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MODERN PHYSICS

So far your smdy of physics has been restricted to the classical domain — the laws of nalure
that you have studied are the laws of classical physics. This means that you have sudied
physical phenomena in the macroscopic world, and in particuler, their gross [eatures. For
cxample, using these laws, the motion of a macroscopic sysiem conq:su:ng of pulleys,
{lywheels, levers, etc. can be described if the relevant paramelers, viz”, the density and
modulys of elasticity of the material are given. However, if you ask why the densities and
clastic constanis have the values they have, the laws of classical physics are silent.
Similarly, if we wish to know why sodium vapour emils yellow light, what makes the sun
shine, why the uranium nucleus disintegrates spontaneously or what happens when objects
uravel ar speeds close to the speed of light, classical physics does not provide us the answess.
We then turn 10 new areas of kmowledge, namely, the special theory of relativity, quantum
mechanics and nuclear physics. These areas of physics embody concepts which are foreign
(o our everyday experience. They are the most remarkable intellectual creations of the early
twenticth century physics,

Through this course on Modem Physics we extend you an invitation 1 join us in an
adventure of the mind. We promise to take you on a guided tour of these areas which can be
regarded as the fundamental concepiual struchmes of twentieth century physics. The going
may be a little tough but the rewards will be nch intellectnally stimulating and deeply
salisfying!

To give you a glimpse of the intelleciual *feast’ awaiting you, we recount here an agveniure
of Mr. Tompkins, the hero of Gearge Gamow's book entiled Mr, Tompkins in Wonderland,
George Gamow is 2 well- known physicist of 1his cmmnr Hc was a proponent of the Big
Bang theory of the origin of the universe.

" tvir. Cyril George Henry Tompkins, after listening 16 a popular lecture on the theory of
rclativity, dreams of a visit to a fantastic city in which the speed of light is orly 25 km b1,

- What does he observe there? At first, nothing unusual seems 1o happen around him—a
policeman standing 6n the comer looks as policemen usually do! The streeis are nearly
emply. But when a cyclist coming down the swreet approaches Mr. Tompking, he is
absolutely astonished. For, the bicycle and the man on it appear unbelicvably flatteded
him. When the clock strikes twelve, the cyclist, who seems to be in a hurry, pedals harder.
Though he does not gain much in specd, he appears flattenced even more. Mr. Tompkins
decides 1o overtake the cyclist and ask him about it. He borrows a bicycle and pedals on it
hoping 10 get flaucned. But amazingly, nothing happens 1o him. Insiead, the piclure around
him changes completely. The sireets grow shorter, the windows of the shops bepin o leok
like narrow slits and the policeman on the comer becomes the thinnest man he had ever seen!

What a lopsytrvy world Mr. Tomnkins visits in his dreams! And what weird experiences he
has! We are suce you witl be interested in finding an explanation for thess happenings in Mr.
Tompkins® dream world. This course will help you do so. We hope you enfoy sudying this
course and wish you good luck.



BLOCK 1 THE SPECIAL THEORY O
RELATTVITY i

Albert Einstein (1877-1955)

What s it that you think of when you hear or see the word relativity? The name of Albert
Einsicin? Or the cquation E'= mc2? Or 2 vision of astronauts who return young from their
trips 10 space lasting. many years? This signifies the enormous intellectual impact{cven after
almost 2 hundred years) of what Einstein called his special theory of relativity. The
development of this theory is rightly regarded as one of the grealest strides ever made in our
way of undersianding the physical world. And yet the basic concept of relativity is as old as
the mechanics of Galilco and Newton. So what did Einsicin do o make his name almost
synonymous with relativity?

At the beginning of the twediieth century, two great and beauliiul theories were known in the
physical scicnces ~ Newtonian mechanics and Maxwell’s electrodynamics. Both of them
gave a untfied cxplanation of countless physical phenomena. These theorics were expressed
in concise mathematical ianguage within & cenain conceptoat framewesk. Yoo have studied
both these theorics in Block 1 of PHE-GT (Elementacy Mechanics) and Block 4 of PHE-O7
(Elecrric and Magnetic Phenomena), respectively. You have also leamt of the NUMErous
applications of th:sc theories. Both theories have been confirmed many a times; and they
have been extraordinarily successful in their predictions. And yet these two theories were
conceptially in contradiciion with one another!

What was ihis contradiction? Unit 1 of this block cxplains it as well as the dilemma which
occupied the best minds of the tine in the physical sciences. How was this contradiction
resolved? Its rolution was provided by none other than Albest Rinstain, He rzsolved the
conmadictions as he saw then and formalated a new theary based on two new principles.
These two principins led Binsicin io a new view of space and fme about which you will
Siudty i Uni 2, Nawraiiy, a radically new altiude to the notions of space and time yegited
in changes in well-established areas of physics. n Unit 3, we shal! discuss the new
mechanics that replaced Newionian meshanics as a sosult of thess changes,

Wial we had, m cffect, was an Einsteinian sevolusion. Iis impact far exceeds that of the
Copemicarn revolution and has rarely been equalied in the history of paysics. We have tried
our best 1o bring 10 you the beauty and logic of the special theory of relativity, We hope that
you will appreciate and enjoy studying it as much as we did presenting it We wish you good
luck, -
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1.1 INTRODUCTION

- You have studicd Newgonian mechanics in your schoo! science coursss and in yoor first
pbysics eleclive entitled ‘Elementary Mechanics’ (PHE-01). You are familiar with the
concept of inertial frames of reference. You know thal Newton's laws of motion are the
samc in all inenial frames of reference. You must have :ecogmzed the valld.lty of this
statemént in everyday life. An object moves in the same way in'a uniformly raoving train
or an aeroplanc as it docs on carth. For instance, when you walk; drop'a ‘coin or throw e ball
up in the air while riding in such a train or acroplane, the bodies move just as they do on
carth. Both Galileo and Newlon were deeply aware of this principle that the laws of
mechanics are the same in all inenial relerence frames; this is the classical prineipte of
relativity, So the classical rotion of relalivity is not now 1o you, TTowever, you have not
encountered ihis wmitnology before. Therefore, we shall begin this wnit with a briel noview of
the classi¢al notion of relativity as embodied in the works of Galileo and Newton.

You krow Ihal Newionian Machanics was highly sucecssful in describing motion in the
world of our everyday cxpericnces. Then why did the need ansz for re-czamining
Newtonian mechanics and the notion of relativity il contained? The need arose when the
classical principle of relativity was applicd o the propagation of electromagmetic waves
and Lhat led 10 cenain inconsisicncics. In Sce. 1.3, you will leam about some of these
inconsistencies and (ind that the Newtonian relativistic world view could not casily
incomernate the laws of clectromagnetism. The queston is: What replaced it? It was
reptaced by a radicalty different way of undermstunding the world when, in 1905, Albert
Einsicin proposed his special theory of relativity. In the iasi section (1.4) of this umit you
will study the main feawres of this theory,

tn brief, whart we inend 1o ay r thie unit ig thic: Biasloin wac not tho fOrer o intoodo

A narduch

relativistic notons in physics. Wha he did was to generalise the classical netion of
relativity {applicable enly 10 mechanics) te 2 physica! rhernmena Althansh we will go into
some detail of the b\"lCl‘_."_;'""‘J"‘"[ in which Finuein's srecial relativity f::r‘ubcd ! ot
necessarily be a hisworical description. We will simply bripg out the faciors which induced
scientisis 10 change Wholr coacepis in 50 radical 2 mannar 1n this process we nans that you wilt
D 2Uie Wy appraciaic 2nd understant e special theory of reiadvicy much beacr.

In the next unit, you will leam about the consequences of the special theory of reladvity.

In particutar, you will understand in what way special clativity ailered ihe established
notions of spacc and time.

“What [ see in Malere it a
magnificent struziure which we
can cemprehend only very
imperfectly, and tha mun Gl o
thinking person with & fecling <f

hasenhigy

- Alken Eineteiz, 194448
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hean Wdiscussed w e, What we
have said there lor inerial
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Objectives
After studying this unil you should be zble to

@ use the Galilean coordinate transformations to describe events in different inertial
frames of reference :

© explain the Galilean principle of relativity and state why it became DECESSAry (o
peneralise it

®  state the postulates of special theory of relativity

@ apply the principle of relativity to physical phenomena

'y comparemcnauucoflimcinclamicalrehﬁvityandlhcspednllheowoﬁalaﬁvity.
Stody Guide

This unit presents the background ont of which the special theory of relativity emerged.
Therefore, we shall be using many concepts and ideas from our earlier physics courses,
We strongly advise you (0 go through the Block 1 of PHE-01 (Elementary Mechanics),
Block 4 of PHE-07 (Electric and Magnetic Phenomens) and Block 2 of PHE-09 {Optics)
before siudying this unit. It will help you in understianding the ideas presented in Sec. 1.2

and 1.3 better, and in less time. fn our estimate, you shoald take abonat 6 to Th 1o complete
this unit

1.2 CLASSICAL RELATIVITY

You have swdied the concepis of inertial frames of reference and relative motion in Unit 1
of PHE-0L. You arc familiar with the relationship between the velocity end acceleration of
an object measwred with respect o two inertial frames in uniform relative motion. You
have also studied the laws of Newtonisn Mechanics in Unit 2 of PHE01. Here we shall
use these concepls (o explain briefly the notion of classical or Galilean relativity,

lct us begin by considering a physical event. An idealised version of an event is that
it 15 something that happens at a point in space and at an instant in time. While
discussing the theory of relativity, Einstein often used this dramatic example of an
cveni—lighining strikes the ground. A small explosion is an equally dramatic ever:.

You can think of several other examples of an cveat. There are two basic questons
that we can ask about any evenu ’

S¥here did it take place?
When did it ke place?

How do we answer these questions? As 'you are well aware, we specify an event by four
WEasUramens in a particular frame of reference — three for 152 posttion and one for the
tame 1. We usually fix the position of tre event by the Cartesian coordinates {x, 5, 2). You
have used the Cartesian coordinate system quite often in your physics elective courses. For
example, two particles may collide at x = Im, ¥=2m, z = 3m and at time ¢ = 4s in onc -
frame of reference such as a laboratory on the carth. Then the four numbers (1,2,3,4)

specily ihe event in that reference frame: the first three numbers specify its position and
the fourth the time a1 which it occurred.

Thus, we must Hirst establish a frame of reference to accuralcly describc where and when
an eveat happeas, You Koow that for. desoribing an evenl we are free 10 use any {rame of
refence we wish. In this course we shall restrict our study to whal are called inertial

el e o I o
PerCFPRee franres, Recall that

A el frane is & frame of refesence in which Newton’s first law holds truc.
So tn an inertiat frame of reference, objecis at rest remain at rest and objcels moving
uriformly in a straight line coniinue 10 do so, unless acted upon by a net external force.
Frum Uis concept you can readily conclude that

Any [rame thal moves with constant velocity refative to an inertial frame is alko an
inertial frame.
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reference before studying fartber? If o, try the following SAQ. : Relativlty

>AQ1 Spend

Zsrin

Classify the following frames ol .reference us inertial 2n.t s
are not incrtial). The frmmes attached 10

SMl-eriind 4., rames witick

a) acarin circular motion

b) spaccships cruising uniformly

o) an clectron aecelerating in an electric fickd 1 7

d» .a boal IMovINg &t & CONSEN specd in ¢ Laei tees il bt

21 an apple at rest on a fixed whle in your rouni.

- B

Suppose now that we have made space and time measurements describing an event in one
inextial frame of reference. We want 0 describe the sw.ne event in anolher inertial frame
of reference, For example, consider the following evenl. A boy throws a ball vertically
upwands in a {rain moving at a uniform velocity with respect (o the gromnd. In the frame
of refezence antached to the train, the ball goes straight up and comes down along the
same path. Now how do we describe the ball’s motion in another framie of reference
attached 1o the ground?

We can use the Galilean coardinate transformations to describe an event in different
inerial frames of reference. Let us briefly study the Galilean coordinate transformations.

12.1 Galilean Coordinate Transf~rmations

Ct_m.idcr an inerial frame § and another frariic §° which moves at a constant velocity u

" with respect 1o J (Fig.- 1.1). We define the x-axis (and the x"-axis} to be along the direction
of motion. We assume the other two axes (y, 2} and {¥'.z") to be parallel to each other —
y paraile] 0 ¥ and z parallel 1o 2. Further, we define the origin of time, r= 0, to be the
instant when the origins of the two coordinate sysiems coincide, i.c., when point O
coincides with 0,

Ay Y
) s
- X P
_h_ u
(o] x o’ =
uw s I' -

o~
Fig.1.1: Mwo Inerual frames of reference S and 57 5° moves wilh 8 constant velocity b (= u i ) with

retpect 1o § 5o that the x-x' xxls ks common ond Lhe -y, 22" axes are parald. As &2o from
frame 5°, § moves with a velodty —u, Le, at & speed & In the oegative r dlrection. Polnt
P represmts kn event whose spece-time coordInates can be messured by ohseRrs In &
acd 5% The cilgins O and T colncdde ai Ume &< and =g Yeu can oo thto -2 oy,
Yeypand =1L

Suppose that an event E occurs at point P. Let us assume that any measurement in the wo
frames of reference are being made by observers who have jointly calibrated their metre

e L SR
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obwvu'aumhedtoS’specil‘mthesamecvmlbyx’.)f.z'aud(.'l'hccmmmnms(x.y.z)
givemeposil.ionol’PrelaﬁveloOasmeasmedbyobsavaSandrislhcﬁmealwhichE
occurs as recorded by the clock of S. The coordinates (x”,y,2") give the position of P with
respect 10 O and ¢ is the time at which E occurs according to the clock of 5. For
simpljcily.meducksofmchobwvumdwomﬂwinstmtﬂm&mmigimomaof
the frames S and §” coincide.

Whal is the relationship between (x, , 2, i) and (¢',y".2' /)? The Galilean coordinate
transformation (sec Fig. 1.1) relaies these measurements as follows:

Y=x-uw

Y=y (1.1)

We can write the generalized Galilean transformation in vector notation as follows:

v=r-ur (1.22)
r=t (1.2b)

wherg, r ic the posftion vector of Pin § and r’ in §*. Under our simplifying assumptions
u = ui, and Egs. (1.2a, b) reduce 1o Egs. (1.1). '

Differentiating Eq. (1.2a) with respect 10 ¢ gives

dr’ E—t| =v¥-u
4 T di -
. dr’ ar
Butsmcel-r'.dt = d‘,_v‘.Hence.wcget
vV = v-g . (1.33)

Diffcrentiating Eq. (13a) with respect to £ and using Eq. (1.2b} we get

A" = a, since u is constant, (1.ob)
The cquation of motion is then given as-

ma= ma=F (1.48)
This mears wnat we obtain the same law of motion in the ‘rame §* as in the frame §.

In relation o Eq. (1.4) we would like to ask another question. How does the force F
transform when we go from one frame 10 anoiher? You know that forces considercd in
mechanics depend either on distance (gravitalional forces, clastic forces) or on relative
velocity (friction forces) and on time interval. So let us find out how Wdistance, relative
velocity and a time mteival change under the Galilean coordinate transformations.

Supposc we investigale two objects P and Q. Let the foree of their intesaction depend on (ie
distance between them. their relative velocity and time. From Egs. (1.1) we can at once see
thon *he dstance between P and O, measured at the same instant is the same in § and $":

x'p ‘*""Q"-‘P — X ¥p _)"Q = Y.~ ¥g. ZP'_ZQ'zzP'_ZQ
or in veclor nolation '
Ir’F - r‘Q = rp — rQ . ] (153)

On differentizing Eq. (1.52} with respect @0 ime we find thai ibe relative velocily of P
Wilh respoct 9 2 rernaing the same in both the frames of roluence.

Vp - Vg = v =V, (1.5b)

Remember that in arriving at Eq. (1.5b) we have also used the fact that Galilean
lransformation docs not change time and so also the time interval beiween any two evenls
say A, and B: ’



p=0p =8, — 14 o 0_'6) Emmu:m,
Hence, we can conclude that forces occurring in mechanics, thal depend on time
intervals, distance and relative velocity, do not change under the Galilean
transformation. We say that forces remain invariant gnder Galilean transformation.
Thus, all the quantities appearing.in Bq. (1.4) do oot change gnder the Galilean
uransformation. Therefore, the fundamental equation of classical mechanics — Newton's
second law — has the same form in a stationary frame § &s in a frame §* moving with
constant velocity with respect to S, With this information at our command, we are now
ready 10 present the classical principle of relativity. It is also calied the Galilean
prieciple of relativity, since it was Galileo who first enunciated it, althoagh its- -
mathematicat basis given above was provided only iater by Tsaac Newton

1.2.2 Galilean Principle of Relativily

Eqs, (15a and b) and (1.6) tell us that according to the Galilean transformations the time
interval, space interval (distance) and relative velocity measurements and hence the force
law in mechanics is the same in all inertial frames. The relative velocity of the frames can
_be arbitrary and does not affect these results. Implicit in Eq. (1.4) is the basic postulate of
classical mechanics that the mass of a body is constant, i.e., it is 2n invariant quantity.

So what do Newtonian mechanics and Galilean transformation put together imply? The
length, mass and time — the three basic quantities in mechanics — as well as forces (which
depend upon time interval, space interval and relative velocity) are independent of the
rclative motion of an mertial cbserver. The laws of mechanics hold good in all inenial
frames of reference. Thus, we amrive at the classical or Galilean principle of relativity:

The laws of mechanics can be written in the same form in al! inertial frames. If
they hold in one inertial frame, they will also hold in all other inertial frames.

It is a limited principle of relativity in 1hat it applies to only the laws of mechanics. Let us
‘undersiand with the help of a simple example what the Galilean principle of relativity
means. Suppose you are in a car which is moving at a constant speed and you cannot
look out. Then to you, all mechanical experimenis performed and ali mechanical
phenomena occurring in the car will appear the same as if the car were nol moving, For
instance, a ball thrown vertically upwards will always fall down along the same path.

No mechanical experiment performed in the car could help you deiermine whether it was
moving uniformly or was at rest provided, of course, you did not ook out This is what
we mean when we say that if the lews of mechonics are wee in one inertia! frame of
reierence, they will be truc and of the same form in any other inertial frame as well. Thus,
as far as mechanics is concemed there is no preferred inertial frame of reference in
which zlone the classical laws hava the most basic form. Therefore, there is na
absolute frame of reference.

You may like to pause for a *vhile and find out wheiher you have vnderstood these ideas.
Try the following SAQ.

Rafy 2 Wt

14

a1 ixes the Taet that By, (1.4) is invariant under Gatilean ransformaion mean thag atl
inarnal ohservers will measure the sarwe values foe the position. time, velecity, ene -,
aid momgeittum corresponding 10 an event?

i A Ui laws of conservation ol linear momientum and energy invariant under Gulilean
Linslcrmation?

An interesting aspect of the classical principle of relativity pertains to the natwre of space
and time. And we would like you to know about it,

Absolute Space and Absolute Time

You have just swdied that according o Newtonian mechanics and Galilean relativity, the
measurements of length (relative position), mass, time and their relationship are
independent of the relalive motion of an inertial observer. They do not depend on which

- —wr—————e
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happen as lime passes. Once again we quote Newlon: "Absolute, true and mathematical
time, of itse!f, and from’its own nature, flows equably without relation 10 anything
exiernal, and is otherwise called duration®,

Thus, in Newlon's world-view Space and time are things external in Telation 10 nature,
Funbher, there is no relationship between space and time — the properties of space gre
determined indcpendently of movements of objects with the passage of lime; the ftow of
time is independent of the Spatial properties of such objects.

In a nutshell, as per Newtonian ideas, space and time exist by themselves, independent

13 ELECTROMAGNETISM AND CLASSICAL
RELATIVITY ' “

In fzct, when the principle of relativity was applied 10 Maxwell’s equations, certain
problems arose immediately — they did not scem 1o obey it Let us bricfly outline some
of these problems, :

13

e

Problems of Relaiivity vis-a-vis Laws of Electromagnetism

Let us first consider a simple example of two cqual, positive point charges carrying charge
g, as shown in Fig. 1.2a We will first examine the sysiem as seen by an observer in the
refemace frame 5,

As you can see in Fig. 12a one charge ress at the origin of § and the other rests at a
distance y, on the y" axis of §”. From Maxwell’s equations we can determine the
electromagnetic force that the charges at rest exert on each other in 5% it is just the

I

TEy y,2

Let us now consider the elecromagnctic force from the point of vicw of S, This observer
sees the charge ¢ unchanged ang ¥1 = ¥;. So Conlomb’s force law is-unchanged. However,
the observer in § alen sres bath charges noving 1o the right at a speed v. Now two

ive chorrae mmasie
nositive charwes

mOVIng & i dighi constitute two conventional parallel curvents which
attract cach ather. Therefore, the 10ial force in § has two components — the electrostalic
{orce of repulsion and the atiractive force berween parallel curents, We find that i1 is
difTferent from the foree jn §. Buy according v Mewtogian pleysics, these forces should be
the same, This is an inconsistency (Fig, 1.2b),

electrostatic Coulomb force of magnitude F, = 3

equation for electromagnetic fields, deduced from Maxwell's equations docs not remain

* the same (See Unit l4ofH{E-07mtiLledElecu-icmdMagneticPhamfor
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Fig. 1.2 : (a) Two equal positive polot charges (carryitg charge ¢) at rest on the y'sats of [he frame
of refermce 5”. Tn § the charges repel each other with a force of magnitade Fe; (b) aa aen
in S the charpes are tnoving 1o the right with 2 veloclty v and atiract each other with an
additional furee of magnitnde F, , giving a total force of magnltnde | Fe~Fal.

Maxwell's equations and the eleciromagnetic wave cquation). IL is a simple exercise and
you could ry it out yourself. ’

Snend

-5AQ 3 . 10 min
Show that the electromagnetic wave cquation

Fo  Fo de 1 oo

—_— e —— 4 -

docs not Tetain its lonm (ic., it is nol invariant) under the Galitean wmsformations
By LI

Hint Use the chain rule in which @ ¢ is o funciien of (x’, ', 2", ). inen for any fupction

o A Wy WA LY
ox oY dx 3 dx dZ ox & o«

Thus, there seems to be a fundameniai disagreement batwesn Maxwell's theory of
cleciromagnetic fields, Newtonian mechanics and Galilean principle of relativity.
Historically, this disagreement centred argund the *problem of light”. We toe would like
focus on this problem. However, we shall confine ourseives only to one aspect of light,
namely its propagation. You know that one of the consequences of Maxwell's equations is
that light is an electromagmetic wave which propagates in all dircctions at the same speed
¢=3 % 10°m s°'. Another consequence of Lhe cquations is that if the source of Light is moving, the
light cmiticd still travels at the same speed c. This brings up an intercsting problem when
Galilcan relativity is applied 1o the propagation of light Let us craming it in soms detail.

1.3.2 Galilean Relativity and the Speed of Light

The wave naturc of light was recognised even before Maxwell described its
clectromagnetic nawsre (for example, in the works of Young, Huygens and Fresnsl). A
search was on le find the medium in which light propagatad. Spund waves requim air 0
propagate and ocean waves travel on water. So what was the medivm for propagaiion of
light? Ninetcenth century physicists believed that light propagated through a rarefied;
all-pervasive (space filling) elastic medium calicd tumineferous ether. It was assumed to
be $o fine that planets and other heavenly badies passed through it without appreciable

friction. When Maxwell described the clectromagnetic nature of light waves, the I

S
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assaciated clectric and magnetic fields were visualised as stresses and strains in the ether.

It was in this medium that light propagated with a speed ¢ =

1
- When the
Ve Mo

Galilean principle of relativity was applied to (he propagation of light in ether, it ed to an

inconsistency,
Tblmdumﬂthwlsistcmy,

vdmvdodchhmEUw\e!mhydﬁglmtmaﬁmSnmvﬁgMamvdﬂyn
Mmmmﬁ%mmmﬂnwﬂmwtymﬁmmdm :

v'l:(cz +18—2. u)ﬁ
whcn:lv'lislhcspmdoflighiinS’.ClcarlylhcspeedofligminS’dcpmdsonﬂw

s

v=¢c-u, |

direction in which it is tavellin

direction it has a value between ¢ —

different inertial frames of refere
of different forms in dilferent in

let us consider a frame § with respect @ which light travels

.7

g If ¢ is in the direction of n, the speed of light in §° is
c—u. Inﬂledimcﬁon0pposilelon.thcmeedofli§htin.5‘isc+u.lnanymhm'

u and ¢ + u as given by Eq, (1.7). We can also see
that according to Galilcan relativity principle, the speed of light would be different in

nce. In other words, Maxwell's equation would have to be
ertial frames of reference, to give different speeds of light

in those frames. So it appears that the Galilean principle of relativity is incompatible with

the laws of electromagnetism, which give a constant speed of light, .

Now suppose we accept both the Galilean transformation and the laws of
-electromageetism (or Mazwell’s equations) as basically correct. Then it follows

that there is one unique privi

leged inertial frame of reference (the absolute frame)
in which Maxwell's cquations are valid. In this unique frame the speed of light
would be ¢ = 1/ ¥, g, whereas in other frames it would be different.

Let us row put all these developments in physics which led to the special theory of

relativity in a perspective. The situation towards the end of ninetoenth century seems 1o be
as follows: The Galilcan relativity principle docs apnly to Newton's laws of mechsnics bug
not to Maxwell’s laws of clectromagnelism. This requires us to choose the comect
Consequences from among the following possible altematives.

1. Retaln the Relafivity

Prindple for mechanlcs
but not for electrodynam-
Ics, )

This would mean that
Newlons mechanics
remeins unchanged. But the
laws of clecromagnetism
hold only in ene privileged
frame of referenee, thar is
the ether frame, If this olter-
RAtIVE were comect we
should be able 1o locate the
cther frame

experimentally.

2 Retaln the Relativity
Principle for both
mechanks and
electrodynamles but hold
the laws of
electromngnetism as not
werTect.

If this altiemative were
correct, we should be able
o do experimants that
show deviations from ithe
clectromagnetic theory.
Then we wonld need 1o
reformulate the laws of
eleclromagnetism so that
the Galilean
transformatioris apply 1o
the new Laws.

3. Reteln the Relativity

Prindpie for both
mechanics and
electrodynamles: but hold
that the Newtonian
mechanles Is not correet,

If this alicrnative were
correct then we siculd be
zblz 1o do experiments
which show deviatons
from Mevstonia

" mechanics. Then we would

need to reformulare

Newtons's Laws. We would

alsa have 1o giveup the :
Galileen transformation :
beeause they do cot give us )
an mvariant form of

Muoxwell's equations, We

shell nzed w look for some

other trans formation which

is consistent with classical

clociromagrielise and the

ncw [Bws of mechanics,

Several investigalons were carried out 15 decids =Rich of ihe Wi aliamalivey wan
correcl. Their net outcome was to provide an experimental basis for rejecting the
alternatives 1 and 2. The most famons of these experiments is the one performed by
Michelson and Morley in 1887 to locate the absolnts frame. You have studied this
experiment in Unit 7, Block 2 of the course PHE9 on optics. Howeves, ket us briefly
siudy this celebrated historic experiment. '



133 Attempts to Locate the Absolute Frame - The Michelson-. Emergence of Special
Morley Experiment ty

Let us first understand what was being investigated through this experiment, Consider a
simple example, When we say that sound travels at 340 m s, we are refeming to the
speed of soand with respect 10 sir throagh which it propagates. If we move: through still
air towards an opcoming sound wave at a speed of 30 ms™ (relative to the air), we
observe the speed of sound to be 310 m 7. Clearty, the spoed of sound refative to us
varics with our speed relative to air.

Now the ether hypothesis suggests that the earth is moving in the ether medinm as it
orbits the sun. Therefore, in analogy to the example abave, we can say that the speed of
light relative to an observer on the canth varies with the earth’s speed relative o the ether.
Tne speed at which the earth crbits the sun is 30 km s, about 0.01% (10°) of the speed
of light. This is the maximum change which we can observe in the speed of hight on earth
as il moves through ether. Michelson, i 1881, and then in collabomation with Moricy, in
1887, performed an experiment designed to detect such a change in the speed of Tight.

The essential principle of the experiment was to send a light-signal from a source to a
mirror and back, noting the total time taken. The experiment was (o be done twice:

(i} in the direction of earth’s motion in ether, and
(i) ar right-angies to iL.
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(a)

Fip.13: (2) Schematic representation of Michelson- oriey experimeni; (b) (he apparatus.

In the experiment 2 beam of light from a source S (fixed with respect to the apparasus) is
scparated into two coherent beams by a partially silvered mirror M inclined at 45° to the
team direction (Fig. 1.3a). Two mimors M, and M, arc placed at nearly equal distances
from M and al right angles (o each other. These reficct the beams back to M. A part of
cach of the 1wo beams reflecied by M, and M,, respectively, are reunited at A and the
recombincd beams are observed through a telescope T. A glass plate G is placed berween
M and M, 10 compensale for the exira distance travelled by light through M 1 M. Now if
you have studied Block 2 of the oourse PHE-0%, you would realise that when the bvo
parts of the split beam recombine, they will interfere. Now suppose the time tken for
light 10 wavel from A 1o M, and Back is ¢ and (he lime reguured 10 wavcl from M W M,
and bark is . Then the interference will be constniclive &t @ given point if ai that poini
the dillerence

it~ =nT. r=1213... {1.82)
and destructive if
(~f =a+ %r. n=1,2.3, .. (1.8)
13
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between the two paths travelied by light influences the illumination of a given point (say
A} viewed through the tclescope. It is either bright (constructive interference) or dark
(destructive inmterference). If M, and M, are very nearly at right angles, the fringe patiern
consists of nearly parallel lines.

Now, supposcwerota_tadlhc::uireappammsby90°intheplaneofﬂf?‘,ﬂrfl and M,. Then
the orientation of MM, and MM, relative 1o the direction of Farih's motion through cther
would change. Such 2 rotation would alter the time taken along each path and thus change
the ilhmmination of the point A. Or we could say that the fringe pattern would shift. 1t
was this change in illumination of a given point {or a shift in.the fringe patiern), as a
result of rotation, that Michelson actuatly tried 10 detect The expected shift was of the
order of four-tenths of a fringe.

Michelson and Morley took uimost care in eliminating all possible sources of crror, such

as stresses and temperature effects. And this shift should have been clearly observable.
Nevertheless,

no fringe shift was observed.

Onc couiz say that at the time when the experiment was being dane, Lhe earth was at rest
relative (o the ether. However, the result did not change when it was repeated afler a gap
of six months. Indeed, this experiment was repeated many times by many workers over a
50-year period, in more sophisticaied ways, at diflerent imes of the year. But the result

was always the same. As far as Michelson was concemed, its implication was clear as he
wiole at that time

“The result of the hypothesis of a Stationary ether is shown to be incorrect.’

Needless (o say, e ether hypothesis was not given up immediately. Several inerpretations
of tiic null result of this w.perimen 10 preserve the concept of ether were suzgested. We
will not go into the details of all these interpretations because, with time, (as evidence
accumulated) it tumed out that these were cither inconsistent with observations and
experiment or lacked sound conceplual bases,

Various cxperiments performed 10 measure the speed of light over the years have
conlirmed this result. Indeed, the speed of light in free space has been found @ be
constant at all imes. It is independent of the place whers measurements were camicd oul.
It does not depend on its frequency, nature and motion of its source, direction of its
propagaton. It is also constant with respect to all inertial frames of eference, Thus,
experitents help us 0 accept, indispulably, the following principle.

The speed of light in free space is a universal constant.

This result obviously contradicis the Galitcan principle of relativity. At the same time the
laws of electromagnetism are upheld by experiment. Moreover in certain other
expeniments performed in the carly twentieth cenlury departures from Newtonian
mechanics were obscrved. In 1902, the motion of clectrons {mitted by radioactive
saurces) in electric and magnetic ficlds was investigated experimentally. It was found that
Newion’s second law did not comecily deseribe the motion of these electrons which
moved with velocilies close to that of light, To sum up, we have found that the clasgical
priiciple of relativity is incompalible with the laws of clectromagnetism.
aichelson-Morley cxperiment fails 1o detcet ether (i.c., an absolute frame of reference).

“Tlios, Gie ether hypothesis is nnienable, It is expcimentatly cstablished that the speed of
light. in free space, is a constant.

What is more, exparimenis don o clecirons moving at specds close (o that of light in
electric and magnetic fields show a breakdown of Newton's laws of motion. Hence we can
see Thar & relativity nonciple, anplicable 1o both meckanios g o cleciromagnetism, is
operating. Clearly it is not the Galilean principle, since thay requires the speed of light to
depend on the frame of refesence in which it is measured. We conclude that the Galilean
lransformations shouid be replaced. Henee, the laws of mechanics, which ame consistent
with these tansformations, nced o be modified,

The discussion so far gives you an idea of the background in which Einstein's special
theory of relativity emerged. Let us now study the special theory of relativity,

D



1.4 THE SPECIAL THEORY OF RELATIVITY

You have stmdied in the previous section thai the constancy of tfie speed of light in all
inertial frames stands in contradiction with the Galilean tansformations. In 1905, Albert
Rinstein (1579-1959) presented a. revolntionary proposal whicln resolved this contradiction.
Rather than modifying electromagnetic theory, he rejected the ether hypcthesis and
gencralisod Galilean principle of relativity. In his paper "On the Electrodynamics of
Moving Bodies™, Einsiein formulated the two postulates of the special theory of relatiity,
which we rephrase here:

Postulates of the Special Theory of Relativity
Postulate 1 — The Principle of Relativity
The laws of physics are the same i alt incrtial frames of reference.
Postulate 2 — The Principle of Constancy of Speed of Light

The speed of light {in vacuum) has the same constan value in all incriial reference
frames,

These two assumptipns led Einstein (0 a new theory of physics which is now known as.
the special theory of relativity. It is special because it only deals with observations made
in inertial frames. For example, it does not say anything about the relationship between
two frames undergoing relative acceleration. Non-inertial [rames are the sybject matter of
another of Einstein’s theories — the general theory of relativity.

Let us now undersiand thy wcaning of these postalates.

"1.4.1 The Principle of Relativity

You have briefly studied the Galilean principle of relativity which applied to the
Newtonian laws of mechanics. This limited principle has now been generalised (0 all laws
of physics — any law of physics that is troe in one imertinl frame will also be true in
all other inertial frames. Let us consider an example 10 understand this siatement

Suppose a posilive clectric charge ¢ was fixed at a point (X, f}, 0} in a stationary incriial
frame § (Fig.1.4). If another positive charge ¢’ was released at some point on the x-axis,
it would accelerate away from the-fixed charge at x = X. We could experimentaily
deizrmine the x component of the acceleration of the moving charge as a function of its
distance [tom the fixed charge. The relationship woutd be of the foHowing form:

For a charged particle moving away from a fixcd charge

%‘ - -kxyl (i.99)

where k is a constanL

Now suppose that another observer is sationed in an inertial frame of refercuce §’ moving
with respect to § with a consiant velocity . The principle of relativity tells us that il
Eq. (1.92) is really a law of physics, then the observer in the §° frame should find that

&£ _ 14
dl'z (x.r _ x!)l

{188)

where X° 15 (he iocation of e fixed clarge ¢ G ihe &/-axis of o & frame. Thus, sven
though the values of x, £/, X" and (he constant & are diflesent from x, & X, ard £, the
relationship benween them is of the same form as Eq. (1.92). Conversely, we can also s2y
that any conation that cannot be wrien in the same form in alk inenial frames canoot be A
law of physics. So the principle of relativity also allows us lo delermine which
relationships (or equations) can of cannot be laws of physics.

In summary, the principle of relativity implies that the laws of nawre do not depend upon
the choice of &n inertial frame of reference or the position or motion of an observer — they

Emergence of Special
Relativity
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will always retain their form in any mcmnl frame d’refemwe.[ndnad, the measurements
ofvmﬁmqmﬁﬁu,lhﬂwpoﬂmmeq.vc@am.mmu,d?mui
magnetic fields may be different in different inertial frames, queva. mcrdam@
between these quantities governed by varous taws would remain the same in all inertial
frames.

In philoso 'calms,wewnsayﬂmﬂwplindplcufmhﬁﬁtymmﬂ:éobjecﬁve
chaﬂacm?dwlawsofmmandnmﬁcrdaﬁwtyofknowbdgc.

The principle of relativity is also stated in the following form which you will often
encounter: The laws of physics do not allow us to distinguish between different ineqtial
frames.

In other werds, you will not be able to distinguish through any experiment whether
younreatresto-inamteotunifmmoﬁon.For.ifthaemarhanexpumml, it
would mean that the laws of physics depended in some way on your velocity and were
different from the laws of physics when you were at rest.

You should imderstand that the principle of relativity does not claim that af| inertial
rmmesa:eﬂmsamehnurespm.mappmimmispoingcmﬁdumdiﬂmm
Spacecrafts, each travelling with a different constant velocity with respect to S. The
principle of relativity tellsust!mlhetwoﬁ'amesmnmtbedisungmshcdasfarasme
laws of physics are concemed. However, if on¢ could look outside each spacecraft through
& window, it would be easy to know thaltheyarcmoﬁngatdiﬂ’mvdociﬁw.mlaﬁvcw
§. Does this contradict the principle of relativily? No, because the velocity of the
spacecraft relstive (o S is not determined by a law of physics. Besides, in formulating this
form of the principle of relativity the essentiz) condition was thal the spacecralis were
completely isplated.

The idcaspxesentedEurea:cwblﬁcmeﬁﬂ lhoughland)toumaynecd to go through them
more than once. You may now like to atiempt the following SAQ to lmow whether you
have grasped the principle of relativity or not.
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Oy ‘Hu:\;ms:: th obscrver in §° (rame finds that Eq.(1.9b) n. Supperict by echpodimenrn, e os
@ »oiomatically follow that Eq. (1.9b) is a law of physics?

Yunese yon obsens e the motion of a particle in an incnial frame. Yoo 1ind that the
: x--_-..x'mpnncnt of the acceleration ~f the particle is described by the following cquation:
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- v &y are constants and (X, Y,-2) are the coondinates o 4 svind pantivie in L.,
<o rAepusian s o he reparded as a possible Taw in nhvsics, who relatianshir
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Let us now study the second postulate of the spectal theory of relativity,

1.4.2  The Principle of Constancy of Speed of Light

The sccond postulate about the constancy of speed of light is crucial in leading 10 the
theory of relativity. 1t is very impornant because it radically alters the classical notions of
absolute space and ume. Here we shall briefly discuss the implications of the second
postulate of special relativity theory, pariicularly regarding the notion of time,

The Nature of Time in Speciat Relativity

The basic premisc of Newtonian mechanics was that the same time scale applied to all
tpertial frames of wlfereace (recall e equation I = rin Galilean transformation). Using
this universal time scale, we must be able to give meaning to statements such as "Events
A and B occurred at the same time", without referring to any inertial frame of reference.,
To use the example given by Einstein, when we say that a train amives at 7 o’clock, what
we .mean 15 this: The pointing of the clock hand to 7 and the arrival of the train are
Stmultaneous events.



Thus. the assigning of time to events invalves judging whether they are simultaneous or
noL So. if all observers, independent of their position and velocity, agreed that any lwo
gvents (¢.g., the arrival of the train at the station and the pointing of the clock hand 10 7)
are simultaneous, we could cerainly say that the sbsolute Newtonian time scale exisied

We shail certainly mot have an absolute time scale if different inertial observers disagmee
ghout two events being simultancous, i2., one inertial observer says thal two evenls occur
at the same time and another inertial observer says that they do not. This is precisely what

happens if we uphold the constancy of the speed of fight. Let us understand this idea with
the help of an imaginary cxperiment.

Consider a Lrain comparunent travelling atL a vesy nigh constant velocity ¥ to the right of
an observer 5 a1 rest on the canh (Fig. 1.5). A highspeed flashbuib is situsted at the exacl
cenire of the compartment. JI sends out light pur~s . the right and left waen it flashes.
There are phoiocells at each end of the companment, 50 that an observer 5, in the -
compartment can detect when the light pulses swrixe its ends. Now, sufpose by some
i1conious device, Gie observer S on the eantt 18 ¢3:0 zble 10 MusuIn 1o JrIgiess of the
1wu puisss. Let the positionz of § and §" coincita = ith thut ¢ (he Duiz wren w fashes
{Fig. 1.5a).

The Nashbulb is at res reintive (o the observer §° i the comparunent. Since it iy at the
centre. when the bulb ashes, wo light pulses uave! equal dislances 0 P2 w0 ends of
the compartment in cqual times. Hence, §° observes that the light pulses hil e two ends
of the compartment at the same Lime.

ls the same conclusion drawn hy 8, who is stati msy on ‘the eanth? Refr w Figs, 1.5b and
14:. The hght prises travel cquat distanves Lo the cight aid left br equal Lme. Bul in the
frame of § the compariet i toviag 1o the G5 3 i e Tt o 5, g distance
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Flg-15: WUnlike the incrtlal observer £ \n the mssInf trala companment, 15 el luary
observer § ot the earth obseryes thet the hgnt pulses do pat sirike oy knds
of the car simultancously. The figures rre drawb wilh respect 1o the lneriial
observer 5.
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Spend

10 min

S5AQ 5

between the point at which S observes the balb flashing and the lefi end of the
compartment is shorter compared to its distance from the right end. As a result, §
Mieasures that the light pulse moving to the left strikes the end of the compartment heflone
the other pulse strikes the oppasite end. In the frame of reference of §, the light pulses do
0ot hit the 1wo ends of the compartment at the same time,

Now, if Newtonian mechanics were valid, this difference in the distance travelled in the
frame of § would be compensaled by the different speeds of light measured by §. The
observer § would assign a lower speed (¢ — V) to the pulse travelling to the left {opposite to
the direction of the train’s motion); the pulse travelling to the right would travel a greater
distance but at a greater speed of (¢ + V). Thus, § would measure both the times to be equal
and conclude that the two pulses hit the ends of U:e compartment at the same Lime.

But the speed of light is consuant. Therefore, in the frame of S, the two events (the light
pulses hitting the two ends of the compartmesnt) do mot occur simultaneonsly.

This signifies a major break with the older ideas of absolute time, because different
observers do not agrec on what is the same time. OF course, remember that this result is
arrived at for cvents occurring at different locations (the two ends of the compartment for
instance). In the next unil we shall come back o this discussion and also consider events
occurring simultaneously at the sime poinl in space,

To sum up, we can conclude that the notion of absolute time is contradicted by the second
pastulate because

Events {(occurring at different points in space) that are simultaneous in one ineriial
System may not be simultaneoos i another,

This conclusion is termed the relativity of simultaneity. It is the (undamental difference
between Newtonian relativity and special relativity. In Newtonian relativity. observers in S
and §* always agrec cverywhere about everts occurring at the same time. This is also the
origin of other features of space and time that follow from the special theory of relalivity,
namely, the phenomena of length contraction, time dilation, twin paradox, cte. In this brief
discussion we have given you a flavour of what follaws in the next unit. We end this
section with an SAQ for you. . .
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Let us now summarise what you have studicd in this unit,

1.5 SUMMARY

@ Aneventis an occumence that hapoens at

in emara e
MmIna

Point in space and aian insiani in dme. The

a
Galilean coordinate wransformations from a inetial frame of reference § to another
inertial frame §* moving at a velocily m = 1 relative 1o S are given by

s i-w
Yy o=y
= 2
=

Here (x, y, ) are (he coordinates of an event and ¢ is the time at which it occurs, as
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measured in the frame §. The coordinates {x’, ', 27} and the time (" arc measured in §°.
S moves with respect to S so that the x-x” axes are common and the y-y*, z-z” axes are
parallel.

The Galilean or classical principle of relativity staies that the laws of mechanics can
be wrillen in the same form in all inertial frames of reference. If they held in one inertial
frame, they also hold in all other inertial frames.

Galilean coordinate transformations predict Lhet the velocity of light should be
different in different inertial frames and do not preserve the form of Maxwell’s
cquations. Thus, the Galilean principle of relativity does not apply to the laws of
electromagnetism.

Experiments, especially the Michelson-Morley experiment, indicatc that the speed of
light is a universal constant and is independent of the relative uniform motion of the
observer, the transmitting medium, and the source. The faws of electromagnetism are
also upheld by experiments. Newtonian mechanics is experimentally obscrved 1o break
down for particles moving at speeds close to that of light.

In his special theory of relativity Einsiein affirms the classical principle of selativity
and generalises it to include all laws of physics. This also means that the speed of light
should be the same in all uniformly moving systems.

The postulates of specis! relativily arc.as follows:
Postutate 1 — The Principle of Relativity
The laws of physics are Lthe same in all incrial frames of reference.
Postulate 2 — The Principle of Constancy of Speed of Light

The specd of light (in vacuum) has the same constant value in all inertial
frames of reference.

1.6 TERMINAL QUESTIONS o Spend 30 min

Linear momentum and kinctic energy arc conserved in an elastic collision. Use the
Galilean Lransformatica equations to show that if a coilision is elastic in ore inenial
frame iL is clastic in alt inertial frames.

a)  Docs the Mizhelson-Morley experiment indicate that ether is 2n unnecessary
concept, or docs it prove that there is no such thing?

. o 0y
) One of Maxwell's equations is J- E.dl = ~==% inan inertial frame §.

According to the principle of relacivity, what will its form be in another inenal
frame 577

How is the nature of time as enunciated in classical relativity different from that in the
special theory of mlativity?

1.7 SOLUTIONS AND ANSWERS

S5AQs (Sclf-Assessment Questions)

[A)

a) MNon-inertial since the car 15 aceeleraung

v}  Inertial
¢y Noielenial since ihe clocon is accolartng
d} Incrial

¢j Inertial

a)  No. Dificrent inertiai observers can measure different vaiues of physical quanie,
but the relationship between them remeins the same.

) Yes. since these laws follow from Newtontan mechanics.

Emergence of Speclal
Relallvity

1%
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3. Using the chain rule we get

% _ W WY, W
3 ~ 3¢ ax "3y ar "o x T or ox

From Galilean transformations given by Eg. (1.1)

we have %‘:— = 1.%:0,%:0.%:0.
Thus, | % =£—and%}=gz—xg.

You can also show that, gyzﬁ =§2—ﬁand%gl=aaz—2%.

Now %‘?:%%+%%+%%§+%ﬁ%
From Egs, (1.1) %:—u,%%:ﬂ,%z?' =0,%=1.
Thus % =—u%+%3

and 3—3’ = uzg—:%—h-a;ig? 4-%

Thus there arc two exira terms in the expression of P ¢/3 £ in the & frame. Hence the
wave equation docs not retain its form in the §° frame.

4. a) No, the Eq. (1.9h) has to satisfy the principle of relalivity as well, i.e_, it has to “old
in all inertial frames.

b) The refationship in another incrtial frame §” should be of the form

2
S S 2y (=X 4 6 ¥ w2

where ') and &', are constants, (X", ¥, Z') are the coordinates of the second particle in
§" frame, and (x’, y'. , ') are the space-time coordinates of the particle in §’ frame.

5. a) Itis 3.0 x 10%m s™' since it is a universal constant

b) The speed of light is measured (o be the same, its frequency and wavelength are
measured (o be different by the two observers.

¢) The loss of simuliancity in § is due 1o the finjte length of the compantment, which
makes the observer § measure the distance to the Ieli 1o be smaller. If the
compariment’s length shrunk to zero, the iwo pulses would strike its ends
simuliancously for all inertial frames. Thus, two events occurring at the same
position would occur at the same time for all ineriial observers,

Terminat Questions

. Lelan object of mass r1and velocity v, collide clastically with an object of mass 4f and
velocity Vy in frame S, Let their velocities after collision be vaand V3, respeclively in §

Then sinee lineer moihentem and Kinete eneigivs are conserved in an clastic collision,
we hine
mvy+ MY = v, + AV, (A)
aned -l_ 2, _I. _.'”,-2 — l 2 i .';“,(2 ('r”
dIe 3 ””". g ) i 1 T3 f.’i'rl + 9 ¥ 3 i

Now et §” frame move with a velocity v with respect 10 S, Then the Galilean velocity
transformation gives us the velocites of n and A before and after collision as

'I“ . I'n‘_r .
v —"'I_"‘: ﬁ\l—m

4

PV E Yy -, Vz' = Vz -, )

R



Substituling for v,, ¥,, v,. V, from (C} in {(A) and (B) we get Emergence °n" ef;f:::’;

m(\"] +v) + M(‘V'I + V) =m(v;_ + V) + M(V'z + ¥)
or mv', + M‘V’I = mv; + M’V'2 D)
Thus lincar momentum is conserved in the §* frame. For the consarvation of kinetic
energy, we proceed as follows:

m v+ vI2 b MV 4 vi2= vy + w2+ M1V 5 ¥R

2, Fl . r £, Fl f2 r
or m{v,z +V 2V W)+ M('V,2 +V 42V V) = Jrnv‘(\,r-‘,2 + v 4 2vp ) + MV + v+ 2V, )

2

’ ] - 2 ’ /2 ’
or mvy +2mv, v+ MV #2MV| v =my; +2mvy Y+ MYy R 2MY, v

2 2 13 ] 2 2 . -
or mv, +MV| +2(mv) + MV} . v=mvn + MV; +2(mvy + MV3) . v

Using (D) we get
lz 1'2 12 '2
mv, +MV1 = mvy +ﬂ’f’r’2,

2 2 2 72
ar T;"' (Hl'\v'q + MVI ) =% (m'w'z + MVZ D

Thus, K.E. is conserved in 8",
2, a) The Michelson-Morley cxperiment indicates only that the concept of ether is
UNACCEsSAry.
b) The form in frame 8" will be

5[, S b,
€ T T

In classical relasivily observers in different incrtial [rames will always agrce about the
lime al which an event eccurs. If two events occur simultancously [or onc incrtial
obscever, then according 1o classical relativity, thesc two events will be simullancous for
all other inertial observers. This nced not be so according to special theory of relativity.
Thus, in special relativity two inenial obscrvers need nol measure the time at which an
svent oeeurs 1o be the same, if the events accur at different positions in space.

e
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“ sometimes ask myself why 1 war
the oac o0 develep the theory of
refativity. The reason, T ihink, is
that 2 normal adult never stops 1o
think about groblems af space and
time. These arc things... thooght of
as & ehild. Dut I b=pan 1o wonder
about spaer and lbne only whan |
had grown up. Newrally, 1 could
g0 deeper into the problem than a
child.”? .

—Albei Cinsicin
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UNIT 2 RELATIVISTIC KINEMATICS

Structﬁre

2.1. Introduction
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22 Lorentz Transformation
23 Implications of Special Relativity
* Relativity of Stmuluaneity
Length Comtraction
Tems Dilxtion
24  Relativistic Transformation of Yelocity
235 Relativistic Doppler Effect
26 Summary
2.7 Temiral Questions
2.8 Soluticns and Answers

2.1 INTRODUCTION

In Unir 1 you have sudied briefly abott the developments in physics which led 1 the
emesgence of special relativity. You have secn that the Galilean coardinate transformation
stands in contradiction o the laws of electromagnetism, In particudar, the speed of light
turns out to be different in different inertial frames of reference according to Galilean
velocity transformation. However, experiments show that the speed of light in vacuum is a
universal constant, You have studied postulates of special theory of relativity and learnt
about the need for a new transformation. .

In this unit we shall use the postulafes of special relativity 1o deduce the new coordinate

transformation, called the Lorentz transformation (Sec. 2.2) and the implications of these

postufates for panicle kinematics. In Sec, 1.4.2 (Unit 1) we have brieRy discussed how Lhe
special theory of relalivity alters our notion of time based on classical ideas. In Scc. 2.3
we shall cxamine in somewhat greater detaii how the established ideas of absolute space
and absolute time are revised radically in a world view based on special theory of
relativity. In particular, we shall revisit the concept of relativity of simultaneity. You will
study how this concept raises serfous doubts about the Newionian assumptions that the
measurements of distance between iwo points and the time intervals are the same for all
observers, This will become clear when you study the phenomena of length cantraction
and time dilatien. In Scc. 2.4 you will leam how the velocity of an object transforms in
going from one incrtial frame (o another under the Lorentz coordinate teansformation.
Finally, in Scc. 2.5, we have discussed the relativistic Doppler cffect as an application of

special relativity o Oplics.

In the next unit we shall wm our atention to relativistic dynamics. You will leamn the
modificalions carricd out in Newtonian mechanics to make 3t compatible with the special
theory ol relativity and Lorentz ransformations.

(ibjectives

Alter studying tis unit you should be able to

& use the Lorent ransformation equations

e explain the phenomena of Jength contraclion and time dilation

»  tansform the velocity of an object from one incrtial frame (o another
e pecform relativistic velocity addition

@ compute the relativistic Doppler shift, and



s solvc numerical problems bascd on special theory of relativity.

Study Guide

The concepis presented in this unit are entirely new for you. In working through: the unit
you will find that Sec. 2.3 is the Jongest and the most intellectually demanding, You
shoutd study this section very carefully. You may need to devote more than half the study
time for this unit 1o Sec. 2.3. You can go through Sec. 2.2 quickly and concentrate more
on Sec. 2.3. Secs. 2.4 and 2.5 should not be 100 difficult W understand. Yel do nct rush
through them. In our estimale it may take you about 9h 10 10h 1o complete this unit.

2.2 LORENTZ TRANSFORMATION

Recall from Unit 1, Sec. 1.4.2 that we have (o [ind 2 new transformation of space and
time coordinates of a given event in the incrtial frames § and §* moving with a velocity v

= (v? ) relative 1o one another. This new transformation should be consistent with the
postulates of special relativily. '

We begin as usual by considering two incnial frames of reference, moving with velocity ¥
relative 1o one another. We take § to be the rest (laboratory) frame of reference and § o
be the moving frame which has velocity v in the positive x- direction of §. Let both
frames be rectangular with their axes paratlel, Finally, we define the origin of time ¢ = 0 in
§ and r'=0 in §’ when the two origins of § and §” coincide.

Before we delermine this new coordinate transformation we should be clear about the
method of assigning coordinates to an cvent in an inertial frame §. For this purpose, we
assume that cvery observer is cquipped with a standard clock and a standerd of length,
e.£., a melre stick. The observer can then assign Cartesian right-handed rectangular space
coordinates (x, y, z) to any evenl in §. Knowing the distance of the event and noting the
time at which the observer receives the light signal from it, a time coordinate ¢ can be
assigned 10 the eveat. Such coardinates (x, ¥, 2, 1) are called siandard coordinates. Let us
now find the new coordinalc transformation.

Now consider a light wave spreading out from a point source stationed at the origin of the
frames at ¢ = ¢ = 0. The wavefront (i.e., the surface of equal phase) will be a sphere if
cbserved in the reference frame S in which the source is at rést. But according to the
postulates f special refativity the wavelront must also be a sphere when observed in the
frame $°. For, if the shape of the wavcfront changes in §” then we can know that the
source is moving. But this would violate the (irst postulate of special relativity theory
which tells us that if § and §” arc isolated then no experiment can help us know which one
of these frames (S or S7) is moving. Therelore, we should not be able to tell from the
shape of the wavefront whether the source is at rest or in uniform motion. In other wornds,
‘the shape of the wavefront as obscrved from § and 5 has to be the same. The equation of
the spherical wave front in S emitted at the origin at f =0 is

2ey+ A=2¢ (2.12)
Thercfore, the cquation of the wavefront in §* must be
2ey?e2=2r0 (2.1b)

where the speed of light ¢ is the same in both § and §, according 1o the sccond postulate.
Does the Galilean transformation satisfy Eqs. (2.1a and b)? You could check it out quickly.

You have found that the Galilean transformation fails to satisfy Egs. (2.12) and (2.1b). So

Rdativistk Kiocmatles
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You may wonder why we have
closwen this particular form of
wmnsformalion equatiens. For a
detailed explauation, we refer you
o the reference | listed in Forther
Reading a1 the end of this block.
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we have to Inok for another coordinate transformation consistent with the special theory of

refativity. We will impose a few conditions o make our task easier. Firstly, the new
coordinate ransformation should be consistent with the postulaies of special relativiry, ie.,
we must have a transformation which satisfies Eqs. (2.1a and b) simultaneously.

Secondly, we assume (hat space and Lime are homogeneous, i.e., all points in space and
time are equivalent. To understand ils implication, let us supposc that we measure g length
or lime jnterval of a specific event in a reference frame. The results of the measurement

" should not depend on where or when the event occurs—they should be the same at

whichever point in space or time that event oceurs. (This assurption simplifies our task
considerably because this leads 1o a linear transformation.) For example, suppose x’
depends on the square of x, i.e., ” = @, Then the length of a rod would be related as
follows in the frames S and §*

Hn-xn= an-ny

I{x, = 1and x, =2, then X, ~ x| = 3a. However, if x, =4 andx, =5, then x; — x| = 9a.
Thus, for a quadratic or higher order transformation the measired length of rod in §*
would depend on where il wes siluated in S. This is inconsistent with the homogeneity of
space thal we have assumed, We assume the following relations

o= gx+ay (2.2a)
yo=y . (2.2b)
¥ = g : 2.2¢)
o= b+ byt (2.20)

Now, consider a point far which x* = 9. In the § frame, it is moving along the positive
x-axis with speed v. S0 its coordinate in § is x = w. Thus,

&_y (2.30)

or =0,

~

Similarly, a point for which xz (), scen from $” moves along the negative x’ axis with

speed v, Soils eirdinate in Y 12 = v, Thus

jorz=0, 5 =—-y ) (2.3}

For &7 =), [y, {2.24) yiclds

dy a
Gx+aft=0, where == _22 = v (24a)
: - dt a
For x = {3, Eqs. (2.2a) and (2.2d) ceduce to
¥ = aq and ro= by
(::
or o= =iy
h.'
s i
oo e = -,"}: o=y (3413)
a) P {22 ene (2R e -y
E-é =
r"':._ 1
oF a = &, (L5)

Lo iz cove sihalute the comdi o wransformation given by Egs. (2.2) and (2.5) in
Ey. (2.ib). The resvlt is

1 =

- )
(ax+ o)+ a2 c” (Ix + a,i)?



or @@+ e+ G+ Y+ 7= (3 + @F + 2a,byx) Relativistic Kincmutles

This result should be consistent with Eq. (2.12). Therefore, on comparing these we obtain
cocfficient of xf is 2610 = 2,8, = 2c%a;b,
coefficientof 2ist = a-cHf=1
cocflicient of £ is & = d-cdd=-

Now the lask of amiving at the transformation equations is a matter of simple algebra.

Why don’t you give it a try?

Q2 Vi
R e i s Ll e WS O CRDY dnd rwnT Pnlan
1225,

On solving SAQ 2, you have armived at the

Lerentz Transformation
ST - ;/‘:Z)T’E @69
y =y (2.6b)
f = = (2.6c)
¢ = { - (P/CZJI 2.6d)
(- 72

The Lorentz transi‘ormahon is lincar in x and . It has another interesting property. Yoo
may like o dwcovcr this property. For this you should simplify- Eqgs. -(2.6a w d) when
vfe << 1. Work it omt in the SAQ given below.

It is customary to cast the Lorentz iransfonnation in 2 moie compact form by introducing
i 1
rwo factors § = wic and y = 575 Note that
T 2

@) ¥ = 1suce v i inil
By y - laxv = 0
) Y — eu v — ¢

lnt the campact nolation the Lorentz transformation Eqs. (2.6} Lake the form

23
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LTI

Lorentz Transformation
= y{x—v)=vy(x-Pco) (2.7a)
y o=y . {2.7b)
7 =z (2.7c)
U= Y({-vwicH) =y -Prc) (2.7d)

You should commit these equations to memaory as they will be used very often in our
discussion on special relativity. You can immediately see from Egs. (2.6) as well as 2.7
that v can never exceed . For v > £, the space and lime coordinates become imaginary,
which is a physical impossibility. Thus, we arrive at the following conclusion: We eannot
measure speeds greater than the speed of light; ¢ is the Limiting speed in the physical
universe. We shall return to this point in Sec. 2.4 of this unit.

The inverse transformation is obiained by interchanging

X X
y &)
2 e 7
{ e r
and ¥ v

In SAQ 4 you will also prove the Toverse Lorentz Transformation.

Inverse Lorentz Transformation
x = Y& +Ber (2.8a)
y =y (2.8b)
z = 2 (2.8¢)
I = y{+fxley. - {2.84)

SAQ 4

veriy Bos, DX aizenraieally,

Thus, we have arrived at the Lorentz transformation and its inverse transformation which
is consistent with the postulates of special relativity.

Lel us now study some inlcresting implications of postulates of special relativity and
Lorentz transformation,

2.3 IMPLICATIONS OF SPECIAL RELATIVITY

“You have studied in Sec. 1.4.2 of Unit | haw radically the nature of lime in the
Einsteinian world view differs from that in the Newtonian world view. In particular,
according to the special theory of relativity two cvenis assumed to occur simultaneousty in
ane inerial frame are not necessarnily simulianeous in another inenial frame moving with
respect to the first. We used a thought experiment to iMlusirate the relanvity of
simuhaneity. In ihis section we shall make usc of Lutenle wansfommation 10 outline this
feature of the special theory of relativity, You will also learn how the breakdown of
simultangity leads (o other relativistic phencmena tike the relativily of length and time
interval measurements. In relativistic partance these are termed as length contraction and
time dilation. Let us begin by re-cxamining the nolion of simultancity and its breakdown
in special theory of relativity.

2.3.1 Relativity of Simaltaneity

Consider two simdltancous events cceurring at two different points in reference frame



§. Let us assign the coordinates {x,, ¥, z,, f;} and (x,, ¥, 2, 1} 10 the events. In this Relativistic Kinematics
case x, # x; and ¢4, = £,. Using Lorentz transformation we now show that, in general,

thase events which are simultaneous in § are not simultaneous in ancther inertial

frame §° moving uniformly relative to S at a speed v. Let the coordinates of the two

events in §’ be (x;, ¥, z,, ) and (2}, ¥;. %, &). From the inverse Lorentz

transformation (Eqs. 2.8) we can write

6=y + Bri/c), 1, =¥ (G + fye) - Q9
Since these events are simultaneous in S, ¢, = &,. Hence Eq. (2.9) yields the resuit ’

G+ B/ = G+ B5O

or £ 5+ E (5 — Xp) (2.10a)

We can obtain (x; —x;) in terms of x, and x; irom Eqs. (2.7). Hence

x; = 7(q—Bery) and  x; =y(x,~fer)
Theretore,
%=X =7(g-x)-vhe(y-1)

'Y(’q—x;) (. 'rz=‘l)

f f'z+% ¥ (g~ 5 (100
Since x, # x,, Eq. (2.10b) yiclds that f, # t,. Hence simultancous events accurring at
different positions in one frame are not simultanecus in another frame in uniform relative
motion.

However, for x, = x, and f; = 1,, Eq. (2.10b) tells us that ¢; = . Thus, if two evenis occur
simultaneously at the same posiion in onc inential trame, then they are simuliancous and occur
al the same position in every other inertial frame of reference (since [, = fand x; = x5).

“To sum up, observers in § ang §° agree on the simultancity of évents occarring at the same
point in space. But, they will disagree on simultancity of events occurring at different
positions in space: If two events occurring at different positions in space are simultaneous
in S, they will not be simultancous in any other incrtial frame moving uniformly with
respect to §.

Similarly, we can show (hat events occurring at the same point in spuce but at diffecent
times in S will appear to be occurring at different points in §° Thus, il x; = xy and 1, # 1,
in §, then x, # x,. in §. We have left this as an excrcise for you in the following SAQ.

(i the sbuve discission we have ilustrated the fundomental difference hetwern clivsical
relalivily and special relativily. In classical relativity, obscovers in S and § always agree
aboui simultancity at all points. You can scc that for vie << lory — |, we find 1" =1
everywhere. This is not so in special relativily. An observer in § may record two cvents (o
oceur 21 different positions ot the same tme (x, # x,, {, = f;). Bul an observer in 57 will
record these events as occurring at different times (¢, 7). Similarly, il an observer in §
MCASURCS 1WO cvenls occurring al the same position but at different umes (g = X, 1 # 1),
the observer in 8 will measure the two at different positions (', # x')). You must
understand thoroughly this breakdown of simubtancity at atl points in space-time. It is the

I e ey
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AU this point we would Jike 1g
introduce 2 nate of causion. |1 s
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“In the ren sysiem, the ends of the
rod have courdinates X ard xg ar
some time ¢ = 0. To find the length
in the moving Mrame we use the
transfurmation x'= ¥ (x - vy and
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L = x-r
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origin of the phenomena of length contraction and time dilation, i.c., the relativity of
length and time-interval measurements, Let us now study these phenomena.

2.32 Length Contraction

You have just studied that events that are simultaneous in one inertial frame may not be
simulianeous in another. You have also deduced from Lorentz transformation equations
that two observers in § and $” who agree about simultaneity of evenis occuming at one
point in space-time will disagree about the simultaneity of events occurring at different
points. This has an interesting consequence for the measurement of lengths in two inertinl
frames in uniform relative motion. '

The problem is this : Supposcabody'slcngmismcasumdtobelo in an inertia! frame in
which it is at rest. Will an incrtial observer in relative motion with respect to the body,
measure the Iength of the body 1o be the same, i.e., Ly 7 To find the answer, consider a
rod R, (Fig. 2.1a) lying along the x-axis and af rest in reference frame . Since the rod is
atrest in §, the position coordinates of its ends, say x, and x,, are independent of time. Its
length in § is

Ly = x, -1z (2.11a)
The length £, of the rod in the frame in which it is ac rest is also called its rest kength or

praper Iength, Similarly, consider a rod R, lying along the x* axis (Fig. 2.1b) and ar rest
in frame § with length

L = %-x

Since the rod is at rest with mspcclmS',Lﬂismcresllenglhurpmperlenglhufthemd
in §".

(2.11b)

()

Fig.2.1 ! (a) A rigid rod Ry of proper length £y It fos rest frame §; () n slmllar rigid rod &5 of
proper lenglh Ly In it5 rest frame S, Notc that x, = 0 agd | = 0 & the flgures

We now wish to measure the lengths of these rods from a moving reference frame. To do

$0, ket us assume that $” moves with a uniform velocity v § with respect 10 S. Then our
Problem rcduces 19 measuring the leagth of the rod R, (at rest in §) from §”. For this we
have 1o determine in S the positions X\ and x; that coincide with the ends of the rod at 2
given ume ¢; that is the time ¢ is the same for measuring both x': and 12 In other words,
wi e defining the lengih £ of the rod R, In the moving frame §” as fallows: It is the
distance between positiong x, and x; in §” which caincide simuitaneonsiy (in 85 with
the end points of the rod. '

Since we are making the space and time measrements in 57, we will make usz of the invers
Loreny, iensformation. We are cssentially comparing x and ¥ when Ar = Q. Remember that in
choosing the relevant set of lransformation cquations, it is important to determine in which
frame the measurements of the ends of the lengih are simuitaneous,

Y (xy -+ vip)
2 Y (g + vi)
L=y~ +yv - )

.l’l =

bl
f

3
I

>
t

e e ws —3 -



Now since we have to meastre x, and x; at the same time in §', we must lel £ = £,. Thea
we el

Ly = 1% -x)=v1L
or
i Lz
L = %=Lﬂ[ —%) 2.12)

Since v > 1,L <Ly In other words, the measurerment in a moving frame §' gives 2
shorter length than the proper length measured in a stationary frame (Fig.2.2).

Aliematively, we can measure the length of rod R, (’at rest in 87 from S. Now § maves
with a velocily — vi with respect to the rod R, at rest in §'. The length of R, in § is the
distance between the positions x, and xz, in § which coincide simultancously with the end
points of the rod R,. Now we are comparing x” with x when As = 0. From the Lorentz’
wransformation Eq. (2.7a), we have

n o= Y-
and x, = Yz-v)
so that X, — X = Lo=y0y—x)—Yv{L-1)

Lelting ¢, = 1,, we get

Ly = Yx-x)=7L
or L = Lya-v¥hH? . ' Q.12)
Once again we find that the measuremen: of leagth from a moving frame gives a lower

value compared to the measurement in a Stanonary frame (Fig. 2.3). Thus, the length of an
‘object is a relative quantity — it depends on the frame of reference in which it is measured.

This is called the Lorentz-Fitzgerald confraction of a rod moving paralicl w its length
with respect to the observer. Why docs this happen? .

Did you notc that in both the cases we have emphasized that the obscrver measures the
positions of the end points of the rod simultaneously in his (her) owm reference frame.
For instance, the observer in §7 would measure Lthe length of the rod at rest in §, 1 a way
1nat x, and x| arc measured at the same time (& = f, = () in §’. But this act of
simultancously measuing x| and &, at time & in 5§’ does not wransform into simultancous

measarement of the endpoints x; and x; in S.i.c.. 5, =1, in §. Here, (5 and (, arc the times
measured in the frame § when 1, = § = ¢ were mcasured in §'. From the Lorentz

ransformation cquation (2.7d) we get a time interval in § for registering of the two cnd
points that was done simuhtancously in § as follows

v
o= T[‘z‘—g}

PX.\
%)

[ vm) ([

and . f

For & = £, in §, we get

Y~ 2| = Fih "2
£
\ ‘ / l\ ;I
v
ar -ty = ?(xz—xl)

Since x; * x;, it follows that 1,  f,.

To sum up, the situation is as follows: There are two cvenls - the measurements of 1wo
pasitions coincident with the end points of a rigid rod. These two cvents occuming at

different spatial positions (X # x;) are simultaneous in § (4, = 1)) but not in § with

Reativistic Kinematies

ar'=0

Fig. 22: The rod R, whick ls at
rest o 5 but has a speed v 0 57
wili be measured to bave a length
L =Ly (1 - v In §'. Note
that x, = x', = G in 1be Mgure.
Thug, the length of R, wliil be
meavured lo be less than the
length of Ry, the rod a1 rest in 5.

Al

=0 '} .
| A

|

}

Flg. 23 : The rod Ky which has
speed v In S wiit be mrasured Lo
V2
¥
have length L = 1, (I - In
v

5. Noie thatr = 1y . Bin T
irure.
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It 35 common in relstivity o speak
af the frame in which the
observed 13 1tem {a rod in this
caec) ic alrest s the proper
frame. Thus 5 is & proper frame.
The fength of the rod in the frame
i which it is &1 resi i called the
rest length or proper lenpth.
Thus Ly i the proper length of
the rod in 5.
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maing rod,
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Tespect to which §* is moving at 2 speed v. The result is thal the measurement of length in
§"is Ly Ay, i.e., it is shorter than the measured proper length of the rod in §. Thus, the
relativity of simultaneity resulls in the fact that the mcasurement of length done in a

moving inertial frame of refcrence yields a smaller valge compared to the proper length
measured in an inertial frame, |

You may be wondering whether the rod has ‘actually contracted”, Rest assured, the rod

does not undergo any physical change. It is the process of measurement in the moving
frame that has given a different result.

What about length measurement in the direction perpendicular 1o relative motion? For
instance, what would the length of rod R, be in 5, if it were stationary in § along y-axis
{or z-axes)? You can readily see from Egs. (2.7b and c) tha:

r

¥ =y and g = H

It means that in this case the méesun:d length of the rod is the same in § and §°. Thus, it
the rod moves perpendicular to its lenglh, the measured length is independent of the
mation of the observer,

Let us write this result in a more general form.

Length Contraction

An observer in motion, relative 1o two points af a fixed distance Ly, in a stationary

frame, along the line juining the two points will measure that distance £ o belyty,
that is, shoricr than the proper distance 7.

L=l4ly

The cffect of length contraction becomes particulariy significant when the velocity of an
object approaches the speed of light. For example, for v = 0.9¢, the ratio ULy reduces 1o
0.44. That is, the measured length is less than half of the proper length,

You may be wondering whether this consequence of special theory of relativity has becn
verified experimentally. The answer is yes. Lel us know about it now,

Experimental evidence for length contraction

Detection of p-mesons near the earth’s surface is a durcet evidenze for length contraction,
When cosmic rays interact with BASCous particles in Lhe upper layers of the amaosphere i a
hicight of about 12 km from the carth'’s surface, p-mesons are produced in large numbers, (The
H-mesons are highly unstasle with an average life time of 2.2 x 10 %.) Their speeds can be as
high as 0.998 ¢. So in their life time the H-mesons are able o travel a distance of (2.2 x 10°%)
X (31U m 577} X 0.998 = 658 m. However, some of the H-mesons are deiecled near the
carth's surface after ravelling a distance of 10 km. How is this cxplained? To unfold this
puzzla, we use the relation £ = Lo /v, where L is the distance travelied.by a t-meson in its

own frame of reference and L is the distance corresponding 1o the carth’s frame of reference
where we make the measurcments, It is given by

Lo =yL=[1-(0998))"% x 658 m = 10.4 km
Hence, the et that in spite of their shont tile tme, g mesons are able 1o reach the
ground from great altitudes where they are produced provides experimenial cvidence for
length contraction,

We end this discussion with an cxample,

Example 1: The Orieniation of a Moving Rod

A rod of proper length Ly lics in the X'y" planc of its rest frame 5° ang makes an anglc 6,
with the x’-axis, What is the length and orientation of 1he rod in the inertial frame § in

which the rod maves 1o the right with a velocity v = vj 7

Solution

Lel the end points of the rod have coordinates ', ¥} in the frame §”. If one end of the rod
is at the origin of §* (Fig 2.4), thcn we can write



5 = 0 ) y, = 0 Relativistic Kincmallcs

5 = Lasby % = Lesin 6 ‘
We need 10 find out the coordinates of the end poinis of the rod at 3 time ¢ in the frame § -
in which the rod is moving. From the Lorentz transformation Eqs, (2.7a and b) we can -
write ' ’ '

x; =0 =T(x'|—v:). yf‘ =0= b4}

Xy = LycosGy=y05-w), Yy = Losin8=y,
" Hence,

Xy - X = LycosG= y(5-x)

Ly cos 6,

or X, mx, = —
Similarly, we find that

¥a-n = LysinG

The length of the rod as measured in § ic
L [(x, — x)* + (7 - 7

172
Ly [[ - 1;-] cos? 6, + sin’ eo]-
172
L, [1 - % 005200]

The angle that the rod makes with the x-aus is

8 = tan’ [H] = tan” ¢y tan By

Thus 8 = 8, since Y2 1.

Thus, the moving rod seems both contracicd and rotated.

Can you now exphiin Mr, Tompkins' adventurc described in'the course inroduction? Tou
may like o try an SAQ to help you check your grasp of these ideas.

2A0) 6 Spend
. . . . - Y min
1) A scale is rotated from a posinon thai s parallcl to the dircclien of motion w a posilion S

I is perpendicular in a spaceship ravelting ata very high specd. Wilian abserver In
the spaceship measure a change in its lenpeth? Explain your answer. What change does

. an abserver on the carth, with respect to which the spaceship is moving, measure in-the
scitle’s length?

i) A roxl of proper length tmmeasures only 5( e in a reference frame that is moving
witlt respect 10 the rod, What is the speed of the moving reference frame?-

Let us next investigate the elfect of relative motion on measurement of time.
The word ‘ditzic’ Hulaily midans
: Tat: ‘enlarge beyond momal siat fu
2'3'3 Time Dilation commcction with 1hime, il means W
. . . . . i lmpifen an micevad of Tims
Lot us cohsider ihe measuremen: of a tims interval in a frame § in which the measunng
device (the clock) is st rest. It is called the proper time interval and is denoted by 7. We
can say that the proper ime interval is the time interval between two evenls occurring at
the same position in the rest frame of the clock. Then @ non-proper (ot improper) lime
interval would be a time interval measured by two different clocks at iwo diffcrent

posilions. Thus the proper me interval in §” is

I Bt
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1= 64— ' (2.13)

wheze £ and £] are the instants of time at which twa evenis occur at the same position
in&'.mmmmcsin_mtimwhenmcevmlsoecmatmesamepoailionh.?'.

X =x]=4’.11wqmﬁonmwlm%atﬁmehmlismmdbumthmtwo
evmnbyaclockat_mninaﬁams.mrespecttowhlch.'s"hnovhgalavelodty
v(-ﬁ)?umguuhmbormhmwmumﬁq.m.mgu

= Y@ +vxlP) .143)
L = Y@ +vx/e) (2.14b)

§’ need not occur at the same podition in §, i.e., x, # x,. Hence, in § we have to place lwo
clocks at two different positions (x, and x,) to measure the time interval {r; — 1,) between
the two events, Thus (f; - ;) is an improper time interval, From Eqgs. (2.19a and b), it is
given by

bt = G -0+ 8 o - x)
= (- 1) (sincex, = x,)
- 1
Thus 4H -1 YT = -(I___?;:})Tff. 2.15)

Sinccfprnon-w-ov.'(:v l,mctimcinmdmmurcdbyu:cSchchbcm:mu:mmc

implies that 1o an obeerver in S, the moving §’ clock is measured to glow down by a factor
of (1 - /) (see Fig.2.5b). Like kength, the duration of time interval is a relative
Quantity. The rate at wiich a clock runs depends upon the frame in which it is measyred.

You will often come across such statements: ‘moving clocks run slow’, What this really
means is cxplained ahead,

@) ®

Fig25 : (s} Clocks Cy wnd €y ure situsted t fixed positions In S. Clock € which bs a2 rest In A
lvda.-:ltyv-h.hmbSdopgtb:x-nhSmm(:i-hntei;(b][.oﬂ:ut:
transformation yldds that the me Intervel A 1=y 4 7. Here &, the knproper ime interval,
b5 meamyred by the darks €, andC;lnS.llhthellﬂlMMl_‘nemll
onu.lrrlnjnlhuupdﬂenhf.mghmaMdhlhmﬂh‘doﬁbu;udlﬂml
pﬂlmlas.ml,ltt-kulhwﬁu'tlmeltiSloI_'_thn'lhpfuperdnthwdf

. momured [n S, 8o, compared o e clocks €y and €3 In 5, the moviog dock runs dow
by & fsctor {1 ~ »¥cH1,

et L LI



A clock is measured 10 g0 at ils fagiest when it measures the proper time inge=—srwal ¥i_c,it
measures the limeinlcxvnlbuwwnevcnlsocmningaxaﬁxedpgsiﬁonin a fEwWZM <Ay
Thus, the clock isatmwhhraspectmﬂwﬁmncs“.Whmitmommirm-""ily vaxl a
velacily v relative to an inenial frame, say 5. the stationary clocks in Srcoa—cE  a 1Owmger
(improper) time interval between (e 1wO events than the maving clock. Ths == e Clok

moving with respect (0 S goes slow by 8 factor (¥ — ZHAWMZ pative 0 he s—em—ex1sORERTy
clocks in S. ‘

You can argue thay sotion is relative ando a1 sbserves in S°, ¢k clockin§ € === MMOV-Smg
Hence, its rate shouldalso slow down asicasred by the statiowy clocks jrme . TEass
correct provided tha the proper time 1ervil between €vemnts MeiSurea MK st thine
same position in S (3 = &), Then we ulhe Lorentz rransfosmrion (Eq. 2-—— «X} 10 OF

= oyl — ey |
i
= ylh— vxa |

whenee f: - = 70 —1) -('_sii'2 =x) -
ur !' —_ = T = —Ir-—._. (- -.:
2 ¢ (reHhr* '

where 1 is the propes¢interval in S,
measuring time intd of twvo eve
shortest timne intervn(his CASE. it
say that a clock at ih respect 10

the clock in S is mowith a spesd

mportant point O s thae- —Ealcal
ing a¢ the sarme ™ gl e - .
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time interval between two successive clicks in 5’ as measured by an observer in $? For the
obsu-vginS.muaiu,mcpasmgummechckmommme_dmﬂuﬂngmlsﬁmc
intervel (Fig.2 6¢). So the time I::m:linS'_wil!bemezmuredus:ngthmﬁmaryclucks.

click (C). In this manner, the observer in $ compares the reading of one moving clock
with that of two stationary clocks (Figs. 26b.c and d).

obscever in Sqeqsqmsjngu_dmemdapwbumn the two clicks than docs the
passenger in §* (seé Figs. 2.6b and 2.6d). The observer in S concludes that the passenger's
clock nuns slow, Quarititatively, we can writs the result as foHows, ‘

Refer to Fig. 2.6c. The time intenval between two successive elicks nicasured by the
clock in §”is I

mcasured in § is

At = — . = e (2.18)
Bul from Pythagorean theosem

AB = [+ (aCmyyit

Here AC = v A+, since the train travels this distapce in time Ar atspeed v, Hence
Eq. (2.18) becomes

I- 212
A= Ele +(qu ]
LT N
This is a quadratic equation in A r. On solving it for A we get two rools:
2L/c

ar= to— VAN

of which we neglect the negative root. Thes



ar= TYAY
This is the seme result as Eq- .19

Luusmmmmﬁmeinmswpumfhmm sparf,ﬁmvc
gala b T
S.Then y=15md A= I.Shl’.Thm.mmothﬂ'inS during the ﬁftsf;mkiﬂ .~

mgimusmdscksmr:zmhs).ﬁwclmkmswlmg‘mummccﬁdsz umits). Tra
WMMMM@NMMMHMQMEQ -

.Convcmcly. 10 § the moving clek it § will gick out time mae showlwyr jed the clock
in § measures the proper me srerval. In this context we woid 1ik< goout that
statements like *moving clocks 8 sow’ can be misundersiood. Whar tenient

acumally means is that 8 ckock mdng at aconstant Velocity reative e tial frame S
runs slow when timed by te closin S.Regnember, in all cags WE ZxXing 0
measurement of time 04 o nODNAISE hes (26 ObSEIVEr wilt OFE w5, An

cbserver is one who measutes phical it i i

; quangities. We will now preSeants mental
evidences for time dilation- per
Experimental evidencesfor timalation 3
Time dilasion, like leagth Contxad, has been onfizmed expexss CI A scrvati ons

{ meons S

(3 x 10® ms) = 660 m.et thesons axe atered in laboragaxe=s O This <=

be explained only by hfact thour fram otefccnce the = U

dilated by a factory » 1 it 181X 10-55). The if v = 0.998k, ¥ = plifc LR

of a muon in our fram S ps cnabing o wavel suka logx 16 i
= 10560 wn — 10.56 Madistandis result is dconsistent wriin fion =M™ \
the UG frame — UHistances.S Jem is cofcled 10-660 W in i fanee=— '
Indecd im equiva].cntcﬂmcm mrzons @& N2) in-the CERN
Europe in 1968, muovee d‘witﬁh dilatediiimes in acecordan, i

10 an AacCurac; of 1 AWmic flown around carih hawve= 150 J‘L:ulnrm |
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flﬁgsadn! Theory (say 4) tumg higper “Paceship around as soon as he reaches Alpha Cénauri ang refums (o
tvity travelling ar the samg speed. ing to the aStronaut, the royng trip will take fop;
years in all, By ¢ the astronayy's twin (8) who Staycd back on carth, the time ¢lapseqd
would be 4,7 % 3 - 9.4 years. Thus, the twin who stayed back would age more than the
tWin who wene op the space trip_ This is a famous exemple jn relativity known as the twip
Paradox. We noyw discuss ghig briefly.

The twin Paradox

The 50 called twip Paradox is this: Motion js relative. So canney 5 S2y with equal righ,
that it was (s)he Vet on the trip and 4 remained where (hc was? Consequmuy,

Bives rige Lo the
age differcnce between thern, Thus, the Paradox is disposed of as sopn ag WE Can poing gy

B .
A
= 8
o - £ 2=
S gFed

l";),_g'""
F

5| il

5| =&

- 552

gl =

S| Fé

gl a5
5| iBif
o | e
5| i:eel}
h< o~

Let the relerence f é S 'migve wilh uniform \'élucily Vi relative g the Rlerence framg
- Suppose 2 Particle moveg with uniform velocity v relative to the § frame. What is (e
velocity v of the pariicie relative 1o the 5 frame?

Let ug consider the X-COmponent of the velocity v (soc Fig. 2.7).

S .
) Iy ¥ A
E 8 r
' v B
i .
|~ T
e a
-'@L 9 T ] (Galitean; o
— \\ W . vx = Ii — V:i
-~ ""/ )




meEq.(l.?a)mhave
¢ = 1a-V ¢ o= 1(—!"‘)
[
whence
o= ¥ (dx ~ VD, e = 1( —Yﬁﬂ
Thccompomwofmcvehciwv‘are
i‘! -
. 4 _ _deo Vl i
vl. - s - ——
o d - vd/d A
2 a
v 'L'x-—\.’ N v, — P Vv -
o W= Towvd Aowbe b= (199

Compare this result with that obtained from Gaiilean tr

ansformation: v, = ¥z ~ V. What

abouluwyandzoomponmtsof\"'&my yandz-z‘,wehave
dy
\?‘ - d\ - dv di
Y- -f(d:—\d:/&) Jr - V&
& di
oV — | (219 b)
¥, = .
r TQO-¥ v/eh)
" and ’ I/ S .19
y
) 2

You c2n obiain the in
(2.1%) for the unpium

purpase?

K

Notc thar for V << ¢, thest

ll‘lcl'tlﬁufﬁg-—!fa

by Eas. {220a10 c)

verse trans{ormations
ed velocity components. Would

f\" -, L'.

._____..._——_....-—_._.—-__,_._..———' e

these reduce 10 the Gal
asiormation of velocities

from Egs. (2.8} of by solving Egs. (2:192) ©0

you like m do anSAQ l’or lhls

(220 h

22000

__ e T

fean (ransformation. EGS. (2.1% w c) gve
The inverse wansformation formulae given
are also referred W a8 relativistic velocity gddition formulae. These

quatien mcrnnbcrcgarded gmngtbnresultantofmct\vovem:.lesv’s(vx.u,,vl)
md V = (VOD)Lobcv =¥, ¥y Vi

We can apply e traf-sfu-méuon equalions (2.19 and 2.20) by recons recansidenng e gxample
’ ofﬂnspwwh@:._.mc:pﬂsﬂ and Endcaveur. Thc.spccﬂ&En relative to the earth
is 0.9¢, and the spwdofE.nﬂtavoi!I relanvcmcarm is —0.9¢. 80, asnbsen'cd in the



The Special Theory

of Reatvity So the second pulse is received at the origin of $ ar a time /" + Ar’. Since the intial pulse

armrives at the origin of §’ at ¢ = 0, the total time elapsed between the reception of the two
pulses at x" = 0 in §’ is given by

172
- W1+ ausfey _ 1+ u/c
Sl e 7= Rl [1 - m] @2
y ¥
S 5’
—r 4

T I r

o x JO i
z F

Flg.2$. A trananliter Tin S at x = ¢ sends Nashes of light with a period T . The sccessive pulwes of
light =re recetyed in 57, the inttle) puloe arriving st x'= 0 at = & x" =X’ = -1 (1- u¥ £3).

i <
Ly the point 2t which the accond pubse b received In 78t f = 0 - @i’

Do you realise that this is essentially a time dilation effect which occurs due to-the
relative motion of the Lansmitter and receiver? The time interval between two flashes as
measured in § is an improper time interval. The source of light in § acts as a clock which
measures the proper time interval between the two flashes at the same point x = 0. To an
obsezvennS'nactsasammngclockwh:dlrunsslowcompm'edtom-c!ocksatmam
§’. Henice an observer in 5’ measures a loniger time interval between the two flashes [given
by Eg. (2.24)] Compared 1o the time interval normal measured by an observer in §.

The time between’ two successive flashes received in §' can equally well be interpreted as
the time period of the light wave emitted from the transmitter in S, measured in §'. The
frequency is the reciprocal of the period of the wave, so that

2
' ! 1 1 - u/c)
S+ Aar T ot wulse

172 172
or v v[ﬂ] - v[l—‘ﬁ] 2.25)

1 + u/c 1+8

Here v* is the frequency of the light wave as received in 87, and v (= 3/ 1) is the
frequency of the light wave transmitted in S. If the receiver is receding [rom the
source, then u is positive and v’ is less than v, You should note that even if the source
were receding from the receiver, we would get the same result. This is unlike the
Doppler effect in sound where the two results are different. If the receiver is
approaching the source, we lake & to be negative and v* is greater than v. Again the
result would be the same if the source were approaching the receiver. In terms of
wavelength, A = ¢fv and A" = ¢/v', so that

-
I

it

' "y
172 172
Vo= R[i+u/c\‘. =3\.(1+E—'] (2.26)

1 —use 1-B
hY rd ra

Egs. (2.25 and 2.26) describe the relalivistic longitudingi Doppler effect for light waves
in vacuum, i expresses the ¢ffect when the relative molion of the sowrce and observer is
along the soms avis,

Let us now sum up what you have swdied in this unit

40 .




2.6 SUMMARY Releiristic Kinemuties

The new coordinate transformation consistent with the postalates of special relativity is.
called the Lorentz transformation. [t links the coordina®s (x, v, z, £} assigned 1o am
event i am mextiat frame §, with the coordinates (¥, ¥, 2, 1 /) assigned to the same event in

another inertial frame §” moving at a velocity v = (i ) with respect (o S:

-
4

BEGE RL
y o=
H = 2
. 1 — v/t

s
£ = owapa = Y-
where Y = Y(1 — V22, B = vic. The inverse Lorentz transformation is

X+ v

x = ————— =y +3cn)

(1 - .L.Z/CZ)IQ
y = ¥
z = 2
{ + v/

-
|

A - viagya - Y B

The postulates of special relativity and the Lorentz transformation lead to relativity of
simultaneity, relativity of length ind fime- interval measorements.

Simultaneity is relative. Two events that occur simultancously in one ineriat frane of
refercnce at two diflerent positions are not necessarily simuliareous in another incrtial
frame of reference. And two events that occur al the same position but al two different
times in ont inertial frame, do ot necess.wily oecur at the samc positions in other .
incnial frames.

Length Contraction: The length of an object depends unon (he inertial frame in which
it is measured. If Ly is the proper length in the incrtial frame in which the object is at
rest, then in the inertial frame with respect to which (he object is moving, its length is
given by

Time Dilation: The duration of a ime interval is a relative quantity which depends on
the incriial framie in which it is measured. A clock moving uniformly with respect 1o an
inerial frame of reference § goes slow by a factor (1 ~ Vi relative to the stationary
clocks in 5, The Jlocks iu § record a longer tme interval At for the events occurring at
the samea pasition in the inertial frame §° of the moving clock and umed by the moving
clock as Ar:

A = yA

The '.orentz traccformation of velocify in two frames § and S7 in relative motien is :

. vw-V
LA v, V/c?
’ Yy 1
T Jaonwat VT g vEana
‘ v,
.
! ¥(1 — v, Vb

where (v, v,, v;} are the velocily components in §, (v, v,’, »,) the velocity components
in §" which is moving with a velocity V = V3 relative to S.

The inverse velocity ransformation is also referred to as the relativistic velocity
addition fermulae :
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v; +V
(1 +v.V/3)

v,
) - _ ).

Yd-¥ v V/¢d)

Fd

v,

YO+, V/cY

e The application of special relativity to Doppler cffcct in optics leads (0 a correction. The

relativistic Doppler effect retates the frequency v of a light wave in a frame S in which
the source is at rest to the frequency v’ as measured by an observer in §* moving relative

loSataveIocityv:v?:

12
- |§ /
v o= v(: : BJ , B= !'E (Source and obscrver receding)

172 '
and v = vy ﬁ%%] v (Source and observer appreaching)
2.7 TERMINAL QUESTIONS Spend 45 min

1. An observer in frame S, assigns the following coordinates (o two events E, and Ey;
E: x,=12x10°m, y =0, 7, =0, 1, =7s
E; 5;=30x 10°m, ¥, =0 2, =0, ,=1ls

Determine the coardinales of E, and £, as measured by an observer in §’ moving
relative to § at a speed 4¢/5. Let E; represent pushing the button of a detonator and £
an ensuing explosion. Does your result imply that in frame S the explosion wiil occur
even before the button is pushed? How will you resolve this paradox?

2. @) Show that two events simullancous in 3 which arc scparated by A x in space will be
separated-in §” in both space and time, such that

Axr'= YAx, m’:—ﬁTAx

[

where §° is moving relative to § at a speed v in the x direction.

b5  Show that isz is the rest velume of a cube, then the volume measured in a frame

moving with a velocily v in a direction paralle] to the cdge of the cube is
(1 -V,

¢) ‘The mean life time of 2n Q-particle as measured by us is 7.4 x 107 when it

moves past us at such a speed thaty = 9.0. What is the proper mean life time of the
particle?

3. We obscrve two galaxies receding in opposite dircctions at speeds 0.3¢. What speed of
recession would an observer in onac of these galaxics obseive 101 the olirer galaxy?

4. Prolons are accelerated so thal they altain a velocily 2 % 108¢m s-1. Afierwards they drilt
al a constant velocity through a region where they are neutralised 10 H aioms. In this
process light is emited and observed in a speciromceler. What is the Doppler shift of the
wavelength in the light spectrum? The wavelength of ght emitted when the atom is at

restis A = 4861.33A.
5. Show that, with v2=v 2+ v land v =2 + vi,wccan write

22 - v (2 - VY
2 _
¢-v = E+vVp

R



where the symbols have Lheir usnal meanings. This gives a relation between the speed v Relativistic Kipematics
of a particle in § with i1s speed v/ in §".

2.8 SOLUTIONS AND ANSWERS

SAQs (Sell-Assessment Questions)
I. Substining the Galilean coordinate transformations ir Eq. (2.1b) we get

G-wil+y+2= 3¢
or 2-vx+ vty e 2 =38
which is not the same as Eq. (2.1a).

Hence, the Galilean coordinate trans{ormations do not satisfy both Eqs. (2.1a) and
(2.1b) at the ame time.

2, 2aa, = Z2cab, n
& - = 1 )
2-d2 = -& 3

We have to determine a,, 2, and b, from these three equations (1-3). To do so we also
make use of Eg. (2.4a) whence @, / @, = —v. Thus, from (3} we get

a-acs -d e q "&-c-z&-*-l_l‘#/e
1
or al = W
=. _—V___ i i (3)
“ (1 - /AP~ o o
and (1} yiclds -_-:-'-, R
bl = & = v

22 - FA
Thus Eqs. {222 10 ([} become

N S v - 1 (x — )
x (= VA2 (1 - PreyV”? Qa- "”‘?’m
y o=y
7 = =z
d = vx + ! - _..L.._.—- [ - E
f TEQ VT (- AT (L= R ¢
since b, = a,.

3. Since. vle << 1, we can neglect v¥/¢? in comparison with 1 and

r I—UI

= = x-w
* (L — R/
Y = ¥
I = 2

In the Jast cquation, let us consider the motion of the origin O° given by x = vt, Then
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o Rewirly a—vgr - - ey
When v/c << 1_1his equation yiclds
r = 1

Thus, the Lorent2 transformation reduces to the Galilean transformation for speeds
much smaller than the specd of light.

4. Substituting for v from Eq. (2.7d) in (.72 we gel
X = yx-fe [r’ + I-E—I)

¥x (1< P —per

]

X .
. — et
A

or x ¥ (x + Ber)

which is Eq. (2.8a).

Substituting for ¥ x from Eq. (2.7a) in Eq. (2.7d) we ge1
o= Ta—‘E (' + v Pco)
= vl -ﬂz)_% x

_B,
(A

v+ PYfe)

-2 =

or ¢
which is Ey. (2.8d).
5. a) FromEg. (2.7a)

Xy-X, = Y -x)-Bo (-1
Since x, = x, but 1, = 1, we have
xy~xy= Pc(y-1,)#0aslongasp =0

Hence X, # x’|. Thus events occurming a1 the same position in S but at different imes
necd not oceur at the same position in §7.

by Arx=0,1=0implics " = 0 from Eq. (2.7d). Howcvcr.‘al all other poinis (x = (),
Eq. (2.7d) gives .

U= y{-vicd)

Hence, if x 20, [ # 1. Thus, events pecurring at all other points in space do not occur
at the same time in S and §”. Similarly, Eq. (2.7a) gives

X=y@E-v)+xexecplaix=0and = 0.

Thus evenis occurming at alf other points in space are not simullaneous inSand §",

6. a} No.Since the srale is af rest in the frams of tha Spaceship, its lengih 1o an
observer in the spaceship will remain the same. From Example 1, you can sec
that to an observer on the earih, the scale is moving as well as rotating, When
the scale is paraliel o the direciion of mation, is tength will be measused to be
the snorest. As it is rotated towards a direction perpendicular o the direction of
motion (i.e., as 8 — %), its length will be measured to increase. Finsilly when
the scale is perpendicular to the direction of motion its length will be measured 1o
be the same in the spaceship and on the earth,



(b) Here L = 50cm = 0.5m and Ly, = 1.0m

Relativioic Kirsesnalley

Thus y = 2. lm _,

b)

c)

4

L~ 05m

a-vai =2

c=26x108ms?!

This is because the speeds we encounter in everyday life are much smaller than ¢

and the faclor ¥ is approximately equat 1o 1. Thus £ = 1 and we do not observe the
cffect of time dilation,

The proper mear life time of the ncutron at rest is 900s. For the neutron moving
relative to us it is 2700s. Thus

2700s = ¥ % 900s
or ¥y =3
which yields v =28 x 10* m 5,

The proper mean life time of the charged pion is 2.6 x 107%. Here v=0.98¢
ot

_ 1 _ -
TS a-waa <P

The mean life time of moving pions is ¥ X proper mean life timé '+ -~
= 5x26x10¥%=13x10% '~ J .

To an observer moving with the pion, the pion would be at rest and its mean life time
would be 2.6 x 105,

The astronaut travelling. « v = 0.9¢ would requise

4.2 47
= gg Yews= 47 yeurs

to complele the joumncy according Lo an ebserver on carth. Since the astronaut's
clock is at rest with respect W him, it measures the proper time interval A 7 and
A 1 is the improper time interval, These are related by

Ar= yAl
whence A= % ycars
- 47
I
Forv=09%9c¢,
‘r = _l._ =23

&

4.1

_AI'= ﬁ = 2 yeam

Thas, in the astrogaut’s frame the mizrval of time elapsad is 2 years.
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Flg. 2.10

8. From Egs. (2.8) we have

9.

x = y+VD), t = 1[(+%J
whence de = y(dX +Vdr), dt = T[“"*%]
£+V ’
Thes v = & _ @ +Vd) A _ WtV
us, v, = d — L, Vil — LA T
c? 2 dr
which is Eq. {2.20 a).
T A i 220
Yy di [dr" Z@] T+ Vv 7 ®a )
Tlar + 2 x
Similarly,
vl
vy = ———h— (Eq. 220 c)

a)

(o)

T+ W)

Here we can apply the relativistic velocity transformation equations. Let § bea
frame fixed on the carth and let §° be the frame attached to the spacecraft B

(Fig. 2.10). Thus v, = 0.9c, is the relative speed of A with respect to the earth, The
relative speed of B with respect to A is given 1o be 0.5¢ and we have to determine its
speed with respect to S, i.e., V. Since the relative speed of S” with respect to 4 is

0.5c, the speed of A in 8, ie., v, = — 0.5¢. Hence from k. (2.19a) we have
. v,V

¥ =

x 1—v V/ct

. 09 -V
or  -03¢= Tosve
or ° -05+045V = 09c-V

or 145Y = l4c¢

14
Yy = 1.455_0'975

Thos, the refative velocity of B wilh respeci (o the canh is 0.97¢.

Here we use the velocity addition fomulae Eqs, (2.20). Here the velocity of te rocket
(5 with respect to the earth(S) is V= 0.9¢. It is given an additional velocity v, = 0.4 ¢
in the frame § attached to it. Hence the final velocity relative to the eara: is

, oo =Y o 04c+09¢c

* Vv VS 1+04 %09
= _‘L'_3._ — n -
= 1-366 = 0%6¢

Terminal Questions

1. The space-time coordinates of E; and B in the §° frame ars obtzined fom
Eas. (2. 7atnd), Bem

I A R AN T\ R
T o= & = 5] T3

e Ea e



For  E;xf = %x[llxlogm-dcﬁx?s] e

= 20xIPm-28x10°m

or x = -8x1¢'m
J’; = »=0
Z, = =0
{ = %[75_1.2:(1;):2mx4£:|
. 3516
3 3
or , = 635

For E;:x = %X[B.Oxlo"m»%xlls]

= 50x10Pm-44x10°m

or 4 = 6x10'm
)’; = »=0
z, = zz=0

Ll
H

5 30 x 1Pmx4] _
,3[“5 Sx3x10'ms“] =3

In frame §, E; occurs before E, but in frame §°, £, occuss after E,, i.¢., there seems to be
a reversal in the order of events. We now have to find whether in such a case events E,
ard E, are related to'cach nther. In other words, can a cause-cifect relationship exist
berween E, and E,? Can E, causc E, or vice-versa? What is the distance between £, and
E,in S?Ttis {r, ~ x,) = 1.8 x 10°m. The time interval between them is 4s. The distance
tight can wrave! in 4s is 1.2 x 10°m, which is less than the distance between the two
cvents. Again in § the distance (x; — x]) = 1.4 x [0°m and it is greater than the distance
£t - 1y) =40 x 10°m.

Thus, (p-x)> clt, - 1)
and ():; -x) > .f:(fl - 1)

Since nothine ravels faster than lighy, in either frame, the two events cannot be connected
by any kirJ of signal travelling from E, to E,. Thus, E, cannot be the cause of E, in
frame §', Thus, there is no paradox in the reordering of the two events as they are

independent of each other. These two cannot, therefare, represent the pusking of the button
and the explosion, .

2. a} Itisgiventhatxa = x, and £ =1, in S. We use the Lorentz transformation Eas. (2.7a
and d) since the cvents are simuttaneous in S and obtain

Xy = iz - vy

Fl

Xy = Ylxp-viy)

whence x; - xz = y{n-x)-yvi,-1)
or Ax'= vAxsincety; =1
Similarly, n o= Y@ -Bxdo)

_—_——-
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of Relatlviy h =
whence L - = T(fz—ll)"jl_ﬁ(xz—xl)
or Ar= -‘.r;:g&.!.mtz=l,.

b) Since the moving frame moves along one edge of the cube, say the r-edge, the
length of that edge only is coniracted, it is

The length of the other two edges remain the same, i.¢. Ly, since thosc lengths arc in

directions pezpendicular to the line of motionr, Hence the volume of the cube &5
measwred in §” will be

-L_—:- XLyxly=L3(1 -2/ cH”

¢) The proper mean life timé Af of the {¥ particle in its frame is gbtained from the
relation At= yAr.ltisgiventhat At=74x10"% and y = 9.0. Thercfore,

Al = Qy—'= 8.2 x 10V

3. Let§ be the frame attached (o the earth whene we are situsted. The galaxy 1 hasa
velocily

v, =+ 0.3, v, =0, v, =0
Let the frame §” be atiached 10 galaxy 2 which is moving in a direction oppasite to 1.
Then its velocity components relative to § are given as V, =~ 0.3¢, V,=0,V,=0.
Therefore, the speed of galaxy 1 as scen from §°, i.e., galaxy 2, is given by

J oo %V 03c-(-03g _ 06c

x 1-wv, VW2~ 1+032 - 109
1.65 % 10" m s

1l

The rest wavalength of the light is X = 4861.33 A (1 A= 107®m). Therelore, the shifted
wavelength is obtained from Eq. (2.26) with u Lo be negative since the protons are
moving towards the region m which they are nentralised, Therefore,

Vo= A l—u/cTn '
- I+u/c}

Hereu=2x10cms'=2x 10°mg¢!

12 ' 11
. 1-27300Y" s 298" ¢
2 = 4861.33[—-—-———1 +2/300] A = 486133 [""302] A
or X o= 482903 A

5. Using Eqgs. (2.20 a 10 ¢} we can writc

Y
x y

(v, + V¥ w,,’1 (1 -V
L+ v Ve~ (1 + v VAR

v'i+V2g v,V + vy'z —'v”iVZ/cz
a + v Ve
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Ve W4+ 2'V -2V
% Yy - 8 (since V = v,"2+ w3

&+ v V¥

CE+ VP -AWVE+ Ve WV —y'2V2ch

A +v Vy
5+ B IV WIVA - AV - AV VA + P2V
&+ v VP
A+ EvVIivi_AvE.Av?
@ +v, V)
(2 -~ V(2 - VY

(2 +v, V)7

Redatlvistic Kinonatieg
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“Onc thing 1 have [earmed in a
long lifc : that all oer science,
mizasured against reslity, is
primitive and childlife—and yaL
15 Lhe most precious Lhing we
have"

—Albert Einstain
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UNIT 3 RELATIVISTIC DYNAMICS

Structure
3.1 Inroduckon
Objectives

32 Dynamics of a Single Particle
The Need tn Redefine Linear Momentom
Relativistic Linear Momentam
Reluivinic Foree Law
3.3 Relativistic Energy
The Equivalence of Mass and Energy
Reluivistic Bnergy and Momemum of « Free Particle
34 Summary
35 Temninal Questions

3.6 Solutions and Answers

-3.1 INTRODUCTION

In Unit 1 you have studied that Newtonian mechanics is incompatible with the special
theory of relativily. With the advent of panticle accelerators it was experimentally
established that Newton's laws do not apply io the motior of electrons moviang at high
speeds. In Unit 2 we obtained the new transformation equations (the Lorentz
transformation) and examined their implications for length and time measurerments, Now
we mnust consider dynamic phenomena and suitably modify Newtonian mechanics so-that
it is consisient with the special theory of relativity.

We shall begin our study with the dynamics of a single particle and first examine the
coicepts of lincar momentum and inertial mass'(Sec. 3.2). You will leamn that thesc basic
entities need to be redefined. Having obtained the carmect expressions for lincar
momentum and relativistic mass we shall rewrite Newton's force law and apply it 1o the

moton of particles at high speeds.

In mechanics, we define force as the rate of change of lineac momentum with time

F= %‘I} - Reeall 1hat you have studied another way of defining a conservative force fictd—
in terms of the space-rate of change of poteatial energy (F = — YU/ 1. So, if the force law

of mechanics is recast, the concept of energy would also need 1o be re-examined. In
doing so we wili arrive at the famous relation E = me? demonstrating the cquivalence of

- mass and cnergy. This single principle has, perhaps, mansformed our world in unparalieled

ways. You will discover ils power in Sce. 3.3.

Objectives

After studying this unit you should be able 1o

@ dcrive the expression for relativistic linear momentum,

e appty relauvistic force Taw 10 simple situations,

w5 of ConsSrvation of ner Inpmenium and energy,

~ interprotand oppty the reladvisie

® compuic Lhe mass, speed, momenlum and cocrgy of a relativislic panicle.

3.2 DYNAMICS OF A SINGLE PARTICLE

In this section our aim is lo reformulate Newion's laws of motion so that they arc
consisient with the special theary of relativily.  You know that Newton's second law



delines force as the rate of change of linear momentum which is the product of mass and Relatlvistic Dynamics
velocity of a body. Recall that one of the basic assumptions of Newtonian mechanics is
that the mass of a body is independent of its state of motion with respect 1o the observer.
Thus, equal forces acting on a body would produce equal accelerations, whatever be the
instanianeous velecity of the body. So, if we applied a force indefinitely on a body, its
velocity would go on increasing indefinitely, at a constant rale. This stands in
contradiction with our result of Sec. 2.4 that no material object can travel with a speed
greater than the speed of light in vacuurs. Can we, therefore, intuitively conclude that the
mass of a body should increase with its velocity and tend 10 infinity as the velocity
approaches ¢? Then this modified definition of mass would yield a different linear
momenwm. This is one point of deparune from Newton's laws,

Another difficulty with classical mechanics is that it requires action and reaction ta be
cqual and opposite at all instanis. If jt applies to forces in contact {acting at the same
poinD), even according to relativity we can say that they act at the same instant. However,
for forces acting at a distance in relativity, the same instant differs from one inertial
observer 1o another. Therefore, we cannot give meaning to action and reaction
independent of the observer’s frame of reference. :

Thus, in modifying Newtonian mechanics we have (o exclude the notion of forces
‘acling-at-a~distance’. But we can include collision phenomena involving contact forces
or field phenomena {¢.g., force on charges in an electramagnetic ficld). Lei us now
consider the concreiz example of collisions and understand further why we need to
redeline linear momeniem,

3.2.1 The Need to Redefine Linear Miomentum

From Newton’s second law we know that if the net extemal force on a system is zexo, ils
linear momentum remains conserved. We would like to retain the law of conservation of
Iinear momentum in special relativity as well, The reason is that conservation laws arise
basically due (0 symmelry properties of space-time. These propertics, in trn follow from
the homogeneity and isotropic naturc of space. Recall that in formulaling Lorentz
transformation in Sec. 2.2, we have assumed space 10 be homogeneous and isotropic.,
Hence, it is fogical 1o assume hat the 'aw of conservation of linear momentum should be
valid in the modificd Newtonian mechanics as well.

The next question ts: Can we use the classical expression (p = mv) for lincar momentum?
Let us consider the conservation of linear momentum in collisions and sec if its classical
definition allows the law to be invariant under Lorentz transformation,

v Particle 1

¥ .

n [ Particle 1
A “. l.’ x l

__ Alter \%é Before v

-

Particle 2
—y v N
¥ U
Il -

v: - mvy mpy

] ¥
Partickc 2 | L3

v, sPacticls 2

Belore Alter Before After

() (b

Flg L1z {a) A collislon belm oo two particies of cqual masa m i the 5y plane, Tie velocities {nx
aAi » dircctinn before and afler collisian are shown: (b)Y the non-tetstivistic iInemente of
partivic I and 2§00 te y3irectivn,

Consider a collision belween two point particles of equal mass m (Fig, 3.1a). Lelos
choose a [rame of refercnce § such that the particles approsch cach other with cqual and
opposite velocitics. In this reference frame the cenire of mass is at rest. The law of

conservation of lincar momentum, is given as s



Toa Speciad Theory
of Relxtivity

(a)

MVig ¥ MV = MV +myvy

where m, and m, are the masses of the particles; vy, v,5 and v,,, v, their respective
velocities before and after collisien. In this case m, = my, v,; = —v,, = v implying )
Vp4 =~ ¥y, Thas the total lincar momentum before and afler collision is zero. Yoa can
verify that linear momenimn i conserved in this case. .

The x components of each particle’s velocity and hence its momentum remains the same
before and afler collision (Fig- 3.1a). The y vedocity components of particles 1 and 2
(Fig. 3.1b) are as follows: .

Particle Before the collision After the collision
1 -V : v
] ]
2 Yy -V

Change in the y-momentum component of particle 1 =nv, —(-mv,} =2my,
Changeindu)ummenmmmpumofpmﬁde2=—mvj—my=—2m5
Thus, the total change in the y component of Linear momentum in § is 2ero.

3G there is no problem in § with the newtonicn definition of momenmm p=mv.

' Particle 1

-m v,,'(l " v; (i )I
/&‘“ﬂ D © 4 Particle 1
Ve (1) . +Particle 2

v, (2 -/ (2) mv;'(2) —mv; (2)
Particle 2
Befare After
()] (@

Fig32: () The frume § has u velocity w m y,d with respoct to §; (b) viewed In S the x
velocity component'of particie 2 Is zero and vi(1) = v}(2); (¢} In & Lse nonrelativisilc
momentim &5 not the same in the y direction before and after caliision.
Now consider a reference framé §* moving with veloClty u = 1 = vj with respect to §
(Fig. 3.2a). Note that v, is the x comporent of the velocity of particle 2 in §, and —v, is
that of particle 1. From Egs. (2.192) to (2.19¢) for relativistic velocily ransformation, we
obtain (He velocity components in' §” in terms of those in $ as follows.
For particle I:

V-4 2 v,
L+v a1+ 22

] 172 { ’ . 172
=i %) —r——] (1 - :—‘EJ

—V; (1}

1+ v, /et c - Ll + sf,/cz
For particie 2
vV, —u

\.r’ 2 =—3=
2 (2) 1 — v use
v u?' 172 ¥,
vi(2) = I - l1-= = ——t
L (2) l—v,u/cz[ CzJ (1 — WA~

Thus, the x velocity component of particle 2 is zero (Fig. 3.2b) and the magnitudes of
"y' (1} and vr' (2) arc nol cqual,

e —— e -



v(1) # v, @)
even &-ungﬁ Iney weae equal in §.

Therefoce, the changes in nonrelativistic momenta {—2mv,(2) and 2mv,(1)] are not equal
and opposite in the ¥’ direction before and after collision (see Fig.3.2¢). What do we
conclude from this? We can say that the definition of momentum given by p = mv does
not ensure conservation of momentum in all incrial referénce frames.

Do we now say that momentum conservalion is incongistent with Lorentz transfarmation?
Or should we redefine momentum in such 2 way that conservation of momentum holds
in alt reference frames moving at constant relative velocities? Recall that in the
beginning of this scction we have agreed to uphold the law of conservation of linear
momentom. Thus we now have to look for a definition of momenium which is Lorentz
invariani, i.c., it shotld remain unchanged under Loreniz transformation. This essentially
requires lonking for a definition of velocity dependent mass as argued in the beginning of
this section. But before we do that would you like 1o take a break and work out an
exercisc?

SAQ1

Consider tie collision_of particles of masses m g and sy, moving with velutilies vy, and
v,;. Let their masses and velocities after'collisinn be i, 4, My, ¥y and V24, FESpectively.

a). Write down the law of conservation of momenium for the collision of thess particles.

by -In ceriain special cases when v’ is parallel o u, the velocity ransformation law in
veewor form is given by '

v i vV +u
Ly Wi

wheee v s the particle’s velocity in § frame, and v* its velocity measured in §* moving
with a velocity u relative 1o §. Write the law of conscrvation of momentum in §'. Using
this transformation and the fact that the masses of *he particles remain the same in both
framss, Ceicrmine whether the conscrvation of momentam holds in 8%,

You hete G atind in $AQ L3 that raomentm a3 d2tined in Newtonian mechanics 15 not
uanversally conserved i all frames moving at u constant velocity relative to each other.
We new huva ta loak for a Lorentz—invariant definition of momenturn, In the process we
ailt arrive o velocity-dependent delinition of mass,

3.2.2  {etativistic Limear Momentuin

ot us consuder a sysiem of & ineracting pardctes P (E= 1,2, ... N). Let m, be the mass
of the @i jurticie. Al the moment we do nul need any detilad infommation about the
e iof sacion hetween these partivlas. et the velocily of the i™ panticle L v; in the
neetial Tawrss 3 and v in (e il rame $ Lot the velocity uf § relative t § be

s . liase particles are maving sulfjuect o Lhe condition that the ol mass xnd ol
lisea Herorsinsn Al e svstem is conserved 0 faame 8, 18,
T o = const {3 1a)
i
and Y wi v, = CUNSIAGT i3.10)

We hoeve b sind coadingns so it the ol mass and finear mementwn is also conscrved

iny fwmne i,

EH:' S Cunsm J.2a)

an; Y om'v. o= comsum. t4.2b)

spend
10 min

Relativistie Dynamicy
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where m; is the mass of the ith particle in 8’ frame,

W will now show that Egs. (3.1) and (3.2) are compatible only if mass ig redefined. For
this purpose we will engagg in a litle algebraic manipulation which you need not |
memorise. We will usc the following relations :

. 1 . _ i - 1
awEs VramAr t Tasaay 6

For the sake of simplicily we shall assume that the particles are in one-dimensional
motion along (he x-axis. Since v; and v; are in the x~direction; from the velocity
transformation laws (Eqgs. 2.19 and 2.20) we have :

O R (G48)
and
v:- +u
YT T we G40

We will now determine a relation between ¥/v{ and ¥, v, Using Eq. (3.42) we can write

'Y. ¥ = . . -
P L=vw'c? {1 - vk

'IJ‘- - I
T -v¥A - vu/ch? 1 G5

From Eg. (3.42) we can also show that

v ? - 2
o (g

You can work this qul as an exercise,

Substituing Eq. (3.6) in (3.5) we get

1'1- il 11

T2 T, TTHT e
(0= %7e%y (1 = ey

or .
YV =T A - W (3.7

Now sincc v and « are consianis, we can rewrite Egs. (3.1a and 3.1b) as follows without
changing them

Y m oyt = constant

_
‘) oy P = s
Sy ..

Subbacling vic cquation rom e other we get

}_‘ LT iV, — i = wonslant (3.8)

v v
Bul from Eq. (3.7), (v, — 1) =;—}:-_ Therefore, Eq. (3.8) yiclds

v,
3 om % = constanl (3.9

[



Comparing Eq. (3.2b) with Eq. (3.9) we obtain

-y .
m; m 3.10) .

Thus, for the conservation of mass and momentam to hold in the §* frame, the mass m,

. should satisfy Eq. (3.10). What are the implications of Eq. (3.10)? For Egs. 3.2a) and
(3.2D) 1o have an unambiguous meaning, 71; must be independent of any measurement
done in the § system, such as that of the particle velocities v, or relative velocity u of the
systems. Similarly, m; should be independent of any measurements in §” system such as v,
and u. Thus, we must have

absolute constant

my, (say) (G.11)

We can now express the result of Eq. (3.11) generally as follows : For any particle of
mass m and for any inertial frame of reference, if v is the velocity of the particle refative
to that frame, then

m = mgY

mo
. T— 3.12
a - vyt G.122)

For a particle at rest v= 0 and
mo= o, (3.12b)

Thus a1, in Eq. (3.12b) or m,, in Eq. {3.11) is the rest mass of the particle. I is also
called the proper mass of the particle for it is the mass of the particle measured when it
is al rest. Egs. (3.12a) and {3.12b) Lell us that the mass of a particle depends on iis
velocity and increascs with an increase in ils velocity, The definition of seladivistic
momerinm hien bacomas

P o= nv o= _.___fr_!_l{_.‘l—. {3,150
(1 — ety o

The compenents of memanium are

Wiy g v, mgv,
p= ——— . = ———F—— | p T ————iT {3150
S0l - ey R B T o B Tl — eyt

Nouce that the denominator of cach momentum component contains the magnitude v o
ths wl velocity,

Thus, by redelining muss and momentum, we have been able to preserve the fora of the
momenaturn cons' riation Taw and have also satisficd the requirement that the law b
Lorenty invarian, i.¢., remain unchanged under Lorenw. transformation. The dsffercnae i
thut inaead of the mass of individual panicles remaining constant, the tatal nis: of the
svsiem @ censerved (Bas. 2.1aand 3.24), This relativisic momentum consenalien law
hae been provved 10 be true by experiments.

W e arrived at these definitions of mass and moementum censidesing one--" reusiond
mation sniv, T same resalls are obained for Lhree—dimensional motion wiore we b

; e ek sty amd Jhow 1 the paear
G- I i D Ly opoowe s desoribed in 5AQ )
.‘ ELRAE PO ficle whick Bas o momentum of
Pew Tt 1
il LYY Y - - - 1

Rdatlvistlc Dypamlcs

g —— .
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We can now write down the equation of motion of a panticle in relativistic mechanics.

3.2.3 Relativistic Force Law

Recall that according to Newton’s second law of motion the rate of change of momentum
of a body is equal to the net force experienced by the body and is directed in the tine of
this force. Of course this is true for a suitable choice of units. This law akes the
following generalised form which is consistent with the special theory of relativity.

_dp _ d
F = d - @ {mv) _ (3.14z)
or -
Ay dm
F_mdr + v ar (3.14b)

Substituting for i from Eq. (3.122), we can also wrile this as

g dv  _d my
F I — = N _1
A-VA? @ > adq - ZHn @.24c)

However, there is one fundamental diffcrence between the nonrelativistic and relativistic
cases. In the nonrelativistic case it is possible to reduce force on a body 10 a product of its
mass and ils acceleration. But the relativistic force law {Eq.3.14b) shows that the force
acting upon a body and its acceleration may not even be parallcl.

You can see thai Eq. (3.14b) is not cquivalent to writing

= — o [dv_
F= [(1 Z v’/cz)“] a =™

As defined in Eq. (3.14a) the relativistic force law automalically leads (o conservation of
relativistic linear momentom.

If F is zero, p = my v/(1-v4e%)" must be 2 constant

Hence, in the absence of external forces, relativistic momentum is couserved. Now
suppose F as defined by Eq. (3.14a) is not zero, and acts on a body or a system of
particles for some time. Then it changes the relativistic momentum of the body or the
system by an amount AP which is cqual 1o the wtal impulse given o the system

AP = J = jF dt (3.15)

In the limit v/c << 1, Eq. (3.14a) rcduces to

F o= o %{‘f G.16)
which is the well known Newton's second law. Thus, Newtonian mechanics and relativistic
mechanics overlap in a large domain of applications in which the motions of bodies arc slow
compared with the speed of light, i.c., when yz= 1. When 7y exceeds unity for a particle in
inolion, Newtonian mechanics is in slight error. For y factors as high as 10" observed for
COSMHC ray protons, Newlonian mechanics is 1otally wrong. But within jts acceptable slow
motion domatn Newlonian mechanics conlinues lo remain valid and ssoful.

Let us now consider an application of Eqs.(3.14a and b) to relativistic motion of a sinple
particle.

Example 1 Charged particle motion in a magnetic iield

A charged particle moves perpendicular to a uniform magnetic field at relanivisiic spueds,
Determine the mdius of the particle’s orbit,

Sotation
The relativistic cquatior of motion is

dp _ d Y
F= = (mv)ﬂmdr

dt dt

+ v

ar

R
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where m = % 15 the panicle’s mass and v its velocity, Here F is the force on

e
(1 ~ /¢
the particle due to the magnetic ficld and is given by

F=gvx B

Sincevli B F= qvﬂa. where 1 is perpendicular 1o both v and B. Recall from Unit 3 of
the course PHE-01 (Elementary Mcchanics), that a force acting pespendicular 1o the
velocity is a no-work force. So the particle’s speed does not change under the action of
this force. Only the direction of its velocity changes. Hence the particle’s mass remains

dm . ,
constant. Therefore, 7 0 and the cquation of mation reduces

Substituting F with the magnetic force we obtain

quE = Yy a

Since the particle moves in a circle, the acecleration a is simply the centripetal
acceleraticn and we get

VZ
B = Tmf

whence the radivs of the particle's orbit, r, is

-1y my

r = =

48 qB

This is of the same form as the classical expression for the radius (mgv/gB) cxcept that ic
is 7 times larger. Funther, the panticle’s mass increases with an increase in its speed. The
incecase in radius by a factor ¥ cxplains why many of today’s high-cnergy paricle
acceleralors are so huge.

An ¢xercise al this slage will help you consolidate these concepls.

SAQ4
The rest miss of proton is 1.67 = 10- kg. Determine the magnitude of force needed
to pive it an acccleration of 1.0 x15 ms-2 in the direction of motion when v = 0.90¢.

W v cailic W @ crucial siep further, wken by Einswein, which gready cuended e
revolutionary impact of his special theory of relativity. While developiag the hotion of
rclativistic encrgy Einstein arrived at the now famgus formula £ = mct which
demoenstrates Lthe cquivalence of mass and energy. Lel us see how this was done.

3.3 RELATIVISTIC ENERGY

In this section we shiall use the relatvistc force aw te find the expression for reladisisiic cisergy.
Recall the deliniuon of kineue encrgy, from Unii 3 of PLIE-OL, which is the work done by the net
extemal force in increasing the speed of the particle rom some valuc v, W0y, -

: F30T
n-h-J‘Em AT
| Sy
LTI ™
'|-',‘_ dp  a I___"I').‘-___:,
dr dr ) -2ty
Thus
R i
rE T .“\ - J f"f ik
J--’-? il my | p
j— —_ . _._I . I
A rﬂl_(l—\?/c?’_ :
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B g My ¥
Ty - T, ='[AEI:{(1-——VZ/C7')'Z] . vdt

[, My
=LV [(1—&/&)’*‘*}dt

Since for u function £ (1), ' - j"‘, d ['(T%]
A _—
#=Z 4 - _
o We can rewrile the integrand making use of the following relation

div.p)=v.dp+dv.p

B
Thus T,-T, =] Md@&G.»-p. v

a3 B
=v.p lA -'[4 p.av

_ myV? '3 5 myv.dv
BT R R TR 7o

Y.¥ dv  dv.v_
Now d(zJ—-v.2+ 2 =v.dy

Using this relation we get

o7 - my v & J-ﬂ my vdv
R R A Y
my v* B B

. — 0" 2
(1 — v/ Ia +m0c2(1 /<) |A

where the second integral has been solved with 2 change of variable |1 — ﬁz]= t. Letus
c

assume that the particle is at rest at the point A, so that v, = 0 and B is any afJbiuary
point, at which v = v. Then, the relativistic kinetic cnergy of the particle starting from
rest is

g V-
S TRt A= - @

. mgvl.-!— macz(l-vl/cl) 2
- 0—-Z/)% M€

__ mc &2
TO - AAHET™
or

T me — my ot (3.18a)

. T o . . . . -
You can sec that in the limit — << 1, this wends 1o the classical expressicn of kinci
c

epcray: T = 2 mﬁvz. Why-don's you worle it out quickly?

et e— e - -



We will now discuss the interpretation of Eq.(3.18a) given by Einstein,

Relauvistic Dyuamicy
331 The Equivalence of Mass and Energy
Thekinaicenc_r_znyEl.3.IBa)ornpanidca:iscsﬁ'mn the work done on it to bring it
to speed v from rest. Suppose we rewrite (g. 3.18a) as
met=T my? (3.18b)

= work donc on the particle to change ils speed + mg ¢
Einstein proposed a bold interpretation for Eq. (3. lﬁ,b) as follows:

mc? is the total energy E of the particle.
The first term on the RHS 1n Eq. (3.18b) arises from (extemal) work done on the particle
by the net exiemal force. The second term, myc?, represents the "rest” encrgy the particle
possessed by vinue of its mass, Thus,

ig. {3.19) does not Al a
E = m1:2 319 ?ﬂ}tmu)iu'l n:lu;ur: II'::nn-rc:ﬂ

cncrgy and masy, v naies that
cnt.,; dnd ‘mass” aro oquivaleal
concopla. Energy in masa and
Eq. (3.19) states that mass and cnergy arc cquivalent — mass and energy are different muss 15 encrEy-cxocp (or the
names for the same quantity which we cu* call mass-energy. Anything thathasa massm [ ocars it is comm on 10
has an energy £ (= m.cz) and anything lha has an encrgy E has a mass (= E{cz). If energy  cxpress the mass of a particle in
AE is added 10 or 1aken away from a body, its mass will change by Am'= AE/?, energy units.
imresp -tive of the form of energy:

Let us further undersiand the meaning of Eq. (3.19).

Am = AF/E (3:20)

AE conld represent mechanicat work, heat energy, absorpiion of Light, or any other form of
energy. | Thus, Einsicin's generalisation of the conservation of energy goes far bevond the
‘classical conservation law of mechanical energy.

One of the most signilicant consequences of mass-cnergy equivalence is that the law of
conservalion of Lol mass of a system (discyssed in Sec. 3.2) astornadeally implies the
law of conservalion of wotal energy of (he system. These two classical laws then merge
into one refativistic law of conservation ol mass-energy given by Eq. (3.19).

This single principle cmbodying the cquivatence of mass and energy has had a profound
influence on our vnderstanding of wie universe. Pechaps its most dramatic exangles are
pravided by the processes of nuclear fission and fusion. While on the one hand these
phenomena hold the promise of unlimited cacrgy supply, i ic oihet Wi spectre of
destruction looms large aver us,

The alomic bombs responsible for the destruction of Hiroshima and Nagasuaki involved the
annihilation of a few grams of matter. In this senss, special relativity is not just ihe
concern of scicntists alone; it may well conwol the destiny ol all of us.

The experimental evidence for Eqs. (3.19) and (3.20) first came (rom the mass defect of
alomic nuclei. This quantity represents the deficit in the mass of a nucleus (Compared
with the sum of the masses of its constiiucnl nucleons), L comresponds 10 the binding
energy of the nuclews, This much energy must be supplicd to the nucleus before it can
break up into individual nucleans; conversely when a nucleus is formed frain individual
nucleons an equivalent amount of eacrgy must be relcased. Extending this idea 1o a
nuclear reaction, the net energy released or absorbed would be equivaient 10 the diffcrence

veatfication of mass-energy equivalence was done for the following nuelear reaction
,Li' ¢ H —— 2 .He'

Il involved a mass dilference of

(7.0166 - 1.0076) amu - 240028 wnn = 0.0186

"
— e [y 3

wilh 2n equivalent energy difference of 27.7 x 107%rg. Measurements of the difference
between the total kinetic energy of the a-particles produced and that of the incident proton
gave the value (27.6 £ 0.05) x 107%rg. This was in excellent agreement with the
theoretical result Many experiments have now fully confirmed Eq. (3.19).
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We will now make use of Egs, {3.13a) and (3.19) 1o express tie toial energy of a free
particle in terms of its momenium and arrive at an intcresting resuit about massless
particles, ’

332 Relativistic Energy and Momentum of a Free Particle
Classically, the relation between energy and momentum of a feec particle is

2
E = %ml»'2 = £

)

For a relativistic free particle, we combine Egs. (3.132) and (3 19 10 artive at a
corresponding rclation. Squaring Eq. (3.13a) we get

 ma
i

whence simple algcbra yiclds -

P 2
I P+ m;,?
Therefore,
N
{ = P :;_—,(2)1, [l +:€‘—;5]
Now from Eq. (3.19)
. F = me* = ym !
: !
L ;g.c,.]
or
B = p'c+ (my G210

Eq. (3.21) is the relativistic energy-momentuwm relation. A consequence of this relution
is the possibility of ‘massless particics’-particles which possess energy and mementum
but no_rest mass. Lot us discuss this bricfly.

Massless Parlicles
If we ke my = 0 in Eq. (_3.2!} we el

£=p (3.22)

We 1zke the positive rool on the assumplion that particles whuse ensrgy decrcases with
increasing momentum woukl be unsiable. Now in order 10 bave non-zero momenium we
must have a finitc value for

. my
P =T aF

in the limit my — 0. This is only possible if v — ¢ as mg — U. Thus, massless particles
smust travel at the speed of light. A well known example of particles which wavel ot the
specd of light is that of photons. Thus we conclude thal phoions have zero rest mass and

pOssess cnergy given by Eq. (3.22). Henee the momentum of a massless particle tike the
phowon is given by

o Itn

p = (3.23)

Conversely, particies which wavel at the speed of light, such as photons, have zero 1est
mass.

We end this distussion with an exercise for you.

S mEITe———rmes e -



SAQ 6
W The rest mie s ¥ 4 fres proton 1 Y38 MeV/e-. A pivion has kinetic encssy 58 Mev.

Calcutare the toa encrgy 4in 30+, relativistic mass, momentum and specd of the
praton. 1t v zoen tha | Mcv= L6 x 1073, '

(h» A pamma my of cnerd A :-;Lﬁkcs a prolon at res( in the taharatory. What is the

nomestte ¥ T ames w0 th laborators fiama? Show that the ws* Ved the
AR eV e T e emm - dmmie dE given o

if _-. >
T N T O R T o

Lel us now sum up what you have studied in this unil.

34 SUMMARY

e The relativistic Jinear mementum of a particle of rcs! mass mg moving with velocity v
is defmed by

e oY
Py =0 = 2%

where m is the relativistic mass of the particle defined by

me— 0 __
(1 = v/t

a The relativistic force law takes the following form:

_4dp
F_dr

wliere p s the relalivistic linear momentum,

e Il the net external force arting 9n a body or a system of particles is zero, the linear
momentum of the system is conserved.

o Ifaforce F acts on the sysiem for a given (ime, it produces a change (AP) in the
mamentum of the system, eqnal W its impulse.

ar =3 = fra

o The relativistic total energy of a particle is the sum of its relativistic kinelic encrgy
and rest—mass energy

E = T+mg
where the relativistic kinclic energy is given by
T = me*—myet _
This yiclds an equivalence between mass and energy represented by the equation
E = md
e The cnergy 2nd momentum of a relativistic free particle are related by
‘ £ = plrme’

For a particle of zero rest mass, such as the photon, the relativistic energy-
momentum relation becomes

. E = pe

Relativinic Dynamics

. RN
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of netwy 3.5 _TERMINAL QUESTIONS Spend 45 min

1. Inan inelastic collision two identical point particles A and B, each of rest mass myq, -
collide and stick together forming a single body C of rest mass My Each body has
kinelic energy K as seen by an inertial obsetver. The sitnation before and afler the
collision is shown in the Fig. 3.3 below for a frame 5.

’
‘i }
5 s
— “,=“-) ——py
u’ -u’ ’
Be - - -» 4 ——a 4 . ‘C(uc=0)
> x
O’ Ll o Or
@ ' ()

Fig.33 : Inszcuc collishon of two bodke of equal rest muss: (g} before colligon; (b) afer collision

Consider another reference frame §, with respect to which §” is moving with a velocity
viv=u)

(a) Dr;aw the same collision process as viewed by § before the collision and after the
collision. Apply the law of conservation of momentum in frame S and show that the
rest mass of the body Cis given by -

M., = Zm.o
° (1 - w'2/chh

(b) In & frame the total kinetic energy before the collision disappears after collision,

Shaw that it equals 1he increase in the encrgy of the system which is cquivalent to
the increase in (he rest mass of €.

{c} Show thatin both [rames § and S, wie 1012 cnergy and relativisiic mass are
canzerved for this inelastic collizsion.

2. Use the relation £ = me® = (T + myc?) 10 express the relativistic force law given by

Lo (040) o

F = m%:-' + V(fz.V)

Hence, obuain the force law for the cases when (i) ¥ is paralle] to v and (in Fis
perpendicular 1o v.

3. Aparticle of rest mass 5 kg has an initial speed of 2 % 10*ms™. It is acted upon by a
constant relativistic foree of magnilude 105N in the same direction as the inisial
1chalivisic momentum for 19%. Calculate
(2} the maznitwic of the initnl relotivictie mementum
(b} the magnitsde of the fina! relativistic momenium
{c) the final speed of the particle,

dan

A protun i 3 = §5.5%% in the 1aboraiory. Calculate its energy and momentum in an
tnertial frame §” travelling in the same direction as the protan, with B = 0.99 with respect
to the laboratory. Proton rest energy = 938MeV where | MeV = 1.6 x 10~ 1y,

5. (a) Use e veloity addition formulae and the result of terminal guestion 5 of Unit 2 to
62 obtain the following relativistic Fandormation equations for momenium and energy:



P; = T(P:-ﬂEfC) = T(p;'"B'E'fC)

n = Py =p
P =p P =0’
E' = y(E-Pep,) E =v(E+§cp))

where the symbols have their ususl meanings.
(b) Hence show that the quantity (E* — c%p?) is Lorentz invariant.

3.6 SOLUTIONS AND ANSWERS

Se.ll' Assessment Questions (SAQs)
1. (a) Law of conservation of linear momentum for the collision of the particles
. Pia* P =P+ P
or
Mg Vig+ Mg Vop = My, Vi + My, Vo (SincE p = mv) (1}
(b) The law of conservation of momentum in §'is |
Pig P = P + Py
or
Mg Vg + My "';.s = My, Vg T oMy Vo 2
whete m, g , Mtap are moving with velocitiss vig and V35 before collision and
m'm .m'M are moving with \.fclcacities\f'“.l andv;.. after collision. Ttis given that
Mg =m’13.m23=n1;_8 ,mu=ml;ﬂ ,'ﬂla:m;".' Usingﬂh“.S]ﬁiﬂl transformation law
' _ ¥ +n
1+ vt
We can write Eq. (1) as

r ’ r
. [ vig +u . vy t U o via+tu -|+
18 B R ’”-23 P - 1A »
| 1 + v,y u/c 1+ vy, w/ct I+ vy, u/c*

[ v+u |

; 3
i'nmI_'l+|.-2“,‘u/’r:2 ®

leariv (his cauation cannot reduce to Eq. (2) and hence conservation of mumentum docs
not hold in &,

2. We bove 10 show that

TR

From Ey. (3.4a)

._
|
I
!

& (1 — v u»".':z]2 - (v - l.:)2

¢t (1 —vu/c?y

2 2
(I—v:-zfcz)[l—%] = [ —v'—;] —:lz'(v,---u)z
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3. (2) We stant by working from Eq. (3) in the answex to SAQ 1(b) given as

1+ vy u/c’

Mg [

}W[

— i =m —
L] + vy u/cz] 4l s v, w/ct

VYop + U

. -

Using Eq. (3.4b) we can show as in SAQ 2 that

VM+I.I

Vau + U
+ Mg

v & v v.? ' i
1 + *— 1 - el - . —_—
[+%2)(--3)- (%) (%)
Applying Eq. (2) w0 this problem we can write
Vi, 4 (1 v'l/" 2
1+ 4 T Ve _
[ e ]’ a -/ A=/
Thus
My, _ 1 - v/ ¥
V4w, w1 - i/ 1 - "';i/‘-'z i
: { 1 - m,, 'I;m
L: - /e Yia
_ ”’;A . n
= (l__‘m using Eq_ (3.10)
Stmilarly
My
(0 +vyw/chy (1 - P74’
Mp - ”"';B
U+ v (i — u/A?
s - Moy
Qw1 -

Thus Eg. (1) becomes

Mg (Vig ¥ U} my (vyy +

u  omy, (v, + )

My, (Yo, + U)

TRz

or
64

(-~ (- 2/

(1 — /A%

1+ v, u/c

e —————— .

(1)

%)



Mg iy . My Vg +(m;_,+m;3)u

A — /A (1= &/A (1 - /D%

MY Mt | @t o
2 T 72 T o

Since the 10tal mass of the system is conserved in the collision process,

PA + M, = g + My @
Ard using Eg. (3.13a) alongwith Eq. (4), we can wrile Eq. (3) as
Pis + Pis = Pia *+ Pu
Thas linear momentum is conserved in S’ frame.
b} From Eq. (3.13a) we have
= e ¥
. my v ] 1 -1
or the wde p= wiere v=099cend p= 192 x 10 kg m 5.
magni| P (1_—‘?‘./5"')5 14 (3 P kg

182 x 10" kg ms™
099 x 3.0 x 10°ms™

Thus {1 - (099"

il

9.1 x 107 V&g,
4. Itis given that we acceleration is parade] to the velocity of the proton. Now

F=m;a+1|rﬂ

dr
where
dm _ 411 v &y
da = Mgl a< s o ZA - &
- N M voadv
“US, F = m .-(]_;Wczvdf

it 4 . A dv
H R = —_—
+ ——“ 273 a a [Sinccalv,a=vy ; |

1}

r .
n:l-!+rf:2—cjcz} ] [<inccm=-(~i-%/c1)q}
= F‘?Egﬂ = 1'3 M, a

I is given that 7, = 1.67 x 1077kg, a = 1.0 X 10" ms™.
Sinccev=09¢, y=23
Thus F =y mpa=203x% 1071

5. In the classical limit v/e << 1 we make the approximation

(1—_:1/-:‘)?‘ s 1+%v1/c1.'[hc.n

U s - 2 -

T= Eﬁﬂ"‘"’“z: ol La {-%ﬁ - 1):%;@
6. a) For the proton
mee? = 938 MeV
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T =200 MeV

Total energy-E = T + myc® = (200 + 938) MeV = 1138 MoV

Rest mass mg

Relativistic mass m

938>; 16 X 103
9 x 10'6 mZ 52

167 X107 kg
E

é

-13
- 1138 x 16 x 107 ] = 202x107 kg

9 x 10'¥%m? g2

Momentm of the proton is obtamed from Eq. (3.21)

- PICZ + (moc?.)'z
= pz CZ + ”%C4

= RE-nd?

= o (m) —mo (mee?)

= (202x107kg x 1138 ~ 938 x 1.67 x 10-Pkg) x 1.6 X 1071]
= (202x1138-1.67x938)x 1.6 X 107 ¥ kg

= (Q298-1566)x 1.6 x 107“T kg

= H7Ix10%Jkg

B
e’
p
or
or
p

= 34x10%g ms?

The speed of *he proton

v

or

ar v

_ A 1171 x 107 x 9 x 10" o2
z 2
P+ me

1171 x 107% + 2506 x 1079

_10539 x 10% ,
= 1677 m-s

= 287x10¥m?s”?

= 169x10°mst .

b) The momenwm of the ¢ray in the laboratory frame is

v

or Vv

Now M.I,'v.lr =p, = —Ej‘ . Since gamma rays travel at the speed of Light



ET
VT = cand%::i

vV = ET/C = Ez"c
M,+ E /¢ M, c* +E

Terminal Questions

1. Using the velocity addition formula (Eqgs. 2.20a o d) we can write the velocity of A

and B in § as:
-+ v
My = —-2_0
1 -4 vwie
o+ o+ 2u
g = =

l+r we 1+d%72  1+u2/2

Since C is at rest in 87, in § it will wavel with the same velocity v (v = &) as that of §.
Thus this collision process can be shown picterially as follows.

, 26l +uick)
v (V = u) -— oA

0 ; >x bx
@4—*"’ 0 P 4
The relativistic mass of B in § [mme is
iy
s 5 - uzB/Czjla
FTI.O

: |- auset |
]. (1 +a 2/i:'i)ZJ
my (V + w/ch)

(1 — w?/ch

Now let us apply the law of conservation of momenlum in frame § to its x-component (the
ycomponent is automaticaily conserved):

Poctare = DPutier
Mgg + WU, = Hpv
or
mg (1 + we®) 2, 0 M v
(- u/cY) (1 + ure” =Wy
M,
since Me

(1 _ urZXCZ)H

&7

B T
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where M, is the rest mass of C and v = o,

2my
a - p"/c’)""

(b) Kinetic energy in the S’ frame befare collision is given by Eq. {3.184a),

or M, =

" e Ml —m —
K' = m’c* nhc"—mocz[(l_u,z/cz)“ l]
s _ s 2 _ -— l.____
K = myc -m moc’[“_u,z/cz),& 1]
’ L -—-——-—_! p—
Total KE. = K" + Kj _%E[(l—u'zfcz)“ 1] (1)

Now the rest mass of C is greater than the sum of the rest masses of A and B by an

1 . . .
amount Am = My, - 2m, = 2m, m = 1|The increase in energy equivalent to
the jperaase in mass =

l -
= 2y | - 1

1)

which is the same as (1).-Therefare, the disappeared K.E. appears as an increase in the
rest mass of the system. And (he total mass-enesgy of the system is conserved:

(c) Consider the § frame:
The total encrgy (Eq. 3.18b) is

() Before collision: E, + E, = myc® + (mye® + Kp) since K, = 0

- = 2myct + m? — L 1] [ Ky =mg ¢ ~ myc?)

(1 - ul/chy -

. - i
=9 2+m0821+u /Cz_l]

1 ~ u%re?

1- 2w e?
2moe” + mge? | =SB

| 1 -« 2
__ e
| T
M,).'.:2 2m0¢:2

i}y After collision : M. c? = =
@) ¢ A — w7 7 1 - w2t

where we have substituted the vatue of M,.

Thus the total energy in § frame is conserved. Now consider the § frame. The total
energy using (1) is

() Before collision: myc® + K, + mec” + Ky'= 2mye? + 2myc? [—_—_'1 .i: o 1}
d-u
o imy
T - wF AR
1
(i) After collision: Mge? = u.‘%ﬁﬁ

Hence the total energy in §* frame is also conserved.

- —=-=



{¢) Conservalion of Relativistic

S frame
‘ o ) me _ me (1 + w/c?
() Before collision: my +mg =M+ (72778 = Mo * " Az
___ MM |
A - ey

. T M, - 2my

('I.l.) After collision: MC = (l — H"Z/Cz}% = (1’_ ulz/cz)

A frame

_ L, m m o

(i} Belore collision :m," + mg' = - u’zfcz}“ + a- u’z/czj"" = a- u’z/c’_)v‘

- g b'o
(ii) Alter collision: M, = E—W

Hence the relativistic mass is also conserved in both S and §* frames.

2. The relativistic force law is

p)
dm 1dE .1 d _1 4
di ~ 2 At 2 ¢il(-‘r+m“c:l)_,;2 dt
da° _F.d _ a _
By =~ =F-g TF
Thus@ = —; Fv
ai -
With this the force law becomes
F = r.rzﬁ + ¥ F. 9
dr c
(" When F is parallel w v,
F = ma+¢£¥—1 whcrca:-d—vandv=v3
¢ dr .
or F[I —ﬁz) =ma [("vEF)
) ¢
or = 7.
(1 — vV/c%

Fo b o
= a
{1 — v/co

f;
‘Thus it lwms out that both F and a arc paralle]l W v. The guantily ﬁ——{:—/g-)g is

sometimes called “loagiwding] mass™.
(i) When F is perpendiculario v, F . v = 0 and

_F= m

ST ee— ——



of Relativity _ My
a - Z3"

Lo My " .

3. 2) The magnitude of the initial relativistic momentum is

_ My _Skgx2xi0'ms? 4
P=g myv v TRy = =13M4x10gms

(b} The change in the magnilude of relativistic momentam is given by
AP = IF dr = Fjdras the (orce is constant

“AP = F A( =10°Nx106% = 10%g m g
Hence the magnitude of the final relativistic momentumn is
Pro= (134x10°+ 100 kgm !
= 234 x10kgms™
(¢} The final speed can be obtained from

(AT e
. mY
* 7 1 -/
vz
A G Rt
2
ar V} {rﬂ% + —;;] = p}
v = Pr

(mg + p}/ "

234 x 10° kg ms™!
(25 kg + 60.8 kgh)*

~~ - N Cy
= 7253 x i0®ms!

4. We first calculate the velocity v of the proton in the § frame. Using the velocity

uransfermation relation
b v — v
I
Qr
v
¥ e ¢

. sy
y — vw o

ar

mee 938 MeV 938
= - = =1 v
(I-pDH%  (1- (829" 0572 1640Me

E*_pd

Hence E

7

I}
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or

5w

P,

%(Ez _ mf,c“)""

16 x 107
= Tx i e 1060 - 36T

_ 16x 107 x 1345 —
- 3x10° &

717 x 10" kg m s

In frame S, the momentumn and energy equalions are

_ my v, o = my v, _ myy,

a — v P T a TR BT -
LM
T 1=/

In frame <, the comesponding quantitics are by definition

Py

The velocity addition equations (2.20a to c) and the resu
of . 2are

(::: )

v my v, __m,
A—vade" b= aovady BT a e
my ¢
,

(1 —-viehh

»
vI+V

1+ v'; vsed'

.
- v, _ 1

(3 + v Ve =0 Vs

V!
]

v(1 = v, Vel

S v @ - V)
e? + v, Wy

“:'.' ".U':"] (Cl . ‘12)

¢t o+ v, Ve

If we divir'. (nroughoat by 22, invert and take the square rool we gel

Now

or

j 1+ v, W/

(VR (1 - Vi

rip my {v, + V1

(: _ }2’162)3"1 {I R .r_; |_f.f‘n:1}

L <r . s 2
g (v, + N P+ v, e

S I O s

my (v, + V)
a — vVa% (1 - VR
_ P my (Ve 2/ch)
P 0 - VR 1 - VoA - VO

it obtained in Terminal Question 5

(12)

(1b)

(1)

4]

T

e — - -
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o Reativity or

or

or

p. + E v/t
= x = "+ E'/C}
Py mﬁ Y(p, ]
myv, myv,) (1 — Vi )”
b = U THE A% a s v, V/e?)
L wsing Eq. (2
(1 — w2/ £ @ !
Py = Py r
o my, myv, (1 ~ Vet oMy
T A T AT AS%as v VAR T - VigyR TP ;
. _mi__ C 1+ :; v/e
(l _VZ/CZJ'\'& (] _ VIZ/C'Z} (] - Vl/c?.)"i

my ¢t ' . myv, Vv
(- v (1 - Vi (1 -vZety4 (1 - Vi

E’ . Vp,
(1 - VA% - VA

E"+Vp,

T TRt 1E ben) ®

The inverse relati...; are obuined by replacing p, & p,.p, & p’.p. -3 p’ E & E and
V'by ~ V in thesc equations. We tabulate the results below.

Relativistic Transformation for momenfum and energy 5

p, ~ EV/? ' p; + EVrt T
é=m 5=é
=P, P, = .
E- ’k‘pj E +Vp'
£ = (- Vi £ = 0 - V%

(b) o show ihat £” - ¢"p" is Lorentz, invariant we have 0 prove that its valuc in the

72

inerlial frame §' remzias unchanged, i.c.
B 2p? = E_ 3
2_ 22 2 2
Now £°~ ¢'p* = E? - gl - o2 ~ p?

Using the result in (3) we have

[ - 3

TZ(EW+’3C p;)zucz ,Yz(plr+BE'{C)2 _CZ(p)lz 1 p'rz)

¥ (E? + 2 p,? + 28" Be )

Y
L (pxrz + .@TE' + _2,‘? s E’) .2 (P,.z T qu)
€

t

T‘l {E“?-{I_BZ) - p;: Ez{l_BI)] _ CEPJ,'I _ c;!plr?.

r2 2
Er p'tc , .
12[_ H'_jl_czpjz_czp'z

vy



E?- p;z P -2 p;l -2 P’ 2 Relztivisilc Dynamlics

E'-(p” + 5+ p7)
= E?_ p?

Thus, the quantity £2 — p*c? js Lorentz invariant, This is nothing but the squarc of the
ICSL CRETRY.
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Ruderman, A.C, Helmholz, BJ. Moyer; Asian Student Edition, McGraw-Hill
Inwrmational Book Company, 1981.

3. Uncle Tompkins in Paperback, George Gamow, Cambridge University Press, 1965.
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CONCLUSION

How did you like coming to grips with Einstein's special theory of relativity? Did you find
your meatal abilities being stretched to their limits by its demands? We hope that studying
this theory has enriched your understanding of the physical world; and it has helped you
throw away your prejudices and rely on your powess of reasoning. Perhaps you have even
cnjoyed the experience! If so, trust us when we say that it has been extremely stimulating
and sausfying to explain its nuances and intricacies to you in this block,

Einstein’s special theory of relativity is one of the greatest achievements of modem Physics.
Iis inteHectual appeal lies in its logic and intemnal consistency. Once we accept the two
Postulates, all else follows inevitably — the changed perception of space and lime as well as
its implications for the laws of physics,

The Special Theory of Relativity also has a practical value. The principle of relativity ang
the Lorentz transformation together give us a framework for ‘testing” any physical theory
even without recourse to experiment. Alt current and would-be physical theories arc
acceptable only if they fit into this framework. This makes the theory of relativity one of the
most useful tools at the command of theoretical physicists,

And what about the person behind all this? We all know of Einsicin's contributions as a
scientist. He was no doubt one of the greatest scientific thinkers of all tmes. But there is
more to the man than his contributions to science.

All of humanity takes great pride in him - not only for his scientific discoveries but also for
his personal qualities. His courage, modesty, pesseverance and sense of fun, and above all
his immense contribution to international peace and understanding is an everlasting source of
inspiration for alt of us. You may like 10 go through an account of his life and work. Here
we have tried 1o briefly recount his life story through the important events that occurred in

his life,
1879 March 14; Albert Einstein is born in Ulm, Germany.
1884 Einstcin is given a pocket compass; his first experience of sciemific discovery.

1891 Al the age of welve, Einstein is givena geomerry book; his second expericnce
of awe and excitement at the "mysteries of nature”.

1895 Einstzin takes and fails the entrance exam for the Institute of Technology in Zurich.

Swizerlaud, He gocs, iaslead, w Azmav in Switzerland to study.

1896 Aped seventeen, minsiein resigns his German cilizenship. He passes e entrunce
¢xam (o Lhe Instituic of Technology in Zurich and begins study.

1900 Einsiein graduates from the Instinne of Technology and starts to look for 2 job,
His first scientific paper is published.

1905 Einsiein compieies his Ph.D thesis and publishes several stientific papers,
inctuding 1wo on Special Relativity. One contains the famous cquation £ = mie.

1906 He writes the first-ever paper on Quantum Mechanics. For almost the next lwenly
years, he produces a steady siream of new, ori ginal scientific ideas, which are
published in scientific joumals.

1909 Einstoin resigns from the Patent Office and is appointed assistant Professor at the
University of Zurich,

1511 Einsiein is appointed Professor ar the Universil;"of Prague, Czechoslovakia,
He predicts that light will be seen 10 bend dunng an eclinse of the sun.

1912 Einstein, now thiriy-theee, retumns to the Institute of Technology at Zurich where

he is appointed full professor. Together with Marcel Grossman he works an the
Theory of General Relativity.

1915 Einsicin signs the "Manifesto 10 Europe” and calls for a League of Europe o bring
about peace,

1919 Astrongmical observations confirm Einstein's predictions about how tight might
appear 10 bend in space and suddenly he becomes world-famous.

e Ll PP



1922

1925

1929

1930
1932

1940

1946

1952
1955

Einstein is appointed a member of the League of Nations Commitiee on
Intenational Co-operation. He is also awarded the Nobel Prize for Physicsfor 1921.

Einstein undertakes further intemational lectures and publications. He signs, with
Mahaima Gandhi and others, a manifesto cailing for the aboliion of military
conscription.

The Planck medal — one of the highest awards for physics —is given 10 Einstein.
He signs a manifesto calling for world disarmament.

Einstein is made professor at the Institme for Advanced Smdy, Princeion in the
United States. He leaves Germany for ever,

Einstein becomes a citizen of the Uniied Staies although he kecps his Swiss
nationality, as weli. .

Emsliein urges the United Nations to form a World Government 1o prevent fuhure
Wars.

He is offered the Presidency of the State of Isract but refuses,

Despite being very ill, Einstein continues to campaign for the abolition of nuclear
weapons and to work on scientific papers.
April 18: Alben Einslein, aged seventy-six, passcs away.
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AN INTRODUCTION TO QUANTUM.
MECHANICS

In Block 1, you have smdied the theory of special relativity, formulated by Einstein in
1905. You have learnt how it genemlises classical physics to include the domain of high
velocities and, in the process, radically alters our notions of space and time. In the
theory of special relativity, the velocity of light (¢) plays a fundamental role; it is the
upper limit of the velocity of any material particle. Newlonian mechanics js an accurale
approximation to relativistic mechanics in the domain where all relevant particle
velocities are much smaller than ¢. You should note, however, that Einstein’s theory of
relativity does not modify the clear distinction between matter and radiation which is at
the root of classical physics. Indeed all prequantum physics, relanwsm or non-
‘relativistic, is now referred to as classical physics.

Durdng the lale nincteenth century and the first quanier of the twenlieth century,
experimental evidence accumulated about the behaviour of atomic objects (electrons,
protons, neulrons. s and so on) which required new concepis radically differemt
from those ui cla .. physics. Initially new ideas were introduced in an adhoc fashion.
Bur between the years 1925 and 1927, Schriidinger, Heisenberg and Bomn evolved a
consistent description of the behaviour of matter on a microscapic scale whlch led to the
birth of a new theory kmown as quantum mechanics,

What is quanium mechanics? To quote Richerd Feynman, an putstanding physicist of
this century; "Quantum mechanics is the description of the behaviour of marter in ail its
details and, in particular, of the happenings on an atomic scale”. Quantum mechanics is
a toully new way of interpreting data and predicting the behaviour of microscopic
particles hased on the idea of an essential discontinuity, the guantunt, in the affairs of

the world. Compared to the world-view of classical physics, quantumn mechanics gives
us a radically new view of the werld.

The discovery of quantum mechanics proceeded along two importani but separate tracks.
The first rack was based on the realisation that the allowed values of energy exchange
between atomic objects are discrete — rhey invelve. quantum jumps. This trock began
with Max Planck” explanaton of black-body radialion spectrum, got a big boost from
Neils Bohr's theory of the hydrogen atom. It was ultimately carried 1o fruition by
Werner Heisenberg who formulated the matrix mechanics version of quantum
mechanics.

The second lrack Hegan with Albert Einstein’s explanation of the pheto-electric effect
and his discovery of the wave-particle duality of light. Louvis de Broglic genemlised the
auribute of wave-particle duality to ma ~r. Frwin Schridinger discovered the wave
equation for maiter waves and Mz : Bora interpreted the de Broglic-Schrisdinger waves
as waves of probabilisy. This was he wave mechanics version of quantum mechanics.
Finally, Paul Dirac showed that th. two versions, mairix mechanics and wave
mechanics, are entirely equivalent

The basic concepts of quantum mechanics {wave-particle duality, unceriainty principle,
guantisation of physical guantities, etc.) are directly related to the existence of 2
universal constant, called Planck's constant k. Just as the velocity of light plays a
central role in relaiivity, so does Planck's conslant in quanium mechanics. Because
Planck’s constant is very smell, quanium physies essentially deals with phenomena at
the atomic and subatomic leveis. Indeed, if like Mr. Tompkins you weee 1o visit, in your
dreams, a world wherein Planck's constant had a large value, you would have the
weirdest of expericnces! For instance, if you went {iger hunling in a guantum- junyle,
vou would find tigers spread out in space and you might hove 1o rclurm emptly handed!

For othar such cxperiences, we refer you to the book "Mr. Tompkins in Paperback' by
George Gamow.

In this block we will introduce the basic concepts of quantum mechanics. We will begin
our discussion by bricfly presenting, in Unit 4, two of the key experimental results (of
black-body radiation and photoelectric effect) along with the quantum hypothesis of
Planck, Einstein’s explanation of the photoelectric effect and Bolu's works which led to
the birth of quantum physics. Then we switch over to the de Broglie-Schrédinger track



of the development of quantum mechanics becanse jt is based on mathematics more
familiar to you. We introduce wave-particle duality in Unit 4 itself, Unit § deals with
the concepts of matter waves and the uncertainty principle. The wave equation of
maiter waves, called the Schradinger equation is the subject mauter of Unit 6. Finally
in Unit 7 we discuss the basic concepts of the mamix version of quantum mechanics
withew gaing into deteiled matrix algebra and briefly present the hasic featres of the
unified version of wave mechani¢cs and matrix mechanics formulated by Dirac.
Contentwise, the units are more or less evenly balanced and will take about the same
lime (5 to 6 hours each) to stdy.

Now there are two aspects of leaming quantum mechanics. The first and foremost is, as
Richard Feynman used 1o say, (o leam 1o calculate. However, the quantum mechanical
way of calculating is quite different from the classical ways; you will find that you have
1o get used to a radically rew way of thinking. So you will also have to learn to think
quanwm mechanically. This will involve a certain effort towards exploring the meaning
of quantum mechanics, but it will certainly be worthwhile. And if the explosation of the
meaning shocks you at imes, do not worry. You can take consolalion from a comment
made by Neils Bohr, “Those who are nut shocked when they first come across quantum
theory cannot possibly have understood it.”

We hope you enjoy studying the block and we wish you success.
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UNIT 4 WAVE-PARTICLE DUALITY

Structure

4.1 Introduction
Objectives

42 The Birth of Quantum Physics

4.3 The de Broglie Hypothesis
Experimental Evidence for the Existence of Matter Waves
Wave-Particle Duality

4.4 Summary

4.5 Terminal Questions

4.5 Solutions and Answers

4.1 INTRODUCTION

You have already taken several courses in physics, from elementary mechanics to
electric and magnetic phenomena which constitute classical physics. However, that is not
enough if you wish to go deep into physics. You may ask: Why? The answer is that
classical physics on ils own cannol explain many a natral/observed phenomena, Hence,
there secms 1o be a need of a new physics. In this unit we wilt dwell briefly on some
phenomera and experimenta’ results which defy clessicol analysis. We will introduce
you to the quantum postulate of Planck, which was given to explain the experimental
results of black body mdiation.

It was further extended by Einstein and Bohr to explain the phenomena of photoelectric
emission and line spectra of atoms, respectively. The sequence of events is chosen to
give you arn idea of how quanlum physics came into being. Then we discuss one of the
basic concepts which laid down the foundations of quantum mechanics, namely, the
wave-particle duoality.

Objectives

After studving this unit you should be able to

o discuss how guantum physics emerged,

e calculate the de Broglic wavelength of a particle in motion,

» explatn the concept of wave-particle duality.

4.2 THE BIRTH OF QUANTUM PHYSICS

You already know 1hat a black body absorbs all radiations which fall en it. (Since it
dloes not reflect light and appears hlack, hence the name — black body.) Usually in the
Iaboratory experiments. a hollow hody (cavity) with blackened walls and having a smull
hole, as shown in Fig. 2.1, acts as a black body. The radiation contained in the body
and emitted from the hole produces a black body speetrum. In the last century, a
number of experiments were camied out to measure the energy per unit volume
contained by a black body. denmed by py (), at different temperatures. Some of the
represeniative curves showing the varianon of pr(A) as a tuncuon of A (black body
spectiium) at dilferent temperateres are given in Fig. 4.2, Various investigators tried o
CXPMAIN HIC mAUre of ese cuncs using weli estabiisned iaws of ciassicai physics,
tncluding thennodynamivs, You have studied in Block 4 of the course PHE-06 on
Thermoedyratnies and Statistical Mechanics that it wag Planck vwho came up with 2
theoratical euplapaton of the black body radiation curve. You know that Gl 1900, most
of the meazurements ol the enerpy specicum of black body radiation were made at
smnller wavelengths. These could be satisfactorily explained by Wein's formula given by

pr(A) dh = ad-5 exp (A KT ) dX (4.1)

where @ and & were adjustable parameters.

Fiz. 4.1 ¢ A hlzck hody,

T

BT = EE
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Fig. 4.2 : Black body radlatlon.

Planck found empirically that by the replacement of exp (— ..f{_) by exp ( b _[) .
4

» set of parameters ¢ and b could be obtained which would fit Eq. (4.1) beautifully with
the expuerimental data over all values of A. However, he found it extremely difficult o
give a theoretical justification for the above mentioned replacement. Ultimately, out of
desperation, on t8th December, 1900, Planck declared that the only way to decive the
correct black Lody radiation formula was to postulate that the exchange of encrgy
between matter (walls} and radiation {cavity) could take place only in bundies of a
certain size.

To rculise the significance of the above postalate let us consider the following simple
cxample. Suppose Lwe litres of milk is 1o be distribuled between (wo persons. In how
idiy ways Can sou disinibule ibe milk? Milk is an infiniely divisible quantity. Hence.
vou can divide milk betwveen two persons in an infinite numbcr of ways. Now suppose
FOU GRS TWOBITICACY 10 QiU ik Only i0 ik unis of a ditre. iNow 1the Rumber ol
distibution teduces just to 3 (both persons can receive only @, | or 2 ditres of milk).
What a drastic change! The number of ways will increase 1o 5 if you reduce the unit 1o
-

hatl g lipve.

in classical physics, encrgy is regarded as an infinitely divisible quantily. Hence the
exchange of energy between ihe walls and the cavity can take place in ar inlintic
rumber of ways. However, lhrough his postulate Planck reduced the number of ways Lo
he finite. En his model, the exchange must take place in the units of Uy Thus he
iniroduced the idea of discreteness in the division of energy (which was thought 1o be



infinitely divisible). I the E:ncrgy U() is to be exchanged, U(A)/U; must be an integer.
If it is not, Planck suggested that it should be an intcger close to UANU,.

Plenck further postulated that the unit or the quantum of energy U is dircetly
proportional to its (requency, i.c.,

b =hv 4.2)

The constant of propoitionality & is now known as Planck’s constant in his honour. Its
value is 6.62618 x 10-™ Js. Planck was awarded the Nobel prize for physics in 1918
for his work on black body rediation. [You should note that greater the value of v,
higher will be the value of the quantum of encrgy Uy and consequently, lesser will be
the number of ways in which energy U can be exchanged.] This ncw concepl of
Planck’s gave birth to a new physics, known as quanfum physics. Hence, it is
appropriate to take 18th December, 1903 as the date of birth of quartum physics which
later on developed into quanium mechanics.

In a further development, Einstein used Planck’s quantum hypothesis to successfully
explain the photoelectric effect.

The Photoelectric Effect

In 1887, Hertz, while working oa clecliromagnetic waves, discovered that the air in a
spark gap became a better conductor when it was illuminated by ultraviolet rays. Further
investigations by him showed that zinc acquired a positive charge when it was
irradiated with ultraviolet rays, i.e., it lost negative charges. In 1900, Leonard showed
that the ejected particles were clectrons. A serice of such experiments revealed tha
electrans are emitted from a metad surface when light of sufficiently high frequency falls
upon it This phenomenon is known as the photoelectric effect

Fig. 4.3 shows a schematic dingram of the apparatus that was employed in some of
these experiments. An evacuated lube contains two clectrodes connected to an external
circuit like that shown schiemaiically. The anode is made up of the metal plate whose
surface is to be inadiated. Some of the photoclectrons that emerge from the imadiated
surface have sufficient energy to reach the cathode despite its negative polarity, and they
constitute the current that is measured by the ammmeter in the circuit .
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Fig. 43 : Schematic diagram of the apparaius for photoelectric cffver,

As the collecting voltage V. which retards the electrons, is increased, fewer and [ewer
clectrons get to the cathode and the cumrent drops. Ultimately, when V equals or exceeds
a cerain value ¥j, of the order ol a few volts, no further elecirons sirike the cathode
and the current ceases. Figs, 4.42 and b show the experimental curves corresponding to
this elfect when the intensity of light and cellecting voltage V arc kept constant.

Wave-Parilcle Duality
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Photoelectric current
{erbltrary units)
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You are fornilinr with the dun!
natore of light nhowt which you
have studied in Unit | of the
physics elective PHE-09 entitled
Opsics.

Fig. 44 : (2) Variation of the photocloctric current (in arbltrary wnity) 23 & fonction of frequency for
two mxtrrisi A and B. The intencity of Egkt and the collecting voltage are kept constant;
@)vmﬂmdhmmmmwlulfmﬂmqkl
single material at two values of ths inteneity; of the intensities, #; b grester thau J,.

Note that photoelectron emission occurs cnly when the frequency of the falling radiation
ishigherdmnsomcﬂnmholdﬁ'equcngyvo.hwas found that for v < w, no emission
takes place, no matter how intense the radiation is, The vahe of v, depends upon the
materigl of the surface irradiated. It was also determined that for a given frequency

V¥ (> Vo). the kinclic energy of the emilted photoelectrons has values between zero and a
definite maximum value E,,,.. For any given metal, E,,,. is propoctional to (v=y) and is
independent of the intensity of the falling light. Further, when electromagnetic waves
fall on the material, emission of photoelectrons starts instantaneously (within 10-%s), no
ralter how weak or strong the falling light is. All these features of the photoelectric
effect could not be explained by the classical electromagnetic theory of light on the
basis of its wave nature.

-In 1905, Einstein proposed a simple but revolutionary explanation for the photoelectric

effect. Einstein cxtended Planck's postulate of the quanta of energy to the quanta of
energy of the clectromagnetic field. He viewed the photoelectric phenomenon as a
collision between a photon (e quantum of the energy of an electromagnetic field} and a
bound electron. In the collision. the photon is completely absorbed and the energy of the
bound electron is increased by A v. Since the electron: are bound in the metal theit
initial cnergy E is negative and the largest value of E is =W, where W is the work
function of the metal. Hence, to escape from the metal, the electron has to use at least
an energy equal to W. Thus, the maximum kinetic energy of the photoclectrons will be

Em=%mv2m =hv-W (4.33)

[f we take W = /v Eq. (4.3a) may be written as

V2 = 4 (v (4.3b)

ul-—-
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(1) Since vy, has to be positive, no emission can take place for v < vy
(2) £y 15 proponional © (v=vq).

{3) An increasc in the radiation intensity of frequency v cormresponds to an increase in
the number of photons. Since each one of them has the same energy kv, there is no
increase in tlic energy of the photoelecrons. Only the number of emitted electrons
and hence the phototlectric current increases (see Fig. 4.5).
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(4) Since the effect is produced by mechanical collisions between clectrons and Wave-Particle Duality
photons, the energy transfer from photons to the electrons is instantaneous.
Conscquently the time lag is very small.

(5) Since work function W(=hvy) is a chamcteristic property of the emitting surface, v, '
is independent of the intensity of incident radiation.

You thus see that Einstein's quantum theory explained each and every aspect of the
photoelectric effect with brilliant success, and s0 the absorption of light in the form of
packels or quanta was firmly established.

The next important step in the development of quantum physics was the explanation by
Bohr of the stability of the atom as well as the line spectnmm emitted by hydrogen
atoms. You must be familiar with the Bohr model of the hydrogen atom from your +2
physics courses. However, we have included the details here for completeness.

Photoelectric current
(arbitrary units)

Intensity of radiation
Bolir’s postulates for atomic model (arbitrary units)

Fig. 45 : Varlation of the
The classical crisis with the mode! of the atom was not dissimilar to the case of black- photoslectric current with

body radiaiion. Emest Rutherford had proposed the nuclear model of an atom based on the inlemity of radiation
his discovery of the atomic nucleus. The electrons, in this model, were supposed to dm:ur ¥ (> ¥} ato
revolve around the nucleus. But then they must radiate and lose energy and eventualiy :‘;m“. ecting

spiral into the nucleus. A classical nuclear atom turned out to be unstable!

In 1513, Neils Bohr proposed an atomic model which accounted for the stability of the
atomn, by injecting quantum ide2s into Rutherford's theory. The model also proved
highly suczcessful for explaining the spectruma of the hydrogen atom. Bohr's atomic
mcdel was based on the following four pastulates, three of which were radically
different. from the earlier models.

(1) Electron in an atom moves in circutar orbits about the pucleus with the cenuipetal
force supplied by Lhe Coulomb attraction between the electron and the nucleus.

{2) Of the infinite number of possible circular orbis, only those are allowed for which
the value of the orbital angular momentum {L| of (he electron is an integral multiple
of hi2x.

You should note that Bohr preferred quantization of angular momentum instead of
energy as was done by Planck, in order to imtroduce k {the quantum of action) in
his theory.

(3) An clectron moving in an allowed orbit does not radiate any energy. These states of
constant energies are called stationary states.

Note that the electron s not stationary io a stationary stale.

{4) Energy is emitted (or absorbed) from an atom only when ils electron jumps from
one allowed orbit of encrgy E; to another allowed orbit of energy E. The frequency
of the emilted (or absorbed) radiation is given by Einstein's frequency condition

Av = Ef - Ef (cm.i.ssion E" > ‘Ef}

=E - E (absorption E; < E)

You should appreciate that the above four postulates are a hybrid of elassieal and non-
clisical physics, For example. the first postulote is in accordance with classical physics
while the fourth poswlate uses gquantum ideas. The postulates of the quantization of
angular momentum and stationary stawes are also non-classical.

The fist poswiate yieids the following result for the mh aitowed orbit:

mv 2 - 2
n __Ze 4.4
I ar gy 2
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where m is the mass of the electron, Ze is the charge of the nucleus and the electron is
moving with a speed v, in the ath allowed orbit of radius r,. The second postulate
yields ; . o

rh E’ .

L"=l'n)(pn=—2-;:-' H . n= 1,2, 3 ... ’ . . (45)
and
Ly=mv,r, (since v,, L r, for a circular orbit)

A
where L is & unit vector perpendicular to the plane of the orbit. Thus, we
have : .

mv,m= nh where i = —, n=12, ..
2n
: Zer 1 .
A T (46)
and
n? Bz .
B @7
Zelmnm
The total energy of the electron is the sum of the kinetic energy T, and the
poleniial energy U,. Hence for the nth stationary orbii
Eo= g 4.8
n= 3 "WeT Ixegr, (4.82)
Pulting the values of v, and r, from Egs. (4.6) and (4.7), we may “write
Z%'m | :
E,=—-"——— 4.8b
w 2 E‘; 2o (4.8b)
R_Z*
or EI'I =- 7 (4.8C)
n- .
el
where R.=—— (4.8d)
8 &y 2
Thus E, « n~2, The suffix = on R appears because the mass of the proton has
been assumed to be infinity. Putting the standard values of m, e, g and /t in
Eq. (4.8d), we obtain R = 2.18 x 10-13 ] (or 13.6eV).
According to Bohr's fourth postulate, the frequency v, of the emitied
(absorbed) radiation when the electron jumps from the nth state to mith state is
viven by - -
R.Z%
g == 1L 4.9)
h m?  n?

Thix agrees ramarkably well with the trequency spectrum of the hydrogen atom
(see Fia. 4.6). linmediately after Bohr’s alomic theory was published, Franck and
Heriz performed experiments which demonstrated the existence of discrete energy

- slates.

e e e — — -
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Brackett series

Balmer series
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Lyman series

¥ig. 4.6 : Energy levels of Ike hydrogen atom according to the Bohr model. Some of the transitions
leading to Lymian serics, Balmer series, Paschen series, Brackett sertes and Plund series arc
also shown. All negative energy states represent bound states while positive eneryy slates arc
cunlinuous stales.

" However radical these ideas were, you can notice that there was still an alkempt to retain

u lnk with the classical physics. You know that at high temperatures or at low

frequencies, the black body radiation formula given by Planck reduces to the classical :
Rayleigh-Jeans formula. Based on these ideas Bohr, in 1923, gave the Correspondence ' -
Prinviple.

Bohe's Correspondence Principle

The idea underlying this principlc is as follows: The principies of guanium piysics must
vield ihe same resuits as those of ciassical physics in simarions for which classical

i e s mopedin s wa wl o oo M
;.‘f‘.‘_‘..,ul iy valid xAn..\ulUllla LUl Lo pAIACRLC pPuieps

(1) Quantum theary shouid give the same results for the behaviour of any physical
system as classical physics, in the limit in which the quanium numbers spesifying
the state of the sysiem become very large.

{b) A selection rule holds true over the entire range of the quantum number concerned.
Hence, at large guantum numbers if any selection rule is requived to obtain :
correspondence between classical and quantum physics then the same selection rule
nolds at fow quantnm numbers also. '
il
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Louls Victer, prince de
Broglic (proaouncad de
Troy), 1892-1987. French
theoreticx!

physicist. For his
discovery of wave
properlies of matter

he wasg awarded the
MNabei Prize in 1929,

" after his hypothesis wus

experimentally
confirmed.

Toe sum -up the discussion so far, recall that Planck introduced a non-classical postulate
to explain the black body spectrum which was further extended by Einstein. According
to this postulate, the encrgy slates of a simple harmonic oscillator of frequency v are
discrete and the energy of the nth discrete state is equal to nkv where n is a positive
integer and £ is a universal constant (called the Planck constant). Einstein regarded a
quantum of energy as a particle. The quantum of clectromagnelic wave is known as
photon. As you know, this is a particle of zero rest mass which always travels with the
velocity of light and carries a momentum Av/e. Einstein explained the photoelectric
effect by regarding the phenomenon as a collision between a photon of energy Av and
the weakly bound metallic electron in which a photon is compleiely absorbed and gives
its whole energy to the electron which may escape from the metal,

You have also read about Bohr's atomic model according to whlch electrons in an atom
move around the nucleus in certain allowed orbits. In these orbits, energy is conserved
and the anguler momentum of the electron is an integral multiple of 4721, An atom
emits or absorbs radiations only when its electron jumps from one allowed orbit to
another. His theory proved highly successful in explaining the discrete frequency
spectrum of the hydrogen atom. Thus a new physics was born, which is now knowa as
“old quantum theory".

Tl'llis was further develeped by de Broglie, Heisenberg and Schridinger into a new
mechanijcs, now known as quantum mechanics.

Let us now study one of the basic concepts which forms the foundalion of quantum
mechanics, namely, the de Broglie hypothesis, which led to wave-particle duality.

4.3 THE DE BROGLIE HYPOTHESIS

Louis de Broglie (Fig. 4.7) must have been a lover of music, for he realised that Bohr's
stationary orbits of electrons confined in atoms must have something in common with
stationary waves on guitar strings. Could the discreteness of atomic orbits be due to the
discreteness of electron waves in caplivity? On a guitar string, stalionary waves form a
discretz pattern ‘of harmonics just like the discrete Bohr orbits. De Broglie asked: Could
atemic electrons be confined waves and therefore produce a discrete stationary wave
pattern? For example, the lowest atomic orbit is one in which one elecivon wavelength
fits the ctreumference of the orbit and the higher ocbits fit 1wo or more cleciron
wavelengths (Fig, 4.8).

1 efectron
wavelenglh

\ \ 2 cleclion w auh.ngthe / )

3 eleciron wavelenglis

Fig, 4.5 : Stationary waves of clectrons confined in an atom. The electron wave fits vo integral number
- of wuvelengths in cach of the successive Bohr arbils.



It was establishcd by hen that electromagnetic waves exhibit both wave and particle
properties. But clectromagnelic waves and material particles are two important classes
of entities which appear 10 be basic to the siructure of matter. If electromagnelic waves
have a dual wave-particle nature then why shouldn’t electrons, and in fact, all maiter,
too have a dual nature?

As a young French graduate student, de Broglie, in 1924, arpued with a great amount
of insight that since nature loves symmetry and simplicity in physical phenomena, all
materia! particles should exhibit both wave and particle nature. He funther argued that
the wave description of light in geometrical optics is an approximstion of the more
general wave analysis. Similarly, the description of particle motion in terms of line
trajectories is an approximation of a more general description of the particle, containing
"its wave aspect. De Broglie further proposed that the wavelength and frequency of the
matter waves should be determined by the momentum and energy of the particle in
exactly the same way as for photons. Recall that for a photon, energy and momentum
are related as follows:

E=pc

and from Eq. (4.2). E = hv =hw, (® = 2rv ). From wave theory, the angular
frequency o is related to the wave number £:

w=ck
where ¢ is the wave speed.

Combining these equations, we get

pe = Mo
=Ahck
or p =hk L (4.10)

Since k= %. Eq. (4.10) can also be rewritten 1o get an expression for the

de Broglie wavelenpth of marter waves assaciared with a particle having
nrpnentin pe ' T e - , Ca - -

de Broglic wavelength A = % o (4.11)

Thus. the wavelength of the wave associaled with a parlicie of matier in motion
is inversely proportional to the parnicle’s momentum, and the constanl of
proportionality is just the Planck constant. We can recast Eq. (4.11) into another
form by using the relation E = pYf2my, for a free panicle:

a=l k| (4.12)

P @mgE)R

where my is the rest mass of the particle, and E its encrgy,

Now the phase velocity v, of a wave is given by v, = vA. Hence. we may wrile

L=ttt (4.13a)
" 1” '

Putting £ = me? and p = mv in Eq. (4.13a). we get

y, = e {4.13b)

Since » < ¢. the phase velocity of waves associated with maiter turns out to be greater
than the velocity of light. Does this disturb you? Do not worry because no physical
quantity like energy, signal or information etc. associated with the wave, travels with
itx phase velocity,

Wave-Partide Duslity
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Let us now understand what Eq. (4.11) means.

Eq. (4.11) is a complete statement of the wave-particle dun]fty. It clearly shows that a
particle with a.momenium p can exhibit wave-like properties and the wavelength of the
associated maticr waves is f/p. The converse is also true, i.c., a wave of wavelength A
can exhibit particle-like properties and the momentum of the wave-mattar is A/
However, you should clearly understand the difference between electromagnetic waves
and matter waves. For matter waves, phase velocity is always greater than the velocity
of light but, since energy is caried by the particle, the velocity with which energy is
transported by matter waves is equal 1o the velocity of the particle. On the other hand,
the phase velocity of clectromagnetic waves and the velocity with which encrgy is
transported by them arc both cqual to the velocity of light.

By now, are you not wondering that if matter can exhibit wave-like properties, why
don’t macroscopic objects appear like waves to us?

To understand this, make the following simple calculation.

SAQ 1

Soball et ey BV Ry maves wiil o veloite of Trt mst Whae i e de Broghe
wavelerath or e bhalt!

Clearly, this wavelength is (oo small to be detected experimentally. Hence, we can say
that martler waves sre associated with macroscopic objects. However, their wave
characier is not observable. Thus, they can safely be described as particles under af?
circumstances. Now do the following exercise.

You have calcuhlcd the wavc:cngth to be about 1.2 x 10-1¢ m for the 100 eV eleciron
and 2.9 X 10-14m for. the I MeV neutron, respectively. Clearly the wavelength of the
maltcr wave associated with 100 ¢V electron lics in the X-ray region and is of the same
order as the atomic spacing in a crystal. The clectron waves, like X-rays. are, therefore,
expected 1o underge diflraction by crystals, On the other hard. the wavelength of a

1 MeV neulron is too smalt for observing the diffraction by a diffracting evating.
However, low energy neutrons, say 100 eV ncutrons, would have wavelength in the
X-ray regton and then their diffraction pattern can be obtained.

We thus see that for the metion of macroscopic objects. the de Broglic hypothesis does
not change the classical description as developed by Newton. But for microscopic
objecis the wavclenglhs of malter waves are long enough 1o undergo observable
diffraction. The diffraction ol matter waves was abserved cxperimentally as early as
1927.

4.3.1 Experimental Lvidence for the Existence of Matter Waves

The tirst experimentat demonsirabon of maler waves came Lhree ycars alter de Brogliz
advanced his hypoihess and was aceidentally ohizined by two American physicists

Clintan L. Davbson and hin aasistant LH Groser They were siudying the seattering of

citctons By Chasidis using e apparatus sies. 5 on Pig 4.9,

Eleetrons from an cleciron gun were accelerated by a positive electrode maintained at
IV wales as compared o the filament, The aceslerated bearn of electrons was incident
on a strip of mekel comaining many crysials and the number of clectrons scattered in
various dircctions was then measuced. A smocth vaniaidon in the intensity of the
scaltered eleciean with the angle was observed. Midway through the experiment. an
accitlent occurred which pemmiited air to enter into the vacuum whe containing the
strip.
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Flg. 4.9 : Schematc disgram of Davicon-Germer Experiment

This resulted in the formation of an oxide film on the surface. Davisson and Garmar
were then forced to heat the strip to a very high temperature in order to reduce the
oxide. This heating, and slow cooling had the effect of wming the polycrystalline nickel
sample into a large single crystal. After this forced heat treatment of the sample, the
experiment was repeated. The experimental results this time were quite different from
those obtained before the accident. The intensity of scattered electrons showed some
sharp maxima and minima at certain angles which were found to depend upon the
etectron energy and hence upon the accelerating voltage. This pattern was similar to a
wave diffraction patlern. Some typical results from these expeniments are shown in

Fig. 410,
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Fig. 4.10 : Polar plats of some typical results of Davisson-Gormer experiment.
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Davisson and Germer found that the angular peaks of scattered electrons could be
explained as diffraction of electrons by atoms if the regular arrays of atoms in the nicke)
crystal are regarded as a dilfraction grating.

Diffraction of Electrons

Using Bragg's analysis developed for X-ray scattering, and the angles of scattering at
which the pronounced peaks are produced, they calculated the wavelength of electron
waves. They finally found very good agreement between their values of the wavelength
and those predicted by de Broglie hypothesis. Thus the validity of the de Broglie
hypothesis was established. )

In one particular experiment, the clectron beam was accelerated to a potential of

54 volts and the maximum intensity was observed at an angle of 65° between a
particular family of crystal planes and the incident (or the scattered) beam. The spacing
between the crysial planes, as measured by X-ray diffraction technique was found to be
0.91 A. Let us now calculate the wavelength of the electron-waves from these electron
diffraction data, ‘ .
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Fig. 4.11 : Bragg's analysis of scattering by crystal planes.

Fig. d4.1i clearly shows that the phase difference between waves coming from
adjacen! scattering plancs of crystals is given by (2m/A) x 24 sin 0. For
constructive interference we, therefore, have

(27/A) 2d sin © = 2nn

Le. A = 2d sin @/n, n=1,223 .. (4.14)
Putting the given data in Eq. (4.14) along with n = |, we pet
A =2 (0.91 A)sin 65° = 1.65 A (4.152)

Let us now compare this value of X with the corresponding value predicted by
de Broglie’s hypathesis. The de Braglic wavelength of an electron accelerated

by a poieniial of V volis 15 given by
n h 12,361

7 e A 4.15h
£ {2empW)Ii2 (V{vol))} 2 ( )

H: deriving Eq. (4.15b) we have used Eq. (4.12). Henee the wavelenath of a 54 &V

electron is .
q

12264

= A=167A ) (4.15¢)
(s9)'2 '
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R p—



You will notice thar the agreement beiweea the two values of the wavelength of Wave-Particke Duality
electron, given by Eqs. (4.152) and (4.15c) is remarkable, .

Within months of the discovery by Davisson and Germer, a British physicis:

G.P. Thomson also discovered diffraction cffecas with a beam of highly energetic
electrons. In I%&Thomsonmpea;edh;supa’mnntbyumnsplannumrmhenhmmc
celluloid film. The diffraction rings observed with the polycrystalline metallic foil were
i'oundlnboencdysunﬂutod:oscohwrvedfarx-mysofﬂummwavelength(asmal
of clectron). This experiment of Thamson had peovided evea more convincing evidence
in support of the de Broglic hypothesis. D¢ Broglie was rewarded with a Nobel Prize in
Physics in 1929 and the same was awarded to Davisson and Thomson in 1937. It is of
interest to note that Sir J.J. Thomson was awarded NohelPhysncsPnze in 1906 for
discovering the clectron s a pmlcle carrying neganvc clectrical charge and in 1937 his
son G.P. Thomson got the same prize for establishing the wave nature of electron. With
suitably designed experiments, the wave-like behaviour of particles such as a-particles,
protons, neutrons etc. has also been established.

You may now like to work out an SAQ.

5AQ 3 Spewd

R . . . . 1 min
Llectrons of 400 ¢V arc diffracted through a crystal and a second order maximum iv

observed where the augle between the diffracied beam and incident beam is 3. Calculate
(iv the wavelength of the cleciron matler wave.

(i} she interplanar distance of those lanice plancs which ure’ responsible Tor tis
miximuem.

Has the wave behaviour of electrons come as a surprise lo you o shocked your
sengibilities? After all, all along we have been accustorned to regarding an electron as a
particle and now it exhibits wave properties. What is this duality in an electron's

behaviour? What is wave-particle duality? Let us further explore the meaning of wave-
particle duality.

43.2 Wave-Particle Duality

Let us go to the very basics. What do we mean by a particle? We define it as an
cnlity possessing a delinile position, size, mass, velocity, momentum, encrgy, cie. Iis
motion is described by Newton's laws of motion. It ‘must remain in a state of uniform
motion or a state of rest when no external force acts on it It should accclerate under the
influence of a foree field and move along a particular trajectory with a well defined
position and time relationship. This, in a nutshelt, is a picture of ¢ particle that we have
acquired from our studics in physics so far, If there exisis any entity which does not
conform to this description of a particle, we should aot call it a particle.

Now, what' do we understand by a wave? A wave is characterised by its propertics of
periodicity in space and periodicity in time; it possesses a wavelength, amplitude,
frequency and. propagales ol a certain wave velocity. It can iransport energy without
transport of matter. It cannot be localized and extends in space. These are the basic
ideas associated with a wave. If we find onything which does not conform 10 ali of

these jieas, we should not call it a wave.

Havmg thus coaceplualised a parudc and a wave, the nexl step is 1'air1y casy. If there
CXISS somcmmg in nawre whici has veliiny pu.lcl]r puuu.n.. |.nuyc.|m..; noT pl.llbl" Wary
properties but has properties of both, e.g., mass, momentum, wavelength, amplitude,
frequency and is neither localized at a point nor extends to infinity. we should cali it

neither a particle nor & wave, For want of a bewter name, we simply call it a wave-

particie.

The fact that there are no particles and no waves in this universc but oaly wavc-particle
dualities should not unduly bother you. If thal’s the way nature works, that's the way
we accept it The definitions of a wave and a particle are still very useful and serve as

good approximations as was amply demonstrated in SAQ 3. To sum up, the concept of 17

- —————
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wave-particle duality applies universally to all objects. However, since this duality
involves Planck’s constant, which has & very small value, the effect is apprecisble only

in the microscopic worid. In the macroscopic world of our experience. objects nbey the
classical laws of motion, '

You should also realise that wave-particle duality arises because of the finite value of
Planck’s constant. In classical physics it is assumed that k = 0, i.c., encrgy quanta do
not exist. Hence it cannot explain wave-particle duality. However, by now you have
seen that there are compelling reasons to take energy in the quantized form such that
each quanta of energy is equal to Av or ils integer multiple,

One last word on the concept of wave-particle duslity; its acceptance is not merely a
question of belicf or faith — it is a question of experimental observation and accepting
a model for explaining them.

Let us now summarise what y'o'u have studied in this unit.

44 SUMMARY

® To explain black body radidtion Planck proposed the idea of a quantom of energy
for 2 harmonic oscitlator. According to Planck’s quantum postulate, a quantum of
cnergy E for a wave is given by

E=hy

where v is the frequency of the wave and A is a universal constant, known as
Planck'’s constant.- -

¢ This idea was exiended by Einstein to light to explain the photoelectric effect.
Einstein regarded the quantum of licht, the photon, to »~ a particle of enerov
E=hy .

& Bohr used the quantum postulate and certain other postulates in his atomic model
and successfully explained the stability of atom and the line specira of hydrogen
atoms. He further gave the correspondence principle which esiablishes a
correspondence between classical and quantum physics.

¢ Just as electromagnetic fields exhibit both wave-like and particle-like properties,
dc Broglie proposed thal matter tpo had wave-like properties, giving risc lo
wave-particle duality. The de Broglie wavelength of a particle of momentum
pis

For u free particle of mass s and cnergy E

=—h
(gmam

4.5 TERMINAL QUESTIONS Spend 30 min

L. Derive Bohr's angular momenwm quantization condition for the Bobr atom from
de Broglie's relation.

[

High energy protons of 200 GeV (1 GeV¥ = i07 eV) are difiracted by a hydrogen
targe! at an angle O given by

i.2

psing = GeV¥

[

Note that the protons are moving at relativistic energies. Estimale the madius of the
" proton.

3. A 150 eV increase in an electron's energy changes its de Broglic wavelength by a
foctor of two, Calculate the initial de Broglie wavelength of the elecuron,

s T e



4. Calculate the de Broglic wavelength and the kinetic encrgy of clecirons which

undergo first-order Bragg diffraction by a nicke! crysial at an angle of 30°. For
nickel, d = 2.15 A.

4.6 SOLUTIONS AND ANSWERS

Self-Assesament Questions

1. The de Broglie wavelengih is

A o __6626% 103 s
P

—= = 6626 X 103 m
103 kg x 102 ms

5 N B 6.626 X 10-M Js
¢ @B (2% 9.109 X 10°3! kg x 100 X 1.6 x 1019 T2
= 1227 % 1010 m
A, = 6.626 x 103 Js

(2 x 1.675 x 10-27 kg X 106 x 1.6 x 10-19 )i
2862 % 1014 m

3. yoo b 6.626 x 10-34 Js
@moE)? (2% 9.109 x 103 kg x 400 x 1.6 x 10-19 )2

=061 x [0-19m = 061 A"

nh, = 2d sipn®
no=20=30°A=060x100m
d = _x, =122A
sin @

Terminal Questions

1. Dec Broglic visualised that atomic clectrons were confined waves and, therefore,
produzzd a discrete stationary wave patlern. Then only those orbiis would be
allowed in which an integral number of clectron wavelengths could it the
circunderence (see Fig. 4.8). For example, ene wavelength would fit the
rircumference of the lowest atomic orbit and two or mare electron waveleagths
would fit into higher orbiss. Thus il de Broglic waves of wavelength A it a Bohy
orbit of radius r to satisfy the stationary condition, we must have

2nr = nh, n=l.2
. h I’
Since . A=—=-2_ we gel
pom
2nr mv
&
nfr
mvr = —1
of vr 2'.!1'

which is the Bohr angular inomenturn quantization.

2 I GaV = 1%V

Let R be the radius of the proton. The dimension of the ‘slit” which scaliers prolons is
2R. Therefore

A=2%2Rsin0

or sin@ = L
4R

Wave-Perticle DusHty
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An Intyodoction 1o Qoantom GeV
viechanics For protons p = z ¢ E=pe)
5in @ = 1.2 GeV .
P ;
=22 _ o006 ]
200 j_

From de Broglie relation

6.626 X 10-36 Is x 3 X 108 ms!
200 x 10° X 1.6 X 10-19 T

=l
2

=6212x 10-8 m

A _6212X108m
T4s5in8 T 4x6x103 5

=25 X iq16 m.

The radius of the proton is of the order of 10-16 m.

3.

20

Since Lhe energy of the electron increases, its wavelength will decrease, If A be the
initial electron wavelength, E its initial encrgy and AE, the increase in energy, we
can write using Eq. (4.12): i

—k
@mE)7

_ h
2 [2m(E+ AE)2

A

>

Simple algebra yields e, retation - g /

Lt .3hi et
Al= :
2mAE

12
or  h=h{3_}
ImAE
Substiteting the values of 4. m and AE = 150 eV, we get

i.5 -qu‘
. — =113 A
9.1 x 102V kg x 150 x 1.6 x 10197 |

A = 6,626 x 101 Js[

For the first-order Bragg diffrection. n = ] and
A= 2dsing
= 2x 215 A sin 30°
= 215 A
Iht Kinelic energy of i elecu

hi

m A2

(6.626 x 10-M Js)

o = 2x9.1 x 10-M kg x (2.15 x 10-19)2 m2

=532 x 10-1¥]J = 32,5 eV,
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5.1 INTRODUCTION

In Unit 4, you have learnt how quantum physics emerged in order to explain certain
experimental resulls and naturat phenomena which could not be sccounted for by
classical physics. You have also studied the concepis of wave-particle duality and matter
waves given by de Braglie. We will explore these concepts ‘further in this unit. You
know that waves are spread all over space whereas parnicles are localised. So a single
wave would be inadcquate for describing a real particle comrectly. The question is: How

do we represent mailer waves (or wave-particles) in spaoe" For this purpose, we have to
introduce the ¢~~=ept of a wave pr-tet.

A discussion of wave packets leads us to another fundamental principle of quantum | -
physics, namely, Heisenberg's uncertainty prindple. You will study some applications
of l.hc uncertainty principte, in particular for the microscopic world The unce.rl.ainty

Einslein about lhc validity of this principle makcs a very interesting reading in t
history of quantum mechanics. In this unit we will give you a flavour of-some idi
(thought) experiments which provided suppon for the uncertainty principle and
ultimately established it as one of the fundamental principles of quantum mechanies. Ir

the next unil, you will study the Schrodinger equation which is a major pillar of
quantum mechanics,

Objectives

Afier studying this unit you should be able 10

® explain the concept of a wive packet,

« derive the relation between phase velocity and particle velocily,
@ opply Heisenberg's uncertainty principle to microscopic systems,
-

discuss the y-ray microscope, single slit and double slit interference experiments in
support of the uncertainty principle.

5.2 MATTER WAVES

From the discussion in Sec. 4.3.2 of Unit 4, you know that classieally, a partticle can be
localised at a single point but 2 wave cannot. Thus, at least for the microscopic particles
for which the wave-penticle duality is significant, we are forced 10 abandon the classical
descriplion of a particle. We have Lo lock [or a new descriplion which should be
consistent with- the de Broglie hypothesis. What should this new description of matter
waves associated with particles be like? Well, for one, matier waves should always be
associated spatially with the particle in such a manner that the resultant amplitde is
non-zexo oaly in-the neighbourhood of the pasticle;

21
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Using the resull

sin® +sing =

nroe [2=9) (¢+9\
EANEN AR

we get the value of y.

22

Now the de Broglie equation (4.11) yields
e B il ' 6.1

This equation shows that if Ap = 0 then AR ="0. That is, we are required 1o represent
a particle of definite momenium with a single wave of fixed wavelength. However, you
know that a wave of single wavelength and frequency is spread cut in time and space.
Thus, it cannot be localised and cannot represent a particle. Can we find an intermediate
solution? If we associate some uncertainty with the momentum, i.c., if we take Ap > 0,
then AR is also finite. The following discussion shows that if a finite spread is allowed
in the wavelength, we can fruitfully exploit this 1o represent a microscopic particle.

Consider a simple situation in which two sinusoidal waves with slightly different
wavelengths are superimposed. You have studied in the course PHE-02 (Oscillations and
Waves) that the chamcter of the resultant wave is quite different from the individual
wavces. For example, suppose we consider two travelling waves represenied by

W) = A sin (kr — @)
and Y2 = A sin [{(k+ di)x — (0 +dw@ A

where A is their amplitude, & (='21dl) is the wave number and @ (=2nv) is the angular
frequency. The superposition of these waves yields a resultant wave given by

Y=y + g

-4 [ (%’i)(d_f),] - an)

where we have ignored % and ﬁ;—’- in the sine term as they are infinitesimal
_f:,ornparpql{io k and . Fig. 5.1 shows a graph of y. You can sce that y has an

envelope cqual 10 24- cos(‘f; r- dTmr) modulating the sint wave given by

sin (kr — o).

AANAAAAAAA
VAVAVAVAVAVAVAV
+
AAAALALALAAAA

VVVVVVVVYV

Fig. 5.t @ A sketeh of the nesullant of tie superpasition of two tracelling waves.

Similarly, by supcrisnposing a very lurge number of waves having wavelengihs close Lo
a central wavelength Ay, a8 wave packet such as shown in Fig. 5.2 can be consirucied.
The superposition ol [hese waves resulis in a varialion in amplitude that defines the
shape of the wave packel. The wave packet has regular spacing between successive
maxima or minima, cqual 10 the central wavelength Ag. Thus the wavelength of the



wavepanhﬁislobmalanyhamtofﬁmciiislomlizndiﬁaﬁuitemgliun'ofspwe.
Clearly, such & wave packet exhibits both wave and particle aspects.
.mmdﬁsmwmpmuﬁm.lmiumicpa:ﬁ:lemnybcmpmwdbj:aﬁm
packet. To sum op, we may define a wave packet as follows:

A wave packet is & group of waves with slighily different wavelengths end
frequencies interfering with one another in such & manner that the amplitade of
the group (i.c., the envelope) is non-zero only in the neighbourhood of the

el .

»

The spread of a wavepacket in wavelength (and in frequency) depends on the required
degree of localization in space (and time). You should uote that the central wavelength
Aq is given by the de Broglic equation (4.11).

How do we determine the velocity of a wave packe? Clearly, if the velocities of the
individual waves being superimposed are the same, the velocity with which the wave
packet travels is the common wave velocity. However, in the case of de Broplie waves,
the wave velocity veries with wavelength; the individual waves do not travel at the same
velocity. Thus, the wave packet has a different velocity from the waves that compose it.
lﬂmmmtned:ephmwodtyvpandthegroup-vdodxyvgofﬂ:ewa\*c
packet. .

kanowﬂmthcﬁhascvc!ocityvpofawaveisgivcnbyvp=%.ﬂcuceﬂ'om

Eqs. (4.2 and 4.11) of Unit 4, the phase velocity of the wave packet is given by

_ o _
%=

o |ty

Putting E = mc? and p = mv in this equation, we obtain

phase velocity v =£v'— o (5.2)

Since v < ¢, it is clear that the phase velocity of a wave packet associated with
a particle is greater than that of light. This should not disturb you because no
physical quantity like energy, information or signals etc., associated with the

wave, travels with the phase velocity. These entities move with the group velocity
which is given by

[~
E
o,

_dE
Foalal s ©-3

Now from the special theory of relativity

E2= pl¢2 4+ md c2, (5.42)
E = mcl, {(5.4b)
_and p =mv (5.4c)

Ilznce using these three equations we obtain

or

. group velocity v, =v (5.5)

Hmw“-l'w
Priaciple -

Flx. 52 : A wave packet.
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Fig. 53 : Werner Helsenberg,
1501-1976, was a
German theareticsl
physicist. He way one
of the founders of
quanium mechanics,
and reccived the

Nobel Prize In 1932,
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Therefore, the groap velocity of the wave packet is nothing but the particle’s
velocity.

Thus far you have learmt that a single wave is not enough to represent a particle. We
need to superimpose a group ‘of waves which yields a wave packe: travelling at a gTOup
velocity equal to the particle’s velocity. You have seen that there is an uncertainty Ap in
the momemum of the wavepacket and a spread AX ip its wavelength. Before we proceed
further to analyse the implications of this discussion, we would like you to calculate the
phase velocity and group velocity of a wave packet.

SAQ |

Thie cnergy of a free clectron including its rest mass encrgy is 1 MeV. Caleulate *he
group velncity and the phase velocity of the wave packet associated with the mation of
the eleciron,

You have studied so far in this section that 2 moving particle must be regarded as a
wave packet which satisfies the de Broglic relation. We construct a localised wave

packet by superimposed waves which leads us to an uncertainty in its momentum and
wavelength.

The fact that a moving particle nust be represented by a wave packet mather than a
localised entily suggests that there is a fundamental limit to the accuracy with which we
€an measure the particle’s position and momentum. For example, the wider the wave
packet is, the greater are the number of waves in it, and the better our chances zre to
determine the particle’s wavelength and hence its momentum. But, because the particle
can be anywhere iu the wave packet, we cannot determine its position with precision. If,
however, the wave packet is narrow, the particle's pusiton is better defined, but now its
wavelength (or its momentum) s difficult to determine. So the smaller is the uncertainty
Ax in the particle’s position, the larger becomes the uncertainty Ap in its momentum,
and vice versa. :

Thus we can say that a direct consequence of the wave-particle duality is the
appearance of uncertainties (spreads) in the momentum and the position of a particle. If
one of them becomes definite, the other becomes completely indefinite. This situation is
in sharp contrast to'that of classical mechanics according to which it is possible to
determine precisely the position and the momentumn of a particle at any time . In 1927,
Heisenberg (Fig. 3.3) advanced the above concept in the form of the uncertainty
principle. ’

5.3 THE UNCERTAINTY PRINCIPLE

Heisenberg discovered that the preduct of the position and momentum uncenainties of a
quantum object such as the wave packet is greater than or equal to
Planck's constant . Thus, according to Heisenberg’s uncertainty principle

Ax Ap 2 K {5.6a)

whers Ax and Ap, ars the uncwiaintics in the © component of the position and
momentumn of a microscopic parficle, respectively and 4 = /2

Similar relationships hold for the ¥ and z components of the positions with their
respective momenta of the object. However, you should note that the Heisenberg
uncenainty principle does not impose restriction on the simultaneous and precise
measurements of x, y and p, or y, p, and p, etc. The restrictions are only on what are
called as conjugate variables, i.e., x along with p,, ¥ along with p, and z along with p,.
Thus, we have

Ay Ap, 2 A, ' . (56b)

T T — —
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AzAp, 2 A,
and ArAp 2 A

(3.6c)
(5.6d)

A general statement of Heisenberg's uncertainty principle can be given as follows:

The Uncertainty Principle

The values of two (canonically conjugatc) varisbles canmot be simultaneously
measured with infinite accuracy (zero error) for a microscopic particle. The
product of uncertainties in the simultaneous measurcment of conjugate variables
always has a value ahove a certain minimum (which is epproximately equa! to
Planck's constant). ’

You should note that the uncertainty relation AxAp, > A has been obtained purely as a
maihematical property of a wave packet. Hence this relation is as fundamental as
wave-particle duality. Like wave-particle duality, the uncertainty principle, though
universally applicable is of significance only for microscopic systems.

According to Eq. (5.6a), for a microscopic system there cannot he a state in which P 25
well as x have definite values. We can never simultaneously ascertain values of both
position and momenum- with arbitrary accuracy. If the position of the microscopic
particle is defined (measured) precisely then ths uncertainty in its momentum will be
infinite, i.e., we will not have any idea of what its momentum is. Similarly, if we are
able to precisely measure the particle’s momenwm, we will have no knowledge of its
position. Thus, for instance, in quantum mechanics, a microscopic particle’s motion
cannot be described-by equations like x = a sin @ because it implies definite velocity at
a definite position. In other words. the uncertainty principle does noi allow the concept
of a ln;eclory Thus, unlike classical prysics, a definite pe of a microscopic ~~+ticle
with definite velocity at every paint on the path is not possible in quantum mechanics.

. We will take up this point once again.

Another form of the uncertainty principle finds use in atomic proccsses.. Somelimes we
might wish 1o measure the cnergy emitted in an atomic process in a lime interval At
Then we require an uncerginty relation between encrgy and fime. For this we write

Eq. (5.6a) as

maAx

Ap_ o

P m

A

2 A
or A, and since E =--£— AK = pmp .

The first Factor is Ax '
. 2m

Thus, we get

AEArL = 4 | (5.7a)
S—

where At is the uncertainty in the time localizability of the wave packet and AF
is the unceriainty in its energy. A more precise calculation based on the nature of
wave pockets changes this result to

AEAL 2

wafen

(5.7b)

Egs. (5.7a and b} tell us that in order for a micrescopic particle 1o have a well defined
energy stale, the state mut last far a very long time — it must be stationary, 1[ the
energy state is shortlived, e.g., the excited state of an atom, its energy is uncertain. This
is revealed in the width of specteal lines. Suppose the excited atom having life.time At
makes a transition to a lower state. Then according to Eg. (5.7a) the energy (or the
[requency) of the radiation emitted by the atom is uncertain by an amount A /Ar. Thus
the radiation wilt not be monochromatic as Av = A Efr. It will conthin frequencies

Mstter Waves and Unceﬂ.limy
Principle

Lo several 1exe books you will
come acruss the following form of
the incertainty princple

BxApx 2
You should keep in cuind that the
nghl hend side expeesses Lthe order
ol h. The lowes limit of &2 for
ArAp is rarcly siiamed;

Eq. (5.6a} holds more usually or
even AxAp, 2 h holds,

25



An Introdoction to Quantum

Mechanics

26

Spend
f6 i

between v + AV and v — Av. And the line width Av of the spectral line, also known as
natural width, will be .

1
2n Ar

(5.7¢c)

Let us rnow consider an application of the uncestainty principle.

Example 1

e o

Calculate the minimum uncertainty in the momentum of a 4He atom confined 10 a
0.40 nm region. ' :

Solution
We know only that the 4He atom is somewhere in the 0.40 nm region: therefore

Ax = 040 nm. Equation {5.7a) gives us Ap, 2 A/Ax. Using the equal sign to obtain the . 3
minimum, we have

A 6.626 X 10-3 Js
A = =
@Pomin =4 =505 040 x 105 &

= 264 x-10-3 kg ms-L.

This example gives us a reasonable- picture of what happens 10 4He atoms at low
temperatures if we try to make them stay in one region by solidifying helium. Even at
temperatures approaching absolute zero, the He atoms have considerable momentum.
Since He has a mass of 6.7 x 10-27kg, a momentun spread of 2.64 X 10-Bkg ms-!

means that at some time the 4He atom probably has a momentum of at least that much,
or a speed of at least

Ap _ 264 %102 kg ms-!

v = ==
m 6.7 x 1027 kg

= 394 m s-|

which is over 1400 km k! So even as T-5 0 K, this large zero-point motion persists
because of the Heisenberg uncertainty principle. The associated kinetlic =nergy is so
large that 4He will not solidify even as 7— 0 K., unless more than 20 atm of external
pressure are applied. This pressure pushes the atoms close enough together so that their
auractive binding forces wilt be large enough to hold the solid crystal together.

P

You may sow like 10 work out an SAQ.

SAQ 2

i The averaee Lle e ol amoexeibed aionm s abent ikt Whae s aid,

natural width (Av) ol the Tine enitsed by the aiems! ’

o

by The radius of an atomic nueleus is typically 5 5 20180 Wha 1s the dow s e o
the energy tun an clection must lace e be e e domic aeclees!

You should understand thal the (thearetical) limits set by the uncertainty principle tuve

nothing to do with the accuracy of our measuring instruments. Even the most

sophisticated instruments shail be itmited by the uncertainty principle. Tins conuepi was -
found difficult to acvep! by many a leading scientist. including Albent Einstein. Henve. u
nmnber of itwughi (deal) cxperimenis were propused and devaied ia e oy
Congress Iield ot Brussels in 1930 Lo disprove the abave principle bul wilhoul any
success. The analysis of some of the Hionght expeniments illustrates very weli i
nhysicat irpplinatians af the nrinacipic, Therefore, we discuss them hrelly in the nexy
seclion.

53.1 Some Thought Experiments '

We will describe here some thought experiments that heip us understand the uncertainty
principle better. All these attempts reflect g search for ways of violating Lhis principle.



In this direction, they seek to determine the position and momentum of a microscapic
particle to an arbitrary accuracy. .

thdhpﬁﬁmdudﬂmz!&mmm

Let us congider a concepma]expu'hmntﬁmdiscussedbyl-bisenhugwhichancmpts
to measure the posilion of electron as accurately as possible. This expesiment consists of
mmanguncminwhjchanclpcumisﬂ]mnin::cdmdiuhmgcisobsuvedthmugha
microscape (Fig. 5.4). Electrons travel in a given direction (thé positive x-direction) in
the form of a well defined monoenergetic beam, i.c., the velocity of the electrons is
known exacuy. The position of an electron can be located by observing the light
{photons) scattered by the electron into the microscope. Clearly, the precision ‘with

which the position of an electron can be determine? is equal to the resolving power of

the microscope. Thus it is equal to the minimum distance by which the microscope
can resolve two objects, ie.,

Ax = Afsin &

where X is the wavelength of the photon used to observe the electron and ¢ is the half
angle subtended by the aperture of the microscope at the position of the electron. This
result is a standard result from optics. Thus, to obtain as accurate a position
measurement as possible, light of short wavelengths must be chosen, such as v-rays.

Now in order that an ¢lectron be observed, it should scatter at least one photon into the
microscope. In the process of scattering the photon would transfer momentum to the
electron, causing it to recoil. For instance, if the photon is scatiered by 90°, the

momentum imparted to the recoiled electron along x-direction would be equal to that of

the incident photon which is given by h/A. But the photon can be scatiered at any angle
between 0° and ¢. Hence, the x-component of its momentum after scattering can lie s

anvwhere between 0 and p sin ¢, where p is 15 total momentum. Since momentum is
conserved, the magnitude of Lhe electron's recoil momentum along x-dicection is Fig. 54
uncerain by the same or a greater amount, i.c.,

Ap. Z psin ¢ =% sin ¢

Thus (he product of the two uncertzinties is
Axap. 2 h

which is cansistent with Heisenberg's unceriainty relation, K is cvident thal hy taking A
small erough {i.c,, by using y-rays) Ax may be made quite smatl. This, however, would
tncrease Ap, such that the product of Ax and Ap, is always finite and given by the
uncertainly relation,

To guin fuither insighl into the uncerthinty refation let us fook ar onc of the mest
famous of these thought experiments : the single slif diffraciion experiment.

Single slit diffraction experiment

Consider a highly collimated beam of photens maving along the x-direction, such that
Pr=pg = h/\ and p, = 0. Let the beam be incideat upon a single slit of width d

(Fig. 5.5). The photons are diffracted by the slit and the diffraction palicim is shown
in Fig. 5.5.

Since the =lit i= of finite width 4, the positon of whe photons along e y-ditcciion is

uncertain by an amount 4, i.c., Ay = d. What can we say about the component of their
momentum in the v-dirrction?

All we know is that the photon will amrive at the screcin somewhere within the
diffraction patiern but we don't know what. Thus the uncertainty in momenium is

given by 1he anguiar spreed of the pavern. Since most of the photons hit the scresn
within the central maximum, we can abtain a rough estimate of the spread in py lie.,
Ap,) by confining curselves to the analysis of the central maximum. From Fig. 5.5, you

can see that for the central maximum, p, can take values ranging from ~ pa sin @ to
m, sin 8. Therefore,

Ap,=2psin®

of doctron by
Heisenberg's Y-rey
mlcroseope. Photons
from a source § are
scatiered Info a
micrascope M (rom

Hlltu-Wmnquml.n.lnty
Principie

: Positlon messurement

an electoon located at

P,
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Fig. 55 : Single glit diffraction experiment.

Now we know from the diffraction theary that the angutar spr;ead of the pattemn is
inversely proportional to the width of the slit.

A

sin® =—=——
d Ay

where X is the wavelength of incident light Hence, we obtain
Ay Ap,=d (2p sin@) = 2p A

or AyAp,=2h ( =-%)

S rmme—m— e - -

This is consistent with the uncertainty relation Ay Ap, 2 A. Trying to reduce the widih
of the slit (10 reduce Ay) leads (o a greater spread of diffraction pattemn increasing the
momentum uncertamty. Thus it is tmpossible to measur the position and momentum of
a microscopic particle precisely at the same time,

Finally, we describe the double slic experiment which is another milestone in
estahlishing the uncertainty principle.

The double slit experiment -

In the double-slit experiment, a beam of monoenergetic microscopic particles (such as
photons, ¢lecirons, pivioas etc.) are allowed to pass through two sliss before falling on a
fluoroscent screen placed nearby (see Fig. 5.6).

If after some time we plot the total number of panicles arriving at the sercen as a
function of position, we observe an interference pattern. This is a characteristic of waves
and can be explained as follows: The matter waves corresponding to the particle are
split at the two slits and then interfere with one another. But beware of thinking of these
mafier waves as classical waves, because the particles do arrive at the fluoroscent screen
in a particle like way: We get onc localised [lash everytime a particle strikes the screcn.
However, the totality of spots mede by a large number of particies looks like the wave N
interfercnce pattem But then, is the wave-like behaviour seen only when we observe a

group of particles? What happens when only one particle arrives at the slit?

To answer this question, suppose we smake the particlc beam very weak so that at any
one insiant only Gue paticic amives at the slit. Do we stifl get an interfercace pattern?
Quantum mechanics says yes to this and cxperimental data seems to egres with this
viewpoint. It is not casy to accept this picture. You may ask: Can a single particle split,
pass through both slits and the two halves interfere with one another? Quantum
mechanics eays yes to all these questions, As Paul Dirac, one of the pionesrs of
quantum .mechanics, put it, *Each photoa for a microscopic particle] interferes only with
itself”, Why don’t we find out wheiber it is correcl by making a measurement?
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Fig. 5.6 : The double slt experimeat.

The simplest way of doing this is by means of a thought experiment: Look with a
flashlight! We can focus a flashlight on the slits to see which slit the particle is really
passing through. What do we obiain? We find that the interference pattern is destroyed.
Tow do we cxplain this effect? This effect can be explained by the uncertainty
principle. As soon as we try to locate the particle and determine the slit (4 or B)
through which it passed, we lose information about its momentum. As we have seen in
the y-ray microscope experiment, the collision of the particle with the photon we are
using to observe it, affects its momentum and intreduces an uri,ceria_ﬁpt'y in it
Mathematically, to obscrve whether the particle goes through one of the siits, the photon
wavelength must be smaller than at least half the distance 4 bétween the slits:
{Ay < df2) Therefore, its momentum (=AfA) must be larger than 2R/d (as per the de
Broglie relation). The interaction of this photon with the. particle will make its
momealum uncerain by an amount Ap, given by the uaccrainty relation.

R

This uncertainty in the particle momentum intreduces an uncertainly in its posilion on
the screen. As shown in Fig. 5.6 it is given by

A Ap, A
? Py 2 ( Ayap, = 8 Ay < dﬂ)
a Po dp, dn :

or
aky

dr

Ay =

where A, (=hip,} is the de Broglic wavelength of the particle. Now the cordition for
conslruclive inlerference iy

Adginf = nk,
50 that the distance betweea two adjacent maxima is

) ] ai,
P asin®,,;—asinl, = ——

Thus

Ym.
hY

Ay =
29
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In other words, the uncenainty in the position of the electran (produced as a resull of
attempting to detect it near Lhe slit) is of the onder of the distance between the two
adjacent maxima. This uncertainty is enough to shift the interference pattern observed at
the screcn up and down in (he y-direction, by a distance roughly equal to the distance
between the two maxima. Such a random shift is just enough to smear out the
interference pattern so that ne interference is observed. So if we attempt to determine
the slit through which the particle passes, the interference pattern is destroyed. The fact
of the matter is that as soon as we lose information about the particle’s momentum, we
must also lose infermation about its wavelength (as per de Broglie's relation). But if
there werc interference fringes, from their spacing we would be able to measure the
wavelength. Thus the fringe paltern cannol exist any more — the interference patiern is
destroyed.

Complementarity Principle

The point is that the position and momentum measurements are reatly complementary, as
Bohr first pointed out; they are mutually exclusive processes. This means that we can
concentrate on the momentum and measure the wavelength of the particle from the
interference pattern and hence its momentum, But then we cannot tell which slit the
particle went through. Or we can concentrate on the position and lose information about
the wav=length and mementum. You have seen that when we wry to find out which slit
the particle passes through, we lose the interference pattern and hence, the information
about its wavelength and momentum. In his complementarity principle, introduced in
1928, Bohr described this siluation by stating that the wave and particle aspects of a
physical system arc complementary — when we Iocalize (find out which slit the particle
goes through), we reveal the particle aspect; and when we don’t localize (dor't worry
about which slit the particle goes through), we reveal the wave aspect. However, we
cannot reveal both the aspects at the same time —— they are complementary.

You may well ask: Is it that the microscopic particles are bolh wave and particle and
we can sec only one atiribute with a particular experimental arrangement? That is, they
possess well defined position and linear momentum at each instant but we are unable to
measure them simultanecusly? Or, is it that the particles just do not possess well defined
position and momentum simultancously? While Einstein was of the former view which
he never gave up, Bohr and Heisenberg took the latter viewpoint. Their interpretation of
quanlum mechanics is also referred 1o as the Copenhagen interpretation. Thus, the
uncertainly relalion propagates the view that these uncertainties arise as a result of an
inherent Thnitalion of nature; these are intrnsic to the nature of the quantum workd,
However precise may be the imeasuring devices or the method of measurcment, there s
no escape (rom these uncertatnties, The Heisenberg uncertainty principle is clearly a
consequence of wave-panticle duality. Tt reflects the fact that quantum mechanics,
although a complecte theory, provides a less detailed description of a physical system
than ders classical physics. This description is governed by the complementarity
principle,

The uncertainty principle is a fundamental principle of quantum mechanics. You have
noticed the role of Planck’s constant — it is so small that the Timitations imposed by
the uncerlainty principle are significanl only in the domain of microscopic particles,
namcly atoms, malecules, subatomic, nuclear and subnuclear particles. On this scale,
however, this principle is of great help in understanding many phenomena. Let us now
study some interesting applications of this principle.

5.3.2 Some Apptications of ihe Unceriainty Principie
() Tue pach 0i an object

To define the path of a pariicle in an cxacl mannc we must know its exact position
ang velacily cimulianenusly Such a knowledge is not permitted by the uncertainly
principle Hence the path {er the erbit) of an object in quantum mechanics is not
Jefined. This invalidates Bohr's theory of the hydrogen atom which assigns posilien
and velooity simultancously lo the orbiting electron.

(b} The angular momentum of an object

The angular momentum L of an cbject is defined as a cross product of is positien

e e it

e



r and momentum p. Since r and p are not known simultaneously, L is also
uncertain. However, as you will leamn later, L2 (=L.L\) can have well defined values.

(¢) The size of an atom

You can use uncertainty principle even to determine the approximate size of an
atom. Let us take the example®of the hydrogen atom, A hydrogen atom has a proton
and an clectron. If we assume the size of the atom to be a then the uncertainty in
the position of the electron is about a (the eleciron is inside the atom). Hence
according to Heisenberg uncertainty principle, the uncertainty in the electron's
momentum is given by Ap = /#/a. The towal (non-relativistic) energy of the electron
is equal to

2 1 &2

S!m0 47I:Eo a

For a stable atom, £ will be minimum. Hencc we replace p by A/a and cquate dE/da to
zer0. This yields

a=4ng =05A

Mg

and the comresponding value of the energy E is

E=_1__ Mm% __ gy

2 (4meg? Az

The negative sign of the energy shows that the electron is bound to the proton. You will
note that these values are in good agreement with the experimental data.

(d) The existence of electrons inside the nucleus

In SAQ 2(b) you have used the uncertainty principle lo show that the clectrons do
not exist inside the nucleus. The size of a nucleus js of the order of one Fermi
(10-m). Therefore, if electrons are present inside nucleus, ihen the maximum
uncertainly in their position is Ax = 10-15m. Hence Ap will be 4/Ax = 10-19 Js m-!,
The total energy may be obtained from the celation E2 = p2c2 + m2c?, or £ = pc

as mge? is much smaller than pe. Thus we obtain

E=3x1011] = (31.6) x 108eV = 200 McV.

However, experimenially wé find that during P-decay of a nucleus, ¢lectrons of cnergies
between 2-3 MeV are ejected. Hence we conclude that electrons were not presest in the
nucleus before the decay.

(c) Zero point energy

According to kinetic theory, the kinctic energies of atoms oscillating about their
positions in crystals are proporiional 1o the absolule temperature. Hence, at absolute
zero, the atoms, according to this theory, would stop oscillating and would remain
lxed in their fatfice position. But, according to uncertainty relation both position
and the momentum cannot be specified al the same time with complete accuracy.
This means that the atomic oscillalers even at absclule zero would retain a certain
2mount of oscillatory motion enough to obey the uncertainly relation. The chergy
possessed by the atamic oscillaior at absolute zero is termed as zero point ¢nergy
Experimental studies of the motion of the atom at a temperature (9,001 K). tuite
ctose to absoluic zero, have shown the reality of the zero-point energy,

You may like to end this section with an SAQ,

SAG 2 Spend
— 5 min
&

n m

A lincar harmonic oscillator al inass m oscillales with a frequency v =

where & is s foree canstant. Use the une: ~rl.1ml5- principle (o show that the minimum

s

» ol the oscillator is Avi2.

Matler Waves and Uncertaluty
Principle
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Let us now summarise what you have studied in this unit

54 SUMMARY

Wave-particle duality and the localizafion of the particles leads to the representation
of a particle by a group of waves called a wave packet. The group velocity v, of
the wave packet is equal to the particle velocity v and the phase velocity v, is
given by c?fv.
The concept of a wave packet leads to Heisenberg's uncertainty principle
according to which two canonically conjugate variables like x and p, or E and ¢
cannot be simultanecusly ‘determined with perfect accuracy. The product of the
uncertainties associated with these variables, i.e.,,'Ax Ap, and A E At is of the order
of the Planck constant A:

AxAp. 2 A

AEArzh

Some of the notable consequences of the uncertainty principle are as follows:
— The path of a particie ig not defined in quantum physics.
— Elecirons de not exist inside the nucleus.

— Atomic oscillators possess a cenain amount of energy, known as the zero-point
energy, even at absolute zero lemperature.

Several thought experiments, such as the ‘wray microscope experiment, the single

slit diffraction experiment and the doul!e slit experiment have helped in firmly

establishing the validity of the uncertainty principle.

5.5 TERMINAL QUESTIONS - Spend 30 min

1.

Show that the uncentainty principle can be cxpressed in the form AL A 0 2 4, where
A L is the uncertainly in the angular momenum of the pattiéle and AB is the
uncertainty ‘in its angular position.

The radius of a hydrogen atom is 5.3 X 10-1! m, Estimate the minimum kinetic
energy of the elecwron in this alom using the uncertainly principle.

An atom remains in an excited state for 10-% s. Calculate the unceriainty in its
energy. .

Coensider thar a microscopic object is moving along the x-axis and tie uncertainities
in its position are Ax, and Ax, respectively, at t = 0 and 7 = . Show that A x is
directly propertional to ¢ and inversely proportional 0 A xg. From this problem what
do you learn about the spreading «f the waves associated with the motion of an
object?

5.6

SOLUTIONS AND ANSWERS

Self-Assessment Questions

b

Phase velocity v, = e

v

(4
and

=r
e Ty
where p = (riic? — méclj”l = (m? -~ ,,,g)ln c
& -9

and m = £ = 107 x 16 x 107" ) = 1.778 x 107%¢ ke.

c? 9 x 10 m* 2

o -



Therzfore, P = [([7.3}2 - (9.”)2]“2 X 10311 % 3 x 108 kg ms-! Fiafler Wioves cud Urae 5

Principle

= 4.58 % [022kp m s

, =4.53 X 1022 kg m 5!
? 1.778 x 10-30 kg

= 2,576 x 108m s~

9
2.576

X 10¥ms!=35x 108 ms!

and Vp

2. (a) The order of the natural line width is

Ave—t o108 b 6% 107 He
2RAT 2r

L]

{b) The uncerainty in the eleclron's position is

Ax = 5 % 10-15n. Therefore,

I > 6.626 x 10-34 Jg

Ape
P Ax 2EMEX 105 m

=21 x 1020 kp mos-!

The momenlum would alse be of the same order if this is the unceriainty in it This
suggests that the K.E. of the clectron js far greater than its rest energy and vwe can write

K.E. = pc so that
KEZ =pe2 (211 x 1020 kg ms—1) x (3 x 108 ms~!)
2 6.33 x 10-12]
z 39 MeV
Thus the K.E. of an electron must exceed 39 MeV for it 1o be a nuclear conslituent.

Experiments indicate that electrons in an atom have only 2 fraciion of this energy. Thus
we can conclude that electrons are rot present in atomic auclei.

3. The enesgy of the linear harmonic oscillator is

3

E— pd +.I_h2
T 2m Z

This is a constant of motion. We can represent the constant valee of £ by means of
averages of the kinclie and potential energies over a cycle of wotion by writing

< 1 .
B T e -

2 2

The average values of x and p should vanish for an oscillating particle. So we can
wentify < p?> and <x2> with the squares of the correspondiag unceriaintics:

<y = < + (A = (AP

a
- ﬁ i
and <px =< pa  (Ap) = (Ap)? = )
, p P p)* = (4p) T As
Thus
[ :}3— 1 ! & X
FoRE “;!----- kAt A i LS (AL
im 2 Bmiag: 2
snee frem the sacertainly priiciple dadp 2 472, To deicimne e unmnne Srelny ol

the vscillater we pul

ac__
d{ax)

CPiT T
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5

o - m + kAx) =0
o P 12
or (61)2 = (m)

The minimum encrgy is

Terminal Questions

1. Consider a particle moving in a circle of radius r. If Ax is the arc length
comesponding to angular position A8, then we can rewrite Eq. (5.6) as

rAB Ay 2 B
or AD mrAv 2 A

But L = mvr for the particle and AL = mAvr, since m and r are constant. Hence we
oblain

ALAB 24

2, The uncertainty in the electron’s position is

Ax=53x10"m

and

b 1.054 x 107" Js 24
Ap 2 = =199 x 107°% kg ms-!
P=ax 5.3%x 10" m 5

An electron with such a low magnilude of momentum behaves almost like a
. . .. _h 10 G .
ciassical particle [since A = — = [0-19 m] and its kinetic epergy is
/]

b ]

2 -34,2 2 .2
P, (L99XI0T) kg m” 8™ _ 5o 0 10 J = 1370V

KE. = 2
2m 2 x (9.0 x 107" kg)

3. The cnergy of e atom is uncertain by an amount

Mg .
AE> Ao _ 1054 % 1077 Is _ 1.034 x 10726 }

Ar 1075

4. If v, is dhe group velovily of the wave packet wssotialed wiih he inicroscopic
pariicle then as time ¢

Pa = !:I

Arv=wvr=

X " Agm

where 2y is the initial wavelength of the wave packet ai time ¢ = 0. This is equal to
Axgy, the uncurtainty in the particle's position at time ¢ = 0. Thus, we hove

B e e



N T | : Matter Waves and Uncertelnty
Ax = ——= Principle

This result tells us that Ax, i.e., the spread of the wave-packet increases with time. The
narrower the packet is initially, the quicker it spreads, This is the hidden influence of
the uncertainty principle, If the confinement length Ax, is small; the uncertainty in its

momentum and hence, its velocity is large (Av = max ) This means that the wave-
packet will contain many waves of high velocity much greater than the average group

velacity pg/m. Due to the fluctustion ip velocity, the distance covered by the particle
will also be uncertain by an amount Ax(s), i.c., its spread will be large.

-4
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UNIT 6 SCHRODINGER EQUATION

Structure

6.1 Introduction
Chijectives

6.2 One-dimensional Schridinger Equation

6.3 Statistical Interpretation of the Wave Function
Probability Currerit Density and the Continuity Bquauon
Mormalisation of Wave Functions

6.4 Time indépendent Schridinger Equation
Boundary Conditions and Acccp{ab!c Solutions

6.5 Summary

6.6 Termina! Questions

6.7 Selutions and Answers

$.1 INTRODUCTION

In Unit 4, you have scen that a microscopic particle is essentially represented by a
mailer wave with its wavelength given by the de Broglie relation. How do we describe
the motion of such a particle or a system of such particles? Clearly, we cannot make
use of Newton's Taws of motion for this purpose. So a new theoretical description is
needed for the motion of quantum mechanical particles. The new theory should e
consistent with the wave nature of particles. It should also reduce to Newtonian
mechanics for macroscopic particles. Recall that this condition is similar to the spegial
theory of relativity which redices to Newtonian mechanics at velocities much smaller
than the velocity of light.

in this connection, we would like to recount a story. At the end of a seminar, in 1926.
on de Broglic waves, the physicist Peter Debye said to another physicist that if matter is
a wave, there should be a wave cqualion to describe a malter wavs, Debye promptiy
sorgot about jt bul the other physicist, Erwin Schrédinger proceeded to discaver the
wave cquation for matter waves. This cqualion is named after him as the Schriodinger

ST,

Toothe e e il atudy the one-dimenstonal Schrédinger equation, and learn about its
solutions. We shall also dmcuss the physical meaning of these solutions. These solutions

¢ acceplable only under certain conditions about which you will study towards the end
u-F fhvr unit An appendix has been given at the end of the Unit to explain the basic
lpehed used o the text [n the mext unit we shall introduce another way of
Sbing uuantum mechanical sysiems, given by Heisenberg and Dirac which makes
usc ol operatnrs and observables.

conyiay

Ohbjectives
Alfter studymg s unit you should be able to

e write e anedimensional time dependent Schrddinger equation and derive the time
= uni Schrddinger aquation from i,

= rive oo oamnintical inerpretaiion of the wave function,
s dho weneinuay cuiion for ihe probabilily cument Gonsity,
moommlise 1ogiven wave fuschion,
beoteundony coeditons (02 siven wove funclion.

=1

5.7 OMNT.DIMENSIONAL SCHRODINGER EQUATION

Yuou have already learnt that wave nature is an inherent properly of every particle. We
now necd a woave equation which suitably describes the time evolution of matter waves

=



representing the particle. In Unit 5, you have learnt that one way of localising a particle
is by construcling a wave packet. However, by solving the terminal question 4 you have
also seen that a wave packet spreads with time. This means that, a wave packet cannol
represent a particle. ‘

Henee, in quantum mechanics it is postulated that

Every particle (or a system of particles) is represented by a “wave function”,
which is a function of space coordinates and time. The wave function determines
all that can be known about the system it represents,

For one-dimensional motion of a particle, the wave function may be represented by

Y(x, £). Now you may ask: What is the form of y (x, 1} in terms of x and +? To answer
this question, consider a classical (masroscopic) particle moving under the influence of a
force. Its dynamical behaviour is described by Newlon’s second law, which is a
differential equation. Similarly, Maxwell’s equations of classical electromagnetism are
also differential equations. Since all objects exhibit particle as well as wave nature, it is
natural to expect that the quantum mechanical wave function will also be 2 solution of a
censin differential equation, involving derivatives of x and r.

The credit for discovering such a differential equation goes 10 Erwin Schrédinger
(Fig. 6.1). How did he arrive at his equation? The answer is, he created it intuitively
breaking ali traditions of such wave equations. The Schradinger equation is one of the
most successful equations of quantum mechanics because it predicts resulls which can
he verified experimentatly. We will now give you some idea of how he visualised the
particular form of his equation.

Let us first state ceriain preconditions for establishing this equation. Firstly, for a
particle of mass m, energy £ and momentumn p, the equation should be consistent with

(i) the de Broglie relation Iy =% . and (6.1)
.. _E
(ii) Planck formula v o= T {6.2)
[
It should also satisly the relaiion
p?
E = Vix, ¢ 6.3
{in) Cy. + Vi, n (6.3)

for alt x and 1, where V(x, 1) is the potential energy of the panicle.

(1v} Finally, the Schrodinger equation must be Finear in x and r. That is, if W (x. ¢} and
yry(x, ) are two solutions of the Schridinger equation for a given potential cnergy
Vix, 1) then any linear combination of Wy, and w3, say, C, y; + Gy v, with €,
and C, as arbitrary constants, must also be the solution of the 'same Schrédinger
equation. This linearily is required so thalt 1wo waves may be added 10 produce
interference. If the linearity property is to be satisfied, the Schrédinger
(differcntial) equation must ke of degree 1, ic.. the wave lunclions and ns
derivalives appearing ir it shouid be only of the fusl power.

We now put Egs. (6.1) and (6.2} in (6.3} (o obtain

2 p 3
sy = 25 v (6.4)
2m

where @ = 2mv and & = 2/A. We now consider a simpler siteation where the potemial
erergy s constant, say equal o V4, Under such a siwation, if we take the particle 1o be
a photon then it will have a fixed wavelength and frcquency (os given by Eqs. (6.1) and
(6.2)} and its wavefunclion as piven hy the electromagnetic theory (see Unit 14, PHE-07
cnlitled Electric and Magnetic Phenomena}, will he

wix, 1) = A ef (k- w) (6.5)

Differentiating the above eguation once with respect o lime you can easily obtain

Schrodinger Equation

Pastulate 1:
Description
of the system

Fig. 6.1 :

Erwin Schradinger,
1867-1951, Austrian

theorelleal physicist.

Another of the
founders af the new

quantum mechanics,

received the

Nohel Prize in 1933,

he
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Mechanics =i s Ey (6.6)
and
_ 1 )
= TV D a? ©.n

Putting Eqgs. (6.6) and (6.7) in Bq. (6.4) we obtsin a differential equalion connecting
the wave function yix, ¢) and its derivatives:

p 20D R )
or 2m  ox?

+ ¥ vix ) 6.8)

The above equation has been obtained for a special case of constant potential energy
Vp- However, Schrodinger made a bold extrapolation and posmulated that the form of
the Eq. (6.8) does not change even for a particle of mass m moving in a potential
which varies with x and 7. Thus, .

Postulate 2: The time-dependent Schrédinger equation for one-dimensional motion of a
Time Evolution particle of mass m moving in a potential ¥(x, ¢) is given by
of a System 3 )
. '.IJ(I ' f) . ”2 a W(xl f) ) .
% = - 5
i 5 - 352 + Vix,  y(x, 1) (6.9)

While reading this discussian, did You should note that Eq. (6.9) is consistent with (i} to (iv). The appearance of 2 in the
you wonder what would happen it Schridinger equation is, of course, crucial. This is how Schridinger imposed the

we h;:jd :‘d""“g "q‘:l“"?"l‘i":::' :ve “gquanium condition” on the wave equation of matter.
SeCond orcer Ume denva H
wauld then bave ended up with the
wlarivistic energy-mafnentum

«elationship. Actually, to begin

The Schriidinger equation is unlike any of the wave eguations you have come across so
far. Recall that wave equations usually connect a second-order lime derivative of the

with. this is what Schridinger function with its second order spatial derivative. But Schrédinger's equation coniains
himself awempted. But very saon only the first-derivative with respect to time but the second derivative with respect lo
he reatised that such an equation space. Hence, lime and space coordinales are not treated on an equal footing in this

did not work for electrons — it
Jid not give the correct spectrum
for the hydrogen otom.
incidentally, the comect redativistic

equation. Thus Eq. {6.9) cannot be correct in the relativistic domain. Hence, it is a non-
relativistic time dependent Schriédinger equation.

squution for clecrrons, discavered And, there is a price to pay for having only a [lirst order time derivative in the wave
by Dirze, doss retain the fistorder  cquation. The solutions of the Schrédinger equation arc not real physical w.uves; they are
fims derivafive, complex functions with both a real and an imaginary pari, This gives rise to the problem

of interpretation of the wave function. What exactly does the wavefunction y(x, ) mean
physically? We shall discuss the interpretation of y given by Max Bomn in the next
section.

But before that you might like to verify the lincarity propenty of w(x, 1). Try the
following SAQ.

Sl 8AQ 1

RV
g o amd gala, noase two sohatiens of 1he SchriGdinger eguation (6.9), sbhow it
efdpand avs, = o e wlse seluticns of Ego oh ), wliere eoand b owe uebiieey
L, atants.

6.3 STATISTICAL INTERPRETATION OF THE WAVE
rUNCTION

The coefficient of the time derivative of y in Eq. (6.9) is imaginary. Therefore, it is

evident that the wave function , which is lhe solution of (56.9), will, in general, be

complex. Thus, in order to extract any physical information from w(x, ), we must

establish a quantitative connection between y{x, 1) and the observables of the particle.
38 In 1926, Max Born propased the following connection:



Schridinger Equation
If, at any instant ¢, a measurcment is made to locate the object represented by the
wave function W(x, 1), then the probability P(x, £) dx that the object will be found
between the coordinates x and x + dx is Postulate-3:
P(x, 1) dx = y*(x, 1) y(x, £)de = |y(x, 1) [ax, (6.10) Probabilistic interpretation .
of the wave function |
where *“*" on a function represents its complex conjugate.

b
You can sec that | y(x, 1) * is the modulus square of the wave function. Here, -
Plx, ) =y*(x, ) y(x, 1) = | y(x, ) [® is also termed the probability density. To put it
in words: |
The probability of finding a giantum mechanical object in a small interval dx is given |
by the product of the modulus square of the wave function representing the object and |
the interval itself. ;
‘The probability of firding the particle within some finite length L = (x, —x,) is given |
by i

%2
Py = j Pix, 1) dx (6.11)
x
t

Thus, according to Max Borm. the Schridinger cquation gives probabilily waves. The To visualise this concept, imagine
wave function just tells us probabilistically where the likelihood cf finding the particle you a¢c in 3 metropalis like Delhi
will be greater: there (he wave will be strong, its amplitude will be larger. If the mo‘r’;':f::ﬁgg'ynmh‘:" tts
probability of finding a particle in a region is small, the wave will be weak and its vehicles were desceibed by
amplitude will be small. It may seem from (he above probabiiistic interpretation that the Schrddinger waves, we would say
phase of the wave function is not importznt, since it is the modulosquare | vi(x, 1) | that :*"“ the wave was strong at (he
we interpret as the probability. However, this is not so. We shall very briefly discuss this @:::E:,Tg’:"i’wm- |
aspect. !
The phase of the wave function .l-

From the lincarity property of Schrédinger equation and SAQ |1, you know that if
W) and 7, are solutions af the Schrédinger equation, ihe linear combination

Wix, 1) = ap Wl 1+ ay ¥ (x, 0 . (6.12)

13 alsa a solution of the Schradinger cquation where a4, and a, arc arbitrary

complex numbers. This is the superposition principle. Now, calculate | wix, 0 ]2 using
Eq. (6.5) with a phase differcnce, say ¢, hetween y, and V2. You will see that it
depends on the relative phasc of W, and .. Such a superposition 15 called coherent
superposition — it gives risc 1o the interference of matter waves. Thus, the phase of
the wave funcition is imporiant and cannot be ignored.

You shauld also notice a crucial difference beiween the use of probability in

classical physics and in quantum physics. In classical physics, probabilities add as you
have studied in Unit 5 of the physics elective PHE-04 (Mathematicat Methads in
Physics-1}. Bul in quantum physics. the probability amplitudes add. as in Eq. (6.12) and
then we caleulme the probahilitics from Eg. (6.10) giving rise to interference,

Let us come back 1o the probabilistic interpretation. Since the object must always be .
somewhere in spacz, the total probability of finding it in the whale Spacc is unity. y
We obtain this by irtegrating the probability over all space: :

_’- Y, 1) wix, 1) dr = 1, ai each instanl of Lime 1 I {6.13)

- )

F- ="

The interpreiation of the wave funclion given by Egs. (6.10} to (6.)3) requires that y
should be finite and single-valued everywhere, otherwise the probability of finding an
object in a region of space will not be finite and unique. Further, Eq. (6.13) rcquires i
that we resirict the wave functions used in quuntum mechanics to the class of square
integrable functions for which o

by, ) P dx < o
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i.c., y(x, 1) must approach 0 as x — oo at least as fast as x12€, withe€ > 0 and

" arbitrarily small. In addition, certain continuity conditions need to be imposed on y. We

will cdiscuss these in Sec. 6.4.1 in detril. Meanwhile, let us further explore the meaning
of y.

6.3.1 Probability Current Density and the Continuity Equation

Since Bq. (6.13) is true for every 2, the total pmbbbih‘l)r is conserved, But this can bé
accomplishzd only when the probability is conservaed ar each point, and at all times. Let
us cxamine this aspect in some detail.

Lel us consider the concrete exemple of a fluid moving in the positive x-direction
between two points x = xy and x = x, with a velocity v which changes with x. Let p(x)
denote the mass per unit length of the fluid around the point x. The quantity

'S, = w(x) p(x) is then the mass of the fluid crossing a given point x per unit time, What

is the net mass accumulated per unit time in between the two points x = x; and x = x,7?
Cleasly, it is equal to S;=:l—Sx=,2. And if the fluid is to be conserved in this region

then this should be equal to the rate of change of mass in this region. Thus

2 |? i}
? k p(x)dx = Sx:xl"Sx:_'J;z ‘ (614)
-1

We can extend this analogy to the probabitistic interpretation. We say that if the roral
probability is to-be conserved, the conservation equation should look like Eq. (6.14)
where p should be replaced by the probability density P(x, t} and S, by a function which
we term the probability flux or the probability current density Stx, £). Thus, we must
have

X
%—- I 2P_(x. Ddx = S(xp, ) — S(x, 1) ‘ (6.15?

X

Let us now obtain the definition of the probability flux S(x, £) so that the probability
conservation equation (6.15) is obeyed. For this we-shall use the Schridinger equation:-

S0 _ R 3w 6.16
T ™ (6.162)

Here and in future we will omit. the arguments of Y and V as long as it does not create
any confusion. The complex conjugate of Eq. {6.16a) is

oy B Ry
R e A (6.16b)

where we have assumed that V is real so that V¥ = V. You can now multiply
Eq. (6.16a) from the left by ¥ and Eq. (6.16b) by y and then subtract (6.16b) from -
(6.16a) and obtain

m(\u* v a“")-_ # (; Py _walw‘)

ot 4 k! m o a

Now carry out a simple algebraic manipulation of the above equation to show that

A=) A8 (., aw a‘“‘) (
== - 6.17
ot 2mi  ox ¥ dxr V35 y (6.17)

We now integrate Eq. (6.17) with respect to x from x) 10 x5 and pet

X
3 o A dy _ oy*
ar j YTy de = - { (‘P' ax Yo

2m

%3
(6.18)

o

A comparison of Egs. (6.15) and (6.18) shows that the probability density P(x, 1)
and the probability flux or probability current density S{x, 1} should be defined as




P(x, 1) = y*(x, 1) y(x, 1}

and ’ )
i (e B 3y
Sz, 1) = 2 (\I" 3 y 3 ) (6.19)
We may rewrite Eqg. (6.I‘B) in terms of P and § as
aP(x, 1) oS(x, £) _
ot =0 (6.20)

Doesn't this equation look familiar to you? It has the form of & continuiry equation
analogous to the continuity equation between the charge density and current density in
electrodynamics. This is one reason why P{x, f) is referred to as the probability density
and S(x, 1) is called the probability current density. In this equation, the first term

—%ﬂ- denotes the rate of change of probability density in a ccr{ain fixed length. The
!

second term denocics the net outward flux coming out of the same lzngth. Eq. (6.20)
then says that the time rate of change of probability density (which is a negative
quantity because as t increases dP/dt decreuses) is numerically equal 1o the net outward
Slux (an outward flux is always assumed (o be positive quantity). This means that within
the above length, the parficles are neither created ncr destroyed (i.e., there are neither
sources not sinks)

Eq. (6.20} is, therefore, the conservaiion law expressing the fact that a change in the
particle density in a region of space is compensated for by a net change of fluc from
that region. You can now also see why we need lo impose continuily zonditions on y:

ay

X
provided V(x} is finite. That these restrictions on the snlutipns‘ are ne{:'cssary may be
judged from the foilowing considerations,

both W and its derivative must be finite and continuous-far all values of x

The probability density P(x) and the probability flux S(x,-r} represent physical quantitics
and, therefore. have to be well defined. If w(x) or its first derivative y* {x) were not
finitc for some values of x then P(x) and/or S(x, r) would not be well defined for all
values of x. Further. both y(x) and v’ (x) must be continuous. Qtherwise 5(x, £} would
be singular at some points and these points would act as sources or sinks of probability
cument, In other words, creation or deslruction of matter would take place. This, as you
know, is impossihle in non-relativistic physics.

Before proceeding further, we would like to point out that Eq. (6.20) is obtained undcr
the condilien that V is real. By writing y = Wp + Y, it is easy to sec that both P and §

are real and
e M « O ) _ A oy
S(v. 5y = — Im (n.p 5 ) = Re (‘q!‘_ i 3 {6.21)

wiere {2} denoles the magnitude of the imaginary part of Z and Re (Z) its real part.
You may like to do an exercise to {ix the ideas involvad,

*
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{b) The wave function of an ohject of mass m is given by

Wiy, 1) o= 10 P it

Ob1ain the valucs ;J[ Pix, 1} and S(x, r).

“The probabilistic interpretation of y also leads us to the concept of normalising a wave
function. :

6.3.2 Normalisation of Wave Functions.

Récall Eq. (6.13) which tells us that since the particle must be somewhere in spece, the
probability integrated over all x(i.c., all space in one-dimension) must equaf 1. A wave
function satisfying Eq. (6.13) is said to be normallsed.

Now in quantum mechanics we deal with two types of wave functions. For one of them
the value of the integralj y* ' (x, 1) y' (x, 1} dx is finite, say equal to N, where v’ is

the solution of the Schrédinger equation. Such functions are said 1o be normalisable and
N is known &s the norm of the wave fanction. It ulso means that y’ is a square
integrable function which vanishes as | x| — .

You elso know (hat Schridinger equation is linear. And you have shown in SAQ 1 that
if ¥ is a solution of Eqg. (6.9) then y’ multiplied by a constant (independent of ¢ and
x) is also a solution. Hence we cag always choose the constant to be N-172 and teke

w = N-12 . Then for y, Eq. (6.13) is satisfied and the wave function y is said to be
a normalised wave function. Note that N is independent of time (otherwise W will not
be a solution of Eq. (6.9)). Hence, a wave function which is normalised ar any instant
of time stays normalised ar all other times.

However, there exists a category of wave functions for which (he value of the integral
in Eq. (6.13} is infipite. Such functions do not represent a physical system in the
strictest sense. But, we shall see later that suck functions are extensively used in

quanium mechanics to describe free particles. In fact, we have zlready used &(kr —01) g

represent a free particle. It is a wave funclion whose norm is infinite or, in other words,
it is unnormalisable. Wave functions of this form do not go to zero as x — + =, We
shall discuss the nomalisation of such functions in detail in Block 3.

Let us now further analyse the Schrédinger Equation.

6.4 TIME INDEPENDENT SCHRODINGER EQUATION

The Schridinger equation (6.9) represents the tme development of the wave functions
y(x, ). We have seen that the position probability density of the particle is related to
yix, r). We can also transform y(x, £) in such a way that we obtain momentum
probability distributions-of the particte. (Such transforms are celled Fourier transforms).
Thus, given the position and momentum distributions of the particle at one time, the
same <an be obtained at any later time with the help of the Schridinger equation. Isn't
this situation analogous to the one in classical mechanics? In classical mechanics, if the
position and momentum of a particle are known at some initial time then we can use
MNewion's equation of mofiion 1o find tie posilion and monentum of e paricle ai any
later time. However, there is a difference between classical and quanium mechanics.
What i5 17 Recall the ascertainty principle whicgh ol us that in guanium mochanics
both the position and the mgmentum of the particle cannot be known precisely at the
some instant of time. We can know only their distributions,

In many problems of classical mechanics such as Kepler's planctary orbits, Rutherford
scaltering. we assume that the paricle has definile energy andfor angular momentum.
However. in quantuim mechanics il we assume the energy of the particie to be known
precisely, i.e., if AE = 0 then, according 1o the uncertainty relation AE &r 2 4 and At is
infinite. This means that an infinitc amount of time should be aveilable to make energy
measurements. In other words, the probability density y* (x, 1} w(x, ) shoutd not change

e —— -



with time. Hence, for a system of constant energy the wave function Y(x, ) should take
the form

Yix, 1) = y(x) exp {ig(D) ) . (6.22)

where g(r} is any function of . For a system represented by such a wave function, the
energy of the system does not change with time, ie., its energy is conserved. Hence, if
the particle is initially in a specified energy state represented by Bq. (6.22) then it stays
in it indefinitely unless it is disturbed by some external agency. Such energy stales are
called stationary states,

Classically, the energy (which is also termed the Hamiltonian) is a constent of motion if
it does not contein time explicitly, Now, the Hamilionian is the sum of the kinetic
energy and the potential energy. Thus, for the total energy 1o be conserved, the potential
in which the particle is moving should be independent of time. For such potentials, the
Schridinger cquation (6.9) may be separated in x and ¢ as follows. Substituting

Yi(x, £} = w(x) £ ‘ (6.23)
in Eq. (6.9) and rearranging the terms, we get

I - 1t __in_ 3f@®
T m W@ a2 Vi) = O "3 _ (6.24)

The left side of this cquation is constant for fixed x at all f. Similarly, the right side is
constant for fixed 1 at all values of x. Hence, Eq. (6.24) will hol only when both the
sides are cqual 1o a constant € which is independent of x and . Thus we obtain

L df |

and
”?. " Ly - . I -
“Sa Y (x) + Vix) yixy = C w(v), _ (6.26)
where W (x) = & ylokde. I

[P PR yo

You can solve Eq. (6.25) (o obtain
SU) = A exp [~CI/A] = A exp {-iov) (6.27)

where A is the normalisation constant and @ = C/A4, From Eqs. (6.26) and (6.27) it is
cleur that T shoutd have dimensions of encrey and be equal o the total energy £
Eq. (6.27) is, \herefore. written as

L

el 700 + V{x) W(x) = E wix) (6.28)

The above equation is known as time indepeudent Schrédinger equation.

We can aow write the general solution or tie stationary state solution of the time-
dependent Schridinger equation for a particle of definite energy £ as

wix, ) = Wx) exp (—EVA). {6.29)

where W) saiisfies Eq. (6.28). The probabiiity density und the probability {lux in such
cases are given by

Pix) = y* (x) Wlx) (6.30)
and
—‘L“-i--_v-ix 3
S(n) = Tt [w* (x) e W) - i) Vv (01 (6.31)

Schridinger Equation

Time independent
Sehridinger equation
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It is evident thal both P(x) and S(x} are independent of timc. You should note that
Eq. (6.28) contains no imaginary quantities and hence’ y{x) is not necessarily complex
although y(x, 1} is. The normalisation condmon (6.13) for the stationary state function
reduces to a form

L Y (x) i) de=1 (6.32)

You may now like to apply the concepts discussed so far.

SAQ 3
T wave function for a steady siate is given by

yi(x) = Nexp (-— —;2) )

Cascwjate the value of the normalisation constant V.

In this course we shatl confine our study to those problems which require solutions of
time independent Schridinger equation, ie., we shall study stationary state problems. Let

us now cxamine the condilions which the wave Function y{x) has to satisfy in order 1o
be a physically acceptable solution,

6.4.}  Boundary Conditions and Acceptable Solutions

Recall that the probabilistic interpretation imposes the following conditions on the wave
funciion W{x):

1) w(x) should be finite and single-valued everywhere,

2) w(x) should be square integrable and

3) both w(x) and —a_-‘!-should be coatinuous everywherz.
ox

We can rewrite the time independent Schridinger equation (6.2K) as

& yix) _ 2m
e

[V(n—E] w(x) (6.33)

You know that w(x) represents a2 probabilistic wave satisfying Eq. (6.13). Further
whether wix) is an acceplable solution of Eq. {6.33) or not is also determined by ¥(x) as
weli as by the boundary conditions which depend upon the nature of the problem. Let
us consider @n ex1mple of a particle bound in a potential well shown in Fig. 6.2. Here
V(x> E fur x < X dndx>.x

Classically, if the particle is inninlly between x, and x, then for all times to come it will
be confined between the same space, j.c., the particle is bounded between x| ond x,.
Then we say that the particle is in a baund state. Quantum mechanically we expect a
large probability of finding the particls between the space x, < x < x,. However, there
also exists a decrcasingly small prabability of finding the particle outside this space,
which is forbidden classically, Thix, in tum, demands for the (boundary) condition that
the bound state wave finctivr: must sanish at infinity. A very interesting resubt {oliows
froin the consideration of such 4 boundary condition which you shail study in the next
block in detard. Here we iust mention it: The (acceplable) solutions of the e
independent Schirbdinger cquation exist only for cerlain discrete values of the il
energy £ Thus the energy guantization iv an infierent properry of the Schridinger
cegirtaiied) for the bound siares,

Yaou have dust fearni that the probahilishic interpretation nuts another restriclion on an

aceeptable (ar well behaved) soludon: rhe wave funcrion and its first derivarive st be
Sfueie aid copimuons, G (6.28) shows that it Y} F and w(x) are fintte then " (¥ is
alsw Lyt Thrs, in tern, means that o’ (x) 15 continuous. However, if for cemain values



of x, V(x) becomes infinite then Eq. (6.28) yields an infinite value for y " {x) at those
points. Hence at those points y’(x) may not be continuous.

We now end this section by summarising the properties and the boundary conditions that
a wave function must satisfy to be acceptable:

Praperties of the Wave Function

(1) y(x) must be single valued, finite and continuous for all values of x.

(2) ¥’ (x) must be finite and continuons for all values of x, except at those
points where V — oo, At these points y* (x) has & finite discontinuity but y
remains continuous.

(3) For bound states, the probability of finding (he particle between x and
x + dx, ie., |y|*dx must vanish as [ x| = . Hence | w(x)|— 0 as [x] — o,
i.e.. y(x) is a square integrable wave function.

Let us now summarise what you have studied in this unit.

6.5 SUMMARY

& In this unit we hzve concentrated on onc-dimensional motion of particles. You have
leamnt three postulafes of guantum mechanics:

l. Every system can be represented by a wave lunction,

2. The wave funciion satisfies a differential equation, called thz Schridinger
cquation given by

fﬁa_q!:-f_ri,‘g_.'.‘!w
at 2m Jae I T

3. The probability P(x. r} of finding a pasicle at {x, N in.lhlel- c‘[empn_lary clement

dy is given by o

Pl de = w*{x, 1) wic ) du
where Plx, ) is the probability density,

& Schrédinger equation can be used to derive a conlinuity equation which connects
the probability density with an associated probahility current density S(x. 1) as
tollows:

JdPLL, 1 N daS(x. 1)

0
t dx

where

ML) =

4 ""4'1" dy _waw
2mi k dx dx

The o wtinuity cquation teils us that a particle moving under a real potential is
neitien destrayed ner is another pasticls created; the change in parucle density in a
rextun cauals the nee change of {Tux into or away from that region.

e The total probability of linding a panicle in the whole space always remains unity:
Ll

W () yiE) dy =

—ra

Wave funcuions which satisly this condition are said 10 be normalised.

Schridinger Equation

St =T— -
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e For a conservative system we can wrile
wix, 1) = y(x) e—.fE.'M‘

where E is (he total energy of the system and Y(x) is the solution of the time
independent Schridinger equation given by

'L
HZ dZ v
- —— Vv = :
2m a2 T VYEEY L
L
® In order that w{x) represent a physical system, the wave function y(x) must be i
single valued, finite and continuous at all values of x. Its first derivative dy(x)/dx
must also be [inite and continuous at all values of x, except at those points where
V(x) = oo, Al these points the first derivative has a finite discontinuity.
6.6 TERMINAL QUESTIONS Spend 45 min
1.. The wave function of an object of energy E and momentum p is given by
W, )= A ol (px — Enih
(i) Does y represent a bound state?
(it) Is the wave funcrion normalisuble?
(iiiy Using the above calculg!e the probability current density S(x. 1} in tenms of the
velocity v of an object and a constant A, which is complex.
2. The unnormalised wave function of a system is given by » cxp (—¥*/2). Obtain the
value of its normalisation constant.
3. A certain function is eiven by
Wix) = M + ix) exp (=) for v > | ].

=0 fnrx <1 ':

Obtain the value of the normalisation constant N. Why can il not rapresent a
physical system?

The polential energy of a simple harmonic oscillator of mass m and {requency v s
equal to 2Zm(mvx)? Write down its time independent Schrddinger equation and show
that it can be rewrilten as

d
- (ﬁ-af) =0
dg®  \B

T

1 —
where o =-'-'£- E, B=2rmvfAand E = « B x, E being the tcial energy of the

owrilytor, For what values of oo/ are the functions W (£} = exp (-£2/2) and

Wi = £ exp {~ £72) solutions of the above cquation?

Self-Assessment Questions

I.  Subsiituting w = ayr; + by 1n Lg. (h 9 we obtain,

+ b
vé 2m

,;( Y, Y, )_ ”~ ( Ay, aq“l’:
AT T o /T ‘7 3

) + Vay, + Vhu,




or Schradinger Equation

, a¥ rﬂz Py ) ( dy, 2 )_ .
"("’ 5t Im a2 A g W =0

Since ¥, and , satisfy Eq. (6.9), the above equation is identically zero. Hence
satisfies Eq. (6.9). Similarly, you can show that ay, is also a solution of Eqg. (6.9).

2. (a) Let us express the complex potential energy V as
V = VR + .l' V!

where Vp is its real part and V;, its imaginary part. The Schridinger equation (6.16a)
and jts complex conjugale are then, respectively, written. as:

p 2 __ K Py

3 2m 3

+ (Vg + iV

L Oyt P Py e

Repeating the process of obtaining Eq. (6.20), we get

. oy A » ohy Pyl .
& P P -
i (‘I’ 3 + Y ) o (‘F' 2 W % +2iViyry
or
. # 3 oy y*
ﬁ —_—— = —— e I —_— 2i V ]
' o! W= w) 2m  dx (V’ dx v dx TEUNTY

BP(r, ) . aSn D) 2V
w o TEe g o

(b)Y Plx.n) =ury

= o~fo=ifDe o e+ iBie g—ieor
= g—doue

Using Eq. (6.21} we cbtan

S{J-'. .’) = i Im |'-|_:;* qu
L L ax

-

= f—' Em %c-{rx—i[})x 00 ¢y — i) ¢+ iB)x it ]
i.

5 [
= —— Im
n

'QB ey
e

Ec—?mr [_0.__.:.{3‘1-!-_- -
L J

1. Thz rormzlisauon eondition is
o
J. weu e =}
—w

Car

oo
,
|NFI e dy = |

- - : 47
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or

[
2 [N _[ e gy ~ | rince ¢ is an even function.

a

By making the substitution xX* = /. e integral takes the form
|J\|I"|z .[ (W2 g o1 1hs we have
0

]N]z_[ (-2t — |
0

e e vl

L
n

L]

1 114
and N= (—-—)
'rc

Terminal Questions

or N[} =

1. (i) No. it does not as w{x) does not go to zero as | x| — o

(ii} No, its norm is inlmite.

(lll) S(I ‘} = A A+ _.'“‘-_II(P-V' F!)/ﬁ (_'E_ el-(,'JX— El')fﬁ
) zmi n

\
AT 0 L“ L) i (px - Er]ﬂ.l]
' A
2
; P]
— y ’41‘ et
2t A ) by )

= v AA®- Lp = 0Iv)

2. App[ying tha ponnalisafion condition we pel

iN!E ‘[m.\-l (-".d): = |

—C

or

o~y
2N [: _[ 7~ Vdr =1 since the integrand is even
o

Substituling x2 = . we gt
AT
FN|‘_| et = )
i

o

{,-\;:1 _I[z_. = |, -t E[ et =:I7-:
. (3)_L 1) .&
Since r(,,...”:“["(,n,l(z)— 3 I‘(z) ]

RGeS




o INP=2andN=

A Schridinger Equation
L4 )

3. The normalisation condition is

JTwryae=n
ar
|~ J (1 + o) () ~ix} exp (=2x} dx = |
l -
since
wix)=0forx < I,
or
|V _[ 1+ de= )
1
or
INP _f e de+ | NI j el dr=1
1 I
cr
] oa
NPl inp [ oo as
I
Integrating the second term by parts, we gel
] -2
v F—+ S ):1
z 4
ar

IN|=2¢/]T

This wave funclion cannot represent a physical system because it is discontinuous at
« = 1. Check his out by aking e fimit x — | from rght (=) and lcft (~==}. Both
the liinits are unequal.

4, The Ume independent Schrédinger equation for a simple barmonic oscillator is

k] d2
is H-l¥-+2m (mvz)? w = Ey (1

e dy

where we have substituted V(x) = Zm(rvx)=. Changing the varicble (o £ = Y_B x, where

2y
B= T we gel

dy  dy  dg “'!Edw

dy T odE dE
Ly o4
o =P
Thus, (1) becomes
! d! 2 .
_:— A T +2mn2v2—§w=5‘w
n d§' B -
7 2wy 4 2mmAv2A
oF T yf . TV §2 v = Ey

2m R ge? 2rm v
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001!’ rvh

LY _®VA o2, 2m
or de? nvA Cv ?TE v
Ay fomE
or — 4t |—==-£ =0
a2\ AP v
.Defining o = ?J;ZE ,» we can write Lhe equation as
vy (a p
—t |=-Ely=0
de? p
£
Substituting W(E) = exp (—-2—) in this equation, we pet:

a d
vegyrSy-gyeo [ Loy gy

de?
L _1ly=0
” (B )“’

or Lo sincey#0"

Similarly, substituting W(E) = £ exp (~£%/2) in (A), we get:
-3y + & w+(%~ &2) y=0

or (2 - 3) w=20

B

or = 3 since y 2 0,

A
B

(A)




Appendix

Complex Numbers

Imaginary number
Complex number
Real part
Imaginary part
Complex conjugate
Modulus

Phase

Complex plane

Power series

Complex number

Phase factors
Real parnt

Imaginary part

P= v =l

z=x+iy (Cartesian form)

IX=Rez
y=Imz
=x—iy .

8 where tan 6 = 2
X
Imaginary axis

(z)

r y

8 Real axis

X
(=*)

7
x=rcnse=r(l——9—+..)

3
y=rsin@=r (B_%+"')

z=r{eos @ +izn )

oy i)
r[l 1 £B+ﬂ+ﬂ+..]

i

21 3t

z = reW (polar form)

e¥9=cos@+isinbaonde®=cos B8 -isin®
Re ¢® = cos B = (¢® + ¢-¥)/2

Im &8 = 5in 8 = (8 — ~y/2;

Schrédinger Equatl
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UNIT 7 OBSERVABLES AND OPERATORS

Structore

7.1 Introdoction
Obgectives
7.2 Quannm Mechanical Operators : ;
Properties of Opemtors F
Expoctation Valucs
7.3 Eigenfunctions and E.lgenvalue.s ’
7.4 Ehreafest theorem
7.5 Summary
7.6 Temminal Questions
7.7 Solutioas and Answers

7.1 INTRODUCTION

In the block introduction we had seid that quantum ‘mechanics developed along (wo tracks.
In Uniis 4 to 6 we have presented one of these, You have learnt about the wave-particle
duality in Uit 4. In the previous unit, you have studied how Erwin Schrodinger discovered
the wave equation for matter waves. which is now called the Schridinger equation. You
have also learnt that in quantum mechanics any state of a system is represented by a wave
function  which can be cbtained by solving the Schridinger equation. You have

studied the probabilistic interpretation of W given by Max Bom, that the de-Broglic
Schrodicger waves are waves of probability which also satisfy the uncertainty relation.
Thus Units 4 to 6 present the wave mech.:ics version of quantum mechanics. Youn should,
of course, realise that the existence of ¥ and the Schriddinger cquation which form the :
basis of wave mechanics are postulates. Thus quantum mechanics is based on certain =~ - i
postulates which are nol proved but are like axioms of geomemy. f

R

In this unit, we will Introduce. the other truck of the development of quantum
mechanics which is known as marrix mechanics and was developed by Werner
Heisenberg, Max Born and P. Jordan in the years 1925 and 1926. In this approach, onfv
physically observable quantities appear. Each nhysical quantity is associated with an
‘operator’ which can be represcnted by a mairix. What is an operator? You will find
an answer to lhis question in the next section. You will leare the method of converting
a classical imction into a quantum mechanical uperator. This method is ~'so one of the
postulates of quantum mechanies, The essential dificrence between classical mechanics
and matrix mechanics version of quamum mechanics is this; quantum mechanical
operators obey non-commutative algebra. We will explain wha this means in

Sec, 7.2.2 ard briefly discuss commulater algebra along with some of its applications.

The two tracks (Schridinger’s wave mechanics and Heisenberg's matrix mechanics)
were integrated by Paul AM. Dirac who invented an abstract formalism for quantum
mechanics ig 1930. In the remaining unit we shall present some basic concepts of this
unified formulation of quantum mechanics given by Dirac (see Fig. 7.1). One of the
bastc postutates in this formalism connects the measured value of a dynaimival variable
with its theoretical value obtained with the help of i wave function y. We introduce
it in Sec. 7.2.2. Thus we shall be able to relate quantuin mechanical operators
physically vbservable quaniitics,

funcuon th: resull may bc a muluple of the same w a\c funchun Th.:. chs rise
to what we call the eigenvalue-eigenfunction equation which yoi will study in
Sec. 7.3, Finally, you will learn about the Ehrenfest thearem which shows the
simitanity as well as one of the basic differences between classical and quantum
mechanics.

The concepts presented in this unit may appear loo malhematical and abstract to you in
the first reading. However. the formalism presented here is a very powerful and clegant
way of working with quantum mechanicel systems.



Objectives ,
Afier studying this unit you should be able to
® express a classical dynamical variable as a quantum mechanical operator,

® define the bermitian operator and the parity operator and apply their properties to
quantum mechanical systems,

compute the expectntion value of an operator,

derive clementary results of commutator algelira,

-calculate the cigenvalues and eigenfunctions of a given operalor,

)
® derive and interpret Ehrenfest theorem.

7.2 'QUANTUM MECHANICAL OPERATORS

What is a quantum mechanical ‘operator’? Let us begin with an analogy w explain this
idea. When you exercise, your muscles build up by the action of the exercise: Exercise
changes the muscles. The action of quantum mechanical operators on functions is a bit
like that of exercise on muscles: they change the functions. You know from classical
machanics that the dynamical swate of a system is determined at each instant of time by
the knowledge of certain physical quantities. such as the pos:uon. velocity, linear
momentum, angular momentam, energy ete. of the particles constituting the syst:m
These physical quantitics sre also called dynamical variables.

The dynamical variables associated with & system ~an be measured ar< nrovide

information sbout the system at a particular point in space-time. In quantum mechanics,
. all dynamical variables are represented by operators because they. bring about changes

in the wave functions upon which they act ' Prizz ln 1933,

All measurable attributes of 2 quantum mechanical system are called observables, and
yet another postulate of quantum mechanics states that - -

Every physical observable is associated with an oﬁerntc;f Postulate 4 :
which acts on thc wave fanction. Description of physical
L

quantities

Mast of these dyuamicd variables or observables are functions of position (x), linear
momentum (p) and Ume () variables. Thus, if we can represent x and p by operators
we shall be able to express most of the remaining dynamical variables as operators. A

method to convert these variables into quantum mechanical operators is postulated in
quantum mechanics as follows:

0) Xp W =Xy .1

i.e., when operator Xop Operates upon W, the result is simply the muhiﬁlica!.ion of y

by Lhe variable x. In other words, the operator corresponding 10 the dynamical variable
x is x itself.

" . Oy
() (p,z)op Yy o= i 'a';' (723)
Thiis, die fumenium uperaior seling on We wave funcion reswits in its diiferentialion
with respect 1o the conjugate position coordinate x and the result is multiplied by ~i%,
Thus, the operator of p, is —iAdfor.

(px)op =~ A Ba; (?.2‘3)

Remember that Egs. (7.1) and (7.2b) are postulated, i.e., they can't be proved, The 5
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position and momentum operators are used in the construction of operators of other
dynamical variables such as anguler momentum, energy etc. How do we do this? For
ﬂu.s,wmk:d:eclmcalemonforanyopermurﬂmlumsofxanqlp,mdme
Eqs. (7.1 and'!.?.b)toobmnnsopcmorfonnﬂ (x, —ihd/ax, 1). Notice that the tme
variable has been retained as itself in the operator I'omallsm. In quantum mechanics,
time is not treated Bs an operator. It is a dynamical variable,

To understand this method further, consider the example of the kinetic energy of a free
particle of mess m executing one-dimensional motion given by p2/2m. The quantum
mechanical operator of the kincfic energy is obtained by replacing p;, by (p),o-

using Eq. (7.2b) we get

(
(KE),, = —p—"-"— _— (- in )

.
a2

Farthermore, if its polential energy is given by the function V(x), then its potential
energy operator will also be V(x) since x,, is x itself:

[V, = Vi) (7.3b)

: 2
Now do you notice that the sym (— %-{F+ 1 (x))op is nothing but the quantum
mechanical operator of the Hamiltonian which appears in the Schridinger equation?

= ——E"’:’— (7.33)

Thus, we obtain the Hamiltonian operator:

(H)pp = fﬂ .j:z + V(x) (1.4)

In this manner, you can convert most of the dynamical variables into quantum
mechanical operators. An important quantum mechanical operator that you will
encounter in our subsequent discussions is the parity operator. We will introduce it

.The Parity Operator . .. .."."

Parity is a simple but very uselul concepl in quantum mechanics. Consider a wave
function W(x): If on changing x to —x, the following relationship is obtained

yi(=x) = & y(x) ' (7.5)

then we say that the function W{x) has a definite parity. If y(—x) = + W(x), then W(x) is
of even parity. On the other hand, for W(=x) = - y(x), the parity of y{x) is said to be
cdd. All functions which do not obey (7:5) are said 10 have mixed parity. The parity
operation is equivalent to transforming a right-handed system of coordinates into a left-
handed one. Do you recall where you have first encountered this eperation? It was
introduced in Unit 1 of the elective PHE-04 {(Mathematical Methods in Physics-I) where

you have studied about this operation in relation (o vectors. The parity operator is
defined by

Py )=w{-x1 . (7.6a)

and

PA (x, -m v = A(=x fh aa 1) (7.6b}

You can readily see thal the parily Operator is a space inversion Operalor, i.c., under its
operation x — —x. Thus if y(x) describes the state of a system, P y(x) describes its
mirror image.

We have discussed a method to oblain quantum mechanical operators from the
corrcs.ponding classical expression by changing x by x, r by rand p, by — i E?x .
However, there is no classical expression, in terms of x and_p, which changes the sign
of the argament of a function by its operation. Hence, we say that the paruy operator
has no classical analog.

ICH I e



You should now carry cut a couple of quick exercises to fix all the ideas presented so
far in your mind.

SAQ 1

ta) Express the variables p, and p. in opeiator form,

(h) Write the three components of the angutar momentum L in terms of x, y.zond p.
7. and p. and thus obtain quantum mechanical operators for £ L.and L.

>

You have just studied that in quantum mechanics, the measurable classical dynamical
varisbles like position, momentum etc. are represented by operators. These operators act
on a wave function and change it in some way. We have summarised the results
obtained so far for ready reference.

Dynamical Variables and Corresponding Operators

Dynamical Variable . Operator
Position coordinate x ' x
x component of momentum p, - -i2 —g—x_
s ) ;
. P #2 2

Kineti~ ¢ T=-= N Y il

i~ energy Y= 2 32
Potential energy V (x, 1) Vix,1

pf PYI

Total energy —2"m— + Vix, 1) Hamiltonian H = ——'2';—8?—4-"(1)

Angular Momentum

LI yp-— :P_r
Lf\' - Xp.
L o

Let us now discuss some imponant propertics of these QpEraiors.

7.2.1 Properties of Operators

Firstly, operators in quantum mechanics arc generally linear operators. What is a lincar
operator? By definition, a linear operator satisfies the following properties:

Dup (‘1’ + ‘I’ ) = anq’ + anw U.?ﬂ)
D,ch =cDyé (717b)

where ¢ is an arbitrary complex number. In general, we can combine Eqs. (7.7a and b)
and write for a lincar opertor:

D (M + iy} =& (D, 8) + 1 (D, w)

~
|
to
e

where A and p are complex numbers. It is easy to see that both x and p; satisfy
Eqs. (7.7). You may like to check it out.

Spend
10 min

55
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Spend SAQ 2
3 min ’ T

Show that o and p, salisfy the eriterion of lincarity.

Secondly, in general, quantum mechanical operators do not neccssarily commrute, What
do we mean by thizs? To understand it, recall that in classical mechanics, we define
angular momentumn L 2s r X p and not &s p X r, which is equat to — L. Putting this
result in a mathematical language we can say that ¢ and p do not commmte onder the
operation of vector product A similar situation exists for quantum mechanical
operators. If two operators A and B operate onc after the other on a function W, then
their order of operation is important. In general, BAy is not equal to ABy for any
arbitrary ¥, i.e.

[AB—BA] v0 (7.99)

The expression AR — BA is denoted by the commntator bracket [A, B]. Thus, we
define the commutator of two operators as the difference AB - BA and denote it by the

symbol [A, B}
[A, Bl = AB- BA (71.5b)
and. in general,
(A. B] %0 79¢)

In other words, in general, the operators A and B do not commute with one another and
the valuc of the commutation bracket [4, B} is non-zero. What does this result mean? It
means that we bave 1o be careful about the order of operators in coasidering operator
products in quantum mechanics. However, if the commutator of the operators A and B
vanishes, A and B commute, i.e., AB = BA. Then we can-interchange their order.

To understand these concepis better, let us take a concrete example of operators. Let us

examine whether the operators x and p, commute with one another. For this purpose we
evaluate

{x.pr]'\yz.t (—Iﬁ ——a:L) +;ﬂi (xw-)=‘aw.
d ax

X

Since y is arbitrary we oblain

[x. i) = if . (110}

Thus we have found that x and p, operators do not commute with one another and the
value of the commutation bracket is iA. This result also tells us that we have to take
care of the order of these operators when we apply them on a system. For instance, if
the momentumn operator acts first on a system followed by the position operator, it
yields a certain result. The cesult is different if the position operator operates first and is
followed by the momentum operator. This result has an interesting fallout Sometimes,
you mnay comne Across & situation where the product of x and p accurs in a clessical
dynamical varable. Now in quantum mechanics, the onder of operators matiers. So in -
which order do we put x and p? In such a case, we simply symmetrize the product,

i.e., we replace the variable xp, by the operator ,;!!_ (xp, + P}

1
APy 7 (a7, + p2)

You shiould note that x and p, are what arc termed in classical mechanics as canonically
conjugate variables. In classical mechanics we do not have an equation like Eq. (7.10),
since x and p, are dynamical variables which have complex numerical values. So

they occur interchangeably in classical expressions of physical quantities. You

— e ———



should feel completely at home with these concepts before procesding further. So work Observables and Operators
out this exercise.

. by
SAQ 3 ' Apeid
S omin

{a) Show that v, commites with (P 204 (P},

by Damnmie o berdl 5pl.

Thus you have found that the quantum mechanical opgrators corresponding to classical
canonically conjugate position and momentum variables do not commute with one
arother: x does not commute with p,, y does not commute with Py tnd z does not
commute with p,. The value of the commutation btacket is i in each case. Because of
this non-commutability we are required to writs xp, (ypy ar zp,} in a symmetric form
while converting a dynamical variable D containing such terms into its quantum
mechanical operator. Let us now make use of the definition of [4. B) given by

Eq. (7.9b) 10 derive some interesting basic resulls of commutator algebra.

Basic Commutator Alpebra

1. The following results satisfied by operators are useful and readily proved

(A, B] = - [B, A] (7.11a)

[A, 8+C) = (A, B] + [4, C) (7.11b)

[AB,C1=A{B.C1+{A CIB A (.11
and

{A, BC} = B{A, C] + {4, BIC (7.11d)

You should quickly verify Eqs. (7.11a) to (7.11d) before studying further.

2. Any operator always commutes with jts own power: ie., .
A A)=0,n=1,2.3.... {(1.12)

It follows from Eqs, {7.11) ana (7.12) that il f(x} is an wperator #hich can be cxpanded
In th powers of x then

V) pd = in ~2— (7x)) (7.13)
ox
Similarly, if f(p,} can be expanded in the powers of p, we have
af(p)

[ f(pH =ik

(7.14)

I

You may like to prove Eqgs. (7.13) and (7.14) before studying fucthcr.

NAQ o
AN ON
I ] L
10 Vo . nwid Ry
thy b o e Tl s PG alor Coriiiun' v willy
. - 1 !
Al = - —e—— 1" 4 e
Zer Ay

Now, since observables are measurable atiributes of ary phyéica! system, they are real
quantities. Therefore, they should be represented by operators which, when operating on

e physical system, yield real values of the chservables. In quantum mechanics, all .57
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observables are represented by such operators, which are called hermitian operators.
Let us now study briefly about them.

Hermitian Operators
A hermitian operator is deﬁned as follows:

Jor oo e oo va| @.159)

For a one-dimensional system the volume element 4t is simply dx and the limit of
integration is from ~ oo (o + . However, for a three dimensional systems dt is the
volume element dx dy dz and all lhe three variables cover the whole space, i.¢., the
variables vary from — e (0 + oo,

Integrals like Eq. (7.15a) will occur quite often in this cowrse. Hence we adnpt a short
hand notation and take

I@"’ (Do) dt = (4, DY) - (7.15b)

and

| @ty wett = DO, W) (1.15¢)

Henceforth, we shall use the same symbol D for the dynamical variable and also for its’
operator if there is no confusion. The integral (§, Dy) is also known as inner product
or scalar product of ¢ with Dy. For ¢ = y and D = [, the identity operator, the
integral (y, ¥) is known as the norm of the wave function y. You should-notice that
for a normalised ¢ the norm is equal to unity. The norm of a wave function
representing a state of - system is always rnesitive. It can be zero only when y = 0, i,
that state of the system does not exisl.

To understand these concepts concretely, let us now consider the linear momentum
operator p and show that it is a hermitian operator. We have p o +& py+8p,
where ?. £ and A are unit vectors along x, y and z axes, respectively. You have already
proved in SAQ 2 that

Py (A + 1Y) = Mp, ) + 1 (W)

This result holds for p, and p, as well. Hence, p,, p, and p, ace linear operators. Now
lel us comsider the inlegral ’

L] . -ra a
"=J¢' (P.-,PW) dr = —;I;J‘ ¢=‘a§dx
where p,, s.tands for py, py Or p;. Inlcgrating by paris we get-

[ =-if [¢w1:+j (—iﬁ%%)*wdx

If at least onc of the functions is a normalizable wave function then the first term
vanishes because the normalizable wave funclions go 10 zero at x = £ o, Thus

1= ] (017 v (7.16)

implying that p,. i5 a hermitian operator. Thus p.. p.. p; and p arc all hermitian
operators.

The position operator x is obviously lincar and hermitian. Hence the angular momentumn
and Hamilionian operators are also linear und hermitian,

The operators which satisfy Eq. (7.15a) are also known as self adfoint operators. Here it

is useful to introduce the adjoint or Hermitian conjugate of an operator D, by the
relation.

[ Dy a2 for o vt o 1.178)

g s



If D = D' thea the operator D is said 10 be self adjoint. You can readily compare Observables and Operators

Eqs. (7.152) and (7.17a) and see that for a hermitian operator
D'=D (7.17b)

But we can also write malrix representing D.
[or amyrre =[oe (aBunee .

Thus applying Eq. (7.17a) twice we have .
Jor b =[{a® o)+ By <[ B aayeyae (7.18)

Hence, comparing Egs. (7.18a) and (7.18b), we obrain an imporant result for adjoint
operators which applies (o hermitian operators also:

(AB)f = BTA* ' (7.18¢)

So far. we have introduced you to the concepts of observables and operators, We have
said that every observable is associated with an operator. Now vou may ask: Exacily
what is the connection between observables and operators? That is what we shall
discover in the next seciion,

7.2.2 Expectation Values

Let us consider the measurement of a dynamical varable or the observable D of a

" system. Keeping the system always in a particular state W we measure D repeatedly. In
general, each individual measurement will yield a different result. Hence we take the
average of these measurements (D) as the value of the ‘dynarical variable for that
particular state. Since we have always started with the same state W, it is reasonable 10
assume that knowing Y we should be able to calculate (D). Such a retationship between

v and {D} is provided by another postutate of the quantum mechanics. According 10 (his
posiulate,

The average of the nwasured value of D is given by Postulate 5

The measurement
Fe J d
J-“' Dy dt (¥, Oy) i719) postulate

(D) = =
I Wyt .y

(D) is known as the expectation value of the opetatn ).

If (D} as obiaincd from Eq. (?.19) comes out 1o be real then the dynamical variable D is
said to be an observable, Hence we can say that

|
|

|

An observable is & dynamical variable having |
a real expectation value, ll
1

Now we can understand the signiticance of a hermitian operator. Hermitian operators
have real expectation values. To prove (his 1esull. we have

D) = —-'l_[“;:—::-j-{d;ﬁ— =C pr* (Dy) dt (7.20a)

In quantum mechanies,
operators are represented

. by matrices, In terms of
Now suppose D = AB then according to Eq. (7.17a) r:auix algebra, the matrix
- representing D' is obtained by
I 0 (ABy)dt = I{(AB)'M‘ it (7.18a) teking the complex conjugate

and the uanspose of the
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where C is some constant representing the normalisation of . The complex conjugate
of this equation gives o

@ =¢ [your & g .200)
The difference is '
0 -0 = fve @O &~y v
Using Eq. (7.15a) this becomes |
(D) - Dy = C [+ Dt - C [y* o) dr
=0
or ® =or : 2

which means that (D) is real. Thus, we have proved that in guantum mechanics all’
observables are represented by hermitian operasors.

We will now introduce you to another interesting feature arising out of the discussion so
far: Representing the Schridinger equation as an cigenvalue-eigenfunction equation.

12

7.3 EIGENFUNCTIONS AND EIGENVALUES

So far you have studied that, in general, when an operator D operates upon ¥ we get a
new function y’. However, under special circumstances W’ may just be a m‘rl:lliplcg:} Wy
itself, ie., .

Dy =dy (1.22)

where 4 is a complex number. Under this situation, y is said to be an efgenfunction of
the operator D having-d as.its eigenvatue. Eq. (7.22) is called the eigeavalue-
eigenfunction. equation for the operator D. Now recall the time independent
Schrodinger equation given in Unit &

Do you recognise that the left hand side is nothing but the Hamiltonian 57 We can also
write this cquation as .

Hy=Ey C (7.23)

Thus, the time independent Schebdinger equation is an cigenvaluc eigenfunction
equation for the operater H (see Eq. 7.4). It lells us that H operating on a special class
of wave functions gives back the same wavefunctions multiplied by the cigenvalue £ of
H. Since H is hermitian, the eigenvaiue E is real. This resull can be proved for any
hermilian operator satisfying an cigenvalue cizenfunclion equation as follow:

From Eq. (7.15a) we have
(w, Dy} = (D, W)

Now with the help of Eq. (7.22) we get
dy =4 . ¥

But for a given state W is not zero, hence (Y. W} is finite. Thus we ablain
d=d*

Hence, the eigenvalue ~f a hermitian operator is always real. In this case the .
gxpectation value (D) is equal to d itsclf, which is real. '

S St ol S



Using the concepts presented so far, we would like to introduce an important class of Observables and Operators
eigenfunctions namely, eigenfunctions which are normalised to unity and satisfy the

orthogonality property. Such eigenfunctions are called orthonormal eigenfunctions. In

this connection, we will also introduce another uscful concept of the degeneracy of

eigenfunctions.
Orthonormal Eigenfunctions

Supposc for a system there arc more than one cigenfunctions of an operator having the
same eigenvalue, Then all such functions are called degenerate eigenfanctions.
Eigenfunctions of an operator having different eigenvalues are called non-degenerate
eigenfonctions. Let us now take two non-degenerate cigenfunctions ¢ and y of a
hermitian operetor D, having eigenvalues d; and dj, respectively:

Dé=di¢ and Dy=dy
Let these eigenfunctions be normalised to unity. Then from Egs. (7.15a) and (7.22) we

obtain; -
[ e 0w & = [0 yae
or ds (@, W) = (0. ¥)
or {dr-di} (. y) =0 (7.24)

Since d| # oy we find that the inner preduct (¢, W) of ¢ and y in Eq. (7.24) is zero.
Eigenfunctions having inner product equal to zero ure said to be orthogonal 1o each
other:

W W) =0, for iwnj (7.25)

We can gencralise this statemznt. If W\, W, ... , are non-degenerate eigenfinctions of
a hermitian aperator. normalised 1o unity then they satisfy the following anrthonormality
condition

(9, ¥) =0 fori#j : ' (1.26a)

Wy =1 fori=j (126w

Thus, the eigenfunctions are nonmalised to unity, and all eigenfunciions Wi, satislv the
orthogonality property (7.26a) for i =/, We can make use of the Kronecker delta symbol
8,; and write Eqgs. (7.26a and b) tn a compact form: -

Wi Wb = 8y (7.26)
where &, is defined as:

8;=0 for (=

;=1 Jor i=j

Such cigenlunctions witich satisfy Eq. v7.26) are called orthonormal functions and
form an orthonormal set.

Using tiese ideas we can show thal if ¥ is a non-degeneralc eigentunction of an
operater D and £ commules with anather operntor B then v is also an eigenfunction of
£. To prove it let us operate B an Eq. {7.22) from the left to obtain

By = d(Byn ' (7.272)

since ¢ is a number. Fumhermore. £ commutes with D, hence, we also have

D(By) = Hliney = diBy) (7.271,

61
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The above equation clearly shows that (By} is an eigenfunction of D with the same
eigenvalue d. Since W is not degenerate with By, the eigenfunction By must be a
multiple of v, ie.,

By=by - : : _ ' - a8
From Eg. (7.28) we conclude that y is also an eigenfunction of the operator 8 with the .

cigenvalue b. In general, if there are n commuting operators and  is a non-degenerate

_ eigenfunction of any one of them thea it is an eigenfunction of the remaining (n-1)

operators also. These n operators form a set of commuting operators.

We now proceed to demonstrate 1hat if an aperalor A commutes t_t;ith the parity
operator P, then the non-degenerate eigenfunctions of A have definite parity. -

Let

Al p) Wl = Ayl - (.298)

'Applying P to Bq. (7.298) f'rom left and using the condition [P.- Al =0 we get

A p) P wio) =2 [P v - (7.296)

Thus we notice that both y(x)} and Py(x) are cigenfunctions of A with the same
eigenvalue, Since Y(z) is non-degenerate, the two functions y(x) and Py(x) can differ
at the most by a censtant. Hence

Py(x) = py (x) (7.30a)

Thus w(x) is an eigenfunctiun of the parity operator with p as the cigenvalue. Applying
once sgain the parity operator we get '

Py(x) = p Py (x) = pPY (x) (7.30b)

But y(x) and P2y (x) are identically the same. Hence p? =1, ie., p=21. Thus, y(x)
are of definite parity. For degenerate eigenfunctions it is possible to teke linear
combinations of y(x) and Y(-x) to obtain eigenfunctions of definile parity. Equation
{7.30b) also gives us the eigenvalues of the parity operator: these are £ 1.

We shall use the parity operators in the next block to obtain cigenfunctions and
eigenvalucs of some simple systems,

We end this discussion with an cxercise for you.

<40 F
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In the last section of this unit, it would not be out of place to establish a
correspondence between the quantum mechanical and classical concepts. Remember that
in quantum mechanics we have operators and in classical mechanics there are only
dynamical variables which may be complex numbers. Thus we have to consider the
cxpactaticn values of operators, Now, according to the correspondence principle we
expect that the motion of a quantum object, represented by v, should agree with that of
a classical particle whenever the distances and momenta become so large that we can
ignore the uncertainty principle. When we try to explore this point, we arrive at the
Ehrenfest theorem.

Ik
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Let us consider the rate of changs of an observable D, which does not depend explicitly
on time, From Bq. (7:19) we obtain for a normalized wave function ¥

R 2 .
= * nD"_ -
dt ar / * ,‘-F a /- g a3n
Nowwouschmdepondeutsmwngareqmonmﬂq (73l)tor=plnce-iby
-!-H'lp Thus
d (D) 1 1
= =—— . - |DH
7 m(_”! D!I")T"M (v, ¥
or
4D [Iv‘DHydr-Iv‘HDvd:] sincs H is hermitian
o H=H
or .
dpy ( - ) :
ranlle ..1 [D.H)y . (7.32a)
ar -
29 - L. (7.52b)
dr i?
Let us now take O to be pasilion operator then
0. H] =[x H] = —— fx. gl = L am
Putting Eq. (7.33) inio Eq. (7.32b) we obtain ‘
dix) I :
— 7.34
" — {pe) (7.34)

Furthermore, let us take D to be the linear momentum operator. In this case

d(Px) - av h
SN

You should note that Eqs. (7.34) and (7.35) are very similar to the equations which
define linear momentum and force in classical mechanics. However, the basic difference

between the two meehanics is that x, p, and ax of classical mechanics ere replaced by

their average values in quantum mechanics. For a macroscopic svclcm there is hardly
any difference between r, p_ and aV/9x and their average values. However, for
microscopic systems they are quite different As a matter of fact you have secn that for
& microscopic system the precise values of x and p, do not exist simultaneously but
their average values {x) and {p.) can be obtained.

Eqs. (7.34) and (7.35) constitute the Ehrenfest theorem which shows the .
comespondence as well as u basic difference between classical and quantum mechanics.
You may like 10 apply these ideas and make use of Eq. (7 32b} to amrive ot an
interesting result
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Show gl wtien an operzter commtes with the Hamilmian, the expectati value i
the chservable associated wish it is a constunt of motion. Henee prove that the linear
momenptum ol 4 svstem is congerved when no net foree fiekds acts on e g3 wtem.

Let us now summarise what you have simdied in this unit.

7.5 SUMMARY

® In this unit you have learned about two more postulates of the quantum mechanics,
in addition to the pustulates given in the previous unit. According to the first of
these postulates, every nhservable is associated with an operator. The operators

corresponding to the dynamical variables x and p, are x and —ift éﬁ_
X

® To construct an operator of any other dynamical variabie we write that function in
terms of x, p, (in a symmetric form) and then replace p, by ~ i #9/9x.

® Most of the operators relevant to quanium mechanics are linear and hermitian. i.c.,
Play+bo)y=aDy + kD6

(y, Do) = (Dy, §)

@ According 1o another postulate of quantum mechanics the expectation value of a
dynamical varable D, is equal to the average value of D, obtained by the repeated
measurement of D [or that system in the same state. A dynnmical variable having
rea! expectation value is said to be an observable.

@ For guantum mechanical operators in gencral ABy = BAy and the valuc of the
commutation bracker |A, B] = 48 - BA is non-zgro.

® I the oneration of £ on ¥ produces a multiple of W say diy then y is said to be an
cigenfunction of D having eigenvalue . The eigenvalues of a hermitian aperator
are real,

6 The ratc of change of average {(x} and {5} for a system of mass m and pniential
cneray V(x) are equat 10 {p }/m and {~ dV/dx}. respectively. These relations are
called Ehrenfest thearems and are very similar to those abtained in classical
mechanics with the diffcrence that in classical mechanics we consider x, p, and
AVi3e themselves instead af their averages.

7.6 TERMINAL QUESTIONS Spend 45 min

.
I, A stare of n paicle nf mass m is given by ¢ =%, Normalisc the wave function
and calcutate the expectation value of the kinetic cnergy of the particle.

If for two operatars A aod 7

[ ]

SWIER

Hrep show that |42 B9 = 2 (AR + 8BA)

ud

f 1wa non-commutine operatars A and 8 commute witlt their commutator [A, Ai.

shonw thol
(A A% = o B 1AL R ' ;

where » is an integer. Hence obtain the value of {e". p].

Ll el e
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4. [f for a quantum mechanical sysiem
(/20 + V() W) = Ewio)
show that {(K.E)= ;— {x av/ox.
The expression is known as Virial theorem.
Hint: Su{n with {xp,, HJ) =0
5. a) Detennine th.‘llldl: the parily operator P is hennitian or aot.

b) Show that all operators which are invariunt under space inversion commuote with
the parity operator.

6. The Hamilonian of a syslem is piven by

Fy
H=— - {4y
2m )

and (¥} and ya(x; ate 1wo degenerate energy cigenflunctions of the sysiem. Show
that

(Wi, (4, + 2} W) = 0

Hint: Sran with (g, [H, x?]) ya) = 0.
7. Show that [L. L.} = i# L,. Hence prove thut it © is un cigenfunction ot L, .
(L) =(L)=0.
8. Suppose y(x) = "i & 9; ()

wlhiere Q;(x) are eigenlunctions of u lieanitian eperator D with cigenvalues o, and
{6 9 = & ten show tha

lU- IJU} = E .'f..-;fl_;!:‘ i ,:’" I'_-I - -'

7.7 SOLUTIONS AND ANSWERS

seli-Assessment Questio.s

. 8y p o= -in <
) P
p. = -in L

b; Lo = ap~om

-J i
= -y 2o
dz J
I — T
s :

i t
— =N ey

- o d

R Tl N TV o=

[AA8

2ooalav e A0 —axu -0
oo e N
poloy « 6o) = =i == lay - )
Jx

Olsservahles and Operators

(8]

T TTTTTTTTTETI T T T

R -



Axu Introductlon to Quianium
Mechanlcs

66

e ina S _ipp Y
ox ax

=apyY+bp ¢

Therefore, x and P are lincer. _
3. (@ [xp)=lap, - ppal
=—x m-%“y’—f m-‘g—(w)
3y oy

= — ifix —— + idx—— (" x and y are independent)

dy dy
=0
Si|_1cc W is arbitrary,
apy, —pyx =0
Thus operators x and p, commute.
Similarly, we can siiow that x-commules with Pr
®  Dupl=is
(2 pl =2
Proof is similar to that of [x, p,] = i2

4. (a) Since f(x) can be expanded in powers of x, we may write

e

Uf (x), P:]

[E?ﬂh]

b+ C+ .+ X5 ., p]

{x, p + 2, Bl+ ..+ )+

Now using Eq. (7.11c) we can write
(2, pd = X (5 pd + [ pdx
=2 l');a’ x
and [, Pl=x [, g+ [x, ‘p_:]x2
=x(2iAx) +ind
= 3iha?
Similarly.l
(¥, pJ = m"in
Thus, we have
(i) m)

AL+ Ze + 3 + o+ + L)

, .
th =)

"

You cun prove Ey. {7.14) in lhe same way.
el o)
. ™ o

by Now A(x) = - —-——(~,— + axr + bif
2 dx

Since A i1-x) = A(x) hence PA X3y (1) = A (=x) W (=x) = A{x} Py (x)
arbitmairy. A(x) commuties with P.'

Since ¥ (v) is

o

ree—pema . men ao




5. We have to show that

-

(— - +f);:-=11-;:-
dx”

and calculate A where

®  A=ew (—%2) |

and
(i) fo = x exp (- %‘)
() (—-—-d—z,,-+x2)exp (——-—)
dx”
=—13exp(1"—; ) +xzexp( ‘;2 )+ eEn
= exn implying A, = 1.
. oA \

0) ( ;:2 (x e‘-‘zf-’)

= [Bx € X7 P XL 4 Pyr 2]
= 3y N2 implying A,= 3
Termiial Questions

. -] - .
l.  The rormalisation condition is N~ J 2N gy = |

or C
2 ) ir2
N (m 2o =1 or N= (20 /)yl [ I eu Vidy = ---?-t—
’ ) 2a
e s e R z " d- 2
(KE) = (p*/2m) = Qa /r)lf2 (¢=¢7, - 3 ¢4
Zf” a_r
» i 2 A 2
= (2a/mylc (em® % | 20 (1-2uam) o8
) n ' > 2
_ 7P E 1 [._20: - Yr‘.! s (1 i?
TR O 20 i oA Vla
1 -{m " n " E -ty . . \”..
- -..lJ-lﬂ- i1 P B
A ' (2 J ’ s 2 (wJ
or st -;— ot
2 122000 — A fADEDY _ota 4y (Cring 0, 71
A {H[r'l, B]‘.—ir‘l. Bl o} « [HA. f|‘.'|". Bl A
=AB+ A5 - 84+ 1A SfAL AL =
= 2AB + B4
3.0 Let A B = 5 IALB) (N

Heree from By -7.10d)

(4. 8" = BiA, 8] + 1A, B &

Observables and Operators

67
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Meane o (@ Qunm =nB"[A Bl +[A B] B (Using Eq. 7.14)

=(n+1)B"[A, B]L. ' @

Hence if {1) is ue for n it is also true for n + 1, Since (1) is certainly true for n=1
hence it is also true for n=2. Thus Eq, (1) is true for any .

Now E:Ex"/nl
n=0

[es, p.r] = Z "1"'.|' ["')I v P:]
ach R:

T N -

4. We have (y, [xp. HIV) = E(y, xp, )} - E (y, xp, ) = 0. N
Now [xpn H] = [p,, p2/2m + V(x)]

S [5po P21+ Lxpe VC)]

From Egs. (7.11b, 7.l1c and 7.11d)

o H] ==— [ p21p, +x (o, V) € [pc p2l = 0, (xV00] = 0

= [x. pd 2pf + x [p,, ¥] (@V/ox) I

2m
=ik pi/m—l'ﬁ.r 31:

T

Using (1) we get (KE) = 1/2 (x QV/x).
5. 1) We have
j ¥ P y(x) dre = _[ W (x) y{—x)dx = —J W (") wixdx”

]

where ¢ '= —x

=[Py e v s

Hence P is a Hermitian operator,

b) PA(, p) W(X) = Al=x, —p,) W(=3) = A (=2, =pd P y(x) = A (x, p)P y(x)
Hence (PA (x, p) — Ay, pJPY y (1) =0
Since v L) is arbitrary we have

[F. Al =0.
6. Sieee ) and yaoare degenerata. we have

Wy, [H 5] ) = 0

Now |H, &1 = lpff?.m + Vixn ¢l

= (1/2m) [p:'_. O3

CH/2m) 2{ pyv =yl

(1/m) (pex + ap] (Using the resuit of iermiral queston 2)

i

AW (Heo + xpx) ‘F:) =40
68




7. L, L)=LL - LL Observahles and Operaters

Now from the definition of L, and L, {see SAQ 1(b)) we have
Ly =3p. - zpyand L, = xp, - yp,
Hence {L. L) = [xp, ~ yp,. yp, - 25,]
Using Eq. (7.11b) we get
e L) = Upy 3P — (5P 22 = [ 3P0 3P + [P0 2p,]
Using Eqs. (7.11¢ and d) _
(Lo L] =y (ipy pd + [1pye 3P 004y {p,, 9] + 13, 2215,
‘ =0-ihxp, + iNzp,
=it (gpr—xp)=ikl,
Let Lbh=méa
Bot LL, -LL =itL,
(6. L, L) ~ (¢, L L) =in(L,)
m Ly -m L) = ir (L)
{Ly)=0.
Similerly, {L;})=0.
8. Sinse W(x) = Xe; d40)
we bave (D) =3 Dc; ¢ d (B &) _
R
- ‘Z" jch-qﬂ} 8,_, II“:.‘.;‘ “ —-" A

since only those tenns of the j scries will survive for which j = i,

FURTHER READING

i. Concepls o!f ‘Modern Ph);sics. AL Beiser, Me7 = -1ill [nternational Book Company,
1990.

2. Introduction to Quantum Mechanics, B.H. Bransden, C.J. Joachain, ELBS, 1990.
Quanwm Mechanics. 1L, Powell, B. Crascmann. Addison Wesley Tne, 1961.

= A Textbook of Quantum Mechenics, P.AM. Mathews. K. Venkatcsan, Tata McGraw
Hiid Poblishing Company Limiled, 1987,
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A PERSPECTIVE ON QUANTUM MECHANICS

In this block we have introduced you o those basic ideas and concepts which form the
bulwark of the new quantum mechanics. In the process, it may have seemed to you that
the entire edifice of classical physics has been turned upside down: the classical ideas of
causal delerminism, continuily, Unambiguous and precise language descriptions lie
squarely challenged. What has replaced it js an entirely new way of thinking and
understanding our world. And because the behaviour of objects in the quantum world is
so unlike ordinary experience, you may have found it very difficult to get used to it in
the first instance. Do not worry. It appears peculiar and mysterious to everyone who
encounters it for the first ime — whether a novice or an experienced physicist.

Al of us know how large objects act — all of our direct experience and intuition
applies to such objects. But as you have studied in this block, things on a small scale
just do not act that way. Quantum objects are wave-particles represented by wave
functions. Though the lime-evolution of wave functions is governed by an equation of
motion, its solutions. give us only a probability of finding the wave-particles in a certain
regibn at a given time. Measurement of the physical observables like position. momenta,
energy, ete. (which can be determined precisely for classical ohjecis) is govemed by. the
uncertainty principle in the quanlum mechanical world. Then there is the idea of
quantum jumps for discontinities) in quantum mechanics. To put it in a nuishell, as per
the Copenhagen interpretation of quantum mechanics developed through the ideas of
Bomn, Heisenberg and Bohr, we calculate quantum objects probabilistically, we
determine their altributes somewhat uncertainly and we understand them
complementarily. Quantum mechanics, thus. presents a new and exciting world-view that
challenges old concepts such as deterministic trajectories of mation and cavsal
corlinuity. It springs unexpected surprises on us, and kzeps our minds in a censtant
flurry of animated activity. .

For those of you philosophically inclined, we present here an cxce'rpt from Feynman's
Leclures on Physics which gives us a perspeclive on quanium mechanics. It is a
mastcrly reflection upon one of the most fundamental concepts of quantum mechanics —
the uncertainty principle. whichi has, uncndingly troubled the best of minds. Throngh
Feynman's cyes, we, the studeénts of physics, get to luok deeply and philosophically into
the nature of quanium mechanics and Lhe nature of science. This. in our opinion.
conslilutes a beliting {inalé to an introductory foray into the worid ot quantum
mechanics.

“Philesophical Implications

Let us consider bricfly some philosophical implications of quantum mecchanics. As
always, there are two aspects of the prohlem; one is the philosophical implicauon for
physics, and the other is the extrapolation of philesophical matters 1o other ficlds, When
philosophical ideas assoctated with science are dragged into anolher ficld. they are
usually completely distorted. Therefore we shall conline our remarks as much as
possible to physics itself.

First of all, the most interesting aspect is the idea af the uncertainty principle: making
an observagon affects a phenomenon. It has always heen known that making
observations affects a phenomenon, but the point is that the effect cannot be disregarded
or minimized or decreased arhitrawily by rearanging the apparatus, When we look or a
certan phenomenon we ciumot lickp but disturh 3t in a cenain mimunum way. and rhe
disturbance is necessary for tie consistency af the viewpoine, The vhserver was
sometines frapartant in prequantum physics, but onty in a rather trivizl sense. The
problem has been raised: il a tree falls ma forest and there is nobody there o hew w.
dous il make a noise? A read (ree Talling in a read forest makes a sound, of course, even
il nobody is (here. Even if no one s present o hear it there are otoel traces lelt. The
sound will shake some leaves, and it we were carefut enough we might find samewhere
that some thora had rubbed against a leaf and made o liny seraleh that could not be
cxplained unless we assuned the ieaf were vibrating. 50 in a cerunn sense we would
have to admit that there is sound made. We might ask; was there u seasarion ol sound?
No. sensations have to do. presumably, with consciousness. And whether ants are
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conscious and whether there were ants in the forest, or whether the tree was conscious,
we do not know. Let us leave the problem in that form.

Another thing that peaple have emphasized since quantum mechanics was developed is
the idea that we should not speak about those things which we cannot measure.,
{Actually relativity theory also said this.) Unless a thing can be defined.hy measurement,
it has no place in a theory., And since an accurate value of the rnomentum of a localized
particle cannot be defined by measurement it therefore has no place in the theory. The
idea that this is what was the matter with classical theory is a false position. 1t is a
careless analysis of the situation, Just because we cannot measure position and
momentum precisely does not a priori mean that we cannor tatk about them, It only
means that we need not talk about them. The situation in the sciences is this; A concept
“or an idea which cannot be measured or cannot be refemed directly to experiment may
or may not be useful. It need not exist in a theory. In other words, SUppose we compare
the classical theory of the world with the quantum theory of the world, and suppose that
it is true experimentally that we can measure position and momentum only imprecisely.
"The question is whether the ideas of the exact position of a particle and the exact
momentum of a particle are valid or not. The classical theory admits the jdeas: the
quantum theory does not. This does not in itself mean that classical physics is wrong,
When the new quantum mechanics was discovered, the classical people—which included
everybody except Heisenberg, Schrédinger, ard Bom—said: “Look, your theory is not
any goorl because you cannot enswer certain questions like: what is the exact position of
2 particle?, which hole does it go through?, and some others.” Heinsenberg’s answer
was: "I do not need 10 ask such questions because You cannot ask such a question
experimentally.” It is that we do not have to. Consider two theories (a) and (b): (a)
contains an idea that cannot be cliecked directly but which is used in the analysis, and
the other, (b) dées not contain the idea. If they disagree in their predictions, one could
not claim that (b) is false because it cannot cxplain this idea that is in (a) becanse that
idea is one of the things that cannot be checked directly. It is always good to know
which ideas cannat be checked directly, but it is not necessary 10 remove them all. It is
not true that we can pursuc science completely by using only those concepls which are
directly subject to experiment.

In quantum mechanics itself there is a wave function amplitude, there is a polential, and
there are many constructs that we cannol measure dircetly. The basis of a science is jis
ability to predicr. To predict means to tell what will happen in an experiment that has
ncver been done, How can we do that? By assuming that we know what is there.
independent of the experiment. We must cxtrapalute the experiments (o a region where
they have not been donc. We must take out concepts and extend them Lo places where
they have not yet heen checked. If we do not do that, we have no prediction. So il was
perfectly scnsible for the classical physicists 10 go happily along and suppose that the
position—which obviously means something for a baseball—meant something also for
an electron. Il was pot stupidity. It was a scnsible procedure. Today we say (hat the law
of relalivity is supposed to be true at all energics. but somebody may come along and
say how siupid we werc. We do not know where we are “stupid” until we “stick our
neck out,” and su the whole idea is to put our neck out. And the only way 10 find out
that we are wrong is to find out whar our predictions are. [t is absolutely neeessary to
make con.ucis.

We have already made o few remarks about the indeterminacy ol quantum mechanics,
That is. that we are vnable naw to predict what will happen in physics in a given
physical circumstance which is arranyged as carefully as possible. If we have an atonm
that is in an excited stale and £0 is geing to cmil a pholon, we cannot fayv when it owill
emii the photon. It has o certain amplitde to emit the photon any time, aad we can
predict only o probability ror emission: we cannog oredict the fulure exactly. This bas
given rise 10 all kind of nonsense and questions on the meaning of freedom af will, ana
of the ideas 1hat the world is uncertain.

Of coarse we must emphasise that classical physics is also indeterinate. in & sense. Tt
is usuatly thought thie 1his indeterminacy, that we cannot predict the fuwre. is an
important quantum-mechanical thing. and this is said to explain the behaviour af the
mind. feelings of free will, ete. But if the world were classical—ifl the laws of
mechanics were classical—it is not quite obvious that the mind would not feel more ar
less the same. It is true classically that il we knew the position and the vetocitly of

in science we go by eaperiments
=— even conceptual experiments.
And if the limitation is not of the
oclual measuring devices used but
is se1 by the fundamental processes
of measurement then we have to
accapt H.

Lel us give you an fdea about the
debale or, detenminism {cavsaliiyv)
versus free will: According o
Newtonian dynamics. i the
rosition, velocity and ths forces
acting on 2 body al any instant of
lime are known ils “siare’ af 4l
Wter tines can be predicied
aceurately, That is, 1f hnow the
‘eauss’ we can predict the effec.
This applies to any abject, hawgver
large or small Extending this 1o all
ohjects in 1he universe it v as
theuehl thar every vvem and s
e evalulion can be detennined
for all tinws to come, This
determinisim waould apply cven in
human body and mind. This mwans
thar even the human nind has oo
free will, ne favedom of choiee:
the Tutere of every living creature,
being a part of e iechanistic
wniverse is complerly detenningd

N things are entireiy dsrferent in
quaniuin incehanics, We can oniv
predict the probabiliny af an event
taking place and 1he atributes of o
<¥stem are governed by this
uncertaingy principle, This, thene
Foems o he o complete brealilse
of detenninism (or the cause-clivo
relationship in the microscopic
worid). This is interpraied by soe
a5 restoration of ‘lrecdom of wil
10 choose an aliemative In the
peohabilistic warlJ which is also
uneenain,
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every particle in the world, or in a box of gas, we could predict exactly what would
happen. And Lherefore the classical world is deterministic. Suppose. however, that we
have a finite accuracy and do not know exactly where just one atom is, say to one part
in a billion, Then as it goes along it hits another atom, and because we did not know
the position better than to one part in a billion, we find an even larger emor in the
position after the collision. And that is amplified, of course, in the next collision, so that
if we start with only a tiny error it rapidly magnifies to & very great uncernainty. To
give an example: if water falls over a dam, it splashes. If we stand nearby, every now
and then a drop will land on our nose. This appears to be completely random, yet such
a behavior would be predicted by purcly classical iaws, The exact position of all the
drops depends upon the precise wigglings of the water before it goes over the dam.
How? The tiniest irregularities are magnifed in falling, so that we get complete
roindomness. Obviously, we cannot really predict the position of the drops unless we
know the molion of the water absolutely exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise, one cen
find 2 time long cnough that we cannot make predictions valid for that long a time.
Now the point is that this length of time is not very large. It is not that the time is
millions of years if the accuracy is one part in a billion, The time goes, in fact, only
logarithmically with the error, and it turns out that in only a very, very tiny time we
lose all our information: If the accuracy is taken to be one part in billions and billions
and billions—no matter how many billions we wish, provided we do stop somewhere—
then we can find a time less than the time it took to state the accuracy—after which we
c¢zn no longer predict what is going to happen! It is therefore not fair to say that from
the apparent freedom and indcterminancy of the human mind, we should have reatized
that classical “deterministic” physics could not even hope to understand it and to
welcome quantum mechanics as a release from a “completely mechanistic” universe. For
already in classical mechanics there was indeterminakility from a practical point of
view,"
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Table of fundamental constants

fur inlmite nuclear mass

Rydberg's constam
for atomic hydrogen

Bohr magneton

Nucleur magneton

-

Ry
_ el
Ha 2m
_ ek
Ha M,

Begf'e Hfd,

Quantity Symbol Value
Planck's constanl h 6.62618 x 107 Js
A=t 105459 x 1024 1
Velocity of light in vacuum c 2.99792 x 10® m s~
Elementary charge (absolute .
value of elecuon charge) ¢ » 1.60219 x 107 C
Permeability of Iree space By 4n % 107 H ™!
- = 125664 x 106 Hm™
Permittivity of free space )= 8.854 19 x 102 F m~!
Hoc™ .
Gravilational constant G 6772 x 107" Nw? kg™
Fine¢ structure constant = L = 729735x 107
4Tﬁ€aﬁﬁ‘ 137.036
Avogadro’s number N, 6.022 05 x 102 mol™
Faraday’s constant F=Ne 9.648 46 x 10* C mot™!
Boltzmann's constant k 1.380 66 % 10723 § K~
Gas constant R=Nk 8.314 41 J mol™! K
Alomic mass unit amu. = - M"’-C 1.660 57 % 107%7 kg
Eleclron mass m or m, 910953 % 107 ky
= 5.485 K0 % 30~ am.u.
Prolon mass M 1.672 65 » 16727 kg
F = [.007 276 a.m.u.
Neutron 1mass M, 167492 x 1072 kg
= |.008 655 a.m.u.
Ralio of proton 10 Mpﬁuc 1836.15
electron mass
Electron charge w e I/'mr 1.758 80 = 10'! C ky™!
LSS Tatio
Classical radius fo = ————s 281784 % 10°¥ m
of elevtron AmE e
] 41;5.,:‘;: 1
Behr radius for a,= — 320177 2 W0 m
wemic hydragen fe”
{with infinite nuclear 1ass)
Rydberg's constant R = « 1.097 37 % 107 m~!

L.09678 x 107 m™!

927408 x 1072 J T!

5.05082 x 10727 )Tt
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APPLICATION OF QUANTUM
MECHANICS TO SOME SYSTEMS

In the two previous blocks of this course we have introduced you to certain ideas and
concepts (related to the special theory of relativity and quantum mechanics) which have
shaken many of our age-oid beliefs about the world around us. You must have noticed
that most of these concepts and theories were developed in the first quarter of the
twentieth ccntury. So we can well say Lhat this period was a period of revolution in the
foundations of physics. Speaking of revolutions, the development of quantum mechanics
led 1o the greatest conceptual revolution of our century and probably to the greatest
mankind has ever experienced. It most likely exceeded the great revolutions in our.
thinking brought about by the Copemican revolution, Darwinian revolution {recall Units
9 and 13 of FST), and the special as well as general theory of relativity.

Quantum mechanics has forced us to reconsider our deepest convictions about the reality
of nature, For exarnple, the concept of all entities in nature being wave-particles (Ugit
4) does away with the distinction between matter and radiation (which is at the root of
classical physics). We have successfully resolved the classical physicist’s dilemma of
“how can an electron (or any other particle) be both a padicle and a wave?" We now
say, “The electron is neither; it is neither a classical partigle nor £ classical wave. It is a
guantum wave-particic which possesses bothk momentwn ana wavelength” It reveals its
particle properties in certain experiments and wave properties in others
{complenientarity).

Then you have zeen how classical determinism and causality are called into question by
quantum mechanics through the uncertainty principle (Unit 5) and the probabilistic
description. Uncertainty is not a matter of our inability to do better. Quantum
mechanics claims il to bz intrinsic to the nature of the quantum world. That a particle
may not have a well defined position and momentum at the samde time is a
fundamentally new notion which many physicists including Einstein {ound hard to
accept. The uncenainty principle maintains that this is an in!ﬁmic fimitation. It is indecd
in the nawre of things — either we define the particle’s pdsilion and ldsé all information
aboul its momentum, or we pinpoint its nomentum and do not know where in space it
is. This is surely a {ar cry lrom the classical world.

These fundamental concepis together with ithe equation of time evolution of matter
waves (Unit 6) {ead us to the probabilistic description of the quantum werld. Quantum
mechanics tells us that the probabilisi'c descripiion is also the fundamental description;
there is no deeper level Tt gives us only the probability amplitude from which a
probabilily can he computed. For example, we can compute the probability that an
electron would have a certain velocily. But quantum mechanics dees not give the
velocity of a specific particle. Instead it claims that no such detailed informaticr even
exists. The classical question itself, ‘what is the velocity of a specific particle in an
ensemble of particles?' is in most cases considered meaningless.

And did you realise while studying Block 2 that this conceptual foundation of quantum
mechanics was laid down by 1 very small group of people? Of the five most prominent
ones, three were about forty vears of age and the other two, in their early twenties. Two
of the older ores, the Danish physicist Neils Bohr and the German Max Born.
contributed more wisdom and interpretation than formalism or mathematical struciure.
Tnat was done by the 1wa younger ones, the Englishman Pavi Adrien Mavrice Diruc
and the German Wemer Heisenberg. The fifth one, the Austrian Erwin Schridinger.
played a curtous rofe in that he contributed greatdy and fundamentaily to the theery but
turred his beck on the interpretation which others gave to it

Schrodinger develaped his 'wave mechanics', and simulianeously and independenty
Heisenbery construeted “matrix mechanics’. Thess were apparently dificieal theoices
even in the Kind of mathematics they used: wave mechanics used calculus and malrix
mechanics used algebra However, Dirac alongwith Schridinger and the mathematician
Joha von Neumann established that these two theories are completely equivalent. From
thal time on, the general term quanlum mechanics {or both of them has become standard
usage in scientific literature.




Having provided you oncc again with a bird’s eye view of the fundamental concepts of
quanfum mechanics discussed in Block 2, we draw your attention to another feather in
its ¢ap — its mbility to predict. You will discover its power in this block when you study
its applications to various systems, such as the potential well and potential barrier,
and the harmonic oscillator (Unit 8). The phenomenon of barrier penetration (also
known as tunneling) by quantum particles, finds wide use today in tunnel diddes and
scannipg tunneling electron microscopes which enable us o *see’ the quantum world
with -much more clarity than hitherto possible (of course, without violating the
uncertainty principle). When the formalism of quantum mechanics was developed, it was
applied extensively to study the structure of hydrogen atom — its predicted energy
Ievels were in beautiful agreement with the experimental resufts. And the optica
spectrum resulting from the transttion of an clectron from a higher energy state to a
lower one was explained very well. Therefore, in Unit 9 we discuss the application of
quantum mechanics to spherically symmetric systems, and especially to hydrogen atom.
The evolution of quantum mechanics has been guided from the beginning by discoveries
in atomic speciroscopy. Expleining the intemnal structure of atoms and the resulting
spectra (in the optical as well as X-ray regions) has been a major success of quantum
mechanics and we take these up in Units 10 and 11, respectively.

As far as studying the material is concerned, follow the advice given in Block 2 — leamn
to think and calculate quantum mechanically! Yon may find the going tough initially as
there is a lot of mathematicat abstraction in this material. Qur advice to ¥you is to solve
each cnd every step on your own. Do not try to rush through the material if you want
to really understand it. In our estimate, you would need to snend 8 hon Unit 8, 7 hon
Unit 9, 5 h on Unit 10 and just 3 h on Unit 11, for studyving the material and
assimilating the ideas. And at the end of it all, we iope that you experience a genuine
sense of achicvement and exhilaration at having understood cne of the greatest and most
beautiful intelfectual creations of (wentieth century science. Our bezt wishes are with
you!
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8.1 INTRODUCTION

In Unit'6 of Block 2 you have studied the time independent Schrbdinger equation. In
this unit we shall apply it to some simple one-dimensional systems so that you get some
expericnce of solving the time-independent Schrodinger equation. You will learn how to
solve it to ohlain its eigenfunctions satiefying the conditions given in Sec, 6.4 of Unit 6
and determine the comesponding eigenvalues for these systems. Although the real world
is three-dimensional, these one-dimensional systems are of great interest. This is not
only because several physical sitvations are effectively one-dimensional but also because
we can usc them effectively to modck the real world. A number of more complicated
physical problems cen be reduced to the solution of equations similar to the one-
dimensional Schrédinger equatioh.

So in this unit we shall [irst study a free particle and then confine it to move within a
limited space like a box. You will notice that the cigenvalues and eigenfunctions of the
two systems are different. Then we shall solve the Schridinger equation for a particle
moving in a one-dimensionsl rectangular potential barrier and a one-dimensional
potential well. These examples of simple potentials model natwral processes like alpha
decay ol radioaclive nuclei, and the energy spectrum of atoms, molecules and nuclei.
Thus our models are expected to give us some insight into the physics of these systems.

. They will also bring out 1he difference belween classical and quantum description of

motion of cbjects. We shall end this unit by studying the quantum mechanical
behaviour of a simple harmonic oscillator. As its applicalion, we shall consider the
vibrations of a diatomic motecole in terms of the oscillations of a simple harmonic
oscillator, In the next unil, you will [earn how to solve the Schridinger equation for

_the hydrogen atom.

Objectives
After studying this unit you should be able 10

@ solve tise time independent one-dimensianal Schrddinger equation and obtain the
eigeniunciions and cigenvalues for simple one-dimensional syslems like

free panticle and particle in a box,

particle in a vne-dimensional potennpal bamrier and one-dimenswonal polenbiai
well

simple harmonic oscillaier.

® apply the one-dimensional potential models o simpie applications in quantum
physics.




Applixmtion of Quantom
Mechanpics Lo Some Syxtems

8.2 A FREE PARTICLE

Let us consider the simplest-case of a potential whick is constant:

V(I) = VO

. The force acting on the particle, F(x) = - A4 » Lhen vanishes, so thal the particle is free.

Without loss of generality, we can take the constant Vo to be zero. So now we have a
particle of mass m moving freely in space. Since thesmrticle is not subjected to any
force, its total energy E, which is equal to its kinetic energy, and also its linear
momentum p do not change with time. £ and p are related by the cquation

2
Recall Eg. (6.28) from Unit 6. Putting W{x) = 0 in it, we can write the time independent
Schrdinger equation for a free particle as follows:
- K Ay
- ﬁ de = wa) (8-2)

where the direction of the vector p is taken to be along x axis. Since p = Ak, where k is
the wave number, we can combine Egs. (8.1) and (8.2) to obtain

2 b
4 ftf") = ~Ky(x) (8.33)
W i
where. E= T (8.3b)

The two linearly independent solutions of FEq. “9.3a) are given by
Yig (x) = et ks (8.42)

Thus for one valuc of E we have two eigenfunctions e+ % and ¢~ &, We denote these
eigenfunctions by ;. (x) and y_ ;. (x). Recall thai such eigenfunctions which have the
same eigenvalue for a piven eigenvalue-eigenfunction equation are called
degencrate. (Otherwise they are non-degenerate). Thus yp (x) and y_ 4 (3) are
degenerate cigenfunctions. The general solution of Eq. (8.3a) is the linear combination

Wx) = Aetks 4 Be - ikx (8.4b)

where A and B are arbilrary constants. It is ¢lear that for the solution wix} to be
physically zcceptable, & cannot have an imaginary pazt. I€ it did, then y(x) would
increasc exponentinlty al one of the limils x = = s= ur a = + . or possibly at both
limits. You may know that the wavefronts of the waves represented by Egs. (B.4) are
planes. perpendicular to the direction of the propagation of the wave. Hence we call
ekt a5 plane waves They do nol go o zero as x — % ea. Hence they are
unnonmalizable wave junctions frecall Sec. 6.3.2 of Uait 6).

In order to interpret Fq. (8.4h) physically, let us cousider some special cases. If we sel
B =0, the resulting wavelunction is the plane wave

lF{,'t'. i = AC'.(:-' - )

where we have incladed the time dependence {recali t2q. 6.27). This 1s associaled with a
free particle of mass mt moving along the posilive w-uxts with a definite momentum of
magnitude & and an cnergy A K*f2m. The probabilicy densily corresponding 10 it is

vy =| Al T is independent ol time as well as positon, Thus, the postion of the
parmcle is completely unknown. This is in accordance with the uncertainly principie.
You can obiain a similar analysis by setiing A = 0 in g, (8.4b). In this case the planc
wave will bz travelling in the negative x-direction,

You can also verify easily that y 1. (x) are alsc cigenlunctions of the operator p with
the eigenvalues /4. Thus as far as the linear momenlum operalor p is concerned, the



two eigenfunctions y 4 4 (x) are non-degenerate, j.c., they have different eigenvalues,
Why don’t you do it as an exercise?

SAQ1

Show that p,, etikx = thi etiks,

For the ahove system both the constanis of motion E and p are given in terms of k.
Thus k characterises the eigenfunction Wy (x) and hence we call k a quantum number.
Since E = #42/2m, we must have E > 0, i.c., the energy cannot remain lower than the
potential (here V = 0) over the entire interval (— oo, + =), Since any non-negative value
of E is allowed, the energy spectrum of a free ‘particle is continuous, extending from
E = 0 to + o, This, of course, is not surprising since E is the kinetic energy of a free
particle. It also comresponds to the classical result.

Let us now see what happens when we confine the free particle (o a box.

8.3 PARTICLE IN A BOX

Some Simple Systrmg

Spend
2 min

Let us consider a one-dimensional system and confine a free particle in a length
segment lying between x = @ and x = L (Fig. 8.1). Then the probability of finding the
paticleatx =L ~gand x = L +¢€, where € is an infinitesimal quantity, should be zero.
Further, since the wave functions are single-valued and continuovs, they should also
salisfy the condition that they are zero at the boundariesx =Q and x =L, i.e,

Lim vy (-e)=Lim yy (L+e)=0 (8.5a)
=0 £—=0

It follows from Eq. (8.5a) that
yi0) =y (L) =0 (8.5b)

Now we may also write 1he wave function as
yi{x) = A cos kx + B sin kx

where k = (?JnE/hz}’ﬂ. Since wi(0) = 0, we have

Fig. 8.1 : Particle canfined
In 2 Une segment.

I
A n
A=0 3rd cxcited stale
16E, 4
and since YL} = 0, we get
Bsinkl=0 (. B=20)
— = 2nd exciled stale
whence kL = mm, n=127213 .. 9E, ¢ 3
Hence k is quantized; let us call it kg:
Ky = %‘ ] a=1,2,3, ... (8.6a} iE, 1st eocited siore -
Hence, tnergy E is also quantized; let us call it £y Ground st
N & - !
Lp = ———— = = 2 cen . A
£, = oy T n=1273 (8.6b)

Nalice that the quantization of energy (ollows from the condition of confinement ar the

toundary conditions imposed on the wave function. Thus. the moment we confinc a [rec Fig. 821 The faur tnwest atlowed

paticle in 2 enited space, He encrgy can lake only discrete values given by Eg. (8.6b);
)L is no longer continuous, it is quantized (Fig. 8.2). The eigenfunction of a siate of
quantized energy E, of a particle in a box is, therclore, given by

)

Notice that we still have to compute the normalisation constant N. You may like to do
this exercise yourself. Here's an SAQ for you. '

Y (1) = Ypx) = N sin (

o ey levels for a
partiele in a one-
dimensional Wox, where
E, = h*/BmL*.
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@ ShowllmN—(L) |

(b) Show that y,(x) and W (x) are orthogonal when m # .

Hence (he eigenfunction for a free particle confined in a segment of lengthL is

{2\ . mr.l:) -
Yn(x) -( L) 5in ( . . | (8.7a)
The complete solution for a stationary statc of a particle in a box is then given as
Yn(x, £} = iy (x)e—Enth . (8.7b)
_ _2-— 172 nnx iEnith
"(L ) sm( 7 )e-'En
and the probability for finding the particle at position x is independent of time:
2\ . of nmx
Pa) = it 2| =( ) sin(22E) (8.70)

However, it now depeads on the position of the particle. Fig. 8.3 shows the probabilities
per unit distance for a particle in a box for the three lowest energy states. The classical
result is also shown for comparison. -

2 2 2 . _2
L L L L
1 > i 3|8 2
L 5 r E3 L
als
X X e X X
L 0 L 0 L
n=2 ’ -3 Classical
(b} {c) (4]

Fig. 8.3: The probabllty per unit distance for & particle [n & box far the three Jowest values of o,
compared to the chassics] result

The smallest value of n is n = 0, but » = 0 gives w = 0. This result means that
the probability of an # = 0 stalc is zero. Now refer to Fig. 8.3. Forn = 1,

WY = (2/L0) sin? (n/L)x; for n = 2, wiyg = (2/L) sin? (2n/L)x; end for n = 3,

Yy = (2/L) sin? (3n/L)x. Thus yy oscilletes between O and 2/L with an average
value in the box of I/L.

Classically, the particte bounces back and forih between the walls, Since ifs Kingiiv
energy is constant, it moves at a constant velocity between collisions with the walls.
Therefore. it spends the same amaunt of time in 8l equal-distence intervale This sives
it the constant prabability per unit distance of VL of being found anywhere in the box
(Fig. 8.3d).

AS you can se¢ from Fig. 8.3a 10 ¢, y*y has n humps. This benaviour is casy o
understand il you remember that k,, the wave number for stale n, equals 2nfk,,.
Equating this wave number 10 nrt/L gives L = nd,/2. That is, n is the number of the
particle’s half wavelcngths being fitted between the walls, In the limit of large quantum
numbers, the number of humps with any finite Ax becomes so large that ey Ax
approaches the classical value, (1/L)Ax,




The linear momenium of the particle is given by

A n=123, .. : (8.8)
L

You should note that the integer n in Eqs. (8.6a, b) and (8.8) now plays the same role

as was played by k for a free particle. Hence n is called a quantum number. Since n

takes only integer values, the momenturn and the encrgy of the particle no longer vary

in a continuous manner but take only discrete values.

pn=tkh=1

Let us see what are the other implications of these results about a particle in a
one-dimensional box. According to quantum mechanics, (here is a minimum energy, the
ground-state energy E; = m2#%/2mL? that the particle in a box must have. This result is
in contrast to the classical result where all energy values including E = 0 are permitted.
You can essily see that this is a consequence of the uncertainty principle. We are
confining the particle within the length L. Thus there is an uncertainly in its position
given by L. According to the uncertainty relation, Eq. (5.6a), there has to be a
comesponding momentum uncenainty of #/L. This means that the particle has to have a
minimum znergy; ils energy can never be zero because that would contradict the
uncertainty relation. This minimum energy is called the zero point energy.

Notice from Eq. (8.6b) that the energy scparation between successive quantized levels
increases with Ihe decrease of L, the confining length. Conversely, as L increases, the
energy separations decrease. When L is much larger than atomic dimensicns, the energy
separation is so small that we approach the classical correspondence limit. Note that for
large L, the 7zero puint energy also tends towards zero.

Thus far we have considered the qualitative situation. But what about the quantitative
gituation? Le: us calculate the encrgy levels of an electron (m = 9.1 % 10-31kg)

confined to a box of atomic size (L ~ 10-10m). Subsliluiing in the energy level formula,
Ea. (8.6b), we gel E, = 40n2eV. The energy difference between the ground and the first
excited state is then 120 eV. And 2 photon emitted from transition between these energy
levels would have a frequency 3x 1016 Hz, which is of the same order as that in many
atomic transitions.

Now from Eq. (8.8) we have
Pny1-Py=mm/L (8.9)

Thus, the difference between p, 4 | and p,, decreases with the increase of L. Now if we
take a very large valuc of L, { p, 4 t — Pn) will approach zero, ie., p will become
continuous. Hence we may represent a free particle by a normalised wave function with
a very large value of L. Such a procedure for the normalisation of a free particle is
known as box normalisation and you can ecasily sce that a one-dimensional box-
normalised wave function is given by

yi(x) = (_i_) v etkx (3.1

We can generalise this analysis ta a particle in a three-dimensional box. In fact, you
should work this out yourself. :

SAQ 3

Obiin cigenfunctons and eigenvaiues of a panicle confined in 4 three dimensional
box having fengths 1., L, and L_.

Let us naw consider the problem of a particle in a one-dimensional reciangular potential
bamicr,

84 ONE-DIMENSIONAL RECTANGULAR POTENTIAL
BARRIER :

In Sec. 8.2, we considered the mation of a [ree particle, ie., the patential in the cntire

Some Slmplc Systems

Spend
10 min
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V=0 l ] V=0
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Mg. 8.4 : One-dimensionnl

10

patentis]l barrier,

space was z¢ro. Let us now modify that situation and consider a one-dimensioral space
in which the polenual energy of a patticle is Vo between x =—a and x = a but zero
oihcrmse

Vx) =0 xX<-a .
=V, -a<x<a (8.11)
Wx) =0 x>a

Thus we divide the whole ono-dlmensmna.l space in three regions Region I

extends from —ee o ~a, region I from —a to +a and region I from +a to + o (see
Fig. (8.4)). The central region is known as the potential barrier. Nour:e that as defined
by Eq. (8.11), V is rectangular.

Let us consider the motion of a particle of mass m and totsl constant energy E in the
above mentioned one-dimensional space. From purely physicat considerations you éan
see that the particle is frec in region I and there will be an incident plane wave =s well
as a plane wave reflected by the potential barrier. ‘Hence, we may. write the wave
function for region I as

Y{x) = AT 4 Be-x - forx<-a (8.12)
where .

k = V2mEfh (8.13)

In-region HI the particle is again free (V = 0) but there we have only a transmitted
wave. Hence

Yo{x) = F e forx>a (8.14)
However, in region. Il the Schridinger equation is

M dyg(x)

+ Vo yp(x) = Ewg(n) (8.15)

T2m T g2
Let us rewrite this equation in the form
dfyy(x)  2m
LV ey X)=0 8.16
2 ¥ 2 ( o) Yol (B.16)
Inroducing a real parameter y, we may write Eq. (8.16) as
d gl
- =0 8.17a
where
m .
yi= = Y- B <.17b)

The solution of Eq. (8.17a) is given as
Wp(x) = Ce - + Derx, —a<x<a (8.18)

Now, there are two possibilities: (i) E -is less than Vy and (ii) £ is greater than V. Let
us consider the case when £ < V. Then ¥ is real and the soluiion of Eq. (8.17a)
becomes

Wnlx) = Ce~T + Dew for—-a<x <a (8.19)

With e heip of Bys. (6.09) and incident pan (/&%) of By, (8.12) we find that ne
mcident {lux from the lell of the potentinl barrier s

1k :

I :_1! (B2

N 5 Rt

)

3 |

Similarly, using the reflected part of the wave function v, and the transmitted wave
function yn, we find that the reflected flux S; and the wansmitied flux §; are given by

. = S;| B/ . (8.21)
S = 5; | F/A| (8.22)



, .
You should quickly verify Eqs. {8.20) t0 (8.22) before studying further. Thus we Scme Simple Sysiems
oblain

Probability of reflection P, = S,/S; = | B/A|* - (8.23)
and
Probability of transmission P, = §,/S; =| F/A[? (8.24)

Now to determine P, and P (i.c., the coefficients A, B and F) we match the appropriate
wave functions y and their derivatives Y’ at the boundaries x = -z and x = a. The
boundary conditions are: . ' :

Yi{x =—a) = yplx =-a); \p{(x = —a)-=' qrﬁ(x =-a) ‘ (8.25a)
and
Yilx = a) = yplx = a); Yilx=a)=yj{x=a) - - (8.25b)

Substituting ¥, Yy and yiy from Eqgs. (8.12), (8.19) and (8.14) and carrying out the
necessary algebra we can obtain P, and P, as given below:

: ®
’E + Yosinh? (2ya) (27“)] (8.26)

P
f 4E (V,-E)

-1
_ 4E (Vy—E) -
oo |t o

You may like to prove Egs. (8.26) and (8.27) before studying further. So here is an
excrcise for you.

Spend
SAQ 4 20 miin
Prove FEgs. (8.26) and (8.27). oo " You should not lake the word ‘tunneling’

literally. There 35, of course, a finic
probability lor the pamicie to be inside the
. classically forbidden barrier regivn whert its
You can easily verify that P, + P. = 1. One of the remarkable features of this analysis kinetic energy is negative. But the poirt is
is that there is o non-zerc probability of transmission even though £ < V;, i.c., the that nobody cen "see” a panicle zcually go
. P . . . ... throurh o classically fethiddzn ronton,
energy of the object is less than the height of potential barricr This is in contrast

Particls detonten can dowad only objecis o
to the classical situation. It is a purcly quantum effect signifying the wave praperty kinetic encegy greater than zero. if you

of quantum objects. Hence, quantum objects are said to be able to tunnel through a insert a detector inside the barricr 1o "z’
) the perticle, you are ret only making a hole

classically impenctrable barrier. Thus, we conclude that the penetration through a - ; ; Lo

ial . . . i . in the polential but alze in your abjective,
potential barrier, usually referred to as hmnlchng: is a quantum ;\cchamcal ‘ bocause e wbject witl no funges belone 10
phenomenon and should e laken into consideration for those objects for which 2 clussicaliy feininides repgion whete you
wave-particle duality is significant. You may like to know that the phenomenon of wanted (o find it! Another way to say this is
tunneling has many applications. It explains the emission of o-particles in radioactive ™ 'z':_irn;rﬁ':"'sm"c:sf':ﬁll:ip":ﬁef; il zay
decay, and the passage of electrons through a forbidden region as in field emission. unconizoliable amount of encrgy. This is
In electronics, it has been uotilised in the construction of lanel diodes. Let us take kow (ke uncerainy principic works in such
one of these applications, namely, alpha decay. Mesureinent situzfions!

Simifarly, we canno! say what kind of time
— — the particle iakes to wanz! through 2 haerer.

. 1. a4 ftuay do i neew o Rateey guaniur;
Example 1: Application to Alpha Becay mechantcs 21ves us only Sverge .
T mem Tt AL Te e Vi et o . o . o . behavieu: — the. verzge time it mkes ta
we arc giving s application for the sake of interesi only. You will GO UG SS166 01 trayet (o (he ether suta Tt mome bt 1o
whe Matncmatics given here. think of quantem tnneting as "ac il
minpehng --- tenneling fn patentia,
Letus consider tw case of aipha radicactivity of nucici. This was the original Altemalively, we can say thu guantum
application of (ke barrier transmission phenomenon worked out by Gamow, Gumey chizets fn norin 3 barmiar B
o have cnougl: eezrpy by deing o quanium
and Condon. “jump'— Bobr cyle; thoy never go though
. the intervening apwe, and they do net do it
In this case of a physical barrier, the shape is nol so squarc (Fig. 8.5). Now when causally taking a finite amount of time. Now
ya >> 0, the probability of transmission becomes . they are here, on this side of the bamier; and :
16 Tz then they are there, on the othes side. I
Py =|T = exp (—4ya) ~ exp {~ 4ya) i g

(© + ) '
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P, = e2(2m (v - Evy'2 .20

For a broad range of barriers, we can now make a generalised estimate of the order of
magnitude. Generalising the expression of P, for V(x), we can write

J‘” om ‘ 12
Pi=cxp | -2 ) dx(?(V(x)—E))

Now we can approximate the situation for alpha emission from a nucleus by the
potential barrier shown in Fig. 8.5b. Inside the nucleus, the alpha particle is a free
particle, E > 0. (For, if the alpha particle were bound, how would the nucleus decay?).
It has to tunnel through the coulomb barrier

ZZ' g2

r

Wir) =

¥  where Z and Z” are the atomic numbers of the daughter nucleus and the alpha particle,
respectively, into which the parent nucleus is splitting. Here r is the redial distance.

(n) , Now, in the expression for P, we can change the variable x to r, since x is just a

dummy variable. Putling P, equal 1o exp (-( ), we obtain

o b F]
ZZ’ &
G = 2 (2rfi)\? ,L |: o —E:' dr
) where R is the radius of the daughter nucleus (Fig. 8.5b) and the upper limit of the
3 - integral. b, is taken to be the classical “turning point” where the integrand vanishes,
since
_ 77" e
ik} E= b
Fip. 8.5:  (a) A realisjic

pulential harrier has Thus b

A more jagsed look S I 12

than a square G=2 (lefﬁz)m (ZZ'ez)”z J. (T - —[]J) dar

harrier; (b} modcl . R

potential] barrier The valuc of the integral is

o i de o Y1) o [ (B (22
J dr(r__T) =vb | cos b, _(Tr?z)
R

For low energics and high barriers, b > > R, and we get

TR
Gzz(ZmZZcb) n
5 2
But b = Z2'c¥%E = 222 "e2/nn2, where v is the velocity of the alpha particle inside the
nucleus, Hence

21 22 €2

fiv
To calcuiate the alpha particle escape probability per second, we have o multiply the
transmission coefficient exp (— &) by the rate of the alpha particles hitting the barrier,
which is ~ v/R. For a | McV alpha particle, using & = 1.2 x 10-13 AlA cm with
A = 216, we estimate v/R = 102! 5 -1, Conscquenily, escape probability per
second = T+ = 10712-G where T denotes the decay time. Noting that Z” = 2 and that
the mass of alpha particle in cncrgy units ism o~ 4 % 10 MeV, we get

=

G o= WM 7Z 2 4z
= e 7z
BQEMY (EGin MeV))

Therelfore, we obtain
_Z
! (E Mev)in

where C) and C, are two constants, never mind our estirnales for them. This formula,
first derived by Gamow, Gumey and Cendon, fits the data on alpha decay quite

1
logyp — =6, -



remarkably. It is also remarkable that we can derive the formula from a one-dimensicnal
calculation. ‘

Let us now consider the sitvation for E > V. Classically the particle with E > Vj, will
be transmitted with cent per cent probability. The quantum mechanical prediction
may be easily obiined by appropriately modifying the above formulae for this case.
The only modification is in v which is now imaginary. Hence taking ¥ = ig with

g2 = (2mfh?) (E-VY,), we get

C 2y Yot sin g ] |
P=|T|2= E VAR . (8.28)
and |
o7 4E(-Vy+E) |~
Pr=|R| -E st (2qa) (8.29)

Thus, we see that quantumn mechanically P, # O and hence, even if E > Vj, a part ol the
incident flux is reflected. In Fig. 8.6 we have shown the variation of the transmission

" probability with the barrier height. We see in the figure that P; is low for low E and for
high E it approaches unity.

Py

E,

Fig. 8.6 : Trzpsmlesion prebabilicy of o perticle of energy £ threugh 2 rectongulay potential
barrter of height V.

An inlcrc's.ling feature of the above curve is that for a certain value of (E/Vg). the
rransmisston probabilily Py is unily and itence P, = 0 (see’Fig. 8.6). This happens
whenever 2ga = p with n = G, 1, 2, .... The two boundagies atx = £ a where the
reflection is taking place are producing reflecied waves of equal amplitudes and opposite
phases. Hence, there is no reflection at all.

Let us now study the case of a particle in a one-dimensional potential well.

8.5 ONE-DIMENSIONAL POTENTIAL WELL

Let us obtain the eigenvalues and ei,é,cnfuncﬁons of a potenial well. shown inFig. 3.7

The well ic cuch thal a paricle hae Vo notential enerov for v < — o ac well e for v g

bul for—a <x <« the potential energy s zero:

V:Vo XxX<-—-a
V=0 —a<x<a
V=V x>a

Some Simple Systerns

L

Fig. 87: Rectapgular potential
well,
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The total energy E of & particle of mass m is again a constant of motion. Hence the
Schrédinger equations of the particle in regions I and I are given by

Hy =By . _ (8.30a)
where
H=-2 &y (B.306)
2m 2
Substituting for V (x), we obtain for region 1
e 2’" .
yw) + P E-Vp yx)=0 forfz| >a (8.31a)
and in region II it is
W) + % v(x) =0 for| x| < a (8.31b)
We define
_2m _2mE
¥ = 2 (o-E) and g =S (8.32)

and consider the case when Vg > £, i, ¥ is real. In region II the wave function
is given by

Yo(x) = B cos (gx) + C sin (gx) (8.33)
Stmilarly, gencral solutions in regions I and I are given by

v = A exp (yx) (8.34a)
and Wm(x) = D exp (=) {8.34b)

Lzt us furiber examine the wave function yp(x). Notice that the Hamiltonian (Eq. §.30b)
of this system does not change when x is replaced by —x. This leads to an interesting
result that H commutes with the parity operator P. We can prove this as follows:

PUHY() = HEx) W) = Byl n) = H) (Py(o)
Hence
PH-HP =0, since y(x) # 0
or [FH1=0

Now recall this result from Unit 7, Sec. 7.3: If an operalor A commules with the parity
operater, then the non-degenerate eigenfunctions of A have definite parity, i.c., they arc ~
cither of «ld parily or of even parity. Let us agein demonstrate this for 4. Let

H(x, py) W(x} = Ay(x)
Then operating with P from the left we pet

FH (x, py} W(x) = AP y(x)
or HPY) = MPy) (v FH = HP)
‘Toaus voth w and Py are eigenfunctions of H for the same eigenvalue A. Since urlx) is
a non-degenerate wave function, the two functions can differ at the most by 2 constant.
Meace

P = pyix)

where o iz a consiant,

Thus, y{x) &5 an cigenfunction of P with p as ihe eigenvalue, Operaling P once again an
the left we get -

Poy(x) = P py(x) = pPyx)
and - )

PAY(x) = Py(-x) = (x)



implying p2 = 1 and p = 1. The wave functions for which p = +1 are called wave Some Simp!s Systerus
functions of even parity and those for which p = -1 are called wave functions of odd

parity. Since p can Izke only one of these values at one time, Y(x} has to be of either
even or odd panity.

Wi(x). as given by Eq. (8.33) is of mixed parity. Hence the above discussion shows that
it is unacceptable. Therefore, either C or B should be zer. If we take C =0 in

Eq. (8.33) we gel even parity solutions while B = 0 yields odd parity solulions. You can
verify that equating the wave functions at boundaries of the well yieldsD) = 1A for the
cven and odd parity solutions, respectively. Thus the even parity solutions of the well

are given by :
yi(x) = Aexp (yx) forx<—a (8.35a)
yulx} = Bcos {(gx) for—a<x<a (8.35b)
and |
yin(x) = Aexp (—yo) forx>a {8.35¢c)

Cn the other hand, the odd parity solutions are given by

yi(x) = Dexp (yr) forx<-a (8.36a)

Yin{x) = Csin (gx) for-a<x<a (8.36b)
and

Yi(x)=-Dexp (-yx) forx>a (8.36¢)

Since y and Sw/dx have to be conlinuous, the logarithmic derivative d/9x (In W), i.e..
1/y(dy/dx) too has 10 be continuous al the boundaries. Imposing the continuity

condition of the logarithmic derivatives al x = + a on the even parity solution we oblain
the condition that i

N =& (tan &) R (8.37)
where
N=yaand £ = qa ' : (8.38)

You may like to prove Eg. (8.37) Sefore studyinn further.

SAQ S

Spend

- -
PRI

Prove Eq. (8.37).

Eqs. (8.38) and (8.32) yield .
N2 + £2 = 2m Vy a?fi? = R? (8.39)

The energy eigenvalues can now be oblained by soiving Egs. (8.37) and (8.39) for
n and £ from which ¥ and ¢ may be determined, A graphical methed of soiving these
ecquations is illustrated in Fip. 8.8a.

The possible values of n and € and hence of ¥ and g are abteined frem the intersections
of the circle N2 + £7 = R? (where 82 = 2mVpa2/h?) with the cutve 1 = £ (tan &), Since
v and ¢ arc rezl, the circle and the curve are 1o be considered in the firsl quadrant only
01 is ciear from the figure thal the aiiowed vaiues of £ and hence £ are discrele and the
number of allowed values of E increases as R increases. [t is easy to sce that for B = 1,
there is only one solution. The same is true for R = 2 but at R = 3.5 the number of
even parily solutions are two.

15
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A similar analysis for the odd parity solutions yields

n= —E cot Lﬁ (8'40)

For the above case R = | yields no solution; however R = 2 and 3 support one bound
state (Fig. 8.8b).

16

1
3 4

®

Fig. 8.3: (n) Varintion of 1) {eith & {n'the two equations 7% + &7 o R2 and =5 g E . The .
intersections giyc the silatlons; (b} Varlation of i wilk & in the two equations 1% + £ = g2
and 1 = — § cot E. The Intersections give the solutions.

We summarize thal for E < Vg, the energy Tevels of a particle in a potential well depend
upon the well paramelers Vy and a. For R lying between 0 and /2, i.c., for Vo (@2}
lying between O and (F%/2m) (r/2)? there is just onc encrgy level of even class; for R
between {n/2) and 2(n/2) there is one even and one odd class solution. As R increases
the total number of energy levels increases. Thus for E < Vj the particle is bound to (he
well and the energy spectrum s discrele. On the other hand for E > ¥, we can show

that the particle is in the continnum state and cigenenergy £ varies continuously from
Vo 10 oa, .- -

Finally, let us consider 2 potential well having infinite depth. In this case the probability
of finding the pariicle outside the well will be zero and the wave function will be non-
zero only l'or|x| <a. The even and odd parity solutions will again be given by Eqs.
(8.35b}) and (8.36b), respectively. Equaling wp(x) at x = +a 1o zero yields

ga=(n+1) w2 (8.41)

where n is a posifive integer including revo, Putting Eq. (8.41) into (8,32) we obtain

£ - A2 2 (e 1)2

n

witha=0,1,2 ... . (8.42)
8m a* -

1t is interesung 10 note that even for n = U the energy is finite, ‘This cne:g}

Eg (= #*/8ma?) is known &s zero point energy and is a conscquence of the Heisenberg
uncertainty principle. Since the width of the well is '2¢', the maximum uncertainty in
the position of the particle is 2a. Hence the uncertainty in the momentum of the particle
is fif2a. This may be taken as the minimum momentum of the particle. Thus the
minimum energy of the particle will be #%/8ma2. This energy is of the same order as
Ey. Hence the zero point cnergy is consistent with the uncertainty principle.



You should note that in the prescat problem we have only one constant of motion, Some Sknple Syxtems
namely, total energy. Hence, the enesgy levels are specified by only one quagtum

number n. Agein although E < Vg, the probability of finding the particle outside the well

is non-zero. This result is non-classical. However, you should remember that this

probability decreases exponentially with the increase ot‘ix| .

Let us now consider the case of the onc dimensional harmonic oscillator.

8.6 ONE DIMENSIONAL HARMONIC OSCILLATOR

The problem of a one-dimensional harmonic osclllator is of direct physical interest.
Actually, a large number of systems are gaverned exactly or approximately by the
parmonic oscillator equation. Recall the classical definition of a harmonic oscillator: Tt
obeys Hooke’s law according to which the force F on the particle is directly
proportional to the displacement and is always directed towards the mean posilion, i.e.,
F = —kx: k, the constant of propoctionality, is known as force constant (Fig. 8.9). It is

related to the classical frequency v of the oscillator and is given by k = 482 v2Z m =
whcrcmlslhemas.softhcpme!eMpmudmugyoﬁhcpmlclcnulspvcnhy
—kxzor-—mmlxz where © = 22v is the angular frequency. Hence the time muh“‘“'mll e
mdcpendcnt Schrddinger equation is . harmonkc ascifiator.
R4
5 2t T mmz{l wix) = Ey(x) (8.47)

where E is the total energy of the oscillator and is independent of time. It is evident
from the above equation that the Hamiltonian of the system is invariant under space

inversion, i.e., it commutes with the parity opemtor. Henge the cigenfunctions sre of
definite parity.

" Now we define

E = ax, with a2 = m/h (8.44)
and
£ o MO
2
With the help of the above definitions, Eq. (8.43) reduces to
2“’@ +(A-EHyE =0 (8.45)

You should quickly check out Eq. (8.45).

SAQ 6 Spend

Verify Eg. (8.45). 5 min

To obiain acceptable solutions of Eq. (8.45) we are required to go through a fairly
lengthy algebra which is unnecessary al this stage, Here we simply state the results. For
tie soiution 1o be accepiabie A must salisly the refation

A=2n+1, n=012 .. (8.46)
Hence from Eq. (8.46) it follows that

En=(i+2)he, n=01,2. (847)

The integer n-is known &s energy quantum number. Since cur simple harmonic
- oscillator is a one-dimensional system we bave on.ly one quantum number. Notice from .
Fig. 8.10 that . . 17
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of n simplz harmenle
oscillator

@ The energy levels of a quantum mechanical oscillator are equally spaced. This is a
characteristic of some parts of the molecular and nuclear experimental spectra.The
hermonic oscillator provides a good model description. of these spectra, £0 much so
that the spectra are referred to as vibvational specira There are also excitations in
solids called phonons that fall in the same category .

@

For each cigeavalue, there will be only ope eigenfunction. Thus there is no
degencrecy. This property seems 0 be a common characteristic of bound states for
onc-dimensional potentials that remain finite for all finite values of x.

We have zero point energy given by
E, 2%0_) " forn=0 (8.48)
This zero point energy is again a consequence of the Heisenberg uncertainty principle.

. 'This can be seen as follows. Since

2
e
E_2m+2k12

E can be zero only when p and x both ere equal to zero simultaneously . Under such a
circumstance p and x will become definite (equal té zero) simultaneously . This will

"violate uncertainty principle. Therefore, the lowest eipenenergy has to be non-zero.

The normalised eigenfunctions of a simple hanmonic oscilfator are given by

W) = ( JE;" nt)“’ Hyax) exp —d®32), n=0,1,2 ..  (849)
where H, (ax) are Hermite polynomials. A l'm.w of the _'low order Hn(E) are given by
H® =1
CH(E) =28; -
HyE) = 482-2; |
HyE) = 8E3-128; (8.50)

HyE) = 1684 —48 82 +12;
Hy(E) = 32E5 —160 B3 + 120&,

1 Foln)
{0

40.4

102

Fig. 8.11 : {s) Even pﬂquhumud(b)mmmummmmhmwh
aselllator. -



We can show that the eigenfunctions of the Hamiltonian are also eigenfunctions of the Some Siranle Systams
parity operator It is evident from Egs. (8.49) and (8.50) that the cigenfunctions

correspanding to zero or even value of n ace of even parity. On the other hand odd °

parity eigenfunctions have odd valees of n. The variation of even parity functions for

n =02 and 4 with § are shown in Fig. (8.112). The odd parity functions for n = L3

and 5 are shown in Fig. (8.11b).

Let us now compare the quanturn oscillator with the classical oscillator. Let us first
take up the question of time dependence. Classically, the simple harmonic oscillator
oscillates in such a manner that the position of the particle represented by the oscillator
changes from one moment to another . Quanturn mechanics, on the other hand, tells us
that for any state of energy E, although there is a gistribution of probabilities for
verious positions, this distribution is constant as far as time is concerned; (Lhese
probabilities are ‘frozen’ in time). This is the usual meaning of energy eigenstates being
statjonary. Is it possible to reconcile these two very diffcrent pictures?

The answer lies in considering not one single eigenfunction but a superposition of
eigenfunctions as in a wave packet. Consider , for example, the superpositiony(x, ¢) of
the first two oscillator eigenfunctions:

Wix D) = 1,—‘_2— lexp (—iEgi/h) Wolx) + exp (- iE k) w,(x)]

If we plot |qr(x. f)|2, we get Fig. 8.12, where the plot is made for four diderent values
of time. Clearly, the prabability oscillates with time with Just the frequency of the
harmonic oscillator as expected classically. 11 is therefore reasonabte to expect thal wnen

we take a superposition of a lacge number of oscillator eigenfucntions we will get &
classical behaviour,

Iyl i EYR fylt
={ . aop A
ot Wyl = i . Wl = —3—
2 2

Fig. 812 : The probability corresponding to the superpositlon of the first twn aseillator elzenfunciinns
of equai amplitude fwith their-time dependence Inchided ) plotted at four dillcrent Tines
Classical ascillatory behaviour is clearly seen. The verlleal lines indicate the clacica! !
of motlon, assumicg an energy £ = ( ) = Ao,

1t

You shosid be veey cica- Lowever, thar the quantum solution of the harmonic o, Hlaler
is radically dilferent from that for the classicab osciltntor, In clessical mwechanicn. i
oscillator is forbidden to go beyond the potential. beyond the weing rointy who-e i
kinetic energy tums negative. Bul Plovs T st wave fuRcHORS exicn e e
the potential, and thus there is a filit Lo Sty 1ar e aceillalng fo 54 foumd e
classically forbidden region.

To be specific, let us compare the quantum and classic: | probabiftties 1o the s
comesponding 1o = Dand n = I, The UGNt provab.iics ac caniy cafcuinres

taking the squuie of the apprapriale wave functions. yg nd W)

The expression for the probability of finding a classicnl harmonic oseilany o
m and energy £ govemcd by the equation x = A sin 7 1 i repion Aa v o

P{x) Ax = 1 L

T A (1 - 2/AHn
where A = (2E/mw?)\2. As expecied, the classical probability is non-zero on.y lar
-A <x < A; the oscillator s confined within the tumning points, Forx > 4, it is clear
that the potential energy —;— mo*x? > E, and classically this is impossible.
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(b)

Comparison of quanium

(soll¢ curve) and
clactien) probability

denslthes {dzshed curve)

for the barmonlc
ascillator for the two

oxdllalor slalos Baving
the mume total eneryy,
corresponding to 8 =

end 7 = 1.

Fig. 5.14 : Vibration of wo atoms
A and B tn s diatomic
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The quantum and classical probabilitics are compared in Figs. 8.13 (a) and (b) lor
n=10and n = 1, respectively. In both cases, the quantum probability does not vanish in
the classically forbidden region. Forn = 1, the classicat probability is maximum at the
turning points. Bul the'quantum probability reaches the maximum much closer to the
point of equilibrium. For large n, the average of the quantum mechanical probability
distribution is found to be given by the clessicat probability curve.

Let us now consider an application of the simple harmonic oscillator to physical
systems: the vibrations of the 1wo atoms of a diatomic melecute.

Example 2: Diatomic Molecule

Eet us assume that both the atoms in the molecule execule simple harmonic motion
about their equilibrium positions. Hence, they salisfy the following equations

&R )
M, —ad,—'=-k (R-R) (8.51)
and
d* R,
My — 2 =~k (R-R,)
dr ;

where R, anc R, are the distance of the iwo atoms A and B from their centre of mass
end R = R, + By (Fig. 8.14). The masses of the two atoms are M, and M, k is the

force constant and at equilibrium, the distence between the two atoms isR,. Considering
the moment about A (sce Fig. 8.14) we obtain ’

MR = (M) + My) K, (8.52)
Putting Eq. (8.52) in Eq. (8.51) we obtain
“ My 4R _ .

oM, ga (KR (8.53)
or .

2 .
m dix_ kx (8.54)
. dr

with x = R—R.. '

Thus we have reduced a two body problem of masses M, and M, to a one-body
problem of mass » and the whole molecule behaves as a simple harmonic oscillator of
mass | (reduced mass of the molecule) having force constant k. Hence the
eigenfunctions and cigenvalues of the molecules are given by Eq. (8.49) and Eq. (8.47),
respectively. These equations have been very useful in understanding the vibrational
spectrum (obtained in the near infrared region of the zlectromagnetic waves) of diatomic
molecules. The analysis of the experimental spectrum has yielded force constants of a
large number of heleronucicar molecuies.

Would you like to apply the ideas discussed so far to some concrete situations?Try the
following SAQ.

SAQ 7

(a) Consider a proton as & buund oscitiaton with a natural feguoncy of 3x 102 Tz,
What is the energy of its ground and first excited states?

(k) Calcutate { x} and { p, ) for the pround state harmonic oscillator eigenfunctions.

Lel us now summarisc wial you imve sisdied in s uait

8.7 SUMMARY

in this unit you have solved ume indepdiseat Schrddinger equation for a number of
sitaple one-dimensionnl conscyvativie syt2m:. Nowiz of Whe imporiant results aps
summarised below:



@ The cigenenergy £ of a free particle moving in a one-dimensional space is given Some Sloaple Systems
2 i

by £ = -h—é » It can take any value continuously from O to =, Hence iisenergy

spectrum Is continuous. The eigenfunctions arc incoming and outgoing plane

waves given by yy(x) = Ae 24X and are unnormalizable. However, if the particle

is confined to a finite Jinc segment then the eigenencrgies vary in a discrete

mannes and the bound slate eigenfunclions can be normalised. The plane waves can
also be box-normalised,

® For a one-dimensional rectangular potential barrier, the cigenenergies vary
continuously from O to =. However, unlike in classical mechanics the quantum .
mechanical probabilities of reflection and transmission of the particle by the barrier
are, in general, finite. Thus even for E < V,, the particle can tunsel through the
‘barrier. Another interesting result is that for

L L (),
T 2m 2a 0

there is a hundred percent transmission with no reflection. Here symbols have the
meanings discussed in the text,

@ For a one-dimensional potential well the cigeneneigy speclrym breaks into wo
pars. For £> Vq, the cigenenergy varies in a continuous manner. On the other hand
for E < Vj the eigenenesgy varics in a discrele manner and bound states are
oblained. The lowest eigenenergy is non-zero and is in accordance with the
Heisenberg uncertainty relation. The number of permissible bound states increase
with ¥, : the eigenfunctions being alternately of cven and odd paritics, the lowest
being of even parily.

& for a particle executing simple harmonic motion algng a Tine all the eigenstates are
bound states and eigenenergies vary in a discrele manner. Conseculive eigencnergy
slates are separated from each other by the same amount £, The cigenfunctions are

. given in terms of Hermite polynomials and are of definite parity, alternaiely of even
and odd parities, The finite value of the lowest eigenenergy is again a consequence
of the uncertainty principle. The results obtained for a simple harmonic oscillator
can be applied 10 study the vibrational spectrum of diatomic molecules.

88 TERMINAL QUESTIONS Spend 45 min

£. The wave function of a particle of mass m inside an infinite square well of width
2a (~a 10 + a) is given by

wix) = A cos 3;: + 1 5in 3

2a

Obtain the values of A and B and the cigenenergy corresponding to the ‘above
eigenfunciton.

2. The potential energy of a particle of mass m is given by
h Vix} = -j‘q- mutal forx>0
= ' forx< 0.
Show thei its cigenencrgics are given by

By =2m+Dtoform=0,1,12 ...

a
3. Show that the average value of x for a simple harmonic oscillator in the nt
quantem siale is zero.

4. Calculate (he mean kinetic and potential encrgies of a simple harmonic oscillator
whigh is in its ground slate.
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8.9 SOLUTIONS AND ANSWERS

Self-Ascessment Questions

: ik .. 2
1. p,},,et'h=—m§:—¢¢-h[. p‘,,,:_ma.]

= - ik (Hk) et ikx
= tih et ikx

2. (8) The normalisation condition is

J w0 v d = 1

or
. orL
NII sin?(n:x)dx=l [ wq{x) is finite only for 0 <x < L]
0
or
2f L IL Hnx L
N = =l v i B m—
(2) os'"z( L )d' 2
o .

2\
v=(1)
(b) To prove that Wy(x) and Wa(x) are orthogonal for m # n, we have to show that
{= I W;(x)ql,,(x) dck=0form#n

or .
oo L
n . mEmx |, mux . mRx . mMux
= j dr = I ———— —
IIN' - _sin 3 sin 3 osm Lsm Ldt
L
=0,form#n '.'Jsin—"g-sinm—mdx=0form¢n
0 L L
3. A three-dimensioral extension of Eq. (8.3a) is

> a4 4
}-‘-d_yz*' .d_zz]\p(_.'. ¥, 2) =—(ki +k; + k%) V(x, ¥, 2)

Since x, y, z are independent variatles, we may write

1|J(J.'. Y» 7= ¢"x(x) ¢nJ,()') ¢nq._{‘z)_ ¢4
where
2317 g
b () = (T) sin (—i—;—) etc. (2)
and

$2n2 (n% ny z") 3

' T | — St
Fronyn™ 2n \ 3L

Here ny, ny and n; ace positive integers ranging from zero 1o infinity, but all the three
can't Be zero stmullaneousty. It is evident from (3) that Ej, ny g akes only discrete
values. Hence the energy spectrum of a particle enctosed in & box is discrele and the

EERY

cigenfunctions given by {1} and (2} form an oribenormal sci.

4. Apolying the boundary conditions given by Eqgs. (8.25a and b) to the wave

functions W, Wy and Y we obtain the following sct of cquations:
Ae-ika 4 Beita = Cria + DeVa 1))
Ae-ika _ Belka = % (Ce¥a —~ Dg¥a) 2
Ce¥a 4 Def = Felka

3)
CeW - Dete = -7 Feita

@



To obtain P, we have to eliminate C and D from Egs. (1 and 2). Adding Eqgs. 1 and 2
and subtracting Eq. 2 from Eg. 1, we get

2 Ae-ika = Cet (1 + i,:"-) + De-W (I—% (5)
2Beka = Ceta (1-%)+De—7ﬂ (1 +—f) ()

Similarly, adding (3) and (4} and subtracting (4) from (3), we get

2Ca =Feﬂ‘“(l—$)

7 Dete =Fef'ka(|+—$f-)

whence
tha+2 ik
Cetl = _FE' e (I—I—L)
2 Y
and
Fetka-2w ( ik )
Ta =L —
De 5 1 + 7

Substituting these expressions in Egs. {5) and (6) we get

2Arl'ka=—';-e=’h Ez’ﬂ(l—;—k)(l +%)+ eI (1 +;—k)(1 -1—7)] (7N
2 Beika =_§e"h' Ez‘ﬂ(l—;i)(l—%)+ e-rra(1+%k)(1+~il)] (8)

Dividing Eq. (8) by (7) we have

and

B aita - 0 (y— ik} (k- F) + 29 (y+ ik) (h + 1Y)
A e (Y- ik) (k+ 1Y) + €7 (Y +iK) (k- 17)

i (P4 ) i T + 1
—ie™ (& iYP + e (k- iy)?

() (e - i)
T (ki) — e (k—iv)?

2(¥? + &) sinh 272
(K =) (&7 77 4 2iky (7 + £7219)
N Y + k) sioh 2ya
"2 () — ) sinh 2ya + 4iky cosh 2ya

1Bt (7" +©%)? sinh® 2ya
AT —(.-':1 —";'2}3 551;:1':5"_2';‘2 + u-z‘}'l coch? 2*;:_'

~ (7 +#)? sink? 2va
T (K + ¥ -2 sinh 2ya + 4k cosh? 2yz
i (V + K22 sinh? 2ya

k* + 7' + 262 sinh? 2ya + 4K

where we have added and subtracted 4 k% sinh? 2ya in the denominator and used the
relation cosh2 B—sinh2 @ = |.

Some Sitnle Sysicms
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(f + k%) sinh® 2ya

=(12+k2)25inh12ra + &

Now -,2+k2=3é-2"(v.,73+£)=1—’:v0

and o
Therefore

P, =

(e

V2 sinh? 2ya
VZ sinh? 2y + 4E (Vo -E)

=|:1’L3Sinh22m +4E (Vy-E) |

VZ sinh? 2ya

- -1
| AE (Vo-E)
V3 sinh? 2ya

To obtain an expression for Py, we can use Eq. (7) whence

Thus

Po=lz] -

Now (JkHT) T -(

Therefore,
P [l =

2

4 cosh® Mya + (—1— - -'fr—) sinh? 2ya

) (Vo—E-FY

oF = (

%I%’ '%Is

) (Vo-E)E

 (V-2E
" E(Vp-E)

4E (Vy—-E)

4 cosh? 2ya (EVy — E?) & (V3 + 4E2  AVE) sinh? 2ya

4E (V- E
AE V, = 4E* + V] sinh? 2ya

. 4E (Vo- E)

" 4E (Vo—E)+ V¢ sinh? 2ya



_[4E(VO—E)1-_V§sinh121u 1

4E (Vy-E)
- V3 sinh? 2912 —-1
[ 4E(V°—E)]
5. .'The condition
L w1 %I
L x:-a_‘l’ﬂ ox reE—-g
yields :
~YAe-¥_-gBsinga
Aecma B cos qa
o
-Ya=-gatawrga
orl,
n=Ewnf
where
N=yard§ =qa
6. Since § =ax
dy vy dy
dx dEdr &
and
Ay _ 2y
= &

Thus Eq. (8.43) may. be written as

Ko’ 1 _ma? A e
T ‘25'*—2- 2 52'«IJ=—2‘+(§J

“wor

“ThE 7 ma 2 ¥
or
ho d7 b 70 A
oy g e
& 2 2

%+-@—8m@=o

1. (a) E,.'=(u+%)hm

Forﬂ:egmmdmﬂ=0.Eo=—;Pxo=-;—hv
=_;..>: 6626 % 10 Js x 3 x 107 He
= 94839 x I0-13Y

For the first excited state, g = 1

E, =lhm =-§-in.'
-2

2
= 3E; = 2982 x 10-12],
(b} For the ground.state harmonic oscillator wavefunction

()= | dewgswim e
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where  yox) = ( #) " Hy (ax) exp (— #)

a \\7 ( @y .
= expl———] since Hy(C) = 1
( \FE) | 2 ) (&)
Thus
A{x) =(___a__) “xex (—az:\") dv
) Lo |
The integrand is an odd function. Hence the integral over the interval will be zero.
o {xy=0
Stmilarly

{p)=-if L v (x) 3_: Wolx) d

=—ih (?:‘;)‘[:cxp (— az;z ) (- & x) exp (— az;z ) dx

1 -
s 4 q
=fi—Hh | "exp(—a 1) dy
v '[—n-s P

Again the integrand is an odd function of x. Hence the integral over this interval will be
zero.

= A{px} =0
Terminal Questions

I. “Since the well is of infinite depth y {(+a) = 1), Hence # = ). A is ohtained as
fotlows:

+u
I
A? I cos? —— dx =)
-u 2a

1 Yin
(2
a
Now inside the well Vix) = b al the Schudildinger cquistion vields

2 2 7 1 2 : LY
A o (4 cos v:")=+'qi{.(3_n) ;;us(}lt.‘_"-),

. -
2m - plel I\ du 2

o]

242
- E= __Q_Tﬂ"j_
8m o
2.  The problem is sisnilar 1o that of a simple harmonic vscillator but

w(() = 0.

Hence n must be add (See Fy. 4.50).

Therefore,

E,=fn= -—yphor eohror= 035
I}

-

Putiing 1 = 2m 4 1 we gei
. . R i . P .
Eayp o = 2 v daowitho =001 205

e
3000x7 = Ya ) T i sy

Since y,(x) is of detinile parity, st is cither an udd or an even function of ., In either
case, the product wi{x) y,(x) will be even. Since v is odd. the inlegrand will be an odd
lunctlion of x and hence the intcgral will be zom,



4. The average value of the potentia! energy V is given by
= 1
(V)= ng(x)—z—kxz Yo(x) dx.

. n
Evaluation of the integral with y, = (_“__)’ exp (_ atx

I ¥
(V)=Tﬂ(0

Since Ec,=?ll-hm
- =B - Lap=l
L~ {KE)=E, y _ﬁm—4 Ao,

) yields

Some Slmple Systems
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UNIT 9 SPHERICALLY SYMMETRIC
SYSTEMS: HYDROGEN ATOM

Structare
9.1 Introduction
Objectives

92 Three Dimensional Schridinger Equation for a Central Potential
Eigenfunctions and Eigenvalues of the Angular Momentum Operator
Space Quantization
Radial Eigenfunctions

9.3 The Hydrogen Atom
Specira of the Hydrogen Atom
Quantura Numbers and Constants of Motion

94 Summary

9.5 Temninal Questions

9.6 Solutions and Answers

9.1 INTRODUCTION

In the previous umit you have obtained eigenfunctions and eigenvalues of a number of
onc-dimensional systems. In this unit, we shell extend our siudy to a three-dimensional
systern. Thus now there will be three-independent varjables, x, y end z, in Cartesian
coordinate system or r, 8 and ¢ in spherical polar coordinate system. Hence, the degree -
of freedom of the particle wil! increase from one to three and the time independent
Schridinger equation will be a three-dimensional differential equation.

in geneml, the potential in which a particle moves in a three-dimensional space is a
function of all the three coordinates. However, in the present unit we shall confine
ourselves to thote potentials which depend only upon the radial ¢coordinate r and are

independent of the polar coordinates © and ¢. Such potentials arc known as spherically

symmetric potentials and- the coresponding systems are called spherically symmetric
systems. LR

When quantum mechanics was developed in the 1920s, one of its first (and also onc of
the most important) applications was to-the understanding of hydrogen and hydrogen-
like atoms {atoms with one valence electrons). In this unit, our main focus will be on
the hydrogen atom. As you know, a hydrogen atom consists of a prolon and an electron
moving in the Coulomb potential of the protan. The motion of an clectron in the
Coulomb potential of the nucleus is also referred to as the Kepler problem of quantum
mechanics — it is exacily solvablc. You know that the Coulomb potential of the proton

2 . - .
al a distance r i§ —4;:0 — . Hence the potential is spherically symmetric.

In this unit we shall solve the three-dimensional Schrodinger equation for the hydrogen
atom to obtain eigenfunctions and eigenenergies for the stationary states of hydrogen
atam. In the coursc of solving this problem, when we find that the mathematics is
becoming too difficult, we shall restrict ourselves to a qualitative discussion of the
problem. We shall consider bound as well as continuum states of the hydrogen atom. To
further simplify our study we shali begin by considering the motion of a paslicle in a
spherically symmetric potential and then extend these ideas 1o the hydrogen atom. In the
next unit we shaii apply ihe resufis of dis it (0 nydrogen-like and oincr multclestion
atomns and undersiand their optical spectra.

Ohiectives
After studying this unit you should be able to

® separ.ate the time independent Schridinger equation for a spherically symmetric
system into its radial and angular parts, .



show that the angular momentum is a constant of motion for such systems, . Spherically Symmetrie
explain the concept of space quantization, ; .

reduce the iwo-body hydrogen atom system to (wo one-body systems,

obtain the eigenfunctions and energy cigenvalues for the stationary state of a
hydrogen atom,

cxplain the spectra of the hydrogen atom,

specify the constants of motion and the corresponding quanturn numbers for the
hydrogen atom problem.

92 THREE DIMENSIONAL SCHRODINGER
EQUATION FOR A CENTRAL POTENTIAL

Let us consider the three-dimensional motion of a particle of mass jL in a spherically
symmetric potential. For its stationary states, the time independent Schridinger equation
is given by

2
E-i"-uvz V)| wir) = Evir) ©.1)

where F is the total energy of the particle and V(r) is its poiential energy. Note that
V(r) is indcpendent of the polar angles 8 and ¢. The force F acting on such a particle
will be directed along r. So classically, the torque T on the particle is equal to r X F,
Since F and r are in the same direction, {1} is equal to zero. Furthermore, torque is
equal (o the rate of change of anpular mementum L. Hence, the angular momentumn of
4 particle moving under a spherically syminetric potential (also known as centrpl
polential} will not change with time. Thus, it will be a constant of mation for that
object. Recall that you have solved this problemn in Unit 6 of the clective PHE-01 in the
classical domain to obtain Keplerian orbits for planetary motion around the sun.
However, 2 constant L means thal all its three components L,. Ly, -and L, are.constant
simultaneously. This is not possible in quanturn mechanics because the three components
of L do not commute among themselves {see Unit 7). Thus, there is a difference
between the classical and quanium introductions o angular-momentum. Instead of *
relating angular momentum 3 tamue (as in classical mecharics), in quantum mezhanics
we find that the Hamiltonjan can be writlen in such a way that it depends only on the
angular momentum. This is how anguiar momentum makes its entry into the scheme of
quantum mechanics. :

Lel us see bow it is done. Yeu know from Unit 3 of PHE-04, that in bphcncal polar
coordinates, V2 is given by

2_1 9 E_) 1l _3d g9 [ i
v r ar(rz dar +rzsin939 (Sm )+rzsm29 a2

Putting this expression for V2 in Eg. (9.1} we obtain

|_EL IR T }
3 (rzar “aﬂ (E-V(D)r |y
[1 a d . 1 2

ne —
sing a0 Sn S % " inT0 3¢3J ¥
Eq. (9.2) suggesis that {r, 8, ¢) can be scparated in the variables r, 8 and ¢ as follows:

Wir, 6, ¢} = R(r) Y(6, §) (9.3)

Putting Eq. (9.3) in Eq. (9.2) and using the method of separation of variables (refer to
Unit 6 of PHE-0S entitled Mathematical Methods in Physics-I1), we get the following
two equations '

(5.2)
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You should quickly establish Eqs.
(9.4) and (3.5} belore studying
further.

Spend
15 min

30

12 23R (28 e v K ) : ,

e b {hz E-V) - } R =0 (9.9)
and

18 L@ ), . 1 FHO ) _ :

T kit Al LT (9.5)

where K is a constant. We can further show that the operators 12 and L, in spherical
polar coordinates are given by

2_ 42 1@ Y R

P=-h [——sin s = (smB—-—) — l (9.62)
-k 3

L= 5 (9.6b)

In fact, you may like to do this exercise yourself. Try the following SAQ.

SAQ 1
(a) Prove Egs. (9.6a) and (9.6b).
(b} Show that L7 and L, commute with thc Hamiltonian.

Note: We will make nse of this result in Sec. 9.2.1.

Using Eq. (9.6a), we can write Eq. (9.5} as:
[2Y (0, ¢) = Ki? ¥ (8, ¢) | ©7)

Thus Y (8, ¢) is an sigenfunction of the operator L2 with K#? as the eigenvalue. Let us
study the functions ¥ (9, ¢) in somewhat greater detail.

9.2.1 Eigenfunctions and Eigenvalues of the Angular Momentum
Operator

Lect us obtain 1he eigenvalues of Eq. (9.7) and determine the form of ¥ (8, ¢). From

Eq. (9.7) we can readily see that Y (8, ¢) ir an eigenfunction of the operator L? with the
eigenvalue K#%. Further you have estzblished in SAQ | that L? commutes with the
Hamiltonian of the particle:

L% H] =0 (9.82)

Now recall Eqg. (7.32b) of Unit 7. If {D, H] = 0 in thal equation, d Ez,?) =0, ie,

{ D} is constant. Applying this result to the square of angular momenturn (£.2) we obtain
{ £%) = conslanl {9.8b)
Le,, the square of the apgolar momenium is a constant of motion for a ceniral polens .
We can sofve for ¥ (0, ¢) by separating the variables O and ¢ and writing

¥ {6 ¢ = M8 ¢ (p) (9 o

Substituting Eg. (9.9a) and Eq. (9.6a) in Eq. (8.7). and using scparation of v.. tables, we
oblain

o e— . =




sm8 4 (. . dP@®) ) : __ 1 d Spherizally Symnetric
LP{G} 40 ( sin @ 40 +K sm"‘-ﬂ:' Y '_52_ (9.9b) Systems: Hydrogen Atom

Eg. (9.9b) shows that both sides are equal to the same constant, saym?. Hence, we can

wrile
1 4% 2 )
] N A0
and its solution is
D) = eim? 9.1n

Now @4} has o be single valued. Hence we must have
ging = plm$+Im {9.12) '

because angles ¢ = 0 and ¢ = 27 are actually the same. Therefore m; must be an integer :
For the operator [, (Eq. 9.6h) operating upon eim®, we obtain '

I— L, emd = nyh eimph 9.13)

Thus, e™® is an cigenfunciion of the operator L, with the cigenvalue mph.

The differertial equanon for P() is given by

dP6)

sin 6 A (sun 0 ) + K (D) <in%6 = m2P(8) 2.14)

do 40 <! :
Eg. (9.13) zan be solved analytically. Howcver, the procedure is lengthy and out of 2 I
place here. Hence here we only quole the results and discuss them qualitatively. If we i
take the constant K equal 10 [ (/+ i) then it is found that quantum mechanically |
acceplable solutions ol tq.(9.14) arc oblained anly if the constant [ is cqual (o ore of :
the integers - A =0 g

E=tog], o f+ Ul s ) 19.19) : re
Alternatively, we can also say that tor a piven inleger! there will e following (27 + 1) _6[/"‘\
vilues of

S I O TS I U ) M I N (9.16) SO

Then the acceptable sclutions are given by ' o
. N [
P:"'.‘(D) = sintaf (0) F, o (cos 8) . (9.17) — Q\.<

where £, (cos 8} are polynomials in cos 8 and P""'!I(G) aré known as the associated
Legendre polvnomialy. Thus, substitwting By (9.11) and (9.17} in Eq. (9.92) we oblain a0

the eigenfunciions of L7 % s
] R

.': . (U. ¢} — P;m‘l\“} ‘-"”'I¢ {9|3) i3
The functions pven by ¥y, (Y 18) are known . spherical harmonies. Putling @ %‘(p
K=K+ 1M in Ega9.7) you cen rewdily see il they are the eigenlunctions of the B fec
k) - - . . 3 di
operator Lo winn cigenvalees [yiel] A m ;//!\:\
pm et e ——— —— w LR “, . .I“’
' 1
! 2y ] P o ]
i PN N ARk
: - - PNy L
‘Thus (M + L) ergentunctions ¥, 18, & con-sponding Lo the same { but dilierent i, sl

(ranging froon - F 1o ) have the sime cigensalues. Hence we can say that these

eigenfunctions are (20 + [}- fold degencraic. ':h:-.sc functions specify lll'nc angular paut ¥ig. 9.1: Polar plots of

of the steady siic eigenfunctions o all pariieles moving under spherically symmetri: I¥, . (6, &% for some
potentials. They form an orthonarmial set (as cxplained in Sec. 7.3 of Unit 7) and au valucs of { and m,. |
function of © and ¢ can be expressed as a lisear combinaton of ¥y o, (6, ¢). We giv - '
- here the explicit formts of some of the Jowe: arder ¥y r,,'(El. ¢) for ready refercnce: ‘ 31
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3 \I2 0
Yo =(-=
10 (41: ) oo
7(2) " sine et
b WY —+(§) sin
51" @ cosz0-1) 9.20)
Y. = = cos? 8- .
» ( 16n ) ( (
Yzﬂ =% E msm&cosﬂe”’
' 8n
1 I”
and Yz'ﬂ = (-3-—2;‘-) sin?0 24
The squares of some of these functions (which also represent Lthe angular part of the
wave function of the hydrogen stom) are shown in Fig. 9.1. You inay now like to
perform an exercise based on the ideas discussed so far,
Spend SAQ 2
10 min

{a) Show that Y; m; (0, ¢) is an eigenfunction of L, Determine its eigenvalues.
(b) Show that ¥, , is normalised and is orthcgonal to Y,_._zl.

Before studying further, it would do us well to examine the parity of the spherical
harmonics. For this, we reflect ¥; m, (9, ¢) about the crigin. In such a reflection 8
changes to ©—8 and ¢ changes to X +¢.

Now .
ef;":('“'#l = (=1)"1 gimpe (9.21a)
Further sin{x ~ 9} = sin 8 and cos(n - 6) = — cos . Hence, it can be shown that
Pim(n-8) = (- 1)mf PI"A($) (9.21b)

Therefore, the parity of ¥} ,,,’(B. ®) is given by (~1)*-1= + m; which is to equal (-1)!, We
shatl make use of these concepts in the later sections of the Unit

Spend SAQ 3

2min {ce the expression given by Eq. (9.20) for Ys (6, ¢) and verify that it is of even parity,

To sum vp, so far we have obtained the solutions of the angular part of the stationary
states of a particle moving in a spherically symmetric potential. These are nothing but
the eigenfunctions of the angular momentum operator L. Their exact functional
dependence on 0 and ¢ is given by the spherical harmonics. The cigeovalues of the
operator 12 are i +1)#% where | 1akes discrete integral values given by Eq. (9.15).

- Let us now try (o understand what these resulis mear physically, in terms of what is

catled space guantization.

9.2.2 Space Quantization

You have shown in SAQ 2(a) that the spherical harmonics ¥; ,, (8, ¢) are eigenfunctions
of L, with cigenvalues mf. Thus we can determine exact values of 1? and L,
32 : simultaneously. However, since Ly, Ly, L, cannot be determined simultaneously



according 1o the uncertainty principle, L, and Ly, will be uncertain. Thus, we are Spherically Eymrmetric
confronted with some surprises about the quantum mechanical angular momentum as Systens: Hydrogen Atom
compared with its classical connterpart.

Classically, for the same magnitude of the angular momentum, we can obtain an infinite
number of states by changing the direction of the angular momentum vector. But
quantum mechanically, for each value of angular momentumn, there are only a finite
number of states characterised by ! and m,. Moreover, in quantum mechanics, the
components of L in two of the three directions being uncertain, we do not describe a’
state by specifying the directions of the angular momentum vector. Instead, we give the
componeot of the engular momentum along a specific direction. We conveniently choose
this direction 10 be along the z-axis. So how do we visualise this situation?

There is a useful pictorial way to communicate these quantum mechamncal results — this
is the so called vector model for the angular momentum In this model we tepresent the
angular momentum of the particle in motion by a vector L of length [[({ +1))'2. The
angular momentum vector precesses around the z-axis in such & way that the magnitude
of L (hence L?) and L, (projection of L on z-axis) are constanis (see Fig. 9.2a).

(b)

(a)

Fig. 9.2: (a) Precession of L aboul z-axis; (b) spare quantization for { = 2. The radius of the circle &s
[2241))'2. The mulllplicity of states k 5.

Since for a given value of /, the eigenvalues of L, are myfr with integer values of m,

(ranging from —{ to + /), the component of L along the z-axis is quantized. A

measurement of L, will yield only the 2f + [ quantized vzlves, with 2 maximum value

! less than (he magnitude of the vector L for / #°0. Furiher, the vector L can make only

certain quantized angles with the z-axis; the angle 0. beiween I, and L can take only

discrete values given by
my

0z ——0——— (9.22)
Jd+102

This phenomenon of the quantization of ihc direction of L with respect 10 one of the
coordinate axes, is known as space quantization. Since | my| is always less than [ ({ + 1)
(except for { = ), the vector L. can never be along z-axis, For { = 2, the values of my
are 2, 1, 0, -1 and -2 as shown m Fig, 9.2b. Funhermore, although L. and L) are
uncertain, L7 + L,? being cqual to L% — &7 have definite non-zco vaiues wnless § = O;
however, the values of Ly and L, are not quantizad. Thus we <an visuatise the angular

MOMSHWT ¥oLI07 SWeERing oul 10 all prossibie dictiivas in the vy piane,

Having apalysed the angular part of the wavelunction and soinc of its implications, let
us now consider the radial pant of the eizenfunctions for a spherically symmetric
rotential.

i
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Centrilugni potential

Fig. 93: The rentrifugal barrler
for some values of !,

34

9.2.3 Radlial Eigenfonctions

Putting X = I{{ +1) in Eq. (9.4}, we obta.in- the differential equation for the radial
function R(r). This is-given by

” o1 dR(r) RIE+1) _ :
“% T @ (re )+[V()+ 2 2 ] R(r) = ER(») (9.23a)

This is a one-dimensional eigmva.lue equation for the radial cigenfunctionR(r). The
actual solution depends upon the form of potential energy function V(r). However, the
effective potential energy of the particle is

V,_a{r)‘ = V() + i (E3)] 2’:: :' Ly

Thus, there is an extra term in the form of repulsive potential energy (f(l +1)A221r2)
which increases with ! (see Fig. 9.3). You can see that this tenm decreases the
probability of finding the particle near the centre of force. This term is also known as
the centrilugal potential energy, or the centrifugal barrier. -

(9.23b)

The ongm of the cenlrifugal term can be understood in the following manner using
classical correspondence. For a particle of mass i moving in a circular orbit of radiusr,
classically, there is a centrifugal force directed radially outward. The magnitude of the
force is wv/r = L%ur3, where L = pvr for a circular orbit. The potential corresponding
to such a force is LY2ur2 (since F = 9V/or). In quantum mechanics we must replace
L? by its cigenvalue i +1)#?, hence we oblain the quantum mechanical expression for
the centrifugal potential.

For bound particles (such as a simple harmonic osciliator), the values of £ (cigenvalues)
are discrete. Otherwise E varies in a2 continuous manner. But whatever be the Torm of
V(r), as long as it is spherically symmetric, the angular part of the 2igenfunctior of the
particle is given by the spherical harmonics Y, ,,,I(B, @)

In the nexi section we shall take V{(r) to be the Coulomb potential energy, appropriate .to
a hydrogen atom and shall obtain eigefunctions end eigenvalues of a hydrogen atom.

9.3 THE HYDROGEN ATOM

Let us consider the hydrogen atom as an example-of a three-dimensional quantum

mechanical system. As you know, a hydrogen atom consists of a proton and an electron.
Thus it is a two-particle system. The Hamiltonian for t(wo-body motion in a central force
ficld is given as

Pl pz :

A 2m+ V(ry, rp) {0.24a)

Thus the stationary states of the hydrogen atom are the solutions of the following time
independent Scirodinger equation

H=

#2 7 2
[— — Vi-—Vi- E;—r;l ¥ (1), rp) = Ery (r), 1) (9.24b)
1742

where M and m are the masses of the proton and the electron, respectively; r; and

r; are the coordinates of the proton and the electron, respectively, with respect to an
arigin 0. Ey is the tetal energy of the system and g4 is the permiitivity constant. Thus
we arc required o salve a six-dimensional differential equation to obtain the
cigenfunction w(r|, ry) and eigenvalue Er. However, we can reduce the above equatian
inte twe three-dimensional equations in the following manner,

Tet R be the coordirate of the centre of mass of the atom. Then
Me + mra

- —_ 9.25
R M+m ¢ )

The separation between the proton and the electron is given by

r=r-ry : (9.26)



Salving for r) and r, in terms of R and r we get Spherteally Symimetric
) Systems: Hydrogen Atom

=R+ r (9.27)
M+ m
and
M
n=R- r 9.28
2 M+m ( )

Now you know (hal

ac, "X ox « ox ax

where x), X and x are the x components of ry, R and r, respectively. Hence Egs. (9.25)
10 (9.27) yield for the x component

M
gl:l_- m+M gﬁ ox (9.29)
Hence, in (hree-dimensions
Vis o RtV 030
where
v ="‘ai Ea; 53“ (9.31)

and (x|, ¥y, ), (x, v, 2) and (X, ¥, Z) are the components of ry, r and R, respectively.
Similarly, from Eq. (9.28) we obtain

fit

V, = — Vg-V (9.32)
Eqs.(9.30) and (9.32) yicld
. §f M 32 M
= — | V2 — VRV + V2
! ( m+A ) R+2 ( m+M) RY ¥ (9-332)
and
Y T m
Vi=| — | V-2 VeV + V2 It
: ( m+M ) K (m+M) R (9.336)

Putting the cxpressions for V{ and V3 from Eqgs. (9.33a and b} inlo Eq. {9.24b) we ret

ﬁz ] hz ( 1 ) '.!
—_——— e L vq _c -
|: 20fxm) R T2\ tH ¥R, 1) = Ery(R, ) (9.34)

where for our vonvenience we have replaced elf:"m-:o by only 2 with
e =231x1028 Joinle.melrc.
Eq. (9.34) is separahle in the coordinatcs R and . Taking
W(R.1} = HR) w(r) (9.35)

we find that $(R) and y{r) are the respeciive solutiuns of the lollowing three-
dimensional difterential cquations

.:'1’
—_— R} = E; &R .
NI VE (R} = £, 0(R) (9.36)
and
i V2 () - = w{r; = Eyir) {9.37a)
2p
wWHUFE
(L, LY
no= [? o ) (9.371)
and
Er=E+Ey (9.37¢)

35
As you know, L is the reduced nrass of the sysiem.
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Coulomb potmtiat

The Coulomb potential
aod the effective patentlnl
for some values of 7.
Compare this with

Fig. 93.

Eg. (9.36) shows that a particle of mass {m + A), which is the total mass of the
hydrogen atom, is moving freely in a three-dimensional space and its total energy isEg
(with zero potential energy). This is a problem that you have already solved in Sec. 8.2,
Its cigenfunctions are given by plane waves

¢R) =ER (9.38)
) MR
with e~ Ey 9.39)

The cigenvalue Ey and the corresponding quantum number X vary in a continuous
manner. )

On the other hand, Eq. (9.37a) describes the motion of a particle of mass g having
potential energy —e2/r with respect to a fixed centre. Thus by the above procedure we
have reduced a two-body system into two one-body system:s, one of mass (m+M) which
moves freely in space and other of mass {1 and charge ¢ which moves under an
attractive potential —2/r. You should note that in the present model the relative motion
of electron and proton with respect to each other has been replaced by the motion of a
particle of mass p with respect to a fixed centre of force.

Now Eg. (9.37a) is exactly the same as Eq. (9.1) with V{r) = — #2/r. Hence the
eigenfunctions of the particle of mass 1, which are also known as the eigenfunctions of
the hydrogen atom, arc given by

y(r, 8, §) =R(r} &, m, 6. ¢ (9.40)

The radjal function R(r) is the solutivn of the following one-dimernsional differential
eguation

ﬁzli dR(r) [_ _-f,_h_z!(Hl‘] _
g wP GO e G Ry ER. ey

The above equation has been obtained from Eg. (9.23a) by taking W(r) = —e%. The
effective potential energy in this casc is

ez I+
v,ﬂ(r)=_7+—

272
It is shown in Fig. 9.4.

A2 +1)
2u
will now present some resulls here without going into the detailed mathematical solution
of BEq. (9.41). We find that for finite values of E, the solution of Eg. (9.41) ncar the
origin is given by R(r) = cr, where ¢ is a constanl. Further, at large values of r,V(r)

terds to zero and the differcntial equation reduces to

1 ( dR(r) 2u E
/2 dr . dr
Let us take the zero (or the reference level) of the energy E o0 be the cnergy of tha
state where the hydrogen alom is ionised but the free elecuon of the hydrogen alom has
zero kinetic cnergy Then Lthe bound cigenstates of the hydrogen atom have negative

1otal energy E (the positive kinetic energy of the particle of mass i being less than the
magnitude of negative potential energy). On the olher hard. the free eigenstates of thc

You can see from Fig. 9.4 that near the origin is much larger than ~ e2/r. We

R(r) | (9.42)

hydrogen atom have positive cnergy E. For Lhe bound staes £ < Q and we put E = E'
50 thal, the solutian of Eq. (9.42) is given by
172
uE ) -
R(r) =10, ex —(—--— r (9.43)
W=aer-\"h :|

E being negative, the radial wave function decreases exponentially at large values of
r. At the intermediate values of r, the solution for R(r} can be obtained by employing
power series method. However, here we only state the final resull. As you have noticed




for the bound states of other systerus (say simple harmonic oscillator), the acceptzble
solutions of R(r) exist only for discrete values of E and these discrete values are given

by

E, = _zi‘h_z % | (9.44)

where n is a positive integer and for a given value of I ranges from
a=l+L,0+2, 143 ... . (9.45)
Thus, we find that the radial eigenfunctions depend uponrn as well as { and are given
by -
r

I
Rn1(r) = Ny exp (—;,f—o) (E) G 1 (fag) (9.46)

wheze Gy, ; (r/ag) ere the assaciated Laguerre polynomials and N, 1is the normalisation
constant The parameter 4, is given by

i
el

{9.47)

It is interesting to note that 4 is cqual to the radius of the first orbit of the electron in a
hydrogen alom for the model proposed by Bokhr, provided | is replaced by the rest mass

of the electron m. Since the matio of myj is very close to uniiy (1.0005), we shall take
ag 0 be equal 1o the first Bohr radius with 0.529 X 10-10 metre as its value. Undes the
same approximation the cigenenergy £, is given by

By =-f ] (9.48)
n .
where
R = .I
2 {

As you know, R is the Rydhoe: i - SRS

You may now like n: 1o o F o0 A g snnle ereccise.

54Q 4

Obtain Lhe value of the Rydberg constant i the unjcs of electron volts andm-1.

A few of the lower radial eigenfunciions of the fiydrogen atom are given by

Rip (1) = e ~rlug (5.492)
0!
R (;—) —-_i_._ ')_._r_ ~¢f iuy 9.49h
2= Qa2 \" ay ¢ I (-49%)
Ry =— ' oy, 9.4,
! Qagh? o3 ¢
{1y ar a2
=y — - = —+/1a,
Rao (1) ! 3.1.1) 2 E 3ag +27 ao:":i o (9.45d)
1 v2oay2 r J roo
Ry i =L NZor gy /3 4
3 {3ag / 3 q ( 6aq )e (9.49¢)
1\ NZ R
R ] = —— -—.‘.'. -.l'/:‘
1 (1) L 3%) v L (9.495)
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Show that Ryg(r) is normalised and is orthogonal W R p(#).

Finally, the eigenfunctions of a hydrogen atom are

Ynim, (r. 0. ¢) = Ry (0T, m,(ﬂ- 4)

given by

{9.50)

where R, fr) and ¥y my {6, ¢) are given by Eq. (3.46) and Eq. (9.i8), respectively.

These eigenfunctions form an orthonormal set, i.e.

.[ UM m,(r) Va'rmy (r) 72 dr sin @ 48 4o = B, Oy Bm;"':'

(0.51)
where 8 = 1 for j = j and 7ero atherwise.
Fhe radial pant of some eigenfusicuons are shown in Fig. 9.5.
fAeV) {=0 ) 2 3 4
0 77/ 979770777707 7/177777774
5L = == = =
=-1.51 B 8 1s 3P id
-34 2= —
3 25 i
R
B fﬁ‘ W
AR o
1LDR
0.01 aiid
— 1 i [——
D 1 6 8 10 -
tul _ i

Fig. 9.5: {a) A few radwl elgeafunctions; {b) clgenenergles of bound and

continuum stites of 8 hydrogen atao.

We can now make some observations about the Coulomb potential energy problem in

IR

relation to the hydrogzn atom. Eq.

(9.46) tells us that the bound state eigenfunctions

{E < 0) for the Counlomb potential g0 10 zero as r goes 10 infinity. Notice that this

patential gives an infinite number of bound

states starting @i energy —He¥/2h? and

ending at 0. The eigencncrgy given by Eq. (9.44) varies in a discrete manuer. The
Wifference between the cncrgies of the two conseculive encrgy states decreases s
-~ nereases (see g, 9 Sh). For Targe . the energy difference hecomes quite small, The

Lty with high a are called Rydberg siates.

sero and the hydrogen atorn is ionised into

Finaliy al # — o5, ihc cigenenergy becomes
a proton and an cleciron with zero total

encrgy. The eigen states wil £ > G are cotiiuin shates. They wre shown by the
shaded portian of Fig. 4.5b. The eigenfunclions of such states do not go 10 2ero 25

r goes o infinity and E varies in o continuous manner. The cigenfunctions of continuem
slalgs oF a hydrogen alem arc Coulomb waves.

The atomic electrons having! =10, 1,2, 3 .

.. are known as s, p, d, [, ... clectrons.

respectively. 1t is evident from Egs. (9.46) and (9.50) that only for s electrons, lor
which ! = 0, the cigenfunction Yoy, is finite at r = 0, which is practically the position

of the nucleus. Hence only 5 electrons have

a finite probability of their existence at the

nucleus whercas_for the clectrons having non-zero angular momentum (] > Q) the
probability is zero. Such a behaviour can be understood from Eq. (9.41). The centifugal



potestial energy (77 24t) I({ + 1)/r2) for § > 0 does not allow p. 4, f, ... electrons to come
very close to the nucleus. m = | state is known as the ground state of the hydrogen
atom while 7 = e corresponds toits lowest ionised state. Thus we require one Rydberg
€nergy to ionise a hydrogen atom,

There is another interesting feature worth commenting upon: we have a degeneracy in
the spectrum, the I-degeneracy. The energy does not depend on I, but only on n;
yet for a fixed n, possible / values are ! = 0, 1, 2, ., n~1. In addition to the
I-degeneracy, there is also the mpdegeneracy, the result of spherical symmetry. For each
1, r; goes from —1 to +1, giving us 2 + 1 degenerate levels. For any n, the total
degeneracy, then, is

r—1

Y @+1)=n

=0
And if we take into account the two-veluedness called spwm, which you will study in
Unit 10, the total degeneracy is 2 2.

The discussion so far helps us 10 beautifully explain the spectra of the hydrogen atom,

9.3.1 Spectra of the Hydrogen Atom

When the electron in a hydrogen atom makes a transition from ils excited states (n > 1)
to a lower excited state or to the ground state (n = 1), it emits eleciromagnelic
radiations of characteristic frequencies of the hydrogen atom. The energy diffcrence
between two cigenstates of the hydrogen atom is given by

AE=R (LZ_L) (9.52)
na ﬂ:la
If we take R in the units of m-! the wave number of emilted radiation is given by
V=097 10 (LY (9.53)
ﬂz n%

For my=1andnm=2 3 4,. we get a series of electromagnelic radiation of different
wavelengths. This serics is known as Lyman series and lies in the ultraviolet region of
the electromagnetic spectrum. The Balmer series correspond to (he transitions from

n =345 ..ton =2 Similarly, Paschen and Brackett series are produced due to
transitions fromn; = 4, 5, 6, .. to np=3andn =56,7, . ton, =4, respectively.
Thus, the theorctically obtained cigenenergy spectrum successfully explains the observed
linc spectra of the hydrogen atom.

However, when we compare ‘the encrgy spectrum with very accuraie experimental data,
we find some discrepancies. This is because in the real hydrogen atom there are other
interactions that we have neglected here. You will study about these interections in
higher level courses. We will now discuss an important concept regarding such
systems — the concept of quantum numbers that are constants of motion and
characterise the state of such a system.

9.3.2 Quantum Numbers and Constants of Motion

In the swdy of the hydrogen atom you have come across three inlegers namely s, { and
a1y These integers are kaown as quantvm aumbers. Since 7 is connecled with the
cigenencrgy of the system (see Eq. 9.48) it is known as encrgy quantum number of
principal guantum numbar, 15 cxisicnce i3 duc to the fact that the energy is a
constant of motian, i.c.. the siates are slationary states. The energy quantum number
exists for continuum states also with the difference that now it varies in a continuous

manner. In the continuum, it js usually denoted by &.

Due to spherically symmetric potential the angular momentum L of the abject becames
a constanl of molion. However, due to non-commulability of L, Ly and L the angular
momentum vector L is not a constant of motion in quantum mechanics but as you have
seen, L7 is a constant of motion. This gives rise 10 another quantum number/, which
varies in a discrete manner and js a positive integer. Since [ is connected with the

Spherically Symmetric
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orbiial motion of the object it is called orbital quantum number. From Eq. (9.45) we
can show.that { is less than a and for a given value of it takes the following values:

0, 1. 2. ... n-I ' ' (9.54)

Since a spherically symmuetric potential is also axially symmetric, the z componznt of L
also hecomes a conslant of notion and gives rise (o a third quantum numberm;. It can
take ncpative as well as positive integer values. The energy of a free hydrogen atom
depends only upon the quantum number r. Howevey, it can be shown that if the atom is
placed under a magnetic field, its encrgy depends uponm; Hence my is known as
magnetic quantum number. For a given value of /. the permissible values of my are

=i+l 0 L2, 0= (8.55)

The existence of three quantum numbers js also a consequence of the fact that the time
independent Schradinger equation contains three independent variablesr, 8 and ¢. We
have one quantum number for each space coordinate. ’

S5A0Q 6

Show that for # = 3 there are 9 degenerate cigenfunctions for a hydrogen atom.

Let us now summarise what you have studicd in this unit.

5.4 SUMMARY

& In this unit we have discussed the quamurﬁ mechanical behaviour of a particle
having constant total energy and moving under a three-dimensional, spherically
symmetric potential.

® A spherically symimetric potential depends only upon the radial coordinate r and
is indépéndent of the polar coordinates @ and ¢.

e In classical mechanics, the angular momentum L of such a particle is a constant of
motion. However, in quantum, mechanics all the three components Ly, L. and Lz af
the vector L cannot be constants of motion simulianeously due o the fact that these
three components do not commute among themselves. However, the magnitude of
L or L2 and any one of the components of L (which we have taken as L) can be 2
constanl of motion,

© The three-dimcnsiona! time independent Schrédinger equation of a particle
moving under central potential can be separated into three one-dimensional
differential equations, cach one of them being a function of only one coordinate, r,
@ or ¢. The solution of the differential equation in¢ is em whereas the solution of
the differential equation in 8 is 1he assoviated legendre polynomial P}"'a’(e). For
quantum mcchanically acceptable solutions { and m, are to be only integers. Thus,
{ takes onty positive integer values and for a given! there are (M + 1) values of m)
given by

mp=-f =i+ R B S SN ¢ M SRR S S |

The quantam numbers ! and pr are known as orbital and magnetic quantum

numbers, respectively. The product of the two solulions in @ and ¢ is known as
spherical harmonics and it is represenied by Y7 o, (0. &).

8 The veclor L is never staionaty in spave but precesses around the z-axis. The angle
belween Lhe s-axis and L can take only discrete values given by cas~1{ny NI+ 1)
“This yeautization al the orientation of L with respect to one coordinate axis is
known as space quantization.




® The nature of the radial wave function R(r) depends upen whether the state is a
bound state or a continvum state, For bound states the eigenfunction varies as

exp [—( Zhlzi E) 12 ;’?] at large values of 7. Hence the probability of finding the

particle goes to zero as r increases o oo, On the other hand, for continuum states
the probability remains finite even as r goes (o infinity. At small and intermediate
values of r, different spherically symmetric potentials_give rise o different radial
functions. In this unit we have considered Coulomb potential, appropriate to a -

- hydrogen atom.

® A hydrogen atom is a two-particle system consisting of a proton and an electron

and its stationary state Schrodinger equation is a six-dimensional differential
equation. However, it can be separated into two three-dimensional differential
equations: One corresponding to thé motion of a free particle having mass (m + M),
Its solulions arc plane waves ¢R, where the energy quantum number X varies in a
continuous manner and is related to Ey by Eq. (9.39). The second three-dimensionsl

- differential equation deseribes the motion of a particle of mass pt (reduced mass of
the system) having a charge ~e in a spherically symmetric potential (Coulomb
potential) due to a fixed centre of force having charge +e. The latter differential
‘equation again separates into three one-dimensional differcntial equations, one for
.each polar coordinate r, 8 and ¢. These three degrees of freedom give rise to three
quantum numbers 7, ! and m,.

® The angular eigenfunctions of the hydrogen atom are again spherical
harmonics and the radial eigenfunctions for bound states are given in terms of the
associated Laguerre polynomials. The quanturn number n takes ouly positive
integer values excluding zero. For a given value of , the quantum number / takes
n values given by

=01 ...a-1
For each value of / the magnstic quantum number m; takes (he values

mpo=—0 -1+, .00 .. I-1,1 R

® The energy E correspanding to different eigenfunctions Ynim, (r. 8, ¢) depends only

upon the quantum number 2. Hence for a given n there arc’ n? degenerate’
cigenfuncions corresponding to different permissible values of { and m;. For states
with £ > 0, the radial eigenfunctions are Coulomb waves and the energy quanturm
number k varies in a conlinuous manner. Now energy states arc no longer discrete
and we talk in terms of energy states per unit ENErgy range.

® The quantum mechanical treatment of the hydrogen atom explains the production of
various electromagnetic scries cxperimentally observed in the spectrum of the atom.

9.5 TERMINAL QUESTIONS Spend 30 min

1. Use the expressions given by Eq. (9.20) to show thar

< 5
2—__
2 o, €. O ==

m; = —2
You may note that in general

2
> In @ o) =

ﬂ'l';=—’

(21 + 1)

2. According 10 the virial thecrem (he average value of the potential cnergy of a
particle subjected 1o a Coulomb potential in any stationary bound stale is two times
its total cnergy. Verily the above theorem for the ground state of the hydrogen
atom. Further show that the average kinetic energy is equal to the magnilude of
total energy.

41




;I:I:g:l“;" t:'ss;;em;m 3. Use the uncertainty relation to show that the dimension of the mosl stable ground
yRtems state hydrogen atom is of the order of the first Bohr radius ap.

4. Obuain the most probable valuc and expectation value of r for the grouad state of a
hydrogen atom.

9.6 SOLUTIONS AND ANSWERS

Self-Assessment Questions
1. We know (hat
L=rxp=r|€ x(-hV)]

In spherical polar coordinates .

Ad AV 3 A 1 3
V=8t — - .= L
ror YR 3 +e¢rsmﬁa¢
Therelore
~ava . o1 a3l
N P
= —hAr Gy — —— -
rl_Qraﬁ er"rsinBi."d}
A9 A 1 31
= i E’éﬁﬂeosmﬁﬁl
, Hence - J'
2___‘1/:31\]3_/\8.«1;)
L =L I,—Hf:(t¢£—cgm§g) (°°a_g'“"§ine_¢)

The derivatives of the unit vectors are given as

% &= -8, %@0=@¢C(;sﬁ
;)3—9 € =0, §%E‘¢=—{@,sin8+é‘ﬂc059}

Substituiing in the equation for L? above. we oblain after some algebra
2
FEIRp~Y I} (sinai) +—-l-—i1
sin8 26 88/  sin’@ 9¢°

L=8 L= (&cos8 -8 sin0) (—ih?ob%nhﬁgﬁa%)
\ b1

=—1h i
dd
Neow 1
b, L% =\:- HY:, V). Ll_‘
21
h"lﬂ(‘a\ i B I
== =it — 4 V(). L7 | - Using L. 900
[ KITrEanY o) 2ut o B Mg S0
=0 {. r. 0 and ¢ are independent vasiables and L* cometes
with itself)
Similarly ;
- K19 ) L . '
Hor) = |- 22 {2 s Vi, L =001 L =D
- L] p 2 ar (’ E}r') Just (rh £ el !

12



2.a) Using Eq. (9.6b} we can write

LZYI'. my (9.¢) =c Yf_ my {B|¢)

or ih a
- E% Y, m, Gd)=c 4] m,‘:a’¢)

where ¢ is the eigenvalue of L,, corresponding to Y1 o, (8, $). Now L, involves operation
on ¢ elone and the ¢ component of ¥, my {8, ¢) is just eim$, Hence, using Eq. (9.18), we
get

- _
-3z ¥ Yo, 00) = ¢ ¥, ,(0.0)
= mAf2T = py h

(b) We have to show that

j Y;,Z(el ¢} Yz.z (el ¢) diy = 1
or

K r2n
"-u ‘l.o Y22V, 2sin0d0 do =i

E rin
Let 1 =L fo Y5 2 Y5 ) sin6 d8 do

n
h(lé ) 2rc [ "sin®d sin 0 do
32x 3

1
:—:-2— j (1 -2 p2+ ) du where 1 = cos 8
-1 .

or
=8 4,2
16 : 5

15 (05-10+3) _
8 s

Hence proved.

Next we have w show [ha[! 7,208,028, ¢ d2=0

tar, =" [, ¥; .2 5in 8 d6 do

5 "0 ¢
R b
- 31-;{ fn fﬁ Sin‘@ e- 4% 4B do
Now ’ Temdio 48 = 0, - fy = 0. Hence proved.
"o

3. Replacing 8 by 5t-0 und & by ®+¢ we obain

. 15y,
Yoy i =0, 2410 = - ( sit{w —{) Cos (it~ G) edtm ol
o \&r o

t

| &

112 )
) SIfLcO3 G eT9 = Y. (B, &)

.
!
=T
u

K1
#l

i

Hence the parity of ¥, | (8, ¢) is even,

4. R =22 = 218 % 10-18 Joules = 13.6 oV
28
. I |
also in units of mI, R = 22€_ __ — | {0 x 107 ;i
21

o
An accurate value of the Rydberg constant is

R = 1.09737373 % 10 m-L.
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5. We have to show thal L—Rio(’) Ry (9 rPdr =1
Let/ = Io R2(n) rdr. '
1 [ L.

{ = gy ,L (4—4"0+a§) rt e~ dr,

Now we know that
!

'r rPe-br dr=-L

0 pre
hence I= 8:13 l} (;;)3—% (;)41—%(2)51 ]
- _;-[3-24+241

= L.

Furthermore,

Io- R3 () Ryo(r) rPdr =(—26L65)m Io (z—g) Re-0r2a0) dr

1

— 2 2! 1
V243 _’ ao( )]

6. Since n =3, the pemuss;ble values of [ dre 0, 1 and 2. Hence, there are nine
permissible values of my given by 0 (for {1 =0) =1, 0 and 1 (for [ = 1} and -2, -1,
0, 1 and +2 (for [ = 2). Each combination of », I and m; gives rise to an.
cigenfunction. However the energy depends only unonn. Hence all these nine
cigenfunctions are degencrate.

Terminal Questions

+12 2 _ 15 . 15 . 5
1. mE—2=IY1mf (®, 9l -—2-3-n-sm29 c0529+2m-51n40 *ien (3 cos?8 — 12

= -1—25 [6 cos*® — 6 cos?B + 4 + 6 sin?@ cos?@)

5

54

You may note that the sum E |Y, m; @, )| is always spherically symmetric.

e? ==
2. W) =-=
2 82 .
Vi) = _[ bt 100 (P (--—-} 2 dr sin & 40 d¢
1
= o 4n(~e? e -2rfan r d
mg n( e}.[ rdar
462 1 _ LR _ p.e“)
=-—7.-g—-2 ——-a—o—ZED (.ao—ﬁ'gzandEo-—-_zﬁz

2\
(=)
Since kinetic energy + potential energy = tola.l energy

(KE.) = Eg—~ (V(r)) —7-2;0+7°=—— &l

e ————— -



3. Let the size of the atom be R, Slnoethcclecu'onisinsldcthcatom.thcunceminty
in the momentum is p = A/R, The lnear momentum of magritude p can be in any
direction so its components can have values from =P W p. Hence the uncertainty in
momentum is also approximately p. Hence we take Ap = p. Now we take

A 2
(key= GE. K _yp

E=KE +V=-2"_2 anr

2uR? R
dE '

A e
R R -l-R2 0 for & stable atom,

2
hence = -—h;=ao.
He?

“Hence the size of the most stable atom is the first Bohr radius itself,
4. The probability of finding the electron between r and r + dr is given by
Wico (0] 72 amdr = X ¢-2r/20 12 4

Tag

= 13 rie /4 dr,
ag

Heuce to determune die most probable velue of r we differentiate 12 ¢ /4 with respect
to r ard equate the result to zero. Thus we get

* (_E%) + ) g2z = o

or

r= T o, et RN

_ However the average value of r is given by
(r) = [ lyin? r 2 dr sin® do

=1 43‘:[ € ~2rfay A4y
‘o

6

(
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UNIT 10 ATOMIC SPECTRA

Structure

10.1 Introduction
Qbjectives
10.2 Stern—Gerlach Experiment
10.3 Spin Angular Momentum
10.4 Toral Angular Momentum
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16.1 INTRODUCTION

In the previous unit you have learnt about the vector model of the atom and space
quantization, in connection with the concept of angular momentum. Mow since angular
momentum is an observable, it must be measurable. You know that it is related (o the
magnetic moment of an atom. Therefcre, if we are able to measure magnelic moment,
we can measure angular momentum, One such experiment was devised in" 1922 by

0. Stern and W. Gerlach to meesere angular momenturn. In this unit we start by
describing the Stern—Gerlach experiment which also venified the concept of space
quantization.

However, the quantitative results obtained from the Siern-Gerlach cxpernment could not
be cxplained with the help of oty three quantum: numbers, namely, /. I and m,. Besides,
there were a good number of spectrescenic dara which could not be explained by the
vector model of the atom. :

To break the above deadiock, two research students S. A. Goudsmit and G.E. Uhlenbeck
hypethesised thal every eleciron possesses 2 spin angular momentum S. The spin
angtlar momentum combines with the orbital angolar momentum L to yicld total
angulu mowmentum J. Like L, the angular mementa 3 and J also show space
quantization and yield quantum numbers (s, mg) and (j. m1), respectively. You will
study about these concepts in Secs. 10.3 and 10.4. The introduction of the spin angular
momenturm proved very valuable for the gualitative cxplunation of the Stern-Gerlach
experimental results, Tt was also used to explain a large number of the existing
spectroscopic data, especially for hydrogen-like atoms. In Scc. 10.5, we discuss the
optical speetra of such atoms.

Finally, we discuss the spectra of multielectron atoms in Sec. 10.6, ]a such atoms, every
electron moves in a ficld produced by the nucleus ol the atom and the remaining
electrons. Such a potential is not spherically symmeiric. Hence strictly speaking, for a
multiclectron atem, the orbital angular momentum of the alomic electrons is not a
constant of motien.

Neverthelees, il is a pood spproximation 10 assume that every alomiv eleclron moves in
a spherically symmeiric potential and its energy siatw s churacterieed by [our quantum
numbers n. f gy and mgoor i, j ond . In this sectton, we will alse discuss Pauii
exclusion principle which has provided shell structure to the atoms. The ahove principle
cuables us to arrange the alumie elecirons according to their energy «lates { electronic
coafiguration). Toe eicctronic confipuraiion is tiilised w obtain L. ¥ and J quanium
aumbars of the whole atore and thus the spectrascopic terms {defined by L. S and f) of
(he ground as well as excited states of the atoms,

You will learn the selection rules which are obeyed when an alom makes a transition
from onc slate to another. A transition from an excited slate to a lower ong produces a
spectral line of characteristic frequency. This gives rise lo alamic spectra. Such



(ransitions take finite time for their completion. Thus every excited state has a finite Jife
time 7. Hence according to the Heisenberg uncertainty principle, (AE At ~ B), every
spectral line has a frequency width, The transition of inner electrons from one eoergy
state to ancther give rise to spectra in a higher frequency region, namely, theX-my
specira. In the next unit, which is also the last in this block, we shall briefly discuss

X-ray spectra.

Objectives

After studying this unit you should ba able to

® describe Stern-Gerlach experiment,

® cxplain the concept of spin angular momentum,
® calculate the fotel angular mnnientum,

® compute the spectral terms for hydrogen-like and multiclectron atoms,
® distinguish between allowed and forbidden transitions,

10.2 STERN-GERLACH EXFERIMENT

In the previous unit you have seen that the angle between the angular momentum vector
L ang the z-axis takes only discrete valucs. The angle is given by cos! (my /Vi({ + 1))
where for a given value of /, the magnetic quantum number m; takes cnly integer values
givenby -1, !+ 1, ...... -1, I. The phenomenon, known as space quantization, was
verified by an experiment peiformed by Sten and Gerlach. In this experiinent, a highly
inhomogeueous magnetic field having magnetic induction B was applied along z-axis
and an atomic beam traveling along x direction was passed through this field: (see

Fig. 10.1). It was found that a singic atomic beam produced more than one trace on the
screen 8. This clearly showed that the inliomogeneous magnetic field resolved ons
single beam of atoms into more thar one discrete component

—~

O

(a) (b}

Fig. 10.I: Stern—Gerlach Experiment. Stiver atoms produce iwo traces on the fereen §. (a) The
inceming beam along the x-direction is splil into twae as it passes through an inhomogeneous
magnetc field; (b) how the inbenmogencily of the magnetic fleld is ¢reated. The field depends
sharply un g, Increasing with increaslng =,
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To mmm_mmmmg-wmmmumelmdmp.ofu
atom has en sngulsr momentum L, Since this electron has a charge e and is'moving
fnside the atom, according to classicel physics, the clectron also has a magnetic
moment gty given by

py=-— ﬁ L (10.1)

(ﬂassimﬂy,mcdnﬂwﬂngfmmonﬂnamducmlhcinhamngenmmagwﬁc
field is given by - .

F=V(p,.B) (10.2)
Since B is along z-axis, the force will also be along z-axis and we have

aB .
Fosk Bemgr LY (10.3)

Thus the particies in the beam should be deflected up or down'in direct proportion to !
lhczwmponmtoflhenmgneﬁcdipolemmemBylooldngauhcmofthe ;
deflected particle on a screen, therefore, we can measure the componeat of its magnetic

. moment in the direction of the magnetic field.

In this way, the Stern—Gerlach apparatus docs (0 a particle beam of maguetic dipoles
what a prism does to white light; it refracts the magnetic dipoles and displays the
spectrum of magnetic moment that the particles of the beam pOSSESS.

What would we expect classically if a beam of atomic dipoles is sent through the
Stern-Gerlach prism? Classicaliy, the spectrum of the z-component of magnetic

moment — its allowed velues — is continuous (ranging from'- p; to 7). What did

Stern and Gerlach find when Lhey first did their experiment? A discrete linc spectrurn,

of course! The spectrum of magnetic moment is quantized; it should be obvious; | is
proportional to Ly, and I, is quantized. )

To understand these results, let us convert the classical expression of F; into the L
corresponding quanium mechanical ‘expression. For this we regard F; as an operator. L
Then the average value of F; is given by

(Fp) = | Wity © Py Yt 0 dt (104)

Now W,y (r) as given by Eq. (9.50) is an eigenfunction of L, with the eigenvalue my.
Hence (he force ecting on Lhe atom in the z direction is

(Fp) =~ (ehf2p) my %% (10.5)

The quantity efi/24 is termed (he Bohr magneton pg.

Stern and Gerlach also measured the distance between the traces and concluded that
m; changes by one. Thus the concept of space guantization was experimentally . verified.

However, as we have said above, the number of traces obtained in the Stern—Gerlach
experiment could not be explained on the basis of the quantum numbers ! and my. Tt is
evident from Eq. (10.5) that due to discrete values of m; a-single beam of ators will
break into (2 + 1) beams and each will produce its own tracc On the screenS. Hence
the number of traces must always be odd. But uncxpeeiedly, whon o beam of sllver
aloms was sent tirough the inhomogencous magneic field, it produced only two (an
even number) traces, It is weil known ihat e valeacy of silver i one, Hence it has
oniy one active electron and in the ground state this electron is an s (I = 0) electron.
Hence the only possible value of my is zero. Therefore, there should not have been any
defiection and thic screan S should have registered only ont trace and not fwo. On the
other hend if one assumes thai the silver aloms were in thep (! = 1) state then the
qumber of traces should have been three. Hence, it became evident that the resuls of
Sten—Gerlach experiment could not be explained on the basis of ! and my quantum
numbers. Something was found to be missing. This discrepancy was resolved by



Goudsmit and Unlenbeck who introduced the concepl of spin angular momentum. You
will need to study this concept carefully,

But before that, here's an exercise for you.

SAQ1

Show that the value of the Bohr magneton in SI' unit is 9.27 x 10~ joule tesle! {or
amp meter?), Take U as the rest mass of the electron.

10.3 SPIN ANGULAR MOMENTUM

Goudsmit and Uhlenbeck analysed & large number of speclroscopic lines and found
that these also could not be explained with the help of only three quantum numbers,
namely, n, { and m,. One of the familiar example is the observation of twy cloxciy
spaced lines D; and D, in the spectrum of a sodiurn lamp. On the basis of the above
three quantum numbers there should have been only one line corresponding w3p 1o
3s transition. To explain such discrepancies, Goudsmit and Uhlenbeck advanced a new
hypothesis according to which every electron has an intrinsic angular momentum S
and consequently an intrinsic maguetic moment jrg also. However, the ratio of pg
and S is ~ e/t and not —e/2p. Their argument was based on this logic: a free eleciron
does not have any orbital angular momentum. Thus the two-valuedness evident in the
traces must be due to an intrinsic angular momentum, which is a purely quanium
mechanice! attribute of particles. They called it the spin anguler momentum (S), or
simply spin. Since the multiplicity (25 + 1) is 2, we can identify the anpular mormentum
quantum numbers associated with spin as 1/2. Thus electrons have spin 172,

What about the vector S? Just like the orbital angular momentum E, the spin angular
momentumm S also precesses about z-axis, The angle between S and z-axis is quantized,
i.c., it also shows space quantization. However, since the value of the quantum number
s associated with 8 is 1/2, my has only two values equal to 5, i.c., £ 1/2. Consequently,
there arc only two spin functions, one comespoading tomg = 172 (spin up) and the other
o mg = — 1/2 (spin down). Thesc two spin functions are the eigenfunctions, of the
operators 52 and S with cigenvalues 5 (s + 1)h? and nig, respectively, Hence, the
quantizcd angles, oblained by taking s = 172 and my =k 1/2,in place of { and m,
respectively, in Eg. (9.22), are % cos=' (1/¥ 3).

With the help of the above hyponesis it is casy to explain the production of vnly two
traces by the ground state of the silver wtums in the Stern-Gerlach expeniment. Since

!=0and s = 1/2 we pet my = 0 and m, = + 142, Each nig produces s own trace and
one silver atomic beam splits into (wo.

The concepls introduced above will take you some lime to get used to. Here is a nowe of
warning; you should take spin angular momentum and the corresponding magnclic
moment as the intrinsic properties of an electron, just like its charge and mass. Do not
picture the clectron as some sori of a spinming top spinning about its axis. Such a
descrption is wrong and leads 1o absurd resulls as you will discover in SAQ 2. Spin is
onc more strangeness of the quantum world that you will have to get accusiomed 10!

You may wonder; why dees the eleciron or any other pariicle possess a spin angular
momeatum? An atielnpi lu undersiand the reason for the occumence of spin angular
momentum will take us rauch beyond the scope of the present course. You will be able
W learn about this in your higher degree studies,

SAQ 2

Show that if we assiga the intrinsic angular momentum of an electron due to the
spinning of the clectron about its own axis, the velocity of the electron will be grester

“than the velocity of light.

Spend
2 min

Spend
5 min

Atomic Spectra
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Fig. 10.2: Yector addltion of L
and 5 vectors,

Fig. 10.3: Precession of J sround
I-axis,
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The spin angular momentum vector S does not depend upon the space coordinates

hence its origin is purely quantum mechanical. Further, since % and S; are constants of
motion, the eigenfunction of an atomic electron is characterised by four quantum
numbers n, {, m; and mg (the value of s is always 1/2). Thus spin provides a fourth
degree of freedom to an ¢electron — the clectron is a four-dimensional particle. We need
four measurements — so we have four dimensions!

The introduction of spin angular momentum, leads us 1o the concept of total angular
momentum.

104 TOTAL ANGULAR MOMENTUM

The addition of the vectors L and S gives rise to total angular momentum vector J (see
Fig. 10.2). . ‘

J=L+§ (10.6)

The valuss of the quantum number j are given by

jeles s~ o |l-s|+1, |1-s| (10.7)

Thus vector J also precesses around z-axis and the angle between ¥ and z-axis is given

my -
cos-! , where j is the total angular momentum quanturn number and m
Py oo («u j+l)) ! = ) ’
is its component along z-axis (sc¢ Fig. 10.3). The wave functions of an electron,
including its spin pert, are eigenfunctions of J* and 7, with eigenvalues j (j + 1) and
md, respectively. Like /, the quantum number j is also always posilive but it can have
integral as well as half-integral values. For example, if { =2 and s = 1/2, the values of
j are 5/2 and 372. Comresponding toj = 5/2, the values of m; are 5/2, 3/2, 112, -112,
~372 and —5/2 (sec Fig. 10.4).

mj
52t

172

—3f2

=52

Fig. 10.4; Pillerent dlscrete crientations of J vector and values of @, for |.F| = 52 The tip of
" J lies oo a cirele,

You should go slow, read carefully and absorb these ideas before studying further, The
following exercise should further help you understand and concretise these ideas in the
context of what you have lJearnt so far about the quantum Wworld.
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SAQ 3 Spend

10 min
The spin up and spin down wavefunctions of an electron are given by

- (3)-2-(3)

and the spin angular momentum operator is given by

=B
)

where 0 is Pauli spin mairix and its three compopents are given by

o (Vo) wn(05) (8]

Show that « and f are cigenfunctions of $* and §; and are orthogonal to cach other.

Thus, through SAQ 3, you have cssentially solved the eigenvalue problem of the
operators §? and S, for the electron. You have come to know of the spin wave functions
of an eleclron and their eigenvalues. We have aiso briefly introduced you to the Pauli
spin matrix ¢ and its three components. The concepts developed so far help us explain
atomic spectra in the optical region of the eleciromagnetic speclrum,

105 SPECTRAL TERMS, OPTICAL SPECTRA OF
HYDROGEN-LIKE ATOMS AND SELECTION
RULES

. All atomic systems having only one electron are classified as nydrogen-like atoms, Thus
singly ionized helium (He*), doubly ionized lithium (Li**) and triply ionized beryllium
(Be++) etc. are examples of hydrogen-like atoms. In general, a hydrogen-like atom has
Z positive charges in iis nucleus and one electron outside the nucleus. Hence the
Hamiltonian of the relative motion is given by

WV 2

2y r

H =- (10.8)

where |, is the reduced roass of the system. Thus the time independent Schiddinger
equation of a hydrogen-like atom will be the same as that of a hydrogen atom with the
difference that €2 and p of Eq. (9.37a) will be replaced by Ze? and 14, fespectively,
Conscquently, (he cigenenergies and eigenfunctions of the above system will be given
bv Egs. (9.44) and (9.50), respectively but &2 and o will have 1o be repirced hy 7<% and
W, al all the places.

The inclusior of spin gives two eigenfunctions for the same n, { and m;: one for

m; =+ 1/7 and the other for m; = — 1/2. These are

'{’nfmt (r,s)= ‘-I-’nhnl () o for spin up
= Yntm, (r) P for spin down (10.9)

Now for a hydrogen-like atom s = 1/2. Hence for a given vaiue of i, according 1o
Eg. (107, tere will be twa vahues of f given by | 112, Voo

m —vear Toms ma
San nDW AN 1O wille
the spectenl torms for

O P P = F
RYOTogan-hike atoms.

In spectroscopy, the spectral term of an atom is given by

15+1L_;

where S is the total spin angular momentum, L is the tota] orbital angular momentum
and J js the total angular momentum. The quantity 25 + 1 is known as multiplicity.
For L> 5, we obtain 25 + 1 values of J. However, for L < S the values of J are 2F + §.

Sometimes the numerical value of n is also attached in the spectral term, which is then
wriften asn 2s+1L;.

e
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Now let ux consider the state of the hydrogenic atom for whichl = 0, For this case

g = —%—- ,L=0J =% . Thus we may write for a hydrogen-like atom that

J:—:I!—for any | = 0 state

And so we have only one term for a hydrogenic (or hydrogen-like) alom given by
25, n- Notice that in the spectral term we have used the symbol § instead of the
nemerical value O to show that L = ( for this case. Similarly, for L = 1, 2, 3, ... we use
the symbols P, D, F ... etc, in the spectral terms instead of the numerical values of L.

So we use the capilal letter to denote the orbital quanium number according to the
following letler code:

StorL=0, PforL=1, DiforL=2FlorL=3 ..

Now let us consider the stales for which f = 0.

Forl':lands=L.L=1.S=LandJ=i.L
2 ST 272
which yields two terms: 2Pyp, and 2Py, -
Sim'ﬂarly,whcnl=23nd3=_.l...b=2.S=l_andJ=i‘_3_
A 2 2' 2

This again yiclds two terms 2Dy, and 2Dsp. In general, you can see that for 2
hydrogen-like atom only two possible values of J will result:

J=L+;’—orL—-?l!- for any [ = O state ]

Thus ali the states with { 2 1 are doublets, i.c.. they have two values of J. Have you
noticed from these results that forn = 1 we have only one 25, slate but n = 2 gives
rise to three excited states? Cur advice to you is, don't just read through what we have
said in (hese lines. Work these numbers out. And to familiarise yourself further with the
calculation of spectral terms work out the following SAQ.

SAQ 4

Determinge ali the spectral terms forn = 2 and o = 3 for 2 hydrogen-like atom.

According 10 Eq. (9.44) whe cigenencrgy depends only upon n henee the inclusion of
spin increases the degeneracy 1o 2 n2. However, if we include relativistic effecis and the
interactions between orbital angular momentum and spin angular momentum in our
guantym mechanical treatment, it can be shown that the cigenenergy depends upon the
quantum number j in addition (o the quantum number #. It is given by

Rz a?z? ( 1 3
o _3 10.10
Enj =" [I YT \Jeuz A (10.10)

L

where @ is called the fine structure constznt and is equai lo e2/fic {(=1/137). Hence

the energy tevel diagram of a hydrogen atom as shown by Fig. 9.5b 1s mdiified to
Fig, 10.5.

Notice that although 28, 2nd 2P, slates are stilf degenerate, the state 2P, les higher

than 2P, . Similarly, D¢ lies higher than 2Dypp in the cnergy level diagram. Thus, the

spectrum of hydrogen atom and hydrogen-like atoms has.a fine structure, We will come
to this point again after you have done this exercise.




- Atom’s Spoeirn
SAQ S Spend

Use Eq. (10.10) to obtain the energy difference between %Py, and 3P, states for the 5 ™"

hydrogen atom in electron volts. .

I J Term

2 s 3p,,
2w 31Dy, 3P,

1 I 3%, 3%,

;1
’

S0 17 2P, 2%,

Flg. 10.5: Doubdet structure of B, Hnz fn bydrogen otom.

Since an atom in an excited state has more encrgy then its ground state, it has a natual
tendency (o make a transition to lower excited states or ground state and thereby reduce
its encrgy by emitting electromagnetic radiations. An atom can 2150 chsorh
eleclromagnelic enecgy and muke a wansition from 2 lower staie to higher excitec states,
Horever all transitions are not allowed. Quantum mechanics gives certnin selection rules
for allowed transitions which we will now state. The Temaining tansitions ac
forbidden - they cannot occur.

Seleeiion Kuies

Suppose a hydrogen-like atom makes a transition from a stals characterised bynlj 10
n'l j'. Then the selection rules for the atlowed transitions are as follows:

Selection rules for hydrogen-like atoms

 j-j= 10 o Aj=x1,0D
but both §* and J cannot be zero simultaneonsly. aoan
iy -i=tl, or Al=%],

Notice that there is no restriction on the values of n'~ n, Since the parity of a stare is
given by (1) it changes in an allowed transition. According to the above rules a
transition from 3 2Py, 10 228, is allowed since in this case the change in the value
of [ie. Al = 1-0 = L. Is the transition from 32Dy 1o 125, allowed? No, becayse
Ai=2-0 =2 in this case,

e - -
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Al those transitions which do not obey the above selection rules are said to be
forbidden transitions Some of the forbidden transitions do lake place but with
intensities which are about-10* limes smaller than those of the allowed transitions. Using
the energy tevel diagram shown in Fig. 10.5, we can easily explain the donblet structure,
observed experimentally, of the first member of the Balmer series. They are produced by
the foltowing two transitions: 32Dsp t0 2 2Py, and 3 2P to 2 28, . Similarly D, and
D, lines in a sedium lamp are produced by the transitions 3 2Py, 1o 325, and 32P,,
16 3 25),. Not only the above structures but many other spectral features can be

explained by associating a spin angular momentum to every electron and using the
seiection rules given by Eq. (10.11).

Let us now extend these ideas 10 multielectrons atoms.,

106 MULTIELECTRON ATOMS

Lel us consider atoms having more than one electron. Hk; is the orbilal anpular

momenium vectar of the it atomic electron, the tolat angular momentum vector L of the
whole system is given by

L=3L (10.12)

To obiain the values of ihe quantum number L we first combine {, and !, to obtain their
resultant 7. Then this {g is’ combined with & to obtain new resultanis f};. This process is

repeated untii all electrons are laken inlo consideration. According to the vector model
of the atom ihe resultant [p has following velucs

lp=l+h h+h-1 |l =h)+1,] -] (10.13)

Following the above rule each {p will combine with {3 to yield

IE=IR+13|' 1R+f3—l. -..‘l]"‘lﬂl‘l‘l'“a—fR‘ (10.14) [

etc. For example if £, = 1, [, = 1 and fy = 2 the values of [z will be 2, 1 and O and the |

values of Iy will be (4,3,2,1,0). (3,2, 1) and 2. Similarly, for the spin angular
momentum we have

€= Z 5; (10.15)

and the values of the resultant S are ohtained by following Eqs. (10.12) to (10.14) by
replacing [; with s;. Since for cach clectron s; = 1/2, therefore. for (wo eleclrons § = !
and O and for three clectrons S = (3/2, U2) and 142, You can casily verify that for an
sivm having even snumber of clecirons the resullant S will have integer values but for
atoms having odd number of electrons the values of the resalant § will be half integers.

Finally L and S combine according tu (10.6) 10 give the values of the total angular
momentum quanlum number J and the spectral (erms given by 25+ 1L, are obtained. The
values of J are oblained from (10.13) by replacing g, {; and &, with J. L and §,
respectively. Thus

I=L+S L+S—1,..,}L-8l+1,]L-5] (10.16)

i kind of addition of angular momenta is called the L8 coupling. There is another
“ind of addider of zngular mcmenia called the M csupling — we are o

details fiere,

Y a1 ys pow onnsider the assigament of four quantum number (u, . my, m;} lo

individual electrons in a maltclectron atom. For the siability of the atom its coergy
should be minimum. It follows then that for all the clectrons in an alom we should have
n=1,1=0, m;=0and mg=+1/2 or - 1/2. However, the above assignment is not
comect. The distribution of atomic electrons according to their quantum numbersn and [
is known as the electronic configuration of an atom. It follows the Paull exclusion
principle. We will discuss it in bricf here.



Pauli Exclusion Principle-

According to this principle no two electrons In an atom can have the same four
quantum numbers (u, /, n1;, m,). For example, in the pround state of a helium atoin, the
four quantum numbers associated with two atomic clectrons are (1, 0, 0. + 112} and
.(1,0,0, - 1/2), Thus, the first three quantum numbers a, ! and Ay are the same, but the
fourth quantum number m, is different for the two electrons. However, in the excited
states of helium one cleciron may be in (1,0, 0 + 1/2) siate while the other electron ™

may have any other value of the quantum numbers n, /, my and m, Now if 5, = % and

£2 = ——, the resultant value of S can be 1 as well as 0 and we have two Lypes of temms
given by 3L, and 'L, For the first tenm, known as a triplet, the three values of J are

L+1, L, L-1 with L =+, On the other hand for the" second term, known as singlet,
J has only one value equal to L.

With the help of Pauli's éxclusion principle, we can now describe theshell structure of
an atam.

As you have siudied carlier in this unit, the central ficld in a multicleciron atown js not
spherically symmelric. Therefore, the energy of the system depends upon £, us well as
S. A guanium mechanical calculation shows that for a helium atom, the wriplet terms
have lowes energics in comparison with the corresponding singlel terus. But {0 a good
approximation, the ¢nergy of each atomic electron depends upon its principal quantum
number n and orbilal angular momentum quantum number I, unlike the siwation for the
hydrogen atom. These cnergies must not depend on ny and m, hecause the potential
encrgy of cach clectron ix spherically symmetric and spin independent. Henee, there are
2(21 + 1) degenerate states with the same encrgy E,, 5, comresponding o the (two possible
values of mgand (2f + 1) possible values of . All of them will have nearly the same
energy. This group of 2Q1 + 1) spin-orbitals constittes an atomic subshell at energy
E,1 for each nair of quantum numbers n and {. They vre said to form an (4 1) cnergy
subshell. Thus in an atom, form = 2 and ¢ = 1, there will be 2(2% 1 4+ 1) = § clectrons
m the {2p) subshell.

Each value of n detenuines an electron shell for a given alom. The number of electrons
in the nth shell is 2#2. Thus, in the shell with n = L, there wiil be 2 electcons: in the

n = 2 shell there will be 8 clecirons, and so on. Further, a shell consists of n subshells
labclled by # and 4, as ! ranges from 0 1o n— 1. And every nf subshell contains

2 (21 + 1} spin-urbilal states. For example, forn =2,/ =0 and 1, there will be (wo
subshells (2x) and (2p.) In the 25 subshell there will be 2(2 x 0+ 1) = 2 elevirons. kn
the 2p subshell there will be 6 clectrons, and so on,

Thesce shedls are also luhelled KLMN . ... according o whether s = 1,2, 1V 4. .
In accordance with the Pauli exclusion principle, all clectrons in a shell are characterised
by different st ol fur quamum numbers and different cigenfunctions,

To sum up, the ground state of an atom with atomic number Z is the minimum cnergy
configuration for the bound systent of Z elecirons arganised in a shell siructure. Starting

with the iuner-most electrons, the vrder of the shells and subshells with increasing
energy is given as

Is, 25, 2p, 35, 3p, {45, 3d). 4p, [5s. 4d), 5p, (6s. 4f, Sd. ... (10.17)

The numbers 1, 2, 3, ... represent the valucs of i and the lcliers, s, p, o, f ... correspond
lof=01,2 3. . The brackel in Eq. (F0.17) enclose tevels which have very ucarly
the same value of energy. Although we have said that clectrons having same values of
n and { have nearly the same energy bt a detailed study shows tha the rules for the
fitling of subshells that hold throughout the periedic table of elements arz as follows:

1. Subshells are grouped under like values of n + 1.

2. Groups arc¢filled in the order of increasing n + I,
3. Within cach 1 + [ group, subshells are filled in the order of decreasing { values.
Let us now apply these ideas to determine the electronic structure of elements in the

periodic table, i.e., to write down the ground state configuration for any aom in the
periodic table,

Atomle Specira
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The Periedic System of the Elements

_ The ground state configuration of a neutral atom with Z electrons is obtained by

distributing them according 1o the tules given above.

The first element {(Z= 1) is atomic hydrogen, which has the ground state configuration
Is. For Z = 2 (helium), both electrons accupy the 1s level and the configuration is 152,
Thus, we may write (heir etectron configuration as follows:

H He
Is 152

For the lithium atom, there are three clectrons in its ground state and its electronic
configuration is 1s2 2s), because 13 is forbidden by Pauli’s exclusion principle. For
Z = 4 {beryllium), the configuration is 1s2 25%. Thus we have

Li Be
152251 152252

The next element is boron (Z = 5). Since the K shell and 25 subshell are full, the fifth
slectron occupies the 2p subsHell. As Z increases from 5 to 10, the electrons fili the 2p
subshell progressively, so that we have forZ =5 to 10:

B c N 0 F " Ne
152 257 2pl - 2520p2 - - 222p) - 252 2pA - 252 2pS - 252 2p6

Then, the electronic confipuration of a sodium atom having 11 electrons is 152 252 2p8
351, It has four subshells having different vaiues of (n ). Out of these four subshells,
the first three have maximum permissible number of electrons. Such subshells ~r= said
10 be closed subshells. The last one is called 2n open subshell.

From Z = |1 to Z = 18 (argon), the 3p levels fill progressively. For Z = 19 (potassium),
you might expect the nineteenth electron (0 go 1o 34 level but the 4s fevel has a lower
encrgy than 3d level. 'Ihercfore, the ground state clectronic configuralion of a potassium
alom is 152 252 2p6 352 3p6 45! and not 152 252 2p2 35% 3p8 3d!. Similasly, the ground
state clecuoni¢ configuration of Scandium atom (Z = 21) is 152252 2p6 352 3p6 452 341,
These configurations agree with the experimental abservations. You should concretise

these ideas in your mind before studying further. The following SAQ will help you do
this.

SAQ 6

Detrrming the electronic configurations for atoms withZ = 20, Z = 25, Z.= 3} and
Z=137.

Spectral Terms of a Multielectron Atom

How do we determine the spectral terms of a multielectron atom? For such atoms, only
the open subshells contribute towards total L, S and J values,

Let us consider the carbon atom & = 6) as an cxample. Iis elecironic configuration is

152 252 2p2. Since only the open subshell matters, let us cousider the 1wo eleclrons in
the 2p subshell. For these electrons:

fly =2. .“ =l..¥'! =%'dﬂd n2=2, ;22 [.52=

m|-—~

. 1 1 Po-1,_
Thus,1hclolalspm5=7+?.|7—7[-1.0



and the total orbital angular momentum
L=1+11+1~3}1-1|
=2, 1,0

Thus for § = O the possible J values are =0, 1,2 and for § = LI=1,02,1,0),
3.2 1.

Now the Pauli exclusion principle also tells us thatS = 0 Lhould correspond 1o even
values of L and S = 1 goes with states of odd L. Therefore, we can only have the
following L, S, J combinations:

S=0,L=0whenceS=0
§=0,L=2whence J=2
§=1,L=1whence J=2,1,0
Thus, the spectral terms are
'So. Py, *Py. 3Py and 'D,

Now the question is: which of these has the lowest energ)? We can determine this using
the three Hurd’s rules given as follows:

1. The state with the largest spin has lowest chergy.

2. If the incomplete subshell is less than half full. / =|L—S] is the ground state; if it
is more than half full J = L + S is the ground state.

3. Among the levels with a given value of §, the slate with the largest value of L has
the smallest energy. '

Let us apply thesc rules to Carbon atom. Rule 1 tells us that Lhe Jowest state is one of
the 3P states. Rule 2 telis us that the lowest energy state is the one with J = 0. Thus,
the ground slate of carbon atom is the 3P, state, Using Rule,3, we can-te]| .IJm:,’Dz has
lower energy than '5;, although neither is the ground slate. Incidentally; Hund's rules
are not adhoc — they agree with quantum mechanical calculations:

The spectral terms are very imporiant in spectroscapy where the L, §, J quantum
numbers are part and parcel of the sclection futes that govern, transitions beiween atomic
siales. We will briefty stale thern. But before that you should fix the ideas presented
here by doing the following exercise,

1

SAQ 7

Obtain the ground state teoms of He, Li, Si, and Sc.

Atoms can also exist in exciled slates. However, © minimise their energics they make
transitions from one excited state to lower excited states and ground siate. Theselection
rules for allowed transitions in multiclectrons atoms are as follows:

() AT=0.£1(s=20—5J =0is not allowed)
i) AL=0 +

(i) AS=0

(v) Al =+

(10.18)

where [ is the orbital angular momentum quantum number of the atomic electron which
takes part in the transition. The same rules arc followed when an atom absorbs
electromagnetic radiation and makes a transition from a lower state to a higher excited
state. One of the features of alomic line specira is that the width of the emitted ling is
finite. This feature can be explained with the belp of the concepts you kave siudied so

far — it arises due to the finite life tme of excited states. We will now discuss it briefly.

Atomlc Specira
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10.6.1 Life Time of Excited States and Line Broadening

Lzt us consider two stationary states of an ‘Zom having energies E; and E; (> E)). If the'
atom is in lheuppe:rstalcitwilihavcanmnﬂt:ndmcylonmkcamnsiﬁonmlhc
lower state and during the transition it will radiate electromagnetic radiations. At the
start of the transition the atomic nergy was E, and at the cad the atomic energy is E,.
!-{enccthccxccsscnu’gydmmsswithﬁm.mmdmﬁonofﬂwumsmgy“ﬁth
time is found to be exponential. At time / the excess energy is given by

E=Eyexp (-1 (10.19a)

where Eg = E,E,. Now the life Gme € of an excited state is défined to be that time in
which E reduces to a value Eq/e. You can readily verify that the above definition yields

1= 1/y . (10.19b)

Due 10 the decrease of the excess energy E with time, the radiation cmitted by the alom
is not strictly monochromatic. A plot of I(v} {energy emitted per unit frequency range)
versus the frequency v of the emitted radiation gives a curve as shown in Fig. 10.6.

b

Lib—————=

1(v)

/2 -

!
|
i
|
I
|
1

JE——-_
-=— |21t S

Fig. 10.6: Spu:!n]dhtrlhnumo{c-ﬂldrdhﬂon.

We find that the frequency width of the curve atlo/2, where fo is the maximum value
of I(A). is /2nt. Hence the energy width of the spectral line is givcn Dy

AE = kAv = k21t
ar
TAE = k {10.19¢)

Thus the smaller is the life time, larger is the enctgy width of the emiited linc. You
may recall that the width of a line is 2 consequence of the uncertainty principle and

1 is known as the nzturel Jife time. For cxcited stales which arc connected to the lower
statcs by allowed transitions, the life time is of the onder of 10~8 5. For other excited
siaics, the lifc time is much longer and can be equal to several seconds. According to
Eq. (10.19¢), the increasc of 7 reduccs the width of the spectral fine.

Let us now summarise what you have studied in this unit.

10.7 SUMMARY

& In this unit you have studied the Stern-Gerlach experiment which measured the
magnelic moment of an atom and also gave a direct vu'iﬁcalion_of spuce
quantization. The quentitative results of the Stem-Geslach-expenment could not be

- —erwmEaeas-



explained by the help of three quantum numbers i, 1 and m,. Goudsmit and
Uhlenbeck introduced the concept of an intrinsic angular momentum known as spin
angular momentum S associaled with an electr~n, The quanium number associaled
with S is always i/2 giving rise 1o m, = £ 1/2.

® The orbita) and spin angular moments couple 10 praduce total angular
momentum J and quantum numbers ; and n; Due to spin-orbit coupling
{(combination of L and S) and relativistic effects, the energy of hydrogen-like atoms
depends upon i as well as j. This explains the doublel siructure of the first member
of Balmer series and the two close spectral lines produced in a sodjum lamp,

® Certain selection gules are followed when a brydrogen-like atom or a multiclectron
atom makes a transition from one slationary state 10 another.

® Every excited state has a finite life time T and when an atem makes a transition
from one state to another the spectral line so produced has afinite width:
AE = hft.

10.8 TERMINAL QUESTIONS Spend 30 min

1. Use expressions given for 8 in SAQ 3 10 show thal it satisfics the following
operalor equation

S®S=/hS
2. The number of allowed values of J for (wo different atoms in P and D states is the
same and equal to three. Determine the spin angular momenium of the atoms in
these states.

3. State with reasons whether following transitions for a multiclectron atom are
" allowed: :

@ Py — 7,
Giy s — s,
Gii) 'S — fpy,

(iv) 'Sip — 'Dsn

10.9 SOLUTJONS AND ANSWERS

Self-Assessment Questivns

_ 160~ 10-1%C x 1.054 x 10- J5

1. = eh/ 2
Ho = eh 2 2% 9.109 x 1073 &y

=927 1072 joule Tesla-! {or amn., meler?)

2. Lel the radius and the {inear velocity of the spinning electron be r and v,
respectively, The spinning of the cleciron abawi iis owe axis produces a current of
the erder of magnitude v/ The correspondips magnetic momanl is grves by

ev
=fAd = 2
Ha 2nr

F

Equating the zbove quaniity (o the cxperimentai valuc eh/ 21 we gol
v = hjur

Now the classical radius of the clectron is obrained by equating its self clectrostatic
energy e?/r (o its rest mass energy jc?. Thus we get

Afomir Spacira
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Hence v is greater than ¢ and it violates the special theory of relativity.

3. You can easily show by matrix multiplication (sec margin remark) that

o= of=a op=ih oB=-i
co=a ofi=-p
Hence S%a. = tS}‘+ S\": +SHa
——(a,+cry+az)a

h!
=T(o,a,+oycy+o'zcz)a

=—';—2 (o f +:'cr}.B +G,0)
=i[a+u+a]
4
3
I
4
h k
and S,_[I=—2—UZC1=7CL

Simitarly, 8B = (3/4) A% and S, = — (172}

Furthermore

w=ao0(])=0

Hence o and f§ ere orthogonal.
, Forn-lt—Olands=—;-'Ihus for
) L=0, J=
L=1 J=12,3R
So the lc:znsnrc?,zS,n,?.sz.Zsz.
Forn=3,1=0.1712 a.nds=—,lj—.'111us, for
L=0, J=11
L=1, J=13
L=2 J=312,52

So the terms are 3 25,p. 3 2Pia 3 2Pan. 3 2Dsn 3 *Dsp.

s, a.E:-EE‘ (172 = /1]

IL\Z lx—‘l-r.',\’
1€ L 137} 21 2

= 134 x 105 eV
., These are
Z =20 (Calcium ) 152 252 2p8 352 356 452
7 =25 (Manganese) Ls2 252 2p5 3s2 3p 452 345
= 31 ( Gallium ) 1s? 252 2p6 352 3p5 457 3410 4p
© 7 = 37 (Rubidium) 152 2s2 2p5 352 3p5 4s2 3410 4p° 55




7. For He (Z = 2), the configuration Is 152, Atode Spoctra

‘Since ny =1, =0, 5 "’%’ m =1, 12=0-32=-;-
Therefore
L=0

$=1, 0 whenee J = 0 for L =0 and § =0 (sincz § = 1 goes only with
odd values of L which are non-cxistent in this case.)

Thus, the spectral term for the ground state of He atom (1s2) is 1'S,,

For 1i, Z = 3 and. the configuration ls 12 2s1, Thus, for the electron in the incomplete
shell,

n=21=0s=Lamds=L

2 2

The ground state spectral term is 2 25,,,.
For Si (Z = 14) the configuration is 1s? 252 2p5 352 3p2, For the 2 electrops in the
incomplete subshell (3p), we have
1

n1=3.l,=1,sl=-%-,ng=3. lzzl..s'z:?

Once again S=1,0
£L=2,10

For $=0,L=0,7=0
S=1L,L=17J=210
§$=0,L=27=2

Hence the spectral terms are 'Sg, *Py, 3P, 3P; and 'D,. The ground state is 3 P,

For 8¢ (Z = 2I), the configuration is 1s2 252 2p¢ 352 3p6 4s2 34%: For the valence

- _ - l _ 3 5 a2 ' 2
electron n = 3, = 2, s_z—andJ—?—z-.Thc spectral te-ms are 3 “D,, 3Dy
According to Hund's rule 2, the ground state is 3 ZDyz since the subshell is less thap

half full.
Terminal Questions

1. We have
5X8),= Sy 87525y

_ I

(6, 0 ~ g, 5,)

2
P(ia)= :'% G = ih§;. ("’ 0,0, =i, and 0,0y = —iq;)

&~ a

Simitarly, we can obtain the values fory and z compancnts of S X S,

2. Forthe Pstate L = 1 and it is given that J =3 Hence § =~ J_ [ = 2.
For the Dstate L =2 and / = 1. Therefore S =32 = [,

3. (i) Allowed because ji s according to the sclection rules given by Eq. (10.18),
(ii) Forbidden because AS = 0.
(iii) Allowed,

(iv) Forbidden because AL = 2.
Gl
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UNIT i1 X-RAY SPECTRA

Structure

11.1 Introduction
Objectives
11.2 X-my Spectra and Selection Rules
11.3 Moseley's Law
[1.4 Applications of X-rays
1.5 Summary
11.6 Terminal Questions
I1.7 Solutions and Answers

11.1 INTRODUCTION - |

In Unit 10, you have studied the optical spectra of atoms, You- know that optical spectra
results when clectrons in the outer open subshells make a transition from excited states
10 the ground state; the photons emitted in this process have wavelengths in the visible
region. In this sense, observation of optical spectra supports the theory of atomic shell
structure. But optical spectra are not the only source of information about the shell
structure of atoms. As we have said in Unit 10, the transiticns of electrons in inner
shells result in X-ray spectra. : '

Thesefore, in the last unil of the block we focus eur attention on X-rays. Now, in order

to generate X-rays an anticathode in a vacuumn tube is borobarded by bigh energy

electrons. Such a bombardment produces two types of X-rays. One of them has a

continuous spectrum and is produced due to the deceleration of the charged electrons

irside the anticathode. The highest frequency of such X-rays is given by E/k, where :
E is the kinetic energy of the bombarding electrons. The intensity distribution of these L
X-rays a; a function of the-frequency depends litle on the material of the anticathade.

This ph:nomenon is known as Bremsstrahlung.

Simullancously, a secuad type of X-rays are also produced. Their frequencies are
characiesisiic of the material of the anticathode. Hence they are known as characteristic
X-rays, Tt is the study of characteristic X-rays that leads o the determination of the
atomic struciure. 1n his uail we are interested in characterisiic X-rays which arc
discrete in nature and are produced by transitions involving the inner shells of atoms.
You may know that the X-ray part of the electromagnelic specirum extends from
wavelengths of about 10~% m to wavelengths aboul 6 X 10~ m corresponding to
frequencics between about 3 X 1017 Hz and § x 102 Hz. The energy of X-ray photons
lics i the range of 1.2 % 10° ¢V to about 2.4 x 107 eV. These energies comespond to
differences in inner shell electron energies. So, in Sec. 11.2 we shall discuss the atomic
transitions responsible for X-ray spectra and the relevant sclection rules.

Moseley used the shell model to analyze X-ray spectra of many ¢iements and
demonstrated the connection between the atomic number and the frequencies cmitted.

You will study this relationship known as Moseley's law in Sec. 11.3.

Finally, in the last section of this unit we present a bricf discussion of the applications
of X-rays, in medicine, maleriais science, asironomy and industry.

Ohjectives

After studying this unit you should be able 10

e determine X-ray terms and the atlowed atomic transitions which produce
characteristic X-rays,



® apply Moscley's law, ' X-Ray Spectra

® discuss applications of X-rays,

11.2 X-RAY SPECTRA AND SELECTION RULES

X-ray spectra are associated with complex atoms containing many electrons. Ky -
Characteristic X-rays (Fig. 11.1} are produced, when clectrons in the inner shells of the
atoms make-transitions from one state 1o another. In order 1o facilitate our study let us K
first learn the X-ray terms. In X-ray nomenclature, the inner-most shell of an atom

(n = 1) is known as the X shell. The next shell, i.e., n = 2 is termed the L shell.
However, you know that for n = 2,  has two values 0 and 1 and therefore, for

s = 172, we have j = 1/2 and 3/72. Thus we have three terms given by 2255, 2 2P,
and 2 2Py All the three terms have slightly different energies and in X-ray
nomenciature they are known as Ly, Ly and Ly subshells. Similarly for n = 3 shell,

I has three values 0, 1 and 2 and correspondingly = - , —g- , - . Thus, this shell has WA o—
five subshells (3 %5, 32P,p, 3 P, 32Dy, 3 Dgyn) denoted by M, to My. You may -
like to determine certain X-ray terms yourself,

Intensity

Fig, 11.1: X-ray spectnmm,

SAQ1 Spend
5 min

Show that there will be seven subshells forn = 4 shell and give all the spectroscopic

terms and their X-ray nomenclature.

We have listed some of the X-ray subshells with the comresponding values of n, [ and §
and spectroscopic terms in Table 1.1,

Table 11.1: X-ray terms

Subshell n { J Term
' ] 0 12 128,
L 2 0 172 2%,
Ly 2 i 112 2P,
L 2 1 312 2Py,
M, 3 0 112 300
My 3 | 172 3P,
My 3 1 32 32py,
Myy 3 2 312 32D,n
My 3 2 512 3 g,

The correspanding energy level diagram is shown in Fig. 11.2. Stdy both Table 1.1
and Fig. 1.2 before proceeding further.

You inay nuw ask: How are X-rays produced? Are ali the transitions bhefween the inner
cneryy levels allowed or do there exist certain selection rules as in the casc of oplical
spectra? Let us find the answer to these questions.

In its normal state an atem has two electrons in its X shell. Suppose onc of the K shell

electron is {akea ou of the atom by some process, such as the bombardment of the

target in an X-ray tube. The collision causes the ejection of an atomic electron from the

K shell. The atom is singly ionized and has one hole (vacancy} in its K shell. Such an

fon is in a highly excited state. The ion deexcites when one of the remaining electrons

makes a quanttm jump from an outer cnergy state and fills the vacancy left by the ' 63
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Fig. 11.2: Some X-ruy terms and K, lines.

ejected electron. In the process of stabilisation, a numbet of transitions of the atomic
electrons from the upper (outer) states to lower (inner) siates take place till the vacancy
is transferred 1o the upper (outer) most level. Every transition produces characteristic
emission lines and some of the lines lie in the X-ray region. Thus X-ray spectra is
produced. '

e — e

The so called K and L series of X-rays result from all such electron transitons 10 the
n =1 and n =2 inner. shalls of the singly fonized atom. A vacancy in L shell or M
shell of heavy atoms also produces X-ray spectra. Like optical spectra, the X-ray
specira s also subjected (o the following selection rules.

Al=%1, aj=0,t1 : 1Ly

Hence an Ly-shell electron cannot make a transition to K shell but L, to K and L

{o K transitions arc allowed. The above (wo transitions give rise oK, and K lines,
respectively. It is easy to sec (hat the intensity ratio of Ky and K, lines is 2:1. A
measurement of the wavelengths of these lines can'identil"y the atom. Similar transitions
between K and M shells or between L and M shells also produce characteristic X-ray
lines. ' '

You may now like to apply the seleclion rules to X-ray specira.

5AQ 2

Draw approximate cnergy levels for L and M shells and show all the allowed
iransitions.

The first comprehensive study of characteristic X-rays was done by H.G.)- Moseley. He
investigated the K and L spectra of many, elements in the periodic table. His survey of
the elements revealed a patter in the relationship between emitted frequencies and the
atomic number of the atoms. These empirical observations are encapsulated in the form.

i
_of Moseley’s law. Let us now study this law. J
|



X-Ray Spectra
11.3 MOSELEY’S LAW

As shown in Sec. 11.2, the energy of an X-ray subshell depends upon the quantum
numbers n, /, and j.

However, in & crude approximation we may represent the energy value of a shell by the
hydrogenic formula after replacing the atomic number Z by Z- 06, where o is known as
screening constant. Thus for 7 shell we take

E,=-RZ-0) (11.2)

n?
Now a transition between 3 1o a; will produce an X-ray line of frequency
v - En,— B,
i DR h
(Z-op P (Z~a,)?
=R, o (11.3)

Lo nf

On the assumption that the screcning constants Tn, and Op, have the same value ¢ we
obtain

R 1 1]
v =—(Z-0)2 | - — 4 114
e o

The above equation shows that v is directly proportional o the square of the atomic
number Z, Such a relationship between the frequency v and the atomic number Z is
known as Moseley’s law (Fig. 11.3). Moseley was able to change targets in his X-ray
tube and observe the frequencies of X-rays for more than 40 elements between
aluminium aud gold in the periodic table. His experimental results were in agreement
with Eq. (11.4). However, you should nore that taking & to be independpnl of nn.is not a

good approximation, Hence Moscley's law has only a Limiteq validity, * ;| 7
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Fig. 113 : Moseleys Law.
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SAQ 3

Use Moseley's law to obtain the frequency of un X-ray line when an L to X transition
takes place in a silver atom. Take & = 3.

Let us now briefly consider some applications of X-rays, mainly in medicine, industry,
materials science and astronomy. '

11.4 APPLICATIONS OF X-RAYS

Due to their greater energy, X-rays ionize or dissociate the atoms and molecules of
substances through which they pass. The phenomenon of X-ray absorption is an example
of the familiar photoelectric effect — the absorption of an X-ray photon cxcites the atom
above its ionization level and ejects a bound electron. A quantum mechanical probability
can be jntroduced to describe the photcn-atom interaction. -And an absorption ¢foss
scetion can be defined to account for the behaviour of a beam of X-rays incident on the
atoms in a sample of matter. We measure absorplion in the laboratory by observing the
attenuation of an X-ray heam in ils passage.through a thickness of material. The
fractional decrease in intensity —di/f is related to the element of thickness dx by the
proportionality

dl

_'T=F"r d.t,

where (hc constan! . defines the absorption coefficient of the material. This expression
is easily integrated to give the intensily as a function of distancex through the sample,

starting with incident intensity Iy

r I - 0
I _
or In — =—-px
fo
or I = Ige - HtxX

The absorption cocflicienl varics with the material and depends on the wavelength of the
X-rays. We can usc measurements of the attenuation to Jetermine his dependence, and
we can then infer the related behaviour of the absorption cross section for the given

clemenl.

L
Ll
%l # Lan
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/ \ : \ ! L= 2 {nm)
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of lead. The wavelength thresholds occur where the X-may photon
t a K or L shell electron, Emission lines of lead o the K
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Fig. 114 K and L whisorplion cdges
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and L serie are also shnwn.

Fig. 11.4 shows a typical graph of py as a function of the wavelength . We observe
zero absorption in the limit & — 0. This observation télls us that the absorbing rnedium
is (ransparent to X-rays when the beamn energy is very large. We then observe a steady



growth in ebsorption as the photon encrzy decreases from large values and as A
increases from zero, unti{ we reach a sharp value of A where the medium suddenly
becomes transparent again. ‘This feature of the graph is called an absorption edge, the
first of several to appear with increasing A in the figure. The indicated X absorption
edge occurs at wavelength Ay, where the photon energy is the minimum needed to
ionize the atom and leave a vacancy in the K shell. When A becomes larger than Ay, the
X-ray photon energy becomes 100 small to free a K-shell electron but remains large
enough o cject an electron from an L (or higher) shell. We again observe a steady
growth in absoegtion as the wavelength continues to increase until we reach one of the
indicated L absorption edges. The various absorption thresholds along with the
characteristic X-ray emission lines provide a signature of the particular atom, and bota
give an indication of the energy levels of the system. We include the emission lines of
the K and L series in the figure so that we can note the pasitions of these specteal lines
relative to the absorption edges. '

The property of penetration of materials by X-rays makes them very ‘useful for various
applications, particularly in medical diaguosis. The relatively greater ghsorption of
X-radiation by bones gs compared with tissue results in g fairly ‘well-defined"
photograph of the bonz structure. You must surely have seen such X-ray plates, X-rays
are also used for wreamment of concer since they seem 1o have a tendency o destroy
diseased tissue more readily than heaithy tissue. But you musi remember that X-radiation
{in any amount, small cr large) does destroy some good tissue. Hence, extreme care
must be laken to protect oneself when handling X-rays or during exposure (o X-rays,

X-rays are used to produce 2 photographic image of an opague specimen and provids
information about the gross internal structure of any object that they can nenetrate. This
technique called radiography is widely used in diverse areas renging from medicine 10

" industry. Whether it is to examine the chest of a patient for evidence of tuberculosis,
silicosis, heart pathology or embedded foreign objects, of bones in cases of fractures or
of arthritis ¢or other bone discases, X-rays, as yau know, are the most handy tool used in
medical applications, .

X-ray radiography is also used in detecling internal flaws in metal casting or welded
Joints. A defective casting or welded Joints inserted into a bridge or a building can Icad
to disastrous results. Such metal parts and welds in a pipe are routinely examined by
X-rays 1o observe cracks, inclusions and voids before tiey are uscd. X-ray radiography
also helps in detecting any crack in the body of ships, cars and aeroplanes. Industrial
radiography énables detection of internal physical imperfections in materials such as
flaws, segregations. porosities elc, [r is oflen used to visualize inaccessible intermaj parts
of industrial systems ta check their location or condition, ¢.g.. in the foundry industry (o
guarantee the soundness of castings; in the welding of pressure vesscls, pipelines, ships
and reactor components 1o guarantee the soundness of welds; in (he manulacture of fyel
elements for reaclors to guarantee their size and soundness: in the soiid-propetiant ang
high explosives indusuy o puaraniee the purity of the material being us=d; in the
autornotive, aircraft, nuelaar, space, oceanic and guided-missile industries, whenever
internal soundness is required.

Among the nany objects now examined by radiography arc coal, minemis, rubber tyres,
goll balls iabricated objeers with internal seals, electrical equipment, printed circuirs,
fibers, plastics, containess of al| kinds. grain, (ruir, meats, battery, plates, suitcases,
postal packages, and rantings.

Compuierized wmogriphy {CT sean use X-rays o produce images of internal areans of
the body and hax made o strong impact on sinedical dizgnosis and indusgisi Inspecton.

X-ravs also find application in auiteriils scicnce. You Have briefly siudicd Brayy's
diffraction law in the conext of wive-particle duality I was first divcovesod lor
diffraction of X-rays (rom the surface layers of a crysial, Wity a Lngwn Sy ul Lanice
spacing o, we can measure lhe wavelength of the radiation; and with a known
wavelenigth we can measure the latsiec spacing o Xy difftaction has been developed
inte a standard techusyare for analys.ng eryseal structure and its defects, X-ray Jiffraciion
and crystallography has led to exiensive study of crysial structures, their atemue
arrangements and electron distribution, etc. Chemical clemental analysis of solids,
liquids and thin films uses X-mays as a non-destructive physical method. X-ray
microscopy is used 1o obiain quantitative chemical information about samples as small
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Application of Quatum X-rays are being widely used in astronomy for exploring the universe. All types of

Systems ) 4
Mechanlcs to Some .System: astronomical objects, from stars to galaxies and quasars emit X-rays which can be
Astronom detected by specially designed X-ray felescopes placed in rockets, satellites and space
y probes above the s atmosphere. These have led to the discovery of new stellar

objects and yielded information about the distribution of stellar objects in the sky,
time-svolution of galaxies and supcrnova remnants, and later stages of a ster's life when
it metamorphoses into a collapsed object like a white dwarf, neutron star or black hole.

With this brief discussion of X-ray spplications, we come (o the end of this unit. Let us
ow summarise what you have studied in this unit.

11.5 SUMMARY

® X-rays are produced in two ways

(i) when high speed electrons penefrale atoms, they decelerate as they pass close to
{he atomic nuclei and produce continuous X-radiation spectrum. This is often
referred to as “Bremsstrahlung”.

(ii) In another process, these electrons remove electrons from the inner shells by
collision. The transilions of atomic electrons from outer shells to vacant inner
shells result in characleristic X-rays.

@ The selection rules for atemic transitions that vield a charactenstic X-ray spectrum
are

Al =11, 45 =0, %l

& The relationship between the characteristic JL"-ray frequencics emitted by an atom
and its atomic number are given by Moseley’s Jaw:

® X-rays find several applications in medicine, industry, astronomy and materials
science. _ '

Ao

11.6 TERNHNAL QUESTIONS Spend 15 min

]. At what potental differcnce must an X-ruy fube operale 1o produce X-rays with a
minimum wavelength of 1A? :

2. X-rays from a cefiain caball target lube are composed of the strong K-series of
cobalt and weak K lines due to impuritics. The wavelengths of the K lines are
1785 A for cobalt and 1.537 A and 2.285 A for the impuritics. Using Maoscley's

law, calculate the atomic numbers of the impurities and identify the elements.

117 SOLUTIONS AND ANSWERS

Self-Assessment Questions
l. Fern=4,1=0,12 i, and s = 172
Thus tor  § =G j =12
! =1. j=1iR302
{ =2, Jj=372,52

{ =3, j =522
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Hence forn = 4, lhcsubsheﬂsandcorm‘pondingtnmm
N N Ny Ny . My N Ny
4%y, 4%y, 4%y, 4 iz 4Dy 4%y, 4%F),

2. See Fig. 11,5,

Ly

Ly

L

Fig.11.5: Encrav levels for L apd Af shells, and nilowed transitions betiréen £ ond Af shells,

- 1% r .
3. v=D28XI6MX 10Ty 0y gy (--I-+ 1) (- for silver Z = 47)
6.526 x 103 Js 4

= 4.7 x H€ 1z

Terminal Questions

I. The encrgy :s given by

E=1lv= ‘.h_E
X
= £:626 x 107 Js x 3 x 10° ms"!
1n-19m
=20x 109}
And the potentizi difference s
yoE 20x10-1% 5
©o16x10-8 ¢

=125 x I+ vV

2. Using Mascley's law we can write

a =1 and iy =2

X-Ray Specira
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sngitention of Quantum For K series ny = 1, ny = 2. For cobalt Z = 27 and applying Moseley's law we can
hjechianics to Some Systems

wrilc
B ms) -9
3x108ms? 136 x1.6x 10 Jx(z?_c)zx(l_l_)
1.785 x 1070 m 6.626 x 1074 Js '
or
(27 - o) = 3 x 109 x 6.626 x 107 x 4
1.785 x 10-10 x 13.6 x 1.6 x 1071% x 3
= 6RO
ar
27 -0) = 26
g =1

(i) Now for the first impurity, A = 1.537 A. Therefore, from Moscley’s law we have

3x 100 ms 136 % 102X 1070F sy w3
1537x109%m  6626x 107 Js
of
(Z-1)2 = 790
or
(Z-1) =28
and

Z =29, so the impurity is copper.

(iii) for the second impurily, we have A = 2.285 A. Thus

Zo e 3X 109 msT! X 6626 % 107 4
2285 % 10-10 % 13.6 % 1.6 x 10~197 3
= 530
0l
(Z-1H =123

Z = 24, so the impurity is chromium,
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Table of fundamental constants

for infinite nuclear npee
1]

Rydberg's constam
for atomic hydrogen

Bohr magnelon

Nuclear magneton

H
_ ok

Hp = 2m
_ef

Y

Quantity Symbo! Value
Planck’s constant h 6.62618 x 107 J ¢
A= -2"; 105459 x 107 3 s
Vetocity of light in vacuum = ¢ 299792 % 10° m 57!
Elementary charge (absoluts
.value of clectron charge) ¢ 1.60219 x 107" C
Permesbility of free space T 4t x 107 H m™!
= 1.256 64 x 1075 H m!
Permittivity of free space € = -p;‘? 8.854 19 x 1072 F m™!
Gravitational constant G 6.672 x 107! Nm? kg2
2
Fine structure tonstant ox=—£ L = 729735« 107
: dne fic 137.036
Avogadro’s number N, 6.022 05 % 102 mol™!
Faraday's constant F=Ne 9.648 46 x 10* C moi™!
Boltzmann's constant k 133066 x 1078 J K!
Gas constant R=Nk 8.314 41 1 mol™ K-
Atomic mass unit amu. = 1—12 My, 1.660 57 % 10°7 kg
Electron mass mor m, 9.109 53 x 107 kg
= 548580 x 1074 a.m.u.
Proton mass o 1.672 65 x [07*7 kg
F = 1.007 276 a.m.u.
Neutron mass M. 1.674 92 x 10727 kg
= 1,008 665 a.m.u.
Ratio of proton to Mp/”'e IR36.15
electron mass
Electron charge 1o fel/m, 1.758 80 x 10" C kg™
mass ratio
2
Classica) radius = < 281784 x 10715
of cllcclnl:m o 4“50""'—2 1om
4re h?
Bohr radius for gy = 529877 x 10°H @
atomic hydrogen me?
{with infinitc nuclear mass}
2 i 1]
Rydberg’s consiant R =M < (09737 x 167 ]

496 78 % 107 m-!

v.27408 x |07 1 T

505082 % 10727 y !

7

'[.
F
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BLOCK INTRODUCTION

In Block 3, yon havs studied about the atom and its strecture mainly in terms of the
dynamics of elecrons surrounding the atomic nuclens, which is mapifested in alomic
spectra, It is now time for us 10 delve deeper into Lthe secyets of the atom and enter the
domain of the atomic nuclens. This forms the subject matter of this block wherein we intend
to movide you with a bird's eye view of the physics of the nucleus.

The march towards our understanding the physics of nucleys can be said (o have begun about
2 hundred years ago with the chance discovery of the phenomenon of radicactivily, This
discovery provided researchers convenicnl Wools to probe the structwre of malter and led 1o
discoverics like artificial transmutation production of transuranic clements and radio isolopes
which find wide use in medical diagnosis and therapy, agricalre, radiccarbon dating ete.
You will study the phenomenca of radicactivity and the physicsunderlying it in Unit 12,

‘The alpha particles from mdioactive nuclei were used by Rutherford to ‘see’ the atomic
structure. As you are aware, these classic scatiering experiments of alpha particles by awoms
led to the discovery of the nuclear model of alom. This opened the flood gate of
investigations into the atomic nucleus — its cornposition and strochre, its properties and the
forces of interaction between its constituents. In this process, answer to the question of
nuclear stahility was also spught. In Unit 13, we present the current understanding covering
these aspeels.

Science and s applications are bound 1ogether as the frait 1o the tree which bears it This
statemen| of Louis Pastem's beautifully captures the spiri: in which we teach physics in o
courses. Thus having discussed the fundamentals of nuclear physics in the first two gnits of
this block, ip Unit 14 we focus our attention on the peaceful uses of nucleus — its applications
in the field of nuclear energy, hydmology, medicing, sgriculture and industry,

Investipations into the nuclear struciure have led rot only to the discovery of newer, mare
clementary particles but kave also provided deep insights into fundamental questions
confronting human consciousness today — in particular, the questions of the origin of
ymiverse and its evolution. Therefore, in the last unit (Undt 15 } of this block {and this
course), we take you on a discovery tdp into the world of clementary particles. In the procsss
we also familiarise you witl' the tools and techniques (viz. particle accelerators and
detectors) which have made these insights in the nucleer domain a reality.

One final wordt about how 10 swdy the block, At the risk of repeating ourselves, we would
like 10 remind youthat while studying the units you should answer the SAQs and ttrminal
queslions on your awn. Danot give into the tempiation of looking up the answers before
altempting the exercises, The study time envisaged by us on the basis of our experiences is
ahoul 50, 6, 7n, 2nd §h for Units 12, 13, 14, 13 respectively, The acwund (ime you ke may
vary depending on your previous knowledge

We hope that you will enjoy this journey into the world of atomic nucleus as much as we
Liave,

We wish you good lucki







UNIT 12 RADIOACTIVITY

Structure

12,1 Introduction
Objectives

122 Discovery of Radibactivity and Preliminary Studies

12.3 Radioactive Decay

12.4 Growth and Decay of Radiaactivity

12.5 Successive Radicactive Transformatons
Radiwaclive Equilibrium

12.6 Summary

12.7 Terminal Questions

12.8 Solutions and Answers

12.1 INTRODUCTION

Towards the end of nincleenth century, physicists thought that the era of exciting discoveries
in physics was over. However, the chance discovery of radioactivity by Becquerel in 1856
overcame this pessimism and opened the flood gates for new discoveries. This became
possible because spentanesusly eniitted radiations — alpha, beta and gamma-rays — could
be used as convenient 100!s to probe matter. For instance, the alpha- particles from
radicactive auclei were used by Rutherford 1o propose the nuclear model of atom. (You will
leamn about it in the next unit) It further led 1o discoveries of artificial transmutation and
production of ransuranic elements as well &5 radicisotopes, which find wide use in medical
diagnosis and therapy, research, agriculture, carbon dating of archaeslogical specimen eic,
The sindies of beta decay led to the discovery of neutring. In ghor, discovery of
radioactivity acted as precursor of fundamenial developments in nuclear physics in the carly
part of this century. )

In Sec. 12.3 we have discussed the theory of redioactive decay. We have applied this theory
to explain the growth and decay of radioactivity in a given radioactive sample in Sec, 12.4.
Successive radioactive disintegrations and the condition of radioactive equilibcium amongst
the diferent members of a radioactive series is discussed in Sec. 12,5,

Objectives
Alter going through this unil, you should be able Lo
o  jdontifly tho three types of rudicactive radigtions
e formulate the laws of mdicactive tansfonnation
e compute the haif-life and disintegration consiant of a radicactive substance
e cxplain the growth and decay of radioaclivily in a given sample

» cxplain the mdicaclive equilibium amongst the different members of a mdioactive
series and

list different elements belonging 10 naturally eccuming radioactive series.
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PRELIMINARY STUDIES

The story of discovery of radipactivily is very interesing. In 1896, Henri Becquere! was
working on the phenamenon of fluorescence i which certain substances amit visible light
when they are exposed to vitre-vinlet radiations, say from Lhe ssm, In one of the drawers of
his desk, Henry Becquerel had kepi a colleciion of various minerals, which also included

uranium salts, along with several cardboard boxes of photographic plates wrapped with thick

black paper. A few days later hs used one of the boxes of photogre; fuc plates, When he
developed the plate, he was amazed to observe that it was heavily fogged. He tried other
plates and found them also to be exposed. This puzzied him because all boxes were unused.
Can you puess what hed alfecied these photographic plales?
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Becginic” conjectured very righdy thas wranium salte, placed beside the ptolographic plates
Riust hiavo emited some now type of radlation(s). Afler exisnsive experimontation,
Becquerol also proved that thess radiatians, If passod through some gas, make It conductng
by virtue of their lonising power. The emisglon of ionising and pencirating sdlation(s) from
uraniom was named radicactlvity.

Following an exhaustive study, Madame Marie Curie found evidence of radioactivity in
elements like tharium, polonium and radium s well. She also obtained convincing
evidences that radioactivity s a nuclear property of the element concemned and remains
unaffected by physical o chemical changes,

By sudying the jonising and pepetraling power of these radiations, Rutherford established
the exisience of two distingt components, a-rays and f-rays. & -rays are more easily
absorbed in maties compared o P-rays but have comrelatively grester ionising power.
However, the penctraling power of f-rays is about 100 imes more than that of a-rays, The
existence of the Lhi'_rd componeny, called gamma 'rays, which are much more pencirating than
the other two, was established by P. Villars. By subjecling these radialions 1o a magnetic
field, it was also esiablished that the gamma rays arc electrically neutral, whercas the
alpha-rays are positively charped and the beta-rays erc negatively charged panicles. We now
kmow that a- rays can be identified with helium nuclei and B-rays wit's cloctrons. Morcover,
a-particles alfect photographic films and excite Mlourescence in many substances. Also, they
produce phosphorescence and their specd is of the order of 1/100th of the speed of light On
the other hand, the speed of B-particles is about 1/10th of the speedt of light, Gamma rays ()
are very short wavelength elecromagnelic mdiatians emitted from nuclei of radicactive
substances and ravel with speed of light Fusther studics revealed that radioactive
emanalions have energies in the MeV range. To enable you 1o comprehend these concepts,
we give below some examples of radiosctive decays which involve emission of o and

f-rays:

By o Mh+a (420 Mev)
bRa — 2P+ (4.78 MeV)
Co — “Ni+f (0.318 MeV)
0Sr - MY+ [ {0.546 McV)

(The B-decry is accompanicd by Lhe emission of neuirinos. But these are very difficult 1o
deiect and we will discuss aboul them latery You will agree that all these reactions involve
rzasmutation of onc clement (o another: uranivm decays o thorium, redivm 1o Tutheniom,
coball w nickel gnd stontium 1o ylium. T many cases of @ and § decays, the daughier
nuclcus emeiges in an excited sate and subsequently undezpoes a Lransition 1o a
Towesr/ground state by emitting a y-ray. In Fig. 12.1 we have shown the energy-level diagram
for the “Ni nuclei formed in the B-decay of *Co. A nucleus in an cxciled state can also make
a Gransidon io g Jower staie by tansferring iis caoialion CRUEY W an alonud elccmon, Sweh
an cnorgy transfer s called internad conversios, The elccaon gaining this energy gets
ejected from the atoin as a p-ray.

12.3 RADIOACTIVE DECAY

You now know thal when a radicactive ¢lement disintegralcs sponiancously, its nucleus

ermits cither an & ar a J-particle, The nucieus of new elemen: fommed coudd also be unsiable.
The first decay is then succeeded By another and another, .., resuiting in a saguential series.
Refer 10 the decay of 281 shown belawn

By e B iy, —ﬁ% e A = R T
Thc decays continue undl o steble isolope is senohed. In dns soics, e hnud siabls dcoy
oroduct is fead. B8 is called the parent nuciens and the resuitant nucleus = *Th is caled the
daughier nudeus. You may now like to know other such seiies, We have four such series
in all: thorium series, neptunium series, wanium series and actinivm series. The mass
numnbers of the members of these sexies are given by 4a, 4n+1, 4a+2, 4n43 respectively,

WhLIe 7 i5 aR iRiCge




In ol the mdioactive serles, & parent radioactivo elemant of largs atomic nomber snd vary Radtosstiviiy
long half-is gives rise 1o & seriea of radicactive sloments a3 & result of suocessdvs scisslons
of a.or B-particlos, Wo can oxpross the transformations by expresiions of the {omn:

AX > Hrea

:P-’ 3+1Q+p.

The decay products may themselves be radicactive and decsy by emitting « or P-particles.
The successive radioactive transformations continue, mitid we reach a stable isoinpe of lead.
The members of the uranium series are listed in Table 12.1, together with the haif-tife and
mode of disintcgration. Table 12.2 gives the comresponding Information sbout the actiniym
seres.. while Table 12.3 refers to the thorium series, In the uranium seriea, ReA, RaCand
Rak ail have utomic number 84 and are isotopes of polonium, Similarly, RaB, RaD and RaG
all have atomic number 82 and are isotopes of lead.

Table 12.1: The Ursnlam Series (4 xdn 4 2)

Half- Particles

Radioactive Chemical Z- A

species symbol life emitted
Uranium I ul 92 238 45x 10%yr o
Uranium X;  UX, %0 23 24\ B
Umniom X,  UX, 91 234, 118m A
Urenium 2 Uz 91 234 67h B
Urasium 1 un 92 234 25% Wyr o
Tomium Io 90 230 8.0x 104 a
Radiwm Rs 88 226 1620y ©
Radon Ra 86 22 382d a
Radium A ReA "84 218  3.05min a,p
Radinm B RaB 82 214. 268 min B
Astatine-218  At-218 85 218 2s @
RadidbnC ~ ReC 83 214  19.7min g.a
Radium C’ RaC’ 84 214 164x10% o
Radivm C* RaC” 81 210 1.32min B
Radium D RaD 82 210 194yr f
Radium E RaE 83 210 504 p
Radivra F RaF « 210  138.3d o
RadimG ©  ReG 82 206 — siable

—UX, exliibits a branching elfect; 99.65 percent of UX; stoms emis f-particies 1o fonn UXz, and 0,35 pescant of
the UX, stoms emit B-particles to form UZ. Both UX; and UZ bave 1he sas mass nursber 234 and the saioe
promic nesmber Ok, ba theis uclear enargy levels are difforems. Soch paire of r=dfeanive sparies ev kmowm 2s
muclesr normert.

We note that a few isotopes in each of the radioective series have two aliemative modes of
decay: these nuclides decay both by q-emissicn and by - emission. This type of
Mnmhkmﬂdmmxﬁhﬁiﬁ‘hﬁdbya%h-##am
fov each mode of decay. Far exaniple, wo find branching docays for RaA and RaC [n the
UTRNTm BEFS, F0F AG, ACA B AUC I i actinium 50503, 5id K ThA od ThCin the
thorinm serics. In most chses, one modo of Jécay is mors frobable tiran the other. Tiuss Rasc
sﬂ.ﬁ.&&&ﬂzywﬁmﬁm}ywamwgmh>9%);aﬂyamn&mﬁm
(< 18) of the stons disintegrale by B-emission. O the other hand, RaC, Ac and AcC decay
aimost entirely by Bﬂdﬁmwhh<1%ofdwmdmmbya¢mlﬂmmwly
umummmammmnfaawmasmim

ist j TMncpumlummiﬂﬂHBwhhplumnhm(Pu)ammeﬁnalmhm

f-disimicgration. .
product is an isozope of bisruth (Bi).
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Table 122 : The Actiatum Series (4 « 41 + 3)

Radjoactive Symbol Z A Half. Particles
specics tife cmileed
Actinouranium  Acl) 92 235 7.1x10% o
Uranivm YUY 90 31 256h p
Proloactinium  Pa g1 231 34X 10 o
Actinium Ac 8o 227 22y7 B.a
Redioactinium RdAAg 20 7 18.2d o
Actiniom K Ack 87 23  22min f.a
Actiniym X AcX 83 3 11684 a
Aclalin 219 AI 219 85 219 0.9 min a,B
Actinon An 36 219 392s o
Bismuth 215 Bi-215 83 215 & min p
Actinium A AcA 84 215 183x10% o, p
AcliiamB  AcB 32 211 361 min B
Astatine 215 At 215 & 213 1s (44
Actinium C AcC §3 21 2,16 min B o
Aclinium C’ AcC’ &4 21t 052s o
ActiniumC”  AcC” 81 27 4.8 min B
Actnium D AcD - 82 207 —_ stable
Table 123 : Tha Thorlum Sark (A = 4 4)
Radicactive Symbol 4 A Half- “Particles
species life emtned
Thoripm Th %0 232 139x0% o
Mesothorium 1 MsTh, 88 228 67yr p
Mesothonum It MsTh, 89 228  6.43h B
Rediothorium  RdTh X 228 1.9y a
Therium X Th 38 224 isdd c
Thoroa Th - 86 220 5158 o
Thorium A TrA g4 iI6 0Q.i6s o, f
Thorium B ThB 82 212 THEY)! i)
Astatine-21§  Ar-214 85 216 Ix10%s ]
Thorium C ThC 83 212 605min Ea
Thotiuin C T 84 212 3.0x107s o
Thorium C” ™™ 3 200 3lmin 5]
Thorium D ThD 82 208 -— stabls

We now know that if we have e given amount of rdioisotope, it will gradually decrease with
tme. Meusurenminls show Whai ific guantitative law Goteribing the Jdocay process is very
stmple. To undsrstand this, refer to Fig. 12.2. I shows 2 plot of amount of mdioactive
surontivm (on the legarithinic scale) as a function of time. You will note that

& ifidies 29 veam for enc-alf of the inifia] amonni o sinontjiem 1o decay

& during the next 29 years, one-half of the remainder sawoadium decays, i.e. we are Jefi
IR

L

Hence, the fiaciion of parcai radicadiive substance (Refi) afier 25, 58, 87 yours will be




-;'. %. -;- of the initial smount, Do you tecogniss this sarios? it forms & eometric Radloacivlty.

progression with # w 3., So £ N() danoled the numbar of srontice Avslat srviving decay
atdme ¢ and N, is the nuwmber si ¢ = 0, then we cai wris

{7
N = N[5 (12.1)
; |
" lic iine weguired for one-half of the parent nuclei (materia)) 1 decay iz called its half-tife,
W will deote it by the symbol T, . The half-lives of some imporant radiolsotopes are
given in Table 12.4. You will rote that values of T , show a very wide 1ange; from
4.5% 10% yr for P80 10 3 x 1075 for 212,

Tuble 12.4 : Half-lives of some radlolsatopes

Rﬂdiﬂisowm T"z
o S730 yr
g 13%10° yr
Co SUyr
gy 285 41
vy 8054
2p, 3% 107%
g 45%10° yr

In erms of the half-life, we can rewrite Eq. (12,1) s
) l\aleﬂ
NG = N, fi | (123)

N

Let us pause for a while and ask: What is the physical implication of thiz resalt? This
relation 12lls us how the given quantity of a radioactive sample diginlegrates as timg passes.
You may also like to know: Does this formula hold only for times £ =D, Ty 2Ty oo 0209
The answer 1o this question is: Eq. (12.2) holds for aH times. o

It may be erphasized here that the general appearance of the decay curve is essentially the
same for all sadioactive elements. However, cach elemant takes itg own characterisiic time
ta decay. : -

Using the identity 2 = €2 =% we can mwriic Eq. (12.2) inio o inoee convenient farm 23
N(@) = Nyexp (-n2 #Ty0)
=Noexp(~t/7} (12.3)

Tin
where 1 —m.

Eq. (12.3) expresses (he law of radicactlve decay mathemadcally. It shows that the number
of gioms in & radioactive sample decreases exponentially with lime with & chararieristic time
CONSIANE T. i1 us now find out the number of nuclei decaylng in any time intrrvet dr. Prom
Bn. (12.3) it readily follows that

N
{L’V - —Utd‘.
T .
The negalive sign signifies that the number of nuclei decreases with time due 1o their

continuons disintegration,

9
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By definytion, the average life time, 7, I

e
fete—— = =] 1oV

| 1 No %o

-‘ _
B—JQ ';Noewd‘

The first term vanishes at both the limits. Therefore, this expression simplifits 0

i j: e = [-1 ey : (124)

That is, T is mean life of radioactive nuclei, It may be pointed cut here that like Ty, T will
also vary over a very wide range. The measurement technigues over such a wide spread of
time are bound to differ vastly, But the law of radioactive decay is common to all
radloactive decay processes.

We will now illustraie these concepts Uirough solved examples.

Txample 1

The half-life of radon is 3.8 days. After how many days will only 5% of radon be Ieft over?

Solution
We know that 7, = 3.8 days. Therefore

_Thp _ Tp _ 38 days _
TSThz - 0693 © ogos - oi8days

We are required to calculate the number of days in which only 5% radon is left. Therefore,

we can write -E- = 0.05.
NO

From Eg. (12.3) it readily follows that

N {
E = 005 = exp[-— 348 days)

We can wrile iias

_-_-’ —
exp [5.43 days) = 20

. Example 2

Due to accident in a research laboratory a radicactive element got spread inside a room. Asa
resuly, the fevel of radiarion became 50 times (e parmissivle level for normal occupancy of
the mom. After how many days the room would be safe for occupation? The half-lifc of the

redioactive substance is 30 days.




Solution

so that 1=-I1&-=M- 43.3 days

0693 = T0.453
;} = -5'15 = exp (- #/43.3 dayz). This can be reamanged 0 give
Hi—;—‘m = In 50 =3912
NTH
1 = 3912x 433 days = 169.4 days
Example 3

A sampie of pitchbleade has a lead-uranium weight ratio of 940. Calculate the age of the
mineral. The half-1ife of wranfum is 4.5 X 10°yr. The atpmic weights of lead and uraninm
are 206.0 and 238.4, respectively.

Solution

Since the weight ratio of Jead to uranium is 9/40, we can say that if there were 9 kg of iead,
the amount of wanium would be 40 kg. The number of aloms in 9 kg of lcad:%xsx
10% = 0.262 x 10®aroms. Similarly, e number of atoms in 40 kg of uraniom

_ 40 _
= 238‘43-:6:: 1026 = 1.007 x 1075,

Tota) umber of uranium gtoms in the beginaing = 1,269 x 10P%ioms

. _ Ly 4S5x10Pyr_
Since T:m-4.5x10°yr.1-m2 = =06 = 6.494 X 10°yr

From Eq. (12.3) we know that

£ _ (M

N,
or i =1h1[--9]

so that

N
(6494 %10 y1) In
2 (6.494 x 10P yr) x 0.2296

B U S —— =

You may now like to solve an SAQ.

5AQ!

Thic mean {ife of a radinaciive ciement is i4.43 monts. Caicuiste ths ims required fo? 75%

AL dbn abamemse sa A
b l-llc WA MWL W U A-OY,

In practice, we are more interested in the decay rate of the material rather than its amoont,
since it determings the rate of emission of ¢, f or ¢ -rays. (Moreover, this information ¢am
also be used to estimase the age of any specimen.} To this end, we naots from Eq. (12.3) that

v

N - N
el TR 125

fegbooctivity

Snend 10 2uin

i1
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That ic (»e decay rate at any time & proportiona) to the amount of radicactive material
present at that instant,

Allematively, we can wrile Eq. (12.5) as

dav
rriaielll (126)

whare A is constant of proportionality and is called decay constant, It is characieristic of a
partcular radicactive element or decay procees. In wma of A . the law of radioactive decay
can be expressed as

N = Nyexp(-AD) 2.7
If you compare Eqs. (123) and (12.7), you will find that A = 1A,
The activity A of a given radiodclive substance is gefined as the number of gtoms
dis{ntegrating pcr onit time. Mathematically
. [N
A= l % l (12.8)

From Ens. (12.6) and (12.8). we have
A= AN {129

Le., the activity of a given radioactive subsiance is direcily proportional to the number of
radioactive atoms presenl. If Ay bs the initia) activity of the source at ¢ =0, hen we have

4= i-ﬂio = o (12.10)

The quanlily —f—o is defined as the relative uctivity and is a measure of the radioaclivity of 8

given source. From this result you will note that even the relative activity of a given
radicactive substance decays exponentially with time. '

The most natural way L0 £xpress decay rate is in disintegrations per second. Butthe
activitivs encountered in practice are usually so high that a larger unit, the curle, abbreviated
a8 Ci, is more often used, Initially the curic was defined as the activity of 1g of radium bt
its value kepi changing 2s improvements in measuring techniques wero accomplished. The
cumie is now defined as

1curie = 1Ci = 3.7 x 10" disintegrations per second
In the St sys'.em.'d&ay rate is expressed in becquerel:
1 beoquesel = 1Bg = 1 disintegration per second

You may have seen children with swollen thyrold gland. Do you know that to scan the
thyroid, radinisatope 11 is used? Letus now calculsie its decay mie.

The number of noclel in t g of P11 is

1gx inrinogl % 6023 » 10% nuclei mod! = 4.6 x 108
: 3

Hence, the decay mete

From Table 12.4 you would note that Ty (911} = 8.05 days.

. N 0693
K ~ & ° T8 days (4.6 x 10! atoms)

_ 3.188 x 107 aloms
6955 x 10%¢




= 4.58 x 10 dislntegrations per second
Expressing this in curies, we find that
-2 = (458 10" disltegrations per second)

x Lo
(3.7 x 10'° dicintegrations per second)

= 1.24%10°Ci

This is an extremely large disintegration rate. The amount of '] injecied into the human
budy is only 10g so that the decay rate is nearly 107 Ci, which is well below the safety
limi of

We will now illustrate how a kmowledge of decay rate enatles us 10 estimate the age of
specimen using the carbon dating technique.

Example 4

4C isotope of carbon 1s nsed for radioactive daling of organic materials, Samples of fresh
carboa from trees in equilibrium wih the CO, of the amgosphere have an abundance of
08.89% 2C.1.11% ’Cand 13 % 1072 &1C. Afier a wree dies, the abundance of '2C and
13C in the wood does not change but the abundance of “C decreases because of radioactive
decay. A piece of wood is taken from an Egyptian tomb. Each gram of carban exhibits an
activity of 3.9 x 1072Ci. Estimate the age of the wood.

Solvtion
The number of mxclei in 1g of carbon is 1g x llé";' % 6.02 x 107 nuclei mol™ = 5.02 x

102 nuclei. Thus, 1g of fresh carbon should contain 502 x 102x 13 x 10712 = 653 x 104
neciel of * C. From Eq. (12.4) the activity at ¢ = 0 is given by

_mn2
TIIZ

No

aN
AO = I——' .
d tal}

From Table 124 we note that T, (*°C) is 5730 yr. Hence

Ay 08 » (653 xi0'® muckl)

(5730 x 365 x 24 3600 5)

_ 453 X 10° nuclei
1807 210" ¢

.u expréss it in curies we note that

Ao = (0.251 disintegrations per sceond) x 1Ci
1.7 x 10'° disintegrations pez second
= 678 % 10-12Ci
Wa are wld that the measured activity of the sample is 3.9 x 10712 (4. This cbviously i

39X WL A par
s x 2 -7"

Since the activity is proportionai to the amount of radioactive maserial, from Eq. (1Z.10) we
recall that

= 0.231 digintzgrations per second

smnaiier than ihe iniiial aciiviiy by a faciov of

=N L ewmma =057
A '

4
Ao
50 that by taking logarithm of both sides we find that

T .
r=-1s in {0.573)

- Radloactiviey
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12.4 GROWTH AND DECAY OF RADIOACTIVITY

You now know that nauraily occurring radipaciive elements disintegrate continnously and
their decay is govemed by a characteristic decay constant, Physically it means that the
nimber of aioms (of parent nuckei) In 2 radicactive sample will decrease sieadily (according
to Egs. (12.3) and (12.7)). However, if (he danghter nucles happen (0 be madioaclive, their
(daughter ruclei} activity will also start to build up with time (and may compensate for the
loss of parent nucled). But this cannol go on indefinely. Le1 us now find oul more about the
observed growth and decay of the activilies of the daughter nuclei.

Let us reconsider the decay of 28U, We now know that it derays by emitting an a-panicle
with a half- life of 4.5x10° yr. Byt #“Th atoms disintegraie by emitting f-panicles with a
half-life of oaly 24.1 days. This means that in the original sample of uranium, 2*Th aloms
will disintegrate at a much faster rate and all the apparent actiyity of the sample will be
practicelly dus to them. However, if #*Th is separated frony the uranium, its activity will
decay exponenlinlly and reach half its initial value in 24.1 days..

To Imopw how 2*Th grows in a freshly seErat_d cample of uranium, we note that if at any
instant of time £, the number &1 atoms of andr""marcNumdNn.thanmcralcor
disintegration of the parent element dN,

dw
_g = =Ay Ny

Physically it also means that 2*4Th atoms are produced at the rate Ay Ny, where Ay is the
decay constant of uranium. Howevez, B4Th atoms will disintegrate at & tats Ap, No,,, where
Nq, is tha number of 24Th aloms present at time { and Ln, is their characterisuc docay
constant. Hence, the net rate of increase of #*Th aloms in urnium is given by

aN
or -d-"‘-’n,nwn, =2y Ny (12.11)

To solve this QDE for Ny, we have to conven its lefthand side inio an exact differental.
We can do so by multiplying Giroughout by exp (An,f), which acis as integrating factor. This
gives

dV,
- erp (gl ‘—;.:_h + AndVyy exp (M) = ANy e2p (A

& iy cxpOh)] = Aoy xp O

Inizgraiing we obiatn

Np,exp ) = % Nyexp(Aph) + K



or Ny '%;‘"u*‘ &p (- ) (12.12

whers X is u constant of integration. To ovaluate it, we note that at t @ 0, 1.0, in & freshly
prepared wraniwn sample Ny, = 0. Henee, it readily foﬂommxu-% Ny. Therefore Eq.
{12.12) takes a corapact form:

;:Nun exp(- And) (12.13a)

mmummmmcwm&mmmcnmwofﬂmﬂm
ultimately reaches a constant equilibrin value of Ny by / Ap) Ny. O combdining this
resull with Eq. (12.13a) we can wrile

Np, = N3, [1-exp(~An)) (12.13b)
Tho growth of 2 Th are shown in Fig.123. ) '

1 /‘E—_""— ]
048 ® IR A S—
/ i
(e 08 /£
£
£ 0.4 /
02 , I .
! i
GL— 20 40. &0 80 100 120 14D
24.1—>!

f{days) —
mm:Gmﬂﬂm'nlnaMywaMmhmmh

12.5 SUCCESSIVE RADIOACTIVE
TRANSFORMATIONS

In the preceding section we considered growth and decay of radioactivity when the parent
noclei decgy into daughter nuclei, which decay in tum. You now know that naturally
.occwring rdioactive claments undergo successive decaya till & stable element is produced.
mmxdmgapuucuhxmdbacﬂvem weofwnﬁmunecesmwmwo&mnlhc
mmmmmmmmmmmuawmnm wemncxpmumc
problem s follows:

Suppose that initdally we bave &, aloms of a parenl element 4. It dezays 10 an elemneng B
which in um decays o Cand soon. If &, Ag, Ac... are the mespective disivegration
constants of A, B, C, ... let us derive expressions for the number of 2toms N, M, Ne at time
¢. Froto Eg. (12.7) we nole that the number of atoms of A prestnt at time ¢ is given by

Ny = Nppexp () (12.14)

mmﬁmammumdmdwmlﬂam&mymmmmn
the met pate a2 which the mysher of atoms of B grows ie given by

Radloacuvily
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For element C, we can similarly wrils

dN‘ = dgNj - (12.16)

On substituting for ¥, from Bgq. (12.14) in Eq, (12.15) and rearranging terms in the resultant
expression, we get

dN
" + AgNp = MpNpo exp (= 21) (1217

Muluplying both sides by exp (Ast) and following the steps cutlined in the previous sectica,
you can casily show that (SAQ 3)

2.,, W (e*af — eaf) (12.18)

SAQ 3

Siarting from Eg. {12.17), derive Eg. (12.18) using the condition that initially only e
parent element was present , i.e. Ng=0at¢r=0.

I you now substitute this expression for Ng in Eq. (12.16) and muliiply throughout by
exp (Acf), you can reamange Lthe resuliant expression as

Ay p

-ie.p(ld)--i;—--—h [e(‘c Ly _ e HB']

This can readily be intcgrated (o yield

Ao el =i eho=Agi
exp Ach) Ne = ;u,; 2 Va0 [(lc -k A - 7‘!3)] E

_ 2“ J\ﬂ e tat e Nyt
Nc--l‘B gy Nio |:(lc = lﬁ} - (lc — 15)] + Kexp (—-lc[) (12.19)
where K is constamt of integrotion. To evaluais it, we use the fact that at 1 =0, N = 0. This
gives
_ Ay Ay . 1 1
S W u"'”[nc W O - 13)]
_ Ay 2g Nao
(Ac - A) Ac - A
Henﬁe

cpChd) el | epiid |

JN(" - Aul«lﬂ""..-‘u.l:l[:-- 1 1y A1 4 % o kAN ¢ 1 )

Lra—hat Ag-A)  (Ac—2p) (a—apl (M= 20 Ba—Ad)]
(12 31

In 2 compact form, we tan sowilte it as
Ng = N.u(a. ety e+ oay e"‘c‘) _ (i2.20)

LN
L7 e -4 Oc -2

where
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Ay Ry :
% % W= s - A3 (1222

You can now easily exizrd the procedive owlined shrva 10« chain of mvlioactive clements.
We leave this as an axcreise fos yor

and

Let us apply these equations 1o the iecific cese of successive radioaclive transiymations. If
a meig) wire is exposed for 3 few seconds ( radioactive rzdon gas, we obtain 2 deposit of
RaA, a decay product of radon. RoA has a half-life of 3.05 min and decays 1o RaB, whaose
kalidife is 27 min. RaC dzcays to RaD with a kaif-life of Z0 min, RaD has a hat-life of 22
years and for all practical purposes during-the experiment e number of RaD atoms may be
1aken 1o be constant,

The number of RaA, RaB, RaC and Ral) atoms as functions of time are shown in Fig. 12.4.
The number of RaA atoms, initially assumed to be 100 decreases sxpooentially with time
and reaches a value 50 afer 3,05 min. At tlme £ =0, thers are no atoms of RaB, RaC and
Rab present. However, the number of RaB  atoms increzsas with time, parses through a
maximum about 11 min later and then decreases with time, 'Tre number of BaC alomy
passes through a maximum after about 35 min. The number of RaD aloms iveertoy

100 ! T
B - ]r = Reubh R ELECEEEEEE - -"---'--""/":f- ------- F -

3
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Flg. 12.4 : Variallon of the refallve puesbers of a0 o5 Res, Bab, ReC
and ReD with thne (i 5 redboactivy Jarmpis

continually and reaches 8 maximum when Ralt and izl eave practically deanpozred,
Eventually, the RaD will decay exponentnlly with a na!f-tile of 22 yaars,

SAQ 4

in {he above cxample, calcufate the tme at which the roFber of RaB atoms is a maximum, Spend 14 o

12.5.1 Radicactive Equiltheium

You now know that differeni radoactive elenents, either naupally cecuming or roduced in a
decay chain, have their characteristic half-lives. The lascooverning succeisive
disintegrations deals with the quantify of 2ny aivaa radioactive isntons present 2t snu fime,
Depending upon ihe relative magniiudes of the half iives of varions nuciel in a decay chain,
WT My 0DLEn a simsion wihcre e Rumbcs 6f pareat and/or G2Urhics Agms clifes romain
COrsSiand o beas 8 constant mite. TAIS is Ennwn 8y rrabpeciive (@D, TRER 18 rwo

possibitities. We will discuss thesa in tum,

Again refer 10 the decay of 2*U. You would 1ccail thas # i3 ae extrenely fong-lived nuclet
comparcd to the atoms of its daughter element Z*Th (Ay << Ag). Let us sgsume thal ihe

initial sample is puse, i.c, has oaly 230 Then Bgs. {12.7) andt {12.53) suggess tiat

Ny = Ny - (12.23) 17
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and Npy » Nmﬁ (1= exp {-ATh 1)} (12.24)

sinco oxp (~Ayf) u L,

Lat us pause for a whils and think as to what have wo achisved so far. Egs, (12.23) end
{12.24) suggoat that though the number of uranium (parent) nuclel remain cssentlally
constany, the numbor of daughter atoms increases exponentally with ime. Afleratime ¢
much greator than the halflife of daughier nuclel, exp (- Aq.f) becomes nogliglbly small and
Ny, reathas an equilibrium value of

Nn = Huﬁ‘

of Now A= Ny Ay (12.2%)

This result-tedls us that in the squilibrium state the rate of decay of the daughter atoms is
equal to thair rats of production implylng that the number of parent and daughter atoms
remaing constant, Such a long-term equilibrium between the parent and davghier atoms is
known as secular equilibrivm. Such an equilibrium can ba found in the formation of radon
(Tya = 5.5 days) from mdium (7, , = 2300 y7).

SAQS

Uranium minerals in which sezular equilibrium has been obiained contain one atem of
radium foc overy 2.8 % 10 atoms of uraninm. §f the hall-life of radium is 1620 yeary,
calcutate the halrdife of yranium.

You row know that in tast of successive mdicactive decays, secular equilibium is obisined
when parent nuclel ane longee lived than those of the daughicr element. You may now like b
know: ‘What will happen when ihe parent is longer-lived than the daughter (A, < Ay), but the
half-life of the parent is not very long. That is, the half-life of the parent is greater than the
daugmerbyamul.lfa:lor You may Like to kdentify such a sltuation in the uranium as well
At actinium series. In such a sitation we cannot use the approximation exp (A 0= 1. If
the parent and daughier aloms are initinlly separated, the number of their atoms are
respeciively given by Bqs. (12.14) and (12.18). Moreover, if A ¢ 1, then in Eq (12.18), the
term involving 6~' bocomes negligible compared with the term invalving ¢~™*+". Then the
number of deughier atoms is given by

N, A
Ao 1o, Meoep -2 (1226)

mmmm@ummnmmwmuuwmwmm On combizing
thig reoult eith Ba_ (12.14) wa find that

L X

— COBSHnL | 1227)
A g - 1* ¢

ta wonds, dhe ratio of the pumber of parcat aioots and the number of daughicr atoms atlaing a
constant velna, This HONSIALEES what We 22T aS traasient equilibrium.

Mm&nwmhsaMhﬂfJﬁth&u@m(lA>u no ¢quilibrium is
snatned, lfthnmmmﬂcmghummmnuumy Ihcumthcpﬂmmdmy\mc
mamober of aughter sioms i3 given oy

"
s Fop, .

- RT -~ 3N o]

"s = "‘\‘rk_ﬁ - 1& ‘-—r'{ - {!2.—-.\-

mmmmmwmﬂmmummmemmuydww
il thol gua Rl 3

SAQ S :

For two redinactive eloments A xnid B in trensicnt cquilibrium, show that the danginer
. A

m&wm&:wx&mm:mﬁ .




12.6

SUMMARY Radlouctlvity

A radioactive nucleus drsintegmtcs spoatancously by emtiring elther sn xara
B-particle, usvally accompanied by y radistion,

The aumber of aioms disintegrating per unit tims is given by N = Noe~V, where No

mmmbuofawmsmmmnyandlhudummmmoﬂbe
radiocactive element.

The hall-life of a radioactive element is the tdme teken for halfl of the radioactive
atoms to disintegrase; mmumhmdmmcmﬁnumﬂmmnmlmdmmhru
theoongh the relations T2 = 0.693/A =0.693k.

The standard unit of radioactivity, the curie, is defined as the quantity of any
radioactive material giving 3.7 x 10'° disintegrations per second. The S1 unit of
radioactivity is rutherford, It is defined as the amount of a radioactive substance
giving 10% &s™!.

The naturally occurring radioactive elements conform 1o thros radsoactjve sorics,
known as the uranium, actiniom and thorium series. Each serles stagts with an
element having an exremely loog half- life nd lerminates in a stable isatope of
lead. With the discovery of transuranic elements, & fourth radicactive series hay
been trazed, known as the nepiunium scries; this starts with platoajum and
terminates in a siable isoiope of bismuth.

If the parent atom has a hall-hfe very long compared to any of its decay products,
we get a long- term equilibrium, known gs secolar eqoiiteriam, between the parent
and the daughter atoms, when each membr decays a1 the same rate as they are
produced, i.c. we have AANA = AsNB =A3 N, Howower, if the parent A ia longer
lived than the daughier B, but T2 is not very long, we obizin transient
equilibrium, Ln which the retlo of the members of A and B atoms at any insiant
femains a consiant. -

12,7 TERMINAL QUESTIONS

1. Given that the hall-lives of Radinm and Radon are 1620 yr and 3.82 d respectively.
Calculare the volume of Radon gas at N.TP. equivalen! to one cusie,

2. Asample containing 0.1 mg of 2°Th undergoss 4.32 % 10° disintegrations per minute,

What is the half- lifc of this nuclide?

.0 OOL? AEG Jsp .r‘!\ 'ID 'n.r re uRS
SAQs
1. Here 1 = 1443 months
i = T ll'! 2
= (14.43 moaths) x 0.693
= 10 months
Since T5% of the subsimiss doeays, anly 255 seanaine
' i": ¥
L
M=o .LZ J M

Using Bq. (122 we mzp urits

A ey ar)

so that



Nudsar iy of
t = 10x 2 months
= 20 months
2. Halilife T\5=4.51 X 107 yr=4.51 % 10° x 368 % 86400 5
0.693
Tlf.l

Disintegration constant 3 =

_ 0.693 _
T 451 x 10° x 365 x 86400
Number of aloms per g of granium is

_ 603 % 108
N="= 238

gl=48Tx10"y!

Rate of disintegrailon I%| = AN

_ 603 x 102
- 238

= 1234 % 10%s1
3, FromEq.(12.17) we know that

x4.87 % 107 1%!

dN,

'?B + MaNp = MNpexp (- 2,1)
Multiplying throughout by exp (A5¢) and re-arranging terms, you will obtain

<y cap Oghl= A Noexp [Cho ~Aa¥)
This can readily be integrated to give
A
Npeh'=—2_N -A )+ K
B* lB'-A.‘A Oup[(lﬂ A)’]"'

where X is constant of integration. To evaluats it, we use the condition Ng =0atr=0.
This gives

lﬂ ?\A
K= Ny, = 7
e " ¥

Ny

On inserting this value of X in the above expression we obtzin the required result

A . .
Np =32 Ny [exp {~ 2af) - €xp (— Ag)]

Rs ~
4. We know from Eq. (12.18) that the number of RaB atoms is given by
A, .
Ng =2 Ny o 2aé—g™ ']
B A‘B - lA 0[

_ Therefore, on diffeieniisting i eaprossion for N oncs with respect 1o £ and eguating §

to zevo, we obiain
_1“ g"}'a'n + lﬂ c_:"n‘n = U

or 7._.'.:.‘-,'}1JI = 1:\ c,‘i"-a.'n
1
cﬂx."lx) o = —A
) | - InGuriy
an BT Ay Ag

2

|
 Substituting A, = 3.8 x 107 and Ag =43 x 105", we get ‘



in (3 8 X lO“r] Radlanctlyity
L = 4.3 x 10¢! = 108837 = _ 2179s
B8 x 107 -3 x 10957 337 x 107~ 337 x 107

= 6478 = 10m47s

S thumniumhlnmtﬂueqﬂﬂbﬁumwilhmdimn.ﬁehne
N N

T T

N ,
or 1 = —'-;1 = 28x 105 1620 yr = 4.5x 10%r
6. For clements A and B in transicat equilibsium, we have from Eqn. (12.27).

ln A
l-l:ueelionﬂooflnmmlaﬂiv‘niesmaquiubﬁumisgtvmby
_A_g MM _ b MK
[ 7 VO WS Ve F W ~
)
An = lB _ 1" A

'l‘Qa

1.“ One carié [3 equivalent to the amaount of radon in equilibrium with 1 g of radium. Hence
if My i3 the numbes of Rn atoms in equilibrium with 1 g of Ra and NRra the number of
atomsis 1 g of radium, then we have ARn MRa= ARa NRa

Ay T 382d
-Nhlﬂn Nm T, = lGZOyrxHR‘

_38__ N
= 1620 x 365 226

where N is Avogadro's aumber.
Volume occupied by Ni, atoms at STP

N
=-—;£x22.4 x 10 em?

_ 3.82
1620 x 365 x 226

= 64x10c’
2. No. of atoms in 0.1 mg of Z°Th

¥ 224 x 10 cnr

6.02 x.102 '
= —————— = 2.62% 10"
N‘ 70 g x (104g) = 2.62% 10

= 72X W5
i dN

Deuycmsiami='ﬁ*d::

7.2 x 10°s7!

= S = 275X 105

;L0693 0693
= A 215 x 10—!3

= 79%10%yr 21
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UNIT 13 THE ATOMIC NUCLEiJS
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13.1 INTRODUCTION

You were introduced o the atom in your plus-iwo Physics course, You now know that atoms
are too small 1o be seen even with Lhe most powerlul optical microscope. They are too small
to b weighed even with the most sensitive balance. Their exintence was initally postulated
by Dalton for explaining the laws of chemical composition, However, the investigations of
Thomson, which conclusively proved the existence of electrons as fundamental constituents
of all matter, gave rise w the Question: How are electrons distributed in an atom? If atoms
contajn electrons, they should also contaln positive charges since electrons sre negstively
charged and atoms should be electrically neutral, That is, the existence of electrons implied
thal there were positive charges 10 be accounied for within an atom. On the basis of these
observations, Thomson propeséd his plum-pudding model of atom, He suggested Lhat the
alpm consisied of a uniform positive sphere (radins about 10-1°m) of electrification with
electrons embedied in such a way as o give it a most stable configuration. (According 1o
this mode, electrons are embedded in a sphefical cloud of positive charges fike seeds in a
watermelon.) This model suggesied that the mass of an atom is sprea uniformly through out
ns;orume. This hypothesis seemed reasonable, yat it could not withsiand the experimental

of Geiger and Marsden who bombarded thin metallic foils by alpha-particles
sponlancously emitled by certain natrally occwming radicacuve elements. The picture of the
glom thal emerged from these experimenis revealed that 20 alom consists of a centatly
located positively charged core, called the nucleus, with negatively charged electrons some
distance away. We will discuss this in detail in Sec. 13.2 Subsequent researches revealed that
the nucleus is composed of protons and acurons, The proion carries a pasitive chasge of
nearly 1.6x1071%C, which is equal in magnitude buc opposite in sign (o thai of an eleciron.
Neuwwons are uncharged particles slightly heavier than protons, And almost the entire mass of
80 310 is concentrated in its nuckeus. Moreover, in its normal (electrically neutraf) state, an
aiom has as many clectrons a3 the number of protons in the nucleus.

You may now like w know: How do nucleons {protons and newirons) cling together? The
gravitational auraclion between them is far too weak Lo hold the nucleus logether and (he
Coulomb repulsion between protons should blow them apart. The farces which hold the
nucleons logether are calied nuclear forces and are discusced in Sec. 133, You wili leam

* that sability of a nocleus is governed by the binding enesgy per nocleon, An important
consequence of this is that very light es well as very heavy elements are less sishle and have
tendency 1o fuse or fission onder suitable conditions. The Liquid drop modzl has been applied
to predict the instability of heavier muclei with reference o fission. This is the subject melter
of S¢t. 13.4. It 3. 3.5 we have discinsed various nucicar modeis. We arc aware that you
are familiar wiih s0mic of ihese CowsoAs. T repelllion is T iscapiiuiation.

Objectives
Afier going through this unit, you will be abke to
@ describe the imponance of Rutherford's scattening experimient
e calculage the binding energy per nucleon based on semi-empirical mass formula

23



Suclar ILynkis

24

Ernest Rutherford

@ oMb how nucicar forces glue nucleons
6 describe the lquld drop end shell models of nuctel and
o discyss tha siabiMiy of ruclel,

13.2 THE ALPHA-PARTICLE EXPERIMENT

To ‘see’ what is Inslde an atom, Rutherford suggestad that elphe-panticles from natumly
occwming radloactive clements like polonium, redium etc. can be used as convenient (00is to
probe e structure of atom. A series of clazsic sxperiments were carried out under his
guidance by Geiger and Marsden. The schemaucs of the appamis used by them is shown in

Fig. 13.1: Scbemstic) of a-particle experiment

Fig. 13.). Inone of ieir experiments, 5.5 MoV alpha-particies (v= 163 x 10°ms ') from
?14Bi source were made 1o enter e evacvaied chiamber and directed &t 5 thin gold foil. The
foil was 1 few migro-meues (2.1 % i0'm) thizk, From the previous unh you will reeall that
air absorbs a-particles. It is for this reason hal the experiment had 1o be performed in
vacoum. The alpha-particles were expecrad 1o siike the Nouwrcscent ZaS screen producing 2
vistble Mash of Lighi. O the basis of plwa-padding model it was aniicipaied thai most of e
afpha-particles would go straight through the foil and only a few would al best suffer stight
defecuion. What actually happaned and was observed was ;

o neariy ail e aipha-particies ¢merged withioul much devinlion {8 <1°). This
suggesied thay sioins sausist liyzely of emply space.
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Fig,13.2: Plol of N(€) versus @ for Geiger ena Marsden aiphe-parikde experinest




" @ somo (! in 9000} alpha-particles were deflsciod through very large angles (8. 90°)
o afow (] in 20000) sipha-partsles wers aven dallaria! hack towands the sowrcs
(8 - 180%)

Thase results aps shown in Fig, 13,2, wislch depicts ine plot of l.hc aumber M) of scatrereg
e-particles versus the angle of sestiesing, .

Large angle deflection of alpha pamicies, paticutaly the Yackwad sa2uering, was rather
surpn:.mg,. wn fact completely unexpected. In the words of Rutherlord,

“[uwas dhie most ineredible event tha has ever happened 1 me b my hfe. &t ws almont a1 if you bove fired 2 157
shell 513 picce of Hssue papet &1d it came back and hit yoo©

L Oﬂ]y suggested that the alpha-panticles moviog back wwards the source had rebounded
from the head-on coilision from something immovable. It could happen caly when these
slpha-partcies were acted on by very powerful force, Can you suggest what type of force

this is? Since alpha-particles carry hositive charge, it scems that the force beiween the aloms

and Uic alpha- panicles was electrdstatic. Since an alpha-particle carries kinelic enexgy, it is
gradudly converted to olectrostatic poiential energy and ai the paint of the closesi approach,
the cnergy is completely potentiai so that an alpha-particle shyuld come te rest mun‘amanly
1T b js the distance of ctoscst appraach, then from the principle of conservaion Cf chegy. we
Con WrlC

] [ 276
C—zmvz ane, b
or
72
poot 3% (13.1)
dneg mv-

where v is speed of a-particles of inass m, Z is the alomic aumber of e foil atong and e is
clecuronic charge.

This relation suggcsts that the object carrics the positive charge. To give you an idea about

1he numerical valug of ike radius of this.object, kel us calouiale how ¢'ose indident
o-pasticles of cnergy 5.5MoV, which are scatigred through 1807, netto it Eerz

2=79. »=1.6% 107 C.oo— =9.0x I0° Km?C? and
4'560

£ =55MeV = (5.5 x 10%eV) (1.6 % 109 eV} = 5.8 x 1033, Therefore,

U x 1PN micd) x 2 x 79 {1.60 % 10-Y )2

b= 8.8 x 1073

= 414x10M"m

“This shows that the distance of closesi approach in gold is 4.14 i 10-%m and the positive
charge in the targcl.cd cbjectis dit'.uibutcd OvCi SpEce corri'ncci to a radivs less than this.

On the basis of a series of expesinmenis. Rmhcrfmvd proposed the nuclear model of aom,
which is shown in Fig: 13.3, The Ecmus in Rutherford argued that the rebound could. occur

Fig.IBJ: Nudlear seodd of atom

Tié Alomaic Nudeus

The reding of the ziom is 167
times os digl So If the nuclens of
an aom were of the size of 2
iennis or golf bail, the stom
would fit into n Jarge football
stadium;




Nutlear Phyaica

Rutherden!'s moudel of tha atam
r=scrnbles in many ways the rode|
ol qur zolar yyatem. Jus as a
peuiel revolves sround the Sun,
the electrons revalve srowid the
nuglour, Mon of our solsr sysem
15 empty space and 10 Als0 is an
aicm

N2 huavy isoteps, durcrivm, of
hydrogen was discovered by Urey
ame his coworkers in 193] by
spectrographic medheds, This
howzve: was predicted by
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because of the repulsive force batwecen the positive charge of the alpha-pariolor and some
paositive charge in tha niom. For the force 10 be sufficiontly strong, ha conjestured that al) the
positve charge in the atom must be concentrated in @ small space, This posiively charged
céntre mysi carcy most of the mass of the atom, You can viguallse this plcture by analogy
with the gemoe of marblas (kancha). As a child, you must have played marbles, You will
know froin experience that a light marble bounces off 2 heavicr one withowt much effect on
it. (Gold atoms here are like a heavy marble end alpha-parsticles are analogous to light
marbles.)

Proceeding dlong this line of thought Rutherford proposed that
¢ all the mass ard the pasitive chorge in an atom is concentrated in a Gny nucleus,
o the radius of the nuclei is of the order of a few fermi (1 fm = 1073m), and
® electrons reside outside the nucleus.

Using this nuclear model of the atom, it is easy 1o picturise how most of the particles go right
through e thin foll, Fig. 13.4 depicis the nuclei of atoms as small centres.

nyclens

Yy

YYy

Fig.13.4; Seatiering of alpha-parikics by afvmk bucld on the basis of Rutherford®s nuchear model

Rutherford's model is inherently simplc and satisfactortly explains the scauering of alpha-
particles. Bul, these investigations derive their real worth from the [act that they opeaed up
very feriile and new avenues of research. A ot of good new physics of the atom emerged out
of these studies.

"W all know Hial Coulomb interactions involve (wo charges {an alpha-particle and the gold

nucleus e above experiment) and the disiance between them, In 1920 Chadwick, a
student of Rutherford, camried out a scries of experiments to determing the charge on the
nuclei of several elements. He found that the charges on the nuclei were exact integral
multiples of the clectronic charge but of opposite sign. In the gold foil used by him, there
were miltions of nucle; cach with the same poshive charge of 79 unils. The question thea
arose: How was it that the foil had na nel electric charge? The only possible cxplanation was:
the positive charge on each nucleus is exacly equal 1o the negative charge carried by the
electrons. This means that each atom is clectricaliy neatral and has 79 eleclrons. This
suggecie thar stome of sach clement can be vniquely chamciensed by a single number known
as the atomic number, denoted by Z, You would now like to know: Do all nuclei consist
only of protans? What is the stucture of the nucleus? Let us consider the simplest
zlement—hydrogen. Bis nuclans has ene prown and onc electron. Does this mean that nuclei
of all elemerts are composed only of protoas? Definitely not Even twa other known forms
of hydrogen-denterium and aitium - conspicously differed in their masses. Tt puzzied ol

physicists.

To circumvent the problem it was proposed initiatly Lhat elecirons alsa reside inside the
nucleus and balanced the excessive positive charge of protons. Howcever, this hypothesis was
rejected as il was not consistent with Heisenbersg's unceniainty principle. which required that
for this to happen elecurons given out by elements should be of eneigics of about 50McV.
Experimental evidences did not support it. This impasse, however, pointed 1 the possibility



of existance of such inhabitants in the nucleus that contribuated Lo i3 msss but not to its

Ruiberford conjectured the existence of » narticle devoid of all chargebu:aﬂg.htly heavier
than the proton in the nucleus. In 1920, iy, 4 lecture 1o the Royel Society, Rutherford

T seema vay Likely !}nlmded.munl.!loI:i.ndlwohydmgmm:ldmdpm:ﬂ:lydwouehydmsmwdw.[n
the oot casc, dus entails the postible exinence of sn mlom of mass seady two, canrying imit charge, whichis tobe
regarded a3 an isolope of hydrogen. In the other crae, it iavolves the idea of Lhe podsivde exintznce of un stom of
mass ooz which has zero charge. Soch en stomic stnuchure, s2em s by 0o mesy impossible. ... Such an stom would

- have nove) properties. Tis external field wonld be practically 2ero, except very dosa 1o the nuclaus, and in
consequence it wowld ba able 1o move frecly throogh mazer. It prosenca woold ba difficoll vo detoct by
specimicope and it misy bo lmponibls 10 contain it in n senled vosssl, On the ciher beand, i should eater medily ths
gtructure of atoms and may either anite with muched or be dlatrtegratod bey its intansa field resulting in the escspo of &
charged kydrogon stom or mg electron or botk 7. -

This "atom’ was named neutron by Rutherford.

The experimental evidence for the existence of neutrons came in 1932, The discovery of the
neutron crystallised our ideas about nuclear structure, It became clear that all naclei are
compased of protons and neatrons (with the exception of a hydrogen nucleus). The number
of ncutrons and protons 10gether define the mass nomber, denated by A. The neutrons and -
protons arc celloctively refered to as nucleons.

We oflen come across elements whose atoms have the same number of electrons but their nuclear
masses differ. They are called isotopes. For exnmple, denterium nuclens has one proion and one
neutron and britium nucleus consists of one proton and two neutrons. Since they have only cne
eleciron like hydrogen, they arc different varieties of hydrogen and are celled isciopes of
hydrogen. Thess are denoted by the symbgls of 'H, 2H, 3H, Similarly, lithium has two stable
isotopes - €L, "Li and wanium has thres isotopes 22U, 25U and 25U and 50 on,

Nuclear Density
“The alpha-particle experiment provided the first evidence that nuclei are of extremeiy smali
size (~ 10r1>m), Since then, a variety of expesiments have been performed to delermine
nuclear dimensions using high energy electrons and neulrons as probes. These cxperiments
have revealed that

¢ nuclei do not have sﬁx.rp boundaries

o the density of nuzlear matler is maximum at the ceatre of the nucleus and decreasss
gradually to zeso as the distance increases,

You would now like o know the oxder of mamiuds of the dencity of mmlesr matter. Lol e
cansider the lightest nutkeus of hydrogen whose mass is 1.673 % 10627 kg and the radius iz 12 X
1015 m. If we take it 10 be spherical, the density of nuclear malter can be computad as follows:

& = 4x

16 x 107ikg
R, 212 x 100mp
3 3

=23 19\ 7ka m-.

This valuc is extremely high. Recall the density of water (= 1Pkg m?3) or of mercury (13.6 %
10° kg m™®). It shows that nuclear maticr is extramely inlensely packed. The mass of our
earth (= 6 x 107 kg) can be packed together into such a high densily sphere of radius 184m.
You should convince yoursel{ by doing this calculation, Also, compule the radius of the
nuclear sphere whose mass will be equal to the mass of our sun. Your answer shoul be
nearly 10km}

Nex, tet us calculate the Geasity of pucleur master fuits dzé €ald 107 0AyEen. It sty
known ;}mﬂqq‘iﬁxiﬂ'”mandﬁfo:z?xit}“kg.'irrereiuie.
-I zﬁk - - - kY a2 a1
dy = 33‘63 IR g3ex 167 kg m
F (3 x 105mp

What do you observe? The density of hydrogen and oxygen nuclei is nearly the same. [sita
mere coincidence? To discover Lhe enswer, solve the following SAQ.

Tho Atamic Rudous -
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SAQ !
Calculate the dsnsity of carban and lead nuclel using the following data:

Spend Simin Mo = 1992x16%kg, Re = 27x10r%m

= 34x10¥kg uand  Fp = Tx10Ym

On solving this SAQ you will come to the conclusion that nuclei of all elements have the
same density. This suggests that

¢ nucleus is analogous to a drop of liquid and

o there is an empirical relationship between radius of a nocleus, R, and ifs mass
nursher A. Indeed, experimental evidences suggest that R and A are connected
 through the relation R=12x10¥ AP m.

To get a quick idea about this, let us calculate the radii of carbon and lead nuclei. To this end,

we nole that

4
Mc= Myhc = 5 Rbdc

M 173
(e

Y 173
Similady, Rn= [13; [E'ﬂ]] AP
M

On substituting the values givm and/or calcutated in SAQ 1, we find that

[ 1673 x 10¥kg A&,_,
4 x 3 1417 (242 x 1007kgm3

[16 73 x 0.2387

[})
242 ] X 1072 A7 m

3993
?4?)

(1650205 % 10-15 A m

x 1015 43 m

Iy

11181 % 1075 A m

1

LIZX 10 AL m |
Similarly for lead,

R = 3 1673 x 10% kg ﬂAL?
P~ |4 % 31416 237 x 1017 kg r?

. {1873 02337]

iy .) !

-
- f [&8atal
ST
2

= (1LERSM A 113 Al m

x 1B A0 m

Ll

x 1013 AlBm

\lf.‘
t
1

/

11190 % 165 Al m

\]

112 % 1015 A} m
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13.3 BINDING ENERGY OF NUCLEI Toe Atomis Nuslass

Wa now know that the nocleus of deuterium containg one proton and one néutran, The
measured {rest) masses of ths proton and the neutrsn are 1.6723 % 10-2%kg and 1.6747 x 109
kg, respectivaly. This means that the total rest mass of a neutron plus a proton 18 3.34709 X
102" kg. But the rest mass of a denterium nucleus is 334313 x 10- 7 kg. This means that the
messured mass of dauteriurn nuglens is 3.96242 x 1039 kg less than the meagored messes of
a neuiron and @ proton. In fact, it is quite well kncwo now that mass of any nucleus iy always
less than the sum of the gest masses of 115 constituent nucleons, This difference is termed the
mass defect. Lot us denote it by Am. Mathematically we can write

Am= Zmy+Nm)-(M-Zm)

= Zmpg+Nmy-M (13.2)
Now a days, stomlc maucs sre

where M is the aciual mass of the neatral awm containing Z protons and N neutrons. expressed |a term of the actual

g = (g + ), Mg, m, 20 m, are the masses of hydrogen slom, the proton, the neutua gnd gﬁxfm&?‘“"
the electron, respectively. Tt is oftca convenicnt Lo express the mass defect by its equivalent sbbreviated a3 v, is (1/12)h of the

energy through Einstein’s mass-energy equivalence relation: actma) magy of the “*C.This is
oqual 1o 166 107 kg. The
BE=4Amc2 encrgy equivalent of 1o i1
1o = (166 X 10Fkg) x
For deulezium Q99 % 108 mey?
m 1492 X 1:““ I
= It e 1 = 9313 %107 oY
BE = (3.96242 x 10%%g) x (2.998 % 10*ms)? = 931.3:1ov°
=135614 X 101kg m2s?
= 35614 x 1013]
=2223 X 10%Y
since 1 6V = 1.602 % 101%3,

This mesns that we will bave o supply alleast 2.223 MeV energy to free the constitment
nucleons - protons and neurons — of deuterium nucleus. We can gencralise this result to say
that mass defect appears as the energy which binds the nucleons together. This s essentially
used up in doing wosk against the forces which bind the nucleons together,

I we supply more energy than 2.223MeV, tho oxira cnergy goes to provide kinelic energy to
freed nocleons. This result is confirmed by observations of the photo-disintegration ofa -

deuteron. When deuterivwn is bombarded by garmma ray photons. it breaks up inio & protlon
and a neutron on absorbing a photon of energy atleasd equal to the binding ensrgy:

E.'. =(mp+mn-md)c'3

This ig shown in Fig. 13.5. Repeating (he above argumsenl we can say thal when a nzutron
mﬂapmmcunbhwmfmmadem,amumistoundmissing.nwpﬂﬁsmmggw
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-

Fig. 135 : Whep deutarfum ivbasibaed 57 2322 MoV gemmnray phota,
It bresksz up tots a proton end & negiren

mmmsmmmwmmm:wmmmmm
discover answer to this question, we would like you to solve SAQ2.
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On salving this SAQ you will find that the bi energy of 2 nucleus is an increasing
function of the mass number (28.3MsV for 4He, 238MsV for 35C1, 492MeV for 5Fe and
1784MeV for 25U, Let us divide these binding enesgies by the mass numbers of particular
nucici. The binding encrgy per nucleon are !‘omid? be 7.1MeV, 8.5MeY, 8.8McV and
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Fig.13.6: Blnding energy per nucieon as & functlan of massy pumyer

7.6McV. Fig. 13.6 shows an exphicit plot of binding energy per nucleon as a function of mass
number. You will pole tha

©  binding energy curve shows sharp peaks, particularly for 'He, SBe HC, 160 and ¥Ng
o with the exceplion of light nuclei (A < 20), the values fall on a smooth curve

5 binding cncrgy per nucleen increases mondtonically and humps in the vicinity of
A = 56 (comesponding o Uic won mucicusy with a maximwm value of §.8MeV

o beyond A = 56, BE/A decreases steadily droping to 7.6MeV at 4 =238,

This means that puclei at either exreme of the periodic table are less stable as compared o
the nuclei in the middle. That is, BE/A, rather than BE, is a measure of stability of a nucleus.

The veralion of the binding energy per nucleon with mass number hinls at the possibilily of
tapping the energy of the nucleus. For instance, when nwo light nuclei fuse to produce a more
stable nucleus, energy would be released. Such reactions are called fusion reactions and are
sesponsible bor the 1zlgace of engrgy in siace, Bffovis are now Of (0 use controlled fusion
rzactisn which, onee achieved., holds the proriss to mest cur a1l futurs cnergy needs,
Similarly. whenever o very heavy nocleys breaks Into two pagts, the binding encrgy per
nuclaan increases leading to liberation of energy. This process is called nuelear fission, The
amountal encrgy released in flssion is equal o the numbar of nucleons times the difference
in binding cnergy per riucleon of the rezclanls gnd the products. For example, the binding
snergy per nucleon in 551 is nearly 7.0ke Y, whensas itis apout 8.3MeV Tor nucled with
mass number arourd 120, Thus. if a 25U nucleus splits into two nearly cqual fragments,
there would be a gain in binding energy of the system of 0.9McV per nucleon, The total
cnergy released in one fission event would therefore be nearly equal 10 235 ¢ 0.9 5212MeV.
The heat of combustion of a carbon atom is only sbout 4¢V. Hence the energy released when
ixg of nucleus is fissioned is neariy the same as wihen about 2700 metric tons of coal are

burri.



A semi-empirical formuia for the bindlng energy of nuclel was given by Welzgickesr .
consldering tho similarily that exlsts between forces which maks nucleons cling Loaelgwlm he Alemleuciei
pucleus and the forces that bind meoleculoss In a liquld drop. Por any nucleis conginlng Z .

mumdhnuchuu.tbabludinlem_gymheoxpmsedu

- 2 -
MoV =aA-pan-y B2 g HESD) L g (13.3)

where @, (3,7, & and € are numesical constants having values e = 15.8, A = 17.8, y=23.7,
0=071 and '

{ 34, for even - even or odd - odd nuclei
€ = :

0, otherwise

The (irst (€ represents e altractive energy of nucleons (volume energy); the second
corrects for the over-cstumation due 1o the weaker binding of nucleons near the surface and is
proportional 1o the surface (surface effect), the third term is @ negative correction dut to
excess nedrons (asymmetry effect) and foarth takes account of the electrostadic energy of
protons (Coulomb effect). Because each charged particle in the nucleus repels ali ths other
charged particles, this enezgy is negative and proportional to the numbcr of pairs of protons,
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Fie. 137 : Plot of bindlng enerpy per nudeen 25 » finctlon of mass numbzr, Curve & represcaty e
vohime energy. Currn b represents the cambined effect of volume and surface encgies
Ciirva ¢ repressn s the cumulative ¢Tect of the Nrat, axcond and foprik (arms in
Walzticher's Torinuls. When the cintribotion of arymmelric and spin iorms & sdded, =¢ got
eurve 4 for oot hind Ing ensrgy por nockeon, :

which is equal 10 Z(Z~1)/2. The last term is the spin tim. This lerm is positive for even- even
nuclei (.. both Z and N even), negative for odd- odd nuclei and zero for odd-cven or
evep-odd nuclei, The relative contributions of the various terms in Weizsticker’s
semi-empirial formula to binding energy per nucleon as & function of mass number are
ploited in Fig. 13.7. Now we will illustrate how Weizsiicker’s formula can be used to
calculie BE/A.

Example 1
Using Weizsacker's formuia, calcuipie e bindiig cisfy pes nicson i PP Wio ks
made 10 undergo flssion, sappose iat ';.?Nd and ﬁCs are the fwe fegion productg, Calenlate
BE/A for these nucled as well.
Solution
In e cast of BSU, A = 235, Z = 92 ang ¥ = 143, Alsh smos it IS BN even-ndi insCiaus, e
coatibution of spin term would be zero, Hence, using Bq. {13.3) we get
- 237 x (51 _ 0.7 x 92 x 91

- 235 2357

=3713.00-677.85 - 263.31 - 96325 = 1808.6 )

BE(MeV) = 15.8 X 235 - 17.8 x (235)%

3



Nuriger Physlan

32

. You wilt not= 3.t ke Coulamb tem (fourth) dominates the surface team (Sacond), This Is

due to the iarge aumber of protens in th nuclena of 95U,

The binding encrgy per nucleon (s = _‘,3%83_@ 2 7.7MeV.

For }¥¥Nd, we have A = 149, Z = 60 and N = 89, As bofore, the contribution of the gpin term
is 0. Therefore,

2270298 071 X 60 x 59
149 1497

= 235420 .- 500.28 - 133.77 -474.18

BE(MeV) = 158 x 140~ 17.8 % (14927 —

= 12460

What do you observe? The Coulomb term and the surface term are nearly equal. In this casc
BE per nucleon cames out to be B.4MeV showing that fission product nuelei 14?Nd is more
slable than 254,

For the case of §3Gc, A = 85, 2= 32 and N = 53. The coutibition of spin term is zero even
here, Hence,

237 %212 0 xR xN
= _ wm _ -
BE(McV) = 15.8 85 - 178 x @5} = e

= 128300 - 24410 - 12206 - 160,18 = 7157

Therefure, binding energy per nuclean is 8.4MeV,

You will note that in this casz sarface cnergy is more than the Coulomb energy and, of the
two produgct nuclsi, gﬁc is more stable,

zn><: ;
y |
FA0 feomrr e e e o e et et e 20y, i
- Suble 190, o
o Rodipacve 1w A
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N = (A-7)




In the above example you have seen thet siabliliy of nuclol decieasss as tho differencs Ths Atamlo Nucleus
betvieen the sumber of nsutrans gnd protons lugreasss, It is now wedl known that in light
slable nuclei the number of neswirona Is p2asly sql (o the aumbor of orotons, As we
mova towerds higher A, the neutron numb:r incyeasss relative fo the mrvir Aambet and
tha excess gradually incecases with incseasing 4. And enly soniln combinetdans of
protons and nautrons form sisbla nuclel. This is brought aut in Fig. 13.8, where we have
plotted e number of newiront {orlinaie) ageinst e anwser oY prevsae febscissa) for
stabis nuclef (shown by solid cimle). We note thot for nucle: witk, 7 £ 20, the stability
curve is a straight line with Z = N, For Z > 20, ihe slability curve bends towards N > Z,
You'can understand this on the basis of scmi-cmpirical mzss formuia by answering the
following SAQ.

Sp.+ {2 iin

§S4Q3
Show that for Light nuclei, the £a51 Z 2N is explalined by the pami-ampirical mass formula,

11 is an observed fuct thas nucted liks S3N1, 35T, ACa, ene ia which cithor N v Z, of both, are

equal t6 2,8,20,28,50,82 and 126 have snme vecy special features (or properiies) which ere
markedly diffcrent from those of other nucicl;

o they se moic abundan & naue
e they are more stable vhan oihery

These numbers are called magie numbass, They pave piovad vary bieiolul i sjzIeilUig B
structwre of stomic nuclei.

How do nuclecus cling together: Nuclear Force

Once physicists acczpied the neutron-proton hypethesis of aucleus, 21 important quesion
arose; How do nucloons cling togelner? In othies words: Whatis the nature of force i is
responsible for the binding of necleons in a nucieus? Since gravitaven and clcromagnetic
interactions explain most of the, oheorved Facts, you may be tempted 1o idenify one of these
forces as the likely force. The extremely small size of the mclexs, where all the pratons anc
neutrons are closely packed, immediately suggesis the existence ol strong short range
atrractive forces to hold them together. These auractive forces cannot lave clectrostatic
osigin. Why? This is becayse eleclrostalic forces betwei. preions are repulsive and ifonly
these were gperative, e nucieons would have brer blown: apart. Insicad, the forees batwezn
aucleons are responsible for ke larga hinding vz pornaclien (Pearly £ #leViing
nucleus. Let us consider the other aliernagive, Tiw f01Ce betwean NUCicals ay b2 ,
gravitational since it is a force of auraction between every pair of nucleons. However, 1 is far
100 weak o account for the powerful attractive forces berwesn nuclepns. If the oucleot -
mecleon fprce is taken to be unity, the gravitations! foree *~ Id be of the guder of 0¥, We
may, therefore, conclude that the purely strciivs forc.s boiveen nucleons are of B NEw iype
with n analogy whatsoevcr with other known forces in the realm of classicai physics. This
new attractive force is called nuclear foree.

The gravitalional as welt as electrostatic forces abey the inverse square law. The sitation @
the case of the nucleus is entirely different. All the nuclesns ere closely packed in the tiny
nuclers like a set of marbles in 2 box. The force that holds the nicleons together must exist
between the individual reighbouring nucleons in the nuclews. The nucizur force beiwzen
nucleons is, therefore, a shost yange force operating over very shan distances (~16-15m), Toe

nuciear forcs is negligibis al large Gistaaces. I suggests thar sl nuvivol silodnls 2aly with  Heeom sxperimore] cvideoced
its nearast naighbours. saggest that puclear farcas have s
1 DarEe Sependons part Hewevar, il
fo1Eh

e b —11
Ll FTAHE Y

These nuclear forces must gecount for the arractive fore hesween:

- - ; A s sebrm
- &= T ANG £ Nl

¢ bsoprowens, and
e (W0 NeulmHs.

Since BE/A is the same; imespeciive of the mis of neutmons and prosans I the nuclows, we
are quite Justificd in consldering the faze betwsen hem equivalent Thatis, zuzkear foree b
charge Independent,
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3 nueleas  rees hava only atiractivs character, nuclaons shoulkd conlascs undar thelr
influcnce, But we all know Lhat the average separaion betweon nucieons 1 gonswant,
resulling in a nuclear volume propattional to the total number of nucleond, The possibls
explanation is that nuclear forcas exhiblt artractiva character only so long as nucloons are
teperated throngh a certaln critical distance. For distances less than this critical value, the
~hargcter of nuclear forces must change abruptly; attraction should change to repulsion. (You
houid not confuse this repulsion with electrostatic repulsion.) Thess quelitutive aspeets of
ouclear forces are shown in Fig. 13.9.

Let us pause for a while and ask: How do nuclear forces operate between nucleons? In 1932
Heisenberg, suggested that electrons and positrong shift hack and forth betwean nuclesns. A
neutren, for instance, might emit an electron and become a proton, while a proton on
absorbing the clectron would become a acutron. However, theoretical conslderations showed
that the forces resulting from electron and positron exchange by nacleons would be oo small
{by a factor of 10'4) to be significant in nuclear structure. In 1935 Japanese physicist Hideki
Yukawa proposed that paricles of mass in-between the masses of electrons and aucieons are
responsible for nuclear forces. Now these particles are calied pions. Pions may be charged
(*, ) or neutral (°); the word pion is contraction of the original name pi-meson.

According 10 Yukawa's theory, every nucleon continually emits and reabsorbs pions, An
emiteed pion can also be absorbed by another nucteon. The assoclated transfer of momentum
is equivalent 1o Uie action of a force. One of the strengths of Yukawa's theory of nuctear
forces is that it cun account for their atractive as well as repulsive characters, There is no
simple way to demonstrate this aspect formally, But as a rough analogy, let us imaginc 1wo
boys erchanging volleyballs (Fig. 13,103,

You may now ask: If nucleons constantly emit and absesb ptons, why are they not found with
other than thedr usual masses? The answer lics in Heisenberg's uncertainty principle, W all
know that the laws of physics refer to measurable quantities onty and the accuracy with
which cenain combinations of measurements can be made is limited by the uncenainty
principle, The emission of a pion by a nucleon which does not change in mass —a ¢lear
violation of the law of conservation of enesgy—is possible if the nucleon absorbs the same or
another pion s¢ soon afterward that even in principle itis not possible to measure any mass
change. The uncertainty principle does not bar an event in which energy is not conserved for

thz time less than 7 /(2 AE). This condilion enables us (0 estimale the pion mass, This is
itfustrated in the following cxample.

Example 2
Assume that a pion travels belween nucleons at a speed of v ~ ¢. The emission of a pion of
mass m,, represents a temporary energy discrepancy of E ~ m ¢2. Calculale my,-

Soluticn

MNuclear forees have & mavimuam range of abod 1.7 Im and the time t needed for the pion 1o
travel this far is given by

r

A
M=Z -t
¥ c

Hence (m.cB)= f ~H

. j]
$0 that By~
T w

On substinling he known valuey we find thay

e 105 % 1073 Js
TETOMLT x HEBm) x (3 x 10 ms)

=21 % IDBLg

This is about 230 times the rest mass of the electron. Yuktawa’s mesons were aciuatly
discovered in 1946 in cosmic rays by Powell. The rest mass of charged pians is 273 m, and
that of newiral pions is 264m1,.



13.4 NUCLEAR FISSION Thc Atemlc Nuclcos

You now kriow that tniermediate mass nuclei zuch as barium, krypion and iron have
somewkhat higher binding enstgy per nucleon compared (o beavy nucled such as nranium,
plasonivin and thostum, This is cssentially due to the increasing role of electrostatic
repuliion. This accounts for the breaking up of a less tighily bound nucteus into more tightly
bownd mocled, This process is called mclear fission - a term coined by Lise Meitner and Ouio
Frisch from tha anatogy with bictogical cell division. In 1938 Oto Hahn and Fritz
Strassmann established that barium was ane of the products when uranian was bombarded
with slow nestrons, This result defied all known tenets of puclear physics al tha ime,
Bowever, these findings were reported in Nature in December 1938, Later a number of other
fGission fragments — from seleniom to kenthanum — were identified chemically. -

It was conjectured by a number of physicists thet some of the flssion fragments may decay
by emitting neutrons. And the experimental evidence for production of such neutrons came
in March 1939, As we now Imow, on an sverage, two to three neatrons are emittsd per
fission event. Moreover, a large amount of energy 18 released in this process. These
Immediately suggesied the passibitity of a acutron chaim reactlon — an observation with
exciting practical utility for prodoction of electricity. :

Refer to Fig. 13,11, It shows the schematics of nuclear fission of 35U by slow restrons. You
will observo that the (primary) fission products consist of two (middlo weight) nuclei of
moequal reass, 2 of 3 peatrons, & fow vy -rays and pearly 200 MeV erergy. It can be
represenied as

;n-i-?zSU-) '$Ba+22Kr+3 [n+ 200 MeV

Investigations have revealed that fission event occurs within 1017 s of the neatron capture
and fission nentrons arc enitted within about 1074 3 of the event.

Liso Meitner and Otto Frisch explained the resalts of Hihn and Strassmann oa the basis of
ﬂtlkpﬁdq:'apmndclofutnucleus.ﬂowevcr.Ilwdﬂajla_ilbemyofﬁss_ionmgdwdoped
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by Bohr arid Wheelcr using the analogy between nuslear foroes and the feeces whish Pind
moleghles together a Liquid, Using this model, they caplaized he ealsionce of spauimncous
fission and predicied i3 gbfiisy of 25 3 pnderpo Sseioa movs readfy than P91, Theyr olso
showed {hat if the exargy of nburos produccd i fssioa could & redums b 2ent 80255,
thels cffectivensss in causing fission of D51 increases hundred-fold. Before we diacuss 1
liquld d:g modei of fission, it Is Inporiant i point out that the fission Fagnients are usually
of unequal mass; ame being much heavier than the other. Such a fission is said o be
ssymmelric. Studies have ghown that 25U can fission in more than 40 difterent ways. This
means Lhai ahoud 80 differcnt nuciel are dircetly pradtuced in fsslon, The heavier fragmenis
normmally Yis jo the'mass range 125-150 with a well defined maximum around 140, whereas
ﬂnmwﬁagmmsﬁcinmemassmngcﬂﬂ—lleIthamaximmnmmdS\S,As - 35
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oxamg! <, we may mention YTLa, 'WXe, 15Te, ', 8B, 57, %21, 130, ewc. Beside 75U,
317 and -**Pu can also be fisgioned with thermal nestrons.

13.4.1 The Liquid Drop Mode! of Fission

In & large nuclegs containing many nucleons tvo main inices are operutive: Coulomb
teplusion berween protons and nuclear forces between the nucleons. Nuclear forces have
short range and are charge independent Therefore, a nuclegn deep inside the nucleus is
surrounded by cther nucleons on all sides and the average force acting on it will be zero.

- Howevet, a nucleon on the surface will be attracied only by those nueleons which are inside

the nucleus and within the renge of nuclear forces, Therciore, there will be a nea unbalanced
force directed inwards. (This is similar to the foree of surface tznsion in a liquid.} Hence,
when we treal the nucleus as a charged liquid drop, it will be spherically symmetric in its
lowest state, as shown in Fig, (13.12a).

When a nucleus captures 2 neutron, it induces re-pairing of nuclcons inside the nucheus. The
compound nucleus, formed in an excited state, has an entrgy equal to the kinetic energy of
the incidem neutron and the encrgy liberated in re-pairing of nucleons. As a resuli, it
undergoces stong oscillations which tend to distort its spherical shape i.e. the energetic
compound nucleus is slightly elongated (Fig. 13.12b). The force of surface tension teads to
restore the onginal shape while the Couiomb force {ends to dision it further. When the
encrgy of excitalion is small, the distortions produced in the nuclews are smali and the
nucleus relums to the ground stale by emilting t-rays. However, if the cnergy gained by the
nucleus is large, the elongation of the nucleus graduaily develops into two bulges joined by a
waist (Fig. 13.12¢,d). That is, the whole sysicm could be pushed into n bumb-beli shape.
Once the separation between the two charge conucs excecds some critical value, nuclear
surface tension forces Yose out to elecorosiatic repalsion and the two halves are pushed apan.
The nucleus is then irrevocably said to fission, The state e, where two charge centres are just
in contact, is refored o as the scisston state. The energy of the Coulomb ficid ate
transforms into the kinetic 2nergy of fission products, which fly away at great speed.

13.4.2 Critical Energy for Fission: Spontaneous Fission

The difference in energy between the system in the state e and the nucleus in ground state is
called ihe critical enesgy of fission, denoted by £ To calculawe E,, we assume thal

e the nucleus in the ground state is spherical
s in going from onc stale to another, the total volume f the system does not change, end
e the oscillatons of thz compeund nusleus ia the excited state deform the surface only.

When spontancous {ission occurs, more ofien that not, it is asymimelric. However, for
simplicity, we consider the case of symmetric fission in which the rwo fragments are exacdy
alike in charge and mass, Thus, i the charge and mass of the original nucleus are Zand A,
respectively, then boih fragments will be of chasze Z/ 2 and mass 4 /2 {(we assume both Z
and A to be even). Then, ihe surface eneigy of the injiial sphevical drop will be

L, =05 = 4nR¥a (13.4)

where o, § and R are the surface tenston, the surface area and ithe ruclear radius,
respectively.
Thz Coulomb energy of the original underformed nucleus Is

5P

"'E'" ( 13.5)

Ti s
gL

E. =

=4

If we we tha refation R = r, A7 (7, = 3 23010750}, e epargy of the necleus in its ground
stale, obiained hy adding the asove twe comnibidions, will be

. ~ - T o 3 l:z‘:}""
B=Egt Eg=ansrgay s ¢, AIn {13.6)
The surface encrgy of the two fragments in state e is
i .
R A
E,=2x4x (21—/3]20' = 08 TB(E] o {L3.7)
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The Coulomb enargy of these fragments at & will be a sum of 1wo terms: one representing the
(Coulomb) energy of tho two undistoried fragments and the other arislng from the repulsion

betwoen tham:
3 (Zerap (Zer2p
Ee = 2% 5 @A) T Tx @25
3 22 Z2lg?
=3 AR T By G (13.8)

The evcrgy of fission fragmenls is therefore given by

_ 3 22¢ z2e
Ey =Eu+Ea 28RO (AR +5 G5t Ty Gr (i3.9)

The difference in the energy of the ariginal nucieus and the ensrgy of two equal fragments in
contact i3, by definition, the critical energy for fission:

W

B, =E-E=axiam|@vs - 1) - - -2-34‘3(2 Y S zlﬂ)]

1} 407 rjAc 12
Zig
=RG AV [1 -—’-4—3—?_: ;E'Ei\ {13.10)

since (218 - 1) = 0.260 and [2 -4 ~ TSE P 2"3] @A~-1=1.

Let os now discuss the cooditions for 1he stability of a nucleus against spontancous fission.

For spontaneoas fission to occur, E, must be zero, Then Eq. (13.10) reduces 1o a compact

fom:
3 B
T40x rJAS
Z? _igmgcr - Ao
or [AL_ 32 0 ¥ G5 g (13.49)

This equation defines the kimiting value of Z%/A for stabitity of nuctei against sporancous
fission. From Weizsicker's semi-empirical relation we recalf that 4n30 = i = 17.8 and
(3/5)efry = 5=0.71. Using these values ia En, (13.11), we g1 '

72
(—A_lp= 301 (13.12)

A ritwe genesally accepted value of (Z ¥/A)sr is 47.8. Fos 281), Z A = 35.56 and for P%Pu it
is 36,3 -From this yoo may conclude that within the framewosk of this theary, even in the
eass of the heaviest neturally ccourming element, snontaneous fission is 4 mre accurmence

(ong In miltion),

In he sbove discosion of the liawd deap moded of tission, we have made some simplifying
pssumptions. All of them are no: atways justfiable. Using this theory one cannot, llm[m
googuns fne all the nhepsvad propertios of fssion. This has l2d 10 several modificetions of this
theory aad we Bow understand the mechznizm of fission far oo

i35 NUCLEAR MODELS

To have an idep aboyt the structure of slomic nuclci, physicists had (o resort Lo varicus
canceptons In which the picture of the nucleus varied from a gz w0 adrop of liquid, asd as a
sojid entisy, Bvea & a solid, they visualised it in many forms and chepes, For example, they. -
picowred It s g Jogsely bound stracture, as a stongly bound structure, &nd as 8 stuchire
where npcleons form groups (of a few) at a time. They also pictured it to be sphexical in
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aher: . slfipsoldel in shape, as ¢ pear in shape, and s0 on, Thess differont ‘{maginaiiona’ fod
{0 modely liks the Fermi Gas Modal, the Collectiva Madol, the Liquid Drop Modal, the Shell
Model and the Clusler Model, among athess,

Different tnodeis had verylng degrees of succasa in explaining/predicting the properties of
atomie nuctel, The liquid drop model has had only e limitcd success: it has been able to
explnin only the binding energies of nuclel and the phenomenon of nuclear [ission (whers
heavicr nuclei break-up into two or mors approximately equal parts). Because of lts quite
limiied success, we are nol discussing it beyond what is already done. However, we discuss
two other models.

13.5.1 The Shell Moadel

The existence of magic numbers in auctei led to the development of the shel) model.
According w this model, the nentrons and prowns are distrlbuted inside the nucleus in
certain specificd orlits (or paths), like the electrong in an atom. The maximum nember of
nucicons in any path is resuricied by Pauli's Exclusion Principle (just as in the case of an
alom, Unit 5).

Any given orbil can have cqual number of neutrons and protons, as Pauli’s exclusion
principle applies to both these separately (Fig. 13.13). The orbits are designated by their nij
values. Hare a2 refers 1o the principal quantum number of the orbit, ! to the orbital angutar
momentum, and / to the total angular momentum of a nucleon, The number of allowed
NENLons OF protons in an orbit is equal 1o 2/+1,

A graup of orbits, quite farther apar from another such group, is usually spoken of as a shell.
A number of shells form a shell type of 2 structire inside the nucleus, Whenever a shell is
{ul! 10 is maxinmum altowed capacily, i "sort oi” becomes inert (pot contribuling to nuclear
properties) and gives risc 1o a magic number.
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#lr.§3.13: Renrecvatnlion of drs) frueinie of mocel. T viralghi ines demify orblily wites
D8y Ba Lirculer o Bg&yiy chewiar In daune
ThE NCuTUNS ERG PIvions 1 OIDHS &8 ASSUMSd 10 EXECULE IWO KINGS of niolon. A milatory
MO0 ATCUNG SOMS CAMITON CEMIE L TOT0e an0 A DN mopon aroand themeelves, These
are illustrated in Fiz. 12.14. These two metiens ere similar to the two different types of
moticn of the carth: an¢ around Lhe sun and the other aboul its own axis.

The structure of a nucicus, on the whole, i3 very similar 1o that of an alom. The only
difference is that in an alpm the clectrans revalve sround a commen ceatre of foree — the
nucleus, whiie in a fucleus no such common centre of lorce exists,




It is observed that nuclei with N and/or Z squal to magic numbers are spherical in shape. For
nuclei which are spherical or neatly spherical in shape, the shell model is extremely
successful in explaining and predicting their prope:ties.

13.5.2 The Collective Model

Away {rom the magic numbers, the nuclei become non- spherical or ellipsoidal in shape. in
such nuclei, the nucleons in Lhe last unfilled (or incomplete) shell form clusters and deform
the nuclear shape. This deformation changes its orientation in space as a function of ume,
Icading 1o rotation of the nucleus as a wholc (Fig. 13.15). Rolatiens of nucici are indicative
of the collective behaviour of nucleons.

Mot so far away from the magic numbers, the nuclei exhibit surface vibrations about their
equilibrium shapes (Fig. 13.16). These vibrations have a lixed frequency and exhibit simple
harmonic characler. The vibrations arise because of the continuous formation and dissolution
of clusters. Vibrations arc also indicative of the collective behaviour of nucleons.

The cotlective mode! has been extremely successful in predicting and explaining the
properties of nucke which are away from the magic numbers. This modcl has been
particutarly successful in explaining their quadrupole moments.

“The shell mode] assumes that the nucleons within a nucleus act more or less independently.
‘The collective modcl, on the other band, assumes that the nuclsons act collectively. Neither
of thesc two modcls is able to explain the stucture.of nuclei throughout the periodic Labie.
The shell model is successful for nuclei with N and/or Z values near Rrmagic numbers.
Collective model 15 successiul for nuclei away fram the magic numbers.

Since no mode! has been able 10 explain the structure of nuclei thronghout the periodic table,
an atiempr isbeing continuously made to unify (combine) the ideas of these two models into
onc model. Though there has been some success, na concrete model has emerged so far

which explains the strucwre of all nuclei and sausfactonily explains/predicts thelr propertics.

13.6. SUMMARY

® Alpha particle experimcnt of Geiger and Marsden revealed that (i) nearly all alpha
particles emerged without devialion suggesting that atoms consist largely of empty
spacc (ii) large angle alpha particle scauering implied that they undergo a head-on
collision with something immovable - the nucleus. '

The distance of closes: approach of an ajpha porticle to the nocleus of an atom can
be culculaled using the relation

_ b 4Ze
T4re, m?

» Rutherford analysed the observations of Geiger and Marsden, He proposed that all
the mass and 1he positive charge of an atom is concentraled in a Gny nucleus and
clectrons reside outside the nucleus.

e Nuclci of all elements have the same density, of the order of 30°°kg m”.

e The dillcrence between the observed mass of any nucleus and its constituent
nucleons is termed as the mass defect:

. bl N

a4, S
Sy = g+ ey — ik
eigy anuivalant of mass deflect i< ealled mnding crergy:
BE = Amc?

o The binding cacegy (BE) of a nucleys is an incirasing function of mass ml_-"n-b-:r.A
Binding energy per nuckon (BE/A) versus A graph shows (i) sharp changes for "He,
IBe, 12C, 160, NG etc (i) monctonic increass beyond A = 20 and BE/A sitains a
maximum value of 8.8MeV for the iron nucteus (iii) grdual decrease for nuciel
heavier then those of iron and drops 1o 7.6McV [or uranitm, BE/A rather than BE is
a measure of stability of nuctel.

e Nucleons cling Logether via nuclear forces, which show saturation, are charge

Tha Atemle Nudius

Flg.13.15: Rolatlon of pn
dlipaoidal necleus. Nuclear
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regloo is bed suppond 10 Tolate,
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o Atber nuves plving rbe to a
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i 2cendent and atiractive. However, they become repalsive when nucleon-nucleon
tsiances are Irss than a critical value.

@ According i Yultawa, pi-mesons, novw called pions, zie continpously emitted and

absorbed by cvery nucleon. Ie this procscs, some momzatom Eunsier takes place,
which is responsible for the acticn of cuclear forces.

s When z heavy ruckcns is bombarded by slow neatrons, its shape widengoes a seres

of changes before splitting into nuclei of unequal mass, Svery fission event is
accompanied by seleass of 2 or 3 nentrong and nearly 200MeV enerpy, which heats
up the serrounding medium.

& The shell medel of a nucleus s enalogous to the electronic shell model of atom. Ty

tels us that within the nuclews, nucleons are distributed in certain specified orbiis,
The maximum number of nucleons in any path is resiricled by the Paudi's Exclusion
Principle, The nuclel with filled nuciear shells corespond to magic nustei and are
more siable.

e Innuclei away from Lhe magic numbers, the nucteans in the last unfiled shell foem

clusters and change its crientation in space and time feading to its rotation as a
whole.

13.7 TERMINAL QUESTIONS

I

13.8 SULUTIUNS ANU ANSWLERS

Cajculate the distance of closest approich of an - particle of energy 5.3neV fired
directly towards a nicleus of gold (2= 79). Given, mass of a gold nuclous

(M) = 6.7 x 10?kg, cherge of an clectron = 1,6% 1079, i?f:‘; = OX 1IN mP o2,

Find the energy released when two 2H nuclei axc fused together 1o form 3He nucleus.
The binding cnergy per nucleon of 2H is 1.1MeY and thai of *He is T.0McV.

Catculaie the bingisg encrgy of a “He mucteus ofi vhe basis of semi-eripirical mass
formula and compare it with the value obtained oa the basis of mass defect (SAQ 2).

From the semi-empiricel mass formula a8 given by Eo. (13.3), caleulate the value of the

atomic number (Z) far he most stablo uncieus a1z given mass aember, Calculate Zg for
A=56.

SAQs
' M 19.97 . 107 kg
I. = - - = -
%Rg 3 X 34416 x (27 x 105 my
)
= -é—i%% % 108 kg m™
= 242% 10 o2
L iy, _ 34 x 10 Bkg
IR S .
'I{ Ty 1 Y] 1y
3R ALy e
el -
|.—3-— N {r})
= 237 x 107%kg m
2, From Bq, {13.2) we know that

BE = Amc?



where Am = Zmy + vy —m.
For jHe, wehave Z= 2 nd N =2. On substinzting the givea valucs, we get
Am(*He) = 2 x (1.007625u) + 2 < (1.008665u) - 4.002604u
= 4.03298y - 4.002604u = 0.0303760

‘The Atomic Nuctoys

and
BE = 0.080376 x (1.66 X 10-7kg) X (2.998 x {0¥mg)?

= 0030376 x 14.92 % 101J '
= 0.030376 x {14.92 x 10-111)/(1.602 x 1019Je V")
= 0030376 %9.313 X Io*eV
= 2829 % 107V
= 28.3MeV

For})Cl, we have Z = 17 and N = 18. Therefore,

Am(3CDH = 17 x (1.007825u) + 18 % (1.008665u) — 34.968854
= 17.133025u + 18.15597u - 34958850
= 0320145u
Since Iu=931.3MeY, we find that
" BEQ'CQN) = 2982MeV
For 3%Re.Z =26 and N =30, Therefore

Am (%Fe) = 26 x (1.007825v) + 30 x {2.008665u) - 55.9349320
= 26203450 + 30.25995u - 55.934932u
= (.528468u

BE(Fc) = 492.20MeV
For 85U, Z=92,N = 143 sp that
9% x (1.0075251) + 143 x (1.HDBEE5E) ~ 235.0439330

Am =
= 92.7199u + 144239095 ~ 235.0453933y
= 1.915062u

s0 that

BE®'U) = 1783.5MeV

3. Foragiven a4, the mlh\% will he such thal the tots energy E tends o a minimum. Since
my = my, the only t2rms which we havcmconmdermdm:ussmg this miramum for a
nansci:w_fucefdnrel—j-e.ndimmﬁ_rqwmdﬂnmdsN 7 while the
sarond lerm damands Z oo ke a3 small oo nosgile This iz congigtam wiph the fact thay
light nuclel havo Z= N.

4]
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1. The distance of closest approact: is given by
14z i oz
dre, A due, E
where E is the cncagy of the a-pasticle.

1
4ne,

b=

Here ,=9:<10?Nm=cz.z=79.e=1.¢x1&l’cm

E=353MeV=53x16x1017,

Substitning these values in the above expression, we ged
9 x I0°Nm*CH x 2 x 79 % (1.6 x 10°CP
53 x 16 x1067) :
= 4.3x10%m
2. B.E ofajHenucleus = 7.0x4 = 25MeV
B.E. of aJH nuclens = 1.1 X 2 = 2.2McY
Mass of jHe nucleus = 2o, +m, - 28.0MeV
Mass of 2He nucleus = m, + m, - 22MeV -
Energy released in the fusion reaction
E= 2 Mass of 2H - mass of JHe
= ‘2,(mp+m,,-2.2)-(2m\,+2m',—28.0);|2§.ﬁhkv
3. ForjHe A=4andZ=2and =34 -
Hence from Eq. (13.3) we get

b:(

BE (McV) = 15.8 %A - 17.8 x4 -0,71 % z%—,; + f;%

= 63.2~434.9-0895+12.02=2943

This is slighily greater than the value calculated on the basis of mass difference of
helium nucleus. ' ) :

4. For the most stable nucleus at a given mass number A, we have
4 BE)

[Tz-lf 0forZ=Z,

Hence we have from Ea. (13.3)

(A — ) 5 .
T A -ga ) =0

= 4y (A-22) - 8AP (22 =0
or 4YA-8YZy-2842Z+ 84T =0
or Zo By + AP =4 yA + 8A%D -

_.2":'

., AyA + BAT
= Ly = mﬂ:‘
217 % 44 -+ RAY?
TE X 137 + 2 X071 A
0484 + 427
TOTAZAMY MR

94.8 x 56 + 071 x 567 _ 5319.2°
Z0 = Tya x 567 + 1896 2104

253=>26
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14.1 INTRODUCTION

In Unit 13 you have leamt how Ruthierford's investigations on transmptation in 1919 fed
to & new and ferntile branch of physics - Nuclear Physics. Qver the next fifty years its
frontiess expanded rather rapidly. The enormous research was rewarded in the form of
numcrous applicalions of nuclear radiations and radioisotopes in various facels of human
activity. However, we shall confine ourselves Lo typical examples in nuilear encrgy
generalion, medicine, agriculture, industry and research,

No power is a5 expensive 28 no power. These words of the architect of Indian Nuglsar
Programme - Homi Bhabhs - at the 3rd UN Conference on peaceful uses of alomic energy
beld in 1964 vividly bring out the'importance of energy for the people of under developed
nations, :

Encrgy is fundamental for our exisicnce. We need cnergy Lo cook food, run machings or go
from one place 10 another. We dlso need energy for agriculiure, industry, communication,
beuer living standards and economic growth, Moreover, in fuwre, the ever growing
population, our uncnding quest for comfon end material affluerce and issucs of security vill
mise energy demand Lo unprecedented levels, We all know that cnergy cannot be created out
of nothing. We have 10 burn wood, coal, gas or ail to produce energy. And at the present
raie of consumption o known limited reserves of such fossil fuels are bouad Lo Gwindle
very soon. Marcover, ingreased reliance on them could even threaten to disturb ecological
balance by adding to greenhouse effect, air pollution, ozone depletion and acid rain ele. The
ingvilable trend in energy supply, therefore, is to move away from fessil fuels. In this
diversilication, efforts a5c on to tp hydsl power. “The solar drzam is yol 1o be weaved for
commercial purposes. However, nucleer cnetgy, presents jtself as a practical akicrative,
which can cater 1 our immediate as well gs long term energy needs.

Presently most of the nuclear energy has come from fission reactors in which fissile isotopes
23U, BU and *'Pu have been used. But public acceptability of these reactors has bsen
rather low. It has now been realised that the growing electrical power requirements of the
world in the 215t century can be met only by fusion encrgy. However, the choice belween
nuclear fusion and fission as the likely energy source will probably hinge upon the pubic
perceplian as to which systea is safer and cco-friendly.

L o I wuckel colliding in plasma cealescs and Fonm heavior miclzss, 2 Luns Jravund
When vwe rucke colliding in plasma cealess and fonn K : Lo

of erergy is rejeased. This procxss is refamed 0 as nuckear fusion. Tho device 1 wiich susic
thermonucicar reactions occur in a controlled manner is calied the controlied thermonuclaar
reactor (CTR) or a fusion repewor. {1 is worthwhile 1o note that white nustnur fual peed iz
(ission reacior 8 limited, the liksly ingredients of 2 fusien masior — dousediom, lihiuge, Ty
CIC. —- OCCWr In nature in enonmons amounts. Thercfore, successiul operaiion of 8 CTR
woukd signily that the world has acquired 2 prectically inexhaustible source of energy.
Further nuclear fusion seems attructive as it byc-passes many of the safety problems

" associgled wilh nuclear fission. Also, it &s ‘clean’ in the senss thal it does not leave behingd

- hammlul rdioactive wastes. Moreover, the encrgy released per unit mass of the reacting

" matertal is much greater than the corresponding quantity in nuclear fission involving heavy
nuclei. For insiance, encrgy refeased per nucleon in D-T fusion is nearly five times lasger
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this world owside was cofiveyed by
Prof. A. Compuan through Mr,
Comam «f the (H¥ice of Scientific
Hesearch and Development o
Tlarvard. To quods het:

“1Yir ialing Navigaor has reached
Lthe New World”, said Comptoo a¢
»00a 83 he got Conant on the lme.
"An¢ how dys he find the natives?”
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than 4+ caergy reloased per nucleon in & flssion event (though the encrgy relsassd per
fusion 7.6 MoV ls much loas than the avallable energy of about 200MaV in a flsslon
reaction).

In the previous unit we discussed the flssion process in some detail. You leamnt that the
average number of noutrons cmiticd in eech (ission avent is greater than two and these
reutrons are capatle of causing further fisslons, This inmediaiely presented the exclting
possibility of maintalning a fission chain reaction in which each fission event remaoves one
neutron and repiaces that by more than two. When the rate of production of nestrons equals
the rate of loss of neutrons, the reaciion is said o be salf-supporting or setf-sustained. The
devizc designed (o maintaln a self-sustalned and controlled chain reaction is called 2
nuclear reuctor. In Scc. 14.2 you will learn how a self-sustained chain reaction can be
achieved and what are the principal components that go to make a nuclkear reaclor.

Nuclear reactors can be classified according W the purpose for which a reactor is used or the
raean enetgy of neutens causing fission. A reactor can be used for power generation, basic

. research and conversion of onc malcrial imo anather, To give you a feeling of power

reactars, we have briefly discussed Indian power programme in Sec. 14.3. Restarch reaclors
can be used for producing radioisotopes, which find so many and so varied applicalions in
everyday life. You will leam some of their imporiant applications in industrial as well as
basic processes, agricullure, medical diagnosis and treatment.
Objectives
After going through this unit, you will be able to

e explain the tarm self-sustained chain reaction

e identify similarities berween fossil fuel plants and nuclear power plants

e cxplain the fumction of various components of a nuclear reactor -

e stsie essential differences betdesn a research reactor and a power seactor, and

e descrbe the uses of radioisotopes in industry, agricoltore and medicine,

14.2 SELF-SUSTAINED CHAIN REACTION

When the question of establishing a fission chain reaction was examined for the first ims by
Fermi, natural vraniom was taken as fuel, He immediately ran into difficultics, The
abundance of 22U in natwral uranium is 99.7% wheseas that of 2*U is 0.3%. Ofthese, 2*U
absorbs neutrons and does not necessarily undergo fission (except by high encrgy ncutrons).
T was experienced that, on an average, more neutrons arc removed from the sysiem than arc
created in fission. Hence, sven if & fission reaction is siarted by the usc of an extemal
NEULrOn SOUICE, Ao so0ner is the source removed than the number of neutrons in the system
ﬁgin to decrease rapidly and the chain reaction stops. On the other hand, the probability of

U 10 undergo fission is very large for low encegy neutrons. This led Fermt to suggest that
much more effective use of this isolope coutd be made if the energy of fission reutrons is
reduced through collisions in a moderating medium before they had a chance to inleract with
other uranium nuclei. Fermi and his coworkers suggested that

e graphitc should be used as & moderalor o slow down peutrons bom in fission
® wankwm rods should] be distributed uniformly in a moderator medium.

When these (wo innovaions were incorporated, Fermi succeeded in achieving the first
ealf-gustajned chain resction on December 2, 1942 &t the University of Chicago, USA.

For a fission chain reaction to be self-susiained, the rate of production of reutrons must be
cqual §o the rate of loss of reub~3. Neuwons con be lost from @ fission chain by bagically
two processes. They ase cither absorbed by nuclet of the medium ¢« they escape from ik
system. The rate of loss by leakage depends on the shape and size of the assembly. The
most efficient shape is a sphere. For 2 sphesical assembly, ihe leakage rale is proporticnal to
the surface area and the rate of production is proportional (o the volume (assuming that
uranium is distributed uniformty throughout the assembly). Thesefore, the proportion of
pentros that leak out will decrease as the size nf the sphere increases. Thus, if we start with
a small assembly, the rate of boss cxceeds the rate of producton and a s¢lf-sustained chain
reaction will not be passible. As the size is gradually increased, we will reach a size when a



self-sgaained chain reaction just becomes possible, This eize of the sphere of figsile material
congtituics the critical slze. The corresponding mass of the fucl Is termed as the eritical
mass. Foe 27U the critica) sphere hag a diameter of 18¢m and the comresponding ¢rtical
mass is S3kg. For 2%Py, the critical mass is about one-third of this,

The behaviour of 2 neutron chain reaction js described quantiwatively in terms of a constant
called the multiplication factor. It is denoted by k and is defined as the ratio of the namber

of ncutrons in any one generation 1o the corresponding nember in the immediately preceding
gencratiorn, i.e.

Number of neutrons in (n+ 1) th_generalion
Number of nestrons in ath generation

Multiplication factor, & =

If k> 1, the number of neutrons increases indefinitely with time and the chain reaction will
getout of contral, If &< 1, the number of ncutrons decreases with time and the chain
reaction will stop. In the special case when £ = L, the number of netrons in any wo
successive generations remains the same and the chain reaction proceeds ata constant rate,
independent of time. Depending upon whether k> 1, & = 1 or k < 1, 1he reactor is said w be
super-critical, critical or sub-critical, respectively. For this reason, k is also very frequentdy
refesved 1o as the eniticality fzctor. A knowledge of the multiplicalion factor for 8 given
scacior is essental for reacior conlenl.

An aproximate expression for the tme behaviour of 2 neutron ohain reaction can he derived
as follows: Led us suppose thas at any instant of time there are N, ncutrons, We will consider
this as the first generation. Then, in the ath generation, the number of newtrons will be

N, = Mjax™! (14

Let { be the average time between Lhe creation of a neutron and its final removal either by
leakage or absorption. Then, the ume clapsed between the stari of tho first generation (which
is our 2¢r0 of time) and the bisth of ath generation nevtrons will be 1= (a - 1){. On
substituting for (n — 1) from this expresston in Eq. (14.1), we get

N= N k"= N©Okxp G In k] (142)

where we have replaced N, by N{f) and N, by N(0). Assuming kto be close to unily and
noting (hat In k=k—1, we have

N(2) = N(O) exp [(k -1 ;] (14.3)

S

This tolls us that neutron aumber ingreases cxponentially with time for k> 1 and decreases
cxponentially with time for £ < 1. For k=1 we have a steady state.

For prompt neutrons the mean life ume is nearly 1035, For k= 1,04, the increase in the
number of neutrons per second is N(1)/N(0) = exp(0.01/0.001) = ¢'? =22000. Sucha
reactor would be impossible tu control by any mechanical means, Thus, if the above
considerations werc the only ones opeiative, cven an excess of (.01 (1%) over unity in
the value of & would make a reactor 10 cxplode. Fortunately the presance of delayed
ncutrons appreciably increases the neutron life ime (1o about 0.1s) and nuclear reaclors
become controllable.

Ever since the worid's first nuclear reactor was canstructed by Fermi and his co-workers
at the University of Chicago. USA, in 1942, a variety of nuclear reactors have been built,
primarily 10 meet our increasing demands of snargy. Nuclear seacions arc highly
complex insialiations amd great cars has io be eaercised in designing uwm, in spite of the
fact that they work on a very simple principle. The heat generated in figsion is removed
by circulating a fluid, called coolant, around the fuel and Lhis heat is subsequently used
o generate high pressure and high temperature steam. This is fed to g tusbine-generator
system 1o produce eleciricity. In reactors built primarity for experimenial purpose, the
heat is discharged into a river or Lhe sea.-

Applind Nudear Sclance

Neutrons emitted within 105 of
the fisslon event src said Lo be
prompt neutroar lfowever,
LMD REUTTORS ArT emilled by
fission produa nuclei contiderably
aftcr the fimion evant, Theseare
kmown as delayed neaulrons.
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14.3.1 lassiflcation of Reactors .

Reactors have been built for a wids rangs of uses, from power generation to tésting new

reactor components. And the design specifications vary widely depending upon the parposs.
One can classify reactons in different ways but two most impartant eriteria ana:

e the mean energy of neutrons causing most of the fisstons, and
o the purposc for which a reactor is meant.

According 3 the mean encrgy of neutrons cansing most fissions, reactors can be classified
broadly as: fast and thermal. In a fast reactor most of the [issions are caused by nculsong
having energics of the order of a few hundred keV, whereas in a thermal reactor mast fissions
are induced by neulrons of energy around 0.0253eV. In India thermal reactors are the only
ones that have baen built so far for power generation. Past reactors, which hold great
promise for future, form third slage of Indian Nuclear Programme.

According to the purpose for which they are meant, reactors can be ¢lassified s research
reactors and power reaclors.

Reactors built for basic research in varioys branches of science, for testing new reactoc
designs or new ceactor components, for producing radiolsotopes and for modical purposes
{ncuiron therapy) ere refercad to es research reactors. Cirus, Apsara, Puraima and Dhruva
at Trombay are some of our thermal research reactors and EFBR at Indira Gandhi Centre for
Atomic Energy Research, Kalpakkam is a breeder resaarch reacinr. 1t may be remarked here
that usually o singto research reactor simultaneously serves many of thess purposes.

Reactors built to produce power are referred (0 as power reactors. deayallourg?{:}hn)
nuclear power ( ~ 2000MW) comes from thermal reactors based on the fission of

Reactors.degigned to convert one isotope (B2Th or 21U) into another more useful isotope -
(U o7 ¥%Py) are called converters. If the amount of newly produced flssiblo isotopo is
more than what is burmt in maintsining the chain reastion, thay are called breeders,

Froin (he above discussion you may be tempied to think as to what is common in different
types of rezctors. But this is not true! There are certain features common o ali reaciors and
pefore we discuss typical reactors, it will be useful to sumenarise them.

14.3.2 General Features of a Reactor

Al ruclear reactons consist of the following basic components: reaciors core, rdlucwr reactor
vessel, rediztion shistd, stuctural materials, coolant loops and heat exchangers, etc, These
are seiiematicaily ifiustratad in Fig. 14.1, in a fast reactor, a bianket is placed befween the
coze and the reflcotor. Lat us discuss thess in degall.

Cn:e

The centnd myion of @ reactor where {ission 1akes place, resulting in the selease of enugy.
known as the core. In fast reactors it contains a nuclear fuel, a coolant, control rods and
strueiura! materals. In thermal reactors a moderator is also present. An idea! fuel should
have high thermal conductivity and high melting point, high resistance to radiation damage,
and be chemically inert, Moreover, it should be easy to fabricate and corrosion resistant
Usually the fue! is in the form of a ceramic, i.2., either an oxide or a casbide or a nitride.
(Oxy-carbides and nitrides of uranium have also been proposed as nuclear fucls.)

Vo pravem escane of fiselon fragments into the coolant or the moderator (if present), apart
{rom providing proisction io e Seslonabls majerial fom comosion, the fuel rods &S -
nladdad ar conped, An ideal fied elad material ia hlo‘hlv regiglive mccmm[on a8 paor |
REUECH c.b_-\.n.n.,l, '\-IsL-Jp mfd Foadt =) avallable, It "“3”-" also hove E@!"T@C}'-un Ca] S"'ﬁqglh
aied ligh etuag poiini. Zirconium, steel, alummlum. magnesium, nickel and some other
simi[ax mategials are used for this purpase. Of these all, 2irconium is the best and one
enzrally veor zizooatum slloy, known as Zircalloy-2(Zr-2), in thenmal powss reactors. In
::mmacm.u, siainiess steel is used. Aiuminium is uséd mainly in sesearch reaclofs, A singis
cladded unit of fug! is known as the fuel element. (In a fast resctor the fuel eloment is
Junner than that used in a thermal reactor and id called a fuel pin.) Several such fuel
¢clements when put together constitute a el assembly. (It is this single unit which is -
inserted or taken out of the reactor as 2 whole.) A réactor care contains a large number of
such fuel assemblies arranged in the form of a regular lattice. The lattice is usnally square o
hexagonal in form.
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To remuove fission heat from the core (as also heat from any cther part of the reacias), it is
necessary (o circulate a fluid - a liquid or a gas - through the reactor. This fluid §s rafemred 1o
a3 the coolamt, A reactor coolant should have high thermal canacity, fow cost, low peytron
absorption cross section, good radiation and thermal stability, and compaubility wiea fued and
clad. In fast reactors, the coolant should further be a poor moderator. Tn these reactors liquid
sodiom or helium is used as coolant. Tn thermal reactors ordinary water, sleam, heavy water,
carbon dioxide, helium and some ofganic gases are frequenidy psed as cootants.

To slow down neutrons bom i fission, a moderalor 1S also present in the core of a thermal
reactar. Itis a matesial of low mass number, Large scaliering cross section and small
absorption cross section. (Other requirements for a moderator are almost the same a6 those
for a coolant.) The best moderators are heavy water, light water and praphite, Of these,
heavy waler and graphite are so good that in their presence even na sl ureqium Can susin
& cham regctor. To ensure safe vperation of a reactor ar a desired power level, 10 start up and
to shut down a reacior (during routing operation or in an emergency) as well asto
compensate for the gradual praduction of poisoas and fuel burn up elc. provision has to be
made in the reacior core to control the multiplication factor, This is :achicved by having
some control rods in the core. The control rods are made of some highly neutron absorbing
material such as boroa, cadmium, hafnium, gadolinium or their alloys. For example, borcn
is used in the form of boron carbide (B,C) powder stuffed in stainlest; siec! contro! rods.
These move vp and down between four fuel assemblies. Sometimes, emply (ubes are built-
in inside the core and the abserber in the form of 2 liquid, say gadoliniwm nitrate, can be
pumped in and out. Similady, in H,0 or b0 moderaled reactors, bovic aoid GLBOL) is
frequently added to the moderator. This is known as chemical shim. Many a time, a small
amount of 1B or 'IGd is added 10 the fuel. A signilicant feature of thes:s isotopes is thaz on
neurron cepiure they change into isotopes (!B and **Gd) which have negligible affinity for
absorption of neutrons. Thus, as the fuel depletes, the poison also bums -put itself resulting ia
the compensation to the loss of multiplication factor due 1o fuel bum up. Such a poison is
iermed as a burpable poison. Use of gadolinium oxide (Gd,0,} powder with UQ, powder
is a common example.

In fast reactors boron with increased fraction of B is used. In experimental fast reactors
periodic removal and nsiallation of ihe reflecion as weli ss ihe fusl {07 Core) have also beex
used ko conmol the muitiplication factor of (G S GOwn 1he TeACUN,

Control rods may be subgrouped as shim rods, regulrting rods or safety rouls, depending
upon their function. Shin coniro! rods are used o bring the reasior 1o the desirsd power
level when the system is started and to make ceeasional coarse sdjustments in the power
level, Befors the reactor is started, these rods are completely inserted into the reactor core,
They are then graduslly reised until the reaclor attains criticality; they are normally fully out
of the core when the reacior is operating at its peak power. Regulating vodu are used (o
make fine adjustments in the power leve! and to campensate for the effects of changesin
tempereture and pressure, fuel deptetion and build up of poisons. Safety rod's are provided
10 stop the chain reaction rapidly and are used for an emergency shut down of a reactor in
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case 7 Fzilum of the sysiam, %mmctarlscrlﬂcﬂ these rods aro kept in & cocked
mmurlwuﬁuﬂwmu\dwehmdmU\emncml!'oymmovodnpldly Intp the core,
They aro distributed uniformly inslds the core,

To support fuel elements, for making ¢dalent channals and for various othey purpases, it s
Recesary to uto some structiral materials inside the core, Ths deshiublo properties for such
matesiaty aro this sume as thoas of the ¢lad and generally one usea the same matasial for both
purposes. Fomxample stainless stasl }s used for spacer-grids - the stewslur which
mainiging specing between fusl rods ina fu:l sssembly, Simitarly, for cootent tubes and fue!
channels, 2'7-2 is used.

Blanket

In fast reactiors, which are generally compact, a significant fraction of neutrons in the core
Yeaks out of the system, To reduce this leakage and also 1o make proper use of the lcaking
neutrons, core in these reactors is surrounded by a region of fertite material (B2Th or 28U).
‘This region is referred to as the blanket, (This also serves as an additonal neutron reflector
as well as a shield.) Neutrons absorbed in the blanket cvanually {ead to the production of
fissible nuckei, 230 or 2Py,

Refiecter

Aregion of non-moderating, non-absorblag material put next to the core (or the blankey, if it
is preseat) to inhibit neutron leakage from the core (or blanket) is known as the reflector, In
fast reacrors high mass number material is nsed so that the mean energy of nevtrons returmed
back from this region is not much difierent from that of newtrons entering it. Ni, Cu and Mo
are frequendy used as reflectors. In thernmal reactors any good moderating material can be
used as a refiector.

Reactor Vessel

‘The whole assembly is plawl inside 2 vessz], called the "pressure vessel”. Usually afew
inches thick siainless sieel is used (o make U reacior vessel,

Shiclding

To prolect the sciemtiste und other personnel working sround the reactor as well as the
equipment placed around it from radiations emanating from the reactor core, the reactor
vesse! is encased inside thick concrete walls. In some cases, alternate layers of heavy dnd
light clements such as concrete and polycthylene or concrete and water arc also used. This is
referred to as the b!olog:cal shield or the radiation shield.

The continuous absorprion of leaking radiations by the walls of the reactor vessel as well as
i the biolagical shield would result in the generation of heal, causing thermal stresses in
them. To reduce this fieating effect of nuclear radiation and hence prevent radiation damage
of the pressure vessel, a thermal shield, usually madé of stainless skeel, is placed next to the
refiector,

Reactor Building

"The entire structure; is placed inside a reactor building. -1t is air tight and is maintaimed ata
pressure slightly Iower than the atmospheric pressure 5o that no air leaks out of the building,
except through the ventillation channels, Tn the event of an accident, the huilding aten helps
to contain the radicactive materials and prevems their dispersal into the suroundings., -

Ceolant Loops, Heat Exchangers and Eleciric Generators

‘e heat gensrate:d due o fission inside the reactor coce is removed Dy cixtulating & ceolant
twough it Usually, the cootant cirouldtes in a closed Yoo, called the prbmary ¥ (e eeaclor
core) loop. The beted coolani carrying Asswon iea: can beoome nEnsely mdivacive when
it comes oun of the core: To prevent this radioactivity from spreading, it bevames necessary
10 introduce 2 secondaiy (or steam generating) loop, which may be closed or open. The
primary fuid is made {o give up ils heat to the sscondary ﬂuid, wsnally water, in a heal
exchanger. This sesulls in the production of sicam and for this reason, it is also called 2
steam generatur,

In reseanch reac:tors, secondary Joop is usually open so that the heat produeed inside the core
is just dischargd into a river or the sea. In power reactors, the secondary loop provides

enesgy to an electric generalor, However, in some reactors high pressure sieam is prodoced
in the core itself and it is direclly fed to the generator so that no beat exchangers are nesded
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in this case. Such reactors are called boiling water reactors (BWRs). A schematic diagram of / \

8 boiling water rcactor is shown ir Fig. 14.3. On the other hand, in fast reactors codled by RN S p
liquid sodium, an intermediate cooling loop (and hence heal exchanger) is also required. i

This is used to ransfer heat from the primary sodium loop to the secondary loop.
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The high wmpcrature and pressure sieam from the sieam gencrator (or the core) expands in a
twrbine coupled (o a farge clectric generaior. The low pressure stcam leaving the turbine is
rocondensed inlo liquid water in a sicam condenser. The condensed water is then
compressed and pumped back into the sicam generator.
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The efficiency of nuclear plants (33%) is lowcr than the efficiency of lossil plants (40%).
This is because the temperature of the nuclear luel (and hence steam) is kept lower than that
of the fossil [ue! to avoid melt down. However, it is hoped that soon it will also be raised to
about 40%.
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14.3.3 Nuclear Energy: The Indian Saga

P1. Jawaharlal Nehru dreamt of 3 echrologically advanced post-independent India and st
about laying its foundation immediately after taking over as Prime Minister. He was
convinced that energy needs in the chvisaged scenario would cver increase. On the question
of energy options, he recognised inevitzble reliance on nuclear ‘apple’ because of obvious
limitations of hydel, coal and oil based sources of clectricity generatan. In this endeavour,

ATOMIC ENERGY ESTABLISHMENTS
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ke relic: -t genlus of Dr. Flumi Bhebha, who reaponded (o the challanges of nunuring
nuclear programma of & ‘bleeding” natici.. Tha Atomle Encrgy Actof 1948 envisaged the
development, control and use of aioml: enerpy for paacefiil and benaflcial purpoges, namely
the genemtion of electricity and the development of nuclear applications in research,
agriculiure, indusiry, medicine and other arcas, To achlove this objective, he initiaed elfons
10 bitild up & versatile Infrastructure oi research facllitlos, tralned sclintific and technlcal
manpower, raw material processing centrss Rad capabblity to manufacture nuclear and
electronic equipment (o support tha atomit energy programme and make Indla golf-relipne.
Today vas lous nuclear installations are sprigd all over the country (Fig. 14.4).

The Indian nyclear programme is three tiered

o Construction of natural wanium-fhelled pressurised heavy water power reaclors
(PHWR2) producing pluionium as a bye- product (Ist phase).

o Develnpment of plutonium {uellad fast brecder power reactors producing plulomum
and iswninm-233 from thocium (2ad phase).

° Dcsrgn and construclion of reactors based on the thorium cyclc producing mose
platonium than ucaniwn (3rd pbase), .

Though our policy has been w build a series of nuclear power stations buming n.atu.ral
uranium it the first phase of the programme, lack of infrastructure and scarcity of skifled
manpower forced our scientists to resort to a modest change. India purchased two light
watsr rezctors of 200 MV each from USA in 1964 as a turn key project. These were
installed at Terapyr (Maharastra) and bumt enriched uranium, On the basis of operational
expericrice gained from these reactors, India embarked on the construction and instatlation of
two 220 MW PHWRSs based on Canadian design (proposed in the first slage} at Kota
(Rajasthan), The bulk of equipment for the first reacior came from Canada. However, a
major siep towards indigenisalion was taken in the construction of the second unit of the
Rajasthan Station.

Flz. 14.5: Kakrzpara Alomic Power Statlen

The third awomic power station at Kalpakkam, 100 km frem Madras, cansisting of two unils
of 233 MW each. marked s coming of age of tha Indian nuclear energy programmic.
Compicte responsibility for the execution of the project, including design, canstruction,
commissioning and operation reslod wili the Depaniment of Alomic EaGgy. Wihic the
nuclear design of Rajasthan Reactars was retained, significant changes were made in nuclear
containment. Major equipment and components were indigenous and) the extent of foreign
cxchange spenl was oty of the ordar of 20%.

This success enthused indian scientists. They staried 1o build and put into operalion nuclear
power stations at Narora in GP. This site lies in the Seismic Zone and the design of the
station posed real challenge. Indian scientists and engineess rose 1o the occasion and (he
opporiunity was used to redesign the reactor completely. Two unils are in operation now. To
coordinate the activitics of a fast expanding nuclear energy programme, Nuclear Power
Coiporation was established in 1991. It started construction work at Kaiga (Kamataka) and



Kakrapars (Gujazad). Each of thess projects consnts of two units of 238 MW, OF hess, both Appliad Nudlezr Blenco
units at Kaicapars have aciaingd cviticality and are tn commarslal oporatlon (oday (Fig, 14.5).

'The receatly formed Nuclear Ensrgy Corporailon proposes (o bulld two unlts of 440 MW
and two units of 220 MW, This may be followed by sdditlonal reaciors depending on the
avallability nf ragources. In 70's DAE had projected a capacity of 10,000 MW by the year
2000 A.D. Muw Lhls scems to be too optimistic. As of the latest available information,
Indin mey geucrals only 3000- 4000 MW of electricity from its nuclear {nstallatons by the
end of this century, .

Nuclear Power Gemeration ip India

Presently in commercial operation (2170 MWe):
Tarapur Atomic Power Station - 2% 160 MWe (TAPS)
Rajasthan Atomic Power Stalion - 2 %220 MWe(RAPS)
Kalpakkam Atomic Power Station — 2 X235 MWe

Narora Atomic Power Station~ —  2x235 MWe (NAPS)
Kakrapara Atomic Power Station -~ 2 x235 MWe
Under Coustruction (470 MWe):
Kaiga Atomic Power Project -~ 2x235MWe
‘Proposed (1350 MWe):
Tarapur Atomic Power Project - 2x440 MVWe
Rajasthan Awmic Power Project  — 2 x 235 MWe

Second phace

‘The commissioning of the Fast Breeder Test Reactor (FBTR) in 1985 with a design capacity
of 40 MW (hermal and 13 MW elecirical power at the Indira Gandhi Centre for Atomic
Research (IGCAR), Kalpakkam (Tamil Nadu) marked the commencement of the second
phase of India’s mcicar programme. The next step after FBTR is o design and construct a
Prototype Fast Breeder Reactor (PRBR) of 500 MW capacity.

Third phase

The third phase of the nuclear power programme envisages use of 23U -~ 2Th cycle 10
utilize the country’s abundnnt reserves of thorium. India has the largest depasits of thorsium
in the werld. 1t is proposed to use B°U, derived from the first two stages o breod 23U from,

14.3.4 March towards Self-reliance in Nuclear Power Programme

Nuclear industry is very complex and 1o sustain it we need diverse parephercnaliac fucl,
conlent, moderaior etc., apant from heavy equipment for production of cleciciy. As you
may have realised, a lot of radioactive waste is also generaied. This necessitates additional
infrasruciure. Particular mention may be made of fuel processing/reprocessing complex,
heavy water gencralion plants, radicactive waste disposal sites. We will now discuss these
briefly within the framework of cur nuclear enesgy programme.,

8. Heavy Water Production

Heavy water is used as moderator as well as coolant in most of the Indian nuctear nower
resctons. Heavy waler option was made primanly Uecsuse & reaciDi Can 1e mede Cuiri even
with nalural uranium. A1 present, severs! such planis are in operation: ane each in Guiamt
(Bamda), Punish (Nangal}, Raiasthan (Hetad, Tamil Nodue [Tuticonn), Onzsa {Talcher) end
Maharashtra (Thal).

Reprocessing of Fosel

Based on the expersence gained at Trombay, a 100 tonnes per year power reacior fuct
reprocessing Plant has been sef up at Tarapur for reproceesing zircalloy - ciad ursnium oxide
fue) elements from the Tarapur Atomic Power Station. This ptant will also have additicnal
facility for reprocessing fuel from the Fast Breeder Reaclor, India is the fifty country in the
world to start reprocessing.
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Cbronology of the Tndlan Noclkar Programme -

Avg. 10, 1948
Aug. 3, 1954

-Aug. 4, 1955

Jan, 20, 1957

Jan, 30, 1959
July 18, 1960
Jon, 14, 1961

Jan. 22, 1965 .

Jan. 22, 1967

Dec. 31, 1968

01 2, 1969

May 18,1972
Nov. 30, 1972
Nov, 1, 1980

Nov. 19, 1982
Nov. 15,1983
Jan. 27, 1984

May 10,1984
Aug. 8, 1985
Oct. 18, 1985

Oct. 24, 1991
Sept. 3 1992
Jan. 8, 1985

t Setting up of the Atomis Energy Commission (AEC).
1 Establishment of the Dopartment of Atomic Energy (DAE).
+ Tho Brat research reactoe (i Asla) APSARA atialns critlcallty at

Trombay, Bombay.

+ Pt Jawahar Lal Nehry inanguraies Atomic Energy Establishment,

Trombay.

: Nuclear grad uranium metal produced at AEE, Trombay.

: 40 MWi Research reactor CIRUS attains criticality.

+ Research reactor ZERLINA becomes eritical.

+ Plutonjum Plant st BARC commissioned and mede operational.

: Atomic Energy Esiablishment, Trombay renamed as Bhabha Atornic

Rescarch Cenwre (BARC).

: Nuclear fusl complex set up 8t Hyderabad.
March 12, 1969 ¢

Setting up of Reacior Reseqrch Centre a1 Kalpakkam,

: Tarapur atomiz power siaton stars commercial operation.

A phutoaium fuelled fost reactor PURNTMA. atains crificaliy.

: “The first reactos at Kota, Rajasthan goss critical

: Unit Il at Kota goes commercial,

+ Power Reactor Fuel Reprocessing plant at Tarapur is commissioned.

. Atomic Energy Regulatory Board is consiitnted.

: Madras atomic powes station—Unit T at Kalpakkam siarts commercial

pperation.

. PURNIMA-I modified as PURNIMA-II to use 2*U as fuel,
¢ Research reactor DHRUVA (100 MW) auains criticality.

: Past breeder test reactor at Kalpakkam atiains criticality.
March 21, 1986 ¢ '
Merch 12, 1989
+ Unit T of the Narom power project attains criticality.

Unit-I starts commezcial operation at Kalpalkdan.
Unit § of (e Narora power roket atiaing criticlity.

: Unit 1 of Kakrapar alomic power smﬁon artains criticality,
: Uit IT of the Kakrapar atomic power station imain_s cﬁﬁcally.

Radioactive Wastes Disposat

More than 99% of the toial rad icactivity in the entire nuclear fuel cycle is generaled from the
finl raproceasing plant, In India s three-stage approech has bozn adopled to keedle naclear
wasle. o . '

o waste will be incomporaied it Siabie and inest solid matice.

o conditioned wasie 0 be placed subscavently in canisters and kept in a retrievable
stose under cooling and constant surveillance.

a siore the cariisters in snitable geological media,

A Waste Immobilisation Plant for incorporating higli level radicastive wastes generated
from the fuel reprocessing plant is set up alongwith the solid storage surveilance facility
at Tarapur,




- 14,4 NUCLEAR RADIATIONS IN OUR
ENVIRONMENT

Man hasg always existed in close contact with nature, Pre- historic man Hved in caves and
depended for all hls needs on nature and its creations - flora, fauna and aquatic life. Passing
through the stone, bronze and iron ages, man entered the industrial age. In the course of this
progress, he succesded in controlling several fatal diseases, which resulted in a sieep fall in
the mortality rate and exponential growth in world's population. In an effort to cater to the
needs of vast population, man began misusing resources with adverse effects on our
environment. Besides this, dus to increasing carelessness In the management of industries
and lack of adequate technical securlty, theee havs been so many fatal incldents. In the
process, we have injected several chemical and nuclear pollutants in the environmen,
Bhopal gas tragedy, Chernoby! and Three: Mile Island accidents, fires In Kuwalit's oil wells
are some of the familiar examples. Depleting forests, diminishing ozone layer, ever
theeatening greenhouse efiect and global warming are some of the adverse effects of
ancontrolied industrialisatiion with linle concem for nature and its creations. We have (o
check release of pollutants, Onherwise, consequences would be fatal for all biclogical
8ysiems on this beautiful planet.

We all know that air pollution, particularly in cosmopolitan cities like Delhi, Calcuua,
Bombay, Madras and Bangalore has assymed alarming proportipns, Thermal pawer phants,
industrial units, buming of fossil fuels and vehicular traffic rekease chemical pollutams, ke
carbon-monoxide, sulphur dioxide, hydrocarbons and oxides of nitrogen in our atmosphere.
We are familiar with Lhese pollutants 0 some extenl. But since 1940 nuclear radiation has
emerged as a more dangerous potlutant, Tt can neither be seen nor felt or smelt,
Unforiunatcly, in our couniry many people know very liltle about it. Since there is a gradual
shilt from fossil fucls 10 other sources of cnergy and nuclear energy generation is high on our
agenda, the level of nuclear radiations is likely to go higher in our environment

What is Nuclear Radintion?

‘The term radiation is very broad and includes such things as light and radic-waves, Butonly
thoss radiations which onginate in the nuclcus of atoms are termed as nuclear radiations.

These include the radicactive emanations (alpha, beta and gamma rays), oosmjcmys. -
neutrons and nuclel of ight elements.

You all know that alpha particles are emitted byammsofelemcmssx.has uraniwn and radium,
The penciration power of alpha radiation is small and can be siopped completely by a sheet of

(by breathing, eating or drinking), they can expose intemnal tissues directly and cause biblogical
damage. Bela radialion can pass Lwough 1 to 2 om thick laye of water. Bul a few millimgier

paper; even thin surface layer of our skin. But if apha emitling nucki are taken itside he body i \L

thick sheet of aluminium is capable of stopping these radiations, Gamma rays can pass trough Fig. 106 < Type of Kudation mad et

tha human body but can be stopped by Lhick sheet of concrete or lead. These aspects are
ifustmied in Fig. 14.6

Cosmic rays are highly energetic particles which reach eanh's surface from the guier space;
the number of cosmic parsicles higing vs per minute is nearly 7000. Some of these particles
carry encigy as high as 10°MeV.

Neuwrons are unchanged particles and can penciaie large disiances without gny hindrance. They
60 not interact appreciably with electrons. As a result, they do noi cause sppreciable fonisation.
_Their detection is therefore difficull. They can be stoppad only by thick walls of concreie,

Radicactivity is nos mew to men: ii is 8 part of our carth — it has existed as long. In fact, the
entirc biologicul evoluiion on our ptanct has taken place with it. The natural sources of
nuclear radiatigng am

e radio-active inincrals present in carth's crust, the floors and walls of our hoeses,
schools and offices and in the food we eat,

e radioaciive sii-bomia netlides which we breafie, Ow own body — mqsi!cs, bones
and tissues — contain naturally eccumng radioactive etements.

e cosmic rays from the ouler space.

Radigactive minerals like K, 2%U and 2?Th are widely distributed In eanth’s arust and give
rise to tetresterial radicactivity, The concenmation of these minezals {n the soil determines

Appliod Nucloar Sclence

L

panclraifag poserr

53



Noclesy Fhyslar

Thz werd hes raymsie b
1000 unclear detonntions snd two
of themn kiiled 105,000 prorle.
Recznt nuclear tests conducted by
France in e Sevth Pecific, in
spitc of the geruine criticism Lhe
werld over, ane s materof grest
concem particilardy for the people
ef the region.

the int ity of nuclear radistions at a particalar place, Inmdlatluanlnmhn
sbondantly available in Kerala and Bihar, Like terrostrial radioactivity, the strengthof
casmic radiations resching the easth depends on latituds, altitude, explosions, solar flares,
etc. Their iumber i3 maximum at the poles and minimim at the equator, At the sea lovel,
they are mostly p-rmesons and electron-positron peirs. At a helght of about 15 km from the
sea level, cosmic radiation consists mostly of protons and alpha pacticles. Bt far earth’s
magnetic field and the thick envelope of our atmosphere, the nimber of cosmic partcles

reaching us would have been much targer. Peopls travelling by jet tiners get an extras
exposure 1o cosmic radiations and zre that much mre vulnerabls o its ill- effects. Air-bome
redicactivity is primarily due to Z*Rn and "C. The latter is continnousty produced in the
ammosphere by the action of cosmic says on nitrogen.” Mntﬂh&ﬂfmtuﬂmwiﬁh
for their Life timte once they are inhaled.

Itis true that the biological sysiems have evolved with natural radiation without much
ill-ffects but row man made (anificial) sources have begun 10 add large doses of
nuclear radiation to the existing natoral mdioacuvuy The radiation exposure of an -
average person in India and Ueited Kingdom are gwen in Table 14.2. Major present day
artificial sources are:

‘Table 14.2: Total population radiation exposure (%)

Source Country

India UK,
Natural . .7 . . 87
Medical 162 _ 11
Artificial 4.1 L5

radioisolopes, nuclear instaliations, radioactive waste products and fall-out from weapons
tests. In a nucleer explosion or areacior accident, a large quantity of long-Hved
radio-nuclides are released o atmosphere, which ges distibuled via winds all over the globe.
The Chemobyl rezctor accident is fresh in our memory, The radio-nuclides usually setile
down with rain and mix with soil, water and vegetation. Once deposited in human body
through food, they are sure to radiate intermally for almost the whele life-span of an
individual. The radiations which arise as a result of a nuclear explosion are generally |
insignificant oampa:c.d 10 the destructive [orce ofl.he blast and !wal, but In e fong run their
eEfects are quite devasiating. .

You must bave read about the wse of an 2lomic dcvmdmmgmeswondwidw On
Avgust 6, 1943, the US dropped an ziom bomb on Hirgshdma, Japan. The beat released in the
explosion devastated 10 sq. km of the ¢ity of 3,43,000 inhabitants, Nearty 66,000 people
weze killed instantly due (o heat and 'suclear bumg’ mmanwmmm
deadly cms,qumce.s of nuclear radistions wers again experienced in less then 3 week (on
Augusi 2, 1945} when the sceond atom bomb was dropped on Nagasskd, Japan.

Radioisompcs 2dministered &0 patients and useq in radration therapy.and scientific research
are now proving te be an important soarce of nuclear exposure. The ability of radiations to
kif! diseased celis has made them m:nd:qmmblemolmthemofmlcﬂmldmes
However, their indiseriminate use, over-doses topanmts end improper handling can be a
ceuse of great concemn.

Leakage of nuclear radistions from nuclear reactors and nuclelrmch Iabocatories may
also increase with the increase tn number of guch fecilitics. Bven with proper hasdiing of
radigactive malesinlg pad the ugs of shisldins tachnigues anme mdiations, such as
radioaclive emanations and Reutrons, do leak out of research taboratoriss and reacior coras.
The Level of mdiztion from such sources iz bound 1o increass in future, If mose nuckear
reattory are Istalied 1o meet increastng energy demands. What ¢an happen in a ouclear
accident like sezcwor core melt-down is no longer anybody's guess — the consequences of
hemobyi zecident m the former USSR have Deen really rnghtenmg for pli farmg of life
aran h.:lun.nH El'.mﬂ‘ and Jh.sm

Bumt-up fueis of nuclear reaciors, also called radioactive wastes, ccntnin vast quantiies of
long-lived radionuclides. Transponiation and proper disposal or storage of these wastes s a
major problem today. If not putpeﬂy disposed of, these wastey can be an em—xﬂnssoum
of nucicar radiations.”



Because of the ahortags of conventional bullding maierisls nad e necesally to pravide Appllad Nucloar Bulunce
cheaper houses, industrial wasts - producta are oftan used in bulldings, The fiyash from

power statlons and slag from stcel planta are the commes exampies, This increases ous

expasure to nuclear radistions, In a scientfic stwdy canded out ko Norway it has boen foond

that people living in concrete and brick housss receivs abaut 30% more radintion than those

living In wooden houses.

Biological Effects

Nuclear radiations produce no scasation unless absorbed in very large quantities, In many
casey they have delayed effects, as late a3 20 to 30 years. There are two types of biological
effects associated with nucleer radiations: somatic and gesetic. The somatic effects are
limited only to ihe persoas exposed, while the genetic ones may affect later generalions too,

Nucloar radistions dissociate the caomplex molecukes of Living ilesues (hrough fonisation and
kill the cells. They can induce malignant growth, causs stesilisy, severe skin bums and lower
the body resistance against diseases. They disrupt the genetic process, maim the unbom
child and show their effects even upto five generatioas,

Nuclear radiations can affect us v indirectly through the flora, Enuna and the aquatic life
aroond us. They kill and maim vegetation, fish and apimals. As sach, we have no contnl on
naiural radiation. But elfosts are to be made at individual, coilective, community, national
and int¢émational fronts to keep the level of radiation from anileis] souress at the minimum,
Grtherwise, cumulative, long term and indirect effects of nuclear rediadons would outweight
the benefits accruing from them; they can even prove (0 bz a scensge for manldng,

The damage caused by nuclear radiation depends on the exposed part of body as will ason
the energy, intensity and the namre of the radistion. Dificrent pasts of huiman bedy show
different sensitivities to radiation. In general, hands and feet can receive much larger
radistion without being affected than the other paris. Radiations are usuztly more hapmful if
they arc more energetic and more intense. The alpha perticles are, o5 a ruie, quite harmfy!
because of their high ionising power. The damaging cffects of dilfcrent radiations are
generally compared in tecms of iheir relative biologicat effectiveness, called the RBE faciore,
These factors for different panticles/mys are given in Table 14.2,

Table 14.3: RBE rfactors of different radiations

Particles/rays RBE faclors
-1ays, }-particles 1
Thermal neutrons 2105
Fast ncatrons 10
o-particles, high encrgy ions of O, N, eic 10t020.

The amount of radiation which & human body absorbs is referred to as a dese. The ynit used
to measure this dose is the cem, which is the abbreviation of Roentgen Equivelent iian.

1 rem = RBE factor X rad, where rad is a unil of absorbed energy equivalent 1o 100 ergs of
absorbed energy per g of absorbing material. For any individual, the safety limit of radiation
cxposure is usually put at 500 milirem per year. This may be compared to 2 dose of 130
millirem pér year from naturat background (Table 14.3).

It has beex sheerved [t higher forme of fife are generally raore prm2 1o harmiul effects
from nuclear radiations than certaln bactert, which sesin to have a safe dose Limit of even
upto S % 10% rem per vear,

-

Cities {ocated at sea level near the equalar receive a cosmic ray dose of 35 millirem per year,
while thase localed at latitude 50 forih feccive On an averags, 50 millimm por yoar. Atan
altitida of 1850 metars shove sea evel, the cosmic ray dose is 90 milfirem per year wiich
increases 10 about 300 millirem per year at a height of 4600 meters. This suggests that peapls
living in hilly regions are more susceptible 1o fts ill effects,

Of the radicactive isolopes which enter our body through food, the ene which releases
highest radiatinas is 40k. It releases approximataly 20 millieem per year.
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14.5 RADIGISOTOPES IN EVERYDAY LIFE

Apart from gencration of elsciriclty, other vital cantribution of & peacafill nuclear power
programme 15 in the produciion of redicisotopes. As the name suggesis. isclopes which are
radigactive in nawre are called radioisatopes, Their uses in everyday Jife arc (o0 many and
oo varicd, These are based on the peneiraling radiations they emit. Yot mus: be eager o
knaw them. But before discussing them it is wonhwhile to know hovs ar¢ rudioisolopes
produced,

14.5.1 Production of Radioisotopes

Nawrally occuring ragioisotopes have been available ever singe the phenomenan of
radioaciivity was discovered in 1596 (Unit 12), Flowever, they were available in minule
quantities and were restricted to a few elements (Ra, Pa, Th, U etc). However, with the
discovery of anificial radioactivity (using charged posticle nuclear reactions) in 1934, it
became possible 10 produce radioisotopes of many slemenis. Bven then, only limited
quantitics became available and that too at considerable cost. A wide range of sbundsnt and
relatively inexpensive supply of radivisatopes became possible with the commissioning of
nuclear reactors in the Aftics. Today, about 170 railicisotopes are in use” for varions purpases.
NFshare about 120 are prodeced in research reactors while others are produced in
accelerators (Unit 15).

In India, we now have an cxclusive infrastructive for production of radioisoiopes though a
modest beginning was made towards the end of 1957 soon after the research reacior
APSARA became critical, The expericnee gained with Apsara widened the scope of our
programme o the commissioning of CIRUS in 1960, Comprehensive facilities for large .
scale processing of radioisotopes were installed at Trombay in the seventies. The large
quantitics of ¥Ca began (o be produced in the RAPS. Daring the cighties, Dhruva reactor
was commissioned at Trombey for production of solopes.

The applications of radioistopes are based on
© Lracer sledics
e effect of materials on emined radiatjon
e energy of cmitted radiations

Of these, the radioisotope wracers have the widest spectrum—ranging from studics with
single living cclls to mavement of sediment on sea bed. Important industrial applications of
radiolracers include leak delection in buricd pipelines, scepage in dams and canals,
measitrement of (Tows elc. Applications of radieisotopes based on the effect of malcrials on
radiation are very cammen in industry, These include non-destructive testing (using gamma
radiograph), measurement of thickness of metal sheets, foils etc. The main applications of
radiation energy incinde sterilisation of medical products, radistion therapy and presarvation
ol foad products, We will now discuss these bricfly.

14.5.2 Isolopes as tracers

Before we discuss the applications of radioactive tracers, it is important 10 know: Whatis a
wracer? A substance which enables us 10 locats something of interest deep inside a body is
known as tracer. This is very similar (o the tagging of birds while studying their migrating
habits. A tracer must be identifiable and not present in (he sysiem being suwdied, Maorcover,
it should not interfere with the normal working of the system, Here we shall bricfly discuss
wow radioiscsopes ore used as tracees 15 follow the Oow oFblood through the body (of
animals or human belnyg) (physiology). photosynthesis (plant physiclogy), oll flow
(indusuy). eelf-diffusion in metals {metallungyy, wear sudies, teak detection esc. s
cssentially because & radioisotops does not lose its identity during physical and chemical
reactions and its path can be followed at all tisnes vsing sengitive detectors.

{a) Siudy of Biood Flow

Suppose that we wish i follow the path of on in an animal’s body once it enters as @
constituent of food, You can do this by labelling the iron contained in the food by.the
radipisotope S%Fe. Most of the iron in the body resides in hemoglobin {wl‘uch causes the
colour of red blood corpuscles). You would expect the **Fe ta enter the hembglabm and
show up through its B~ and yactivity. But this does not happen. The irdn is found o o in




siare i the body in the form of an lron-protain combination (called ferritin). Only when Appliod Nudar Belaice

there I8 loss of blood, rapid grosth of pregnancy, this sored iron Is uiliised, the amoant of
ferritin decresses and the body draws fron from food 1o replenlsh i tron siock.

(b) Photosyntheals

mmmmwmmmmmm-&mmem :
presence of sunlight and evolve oxygen in the process. One reaction can bo summarized as:

chlorophyll
6 00, + 12 H,0 + solar energy ————» CgH,305 + 6,0 +6 0,

You may now asi: What is the source of the evolved oxygen (CO, or water) or the carbon in
the carbohydrates (CO; or plant's own body)? To find the answer, we have 1o label the
oxygen by the stable isotope '*0 and the carban in CO; by radiocarbon **C, as shown in Fig.
14.7. )

Flig. 14.7: Upe of recey in pholosyatberh

Ocdinary oxygen contains only 0.2% of '°0. When 30 enriched oxygen in waler is
ahsorbed by the plans, ihe evolved oxygen is also found 10 be comespondingly enrichsd in
150, |1 means that the plant produces the evalves oxy§eh by breaking the water mesecuies,

To study the path of carbon, carbon-dioxide was bubbled in one experimenl through a
suspension of algac (single-celled green plants) in 2 nutrient liquid medium. While
photosynthesis was in progress, same bicarbonate solulion containing ¢ as racer was
added 1o the median. Within 30s of adding the radiocarbon, some 20-30 compounds were
found 10 have been formed that contalned the isotope suggosting that the carbon in the CO;
s used by the plant in the synthesis and that the process is almost insianianecus.

{©) Oi Flow

Whan oils from different stocks are wransported through a singie long pipe-line one alter
another, we may like to keep track of the surface of separation, besides the degree of
intermixing. The problem is solved wilh ease by injecting a 'y~ emifting macer in
between two oil stocks. A racer commonly used is Antimany-124 (*$b) which docays
with a balf-life of 60 days into stable '%*Te, emitting f end ¥ rays of eneigy wpto
1.69MeV. As oil flows, Lhe injecied wracer moves along, making the oil intesface. The
tracer spreads somewhat depeading on the intermixing of the olls. The %y -rays easily
penetrate the wall of the pipe-line and can be detected by & covater placed outside the
pipeline at the receiving end. When the counter siaris ucking, arrival of the new siock of
oil is announced (Fig. 14.8).

57



“adear Physies

counter
detests

f:> Oil stock 1 just arrived ‘-\‘ -‘ /

e R 7

i, T

a _GM counter .

Fig. 143: Ofl flow is plpdine
(d} S:W-diffasion in Metaks
With the gacer iechnique, we can study how atoms in a metal move abow within a crystal
lattice. A block of copper, for example, consisis normally of “*Ca and ©Cu atoms. To
investigate the self-diffusion of copper atoms, we deposit 1 kayer of copper containing 6'Cu
(half-dife = 59 hours) on (he block. The copper block may now be subjected to sy
treaiment, the effect of which we want 10 stedy. We then scrape off layers of copper from the
block and the activity of “'Cu in thess lsyers readily indicates the amount of seMf-diffizsion
that hes occured,

() Wear Studies

The conventional methods for measurement of wear raie of an engine, machine parts as
cutting lools under different operating conditions are very laborious and time consuming.
The use of radiolracers not only makes il possible 10 measure thg wear rate precisely and
continuously but also rapidly and at tow cost. The component, whose wear is to be
measured, is made radioactive by irradisling it with neuirons in & nuclear reactor or by
using charged panicles such as protons and deuterons in g cyclotron. The irradiated
componenl is placed in the st rig and radioactivity in the debris preseat in the
lobricating oil is measured by a sciniBalion detector, The studies carmied out &t Pune,
bused on this techrique, bavs enabled rapid evaluation of wear of different makes of
piston sings and-its ¢orrelation with the composition of the piston ring.

(N Hydrology _
Radioisotopes have proved 1o be indispesisable tools-for invesiigations im hydrology and
walcr managemend. They have been extremely wseful in the measurement of recharge 0
groundwater (by tagging moisture layer with trithnm tracar), datection of scepage in canals
and dasns and for raeasurement of flows in rivers and canals, In a3l these applications, other
technigues are €itlrer ROt availeble o do ok provide data with raquired precesion of ease. In
India, radioisotope tracery have been used for measurment of recharge 10 groundwaters in
arid zones, detection of seepages in doms and reservoirs (Shrisailam dam, Aliyar damy) and
for measurement of high discharges in turbulent rivers like Tapl and Beas, Environmental
isotope techniques have also provided valuable infonustion 0 water management '
programines and they have been used (o study the efficacy of pezcolaiion tanks in
Maharashira, intrusion of saline weizss in coastal ecguifers in Thmil Nadu ¢le.

(@) Leak detection

The delection of leaks in buried pipelines and in equipment of chemical process plants is one
of the very common uses of radioisotopes &s tracers, The detection of ieaks in buried



pipelines nommally involves remaoving the soil cover over the entire length of the pipeline Appiied Nudear Sdeace
(which 1y very tims and expensive) for visual inspection af the sugpocted leaky
scctlon, By uaing tracer leaks can be delacted without removing the sodl covering
the pipelines. In one technique used for this purpose, the pipeline is filled with the rediotrecer
solution which is pressusised so thet a small quantity of mdiotracer leaks into the aoii a1 tho
paint of teak, Subsequenily, the pieline is Gushed with water and the polnt of leak is
identified by portable radiaiton detoctor which ia moved along the lengih of the pipeline,
ThiswchnlqmlubunuudfnrdﬂmﬂanoﬂuhinmIwhnlmagVnmganoyah
pipeline. Five minute leaks were determined in a period of 6 weeks and this enabled
commissioning of the plepline on schedule. Coaventional methods are estimated to have
taken one year for completing the work end at almogt ten times the cost incnrred in carrying
out tracer studics. Similarly study camied out on the pipeline between an oil refinery in
Bombay and the petrolown storage and disoribution centre near Pung enabled the delection of
minute lesks in the pipcline prior 10 ks commissioning.

The above exemples bave been chosen from various frelds of study to show the usefulness
and versatility of the tracer-technique. Numerous other appllcations of the racer lechnigue
have been made and it is not difficult to devise 2 new one whenever identification of atoms ig
the key requirement. In case you are inlerestad In detalls, see Nuclear India, publised by
BARC, Bombay.

14.5.3 Nudear Radiations from Isotopes

You now know that over exposure « nuclear radiations can be fawal but we donot have ta be
afraid of nuclear radiations per se. Today they have beea put o several Us¢s in various facets
of hpman sativity. You are already femiltar with nuclear fission indoced by nentrons for
porwer generadon. Other important practical applications In everyday life are in the fields of
medicine, agricultnre, industry and research, ‘We shall now discuss some of these.

() Radiography

You must be familiar with the uss of X-rays for photographing bones and intemnal organs for
diagnostic parposes. Even for hon-destructive examination of welds and castings, use of
X-rays in known for many years. But X-ray units ¢cannot be convenicatly carried from one
place to another. Moreover, not every organ/location is acéessible to such units. Radioaclive
y-sowrces are more compact and are found (o be mare advantagenous.

Suppose we want Lo test @ metsl casting for flaws like cracks and bubbles. We expose the
sample w a F-source, backed by a photographic plate. Any imregulaties in the casting would
show up in the pin-hole picture on the photographic plate, Radiography therelore plays an
important ol in industry quality control of castings end inspection of welkded pipes and
[abricated machine parts.

The chioics of the y-source depeads on the penetrating power (or encrgy) of the ¥ -rays and
their half-life. Some commonly used sourees are %9Co (1.33,1.17 MeV), B7Cs (0.662 M=,
W2hr- (0:47 MoV}, 'S m-(0.061 MeV) and 10.035 MeV). The quaniiics in brackels
sigaify s caegy of yrays. In Indian industries, over 600 yradiography cameras using uplo
100Ci of ¥r gnd 20Ci of “4Co are i use to test high pressure vessels, ships, aircraft, nuclear
and thermal power siatlons, feriflisers and peumhmﬂuh.mmumsoums,'r-mdnmm
equiprdent is provided by BARC. -

(b) Electric Power Generafion

Radic-isolopes can be used as small and self-<contained power sources. When thetr
rediations are absosbed in matier, their energy s ullimalely converied inle hesl, We cun use
a thermocouple. or a thermionic cmisslon devico o wtilise this hest 10 genenis elseirinity.
aud P-emitiers are preferved since these particles ane ahsorbed in relaiyvely small thicknesses
of matter and & large emperature rise is easier o achieve,

Tho sources commaonly uged 08y, 170 N0py Nipy s1c. A evpicat W‘-‘-“?—' eonsca SMAP . 3
{SNAP = Systems for Nuclear Auniliary Powes) eses 2 *1%P0 sourcs surspandad by I
Jjunctions of 54 themmocouples in sexies. With hot and coldjuncdms - SSDC and ISOC if
can gensmate S W of electric power.

Isotopic power sources find use in satellites, unatended weather siations and tight-houses.
Their working life depends on the hall-lives of the isolopes used, In 1869, Lhcﬁrslwcathcr
satellite fuelled with PO, was launched.
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Tte ,0ll0 missions have included spectacuiar applications of radioisotope genarsiors,
For the flrst time, 25Pu fuelled haater in the selsmometer of Apollo-11 was used to kesp
the cauipment warm. The Apollo-12 misslon left 8 SNAP-27 generator ob the moon. It
produced 63 W of electricity. It was also foelled by 3Py,

(¢) Radiation Chemistry

We can uee nuclear radiation as a catalyst in producing many chemical reactions, with the
advantage that it leaves no by- products. A common cxempls is the vss of B and yradiston
in polymerization, L.e. chemlical formation of long chatn molecules called polymers by
joining smaller molecules of monomers.

_Many chemical compornds have been formed by exposing the constituents to fission

fragments in a nuclear reactor. ‘The process bas actually been utilised in the mdustria)
production of hydrogen peroxide from waler, ozone from oxygen, hydrazine from ammania
and so on. .

(d) Steritizatipa and Food Preservationa

Radiation is capable of destroying bacleria and other micro- organisms. It is possible to kill
all bacteria with 2-§ milli rad of mdiation, while 10% of this dose will produce pasteurization
i.. desbruction of enough hatieria 5o as (o increase the shell-life of feod. Thus a convenient
raethod of preservinig fish, meat, fruit ar vegesables is imadiation at low lemperature,
Sterilization of susgica) dressings, hypodemmic syringes, raw wool ci¢, can be done by

tradlatiing them o yrays from %Co.

(e} Industry

Radiaisotopes find varied and ingenious applications in industry. In planis
manufacturing paper, plasting films, metal or rubber sheets eic., radiation can be used as
a thickness gauge. You only have to place asource of radiations for metal sheets and
radiations for less absorbing materials, against a radiation detector with the sheet passing
between the two. The flociuations in the thickness of the sheet are detected from
variatione in the count rate due 10 altenuation of radiation, Radioisoiope gauges are also
used for checking the filling of LPG cylinders. More than 1500 nucleonic ganges are in
use in Indian industry today.

You may have scen walch-dials with figures writlen in self- luminous paints. The painis ae
adc by mixing some B-emilting isolopes with phosphorescent malerials Jike 2ing soifide.
The P-radialion excites the phosphorescence and the paint glows in darkness.

() Acilvailon analysls:

It is often very dilficult by chemical means to detect and estimate very small amounts of
impurilies of one subsiance in another. If you bombard the impure subslance with a suitable
rediation - neutrens or some charged particles, it converts the impurity nucled into
radicisotopes. The radiations cmitied by these isolopes and their decay half-lives give away
their identity and we can infer the impurity of parent isolope.

The activation method is capable of deiccting and estimating 107 10 10 of a substance. Xt
can even delect variation in isotopic compesilion of an element in two samples, a job which
chemical analysis jost cannot do.

14.5.4 Radioisotopas "n Agriculture ’

in rec=nt years, aioisopes have found vast spplications in agricyltum! segearch Thess
investigations have led to the development of improverd methads of agriculiure and soil
mansgermcnt. Radioizetope labelled fontitizers have been yeed 1o study the role of essential
nuirients such as phosplicius, calcium, sulpher eic.

Phosphorus is applied s soii ¢z Lnprove plant growlh. Various lypes of phosphate ferulizers
are available ang it ic kelpful 1o know which variety ig utilized most effestiveiy by the
particutar soil. In fact, we can oplimise the use of fentilisers on different soils under different
climatic conditions. By using a fertilizar in which radiophosphonus is employed it is possible
to know to what exwent the piant shsorbs phosphorus from that particular fertilizer. This -
faciliwates e selection of the fertilizer most suitable to the soil. Without the uss of redio
phasphorus it is not possible 10 distinguish between the phospherus from the soif and thal
from the fentilizer,



are avallable and it is helpful to know which variety is utillzed most effectively by the Appled Nuclsar Sclance
particular soil. In fact, we can optimise the use of fextilisers on different soils under different

climalic conditions. By using a fertitizar in which radiophosphoruas is employed it is possible

.10 know to what cxtent the plant absorbs phosphorus from that particular fertilizer, This

facilitates the selection of the fertilizer most suitable 1o the sell. Without the use of mdio

phosphorus it is not possible to distinguish between the phospharus from the sofl and that
from the fertilizer.

(8) Crop Mutatiops: ; g:"i.:- v

B VL }
Plant genetic studies have helped in obtaining crops and vegetables with high yield, develap .‘T Vs, 7
resistanee Lo disease, easier o grow and adapiability to new environment. Normally onc ha ;t Y
to wait for natural changes 1n the plants or crops that arc passed oa to next generalions, : oo
Natoral mutations and particularly desired ones are, however, rare. A more convenient ﬂf ;',_;_d*_" el Ty
allernative is 1o expose seeds or whole plants to radiation of varied types and intensities. - N . i-!' PR
Desirable mutations are indueed by irradiation of seeds by yrays or neutrons. High quality * - © .. {7
wheat, barcly and rice mutanis resistant to certain diseases end several jute mutants are oM« s ';\‘ iy, .
of the many successes of this method, In India, several impraved qualities of seeds, spices A BN
und vegetables have becn successfully devetoped. ) AT A 2o

o P

(b) Pest Cuntrof g - fj‘ RS

Cenain insect pests can be conolled by adopting the so-called sierile enale technique. The Fig. 143: Tmpros. . cvlity of
procedure consists of [aboraxy breeding of large numbers of male inscets, sterilizing them . 'xn;,;;:f;: _'_',IU;@
with a radiation and reteasing theny for maling in the infesicd arca. They compete with, n at BARC

fact out number, normal males and male with fenale insccls. As a result, most of females lay

unfertilized eggs. This rapidly depletes the population of the insect In parts of the United

Siates, the screw warm flies, a pest which caused great damage 1o livestack, was eliminated

by adopling this procedure.

Through their versatility, the radioisotopes have immensely benefitted manking, This

hawever in just 2 beginning; we are far from exhausting their fyll potential.

Let us now summarise what you have leamt in this unit.

14.6 SUMMARY

e A fission chain reaclion is said 10 be seli-susiained when the rate of production of
ncutrons is cqual (o the ratc of loss of neutrons. The first self-sustained chain
reaction was achieved by E. Fermi in 1942, He used graphite o slow down
neutrons before they caused fission in uranjum rods lumped miformiy.

e The timc behaviour of neulrons in a chain reaclion can be apaproximately kmow
through the relation

N(i)y = N(O) exp [ (k1) U]

& Mostof the nuclear cnergy generaied so far has come [rom thermal reactors whore
fission is caused by 0.0253¢V ncutrons,

e The Ingian nuclear power programme is three tiered. In the first phase, uranium
fuclied heavy water moderated nuclear reactors of Canadian design were
construcicd. The second phase eavisaged construction of plutonium fuelled fast
breeder reactors which produce power and breed 22U from 22Th. In the third
phase, we propose 10 build thorium [uelled power reactors,

e At present niclear power gencrated by 10 reactors is around 2170 MWe and it is
hoped that by the end of this cantary we shall generate 3000MWe-4000MWe.

e Nuclear rdiations have been an integral part of evolution of lifc en this planet
withoul sdverss effects. Bul man made sources poss @ potentiat threat from rise in
the lével of these radiaticns in our ervironmend

e Nuclear radiations have two eypes of biological effects; Somatic and genciic. Fast
nEUtrons are most dangerous.

e Radioisolopes and radiations coming from them are beirg uscd as tracers, in
radiography, power gencration in unmanned weather stations and satellites. Thesc
have alse yielded fruitful results in increasing as well as preserving food stocks,

61



Nucicer Physlo

14.7 TERMINAL QUESTIONS

L.

A water pipe made of casl iron runs through wet soil and is suspected to have a
leak. Suggest a way of detecting the leak by using & tracer.

A substance X decays by B-emission into 2 daughter Y. A rock contained some amount
of X butno Y at the time of its creation. 'What would be tha ratio of the amousts of Y (o
X when the age of the rock is 7720, T and 20 T respectively; T being the half-life of X?
Also exnlain from the result of thig problem, why it is necessary in isotopic dating o use
un isoiope with a half-life comparable (o (be age being measured,

A 2.5 g sample of dzad wood is found to givo 36 [ counts in a run of one hour, The
sclf-absorpLion of fis by the wood is known to be 40%. Estimate the age of the sample.

14.8 SOLUTIONS AND ANSWERS

TQs
l.

The leak can be detected by mixing a B-emitting solute with the water near the suspected
teak and searching for the [} activity along the length of the plpe. The pipe will stop all
fis emittzd insid: it and the activity will be found only at the point of leak,

Amountof Y/Amount of X =0.0353, 1 and 1.048 x 109 respectively. When the age Io be
measured is too small compared to the half-Jife, the amount of daughizr present is too
small to measure accuralcly. On the other hand, when the age is oo long, practically all
the parent isotcpe has decayed and the amount of parent cannot be measured accurately.
Hence the necessily of an isolope of hall-life comparable to the age being measured.

No. of true counts per min. por g. = 06 % 60 SN?.) XD
) ‘ |

= 4,0 permin per g, i

. .1 1531 _
licnce, Req. age = T2 x I{}"h[4.0]" 11100 yr



UNIT 15 ELEMENTARY PARTICLES

Structure
15.1  laweduction
Objeciives
1.2 Discovery of Positron: The First Antiparticle

3 Barlv Systemaitics of Panicics
15+ “the Machines of Nuclear Physics
Partizle Acceleralors
Parucle Deleclors
{23 lInvenwry of Panicles
156 Couserved Quantities
15.7 The Quark Mode!
158 Summuory .

15.1 INTRODUCTION

You have now lcami about the structure of nucleus and the forces which hold the
nucleons together. Experiments designed to siudy the properties of nuclei rasulied in the
discovery of new particles. You are familiar with electrons, prolons, ncutrons and
photons. These particles, with the exception of {ree peyleons and possibly pyotons, are
slable; lcft to themselves they would live forever, Many unsiable paniicles ave created
due to conversion of energy into mass in high cnergy collisions,

The existence of on¢ of these cxtraordinary particles - the positron - was predicie:d by Dirac
in 1928 on the basis of his mathemarical theory developed to Sescribe the propertics of the
electron. The posiuon, then compleiely unknown, was supposed e be identical ty an
elecron but with positive electric charge. The experimental confirmation of this
consequence of Direc’s theory came from the work of Anderson on cosmic reys in 1932, It
marks ooe of the most beautifol cxamples of how far human intellect can probe into the
raysierics of nature by fogic. You will leamn these uspects in See. 15.2 without going inlo
nicities of mathemalics. Subsequently positrons were produced artificially by the
bombardment of targeis with beams of high energy charged particles - prolons or elctrons —
from accelerators. The carly systemalicd of elemenlary particles are discussed in Sec. 15.3.
In Sec. 15.4 you will get a gencral overview of the principles of particle acceleralors wsed 1o
produce ihem and pasticle detectors used 1o 'see’ them.  You will appreciale that panticle
accelerators are very convenient tools of nuclear research; cxperiments ¢an be carried aut in
aconirolled and efficient manner. As a resuit, physicists have constructed more and meve
powerful accelerators. Today we have moved Lo giant installations. And this Ras made che
invenlory of elementary particles richer; today there are more than 300 such paricles.
Fonunetely, this zoo of elementary particles in all its chantic diversily can be broadly
classificd inio a few categorics. You will learn about it i Soc. 15.5.

You may now like (0 know: How elementary are elementary particles? Can they be
regarded as fundamental building blocks of mattcr? OR whal makes up mauer? How do we:
measure their properties and analyse their dynamics? Other related questions are: Do
nuclcons have a sub-structure? I 50, how do we probe such a constiluent canfiguration?
The sustained effons directed 10 answer thess quesiions hgve pus physiciss on the threshold
of achicving an understanding of partick dynamics and structure compareble to our
knowledge of atomic and nuclcar stroctume. Thouth we do o intend o present theorelict

details, a genceral discussion of the supposedly ultimale theory of malter is presenled in the
Last section.

Objectives
Alter going through this unit, you will be abie to
e explain Direc's bogie for Lthe existence of nosittons

e explain the wotking principles of particle acceleralors and detectors used in
studying particle dynamics and siruclre

63



Nutiear Pliysics

classify el*mentary parsicles into four broad categoties and explain their decay
Processes, and

e describe qaark modsl of matter,

15.2 DISCOVERY OF POSITRON: THE FIRST
ANTIPARTICLE

¥rom Unit, Block of (his course you would reeall how Goutsmit and Uhlenbeck, in
attempling to0 account for ancmalies in X-ray spectra, suggested that every electron has a

permanent spin: That it rotates abowt its own axis with an angular momentum of 'g. where

= {'; + h being Planck's constant. Though it disposed off the spectroscopic inconsisieney,

the new made] of the atom was difficult to comprehend theoretically; nothing in the then
prevailing view required the electron to spin. And noed arose (o transform spinning electon
hypothesis from adhoc assumption 1o a satisfaciory quantum theory.

Ta 1928, Dirac ¢leveloped a wave equation far electrons in an electromagnetic ficld which .
incorparated speeial relapvity into quantum mechanics, His procedurc was mathematically
highly elegant. Dirac’s equation gave the eleciron a magnetic moment of one Bohr

2m

these predictions followed soon. The most striking result of this theory, however, was that
relalivistic equiation had solutions corresponding to negative energy states. That is, elecirons
can exist in stiytes of positive epergy as well a3 negativa energy siates:

E<:t Bl + P& (15.1)

magneton (: —eﬂ) and a spin angular momcnu.nnlor /2. The expesimental verification af

The pasitive root permits the total energy of an electron 1 have any valua from moc?. the rest
y & =, as the momentum increases, The negative root permits values from - oo to
iﬁ. Any clectron in 2 positive cnergy slate would make a transition 0 2 negative ensrgy
state, the difference in energy would be radiated in the form of & pboton of appropriate
cnergy and momentum, Similarly, an electron in a negative encrgy state could fall (o a still
more ncgalive state. Since every sysiem has an inherent tendency 10 evolve in the direclion
of minimuum cnergy. you may be templed {o think that ali the electrons should have encrgy
E =001 Butthis scemed to dely st known tenets and Dirac’s theory encountered a serious
difficult'y. In Dirac’s-own words:

“This scemed to be & slombling hlock to begin with, but it tumed oul that one could ges over thad Jifficalty on a very
neal wary an the experae of dmangimg one's concept of the vaoum”.

The vacuum was thoughi 10 be a region where there was nothing at all, Dirac intespreted the
vacr.um as a state of lowest encrgy. He argued that if the electrons can have negalive
enevgies oo, one would want Lo have as many of these electrons as possible in arder 10 get
the. lowest energy. However, Pauli’s exclusion principle allows no more than one electron in
a siae. Therefore, Dirac proposed thal vacuwum is one in which all negative enesgy slalcs but
o posilive energy stale are oceupied Again, Paull's exclusion principle will be operative to
feveat any catastrophic transition of an ele¢tron with positive energy into a negative energy
stale in vacuom (as all stales are already filled). That is, such electrons are not direcily
observable. However, a wansition can take place to a negalve energy siate provided, 1o
begin with, it is unoccupied.- Absence of occupation of a negative energy siale was
inteipreted as the presence of 2 hole in the sea of filled stawes. The hole behaves like a
purticle of positive charge, in much the same way 4z a hole in the valencs band of a
semiconductor, The hole siate is an inevitable consequence of relativistic theory of spin V2
particics. Whea a positive encrgy clectren jumps into the hole, both disappear. Physically, an
eleciron annihilates a positron amj their enevgy will be emiticd e chargeless photons.

The existence of posimons was demonsgated by Anderson in 1932 when he dlscovered the
tracks of electron -like particles of positive charge while observing cosmic ray particles in a
cloud chamber, He had placed his cloud chamber in a strong magnetic ficld. This cnabled
him 1o distinguish particles of negative and positive charges by ihelr diractions of deflection.
He observed some ekectron - like tracks in the direction cormresponding to positive charge.



Subasquent measuremonts 2atablighed that positrons o of tho eame mats, samoe gpln and
sama magnetic moment as glectrons, That 13, bus for the positive charge, posiirons ase
identical with eloctrans in all respocts.

15.3 FARLY SYSTEMATICS OF PARTICLES

The sct ol (amiliar particles out of which all species of nuclei, atoms and molecules can be
nhade wre proions (m,,r:1 =538.2 MeV, s =-;- , @ = +1unif), nevtrons (m,¢” = 939.6 MeV; s = -;-

q = 0), clectrons (M. =0.511 MeV, 5= l. ¢ = 1) and photons (m.,a::l =f,¢=1,¢4=0).To

2
this set we may udd the antiparticles p, nand ¢,

You now know that Yukawa(in 1935) had postulated the existence of pions as quan:a of
suong nuckear force belween nucleons. (This was much like a photon, which is responsible
for eleciromagnetic interaction among charged particles.) From the short range nature of the
nuclear lorce, he deduced that the mass of these particles would be o few hundred McV
(0.113u). Morcover, the coupling strength should be characteristically Jarge 10 offset the
Coulomb repuision, With the advent of cyclotrons thal could accelerale prolons (o seveval
hundred MeV and the development of techniques o stundy cosmic rays, the experdmntal
evidence for Lhe existence of pions (™ mesons) came from the work of Powel! ang
Qcchialini more than a decade later. We now know that there ss a Lriplat of them; «*, =° and
7", careying +1, 0. =3 units of charge (m, ¢ = 140 MeV mye ¢ = 135 MeV.J =0},

While electrons are absolutely stable and protons are believed (o be 50, neutrons and pians
ar¢ unstable. Their decay results in a nomber of new paricles:

n—sp+e” + v,
BT+,

e +V,
1o Ut ey,
\

-

e +v

A neutron decays into a proton, an electron and an antineuwino. A pios ¢ocayed inio 2 mucs,
which in tum decayed into o elecren, Theee deeays am simiter in v to rdligaetivity,
the prabability of deeay is independent of 1 age of the pariicie and is chargetensed by dic
decay half-life. We find 7, = 896s, T,2= 26107, 1, = 0.7 X 107", New specizs of
panticles produced include neutrinos, which are (perhaps) massless, cary no charge and ez
spin 14 paniickes. They ploy no part in swong auclear interceticn and peing neviral,
experience no girese clecromagnetic force, Sinea el ligsattion is veny weak, typlcal of
B-decay, they arc clusive and difficult 10 detect Their nresence is very often inferred {rom
missing momentum and encrgy in a reaction.

Muon (U meson) is the principal decay product alongwith its species of neutrina (v) of picz
This was observed in the cosmic ray showers by Anderson in 1937 and was initially mistiken
for the pion, the postulated mediatory pasticle in auclear interaction, It used tobe called
meson for this reason. Butit mms out 1o be just a fat electron, Like ¢lectron, ithas nd role in
nuclear force but since it carries the same charge, the electromagnelic proparties are very
shmtlar. 5 s wboei 205 Umes heavier (han claciroa, Electoons, muons and neukring’s ore
collestively known ag Leptons,

Ever sinee the discovery of nucleus in an 2tom, sciantists hove been interested in knowing
the strucuire af nucli and the forces which hold the nencleons together. To look irdo the
nucleus one has to semahow disintegraie the nucieus, Tho first such disintegration of
nivogen nucleus with a-panicles was achieved by Rutherferd in 1919, The encryjies Of hess
nowrally occurring projectiles were far in excess of the encrgies available otherwise in the
laboratory. To be able to perform disintegration experim:nts efficiendy, need wis feli for
artificial sources of high energy particles. These squrces, now called panicle accelerators,
are the machings of nuclear physics which produce high speed particles, Today, accelerators
are the indispensable 1ool of nuciear rescarch. You will leam about these now.

Elemeutory Portidy
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15.4 THE MACHINES OF NUCLEAR PHYSICS

The machineg of puclear physics can o¢ broadly classified into two groups: Particle
sceelerators and Particle Detectors. While sccelerators facilitale availabilily of high energy
panicles, deiectors enable detection oi panicies crepted In high-encrgy colllsions. We will
now discuss these separately,

154.F Particle Accelerators

The simplest way to accelerate o charged paniicle is to *drop’ it through a high polenl.i:ll
difference {pd). If a particle of charge ¢ is made to move through p.d of V, it acquires a
kmcuc cnergy of qV The largest p.d that can be maintained under accelerator condilios is
107V and ions cqire an encrgy of about 10MeV per unit charge. This is just the energy we
need for many neclear structure studies. The technology of electrogtatic acceler tors
therefore consisis of establishing and maintalning a high voliage temminal to accelerate the
charged partictas from the source.

Though the Jevelopmen of pariicle accelerators began in late 1920s, the first particle
acceicratos was consirucicd by Cockeroft and Walton at the Cavendish Laboratory,
Cambridge in 1932, It was an electrostalic accelerator in which charged particles were
accelerates by means of a sirong electrostatic field produced by a large amount of
electrostatic charge. This machine was Lhe first 1o "split” 8 nucleus of 'Li with antificially
acceleraled protons of about 400 keV encrgy:

p+°Li— ‘He +4He

The most commaon type of electrostatic accelerator in use today in nuclear physics
laboratories is based on the Van de Graall generator, shown schematicatly in Fig. 15.1.
When a charged inner conductor and a hollow outer metallic conducting shell are placed in
electrical contact, all the charge from the inner conducior will flow (o the ouler one, The
resulting potential on she cuter conductor, given by ¥V =0Q/C, can be increased, in principle,
without limit by adding morm and more charge. The charge is ransferred mechanically
through a continuously moving belt and brush sysiem. In going from one terminal (o the
other, voliages of about a few million volis enable chasped particles to gain cnergies of a fow
MeV.

A basic disadvanisge of alf clzcirosiatic accelernlars arises from insulation breakdown at
high valtages. Perhaps the weakest link in an acceleralor facilily is the ion source. Discharge
filaments may burm out and require replacement and changing the type of accelcraled ion
often reqnired changing the ion source, parlly or fully. Placing the source inside the high
voliage icrninal creates annoying problems, which force accelernior shut down far
sometime. Therelore, it was thought necessary to have machines which could accelerale
particles in numgrons small steps of low voltages. Such a machine was called the cyclotron,
and formed the basis of a whole scrics of particle acceleralors — from synchrotrons 1o super
colliderz. These machines have heen developed the world over in a short span of time; their
size growing bigger with the increasing need of more and more high energy partcies. Thelr
number in e world is now well over a few hundred. 'We have discussed the physics aspecls
of these machines in the next sub-section,

A. Cyclafron

A cyclotron is an accelerator in which charged particles are accelerated by a conslant
frequency alternating electric ficld that is synchronisod with the movement of particles in
spira! paths in s contiant mapastic Neld norma! to their path.

The cozontnd design of the !“_.s:ﬂ clol-on wae congpived in 1029 by ¥ nwrence at tha
University of Califomia, Boarkcloy (U.SA) In 1232, thig mav?mc was used by Lowsence
and Livingston i0 disingegiaie a nucleas with 1.2MeV piotons, the higrest eacrgy then
nvailable in the laborawry. In the foltowing years, thoy built n series of progressively Jarger
cyclotrens and achicved energics of up 10 27 MeV with proten projecliles.

Refer o Fig. 15.2 which schematicaily illusirates a cycloton, which consists of two hollow
semi-citcular mewdlic boxes O and D', ysually ¢atled the dees because of their shape. These
dees are plaed in an evacuated charaber C which is fixed within the pole faces of an
glecommagns:L ‘The magnetic field, which acts perpendicular 1o the plane of the dees is
aniform in the ¢eaue, but decreases slightly as one moves away from i, The deesare
connected (o & high frequency oscillator to provide them with a high frequency aliemnaling



polentlal, Tho dees then aci as elecundes, When one dee {3 posidve, the other becomes
negative, and vica vena. -

Posilive jons are produced in the ion source § placed near the mid-point of the gap between
tho dees. If at the time of {ormatlon of a particular ion the dee [ is negative, the ion gets
accelerated towards it. Once inside D, it moves in a circuler path under the influence of the
maghetic field quite unaffected by the clectric field, If at the time of its exit from D the
nscillator reverses the polarity of D" making it negatve, the ion again gets sceclerated in
going from D o D', As aresult, the ion gains kinetic energy, which increasss its speed. It
then moves in & circle of greater radius in D', On exit froun 2, it again gets accelerated if D
by then becomes negative, This process continues till the ion reaches the perphery of the
dees where it is pulled out by applying a strong negative potential to the deflecting plate P,
and is made to bombard the target at T, In short, the magnetic field "guides" the ion to
follow a circular path while the electric field gives it small "pushes" at regular intervats
to increase its speed. This makes the jon path a spiral of increasing radius. Whan a particle
of charge ¢ and gpeed v 1noves in e field of sirength 8, the Lorentz force ia the circular orbit,
e v B, provides the necessary ceniripetal acceleration 10 mainwin the circular molion:

F=.m!3'=3‘;"i : (15.1)

wheye r is the instantaneous radius of the orbit
We can rewrite this expression ac

r=mv/eB (152}

omontery Partids

(1)

¥lp.152; Principle of cyctutrun:

so thot the lime taken tn traverse a semicircular orbit is given by

t= 5 B (15.3)
The orbital frequensy can be calculated from the expression
1 _e8
V=27 dam (134)

The maximum kinetic energy of the particie when it reaches the outer most (Jargest) radivs
(#t) of the cyclatron is given by

& B

Fri]

"KE.= R2 (15.5)

ey

mv?‘ﬁll =

2 —

This relation shows that it js advantageneous Lo build cyclotrons with lare. ticlds and large
radii. You may now like 1o answer au SAQ.

It is important Lo emphasize here that in a cyclouon, the angular velocity of the ions remains
constant. That is, the slower ions move in circles of smaller radit while the fasier ones in
those of bigger radii, This forces all the ions (o relum to the gap (berween the Ds) at the
same time irespective of their speeds. This means that the time & particle Lak_es in
iraversing one semicirculsr paib is independent of the radius of the potd. Theions
ahways gain energy in the gap provided the oscillator frequency is such that the time taken in
reversing the polarilies of ths dees cquals the time ions Leke in raversing the semi-circles.
The final energy of the ion is equel to that gained in onc passage through the gap multipkice
by the number of such traversals.

The energy acquired by the particles in a cyclotron is independent of the des valtage. wnen
vollage is small, the particles make large nuntber of turms belore reaching the peniphery.

Note that in a cyclotron, we can accelerace only charged particles (i.c, protons, deuterens,
alphas, ions of light and heavy elements) since an electnc field can exen [orce only cn the

charged particles.

(0) Vertlod view of the auzln
port of tw mack e (L) Futh
of the parilde wilhin Lhe
dess,



Rudar Phydos The ulameter of Lhe magnedic pols faces 1 oftan usad as & maasurs of the alzs of a cyclotran,
Ths deca of the {irst Barkeley eyclotron hed a 12.5cm radiug, This cyclotron produced
;G.ZMNE\{: protoas in a fisld of 1.3T (13kG); the corrasponding frequency boing about

The enengies to which verious particlss can be eecelerated in a cyclotron are limited by
(a) the decveasing magnelic field near the periphery of the pols faces (Fig.15.3) necessary for
focussing (keeping particles on their path in the horizontal plane), and (b) the relativistic
Increase in mass of the particles at high velocities (near the velocity of light). Because of
Fola these, the angular velocity of the fons becomes low neas the periphery of the magnetic pole
e faces and they siart getting out of step with the frequency of the altemating voltege. Asa
{_ . result, the {ong are not further accelerated.
- _L] - Median .

Crdinarily, a cyclotron can accelerate particles to velacitics upto about 0,2¢, where ¢ is the
Lover Pole velocity of light. The relativistic increase in mass at this velocity is about 2%. This limils
" the gize of e cyclotron and Lhe energics o which various particles can be accelerated, The
limit for accelerating protons is about 25 MeV. Deulerons and alpha particles can be
Fig.153: Tha magnetlc Medd Uok accelerated to sEll higher energies.
deviaze from the vertlen) i . '
near the edge of palefoces  Einr cuch particles, the expression for orbial frequency modifles wo

y—..f-'i_ 1 — _‘E §
T nm I
B. Synchrocyclotron

For many nuclear experiments, we need particles of a few hundred MceV of energy. ILis
possible 1o push up Lhe particle energies in two different ways:

® By continuously varying Lhe frequency of the accelerating voltage from some maximum
10 2 minimum value, as the particles move gway from the centre of the machine, The
cyclotrons based on the this modification are called the synchro-cyclotrons or the
frequency modulated (FM) cyclotrons, These machines do not produce particles ina
continusus siream, but in small bursts. Energics of sbout 750 MeV for protons with
field strenglhs of about 2.3 T corresponding to a frequency of about 20 MHz have been
obtained using the Berkeley synchrocyclotron, (Other comparable machines have
operated at Dubna (erstwhile USSR) and CERN in Geneva, The FM cyclotrons are
usmally used in high- enesgy (elementary particle physics) research.

¢ By continuously increaging the intensity of the magnetic field from the centre towards
the periphery of the magnetic pole faces. (Here frequency of the acceleraling vollage is
kepr fixed.) With the increasing magnetic ficld, the particles experience greater bending
force and move in circles of smaller radii. The shoriened paths compensate for the
decreased anzular velocity st high speeds. However, a field which increases as we move
away from the contre of the machlng can cause defocussing in the vertical direetion.
Because of the verlical defocussing, particles move up or down and may get Inst in the walls
of the dees. In 1938 Thomas sugpested o way out but his suggestion was not put Lo test for
over a decads probably due to the advantages gained through the dovelopment of

() synchrocyclotrons. The first two machines based oo Thomas' idea, called
isachronous-cyclotrons, sector focussing or AVF (azimuthally varying field) cyclatrons, .
Fig.15.4: Pole faces ol AVF were construcied at Bedkeley in 1952, But thess machines generated real interest only after
cyclotrox. Shaded areas 1955 when Lawrence reaoried abont them at the "Atoms for peace™ conference in Geneva.

represeni vhiges or "hills"

ywhile upshaded aress

represnl empty rpaces or C. AVF CIC]O‘I:I‘UIIS

sy @ Radlsl . In AVF Cyclotrons, the magnetic poie faces are fastened with iror siabs either in the tadial

TEESASIEPHETRET  direction or spiraling owtward in genile curves (Fig.15.4). These stabs, called scclors or
ridyes, have gaps (emply space)in-tetwecn and these are of bout the samp size.As the pole
ap between the ridges is smzl, die magnatic feld iz stronger tere compared o the ong in
the“valley” Tegions. This gives altemating Tegions of strong and weak magnetic fields. The
magnetic field depends on the radius as well a3 the azimuthal engle.Such a fiold provides
strony focussing of particies, paricalarly if spiraling sectors are used. The path of the
particle in these machines is only nearly ciscular, with proncunced curvature in the “hill"
regions than in the valieys (Fig. 15.5). The major advantage of AVF cyclouons aver
synchrocyclotrons is the continuons beam and thys the targer possible beam currents (100A).
Energies beyand 600MeV for protons have been obtained using these machines.
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Most of the present day cyclotrons operate over wide range of oacllistor frequency and can,
therefore, acceleraie partitles to a desired range of energles (of course, upto a maximum possible
om the machine in question). These are then also caliad the variable snergy cyclotrons (VEC).
In them, the srength of the magnete fleld is also variad to make the particles remn to the gap in
step” with the frequency of the osclllator. In Indin, we have a VEC at Calouita,

The increase in magnetic field from Lhe centre to the periphery of the magnet in an AVF
cyclotron is often achieved by the use of some pelrs of conventric clreutar coils, ususlly
called the “trim” coils. These coils are placed on the upper and the lower pole faces of the
clécromagnet. By passing suitable current through these coils appropriate increase in
magnetic ficld with radins may be obtained.

Panticle beams from these machines are usually of good intensity but of large variation in
energy. However, by magnetically analysing the beam before bombardment, this encxgy
variation may be decreased even to about SkeV, Usually cyclotrons are best suited far
intermediate encrgy (> SMeV) experiments; for low-encrgy worl, electrostatic aceelerators

. arc preferred. To decrease the output energy from cyclotrons, sometimes metallic foils are
insened in the path of the beam before the bombardment.

D. Synchrotrons

You will now agrece that extending the cyclatron or synchrocyelotron 1o higher energy meens
that we have (o build machines of larger radii. ‘This resulis in huge in-put costs. Therelore,
to partly overcome this prablem, it was thought necessary o viry the magnetic ficld swength
as well as the resonant frequency. Such acceleraiors are.tecmed Synchrotroas, Fig. 156
shows the simplest design of such a machine. Thé most critical fealure of this device is that
the orbital radius of the particles is (nearly) constant even at high cncrgies.This is achieved
by increasing magnelic field only within an cvacuated circular beam pipe thai servesas -
"raceirack” for the accelerated particles. Recall that in an ocdinary cyclowon, the ireld is
applied over the entire volume, Particles traversing a circular path are accelerated by the
clectric field while crossing the gap in cach orbit, As the energy increases, the frequency of
the voltage across the gap is increased 1o maintin the osbital (requency consiant and the
magnetle ficld strength is increased 1o keep the orbital radius constant. It is important {o
realise that the (ield is varicd in ime, not space as in the AVF cyclotron, Since the
accelerator uses a varying frequency and magnetic field, it gives out bursis, Alithe
high-cnergy proton accelerators are synchrotrons.

Table 15.1; List of Some Acceleratorsin Gperation/ Under Development

Fig.0§5: Trajectory of = partide i

Accelerator Start of Pariicles Energy (GeV)
Operation

Brockhaven Alterating 1961 Prolons 33

Gradient Synchrottron (AGS),

New York

Standard Linear Acccleralor 1961 Elecirons 22

(SLAC), Califomia

Cormell Elecaon Synchmowen, 1967 Eleciron 12

New York

Serpukhov Proton Synchrotron, 1967 Protons 26

USSR

Fermilub Main Ring, Dllinois 1972 Protons 500

Doutsches Elektronen Synchrowen 1974 Elecirons 22

(DESY). Germany .

CERN Super Proion Syrchrciron 1976 Prows 500

{SPS), Switzerland

Fermilab Tevatron, llinois 1983 Protoas 1000

Japanese Nationai L. zboratory 1936 Electons 30

(KEK)

CERN Large Electron-Positron 1589 Electrons B85

Swrage Ring (LEP)

Superconduciing Super Collider 1995 Protons 2000C

(58C), USA

Elemantary Particda
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The [irst largs synchrotron was the Bevatron at Berkeloy, which produced protons of energy
uplo 6.4GeV. By bambarding 8 target with thls proton beam, E.Q. Segre and O,
Chemberlain succeeded in creating antiprotons in 1958,

Table 15.1 lists some accelersiors now in operationfunder development, The two largest
accelerators in operation are the proton synchrotrons at the Fermi National Accelerator
Labaratory (Fermilab, Chicago) and at the Centre Buropean de 1a Recherche Nuclaaire
(CERN, on the Swiss-French bordes near Geneva). In the Fermilab, the accelerator Is baried
underground in a circular tunnel with a radius of Jkm. The CERN accelerator is slighdy
larger, with a radius of about 1.2km. This accelerator sysiem starts with a Cockroft-Walton
generator ( 800keV) at the first siage. The energy of the beam is then pushed to about
200McV in a linear accelerator and 26GeV in a proton synchrotron. Following this stage,
the beam can be sicered inle Super Proton Synchrotron which vaises the energy beyond
400GeVY. The Fermitab accelerator produces beams of protons with an energy of 1000 GeV
or 1 TeV, and a speed of 39.99995% of the speed of light.

The next lasgest accelerating machine is the Sianford Linear Acceleralor (SLAC), 2 miles
long. This acceferator produces 22 GeV electrons whose speed is within 8 om 57! of the
speed of light. For such electrons, a circular accelerator is ruled out by pragmatic
considerations; the centripelal acceleration would canse the electrons to lose 2 prohibitive
armount of encrgy by clectromagnetic radiation (synchrotron radiation). Once the projectiles
have been given their maximum energy, they are guided out of the acccieratar by steering
magnels and direcicd against a target consisting of a block of metal or a tankfu! of liquid,
The reactions that occur in the collisions between the projectiles and the protons and
neulrons of Lhe targel creaiec many new particles by conversion of energy into mass.
Hawever, only the centre of mass energy of theincident particles is available for reactions
and in the quest {or production of sow particles, an acceleralor designer intends to convert
maximum possibic encigy inlo mass, This has led to the design of the colliding beam
accelerators, We wilt discuss these now. . '

2. Cojllding Beam Accelerators

When a proton of energy Liyy, strikes a stalionary proton of mass i, the cenire of mass
cnergy in the reaction {s givea by

E:m = JZ;;.;CZEI.I,

Thus when a 30 GeV proton hits a stationary targer, available energy for the reaction in the
centre of mass is about 7.6GeV only. However, if it is possible to store a pulse of the 30
GeV praton in a ring in say clockwise direction and arother pulse in a similar ring in
mticieckwise direetion and allow them to intersect at & chosen Jocation of & detestor, all of
the 60GeV energy is available for interaction. Of course, while a stationary target has huge
number of prolons uvailable for collision, in the collider the collisions are much rarcr in view
ol the limited number of protons in a typical beam. For a collider to be effective, we need
the beam current 1o be as high as posstble and also have the beam sharply focussed to
increase (he probabifity of interaction in a collision. Notwith<tanding what one loses in
statistics, one gains in increased energy scale for the interaction,

A 30GeV proton on collision with a stationary prolon target has enough cnergy 1o produce an
anti- proton. The p produced can be accumblated and Injected into the supersynchrotron so
that, as the magnetic field increases, p gels accelerated simultaneously with the protons
circulaling in the same machine. On allowing them to collide ax predetermined spots, where
a composite deleclor is placed, we can observe a pp collision in the ceatre of mass. Entire
znergy of this collisica is available for the nuelear interection. In one such experiment at
CERN, with 270GeY¥ prolons and 270GcV anliprotons, it was possible to discover new
specios of panicics W and W of §1GeV mass,

Lranford (US), DESY (Hamburg), Frascad (Tialy) and CERN (Geneva) have colliders in
which ¢* and e are the accelerating panicles. A charged panicle, while moving uniformly in
z cirrpizr orbit, is subiect o contripetal acceleration, Charges, when accelerdted radiale; the
cndigy toss being praportional (o the square of the acceleration. Since the acceleration is
inversely proportional 1o the radius of curvature, larger orbits are necessary (o minimise this
energy toss in a circular machine. Lighter electrons radiaie much more than heavier protons,
the encrgy loss being proportional 10 the founth power of their masses. Hence the eleclson
machines have typically much larger diameter than proton machines of comparable energy;
50GeV % 50GeV ¢*er collider has a circumference of 26,7 kms. In camparison the 400GeV
SpS at CERN has a cicum{erence of 6.9 km,




15.4.2 Particle Detectors Romantary Pariiag,

The dovicea used 1o detoet elementary partcles, for sxample thoso ereated in high-cnergy
coilision experiments at accelerator laborataries, are called detectors. The detzciion of a
particle {2 made poasible by the property that a charged porticle loseg energy by fonising or
exciting the atoms of the medium. ‘The ions left behind couse an clestric pulse which can be
sensed electronically or act as noelei for condensation of supersamratsd vapour or formation
of bobbles in a superheated liquid.  Accordingly, detectors can be ¢lassified into two broad
groups: counters, such as Gieger-Muller counter, scintiilation counter and Cherenkov
counter, that regisier the passape of each charged panticle; and track-recording devices,
such as cloud chamber, bubble chamber, spark chamber, streamer chember, 2ad pronortional
chamber Lthat provide pichires of the paths of the particles. We begin this discussion by
describing counters. :

A. Counters

The first ingeninus device used to detect cherged particles was devised by Geiger. Tuis based
on the phenomenoa of ionisation by cellision. Later on, Muller introdvced important
modifications in this ‘counter® and today we refor (0 it as the Geiger-Muller { G.M.) counter,
You may gel an opportunity (o have a closer ook at it when you visit your laboriory for
PHE-12 (L) course. G.M. counter consists of a partially evacuated glass tbe contaning an
open copper iube as cathode. A tungsien wire is strelched along whe axis of the whe, When 2
charged high energy particle enters the tube, the gas in the glass tube i5 icniced giving o pulse
of curvent, which operales a connting device. It is sensitive o the prodection of even a single
ion pair and glves constant output, independent of initial ionisation.

Scintillation counter is a universal counter. It consists of a scintitiaung maicral (insrganic

crysials, plastics or organic liquids) that gives off a briefl and faint flash of light when struck

by the (charged) ionising particles. This luminescence is recorded by a photomuluiplies and

counted by an electronic circuit (Fig. 15.7). These counters ase robust, sirnple snd efficient Furica
giving targe sharp output pulses. ] '-‘q

Ruppiuw o A
Cherenkov counter consisis of a volume of dielectric (usuaily a tank filled with gas at high ™= I}‘Lﬂ l.h’&\“% \\\
-y

pressure) within which the speed of Light is Jess than 3 x 10°ms". When a high-eaergy Pe=
charged particle traverses Lhis dielectric, its speed will exceed Lhe speed of light. Under these Procslor
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conditions, the particle emils an electromagnetic shock wave, analogous (o the sonic boom Gt
emitied by a supersonic aeroplane. This Cherenkov radiation can be picked ap by & Plg 51 e e

photo multiplier tube. The usefulness of this counier fies in the fact that the measjrements
. can be made 81 any given angle. This information enables an experimentalist to know the
velocity of the ionising particle.

B. Chambers

The Wilson Cloud Chamber hag the unique distinction of being the first chamber us2d o
*see’ the wacks of the charged particies in their passage through matier. When oir mixed with
saturated vapour of water, alcohot or ether contained in & cyiinder fined with a pision is
expanded repidly, the vapour becomes supersaluraied and condenses in a cloud of water
drops. The production of such a cloud is facilitated by the preseace of ions produced by
charged particle induced ionisation, As super-saturation increases, the negative ions serve as
ceniers of condensation. But with increasing volumes, both positive and negative ions serves
as the auclei of droplets. A close srray of fine droplels gives rise to a cloud track, which is
photographed to obiain a ‘record’. The cloud chamber suffers from the limiiaton tat it
requires sometime to recover after the expansion and therefore can not give CONLRUCS
record of events.

The bubble chamber consists of a t2nk filled with & liquified gas, such us liquid bydrogeun,
helium or freon at a high pressuse {3-20aum) ang a temperamvre siighdy below lis boliug
point. The chamber is suddenly expanded adiabatically by means of a piston atlachad ip fe
(ank. This lowers the boiling point and whe liquid becomes superheated. The liquid is then
unsiable and begins (o boil 25 5005 25 some disturhance suppiics cacrgy for the formation of
ihe firsi few bubbles. A bigh-energy charged particie passing through the chembsi ionises
molecules of the Yiquid along #ts track, The electrons 50 freed quickly doposit their energy in
the liquid and trigges the fortnation of bubbles. Thus, a fine irail of bubbles marks the rack
of the charged particle. An amray of high-speed cameras take photographs of these wails of
bubbles, after about 10ms of their formation. Then, within a few hundredths of a second, the
chamber is compressed again. This quenches the bubbles and the chambes is ready for the
next cycle of eperation. - '

T
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Fig. 159: Truce of the photagraph

of treckn of pericdts lne
wibhla champar

The vurole <lombor 2t CERN s gtavounded by s messlves clacoomagnet whose magnetic
flaid curves the orblid of the perdelva and pavmits the datarminadon of thels momenta from
the uhsarved rodhl of crvpiire. Fanlographs of the tracks of panicles pasaing thraugh the
butSle chambar are wekan dmwieneously with saveral camargs ot different anetes so as to
obiain & gtereoscople viaw of the tracks, Bubbla chambess ame erpanalvs 1o cnarpts and
mointain, bu: they attale a higher spadal resolution than gny other tech- racording device,
Careful measurements of (e photopraphe deiermine track positions (o withis 8.05mm, and
the cixvature of the track in the magnetic field detenmines the momenuiv= of the particle o
witiln about 0.1%.

Fig. 15.8 i3 an interesting Lrace of the photograph of tracks of particles made visible with s
bubble chamber 4t CERN, 1t shows a sequence of events involving the creation of several
pariicies in the collicion of an antiproton end a proton, and the subsequent decays and
collisions of these particles. The antiproton {F) eaters the field of view from atave; its track
ia slightly curved w the left by the magneiic rield. This antiproton is produced outside the
bubble chamber by the impact of a btam of protons on a target of metal. At the point A, the
sntiproton eollided with & proion et rest in the fiquid of the bubble chamber, The antiproton
and the proton arc destroyed in this collision, which creats two kaoas (K°.K ) and two pians
{x*, 7°). By arcmarkable coincidence, all of these particles, except for the £° catse further
events wilhio the fizld of view of the bubble chamber. The K° parucle is electrically neutral
and hence {eaves ro visible treck in the bublle chamber; neveriheless, it is possible o
reconstruct is majectary bocause, afier a shoit while, it spontancousty decays (at 8) into two
prons that leave tracks. One of L@s& pions further decays into &n anlimuon and a neutring
(at C), and the antimuon i urn decays into an antigdectron and two neutrinos {al D).
Meanwhile, the K~ created in the original aniproton-proton collision suffers a collision with
another proton at rest in the liquid of the bubble chamber (at £}, This collision has led © the
creation of a lambda particle (A° ) and a pion (1°). The lambda particle is neutral and leaves
no visible track. However, it decays into a pion (£~ ) and 8 proton at (F). Funthermore, ore
of the pions created in the original antiproton-proton collision suffers an elastic collision with
angther proton at rest (at &), which causes this proton to recoil,

Spark chambars vield somewhat cruder pictures of particle trecks than bubble chambers,
but they are much simpler. A spark chamber consists of many paraliel screens or thin plates
of meta), each separated from the neat by a gap of ahout a ceatimeter. The space between

the plates ig filled with a gas, usually neon. Allemats plates are connected 1o (he positive and
the negative terminals of a high-voliage supply, which produces an electric field of about
10°Vm™! berween the plates. A high-energy charged particle passing through the chamber
ionises the gas along its track. The electrons released by this ionizalion are accelerated in the
swrong electric ficld, strike gas molecules and release more clecrons, so on, This produces
an clectric discharge between the plates, with a visibie spark. Thus, a succession of sparks
nurks the passage of i pasiicle through the chamber. Cameras weord these sparks
photographically; usuzlly mistors arc placed around the spark chamber so that a single
photograph can simultanetusly record several views of the tracks of sparks seen from several
angles.

The spark chambess ¢ net have the high spatial resaluticn of bubble chambers bl they have
betiay ume recolusion. The high voltage is usuplly applied to the chamber for s short ime,
about 107 the chamber is therefore sensitive only during this brief interval, This permits
the chamber 1o capvre the vack of one indlvidual particle, provided it is triggered at a
suitable moment. The trigger I3 provided by auxiliary scintillation counters placed around
the ckambes; these make preliminary identificalions of the ammiving particles and irigger the
spark chainber whenever Lhere is an interesting event.

Streamer chambers are similar t» spark chambers but they uss only one pair of widely
serarated plates instead of the many closely speced pairs nsed in the spark chamber, A very
bire{ pulse of iugh voliage, lasting only SbGui 1073, is applied 10 thess plaiss. Unided inése
condiriong the elecirane mieseed by the innizeticn of the pac in the chamber do not have
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erough time to develsg g foll-gize spard from one plete 1o the other instepd they only give
Tis2 (o sinall, {aint pIsios parss, OF aieamdds, wich Golinait dic Uask of we panicle,
Sweamer chambers arc capable of good spatial resolution; when photographed from &
direcrion perpendiculer o the plates the soeemear: determine the pasitions of poiats on the
uack of e particie io within C.1 rom,

Pruportional chamber is one of the oldes devices used for recording ionisation, It consists
of a gas-filled cylindrical metal or glass tube maintained 2t 8 negative potential and a fine
ceatral wire at arclative posilive poiential to serve 8s anode. A sigmificant modification of
this counter was achieved when single wire was replaced by a grid of thin paralle! {anode)
wires at positive potential sandwiched between two plates or screens el negative potential,



This is shown in Fig. 15.9. Elcctrons released by the ionisation of the gas in the chamber Elementary Partide
drift to the nearest positive wire and give rise to an electric discharge in the strang electric

field in the immediate vicinity of the wire. This clectric discharge regisicrs as a cument pulse

on Lhe wire (the magnitude of the cunent pulse is praportional to the amount of jonization,

hence the came proportional chamber), Each wire is connecled to its own electric current,

and thercfore each wire constitines an independent detector, which signals the location of the

discharge. In muhiwire proportional chambers, good spalial resolutian is atlained by Filling ({:—*—j

the entire chamber with a lange number of wires in a dense array (typically one wire per
millimeter). In drifi proportional chambers, the spacings betwecy the wires arc much larger
but cxcellent spatial resolution is attained by measuring the time delay between arrival of the

—ll —_—
high-energy particle in the chamber and detection of the current pulses on the wires. Since i 'E—*
the clecurons released by ionization drift toward the positive wires at a known speed, the
measurement of the lime delays permils computation of the precise distances that these Cathode
electrons travel from their points of origin to the wires. Drift proportional chambers can Mets _
determine track positions with an accuracy of upto 0.05mm, NG e gt

Proportional chambers do not provide photographs of the tracks of particles, Insiead, they
record the tracks as a sequence of electric signals from their detector wires. These signals
are fed into a computer which constructs an image of the tracks, Because they have good
spatial resolution and deliver data in a form that can be directly manipulaled by computers, Anode Wires
proportional chambers have become very popular in high energy physics. Fig. 159 : Arranpement uf

. - Ilve und
Shower Deteclors und Calorimeters Elcctrons and photons of high energy cause Ihe Z:u.:;l“ l::-enuve

occurrence of cascade showers. A parent clectron will radiate photons, which convert o paus prop ertlona! chiagner
ang the number of particles increases exponentiatly with depth in the medium. These

clectromagneiic shower delectors are buill [rom high Z material with small radiation length

(which is defined as the length over which the energy of the particle drops by a factor 1/e).

A hadron shower arises when an incident hadron undergoes inelastie ¢ollision and produces

secondary hadrans ang the same process goes on.  Vanous types of electromagnetic and hadron

calorimeiers are now in use and they become an integral part of a large complex detecior,

15.5 INVENTORY OF PARTICLES

The known panicles fail inta four broad groups: the Jeptons, the baryons, the mesons and
field bosons, Mesons and baryons are collectively designated as hadrons. We will now
discuss these in brief,

Leptons are particles that do nat take part in strong interactions bul are produceqd gnig
absorbed in weak interaclions. Electrons, muons (), tau particles {1 ) and their associated
neutrinos v,, v, and v, arc members of tiis group. The antl-particles of these six lcptons
constitute the family of antileptons e*, 1", 1°, ¥,. ¥, and v, , Physicisls believe that six pairs
of lepions and anlileplons complele their family. Leptons have half-integrai spins sl are
fesmions. Table 15.2 lists various obscrvable propertics, such as their inasses. spins, electric
chasges and lifetimes of leptons, apart from their decay modes.

Table 15.2: Qbservable Properties of Leptoas

Particle Mass . Spin | Elecuic Mean life Principal Decay Modes
(MeVic) charge Mode | Fraction (%)
e 0511003 | 172 | -1 | sable
n 05659 | 12 | -1 | 21973x10% | ew 100
3 1784 7 B B E RV T vy i7.6
ew 174
hadrons, 516
neurrals
v, |. 0* 12} 0 | swable
Yy 0 12 0 slable
v, 0 12 0 slable

* According to recent extimates, the mass of the neutring is about 20 eV/cZ. .



Nuaiver Physkic you isave leamt about the discovery of the muon in Sec. 15.3. The tauon was discovered in
1975 by M. Peel and his co-wexkers in J-o" collision expasiments at the Stanford Linear
Accolarator, (He i3 co-receplom of the P4 szice Nobaet Prize for the year 1995.) The muon
and the tanen are esxontially heavy vorsions of electrons, The teoon decaya preferably i

The neutrinos (v, , v, 20d v, ) are (peshaps) massless, uncharged particles. The electron
foutrino, v,, is emitted in B'-decay. The muon and teucn neutrinos, v, &nd vy, e emitted in
the decgys of the moon and the tauon: '

R e+y, +7,

T o WA+,

- €+ Y+

While v, and v, have been detected directly in reactions which absorb these nevtrinos, the
existence of v, has been inferred indirectly from energy and momentum conservation in the
decay of the toauon, .

Baryons are swongly interacting particles, They inclode protons, peverons and heavier
members [iko the omega-minus, whose final decay products include ¢ither a proton of a

neutron {Table 15.3). .
Tabje 15.3: Observable Properties of Baryous
Particle | Massin | SpinParity | Isospin Mean-life Decay modes
(MeV/c") 0]
p 938.3 1t ¥ | >10% years
R 939.6 et 1 898 pPe Ve
A use | w 0 | 26x107" pr”, nx®
z 1189.4 »' 1 080 x 107° p’, ox’
¥ 1925 W 1 58x107% Ay
b 11973 e 1 1.5x10™"° o
= 13149 7y v | 29x1g7? A
= 13213 | w v | 16x107%° AR
o 1672.5 W w | 0s2x10 AL, ER
AL 2282 bt 0 | wkoown pKr', pK°, AL ¢,

_These are the mos) Rumerous group of particles. For every baryon, there exists an
anti-baryon. As in the case of keptons, Lhese andi-particles have the opposite charge bul
the same mass and spin as the comesponding particles, Moreover baryons are fermions.

Mesors are particies that take part in swong interactions bat 2re rot baryons (Table
15.4). They can be sub-classified in various ways according 10 their $pin and other
quentam numbers. Their magses range from a mere 135 MeV, a2 in the case of plons
(%), to mose than 10,000 McV &s in the case of ‘upsilens’. All mesons have inlegral
spin ~ they ere bosons whereas all baryons are spin half parlicles (fermions). Fos every
mescn, there exists 2n anti-meson, For instence, the anti-particle for 2° is £ " and the
antiparticle for m ® is x° itself. This means that incraction between wo a° leads to their
annihilation,



‘Table 18:4: Observable Propertios of Masons

Particle mmc,) s» | ! | am;:)m Decay modes
nt 139.6 o 1 l26x10? u® v
u’ 1350 3 1| o83x10™ | ety
n° 549 o 0 |10" W e Ky
X* 493.7 0 L o 14x10° | v estr st et
- 221t v, 2 ety
KK |97 0 Y2 | Decays as K? (0%, K? (50%)
K2 . 089x107° | &', n"n®
K? : 52x10°* 3%, K 7o by, 2 ety
p* 1869 0 YV | 92x10" | electronor Kmeson
b B | 1865 0 V2 | 44x10? | +other paricles
Ft 1971 o 0 [19x%10™® | ¢x (disashort-lived particls
. decaying into K* K-, K°K°
elc.)
B* s2n o ¥ [ 14x10™" | Dmesonorokatonorp
B B° | 5274 o 7] + other particlos

Fleld bosous are particles canrying the electromagnetic and weak forces, The papticlss in
this group arc photons camying the electromagnetic force and the W and Z° bosans.

Ywmwknowﬂmdwmlyahso!ulelymblemicksamﬁwcbcmn.lhcphom,dw :
newirings and (perbapst) the proton. Thls means tha almost a1l of the known particies are
uastzble and decay into several other particles. The decoy of a iarge number of such
particles is caused by the force of strong interaction. Decays caused by the strong farce ars
exiremely fast. Sach particics have lifelimes of caly sbout 10-Cs, Such pariicles wo
regarded as unstable. If a particle lagts only 10 25, we cannot even detect it directly since
the maximom distance travelled even by light over this time interval is ~10-%m (16 %5 x 3
x 10"ms™), which is roughdy the same as the diametcr of 2 proton. Obviously, such particles
60 X eave &ny visible track in any delector. However, their exlstencs is ugnally deduged
{rom clrcumstantial evidence, Short lived particies are ofica called resoaances. Panlcies of
thiz short-lived class, some of which are baryons and other mesong, 2ee not listed in Tablas
15.2 and 15.3. Some panicles may survive for abont 10 % from the instant of production.
In high ensrgy physics, a time interval of 105 to 10~% is regarded as a rather large
inicrval and particles with such lifetimes are regarded as stable, Electromagnetic decays that
always Involve photons arc slower. Lastly, particles which cannot find any aliowed srong o
cleciromagnelic mode of decay, may find a weak mode (o docay. Degays involving weak
interactions are, in general, the slowest. The f-decay of a nentron with 8 mean life of aboul
15 min is a rother well known oxample of a lethargic decay mode.

15.6 CONSERVED QUANTITIES

taws uss already Saniliar fiom classical physics, and Gey as based on generel theovetical
principles. Soms othor congervation laws are nevy, parrely emniricat mitss withous ony
obyigus thegretical justification. Such empinke! consorvatios laws were piuposed by
particle phyzicists to account for the (puzziing) sbsence of diverse hypothetical reactons. In
geneml, we expect that a reaction, which fs not forbidden by conservation laws, will eccur
perhans at a low rate, The absence of certain reactions, otherwise not farbidden by any
knowa consexvadlon law, suggesis ihe intervenlion of a new conservation iaw involving scmc
now conserved quantity. However, when we farmalate a new conservation law on such
purely empirical ground, we cannot clalm to have achieved an explanation of why e
reactions in question do act occar; we may have rerely codified the observed facls, Sucha
validation neverthelcss has predictive value, since it empowers us 10 make predictions as to
which reactions are possible. Farthermore, the emplrical consesvation laws provide us with
valusble guidance in the construction of thearies of Interactions,

Blezentary Pezls:
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Sanw of the consesvation laws are absoluts, 6, they are obeyed by all reactions under all
clrcumstances. The absolutaly conscrved quantities aee enssgy, momentum, angular
momentum, clectric chargs, lopion number and baryon numbar, Tho first fous of those
quantities (enargy, momontum, angular momontam, and slectic chargo) are [amiliar; thelr
conservation i s consequence of the baslc laws of classical or quantum mechanics and
elactromagnetism. The other quantities are less familiar; we will discuss them one by one,

Lepion Nymber. In nuclear reactions, tho number of electrons {3 conserved. Thig notion is
recognised by assigning & lepton number L, =1 for electron and L, =~1 for pashron. There
are throe separate conservation laws for lepton number, comresponding to the threz separate
varieties of Jeptons: ¢, v, and 1. The conservation law for electron lepion number siaies that
the net number of electron-type leplons remains constant in & reaction. Antilepions are
reckoned as making a negative contribution 1o the net lepton nomber. In essence, this means
that whenever a lepton is created or destroyed in a reaction, a corresponding antleplon must

be created or destroyed. For instance, consider the decay of a froe neatron

n—p+c+ 7,
You will note that the net eloctron lepton number before and after the reaction is zero.

The conservation lgws for muon-lepion number and tauon-lepton number are formulated
similardy. The conservation of lepion nombea is supporisd by abusidart empirical evidence.

Baryon Number. Analogous to conservation of leptonic nymber, suclcon number is also
conserved in nuclear reaction. This notion is specified by assigning a baryon number 1o all
particles that panticipate in strong interactions. If we assign B = +1 o baryons B=-1tothe
anti-baryon gnd B = 0 to &ll non-baryons {mesons,lepions and field panticles). The sum of the
B’s must be the same on both sides of the reaction, For example, production reaction of
anti-protons in p-p collisions requires three protons in the final state:

P+P - P+P + P+P

5o that the net value of B = +2 is conserved on both sides. The conservation law for baryon
number states that the net number of baryons remains constant. Liks the conservation of
lepion nuraber, the conservation of baryon number is an empirical Bw,

Baryon number conservation focblds decays sucﬁ s

AV p+r”
B=-1-241+0

The observed stability of the proton can be regarded as a corollary of the conservation taws
for energy and for baryon number. Since the proten is the lightest of all baryons, encrgy
consarvation requires Ut the hypothetical decay products be non-baryons, and the decay
would violate baryon number conservatlon. The unificd theery of electromagnetic and weak
interactions, the electroweak theory, formulated by Weinberg, Salam and Glashow,
suggnsted that proton is unstable; it should decay with a half-life of 10* yr. To gathes
expesimental evidence for this aspest of cleciroweak theory, experiments arc being carried
out throughout the world. Tn India, such experiments are on, in coliaboration with Japan, in
Kotar gold mines under the guidance of Prof. M.G.K. Meaon. Since these experiments have
faited 10 delect proton decay so far, the available empinical evidence seems 10 be consistent

with baryon number conservrtion. (If proton decays are delected, the 1aw of baryon numbex

conservation will have to be egarded an approximate law.,)

A complete mathematica? definition of other conserved quantiliea - isospin, strangeness, and
parity - falls beyond the scope of this course. We will therefore not discuss these heie.

15.7 THE QUARK MODEL

You mpst now be convinced that the vast veriety of new particles with diverse characteristics
arose out of our quest for high energies. The question now ariges; Can we undersiand the
systematics of such large number of particies in terms of a besic theosy or model? The
answer (0 this question is in the affermative. I is now believed that all hadrons are
composite bodies made out of two ar thees quarks, which cling 1ogether through forces



mediated by gluom (which ere messless and have spin 1), They are analogous to photans
which are carriers of electromagnetic forces among charged pasticles. The baryons conaist of
threo quarks while the mesons are made up of two quarks.

In the quark model, there are only two sats of clementary particles: leptons and quarks, All
quarks hove spin 1/2 and carry fractional electric charges, %c and —-;r . The quarks are
supposed 10 exist in six flavours (which have nothing 1o do' wlth tasie). Each quark, fike any
other particle, has an antiparicle. The charge on each antiparticle is opposite Lo that on the
comresponding quark. These properties are summarised in Table 15.6.

Table 15.5: Properties of Quarka

Neme Symbol Charge Spin Baryon Antiquark
Number

Up u 42 1 il u
3 2 3

Down d 4 1 1 d
3 2 3

Strange $ 1 1 1 s
3 ys 3

Charmed c 2 1 1 c
3 2 3

Top 1 2 1 1 t

3 2 3 _

Bottom b 1 1 1 b
3 2 3

To easure that Pauli's exclusion principle holds, the concept of calour field was added 10
flavours. Each flavour of quark occurs in three primary colours: red, green and blue. Bach
antiquark js assigned the correspording complementary colour: cyan, magneta and  yellow.
Thus there are eighteen quarks and an equal numbez of antiquarks,

An essential feature of the quark model with coloar is that the combination of colours for
hadrons always gives white. That is, all observed meson and baryon slates are colourless,
On mixing three primary colours we gel a haryon and mixing a primary colour with its
complementary colour yields e meson. (Noic that the analogy with artinary colours is very
strong but the panticles ere not colouwred.)

As of now, quarks can be regarded as most clementary particles since all known particles can
be constructed out of quarks by joining them in different ways, For example, 2 proton is
made of two u quarks and one d quark. A positive pion is made of one u guark and ons d
antiquark. You may now ask: Have we reached the ultimate? Perhaps No! Theoretical
Physicists arc proposing new schemes to assemble quarks aut of smaller units. Shall we ever
reach the end of our quest for the ultimate constituents of matter? Questions never cease!

15.8 SUMMARY

@ Acgording 1o Dirac's relazivistic theory, cloctions can exlst ik positive as weli as
neRative encrgy stales,

® [nan electrostatic accelerator, changed particles are accelerated by a strong electrostatic
fickd, '

@  Lawrencs dasigned a cycioton whicil cansisied of two hollow semi-spherical metallic
'dees’. -

® Inacycloron, changed particles are accelerated by a constant frequency altermating -
electric field.

® The ume a particle takes in traversing ane semicircular path is independent of the radius
of the path.

Dementary Parudes

Calowr iv 1o the irong imensttion
belwmn quarks 51 eleairic charge
is to elechiumagnatic interaction
bl wotn elactrons
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To is-. cense the energy of chargad particles in a synchrocyclotron, the frequency of the
sccelerting voltage is continuously varied as a particle goes away from tha centre of the

machine.

In a syncheoiron accelerator, the magnetic field strength as well as resongnt frequency
are varied continuously.

The devices used 1o detect particles creatod in high energy collisions are called detectorn.
Delectors are classified inlo two groups: counters end chambers depending on whether
the device registers the pnssage of a charged particle or tracks its path. .

GM counter is based on the phenomenon of jonisation by collision.

1n a Wilson Cloud Chamber, a cloud of water drops is facilitated by the presence of ions
produced by charged particle induced ionisation.

All known particles can be clnssified into four broad groups: the leptons, the baryons,
the mesons and field bosons, :

Leplons (e, 1, T, Ve, ¥ and we) are produced and absored in weak interactions. Baryons
(n, p. A, Z%, S, A!)are suongly interacting particles. Mesons take part in srong
interzctions but are not baryons. Field bosons are particles carrying the electromagnetic
and weak forces.

All hadrons are composite bodics made of two or three quarks, which cling together
through forces medizted by gluons. They are analogous to photons, which arc carriers of
electromagnetic forces among charged particles.

[n quark tnodel wilh colour, combination of colours for hadrons Blways gives white. All
observed meson and baryon states are colourless.
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