 4 i
D@
- 2[4 o)
3 Jn
=28
=%

=1
i



£ /) Here the region U 1 the disc xX*+y° = 5.

IE.S)

f(x,y) = X'+y*

f.(xy) = 2, fy{x.y) = 2y.
The region D can be more easily described in polar coordinates by
D={r0)|0=sr=30=8= 25). Therefore, we usc polar coordiniles to
evaluate the integral. Thus

Surface area § = J' I JaE+y") + 1 dx dy.

D

3 -
I Jar*+ 1 1drde

(]

x % [(4r2+1)3’3]n do

(377%-D

i g
|
r 3
!
= I
6
The distance from (0,0) to a point (x,y) is I+
Then 8(x.y) =k Jx*+y*, where k is a constant such that k > 0.
We first calculate the mass m given by

= 5(x,y) dxdy,
m ij x,y) dxdy

where D is the quarter circle of radius 2. We write D.in polar coordinates 35,
D={(r0)|0=sr=20=8=< %}- rdinates

and &~ (r,8) = kr. ,

o 2
Thus, m = krr dr d6
us, m i Io T I

f-72] 2z
— r
= Jk [—3] do

h D
_8k [

2 J do

]

— 4k

3

Now the moment b, aboui x-axis is

M, = J J‘yl.'.\.f.\:z—l-yf dx dy

2 2

=k [ rsino "drdo
f[rs
00
ar2 4 rd

= k| [Ld] sind do
o 1]

= 4k

Similarly, the moment i, about y-axis is

B, = 4. -
" hen the centre of graviry is the point (X, ¥),
oM 4 |
where x =1 =2 = ¥
T

Applications of fntepmls
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Multiple Integratlon

E9) 8(xy) = ™

| B

" The massm = J’ J’ ™Y dx dy

X

y

(=]
[=]

1 ol
= yioex

1
= (e~1) e"] = (e=1)? -
0-
1 ]
] v 1
J’ xeX*¥¥ dx | dy
m_dll 7 ey _ g
m (e—1)? (e-1)*  (e=1)
— __1
e~1)"
E 10) a) .j\:.fgagsumc that the density 8(x,y} = k for all (x,y) where k is a constant,
HereD=((r8)|0=<r=1, 0=so= E)
mE o “

.'J; P

The massm = f J' & r didg
D0

12 1

[ [y ds oy

. Ps'i
o= LA k)
o Jor
o
2
Y S P
- IJ rbmd'.;rurdb\/_%
[ 1]
i i
. .3 1.,
= i f stnﬁl i do /i
3 T
e _Jo f
. L n )
= —20% 6 I ST
£ [~
-0
- &
37
{_;‘_Ef__":u Ly ~ 3 {] o :‘.JL
() = P
b e
"o jlr I[ ‘r - ] : 1
I R
7 it



Eie)w={(r.e,z)|05rsa,-isas-}}.— a’—rf=z= Ja'1?)

4

a nil Vel
mass = J' rdz’dé dr
0 -mid =VIZ3

= f T 2r Va*—¢* dg dr

0 —rid

= 2r J' vat—rt Zr% dr
b

— m(at—r2)32

5]

1l

zrdzdrdd =0

=
-t
Ml

M,, = f f (r cosd) r dz dr d@

212 Jal= 12 cos® dr] de

Il
—_—
——

0 —=i4

2 ﬂ fu r* Val-r* dr
0

rJ/2a?
8

Applications of Integrals



Multiple Integration

UNIT 14 LINE INTEGRALS IN R?

Structure
14.1 Introduction : 84
Objectives

14.2  Line Integrals 84
14.3 Independence of Path 92
14.4. Green's Theorem ) 95
14.5 Summary ’ G8
146 Solutibn$ and Answers 099

i4.1 INTRODUCTION

" In the first two units of this block you have seen one way of generalising the concept

of the definite integral of a function of one variable. In this usiif we shall introduce
. N b - i
a totally different generalisation of the integral f f(x)dx. Here we shall replace the

interval [2,b] by a curve C in the plane and define threc types of integrals:

Jf(x,y) dx, Jf(x,y) dy, andf f(x,¥} ds, where s denotes the arc length, All these
- :

c .
integrals ace called line integrals or curve integrals. We shall also evclve some
methods to evaluate these line integrals. Finally, we prove Green’s theorem, which
gives a conncction between line integrals and double integrals.

Objectives

After reading this unit, you should be able to

© define the line inlegrals,J’[(x,y) dx, fl'(x,y) dy, andJ’ f(x,y) ds, where Cis a
c c - '

curve in the plane,
o evaluate the above mentioned line integrals,
®. state and prove Green's theorem connecting line integrals with double integrals.

14.2 LINE INTEGRALS

In this section we are going to taik about curvilinear integrals or integrals over
curves. In order 10 define curvilinear integrals we need to know what we mean by

a curve in a plane. ’

Let us start with the following defmition.
Definition 1: Let 1, and y; be two real-valued continuous functions defined on the
closed interval {a,b]. Then the set C defined by

C = { (Gu(0). do(1) ) | a2 = ¢ = b)
is said to be a curve in R% The poinl P {dr,(a}, yx(a)) is called the initial point of
C and the point Q (4 (b), Wa(b} ) is calied the end point of the curve C. A curve C
is called a closed carve il its initial and end points coincide. A curve C is called 2
simple curve if for (),12 € Ja,b{, 1; £ 15, the points (4 {t,), (1} } and (b (),0=(t2))
corresponding to v; and t., respectively, are distinel. This means that the curve does
not cross itseif, see Fig. 1(a). In Fig. Kb} you can see a curve which is not simpie.

/—\ ‘ P
(o &), "JQ \

{¥1(b), wa(b))

(u) (b}
Fig. 1: (a) o simple curve (b} e curve which [s not smple.



Applications of Integtals

Il

EI I, = J’ fxzs(x,y) dxdy
D

Here D = {(x,y) | 0 ='x = 8,0 < y = x*} and 8(x,y) = xy
Then

1 8 137
= 'i'J X dx
Q
\ 1663
=1 x~" _ _3 gle3
=73 "33 8 6144
EiDD={xy)]0=mx=20=y=x

81



Multiple Integration

E 13) The region W can be described as
= {(x,y,z)j{]ﬂxsa,ﬂi)':‘\/;"—_xz-,ﬂﬁzsﬂ}
Thus the volume V is
a Val-xt Vit

V=IJ ‘O(' dx dy dz

|
—
~
=]
Y]
|
-
S
(a1
>

= 2a°
T2
E 14) The mass of the solid .=j J j’s (x,y.z) dx dy dz
2,

W={(xyo0sxs/4-z2,0=y=s /x 0=z=4

8 (x,y,2) = x

M o -
a55
f [

4=z '

[ xydy} dx:!dz

——

1 T2
-—-J[ ’f}-dx]dz
) 2
- [}i]
6|
|17
_._l_ 32 4
_6J'
4]
Y
15°

E 15) Supoose B (x,y.2) =
The region YW oean to deogribea in elindrical coordinates by

) a3 = =
W= ((r82)|0=r 20 056 =2, —Vaa—r £z Ja~r )

I, = kJ j dx uy dz
\l'l'
a Im VRIIE .
=k { j f (+%sin"9427) r dz B dr
(LI RV
P A I 3oL, xan P
[ ] | 2 R G T I 3 4
-LH GRS D AP e dr

sy, e
= 203k (128-5i VI



A curve Cis said fo be smooth if |, and i, have continuous derivatives at ail points
of [a,b], and Y '(t), ¥,'(t), are not simultancously zero on [a,b]

(ie., ['() + W' ()] >0 forallt e (a,b] ). See Fig. 1(a). We can explain a
smooth curve like this : Suppose we imagine that an object is moving along the
curve given in Fig. 1{a) so that its position at time t is given by (¥;(0), &,(t)). Then
that obje_ét would suffer no sudden change of direction, (continuity of ¥,’(t) and
Y,"(t) ensures this) and would not stop or double back (*¢,’(t) and y,'(1) not
simuitaneously zero” ensures this),

Now {or the purpose of integration, it is useful to assign an orientation or a direction
to a curve C. Look at Fig. 1(a). We can consider C as directed either from P to Q
or from Q to P. That means the curve C has two directions, one in which t increases
from a to b, and the other in which i decreases from b to a, In what follows, by C
we shall denote the curve C described by the parameter t moving from a o b, ang

© by =C, the curve described by the parameter t moving from b to a.

Note that, the initial point of C = the end point of =C and-

the end point of C = the initial point of =C. When a curve is described by increasing
t, it is said to be positively oriented. Throughout our discussion, we shall deal with
oricnled, smooth and simple curves only.

Now suppose that C is an oriented, smooth and simple curve given by
C=({(x{hyt))|a=ts=sb),
where x(t) and y(t} are continuous functions over [a,b]. Let f(x,y) be a bounded

real-valued function defined over C. We shall define J'f(x,y) dx.

c .
Asin the case of double integrals, the first step to define an integral is to partition
C. To do this let us first consider a partition P of [a,b], given by

A=<t <t <o <, =

Forcachi, 0 <i= n, let P; denote the point (x(t;), y(t;)) on C. Let C, denote the
arc of C joining the points P;_, and P;. See Fig. 2. :

Zz k

a=ty. Gt G=b L >
' >
X,
Fig. 2
Set ’
Ll‘.li = Ii_(i—l
AX = x(4)—x(1i-1)
M; = sup {f(x.y) | (x,y) € G}
ny = lnf{f(x:)") ] (x-}') € Cl}
Diefine upper-sum and‘!owgi' sums by
» . )
UPH = 3 Max - T e ST (1)

Line Integrals In R?
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Multiple Integration

L(P,f) = i m A X; . ................. (2)

i=1

Let| = sup {L(P,f)} andu = in[ {UP.D)}, where Pis the set of all partitions of
{ab. P r :

If 1=u, then we say that the line integral f f(x,y) dx exists and .
C
J'f(x,y) dx = the common vafue of 1 and u.
L | .
Remark 1 :.As in the case of double integrals, we can write the ling integral J i(x,y) dx
C

also as the limit of a sum. Let (&, ;) be any point on the are C;. Consider the sum

n

SR, = 3, KEm)OX e (3)

Then the linc integral J'f(x,y} dx exists if and only if
c

im SO = Yim 3, (&) Ax
u(Py-0 : w(Fyi0 imi

exists, where p(P) denotes the norm of the partition F. Morcover,

lim S(P.f) = J’f(x,y)dx.
n(P}—+0 C

" Next we define another line integial j 1(x,y)dy.

c
Let Ax; be replaced by Ay; in Equations (1) and (2) above, and let

U(R.H) = 3, Midy,
i=1

LR} = 3, midyi
ir]

Suppose that
|- = syp L?{e.{), and u™ = inf LI(P.f).
. P P
If 1* = u*, we say that the tine i:'utcgralj f{x,y)dy exists and
c

J f(x,y)dy = the common value of 1* and u®

T
As we remarked buforc.[ i(x,y)dy exises if and only if
- )
M
b SMPD - im _;:{F(E‘_-n.,.) Ay CXISLS und
PlF)_'“ fuy oy

Jf f(x,y)dy =tm S*(P.0}
c s

I 1 ' ~ -
sies the e lengih

Now we shall define a third dine liviegral I' H{x.yids, where $ denoics

[y .
of the curve C. To define this we make use of the formula for the arc lcr!gtt_\ of a
curve, which you have secnin Calculus {Sub-sec. 16.2.2. Block 4). Ifacurve Cis given



in the parametric form (x(1).y(1)). t € [a.b], then the arc tength from the poinl
(x{a).y(u)) to an arbitrury point (x(t),y(t))} t € [0.b] ik given by
3= I v XUy de

JX () v (1) by the

So we can think of s as a function of 1. Then we havc—g’: =

Fundamental Theorem of Calculus {Theorem 7, Unit 10, Calculus).

Let As; = arc length of C, = s{;)~5(1;,., ). and let

n
U(P.) = 3 MAs
1=1

LD = 3 mas

Ifl, = su P.f) =inf U (P.f} = u, then we say that { f(x,y) ds exists and
sup, L(P.N) = inf (U(P.1) y cj(y)

J' f{x.y) ds = the common value of |, and u,.

c

Moreover

J'f(x.y}ds = lim Zf(.f,-,m) A

c ptP-0""

So. we have defined three types of line integrals, Now here are some important

remarks.

Remark 2: Let f(x,y) = O on a curve C. Then'j f(x.y)ds represents the area of the
c

curved vertical curtain, and U(P,f) is the sum of the areas of the rectangles in
Figure 3. This sum clearly approximates the area of the curtain better and better
as P gets finer and finer,

z = ((x, y}

z4

'1-'::-:--/J

Fig. 3
Remark 3: Let [(x,y) and g(x,y) be two real valued funclions defined on a curve C,
If both the line integrals [ f(x,y)dx andf g(x,y)dy exist, then we shall denote the
5
C C

sum J f(x,y)dx + fg(x,y)dy by J’ f(x,y)dx + g(x,y)dy. Those of you who are
c c c : :

Line Integrals |n R
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Multiple Integration

samiliar with vector calcutus would recognise that

Jr(x.)})dx+g(x'.y) dy = [ (fiegg) - (9% + Ay,
C C

where 1. | are the unit vectors along the two coordinate axcs.

Now we give a theorem which identifies a large class of functions for which all the
three' types of line integrals exist. :

Theorem | : If f{(x.y) is continuous on a simple smooth curve C, then the line integrals

_If(x,y)dx, I[(x.y)dy and J f(x,y)ds exist.
c Loy [ =

As usual, we don’t expect you 10 know the proof of the above theorem.

Uptil now we have defined different types of line integrals. We have also mentioned

an important class of fungtions for which the linc integrals exist. But ail this does -

not help us in the actual evaluation of the line integrals.- We shall now show that

" for a targe number of functions the-line integrals can he expressed as ordinary
“definite integrals of real-valued functions of a singie variable. Thus, all the

techniques, you have learnt in Calculus are available to you for eveleaiing line
integrals. :
Theorem 2 : Let f{x.y) be 2 raal-valued continuous function defined on a simpie,
smooth,. positively oriented curva C given by

C = (@) a=1=b)
Then

I

1) fix,y)dx
L

I

iil) J {(x.y)dy

L.

I\l '
JJr_ fe(1), (1) )X ()t
[ @y )y (0de

-

Nl

i) }f f(x,y)ds J fx(0) (L) ) (1)de

¢ i
We know s'(1) = Jr + \;'(l_)dI

A —_—— T T
Therefore (iii) can be written ds JI f(x.y)ds = | TORIUS \"-.'\"(1)' + vty du
C .

I

We shall now use Formulus (i), (i) and {iii). mentioned in Theorem 2, o evaluaie
certain linc integrals,

i h nd . .
Example 1 : Let us evaluste J(x‘-i— v hdy, where C iy the wurve given by
-

x(t) = at®, y(1) = 2L, 9 = L 2 ',

You can chcck that the functon ftay) = Ay and the curve C sutisly the

reguirements of Theore 7 Therotore, using Formy

RPN ¥

J{:xl_:'}’;)d'r' = j SR TR LR
C il
H i.'t -'ri" ":i
R
L J(J
= 2.43 _1__ - _""'_ ' =..i§. a3
3 3] 15



The parametric equation of the curve in Example 1 actually represcnts the arc of
the parabola joining the points (0,0) and (a,2a). .

Example 2 : Let us evalvate the line integral

J‘xzdx+xy dy,

C
where C is the carve defined by x=cost, y = sint, joining the points (1,0) and (0,1).
Using Remark 3, we write '

J’xzdx-kxy dy = szdx' + Ixy dy.

c c -
Then we make use of Formulas (i) and (i) in Theorem 2 to evaluate both the
integrals on the right hand side of the above expression. Thercfore, we get

. o2 ofl
‘jxldx+xy dy = Jcoszt(—sim)dt + Jsint cost cost dt
c 0
=0

The next example illustrates the use of Formula {iti).

Example 3 : Suppose C is the curve given by the parametric equations X=1, y=-t2,

IEIsZ.Lctusﬁnde ds.
c

You can check that the function f(x,y) = x and the curve C satisfy the requirements
of Theorem 2. Therefore, by Formula (iii) in Theorem 2, we gel

2
jxds J' t V14(20)7 dt, since x’(t)=1_arid Y = 2t

C 1

2
J‘t JI1+4t2 dt

14 )
% I J1+0 d8, where 6 = 4t°
4 R

It

1
ko (146)¥? ]4

= 1 Vi_eM2
-12[1? 5 ]

Mow you can try to evaluate some line integrals on your own.

E 1) Evaluate

a) J'xy”"ds:c ={xy)]x = %, y=t*2, 0=t = 1}
C

(sinx + cosy) ds, where C is the line scgment from (0:0} to (7.27).

(Hint : You witl have to find a parametric form of the equation of this line

segment.)
Don't forget to check your answer with the one given in Sec. 14.6.

Line integrals prove useful in solving certain physical prbb_lems.

ISupposc we have a thin wire shaped in the form of a circle
x(1) = a cost, y(t} = agint,0=st=2m.

Line Integrals in R?
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Multiple Intepraticn Suppose that the density of the wire at a peint (x,y) is given by B(x,y). Can we find
the mass of the wire? '

In this case you can see that if As is the length of a small portion of 1he wire, then
the mass of this small portion is approximately equal to 8(x,y) As.

This means that in this case we can inlerpret the upper and lower sums as
approximations to the mass of the wire. Thercfore, we have that

the mass of the wirc = J'B(x.y) ds
¢

Here is an exawmple. :
Example 4 : Let us find the mass of a thin wire shaped in the form of a circle,
x(t) = a cost, y(t) = a sint, & = 1 = 27, having density 5(x,y) = 5y°.

Let us denote by C, the curve given by x(t) = a cost, y(1) = a sint, 0 =t = 27, Then

the mass of the wirc = [B(x.}) ds
c -

ht4
_ a0 I 3T
JS:; sin“t a*(cos t+sin’t} di

n

sin’tdi

I
Ln
1=
P}
S ——

- BN
a S —_ v 3
R e

1]

Apart from this application, there are many other applications of line integrals. One
of the most important ameng them is the caleulation of the work done by a force.
Let f(x.y} and g(x.y} be two real-valued continuous functions defined on a curve

C such that J’f(x.y)dx and fa{xv)dy exisi. Then we can interpret the line integral
< v

J' f(x.y)dx + g(x.y)dy as the work done by a force F = (f{x,y). g(x.y) } in moving i

T

particle along the curve C. You will be able 1o understand this after going through
the next example, Before giving the example we.shall mention one thing. For

defining the line intepral JI f{x.y)ds, we had assumed that Cis smooth. But we ean
.-

extend the definition to curves wiich are not smooih, but are piccewise smooth, A

piecewise smeoth curve C is il curve, which consists of several smoaoth curves,

C Cannnes C, joined ta each other. You can see un example of a piecewise smooth

curve in Fig. 4. For such a curve we define :

Jf(x.y)dx =5 i i{x.y)dx
C 1= 0 (_-l
[ fxyay = 3§ ey
o i é~l

Fig. 4 J-[(x,y) ds = J [(x.yds
+ =1 ¢

1
In the following example wc consider i pizcewise smoeth curve,

Example § : Let us find the work done by a force F = {xy, xy”)} in moving a particle
from (0.0) to (1,1) along the vine segmient from (0.9) 10 (1.0) followed by the line
segment fram (1,0) to (1.13.

D | i
| |



Ta find the work done we have to evaluate the line integral Line Integrals in R?

f X7y dx+xy-dy,

e
where C = C;+Ca. C, is the line segment joining (0.0) 10 (1.0) and C; is the line
segment joining {1.0) to (I.1) sce Fig. 5. Thus,

J'xzydx+xy3dy = f xydx +xy-dy+ [ X ydx+xy°dy.
t c, c,
OnC,.y=0dy =0
Thus,

[ xydx+xy'dy=0

CI
On C,, x=1 and hence dx=0. Thus,

' |
j x“y dx+xy’dy = J‘xyzdy = -%-
c, o’

Hence,

fxly dx+xy3dy = -%- -
c
You can try these exercises now.

E 2) Find the mass of a wire bent in the shape of the curve y = x* between (—2.4)
and {2.4), if its density is given by 5(x.y) = k [x].
(Hint : Here you will have to evaluate the line integral separately over the
curve from {~2,4} to (0.0) and from (0,0) to (2,4).} .

E 3) Calculate the work done by the force F given in Example 5 in moving a
particle from (0.0) to (1,1) along
a) the parabola y = X2,
b) the line y = x.

E4)  Calculate the work done by the force F = (xy. y°) in moving a particle along
a piecewise smooth curve C = .C,UC,UCWUC,.

where
C,={0a0[0=1=}
C-={nl0=1=1)
Ci={(-t1)]0=1="]}
Co= 1 {01-1)]0=1=l}

Belore we conclude this section we mention a few simple facts about line integrals

which cusity fellow [rom the definition and can be very useful in some computations ;

1) If C, and C; arc two curves such that ihe end point of C, = the initial point
of Ci. then )

[ feyyde + [ fixy)ds = [ fxay)dx,

. <. <

where Cyis the union of two paths [rom the initial point of C, to the end point
ol C?.

2) Jl' {fx.y)+a(x.y) } dx = Jff(x.y)dx + Jf'g(x.y)dx
C c C

k! Ju [{x.y)dx = uj[(x.y)dx for any real number «.
!
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Multiple Integration

4) If ] f(x.y) | =M for (x.y} on C, then

= ML,

.‘f(,)d
Ii x,y)dx

where L = the arc length of C.
Similar results hold for the other two line integrals t00.

'5) j f(x.y)dx
o

- I f(x.y)dx

. -C
, J’ f(x.y)dy = — [ f(x.y)dy
C -C ”
[ Txy)ds = = [ FCuy)ds
Jc'f(x_ y)ds _L Ix y | 5

In E 3).we had asked you (o find the work done by a force in moving a particle
along different paths connecting two given points. You musj-have got differcnt
vulues for the work done. This is # quite common occurrence. The dine integral of

a function usually depends on the curve over which it is intcgrated. But there is &

special category of (uncrions whose line integral is independent of the path chuosen

1o connect twa given points. We are going (o consider such functions in the aexi
section,

14.3 INDEPENDENCE OF PATH

In this section we shall mainly consider line integrals of the form

' j (Mdx+Ndy). where M and N ary real-valeed functions of the two variables x. v.

¢ .
In the last section we have seen that such line integrals arise while campating the
work done by a foree.

Now here is o definition,
Definition 2 ¢ Luei B bea doin in 25T far any two paints A amd Bin Do the
line intcgruil [ (Mdx-+Ndy) bas the same value for every positively ariented paith
P
Cin D joining A and B.aemn we sy thit
j (ddx + Ndiy} is indeg=ncent of pathin D. |
v .
Now we present il theorem. which identifies o class of functions F = (M.N) such 1hin
I (Mdx+Ndy) is independent of path. This theorem is abso called the
S . '
Fundamentnd Thearem for Lise Intcgrals, You will be able to note iy ubviaus

similarity with the Fandamentai Theorcm of Caleulus which vou have studicd eartier

(See Theorem 7, Unit th Coaloudued

Theorem 3 : Suppbse F = (et N s osuehn thal Moo= [N o= [, Tora cainmuo Ly
differentiable lunctivn. £, op s danin . Suppose O iy o simpie. smoath, posifively
oriented curve given by

bx = xto)oy =l e b b Ising in 1), Then

[[h-ldx-.—?‘hl_\‘] = f{B) ~ AL where

¢
A = (x(a). v(a)) and B = (x{1). viby g, nre e
respectively. |

initin and- terminal points al €.



Proof : Now
f (Mux + Ndy)
C

ff,dx + J’r, dy
C ' C

= J'f,‘ dt + ff —dl (By Theorem 2)

T
_dx dy
f [f‘ ar t f, ot ]dl

I

J' df 4 by chain rule (Theorem 2. Unit 7)

fx(r), y(t))]

Il

f(x(b). y(b)) — f(x(a), y(a))

[(B) — f(A).

Those ol you who are familiar with vector calculus would rccubmze that
fde+Ndy fv f-dr, where V1 = [, + £}

and dr = dxll\+dy_!
3o Theorem 3 tells vs that if [ is continuously differentiable, then the line integral
[ Vi dr = £(B) - KA). '

" Thus. the value of this line integral depends only on the end points of the curve C.
Therefore. if we have another simple, smooth, positively oriented curve C, joining
A and B, we will have

J’Vf-dr = J’ Vi - dr.
C C,
In other words. j\?l‘ dr = J’ {(Mdx+MNdy} is independent of path in D,
C T

The converse of Theorem 3 Is also true. In fact. we have the following theorem,
une part of which is nothing but Theorem 3.

Theorem 4 : Let F = (M, N) be continuous on a domain D. Then the line integral

f{de+Ndy) is independent of path if and only if M = L and N = T,
s
for some continuously differentiable real-valued function [ on D.

We are not going to prove this theorem here.
Now if J’ (Mdx+Ndy) is independent of path in o domain D, then what can we say
about f (Mdx+Ndy), where € is any closed curve in D7 To ;Jns;wcr this, let us

consider the closed curve C shown in Fig. 6. Take any two points A and B on C.
Call the portion of C from A to B as €y, and that from B 1o A as Cs,

Then J(M(I.\'+Ndy} f (Mdx+Ndy) + J‘(de+'Ndy)
2 . .

J(de+Ndy) - J {(Mdx+Ndy) -

z -c,

Line Integrals In R2
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Multiple Integration

Now since C, and —C, have the same initial andterminal points. and j' Mdx+Ndy

is independent of path, we have

J’ (Mdx+Ndy) = j (Mdx+Ndy).
C

1 -

This shows 1hat

il
e

f (Mdx + Ndy)
C

C

If a force F is such that F = {f,.i,) for some conlinuously differentiable function f
defined in a domain D, then F is called a conservative force. Thus, the above

discussion together with Theorem 4 shows that if F is a conservative force, then the

work done by F in moving u particle along a closed path is 0.

Let F be a conservative force given by F = ({,.[,). Then we have

aM _ 9 = - : Ty i
3y oy (f) = fy = fjysincefis continuously differcntiable.
aN
[£34

Conversely, w= can also use this condition to check whether a force i5 CONSETViive

or not.

But to be able to do this, we have to put an additional constraint on the domain D:
We assume that D is simply connected. Now what is a simply connecled domain?

Roughly speaking. @ domain D is simply connecled if it has no holes inat, Fur
cxample the domain shown in Fig. 7 is not simply connected. This meuans we avoid

the type-of domain shown in Fig. 7. Here is the precise definition:

Drefinition X : A domain D in R? is said to be simply connected if cvery smooth

closed curve in D. which does not intersect itseif, is the boundary of a region

contained entirely in [

The interiar of a rectangle. the region bounded by the lines y=3 2nd y=b,a>b are

examples of simply connected domains.

Now we siate a lheorein (without proaf) which' gives u method of identifying

conservative forces,

Theorem 5 : Suppose F = (M,N}. where M. N are continuously differentiable on a
cimply connected domain D Fis conservative, i.e. . F = 91 = (f,. £). il and only if

aM . aN
Gy ox

This theorem logether with Theorem 3 s very useful in evaluating the iine integral

J' Mdx+Ndy. We shall illustrate this in the following exampie.
C

Example 6 : Letus evaluate | {v sinxy dx + x sinxy dy), where Cis the line segment

FICHS

from (1.2} to {(3.4).

Here W - vosinny and N = % sinxy.
. : N
C8M oy cosxy 4 sinxy = 22
ay . ’ ox
Tiis shows that £ = (M, N} is comervative {Theoram 5} Therefore. by

J‘ {vsinxydx +xsinxydy) = (3.4) - f(i.2).
]
where [ is such that F = VL.

Thereiore, (o cvabuale the fine integral we have to find [

v Thuorem 3



Now we know that Line Integrals in R?

[, = M = ysinxy and
fp=N=xsinxy (3)
L= fl',dx = J‘ ysinkydx = —cosxy <+ (y), e (4)

wherc & is some function of y.
Diflerentiating both sides of Equation (4) w.r.t. y. we get
f, = xsinxy + $'(y).
[f you compare this with (3), you wiil see that &'(y) = 0.
..o flx,v) = — cossy + a constant,
This gives us

J' (y sinxv dx + x sinxy dy) = cos 2—cos 12,
o

See if vou can do these exercises now.

E 5)  Apply Theorem 3 to decide which of the following functions are conservative.
a) F = {y+cosx. x—1}
b) F = (2ye®, yie9)
E 6) 1f possible, find a function f such that
F = (3x*+9x°y%. 6x'y+6y") = Vi
E 7) Show that the following line integral is independent of path, and evaluate it

(1)
(y'+2xy)dx + (x*+2xy)dy.

(=1.2)

ij now you have become quite familiar with line integrals. In the next scction we

shall discuss an important theorem. This theorem brings out the connection between

the line integral on a ‘closed curve € and the double integral over D. where D is .
the region enctosed by C. provided D and C satisfy certain requirements.

14.4 GREEN’S THEOREM

Green's thearem is ane of the major thearems al calculus, und has wide application
in physics. In facl. it arose during the stady of gravitational and electric polential.
It is named after the English mathematician and physicist. George Green
(1793-1341}. who discovered it around 1828.

Here we shall prove Green's theorem for a special type of regiens and then indicate.
how it can be extended to other more peneral regions.

You may recall that we have described different tvpes of vegions (Type [ Type 11,

both Type I and Type {I) in Unit 11 and discussed double integration over these 4
regions. Now we shalt state and prave Green's Theorem for regions which are of
both Type I and Type [,

Theorem 7 {Green's Theorem) : Lct D be a region which is of both Tvpe [ and

Type 1. Let C denate its boundary, oriented in the anu-clockwise sense, t.e., when

o I Y Sy T e Y T T T
LLR |”0"’C ﬂlulls ey Ll JLE'II)II [V TLF IS R WY 1 ST

D
ke

D
o

Let Poand 3 have continuous partial derivatives m 1 and on O Then
p

1 C, 1
] |
D No— i f{.aQ __ 8P} , = I
J{de+0d)} ” ( % oy )dx dy. ! ]
- > . ! .
Proat : Since D i of Type 1. it is like the region shown in Fig, 8. Lot &) 4 b x
D={(xy)a=x=b ¢{x) =y S dy(x) } © Fig. 8

Note the orientation of C.

C consists of four arcs. C,, C;, C; and C,.



Multiple Integration

Fiz. 9

g6

Out of these, C; or C,, (or both) could be dcgcn;:ratc.

Now Ide =dex +dex +-j Pdx +f Pdx.
c T T, c, c, .
You can see that C; and C; are parallel to the y-axis. Therefore, x is a constant on

both these curves and thereby dx = 0. This means

Pdx = | Pdx = 0.
L

Thus.

Pdx = P'd Pd
l X i‘ x+£‘ x

Elow C, is the curve given by ¢(x). a2 = x < b and C, is the curve given by by(x]),
=X = a.

Ide = fhP(x._d:,(x)}dx + flP(x,<b2(x)) dx,

[ 3]

4]
= _f [P(x.da(x}) — P(x. dy(x))] dx

b Balx)
= — P
5y dy ]dx
a b (x)
- _ [P .
= ff ay dxdy v et eeaan (5)
D

Now D is also of Type Il. Therelore, following cxactly similar steps we can prove
that- -

IC.)(Iy = [ J'—g? dedy 0 L e ..(6)
c D
Combiniﬁg (5) and (6} we pel _
: i(de +0dy) = fuf [-':—,9 —-% ]dxdy. S— Q)

where D is a region of Type 1 and Type [1.

We can casily extend this to lhose regions. which can be expressed as the union of

a number of regions which are of bath of Type T and Type [1. For example, consider
the region in Fig. 9. We can wrile it as lhe union of D), Dz and D;. and cach of
these is a region of both Type I and Type 1. Here we have (o b€ careful about the
oricntation_given (o 1the comman boundaries. Remember, that the orientation
should be such that when you walk along the curve in the positjve direction, the
enclosed region should always be to your left (see Fig. 10). You will sce that if we
add the line integrals on the baundaries of I, Dy and Dy, the Jine integrals on




the common boundarics of these regions will cancel out. Thus. we will be left with Line Integrals in I
the lne integeal on the boundary of D,

Here we would also like to mention that Green's Theorem also holds for regions
with one or more holes. Again we have to be careful abaut fixing the arientations
of the various curves involved. See Fig. 11 Cheek that when you walk along any
curve in the positive direction, the region of our interest is o your left. Sometlimes
ling integrals can be casily evaluated by using Green's theorem. Here is an cxample
to illustrate this,

Example 7 : Suppuse C is the houndary of the square shown in Fig. 12. Let us’
evaluate

Jl (x*y dy + 2x°y dy).

. t . “.J
By Green's theorem we get
j(x:_v dx + Xx*vdy) = j I [—fﬁ- (2xy) - Tﬂy (x%y) ] dxdy
0 13
I
= J f (Hx‘y — x%) dxdy
| | R O > 1 >
- | “unx*y—x-) dx ]dy X
] 1]
’ b 12

1 . 3 9t
=J' [Ex'y—i‘j—] dy ’
1]

H

[oy -39y
n

2

3-
Green's theorem enables us to find the area of those regions for which Green's
theorem halds. Let D be a region for which Green’s theorem holds and let C denote
its houndary. .

1f we tuke P = —y and Q = x in (7}, we get

i(de+Ody} = i(xdy—ydx) =Jnj [Ld? _r;;l;’ }dxdy

= 2 J’D J dxdy.

Therefore, I de dy = —é J‘ (xdy-ydx) .
D c )

Now the left hand side of (8) gives the area A of the region D. So we get
A= -%— f (xdy-yd, .

A
where A is the area of the region enclosed by C.
Thus, using Green's theprem, we could express the area of those regions for which
Green’s thearem holds, as a line integral over the boundary. ~
We now usc Formula (9) to find the area enclosed by an ellipse.
¥

a" b.!
The parametric equations of C can be written as

Example 8 : Let C be the ellipse

X = acost,y=bsinl, 0 =1 = 27
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Multiple Integration

V'

Therefore, the area enclosed by this cllipse is

=L -
A—2 I(xdy ydx)
c
S -
—Zf(mdldl y5 dy
1]

= El f (u cost . b cost + b sim . a sint) dt

0

= abnr.

See if you can do the following excrcises now.

98

—

E 8) Evaluate J’(4x3ydx + 2ydy), where Cis the boundary of the triangle shown
c

alangside, by
a) the direct method
b) using Green's theorem

E 9) Use Green's theorem 1o evaluate

X'+ 2y) dx + (4x—3y7 dy, where C is the cllipse :
¥ ) } P

c ) -l
L R Y
as  b?
E 10} Find the arcz of the astroid : x = a cos'l,y=asin'l,0=<[= 27 by using
Formula (9. '

This brings us to the end of this unit, this black and aiso of this course. Throughout
this course we have discussed various theorems and proved some of them. Though
our main cmphasis was on 1he application of these theorems, their proofs are also
important. So we suggest that you carefilly study the proofs af the theorems given

in this course. You may be asked to reproduce some of those in your term-end
examination.

Let us now summarise the paints covered in this unit.

14.5 SUMMARY

In this unit we have
1) defined three line integrils Jf fdx, J" {dy, J fds,
C c C
2) described the evaluation of line integrals using definite integrals. IfF 1 is a

real-valued continuans fun~rion cefined nn a posirively arianted, simple, smooth
curve - )
C = {(x{t}. y(t)) | 1 € [2,b]}, then
b
If(x.y) dx = jf(x(l)._\r'(l))x'(l)dl
C il
b
[fxw)dy = [fx(050)y (ot
(o u
and



4)

)

fr(x.y) ds = Tf(x(l).y(l)} « XY () de Line Iutegrals in R}
C a

derived expressions for the mass of a thin wire 2 vk don WL

lerms of line integrals,

defined conservative forees and developed a crilerion (0 identily conservative

forces .

F = (M.N) is conservative if M = [, and N = {, for some continnously

differentiable functicn, f, defined in a domain D, F = (M,N) is conservative on
d

a simply connected domain D if i

stated and proved Green's theorem for regions which are of both Type I and

Type 11 :

[ (Pax + Qay) = [ [ia?‘ - -g% ]dxdy. where D is a region of both
IS o

Type I and Type 11, C is the bounaary of D, oricnied anticlockwise, P and Q
have continuous partial derivatives in D and on C.

14.6 SOLUTIONS AND ANSWERS

E 1) a) [xy:"s ds
C

r
=]
p—
>
'l
—
A
|
-
|
a b
t
-
L
Tw
[al
7]
2
3
2,
ot
«
L7
i
=
[
n
i
-1
<
"
L]
I:
o
(]
1
b3
I
>

2

n

I_[_ (1¥?H)¥* 11 4. 250
f y4 4

I'I’.z 1250 dt

Qa

1
= - [ 752 JI+25¢ di

.

380
il
5 I
L2 L a5ty
=5 300 ) ]“
C L et
= g @61,

b} The line segment from (0,0) to (7, 27} is given by
x=1, y=21, 0 = = 7.

j(sinx + cosy) ds = f(sinl+c052|) S
< [t

== .,/?Jr'(sini-kws?.l) di

[

=2 /5.

bl

[l
3

-

1 2 ———
—I Kt  1+dU dl + J k1 i-edt dt
-2 1]

Bl

Il

%(17\/W— i)
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Multiple Integration E3)a) C:x=t,y=t3, 0=t =1,

.". Work done = Ixzy dx + xy“dy
C

1 . 1
= {t'de+2 [ %
J't t+ !t t

+

il
"..nl-—l o
~2jeo

—
-1

i

¢
L]

I

b)) Cix=t,y=t,0=1=1

) 1 1
Work done = j d+2 f:’ dt
1] o
=1
5
E 4) J xy dx+y’dy = J‘ xy dx + y'dy + f xy dx + y* dy.
- C c (o

] F)

.+fxydx+y:dy +f xy dx + y= dy.
c, c,
Nowjxydx+y2dy_=0.
c, .

J’ xydx + y'dy = f t*de, since x = 1, and hence dx = 0.

C:' 0
_ —1
2
R A
] xydi+y'dy = = (1-1) d, since dx = —dt and dy = 0.
C, 3
—
5.
I ! -
j xyds +ydy = — ]’ {1~-t)“dt, since dx=0 and dy= ~dl
c, ) i :
S
3

" [xydx+y2dy = ==,

C.
E5) a) M = y+cosx, N = x—|
aM _ 8N _
ay 'ax '
coaM L aN
Tody - Ax

.. T s conservative.
v} F is not conseralive.
E6) % = 18x, 43.% = 18x%
.. F is conservative and it is possible to find f su¢h that
F={MN) = (f,.f,).
3 b

Now f, =_of 4 + 957y,
x.
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e B AR . &
= f (4x -+ 0x"y7) dx

Line Integrals in 3¢

= x'+3y +4(y). where ¢ 35 sorae function of y.
L= 6 + $(y) = 6x'y 6y
Lb(y) = 6y
"~ d(y) = y*. {We don't have to consider the constznt of integration)
= x*+3x"y?+y® is such that
F = Vi
E7) M = y'+2xy, N = x*+2xy.
aM - _ = 9N
'—67 = 2y+2x = ax

*. There exists f such that (M,N) = ({,.[,)

Nowf, =y +2xy =» [ = f (y*+2xy)dx

= yx+xy+o(y).
= f, = 2xy+x2+¢'(y) = X°42xy.
= ¢’ (y} = 0. => ¢(y) = some constant.
. f = y*+x%y (We can ignore the constanl.} is such ‘that (M,N) = VL.
. The given line integral is independent of path.

(3.0
(y*+2xy) dx+(F+2xy) dy = £(3,1) — f(=1.)

- [2+2 '

14

E 8) a) See the figure alongside E 8).
On C,, y=2x.

|
" j 4x’ydx+2y dy = j(s;-‘+8x) dx = 6.

g, D
On Ci, dy = 0.
J X’y dx+2ydy = —%

.‘

dx=0onCy .. J axPydxr2ydy = -

c‘
. j4xzydx + 2ydy = "32.

b) By Green's theorem,

ax?y dx + 2y dy = (0—4x7} dx dy,
ixyx}-jy JDJ' X ¥

wrthara I ic tha chadad reinamidar ranina - 0.2 2 <2 | 20 = v = 2,
where D is the shaded wriangular ropion 1 0 x I, 2 b
1 p
A ! i
Nou.'J' [ —4x7y dx dy = f [ [ —acdy 1 5
4 . 4 1
D 4] '
-
—_ —_— L
R

E9) Here'P = X'+2y, Q = dx--3y°

ﬂ —_iE_ = 4=2 = 3.
ax ay -



Multiple Integratlon

o_.102

T

o J’(x3+zy) dx + (d4x--3y%) dy = [ jz dx dy,

E 10)

. C D
where D is the region enclased by the ellipse

*. The given integral = 2 . area enclosed by C
= 2mab.

A = 4 [ xdy — ydx.

a cos’t(3asin’tcost)dt + asin’t(3acos™tsint) -dt

I
!
!

2
da I sin’t cos’t dt

[=]
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INTRODUCTION

In this note wl'e will briefly describe the contents of this video programme. We hope
that through tsis visual medium you will get a better understanding of lower and upper
product sums Jeading 1o the concept of double integration. During the programme
we ask you lo note down some exercises and to do them after seeing the programme..
We will [ist those exercises here, and also give the answers.

PROGRAMME SUMMARY

This programme is based on Unil 11 in Block 4, We start by recalling lower and upper
product sums and the definition of the definite intcgral of a function from [a,b}—>R.
Then we talk about these concepts for a reat-valued function of two variables defined
on a rectangle. The need to extend the definition of double integral to non-rectangular
regions is then discussed. We also give some practical applications of double integrals.

During the programme we have suggested that you try the following exercises.

EXERCISES
E1) Express the following quantities as double integrals. ' \

a) A designer designs a pcrfume bottle, It hasa reclangular basc 4cmx3 cm. Its
.cross-section is a parabola given by {(x,y)=—y’+4y. How much perfume can
this bottle contain?

b) The production function of a [actory is gWer: by p(x.y)= 500x2y£' whe:re X is
the number of persons employed and y is the amount of rupees spent (in
thousands). What will be the average preduction if 10=x=50 and 20 =y=40.

EZ2) Find the quantities required in E1) by using repeated integrals.
ANSWERS

4 I’J
ED a) | | (—y* + 4y) dydx o
oo

b} Towal production = J J SOOx,I_ysdydx
1020-

Tolal preduction
{50 — 10) (40 — 20)

¢) Average production =

E2) a) [ [ (=y* + 4y)dydx = [§ [ (7 + avdylas
{3 0 f

T8t
JI ‘J+2y}dx

0

_-l
= j 9dx
1]
=36
103 |



Multiple Integration

104

o4

Total production = j[ ISOley"dy]dx

w X

S gqdn
= 500 sz 39—] dx
1 2n
! S0

300 (40 — 20" ['x* ox
9 Hil

3H)

> (4 - 20% (50° - 10%

Average production —2-%6 (40" — 20%) (50° - 10%)
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34
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10

27

E R T~
MTE-07 Black-3

Yiaala ne

fopth) = 3 f'(:~:ﬂ)%:— P

=il
o K-
......... -I“.l-l'l'
L+)=in . . ""'.'f
= % 3 T
TtV = % Ty [k o o) |
K}
...... of one variable
..... =%
Iy oy
1y
""" T S
JxE+y?
FE(xgn¥y)
----- + 2 —‘ﬁyi {(x—Xu) (y=vyo)
..... = 2 “) (x—
m-al)

Pyiy) = Paly) + (x=1) + (y=1) and
Py} = Pa(,y), m23
I(:‘:.‘,r =2 cas (o) + e

The point is (1,1).

DXYZ) | F i
FERD) | s

gxy) = ya w007

Al the matrix sizes, | ) shouid be reptaced by
determinazi sizos, |1

I aF,  aF,  aF, |
:-.1_L_ —— ——
T X5
1A - e o
. i u__{ ?i.'; dg
X :{B[:{) [ 5:‘5_-‘::'_ '5;;' 5:3
_"JF 3F1 aF;
I HJ“.’: I
| 3 2. -1
..... = l -2 1 =}
IxbEy—2z 2% =X
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Multiple I i& gration

106

58

63

63

ri|
76
79

80

13

Replace the matrix if [ ] by the
determinant sign |

(YY)

(f2+1) (1+y%H)*

_ —y!x: 1%
Ty -xiy
..... x e [-1, 1]

neighbourhood of L.

0=1x"—a% .. ...
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