UGPHS – 01 Elementary Mechanics

Block-I	Concepts in Mechanics
Unit-01	Motion –Language for describing Motion Uniform circular motion,
	Relative motion
Unit-02	Force and Momentum- Causes of Motion, Linear Momentum
Unit-03	Work and Energy
Unit-04	Gravitation
Block-II	Systems of Particles
Unit-05	Motion under Control Conservative Forces
Unit-06	Many Particle System
Unit-07	Scattering
Unit-08	Rigid Body Dynamics
Unit-09	Motion in non- Inertial Frames of reference
Unit-10	Appendix-A-Conic Section
Unit-11	Appendix-B-Methods of Determinations of moment of Inertia

UGPHS – 03

Oscillations and Waves

Block-I	Oscillation
Unit-01	Simple Harmonic Motion
Unit-02	Superposition of Simple Harmonic Oscillations
Unit-03	Damped Harmonic Motion
Unit-04	Forced Oscillations and Resonance
Unit-05	Coupled Oscillations
Block-II	Waves
Unit-06	Wave Motion
Unit-07	Waves at the Boundary of two media
Unit-08	Superposition of waves-I- Stationary waves, wave groups and group
	Velocity beats
Unit-09	Super Position of waves –II- Interference diffraction

UGPHS - 04

Electric and Magnetic Phenomena

Block-I Electrostatics in free space

- Unit-01 Electric charge force and field
- Unit-02 Gauss's law

Unit03 Electric potential

- Unit-04 Coupled Oscillations
- Unit-05 Potential for continuous charge distribution and energy
- Block- II Electrostatics in Medium
- Unit-06 Macroscopic proportions of Dielectrics
- Unit-07 Capacitor
- Unit-08 Microscopic Properties of Dielectrics

Block-III Electric Current and Magnetic Field

- Unit-09 Electric Current
- Unit-10 Magnetic Field
- Unit-11 Motion of Charges in Electric and Magnetic Field
- Unit-12 Magnetism of Materials-I
- Unit-13 Magnetism of Materials-II- Ferromagnetism, Magnetic, Intensify, Relationship between B&H, Magnetic Circuits.

Block-IV Electromagnetism

- Unit-14 Electromagnetism Induction
- Unit-15 Maxwell's Equations and Electromagnetic Waves
- Unit-16 Reflection and Refraction of Electromagnetic Waves

UGPHS - 05

Electrical Circuits and Electronics

- Block-I Network Analysis and Devices
- Unit-01 Circuit Analysis
- Unit-02 A.C. and D.C. Circuits
- Unit-03 Electron Devices
- Block-II Electronic Circuits
- Unit-04 Amplifiers
- Unit-05 Oscillators
- Unit-06 Power Supply
- Block-III Linear Integrated Circuits
- Unit-07 The Operational Amplifier
- Unit-08 Application of Operational Amplifier
- Unit-09 Linear's IC's- Amplifier and Voltage Regulators

Block-IV Digital Electronics

- Unit-10 Number System and Codes
- Unit-11 Fundamental of Boolean Algebra and Flips Flops
- Unit-12 Registers, Counters, Memory Circuits and Analog
- Unit-13 Electronic Instruments

UGPHS - 06

Thermodynamics and Statistical Mechanics

Block-I The Zeroth low & Low the First Law Unit-01 **Basic Concepts of Thermodynamics** Measurement of Temperature Unit-02 Unit-03 The First Law of Thermodynamics Unit-04 The Applications of the First Law of Thermodynamics **Block-II** The Second and The Third Laws of Thermodynamics Entropy and the Second Law of Thermodynamics Unit-05 Unit-06 The Thermodynamics Potentials **Phase Transitions** Unit-07 Unit-08 Production of Low Temperatures and the Third law **Elementary Kinetic Theory Block-III** Unit-09 Ideal Gases Transport Phenomena Unit-10 Unit-11 **Brownian Motion** Unit-12 **Real Gases Elements of Statistical Mechanics Block-IV Basic Concepts of Statistical Mechanics** Unit-13 The Partition Function Unit-14 Unit-15 **Quantum Statistics**

UGPHS - 07 Optics

Block-I Introduction Light Unit-01 Nature of Light Unit-02 **Reflection and Refraction of light** Perception of Light Unit-03 Polarization of Light Unit-04 **Block-II** Interference Interference by Division of Wovetrnt Unit-05 Unit-06 Interference by Division of Amplitude Unit-07 Interferometer Diffraction **Block-III Fresnel Diffraction** Unit-08 Unit-09 Frauntiofer Diffraction Unit-11 **Diffraction Grating Diffraction and Resolution** Unit-12 Lasers and Their Applications **Block-IV** Unit-13 Coherence Unit-14 Physics of Lasers Holography Unit-15 Unit-16 Fiber Optics

UGPHS – 08

Modern Physics

Block-I	The Special Theory of Relativity
Unit-01	Emergence of Special Relativity
Unit-02	Relativistic Kinematics
Unit-03	Relativistic Dynamics
Block-II	An Introduction to Quantum Mechanics
Unit-04	Wave Par tide Duality
Unit-05	Matter Waves and Uncertainty Principle
Unit-06	Schrodinger Equation
Unit-07	Observables and Operators
Block-III	Application of Quantum Mechanics to Some System
Unit-08	Some Simple System
Unit-09	Spherically Symmetries Systems: Hydrogen Atom
Unit-10	Atomic Spectra
Unit-11	x-Ray Spectra
Block-IV	Nuclear Physics
Unit-12	Radioactivity
Unit-13	Nucleus
Unit-14	Applied Nuclear Science
Unit-15	Elementary
	-

UGPHS – 09 Mathematical Methods in Physics-I

Block-I Vector Algebra

- Unit-01 Vector Deferential Calculus
- Unit-02 Coordinate Systems
- Unit-03 Integration of Scalar and Vector Fields
- Unit-04 Proofs of the Vector Integral Theorems

Block-II Probability and Statistics

- Unit-05 Basic Concept of Probability Theory
- Unit-06 Probability Distributions
- Unit-07 Application in Physics

UGPHS – 10 Mathematical Methods in Physics-II

- Block-I Ordinary Differential Equations
- Unit-01 First Order Ordinary Differential Equations
- Unit-02 Second Order Ordinary Differential Equations with Constant Coefficients
- Unit-03 Second Order Ordinary Differential Equations with Variables Coefficients.
- Unit-04 Some Applications of ODE in Physics

Block-II Partial Differential Equations

- Unit-05 An Introductions to Partial Differential Equations
- Unit-06 Partial Differential Equations in Physics
- Unit-07 Fourier Series
- Unit-08 Applications of Fourier Series to PDES

UGPHS – 11

Quantum Mechanics: Approximation Methods and Perturbation Theory

Contents

Preface

1. The Failure of Classical Physics (or The Origin of Quantum Mechanics)

- 1.1 Introduction 1
- 1.2 Black Body Radiation 1
- 1.3 Photoelectric Effect 3
- 1.4 Specific Heat of Solids 4
- 1.5 Compton Effect 5
- 1.6 The Rutherford Atomic Model 6
- 1.7 Bohr's Theory 6
- 1.8 Bohr-Sommerfeld Theory (or Old Quantum Theory) 7
- 1.9 Limitations of Bohr-Sommerfeld Theory 8
- 1.10 De Broglie Hypothesis and Wave-Particle Duality of Matter 9
- 1.11 Wave Packet and its Motion 10
- 1.12 The Uncertainty Principle 14 Problems 16 Solutions 17

2. Schrödinger Equation and Principles of Quantum Mechanics 23

- 2.1 Schrödinger Equation 23
- 2.2 Extension to Three Dimensions 26
- 2.3 Schrodinger Equation in the Presence of Potential Energy Function V (\vec{r}, t) 26
- 2.4 Physical Interpretation of ψ 27
- 2.5 Box Normalization-Non-normalizable Wave Functions 28
- 2.6 Conservation of the Total Probability 29
- 2.7 Expectation Values of Dynamical Variables 31
- 2.8 Ehrenfest's Theorem 33
- 2.9 Admissibility Conditions on $\psi(\vec{r}, t)$ 35
- 2.10 Separation of Variables; Stationary States 35
- 2.11 Superposition of Stationary States 37
- 2.12 Degeneracy 38
- 2.13 Orthonormality of Eigen Functions 39
- 2.14 Closure Relation 40

Copyrighted material

	2.16 2.17 2.18	Hermitian Operators. Their Eigen Functions and Eigen Values 40 Simultaneous Measurements and Commuting Oper The Adjoint or Self Adjoint of an Operator 42 Simple Theorems about Hermitian Operators 43 Uncertainty Principle-Exact Statement and Proof Problems 46 Solutions 47	
3.	Sim	ple Applications of Quantum Mechanics	56
	3.1	Particle in a one Dimensional Box-Square Well with Infinitely High Walls 56	•
	3.2	Particle in a Square Well Potential with Finite Wa	dls 59
	3.3 3.4	Potential Step 64 Rectangular (or Square) Potential Barrier 68	
	3.5	Application of Barrier PenetrationAlpha Decay Problems 78	74
		Solutions 80	
4.	The	Linear Harmonic Oscillator	91
	4.1 4.2	Schrödinger Equation and Energy Eigen values Harmonic Oscillator Wave Functions 96	91
		Problems 98	
		Solutions 101	
5.	Cent	ral Potential Problems	111
	5.1	The Rigid Rotator 111	
	5.2		117
	5.3	Hydrogen Atom (or Hydrogen Like Atoms, viz. He ⁺ , Li ⁺⁺ , Be ⁺⁺⁺ , or One Electron Atoms) <i>I</i>	19
	5.4	Eigen Functions of Hydrogen Like Atoms and	19
		Degeneracy 126	
	5.5	Probability Density in the Ground State (or 1s Ort	oital)
	5.6	of Hydrogen Atom 130 Isotopes of Hydrogen 131	
	5.7	Three Dimensional Square Well Potential 131	
	5.8	Application to Deuteron Problem 137	
		Problems 140 Solutions 141	
6.	Dire	c's Ket and Bra Notation	150
•••	6.1	Superposition Principle 150	
	6.2		
			Copyrighted material
			oopyngntou material

			Contents	IX
	6.3	Hilbert Space 153		
	6.4	Eigen Values and Eigen Vectors 153		
	6.5	Basis in Hilbert Space (Completeness or		
		Closure Property) 154		
	6.6	Simultaneous Eigen Kets of Commuting Operators	155	
	6.7	Change of Basis; Unitary Transformation 156		
	6.8	Linear Harmonic Oscillator 157		
•	Qua	ntum Dynamics		163
	7.1	The Equations of Motion 163		
	7.2	The Schrödinger Picture 164		
	7.3	The Heisenberg Picture 166		
	7.4	The Interaction Picture (or Dirac's Picture) 168		
	Orb	ital Angular Momentum and Spin		171
	8.1	Orbital Angular Momentum 171		
	8.2	Eigen Values and Eigen functions of L^2 174		
	8.3	Eigen Values and Eigen Functions of L, 175		
	8.4	Orbital Angular Momentum and Rotations 178		
	8.5	Pauli Theory of Electron Spin 180		
	8.6	Pauli Spin Matrices 184		
	8.7	The Spin Eigen Functions 186		
	8.8	Raising and Lowering Operators 188		
		Problems 189		
		Solutions 190		
	Ang	ular Momentum: General		20(
	9.1	Eigen Values (or Eigen Value Spectrum)		
		of J^2 and J_z 200		
	9.2	Determination of the Constants C± and Matrix		
		Elements of J ₊ and J ₋ 204		
	9.3	Angular Momentum Matrices Corresponding to		
		j = 1/2 in the jm> Basis 205		
		Problems 208		
		Solutions 208		
0.	Add	ition of Angular Momenta		214
		Clebsch—Gordan Coefficients 214		
		Clebsch—Gordan Coefficients for		
		$j_1 = j_2 = 1/2$ – An Example 219		
	10.3	The Concept of Isospin 222		
	2 310	Problems 223		
		Solutions 224		

,

Copyrighted material

11. Invar	iance, Symmetry and Conservation Laws	233
11.1	Symmetries and Conservation Laws 233	
11.2	Symmetry and Degeneracy 234	
11.3	Space-Time Symmetries 235	
11.4	Continuous and Discrete Transformations 238	
11.5	Space Inversion (or Spatial Refelction)—Parity 23	8
11.6	Time Reversal (or Reflection) and Kramers' Theorem	
11.7	\hat{T} for Zero Spin Particle 241	
11.8	\hat{T} for a Non-Zero Spin Particle 242	
	Problems 245	
	Solutions 245	• I
12. Appr	oximation Methods	248
12.1	Introduction 248	
12.2		
12.3	11	
	Another Form of Validity Condition 258	
	Application to Bound State 258	
	WKB Solution of the Radial Wave Equation 262	
	Application to Barrier Penetration 264	
	Time Independent Perturbation Theory 269	
12.9		
12.10	Second Order Perturbation 273	
12.11	Time Independent Perturbation Theory	
	(Degenerate case) 277	
12.12	Variational Method (or Ritz Method) 280	
12.13	The Hydrogen Atom—An Example 282	
12.14	The Ground State of Helium Atom-	
	An Application 284	
12.15	Application to Excited States 289	
12.16	One Dimensional Harmonic Oscillator-	
	A simple Example 290	
	Time Dependent Perturbation Theory 291	
12.18	First Order Perturbation (or Solution to First	
	Order in λ) 294	
	Transitions to a Continuum-Constant Perturbation	295
12.20	Radiative Transitions—Harmonic Perturbation 298	3
	Problems 300	
	Solutions 305	
13. Intera	action of Radiation With Matter—Semi-Classical	
Treat	ment	348
13.1	Introduction 348	
	Co	pyrighted material

Contents XI

12.0	Dediction Transitions in Atoms 240
	2 Radiative Transitions in Atoms 348
13.3	1 11
	Absorption 352
13.4	
13.5	•
13.0	
12.5	Hydrogen Atom 359
13.7	
	Problems 363
	Solutions 363
14. Qua	antum Theory of Scattering
14.1	Introduction 370
14.2	2 Scattering by Spherically Symmetric Potential 371
14.3	Method of Partial Waves 374
14.4	Optical Theorem 381
14.5	Physical Meaning of δ_1 381
14.6	Scattering Length 383
14.7	
14.8	Dependence of δ_l on Angular Momentum
	and Energy 385
14.9	Effective Range: Scattering by a Square
	Well Potential 388
	0 Ramsauer—Townsend Effect 392
	1 Resonance Scattering 394
	2 Scattering by a Perfectly Rigid Sphere Potential 401
	3 The Integral Equation Method 404
	4 The Born Approximation 409
	5 Form Factor 412
	6 Validity of Born Approximation 412
14.1	7 Transformation from Centre of Mass to
	Laboratory System 413
14.1	8 Scattering by Spherical Square Well Potential
	Using Born Approximation 417
14.1	9 Validity of Born Approximation—Case of
	Square Well Potential 420
	0 Scattering by Screened Coulomb Potential 422
14.2	1 Validity of Born Approximation—Case of
D	Screened Coulomb Potential 426
	blems 428
Soli	ution 431

Copyrighted material

15. Systems of identical Particles

- 15.1 Identical Particles 463
- 15.2 Symmetry of Wave Functions 463
- 15.3 The Pauli Exclusion Principle 467
- 15.4 Heitler-London Theory of Hydrogen Molecule 468
- 15.5 The Helium Atom 477
- 15.6 Scattering by Identical Particles 482

16. Relativistic Quantum Mechanics

- 16.1 Klein-Gordon Relativistic Equation 487
- 16.2 The Probability Density and Probability Current Density 488
- 16.3 Klein–Gordon Equation and Hydrogen Atom 490
- 16.4 Dirac Relativistic Equation 496
- 16.5 Dirac's $\vec{\alpha}$ and β Matrices 498
- 16.6 Position Probability Density and Current Density 502
- 16.7 The Dirac Equation in Covariant Form 504
- 16.8 Spin Angular Momentum—Existence (Dirac Equation in Central Force Field) 505

.

- 16.9 Dirac Particle in an Electromagnetic Field (Spin Magnetic Moment) 507
- 16.10 Zitterbewegung 511
- 16.11 Dirac Free Particle Solutions 513
- 16.12 Discussion of Negative Energy States 518
- 16.13 The Hydrogen Atom (Taking Electron Spin into Account) 520 Problems 531 Solution 531

17. Second Quantization

- 17.1 Lagrangian Formulation of Field 533
- 17.2 Hamiltonian Formulation of Field 537
- 17.3 Poisson Bracket Formulation of Field Variables 539
- 17.4 Quantum Equations for the Field 540
- 17.5 Field with More than One Component 541
- Quantization of the Non-Relativistic Schrödinger Equation 542
- 17.7 The N-Representation 546
- 17.8 System of Fermions 550

Physical Constants	553
Valuable References	555
Index	557

Copyrighted material

533

463

UGPHS (L) -01

Physics Laboratory-1

Block-I

Some Experiments on Oscillations and Waves
Introduction to Laboratary-1- Measurement
Introduction to Laboratory – II- Error Analysis
Block-II
Some Experiments on Mechanical and Electrical Properties of
Materials
UGPHS (L) -02
Physics Laboratory-II
Block-I
Electrical Circuits and Electronics
UGPHS (L) -03
Physics Laboratory-
Block-I
Some Experiments on Wave Optics
Some Experiments on Electronics Circuits on Galvan magnetic
Phenomena and

Books Recommended:

- 1. Question Physics: Lehninger, D.C Tangal
- 2. Physics: A. K. Gupta
- **Text Book:** Ajay Ghatak 3.
- All Titles: Gupta & Kumar Quantum: L. Schift 4.
- 5.